aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/ChangeLog11
-rw-r--r--src/algebra/Makefile.in9
-rw-r--r--src/algebra/Makefile.pamphlet9
-rw-r--r--src/algebra/exposed.lsp.pamphlet5
-rw-r--r--src/algebra/syntax.spad.pamphlet81
-rw-r--r--src/interp/g-util.boot15
-rw-r--r--src/interp/i-spec2.boot5
-rw-r--r--src/share/algebra/browse.daase2766
-rw-r--r--src/share/algebra/category.daase4604
-rw-r--r--src/share/algebra/compress.daase1316
-rw-r--r--src/share/algebra/interp.daase9663
-rw-r--r--src/share/algebra/operation.daase32202
12 files changed, 25404 insertions, 25282 deletions
diff --git a/src/ChangeLog b/src/ChangeLog
index 0a39e379..d916bd36 100644
--- a/src/ChangeLog
+++ b/src/ChangeLog
@@ -1,3 +1,14 @@
+2008-09-02 Gabriel Dos Reis <gdr@cs.tamu.edu>
+
+ * algebra/syntax.spad.pamphlet (Literal): New.
+ (Identifier): Likewise.
+ (Signature): Tidy.
+ * algebra/exposed.lsp.pamphlet: Expose IDENT and LITERAL.
+ * algebra/Makefile.pamphlet (axiom_algebra_layer_user): Add
+ LITERAL and IDENT.
+ (user-stamp): Don't depend directly on bootstrap-stamp.
+ * share/algebra/: Update databases.
+
2008-09-01 Martin Rubey <martin.rubey@univie.ac.at>
Gabriel Dos Reis <gdr@cs.tamu.edu>
diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in
index df2fa13f..8f64184f 100644
--- a/src/algebra/Makefile.in
+++ b/src/algebra/Makefile.in
@@ -817,7 +817,7 @@ axiom_algebra_layer_23_objects = \
$(addprefix $(OUT)/, \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_23)))
axiom_algebra_layer_user = \
- RINTERP ASTCAT HEADAST
+ RINTERP ASTCAT ASTCAT- SASTCAT HEADAST LITERAL IDENT
axiom_algebra_layer_user_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user))
@@ -826,7 +826,10 @@ axiom_algebra_layer_user_objects = \
$(addprefix $(OUT)/, \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_user)))
-HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT)
+SASTCAT.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT)
+LITERAL.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
+IDENT.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
+HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
.PHONY: all all-algebra mkdir-output-directory
all: all-ax
@@ -1129,7 +1132,7 @@ bootstrap-stamp: 23-stamp $(axiom_algebra_bootstrap_objects)
@ echo === algebra complete ======
@ echo ==================================
-user-stamp: bootstrap-stamp $(axiom_algebra_layer_user_objects)
+user-stamp: $(axiom_algebra_layer_user_objects)
@ rm -f user-stamp
@ $(STAMP) user-stamp
diff --git a/src/algebra/Makefile.pamphlet b/src/algebra/Makefile.pamphlet
index b5236fdb..974fc4c6 100644
--- a/src/algebra/Makefile.pamphlet
+++ b/src/algebra/Makefile.pamphlet
@@ -1244,7 +1244,7 @@ Rather than classify newly created algebra into the existing type lattice
we add it here.
<<USERLAYER>>=
axiom_algebra_layer_user = \
- RINTERP ASTCAT HEADAST
+ RINTERP ASTCAT ASTCAT- SASTCAT HEADAST LITERAL IDENT
axiom_algebra_layer_user_nrlibs = \
$(addsuffix .NRLIB/code.$(FASLEXT),$(axiom_algebra_layer_user))
@@ -1253,7 +1253,10 @@ axiom_algebra_layer_user_objects = \
$(addprefix $(OUT)/, \
$(addsuffix .$(FASLEXT),$(axiom_algebra_layer_user)))
-HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT)
+SASTCAT.NRLIB/code.$(FASLEXT): $(OUT)/ASTCAT.$(FASLEXT)
+LITERAL.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
+IDENT.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
+HEADAST.NRLIB/code.$(FASLEXT): $(OUT)/SASTCAT.$(FASLEXT)
@
\section{Broken Files}
@@ -2170,7 +2173,7 @@ bootstrap-stamp: 23-stamp $(axiom_algebra_bootstrap_objects)
@ echo === algebra complete ======
@ echo ==================================
-user-stamp: bootstrap-stamp $(axiom_algebra_layer_user_objects)
+user-stamp: $(axiom_algebra_layer_user_objects)
@ rm -f user-stamp
@ $(STAMP) user-stamp
diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet
index d11a0bbd..1e2df82c 100644
--- a/src/algebra/exposed.lsp.pamphlet
+++ b/src/algebra/exposed.lsp.pamphlet
@@ -173,8 +173,9 @@
(|Heap| . HEAP)
(|HexadecimalExpansion| . HEXADEC)
(|Hostname| . HOSTNAME)
- (|IndexCard| . ICARD)
(|IdealDecompositionPackage| . IDECOMP)
+ (|Identifier| . IDENT)
+ (|IndexCard| . ICARD)
(|InfiniteProductCharacteristicZero| . INFPROD0)
(|InfiniteProductFiniteField| . INPRODFF)
(|InfiniteProductPrimeField| . INPRODPF)
@@ -213,6 +214,7 @@
(|ListFunctions2| . LIST2)
(|ListFunctions3| . LIST3)
(|ListToMap| . LIST2MAP)
+ (|Literal| . LITERAL)
(|MakeFloatCompiledFunction| . MKFLCFN)
(|MakeFunction| . MKFUNC)
(|MakeRecord| . MKRECORD)
@@ -707,6 +709,7 @@
(|SetAggregate| . SETAGG)
(|SetCategory| . SETCAT)
(|SExpressionCategory| . SEXCAT)
+ (|SpadSyntaxCategory| . SASTCAT)
(|SpecialFunctionCategory| . SPFCAT)
(|SquareFreeNormalizedTriangularSetCategory| . SNTSCAT)
(|SquareFreeRegularTriangularSetCategory| . SFRTCAT)
diff --git a/src/algebra/syntax.spad.pamphlet b/src/algebra/syntax.spad.pamphlet
index c6640500..ad742ab8 100644
--- a/src/algebra/syntax.spad.pamphlet
+++ b/src/algebra/syntax.spad.pamphlet
@@ -261,28 +261,32 @@ ConstructorCall(): Public == Private where
<<domain SIG Signature>>=
import SetCategory
-import ConstructorCall
+import CoercibleTo
+import List
+import Syntax
)abbrev domain SIG Signature
++ Author: Gabriel Dos Reis
++ Date Created: January 10, 2008
-++ Date Last Updated: July 14, 2008
+++ Date Last Updated: August 30, 2008
++ Description: This is the datatype for operation signatures as
-++ used by the compiler and the interpreter.
+++ used by the compiler and the interpreter. Note that this domain
+++ differs from SignatureAst.
++ See also: ConstructorCall, Domain.
Signature(): Public == Private where
Public == SetCategory with
- target: % -> ConstructorCall
+ signature: (List Syntax,Syntax) -> %
+ ++ signature(s,t) constructs a Signature object with parameter
+ ++ types indicaded by `s', and return type indicated by `t'.
+ target: % -> Syntax
++ target(s) returns the target type of the signature `s'.
- source: % -> List ConstructorCall
+ source: % -> List Syntax
++ source(s) returns the list of parameter types of `s'.
Private == add
- Rep == List ConstructorCall
- target x ==
- first rep x
- source x ==
- rest rep x
- x = y ==
- rep x = rep y
+ Rep == List Syntax
+ signature(s,t) == per cons(t,s)
+ target x == first rep x
+ source x == rest rep x
+ x = y == rep x = rep y
coerce(x: %): OutputForm ==
rarrow([s::OutputForm for s in source x]::OutputForm,
target(x)::OutputForm)$OutputForm
@@ -375,6 +379,54 @@ AbstractSyntaxCategory(): Category ==
x::Syntax::OutputForm
@
+\section{The SpadSyntaxCategory category}
+
+<<category SASTCAT SpadSyntaxCategory>>=
+)abbrev category SASTCAT SpadSyntaxCategory
+++ Author: Gabriel Dos Reis
+++ Date Created: July 5, 2008
+++ Date Last Modified: September 1, 2008
+++ Description: This is the category of Spad syntax objects.
+SpadSyntaxCategory(): Category == AbstractSyntaxCategory
+ -- for the moment.
+
+@
+
+\subsection{The Literal domain}
+
+<<domain LITERAL Literal>>=
+)abbrev domain LITERAL Literal
+++ Author: Gabriel Dos Reis
+++ Date Created: July 5, 2008
+++ Date Last Modified: September 1, 2008
+++ Description: This domain represents AST for Spad literals.
+Literal(T: SetCategory): Public == Private where
+ Public == Join(SpadSyntaxCategory, CoercibleTo T)
+ Private == add
+ Rep == T
+ coerce(x: %): T == rep x
+ coerce(x: %): OutputForm == x::T::OutputForm
+
+@
+
+\subsection{The Identifier domain}
+
+<<domain IDENT Identifier>>=
+++ Author: Gabriel Dos Reis
+++ Date Created: July 5, 2008
+++ Date Last Modified: September 1, 2008
+++ Description: This domain represents identifer AST.
+)abbrev domain IDENT Identifier
+Identifier(): Public == Private where
+ Public == Join(SpadSyntaxCategory, CoercibleTo Symbol)
+ Private == add
+ Rep == Symbol
+ coerce(x: %): Symbol == rep x
+ coerce(x: %): OutputForm == x::Symbol::OutputForm
+
+@
+
+
\subsection{The HeadAst domain}
<<domain HEADAST HeadAst>>=
@@ -387,7 +439,7 @@ import List Symbol
++ Date Last Modified: July 2008
++ Description: This domain represents the header of a definition.
HeadAst(): Public == Private where
- Public == AbstractSyntaxCategory with
+ Public == SpadSyntaxCategory with
headAst: List Symbol -> %
++ headAst [f,x1,..,xn] constructs a function definition header.
name: % -> Symbol
@@ -444,6 +496,9 @@ HeadAst(): Public == Private where
<<domain ELABEXPR ElaboratedExpression>>
<<category ASTCAT AbstractSyntaxCategory>>
+<<category SASTCAT SpadSyntaxCategory>>
+
+<<domain LITERAL Literal>>
<<domain HEADAST HeadAst>>
@
diff --git a/src/interp/g-util.boot b/src/interp/g-util.boot
index 4c3c9801..d70a7361 100644
--- a/src/interp/g-util.boot
+++ b/src/interp/g-util.boot
@@ -36,6 +36,9 @@ import macros
import sys_-utility
namespace BOOT
+module g_-util where
+ getTypeOfSyntax: %Form -> %Mode
+
++
$interpOnly := false
@@ -105,6 +108,8 @@ put(x,prop,val,e) ==
addBinding(x,newProplist,e)
+--% Syntax manipulation
+
++ Build a quasiquotation form for `x'.
quasiquote x ==
["[||]",x]
@@ -114,6 +119,16 @@ isQuasiquote m ==
m is ["[||]",y] => y
+getTypeOfSyntax t ==
+ atom t =>
+ IDENTP t => '(Identifier)
+ (m := getBasicMode t) and not member(m,[$EmptyMode,$NoValueMode]) =>
+ ["Literal",m]
+ $Syntax
+ $Syntax
+
+--%
+
-- Convert an arbitrary lisp object to canonical boolean.
bool: %Thing -> %Boolean
bool x ==
diff --git a/src/interp/i-spec2.boot b/src/interp/i-spec2.boot
index e78da954..f4256a06 100644
--- a/src/interp/i-spec2.boot
+++ b/src/interp/i-spec2.boot
@@ -809,8 +809,9 @@ evalQUOTE(op,[expr],[m]) ==
--% Quasiquotation
up_[_|_|_] t ==
t isnt [op, x] => nil
- putValue(op, objNewWrap(x, $Syntax))
- putModeSet(op, [$Syntax])
+ mode := getTypeOfSyntax x
+ putValue(op, objNewWrap(x, mode))
+ putModeSet(op, [mode])
--% Handler for pretend
diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase
index aa5e867a..b838ce6e 100644
--- a/src/share/algebra/browse.daase
+++ b/src/share/algebra/browse.daase
@@ -1,12 +1,12 @@
-(2242565 . 3429259028)
+(2243104 . 3429317349)
(-18 A S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
NIL
NIL
(-19 S)
((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result.")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
(-20 S)
((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (* (($ (|Integer|) $) "\\spad{n*x} is the product of \\spad{x} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}.")))
@@ -38,7 +38,7 @@ NIL
NIL
(-27)
((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-28 S R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
@@ -46,23 +46,23 @@ NIL
NIL
(-29 R)
((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}. The \\spad{yi}\\spad{'s} are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p,{} y)} returns \\spad{[y1,{}...,{}yn]} such that \\spad{p(\\spad{yi}) = 0}; Note: the returned symbols \\spad{y1},{}...,{}\\spad{yn} are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,{}y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}.")))
-((-4266 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4262 . T) (-4267 . T) (-4261 . T) (-4100 . T))
+((-4270 . T) (-4268 . T) (-4267 . T) ((-4275 "*") . T) (-4266 . T) (-4271 . T) (-4265 . T) (-4120 . T))
NIL
(-30)
((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,{}x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,{}x,{}y,{}a..b,{}c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b,{} c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,{}x,{}y,{}xMin..xMax,{}yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted.")))
NIL
NIL
-(-31 R -1334)
+(-31 R -1327)
((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p,{} n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p,{} x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p,{} y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))
+((|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))
(-32 S)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4269)))
+((|HasAttribute| |#1| (QUOTE -4273)))
(-33)
((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,{}n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,{}n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,{}n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} \\spad{:=} empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,{}v)} tests if \\spad{u} and \\spad{v} are same objects.")))
-((-4100 . T))
+((-4120 . T))
NIL
(-34)
((|constructor| (NIL "Category for the inverse hyperbolic trigonometric functions.")) (|atanh| (($ $) "\\spad{atanh(x)} returns the hyperbolic arc-tangent of \\spad{x}.")) (|asinh| (($ $) "\\spad{asinh(x)} returns the hyperbolic arc-sine of \\spad{x}.")) (|asech| (($ $) "\\spad{asech(x)} returns the hyperbolic arc-secant of \\spad{x}.")) (|acsch| (($ $) "\\spad{acsch(x)} returns the hyperbolic arc-cosecant of \\spad{x}.")) (|acoth| (($ $) "\\spad{acoth(x)} returns the hyperbolic arc-cotangent of \\spad{x}.")) (|acosh| (($ $) "\\spad{acosh(x)} returns the hyperbolic arc-cosine of \\spad{x}.")))
@@ -70,7 +70,7 @@ NIL
NIL
(-35 |Key| |Entry|)
((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,{}u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}.")))
-((-4269 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4274 . T) (-4120 . T))
NIL
(-36 S R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#2|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
@@ -78,20 +78,20 @@ NIL
NIL
(-37 R)
((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline")) (|coerce| (($ |#1|) "\\spad{coerce(r)} maps the ring element \\spad{r} to a member of the algebra.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-38 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{} [a1,{}...,{}an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and a1,{}...,{}an.")))
NIL
NIL
-(-39 -1334 UP UPUP -4076)
+(-39 -1327 UP UPUP -1406)
((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}")))
-((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1461 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1461 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1461 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1461 (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
-(-40 R -1334)
+((-4266 |has| (-388 |#2|) (-344)) (-4271 |has| (-388 |#2|) (-344)) (-4265 |has| (-388 |#2|) (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1435 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1435 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1435 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1435 (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
+(-40 R -1327)
((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,{}f,{}n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f,{} [a1,{}...,{}an])} removes the \\spad{ai}\\spad{'s} which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f,{} a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))))
+((-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -411) (|devaluate| |#1|)))))
(-41 OV E P)
((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,{}lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}.")))
NIL
@@ -102,31 +102,31 @@ NIL
((|HasCategory| |#1| (QUOTE (-289))))
(-43 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,{}..,{}an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{ai} * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra.")))
-((-4266 |has| |#1| (-522)) (-4264 . T) (-4263 . T))
-((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522))))
+((-4270 |has| |#1| (-523)) (-4268 . T) (-4267 . T))
+((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523))))
(-44 |Key| |Entry|)
((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data.")))
-((-4269 . T) (-4270 . T))
-((-1461 (-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|))))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-1435 (-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|))))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))))
(-45 S R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))))
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))))
(-46 R E)
((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,{}e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-47)
((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| $ (QUOTE (-986))) (|HasCategory| $ (LIST (QUOTE -977) (QUOTE (-531)))))
(-48)
((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function \\spad{`f'}.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(f)} returns the list of parameters bound by \\spad{`f'}.")))
NIL
NIL
(-49 R |lVar|)
((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,{}...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,{}u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}.")))
-((-4266 . T))
+((-4270 . T))
NIL
(-50 S)
((|constructor| (NIL "\\spadtype{AnyFunctions1} implements several utility functions for working with \\spadtype{Any}. These functions are used to go back and forth between objects of \\spadtype{Any} and objects of other types.")) (|retract| ((|#1| (|Any|)) "\\spad{retract(a)} tries to convert \\spad{a} into an object of type \\spad{S}. If possible,{} it returns the object. Error: if no such retraction is possible.")) (|retractable?| (((|Boolean|) (|Any|)) "\\spad{retractable?(a)} tests if \\spad{a} can be converted into an object of type \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") (|Any|)) "\\spad{retractIfCan(a)} tries change \\spad{a} into an object of type \\spad{S}. If it can,{} then such an object is returned. Otherwise,{} \"failed\" is returned.")) (|coerce| (((|Any|) |#1|) "\\spad{coerce(s)} creates an object of \\spadtype{Any} from the object \\spad{s} of type \\spad{S}.")))
@@ -140,7 +140,7 @@ NIL
((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p,{} f,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}.")))
NIL
NIL
-(-53 |Base| R -1334)
+(-53 |Base| R -1327)
((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,{}ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,{}...,{}rn],{} expr,{} n)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,{}...,{}rn],{} expr)} applies the rules \\spad{r1},{}...,{}\\spad{rn} to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}\\spad{rn} is applicable to the expression.")))
NIL
NIL
@@ -150,7 +150,7 @@ NIL
NIL
(-55 R |Row| |Col|)
((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}a)} assign \\spad{a(i,{}j)} to \\spad{f(a(i,{}j))} for all \\spad{i,{} j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,{}a,{}b,{}r)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} when both \\spad{a(i,{}j)} and \\spad{b(i,{}j)} exist; else \\spad{c(i,{}j) = f(r,{} b(i,{}j))} when \\spad{a(i,{}j)} does not exist; else \\spad{c(i,{}j) = f(a(i,{}j),{}r)} when \\spad{b(i,{}j)} does not exist; otherwise \\spad{c(i,{}j) = f(r,{}r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i,{} j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = f(a(i,{}j))} for all \\spad{i,{} j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,{}j,{}v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,{}i,{}v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,{}i,{}j,{}r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,{}r)} fills \\spad{m} with \\spad{r}\\spad{'s}")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,{}n,{}r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays")))
-((-4269 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4274 . T) (-4120 . T))
NIL
(-56 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
@@ -158,65 +158,65 @@ NIL
NIL
(-57 S)
((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,{}s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-58 R)
((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray\\spad{'s}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-59 -3907)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-59 -3955)
((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-60 -3907)
+(-60 -3955)
((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}.")))
NIL
NIL
-(-61 -3907)
+(-61 -3955)
((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-62 -3907)
+(-62 -3955)
((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-63 -3907)
+(-63 -3955)
((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct|) (|construct| (QUOTE X) (QUOTE HESS)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-64 -3907)
+(-64 -3955)
((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-65 -3907)
+(-65 -3955)
((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-66 -3907)
+(-66 -3955)
((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}")))
NIL
NIL
-(-67 -3907)
+(-67 -3955)
((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}.")))
NIL
NIL
-(-68 -3907)
+(-68 -3955)
((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}")))
NIL
NIL
-(-69 -3907)
+(-69 -3955)
((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-70 -3907)
+(-70 -3955)
((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}.")))
NIL
NIL
-(-71 -3907)
+(-71 -3955)
((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}")))
NIL
NIL
-(-72 -3907)
+(-72 -3955)
((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
@@ -228,55 +228,55 @@ NIL
((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives \\spad{wrt} \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-75 -3907)
+(-75 -3955)
((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-76 -3907)
+(-76 -3955)
((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
-(-77 -3907)
+(-77 -3955)
((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-78 -3907)
+(-78 -3955)
((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-79 -3907)
+(-79 -3955)
((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-80 -3907)
+(-80 -3955)
((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-81 -3907)
+(-81 -3955)
((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-82 -3907)
+(-82 -3955)
((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-83 -3907)
+(-83 -3955)
((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-84 -3907)
+(-84 -3955)
((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-85 -3907)
+(-85 -3955)
((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP.")))
NIL
NIL
-(-86 -3907)
+(-86 -3955)
((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}")))
NIL
NIL
-(-87 -3907)
+(-87 -3955)
((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP.")))
NIL
NIL
@@ -286,8 +286,8 @@ NIL
((|HasCategory| |#1| (QUOTE (-344))))
(-89 S)
((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,{}y,{}...,{}z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-90 S)
((|constructor| (NIL "This is the category of Spad abstract syntax trees.")))
NIL
@@ -306,15 +306,15 @@ NIL
NIL
(-94)
((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")))
-((-4269 . T))
+((-4273 . T))
NIL
(-95)
((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,{}b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements.")))
-((-4269 . T) ((-4271 "*") . T) (-4270 . T) (-4266 . T) (-4264 . T) (-4263 . T) (-4262 . T) (-4267 . T) (-4261 . T) (-4260 . T) (-4259 . T) (-4258 . T) (-4257 . T) (-4265 . T) (-4268 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4256 . T))
+((-4273 . T) ((-4275 "*") . T) (-4274 . T) (-4270 . T) (-4268 . T) (-4267 . T) (-4266 . T) (-4271 . T) (-4265 . T) (-4264 . T) (-4263 . T) (-4262 . T) (-4261 . T) (-4269 . T) (-4272 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4260 . T))
NIL
(-96 R)
((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,{}n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f,{} g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}.")))
-((-4266 . T))
+((-4270 . T))
NIL
(-97 R UP)
((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a,{} [b1,{}...,{}bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,{}...,{}bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a,{} b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{\\spad{pi}} is balanced with respect to \\spad{b}.")))
@@ -330,15 +330,15 @@ NIL
NIL
(-100 S)
((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values \\spad{pl} and \\spad{pr}. Then \\spad{mapDown!(l,{}pl,{}f)} and \\spad{mapDown!(l,{}pr,{}f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,{}p,{}f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} \\spad{:=} \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}t1,{}f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,{}f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t,{} ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of \\spad{ls}.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n,{} s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-101 R UP M |Row| |Col|)
((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,{}q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,{}q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,{}q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4271 "*"))))
+((|HasAttribute| |#1| (QUOTE (-4275 "*"))))
(-102)
((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table")))
-((-4269 . T))
+((-4273 . T))
NIL
(-103 A S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
@@ -346,12 +346,12 @@ NIL
NIL
(-104 S)
((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,{}y,{}...,{}z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed.")))
-((-4270 . T) (-4100 . T))
+((-4274 . T) (-4120 . T))
NIL
(-105)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion.")) (|coerce| (((|RadixExpansion| 2) $) "\\spad{coerce(b)} converts a binary expansion to a radix expansion with base 2.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(b)} converts a binary expansion to a rational number.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1461 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-531) (QUOTE (-852))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-531) (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-140))) (|HasCategory| (-531) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-962))) (|HasCategory| (-531) (QUOTE (-770))) (-1435 (|HasCategory| (-531) (QUOTE (-770))) (|HasCategory| (-531) (QUOTE (-797)))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-1078))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-531) (QUOTE (-216))) (|HasCategory| (-531) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-531) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -291) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -268) (QUOTE (-531)) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-289))) (|HasCategory| (-531) (QUOTE (-516))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-531) (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (|HasCategory| (-531) (QUOTE (-138)))))
(-106)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Symbol|) (|List| (|Property|))) "\\spad{binding(n,{}props)} constructs a binding with name \\spad{`n'} and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Symbol|) $) "\\spad{name(b)} returns the name of binding \\spad{b}")))
NIL
@@ -362,11 +362,11 @@ NIL
NIL
(-108)
((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,{}b)} creates bits with \\spad{n} values of \\spad{b}")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-110) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| (-110) (QUOTE (-1030))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-110) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-110) (QUOTE (-1030))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-806)))))
(-109 R S)
((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
NIL
(-110)
((|constructor| (NIL "\\indented{1}{\\spadtype{Boolean} is the elementary logic with 2 values:} \\spad{true} and \\spad{false}")) (|test| (($ $) "\\spad{test(b)} returns \\spad{b} and is provided for compatibility with the new compiler.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical negation of \\spad{a} or \\spad{b}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical negation of \\spad{a} and \\spad{b}.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical exclusive {\\em or} of Boolean \\spad{a} and \\spad{b}.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant.")))
@@ -375,30 +375,30 @@ NIL
(-111 A)
((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op,{} foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op,{} [foo1,{}...,{}foon])} attaches [foo1,{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,{}...,{}fn]} then applying a derivation \\spad{D} to \\spad{op(a1,{}...,{}an)} returns \\spad{f1(a1,{}...,{}an) * D(a1) + ... + fn(a1,{}...,{}an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op,{} foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,{}...,{}an)} returns the result of \\spad{f(a1,{}...,{}an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op,{} [a1,{}...,{}an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,{}...,{}an)} is returned,{} and \"failed\" otherwise.")))
NIL
-((|HasCategory| |#1| (QUOTE (-795))))
+((|HasCategory| |#1| (QUOTE (-797))))
(-112)
((|constructor| (NIL "A basic operator is an object that can be applied to a list of arguments from a set,{} the result being a kernel over that set.")) (|setProperties| (($ $ (|AssociationList| (|String|) (|None|))) "\\spad{setProperties(op,{} l)} sets the property list of \\spad{op} to \\spad{l}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|setProperty| (($ $ (|String|) (|None|)) "\\spad{setProperty(op,{} s,{} v)} attaches property \\spad{s} to \\spad{op},{} and sets its value to \\spad{v}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|property| (((|Union| (|None|) "failed") $ (|String|)) "\\spad{property(op,{} s)} returns the value of property \\spad{s} if it is attached to \\spad{op},{} and \"failed\" otherwise.")) (|deleteProperty!| (($ $ (|String|)) "\\spad{deleteProperty!(op,{} s)} unattaches property \\spad{s} from \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|assert| (($ $ (|String|)) "\\spad{assert(op,{} s)} attaches property \\spad{s} to \\spad{op}. Argument \\spad{op} is modified \"in place\",{} \\spadignore{i.e.} no copy is made.")) (|has?| (((|Boolean|) $ (|String|)) "\\spad{has?(op,{} s)} tests if property \\spad{s} is attached to \\spad{op}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op,{} s)} tests if the name of \\spad{op} is \\spad{s}.")) (|input| (((|Union| (|Mapping| (|InputForm|) (|List| (|InputForm|))) "failed") $) "\\spad{input(op)} returns the \"\\%input\" property of \\spad{op} if it has one attached,{} \"failed\" otherwise.") (($ $ (|Mapping| (|InputForm|) (|List| (|InputForm|)))) "\\spad{input(op,{} foo)} attaches foo as the \"\\%input\" property of \\spad{op}. If \\spad{op} has a \"\\%input\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to InputForm as \\spad{f(a1,{}...,{}an)}.")) (|display| (($ $ (|Mapping| (|OutputForm|) (|OutputForm|))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a)} gets converted to OutputForm as \\spad{f(a)}. Argument \\spad{op} must be unary.") (($ $ (|Mapping| (|OutputForm|) (|List| (|OutputForm|)))) "\\spad{display(op,{} foo)} attaches foo as the \"\\%display\" property of \\spad{op}. If \\spad{op} has a \"\\%display\" property \\spad{f},{} then \\spad{op(a1,{}...,{}an)} gets converted to OutputForm as \\spad{f(a1,{}...,{}an)}.") (((|Union| (|Mapping| (|OutputForm|) (|List| (|OutputForm|))) "failed") $) "\\spad{display(op)} returns the \"\\%display\" property of \\spad{op} if it has one attached,{} and \"failed\" otherwise.")) (|comparison| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{comparison(op,{} foo?)} attaches foo? as the \"\\%less?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has a \"\\%less?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether \\spad{op1 < op2}.")) (|equality| (($ $ (|Mapping| (|Boolean|) $ $)) "\\spad{equality(op,{} foo?)} attaches foo? as the \"\\%equal?\" property to \\spad{op}. If op1 and op2 have the same name,{} and one of them has an \"\\%equal?\" property \\spad{f},{} then \\spad{f(op1,{} op2)} is called to decide whether op1 and op2 should be considered equal.")) (|weight| (($ $ (|NonNegativeInteger|)) "\\spad{weight(op,{} n)} attaches the weight \\spad{n} to \\spad{op}.") (((|NonNegativeInteger|) $) "\\spad{weight(op)} returns the weight attached to \\spad{op}.")) (|nary?| (((|Boolean|) $) "\\spad{nary?(op)} tests if \\spad{op} has arbitrary arity.")) (|unary?| (((|Boolean|) $) "\\spad{unary?(op)} tests if \\spad{op} is unary.")) (|nullary?| (((|Boolean|) $) "\\spad{nullary?(op)} tests if \\spad{op} is nullary.")) (|arity| (((|Union| (|NonNegativeInteger|) "failed") $) "\\spad{arity(op)} returns \\spad{n} if \\spad{op} is \\spad{n}-ary,{} and \"failed\" if \\spad{op} has arbitrary arity.")) (|operator| (($ (|Symbol|) (|NonNegativeInteger|)) "\\spad{operator(f,{} n)} makes \\spad{f} into an \\spad{n}-ary operator.") (($ (|Symbol|)) "\\spad{operator(f)} makes \\spad{f} into an operator with arbitrary arity.")) (|copy| (($ $) "\\spad{copy(op)} returns a copy of \\spad{op}.")) (|properties| (((|AssociationList| (|String|) (|None|)) $) "\\spad{properties(op)} returns the list of all the properties currently attached to \\spad{op}.")) (|name| (((|Symbol|) $) "\\spad{name(op)} returns the name of \\spad{op}.")))
NIL
NIL
-(-113 -1334 UP)
+(-113 -1327 UP)
((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots.")))
NIL
NIL
(-114 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-115 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-114 |#1|) (QUOTE (-850))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-114 |#1|) (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-140))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-114 |#1|) (QUOTE (-960))) (|HasCategory| (-114 |#1|) (QUOTE (-768))) (-1461 (|HasCategory| (-114 |#1|) (QUOTE (-768))) (|HasCategory| (-114 |#1|) (QUOTE (-795)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (QUOTE (-1075))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-114 |#1|) (QUOTE (-216))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -114) (|devaluate| |#1|)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (QUOTE (-289))) (|HasCategory| (-114 |#1|) (QUOTE (-515))) (|HasCategory| (-114 |#1|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-850)))) (|HasCategory| (-114 |#1|) (QUOTE (-138)))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-114 |#1|) (QUOTE (-852))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-114 |#1|) (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-140))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-114 |#1|) (QUOTE (-962))) (|HasCategory| (-114 |#1|) (QUOTE (-770))) (-1435 (|HasCategory| (-114 |#1|) (QUOTE (-770))) (|HasCategory| (-114 |#1|) (QUOTE (-797)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-114 |#1|) (QUOTE (-1078))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-114 |#1|) (QUOTE (-216))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -114) (|devaluate| |#1|)) (LIST (QUOTE -114) (|devaluate| |#1|)))) (|HasCategory| (-114 |#1|) (QUOTE (-289))) (|HasCategory| (-114 |#1|) (QUOTE (-516))) (|HasCategory| (-114 |#1|) (QUOTE (-797))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-114 |#1|) (QUOTE (-852)))) (|HasCategory| (-114 |#1|) (QUOTE (-138)))))
(-116 A S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)))
+((|HasAttribute| |#1| (QUOTE -4274)))
(-117 S)
((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,{}x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,{}b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,{}\"right\",{}b)} (also written \\axiom{\\spad{b} . right \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,{}\"left\",{}b)} (also written \\axiom{a . left \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,{}\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,{}\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child.")))
-((-4100 . T))
+((-4120 . T))
NIL
(-118 UP)
((|constructor| (NIL "\\indented{1}{Author: Frederic Lehobey,{} James \\spad{H}. Davenport} Date Created: 28 June 1994 Date Last Updated: 11 July 1997 Basic Operations: brillhartIrreducible? Related Domains: Also See: AMS Classifications: Keywords: factorization Examples: References: [1] John Brillhart,{} Note on Irreducibility Testing,{} Mathematics of Computation,{} vol. 35,{} num. 35,{} Oct. 1980,{} 1379-1381 [2] James Davenport,{} On Brillhart Irreducibility. To appear. [3] John Brillhart,{} On the Euler and Bernoulli polynomials,{} \\spad{J}. Reine Angew. Math.,{} \\spad{v}. 234,{} (1969),{} \\spad{pp}. 45-64")) (|noLinearFactor?| (((|Boolean|) |#1|) "\\spad{noLinearFactor?(p)} returns \\spad{true} if \\spad{p} can be shown to have no linear factor by a theorem of Lehmer,{} \\spad{false} else. \\spad{I} insist on the fact that \\spad{false} does not mean that \\spad{p} has a linear factor.")) (|brillhartTrials| (((|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{brillhartTrials(n)} sets to \\spad{n} the number of tests in \\spadfun{brillhartIrreducible?} and returns the previous value.") (((|NonNegativeInteger|)) "\\spad{brillhartTrials()} returns the number of tests in \\spadfun{brillhartIrreducible?}.")) (|brillhartIrreducible?| (((|Boolean|) |#1| (|Boolean|)) "\\spad{brillhartIrreducible?(p,{}noLinears)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} else. If \\spad{noLinears} is \\spad{true},{} we are being told \\spad{p} has no linear factors \\spad{false} does not mean that \\spad{p} is reducible.") (((|Boolean|) |#1|) "\\spad{brillhartIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by a remark of Brillhart,{} \\spad{false} is inconclusive.")))
@@ -406,15 +406,15 @@ NIL
NIL
(-119 S)
((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,{}b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,{}b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-120 S)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
NIL
NIL
(-121)
((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,{}b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|or| (($ $ $) "\\spad{a or b} returns the logical {\\em or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|and| (($ $ $) "\\spad{a and b} returns the logical {\\em and} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,{}b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,{}b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|not| (($ $) "\\spad{not(b)} returns the logical {\\em not} of bit aggregate \\axiom{\\spad{b}}.")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
(-122 A S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
@@ -422,20 +422,20 @@ NIL
NIL
(-123 S)
((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,{}v,{}right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components")))
-((-4269 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4274 . T) (-4120 . T))
NIL
(-124 S)
((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,{}b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-125 S)
((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,{}v,{}r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-126)
((|constructor| (NIL "ByteArray provides datatype for fix-sized buffer of bytes.")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127)))))) (-1461 (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-127) (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-127) (QUOTE (-1027)))) (|HasCategory| (-127) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-127) (QUOTE (-1027))) (-12 (|HasCategory| (-127) (QUOTE (-1027))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| (-127) (QUOTE (-797))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (-12 (|HasCategory| (-127) (QUOTE (-1030))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127)))))) (-1435 (-12 (|HasCategory| (-127) (QUOTE (-1030))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-127) (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| (-127) (QUOTE (-797))) (|HasCategory| (-127) (QUOTE (-1030)))) (|HasCategory| (-127) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-127) (QUOTE (-1030))) (-12 (|HasCategory| (-127) (QUOTE (-1030))) (|HasCategory| (-127) (LIST (QUOTE -291) (QUOTE (-127))))) (|HasCategory| (-127) (LIST (QUOTE -572) (QUOTE (-806)))))
(-127)
((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of \\spad{`x'} and \\spad{`y'}.")) (|bitand| (($ $ $) "\\spad{bitand(x,{}y)} returns the bitwise `and' of \\spad{`x'} and \\spad{`y'}.")) (|coerce| (($ (|NonNegativeInteger|)) "\\spad{coerce(x)} has the same effect as byte(\\spad{x}).")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value \\spad{`v'} into the Byte algebra. \\spad{`v'} must be non-negative and less than 256.")))
NIL
@@ -450,13 +450,13 @@ NIL
NIL
(-130)
((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0,{} 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,{}1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,{}D) -> D} which is commutative.")))
-(((-4271 "*") . T))
+(((-4275 "*") . T))
NIL
-(-131 |minix| -3148 S T$)
+(-131 |minix| -3169 S T$)
((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,{}ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,{}ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}.")))
NIL
NIL
-(-132 |minix| -3148 R)
+(-132 |minix| -3169 R)
((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,{}...idim) = +1/0/-1} if \\spad{i1,{}...,{}idim} is an even/is nota /is an odd permutation of \\spad{minix,{}...,{}minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,{}j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,{}[i1,{}...,{}idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t,{} [4,{}1,{}2,{}3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}i,{}j,{}k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,{}i,{}j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,{}2,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(i,{}k,{}j,{}l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = t(l,{}j,{}k,{}i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,{}i,{}j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,{}1,{}3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j) = sum(h=1..dim,{}t(h,{}i,{}h,{}j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,{}i,{}s,{}j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,{}2,{}t,{}1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = sum(h=1..dim,{}s(i,{}h,{}j)*t(h,{}k,{}l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,{}rank t,{} s,{} 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N,{} t[i1,{}..,{}iN,{}k]*s[k,{}j1,{}..,{}jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,{}t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,{}t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,{}j,{}k,{}l) = s(i,{}j)*t(k,{}l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,{}[i1,{}...,{}iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k,{}l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j,{}k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,{}i,{}j)} gives a component of a rank 2 tensor.") ((|#3| $ (|Integer|)) "\\spad{elt(t,{}i)} gives a component of a rank 1 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,{}...,{}t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,{}...,{}r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor.")))
NIL
NIL
@@ -466,8 +466,8 @@ NIL
NIL
(-134)
((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}.")))
-((-4269 . T) (-4259 . T) (-4270 . T))
-((-1461 (-12 (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4263 . T) (-4274 . T))
+((-1435 (-12 (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-137) (QUOTE (-349))) (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-137) (QUOTE (-1030))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-806)))))
(-135 R Q A)
((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
@@ -482,7 +482,7 @@ NIL
NIL
(-138)
((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring.")))
-((-4266 . T))
+((-4270 . T))
NIL
(-139 R)
((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,{}r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial \\spad{'x},{} then it returns the characteristic polynomial expressed as a polynomial in \\spad{'x}.")))
@@ -490,9 +490,9 @@ NIL
NIL
(-140)
((|constructor| (NIL "Rings of Characteristic Zero.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-141 -1334 UP UPUP)
+(-141 -1327 UP UPUP)
((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,{}y),{} p(x,{}y))} returns \\spad{[g(z,{}t),{} q(z,{}t),{} c1(z),{} c2(z),{} n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,{}y) = g(z,{}t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z,{} t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,{}y),{} f(x),{} g(x))} returns \\spad{p(f(x),{} y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p,{} q)} returns an integer a such that a is neither a pole of \\spad{p(x,{}y)} nor a branch point of \\spad{q(x,{}y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g,{} n)} returns \\spad{[m,{} c,{} P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x,{} y))} returns \\spad{[c(x),{} n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,{}y))} returns \\spad{[c(x),{} q(x,{}z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x,{} y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x,{} z) = 0}.")))
NIL
NIL
@@ -503,14 +503,14 @@ NIL
(-143 A S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasAttribute| |#1| (QUOTE -4269)))
+((|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasAttribute| |#1| (QUOTE -4273)))
(-144 S)
((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,{}u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} \\spad{~=} \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,{}u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) \\spad{==} [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,{}u,{}x,{}z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,{}u,{}x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,{}u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,{}u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List.")))
-((-4100 . T))
+((-4120 . T))
NIL
(-145 |n| K Q)
((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,{}[i1,{}i2,{}...,{}iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,{}[i1,{}i2,{}...,{}iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element.")))
-((-4264 . T) (-4263 . T) (-4266 . T))
+((-4268 . T) (-4267 . T) (-4270 . T))
NIL
(-146)
((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,{}xMin,{}xMax,{}yMin,{}yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,{}frac,{}sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function.")))
@@ -524,7 +524,7 @@ NIL
((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.")))
NIL
NIL
-(-149 R -1334)
+(-149 R -1327)
((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n),{} n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n),{} n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})\\spad{/P}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n),{} n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n),{} n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f,{} x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} \\spad{n!}.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n,{} r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n,{} r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} \\spad{n!/}(\\spad{r!} * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator.")))
NIL
NIL
@@ -551,10 +551,10 @@ NIL
(-155 S R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
NIL
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-941))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasAttribute| |#2| (QUOTE -4265)) (|HasAttribute| |#2| (QUOTE -4268)) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-795))))
+((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-943))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasAttribute| |#2| (QUOTE -4269)) (|HasAttribute| |#2| (QUOTE -4272)) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-797))))
(-156 R)
((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x,{} r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,{}y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})")))
-((-4262 -1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4265 |has| |#1| (-6 -4265)) (-4268 |has| |#1| (-6 -4268)) (-4146 . T) (-4100 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 -1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4269 |has| |#1| (-6 -4269)) (-4272 |has| |#1| (-6 -4272)) (-4157 . T) (-4120 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-157 RR PR)
((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients.")))
@@ -566,8 +566,8 @@ NIL
NIL
(-159 R)
((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}.")))
-((-4262 -1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4265 |has| |#1| (-6 -4265)) (-4268 |has| |#1| (-6 -4268)) (-4146 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-776)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-1121)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-850))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-850))))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| |#1| (QUOTE (-993))) (-12 (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-515))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasAttribute| |#1| (QUOTE -4265)) (|HasAttribute| |#1| (QUOTE -4268)) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-330)))))
+((-4266 -1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4269 |has| |#1| (-6 -4269)) (-4272 |has| |#1| (-6 -4272)) (-4157 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-349)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-778)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-797)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-1124)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-852))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-852))))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-943))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| |#1| (QUOTE (-995))) (-12 (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-1124)))) (|HasCategory| |#1| (QUOTE (-516))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-216))) (-12 (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasAttribute| |#1| (QUOTE -4269)) (|HasAttribute| |#1| (QUOTE -4272)) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102))))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-330)))))
(-160 R S CS)
((|constructor| (NIL "This package supports converting complex expressions to patterns")) (|convert| (((|Pattern| |#1|) |#3|) "\\spad{convert(cs)} converts the complex expression \\spad{cs} to a pattern")))
NIL
@@ -578,11 +578,11 @@ NIL
NIL
(-162)
((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative.")))
-(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-163 R)
((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0,{} x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialQuotients(x) = [b0,{}b1,{}b2,{}b3,{}...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialDenominators(x) = [b1,{}b2,{}b3,{}...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0,{} [a1,{}a2,{}a3,{}...],{} [b1,{}b2,{}b3,{}...])},{} then \\spad{partialNumerators(x) = [a1,{}a2,{}a3,{}...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,{}b)} constructs a continued fraction in the following way: if \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,{}[1,{}1,{}1,{}...],{}[b1,{}b2,{}b3,{}...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,{}a,{}b)} constructs a continued fraction in the following way: if \\spad{a = [a1,{}a2,{}...]} and \\spad{b = [b1,{}b2,{}...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}.")))
-(((-4271 "*") . T) (-4262 . T) (-4267 . T) (-4261 . T) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") . T) (-4266 . T) (-4271 . T) (-4265 . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-164)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(c,{}n)} returns the first binding associated with \\spad{`n'}. Otherwise `failed'.")) (|push| (($ (|Binding|) $) "\\spad{push(c,{}b)} augments the contour with binding \\spad{`b'}.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}.")))
@@ -599,7 +599,7 @@ NIL
(-167 R S CS)
((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr,{} pat,{} res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
-((|HasCategory| (-893 |#2|) (LIST (QUOTE -827) (|devaluate| |#1|))))
+((|HasCategory| (-895 |#2|) (LIST (QUOTE -829) (|devaluate| |#1|))))
(-168 R)
((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,{}r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,{}lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,{}lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)\\spad{*lm}(2)*...\\spad{*lm}(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,{}l)} \\undocumented{}")))
NIL
@@ -616,7 +616,7 @@ NIL
((|constructor| (NIL "This domains represents a syntax object that designates a category,{} domain,{} or a package. See Also: Syntax,{} Domain")) (|arguments| (((|List| (|Syntax|)) $) "\\spad{arguments returns} the list of syntax objects for the arguments used to invoke the constructor.")) (|constructorName| (((|Symbol|) $) "\\spad{constructorName c} returns the name of the constructor")))
NIL
NIL
-(-172 R -1334)
+(-172 R -1327)
((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
@@ -724,19 +724,19 @@ NIL
((|constructor| (NIL "\\indented{1}{This domain implements a simple view of a database whose fields are} indexed by symbols")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} makes a database out of a list")) (- (($ $ $) "\\spad{db1-db2} returns the difference of databases \\spad{db1} and \\spad{db2} \\spadignore{i.e.} consisting of elements in \\spad{db1} but not in \\spad{db2}")) (+ (($ $ $) "\\spad{db1+db2} returns the merge of databases \\spad{db1} and \\spad{db2}")) (|fullDisplay| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{fullDisplay(db,{}start,{}end )} prints full details of entries in the range \\axiom{\\spad{start}..end} in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(db)} prints full details of each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{fullDisplay(x)} displays \\spad{x} in detail")) (|display| (((|Void|) $) "\\spad{display(db)} prints a summary line for each entry in \\axiom{\\spad{db}}.") (((|Void|) $) "\\spad{display(x)} displays \\spad{x} in some form")) (|elt| (((|DataList| (|String|)) $ (|Symbol|)) "\\spad{elt(db,{}s)} returns the \\axiom{\\spad{s}} field of each element of \\axiom{\\spad{db}}.") (($ $ (|QueryEquation|)) "\\spad{elt(db,{}q)} returns all elements of \\axiom{\\spad{db}} which satisfy \\axiom{\\spad{q}}.") (((|String|) $ (|Symbol|)) "\\spad{elt(x,{}s)} returns an element of \\spad{x} indexed by \\spad{s}")))
NIL
NIL
-(-199 -1334 UP UPUP R)
+(-199 -1327 UP UPUP R)
((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f,{} ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use.")))
NIL
NIL
-(-200 -1334 FP)
+(-200 -1327 FP)
((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,{}k,{}v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and \\spad{q=} size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,{}k,{}v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,{}k,{}v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,{}sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}.")))
NIL
NIL
(-201)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion.")) (|coerce| (((|RadixExpansion| 10) $) "\\spad{coerce(d)} converts a decimal expansion to a radix expansion with base 10.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(d)} converts a decimal expansion to a rational number.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1461 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
-(-202 R -1334)
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-531) (QUOTE (-852))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-531) (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-140))) (|HasCategory| (-531) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-962))) (|HasCategory| (-531) (QUOTE (-770))) (-1435 (|HasCategory| (-531) (QUOTE (-770))) (|HasCategory| (-531) (QUOTE (-797)))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-1078))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-531) (QUOTE (-216))) (|HasCategory| (-531) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-531) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -291) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -268) (QUOTE (-531)) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-289))) (|HasCategory| (-531) (QUOTE (-516))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-531) (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (|HasCategory| (-531) (QUOTE (-138)))))
+(-202 R -1327)
((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f,{} x,{} a,{} b,{} ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f,{} x = a..b,{} \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}.")))
NIL
NIL
@@ -750,19 +750,19 @@ NIL
NIL
(-205 S)
((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-206 |CoefRing| |listIndVar|)
((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,{}df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,{}u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-207 R -1334)
+(-207 R -1327)
((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p,{} x,{} a,{} b,{} incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x,{} g,{} a,{} b,{} eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval.")))
NIL
NIL
(-208)
((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|hash| (((|Integer|) $) "\\spad{hash(x)} returns the hash key for \\spad{x}")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4136 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4148 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-209)
((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,{}z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Bi}''(x) - x * \\spad{Bi}(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{\\spad{Ai}''(x) - x * \\spad{Ai}(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{K(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,{}x) = \\%pi/2*(I(-v,{}x) - I(v,{}x))/sin(v*\\%\\spad{pi})}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,{}x)} is the modified Bessel function of the first kind,{} \\spad{I(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,{}x)} is the Bessel function of the second kind,{} \\spad{Y(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,{}x) = (J(v,{}x) cos(v*\\%\\spad{pi}) - J(-v,{}x))/sin(v*\\%\\spad{pi})}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,{}x)} is the Bessel function of the first kind,{} \\spad{J(v,{}x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n,{} x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x,{} y)} is the Euler beta function,{} \\spad{B(x,{}y)},{} defined by \\indented{2}{\\spad{Beta(x,{}y) = integrate(t^(x-1)*(1-t)^(y-1),{} t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,{}y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t),{} t=0..\\%infinity)}.}")))
@@ -770,23 +770,23 @@ NIL
NIL
(-210 R)
((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,{}Y,{}Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,{}sy,{}sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4275 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-211 A S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
NIL
NIL
(-212 S)
((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones.")))
-((-4270 . T) (-4100 . T))
+((-4274 . T) (-4120 . T))
NIL
(-213 S R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))))
+((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216))))
(-214 R)
((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%.")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,{} deriv,{} n)} differentiate \\spad{x} \\spad{n} times using a derivation which extends \\spad{deriv} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,{} deriv)} differentiates \\spad{x} extending the derivation deriv on \\spad{R}.")))
-((-4266 . T))
+((-4270 . T))
NIL
(-215 S)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
@@ -794,36 +794,36 @@ NIL
NIL
(-216)
((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{D(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,{} n)} returns the \\spad{n}-th derivative of \\spad{x}.") (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}. This function is a simple differential operator where no variable needs to be specified.")))
-((-4266 . T))
+((-4270 . T))
NIL
(-217 A S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4269)))
+((|HasAttribute| |#1| (QUOTE -4273)))
(-218 S)
((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,{}d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,{}y,{}...,{}z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}.")))
-((-4270 . T) (-4100 . T))
+((-4274 . T) (-4120 . T))
NIL
(-219)
((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation")))
NIL
NIL
-(-220 S -3148 R)
+(-220 S -3169 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#3|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#3| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#3| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
NIL
-((|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793))) (|HasAttribute| |#3| (QUOTE -4266)) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-1027))))
-(-221 -3148 R)
+((|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (QUOTE (-795))) (|HasAttribute| |#3| (QUOTE -4270)) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (QUOTE (-1030))))
+(-221 -3169 R)
((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size")))
-((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T) (-4100 . T))
+((-4267 |has| |#2| (-986)) (-4268 |has| |#2| (-986)) (-4270 |has| |#2| (-6 -4270)) ((-4275 "*") |has| |#2| (-162)) (-4273 . T) (-4120 . T))
NIL
-(-222 -3148 A B)
+(-222 -3169 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-223 -3148 R)
+(-223 -3169 R)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation.")))
-((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1461 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4267 |has| |#2| (-986)) (-4268 |has| |#2| (-986)) (-4270 |has| |#2| (-6 -4270)) ((-4275 "*") |has| |#2| (-162)) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-743))) (-1435 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-743)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#2| (QUOTE (-986))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasAttribute| |#2| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))))
(-224)
((|constructor| (NIL "DisplayPackage allows one to print strings in a nice manner,{} including highlighting substrings.")) (|sayLength| (((|Integer|) (|List| (|String|))) "\\spad{sayLength(l)} returns the length of a list of strings \\spad{l} as an integer.") (((|Integer|) (|String|)) "\\spad{sayLength(s)} returns the length of a string \\spad{s} as an integer.")) (|say| (((|Void|) (|List| (|String|))) "\\spad{say(l)} sends a list of strings \\spad{l} to output.") (((|Void|) (|String|)) "\\spad{say(s)} sends a string \\spad{s} to output.")) (|center| (((|List| (|String|)) (|List| (|String|)) (|Integer|) (|String|)) "\\spad{center(l,{}i,{}s)} takes a list of strings \\spad{l},{} and centers them within a list of strings which is \\spad{i} characters long,{} in which the remaining spaces are filled with strings composed of as many repetitions as possible of the last string parameter \\spad{s}.") (((|String|) (|String|) (|Integer|) (|String|)) "\\spad{center(s,{}i,{}s)} takes the first string \\spad{s},{} and centers it within a string of length \\spad{i},{} in which the other elements of the string are composed of as many replications as possible of the second indicated string,{} \\spad{s} which must have a length greater than that of an empty string.")) (|copies| (((|String|) (|Integer|) (|String|)) "\\spad{copies(i,{}s)} will take a string \\spad{s} and create a new string composed of \\spad{i} copies of \\spad{s}.")) (|newLine| (((|String|)) "\\spad{newLine()} sends a new line command to output.")) (|bright| (((|List| (|String|)) (|List| (|String|))) "\\spad{bright(l)} sets the font property of a list of strings,{} \\spad{l},{} to bold-face type.") (((|List| (|String|)) (|String|)) "\\spad{bright(s)} sets the font property of the string \\spad{s} to bold-face type.")))
NIL
@@ -834,47 +834,47 @@ NIL
NIL
(-226)
((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")))
-((-4262 . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-227 S)
((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,{}v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,{}v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")))
-((-4100 . T))
+((-4120 . T))
NIL
(-228 S)
((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}")) (|coerce| (((|List| |#1|) $) "\\spad{coerce(x)} returns the list of elements in \\spad{x}") (($ (|List| |#1|)) "\\spad{coerce(l)} creates a datalist from \\spad{l}")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-229 M)
((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,{}a,{}p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank\\spad{'s} algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}")))
NIL
NIL
(-230 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-852))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138)))))
(-231)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: January 19,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall")) (|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain \\spad{`d'}.")) (|reflect| (($ (|ConstructorCall|)) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall|) $) "\\spad{reify(d)} returns the abstract syntax for the domain \\spad{`x'}.")))
NIL
NIL
(-232 |n| R M S)
((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view.")))
-((-4266 -1461 (-3380 (|has| |#4| (-984)) (|has| |#4| (-216))) (-3380 (|has| |#4| (-984)) (|has| |#4| (-841 (-1099)))) (|has| |#4| (-6 -4266)) (-3380 (|has| |#4| (-984)) (|has| |#4| (-593 (-530))))) (-4263 |has| |#4| (-984)) (-4264 |has| |#4| (-984)) ((-4271 "*") |has| |#4| (-162)) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#4| (QUOTE (-344))) (-1461 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-984)))) (-1461 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344)))) (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (QUOTE (-741))) (-1461 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (QUOTE (-793)))) (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (QUOTE (-162))) (-1461 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-162)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-216)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-344)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-349)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-675)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-741)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-793)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-984)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-675))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-741))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-793))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (-1461 (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (|HasCategory| |#4| (QUOTE (-675))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (|HasCategory| |#4| (QUOTE (-984))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (QUOTE (-1027)))) (-1461 (|HasAttribute| |#4| (QUOTE -4266)) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-984)))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#4| (QUOTE (-984))) (|HasCategory| |#4| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#4| (QUOTE (-128))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 -1435 (-3427 (|has| |#4| (-986)) (|has| |#4| (-216))) (-3427 (|has| |#4| (-986)) (|has| |#4| (-843 (-1102)))) (|has| |#4| (-6 -4270)) (-3427 (|has| |#4| (-986)) (|has| |#4| (-594 (-531))))) (-4267 |has| |#4| (-986)) (-4268 |has| |#4| (-986)) ((-4275 "*") |has| |#4| (-162)) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-677))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-743))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#4| (QUOTE (-344))) (-1435 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-986)))) (-1435 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-344)))) (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (QUOTE (-743))) (-1435 (|HasCategory| |#4| (QUOTE (-743))) (|HasCategory| |#4| (QUOTE (-795)))) (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (QUOTE (-677))) (|HasCategory| |#4| (QUOTE (-162))) (-1435 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-986)))) (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-986)))) (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-162)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-216)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-344)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-349)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-677)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-743)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-795)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-986)))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-677))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-743))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-795))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-986)))) (-1435 (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-986)))) (|HasCategory| |#4| (QUOTE (-677))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (|HasCategory| |#4| (QUOTE (-986))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (QUOTE (-1030)))) (-1435 (|HasAttribute| |#4| (QUOTE -4270)) (-12 (|HasCategory| |#4| (QUOTE (-216))) (|HasCategory| |#4| (QUOTE (-986)))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#4| (QUOTE (-986))) (|HasCategory| |#4| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#4| (QUOTE (-128))) (|HasCategory| |#4| (QUOTE (-25))) (-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806)))))
(-233 |n| R S)
((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view.")))
-((-4266 -1461 (-3380 (|has| |#3| (-984)) (|has| |#3| (-216))) (-3380 (|has| |#3| (-984)) (|has| |#3| (-841 (-1099)))) (|has| |#3| (-6 -4266)) (-3380 (|has| |#3| (-984)) (|has| |#3| (-593 (-530))))) (-4263 |has| |#3| (-984)) (-4264 |has| |#3| (-984)) ((-4271 "*") |has| |#3| (-162)) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#3| (QUOTE (-344))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-741))) (-1461 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793)))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-162))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-675)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-741)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-675))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (|HasCategory| |#3| (QUOTE (-984))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (-1461 (|HasAttribute| |#3| (QUOTE -4266)) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4270 -1435 (-3427 (|has| |#3| (-986)) (|has| |#3| (-216))) (-3427 (|has| |#3| (-986)) (|has| |#3| (-843 (-1102)))) (|has| |#3| (-6 -4270)) (-3427 (|has| |#3| (-986)) (|has| |#3| (-594 (-531))))) (-4267 |has| |#3| (-986)) (-4268 |has| |#3| (-986)) ((-4275 "*") |has| |#3| (-162)) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#3| (QUOTE (-344))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (QUOTE (-743))) (-1435 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (QUOTE (-795)))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (QUOTE (-162))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-677)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-743)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-795)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-677))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (|HasCategory| |#3| (QUOTE (-986))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030)))) (-1435 (|HasAttribute| |#3| (QUOTE -4270)) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-806)))))
(-234 A R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
NIL
((|HasCategory| |#2| (QUOTE (-216))))
(-235 R S V E)
((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p,{} s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p,{} s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p,{} s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,{}s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} \\spad{:=} makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
NIL
(-236 S)
((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,{}d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,{}y,{}...,{}z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}.")))
-((-4269 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4274 . T) (-4120 . T))
NIL
(-237)
((|constructor| (NIL "TopLevelDrawFunctionsForCompiledFunctions provides top level functions for drawing graphics of expressions.")) (|recolor| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{recolor()},{} uninteresting to top level user; exported in order to compile package.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f,{}g,{}h),{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{makeObject(f,{}a..b,{}c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f,{}a..b,{}c..d,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)},{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{makeObject(sp,{}curve(f,{}g,{}h),{}a..b)} returns the space \\spad{sp} of the domain \\spadtype{ThreeSpace} with the addition of the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f,{}g,{}h),{}a..b,{}l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|ParametricSurface| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f,{}g,{}h),{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{x = f(u,{}v)},{} \\spad{y = g(u,{}v)},{} \\spad{z = h(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}; The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)} The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of the parametric surface \\spad{f(u,{}v)} as \\spad{u} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{v} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}c..d)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}c..d,{}l)} draws the graph of \\spad{z = f(x,{}y)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)} and \\spad{y} ranges from \\spad{min(c,{}d)} to \\spad{max(c,{}d)}. and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of the parametric curve \\spad{f} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g,{}h),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t),{} z = h(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|))) "\\spad{draw(curve(f,{}g),{}a..b)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f,{}g),{}a..b,{}l)} draws the graph of the parametric curve \\spad{x = f(t),{} y = g(t)} as \\spad{t} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|))) "\\spad{draw(f,{}a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}.") (((|TwoDimensionalViewport|) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f,{}a..b,{}l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,{}b)} to \\spad{max(a,{}b)}. The options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")))
@@ -914,8 +914,8 @@ NIL
NIL
(-246 R S V)
((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#3| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#3| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#3| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-247 A S)
((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(v,{} n)} returns the \\spad{n}-th derivative of \\spad{v}.") (($ $) "\\spad{differentiate(v)} returns the derivative of \\spad{v}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s,{} n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate.")))
NIL
@@ -960,11 +960,11 @@ NIL
((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1\\spad{'s} in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0\\spad{'s} and 1\\spad{'s} into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1.")))
NIL
NIL
-(-258 R -1334)
+(-258 R -1327)
((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,{}l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{\\spad{pi}()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}")))
NIL
NIL
-(-259 R -1334)
+(-259 R -1327)
((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,{}a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f,{} k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,{}...,{}kn],{}f,{}x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,{}x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log,{} exp,{} tan,{} atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f,{} x)} returns \\spad{[g,{} [k1,{}...,{}kn],{} [h1,{}...,{}hn]]} such that \\spad{g = normalize(f,{} x)} and each \\spad{\\spad{ki}} was rewritten as \\spad{\\spad{hi}} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f,{} x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels.")))
NIL
NIL
@@ -983,10 +983,10 @@ NIL
(-263 A S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))))
+((|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))))
(-264 S)
((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,{}u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,{}v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,{}u,{}v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,{}u,{}i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,{}u,{}i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,{}u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,{}u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,{}i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,{}i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,{}v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}.")))
-((-4270 . T) (-4100 . T))
+((-4274 . T) (-4120 . T))
NIL
(-265 S)
((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}.")))
@@ -1007,18 +1007,18 @@ NIL
(-269 S |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)))
+((|HasAttribute| |#1| (QUOTE -4274)))
(-270 |Dom| |Im|)
((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,{}x,{}y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,{}x,{}y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u,{} x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u,{} x,{} y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range.")))
NIL
NIL
-(-271 S R |Mod| -1920 -3683 |exactQuo|)
+(-271 S R |Mod| -3848 -3508 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|elt| ((|#2| $ |#2|) "\\spad{elt(x,{}r)} or \\spad{x}.\\spad{r} \\undocumented")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-272)
((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero.")))
-((-4262 . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-273)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 19,{} 2008. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|currentEnv| (($) "the current normal environment in effect.")) (|setProperties!| (($ (|Symbol|) (|List| (|Property|)) $) "setBinding!(\\spad{n},{}props,{}\\spad{e}) set the list of properties of \\spad{`n'} to `props' in `e'.")) (|getProperties| (((|Union| (|List| (|Property|)) "failed") (|Symbol|) $) "getBinding(\\spad{n},{}\\spad{e}) returns the list of properties of \\spad{`n'} in \\spad{e}; otherwise `failed'.")) (|setProperty!| (($ (|Symbol|) (|Symbol|) (|SExpression|) $) "\\spad{setProperty!(n,{}p,{}v,{}e)} binds the property `(\\spad{p},{}\\spad{v})' to \\spad{`n'} in the topmost scope of `e'.")) (|getProperty| (((|Union| (|SExpression|) "failed") (|Symbol|) (|Symbol|) $) "\\spad{getProperty(n,{}p,{}e)} returns the value of property with name \\spad{`p'} for the symbol \\spad{`n'} in environment `e'. Otherwise,{} `failed'.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment")))
@@ -1034,21 +1034,21 @@ NIL
NIL
(-276 S)
((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,{}eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the \\spad{lhs} of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations e1 and e2.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn,{} [x1=v1,{} ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn,{} x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,{}b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation.")))
-((-4266 -1461 (|has| |#1| (-984)) (|has| |#1| (-453))) (-4263 |has| |#1| (-984)) (-4264 |has| |#1| (-984)))
-((|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675)))) (|HasCategory| |#1| (QUOTE (-453))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-1027)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-284))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453)))) (-1461 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-984)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
+((-4270 -1435 (|has| |#1| (-986)) (|has| |#1| (-453))) (-4267 |has| |#1| (-986)) (-4268 |has| |#1| (-986)))
+((|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-677)))) (|HasCategory| |#1| (QUOTE (-453))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-1030)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-284))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-453)))) (-1435 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-677)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-986)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))))
(-277 |Key| |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))))
(-278)
((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",{}\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,{}lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,{}msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates.")))
NIL
NIL
-(-279 -1334 S)
+(-279 -1327 S)
((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f,{} p,{} k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}.")))
NIL
NIL
-(-280 E -1334)
+(-280 E -1327)
((|constructor| (NIL "This package allows a mapping \\spad{E} \\spad{->} \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f,{} k)} returns \\spad{g = op(f(a1),{}...,{}f(an))} where \\spad{k = op(a1,{}...,{}an)}.")))
NIL
NIL
@@ -1063,7 +1063,7 @@ NIL
(-283 S)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-984))))
+((|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-986))))
(-284)
((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} f)} replaces every \\spad{s(a1,{}..,{}am)} in \\spad{x} by \\spad{f(a1,{}..,{}am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x,{} s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x,{} y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f,{} k)} returns \\spad{op(f(x1),{}...,{}f(xn))} where \\spad{k = op(x1,{}...,{}xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op,{} [f1,{}...,{}fn])} constructs \\spad{op(f1,{}...,{}fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op,{} x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x,{} s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x,{} op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}\\spad{fn},{} \\spad{op(f1,{}...,{}fn)} has height equal to \\spad{1 + max(height(f1),{}...,{}height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f,{} g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x,{} 2])} returns the formal kernel \\spad{atan((x,{} 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,{}...,{}fn])} returns \\spad{(f1,{}...,{}fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x,{} 2])} returns the formal kernel \\spad{atan(x,{} 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f,{} [k1...,{}kn],{} [g1,{}...,{}gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f,{} [k1 = g1,{}...,{}kn = gn])} replaces the kernels \\spad{k1},{}...,{}\\spad{kn} by \\spad{g1},{}...,{}\\spad{gn} formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f,{} k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{}[x1,{}...,{}xn])} or \\spad{op}([\\spad{x1},{}...,{}\\spad{xn}]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}\\spad{xn}.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,{}x,{}y,{}z,{}t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,{}x,{}y,{}z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,{}x,{}y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,{}x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}.")))
NIL
@@ -1086,7 +1086,7 @@ NIL
NIL
(-289)
((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,{}...,{}fn],{}z)} returns a list of coefficients \\spad{[a1,{} ...,{} an]} such that \\spad{ z / prod \\spad{fi} = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,{}y,{}z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,{}y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a \\spad{gcd} of \\spad{x} and \\spad{y}. The \\spad{gcd} is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,{}y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,{}y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,{}y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,{}y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-290 S R)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
@@ -1096,7 +1096,7 @@ NIL
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f,{} [x1 = v1,{}...,{}xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,{}x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-292 -1334)
+(-292 -1327)
((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,{}s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}")))
NIL
NIL
@@ -1106,8 +1106,8 @@ NIL
NIL
(-294 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,{}f(var))}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-960))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-768))) (-1461 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-768))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-795)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-1075))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-216))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -291) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (LIST (QUOTE -268) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1167) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-289))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-515))) (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-795))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| $ (QUOTE (-138)))) (-1461 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (-12 (|HasCategory| (-1167 |#1| |#2| |#3| |#4|) (QUOTE (-850))) (|HasCategory| $ (QUOTE (-138))))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-852))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-962))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-770))) (-1435 (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-770))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-797)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-1078))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-216))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -291) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (LIST (QUOTE -268) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (LIST (QUOTE -1170) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-289))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-516))) (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-797))) (-12 (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-852))) (|HasCategory| $ (QUOTE (-138)))) (-1435 (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-138))) (-12 (|HasCategory| (-1170 |#1| |#2| |#3| |#4|) (QUOTE (-852))) (|HasCategory| $ (QUOTE (-138))))))
(-295 R S)
((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f,{} e)} applies \\spad{f} to all the constants appearing in \\spad{e}.")))
NIL
@@ -1118,9 +1118,9 @@ NIL
NIL
(-297 R)
((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations.")))
-((-4266 -1461 (-3380 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-12 (|has| |#1| (-522)) (-1461 (-3380 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (|has| |#1| (-984)) (|has| |#1| (-453)))) (|has| |#1| (-984)) (|has| |#1| (-453))) (-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) ((-4271 "*") |has| |#1| (-522)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-522)) (-4261 |has| |#1| (-522)))
-((-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-1039)))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1039)))) (-1461 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))))) (-1461 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1039)))) (-1461 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))))) (-1461 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-984)))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1039))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
-(-298 R -1334)
+((-4270 -1435 (-3427 (|has| |#1| (-986)) (|has| |#1| (-594 (-531)))) (-12 (|has| |#1| (-523)) (-1435 (-3427 (|has| |#1| (-986)) (|has| |#1| (-594 (-531)))) (|has| |#1| (-986)) (|has| |#1| (-453)))) (|has| |#1| (-986)) (|has| |#1| (-453))) (-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) ((-4275 "*") |has| |#1| (-523)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-523)) (-4265 |has| |#1| (-523)))
+((-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-1042)))) (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986)))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-1042)))) (-1435 (|HasCategory| |#1| (QUOTE (-21))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))))) (-1435 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-1042)))) (-1435 (|HasCategory| |#1| (QUOTE (-25))) (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))))) (-1435 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#1| (QUOTE (-986)))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1042))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| $ (QUOTE (-986))) (|HasCategory| $ (LIST (QUOTE -977) (QUOTE (-531)))))
+(-298 R -1327)
((|constructor| (NIL "Taylor series solutions of explicit ODE\\spad{'s}.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} [b0,{}...,{}bn])} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} [b0,{}...,{}b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{} y,{} x = a,{} y a = b)} is equivalent to \\spad{seriesSolve(eq=0,{} y,{} x=a,{} y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{} y,{} x = a,{} b)} is equivalent to \\spad{seriesSolve(eq = 0,{} y,{} x = a,{} y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,{}y,{} x=a,{} b)} is equivalent to \\spad{seriesSolve(eq,{} y,{} x=a,{} y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{}[y1 a = b1,{}...,{} yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1=0,{}...,{}eqn=0],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x=a,{} [b1,{}...,{}bn])} is equivalent to \\spad{seriesSolve([eq1,{}...,{}eqn],{} [y1,{}...,{}yn],{} x = a,{} [y1 a = b1,{}...,{} yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,{}...,{}eqn],{}[y1,{}...,{}yn],{}x = a,{}[y1 a = b1,{}...,{}yn a = bn])} returns a taylor series solution of \\spad{[eq1,{}...,{}eqn]} around \\spad{x = a} with initial conditions \\spad{\\spad{yi}(a) = \\spad{bi}}. Note: eqi must be of the form \\spad{\\spad{fi}(x,{} y1 x,{} y2 x,{}...,{} yn x) y1'(x) + \\spad{gi}(x,{} y1 x,{} y2 x,{}...,{} yn x) = h(x,{} y1 x,{} y2 x,{}...,{} yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{}[b0,{}...,{}b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x,{} y x,{} y'(x),{}...,{} y(n-1)(x)) y(n)(x) + g(x,{}y x,{}y'(x),{}...,{}y(n-1)(x)) = h(x,{}y x,{} y'(x),{}...,{} y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,{}y,{}x=a,{} y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x,{} y x) y'(x) + g(x,{} y x) = h(x,{} y x)}.")))
NIL
NIL
@@ -1130,8 +1130,8 @@ NIL
NIL
(-300 FE |var| |cen|)
((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))))
(-301 M)
((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,{}b1),{}...,{}(am,{}bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f,{} n)} returns \\spad{(p,{} r,{} [r1,{}...,{}rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}\\spad{rm} are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}.")))
NIL
@@ -1142,8 +1142,8 @@ NIL
NIL
(-303 S)
((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The operation is commutative.")))
-((-4264 . T) (-4263 . T))
-((|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-740))))
+((-4268 . T) (-4267 . T))
+((|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-742))))
(-304 S E)
((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an,{} f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,{}[max(\\spad{ei},{} \\spad{fi}) \\spad{ci}])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,{}...,{}an}} and \\spad{{b1,{}...,{}bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f,{} e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s,{} e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}\\spad{'s}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x,{} n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} a1\\spad{\\^}e1 ... an\\spad{\\^}en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}.")))
NIL
@@ -1151,26 +1151,26 @@ NIL
(-305 S)
((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,{}[\\spad{ni} * \\spad{si}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The operation is commutative.")))
NIL
-((|HasCategory| (-719) (QUOTE (-740))))
+((|HasCategory| (-721) (QUOTE (-742))))
(-306 S R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
NIL
-((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))))
+((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))))
(-307 R E)
((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the \\spad{gcd} of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,{}r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,{}q,{}n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,{}r,{}e,{}p2)} returns \\spad{p1 + monomial(e,{}r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,{}u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-308 S)
((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-309 S -1334)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-309 S -1327)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
NIL
((|HasCategory| |#2| (QUOTE (-349))))
-(-310 -1334)
+(-310 -1327)
((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,{}d} from {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,{}a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,{}f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,{}d} form {\\em F} and {\\em f,{}g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\spad{\\$}SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i),{} 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,{}d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,{}d) = reduce(+,{}[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,{}d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(\\spad{q**}(d*i)) for \\spad{i} in 0..\\spad{n/d}])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,{}n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\spad{\\$} as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\spad{\\$} as \\spad{F}-vectorspace.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-311)
((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,{}contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}l,{}y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,{}y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,{}e,{}f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,{}e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,{}c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,{}c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,{}n,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,{}c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(f)} returns an object of type OutputForm.")))
@@ -1188,54 +1188,54 @@ NIL
((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}d)} \\undocumented{}")))
NIL
NIL
-(-315 S -1334 UP UPUP R)
+(-315 S -1327 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-316 -1334 UP UPUP R)
+(-316 -1327 UP UPUP R)
((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id,{} f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h,{} d,{} d',{} g,{} r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,{}discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a,{} b,{} n)} makes the divisor \\spad{nP} where \\spad{P:} \\spad{(x = a,{} y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a,{} b)} makes the divisor \\spad{P:} \\spad{(x = a,{} y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}.")))
NIL
NIL
-(-317 -1334 UP UPUP R)
+(-317 -1327 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}.")))
NIL
NIL
(-318 S R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))))
+((|HasCategory| |#2| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))))
(-319 R)
((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{} ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex.")))
NIL
NIL
(-320 |basicSymbols| |subscriptedSymbols| R)
((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{\\spad{pi}(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function LOG10")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")))
-((-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-360)))) (|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
+((-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-360)))) (|HasCategory| $ (QUOTE (-986))) (|HasCategory| $ (LIST (QUOTE -977) (QUOTE (-531)))))
(-321 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2)
((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{} p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}.")))
NIL
NIL
-(-322 S -1334 UP UPUP)
+(-322 S -1327 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
NIL
((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-344))))
-(-323 -1334 UP UPUP)
+(-323 -1327 UP UPUP)
((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in u1,{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f,{} D)} returns \\spad{[h,{}d,{}d',{}g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d,{} discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,{}a,{}b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a,{} y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,{} d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(\\spad{wi})} with respect to \\spad{(w1,{}...,{}wn)} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,{}...,{}An],{} D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,{}...,{}wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,{}...,{}A(n-1)],{}D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,{}...,{}An],{} D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,{}...,{}vn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,{}...,{}vn) = M (1,{} y,{} ...,{} y**(n-1))} where \\spad{(v1,{}...,{}vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,{}...,{}wn) = (1,{} y,{} ...,{} y**(n-1))} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,{}...,{}wn) = M (1,{} y,{} ...,{} y**(n-1))},{} where \\spad{(w1,{}...,{}wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,{}...,{}bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,{}...,{}bn)} returns the complementary basis \\spad{(b1',{}...,{}bn')} of \\spad{(b1,{}...,{}bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f,{} p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f,{} a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a,{} b)} tests if \\spad{(x=a,{}y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components.")))
-((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 |has| (-388 |#2|) (-344)) (-4271 |has| (-388 |#2|) (-344)) (-4265 |has| (-388 |#2|) (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-324 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| (-853 |#1|) (QUOTE (-138))) (|HasCategory| (-853 |#1|) (QUOTE (-349)))) (|HasCategory| (-853 |#1|) (QUOTE (-140))) (|HasCategory| (-853 |#1|) (QUOTE (-349))) (|HasCategory| (-853 |#1|) (QUOTE (-138))))
(-325 GF |defpol|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(\\spad{GF},{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-326 GF |extdeg|)
((|constructor| (NIL "FiniteFieldCyclicGroupExtension(\\spad{GF},{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-327 GF)
((|constructor| (NIL "FiniteFieldFunctions(\\spad{GF}) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}.")))
NIL
@@ -1250,33 +1250,33 @@ NIL
NIL
(-330)
((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see \\spad{ch}.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,{}n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-331 R UP -1334)
+(-331 R UP -1327)
((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-332 |p| |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| (-853 |#1|) (QUOTE (-138))) (|HasCategory| (-853 |#1|) (QUOTE (-349)))) (|HasCategory| (-853 |#1|) (QUOTE (-140))) (|HasCategory| (-853 |#1|) (QUOTE (-349))) (|HasCategory| (-853 |#1|) (QUOTE (-138))))
(-333 GF |uni|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-334 GF |extdeg|)
((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(\\spad{GF},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-335 |p| |n|)
((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| (-851 |#1|) (QUOTE (-138))) (|HasCategory| (-851 |#1|) (QUOTE (-349)))) (|HasCategory| (-851 |#1|) (QUOTE (-140))) (|HasCategory| (-851 |#1|) (QUOTE (-349))) (|HasCategory| (-851 |#1|) (QUOTE (-138))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| (-853 |#1|) (QUOTE (-138))) (|HasCategory| (-853 |#1|) (QUOTE (-349)))) (|HasCategory| (-853 |#1|) (QUOTE (-140))) (|HasCategory| (-853 |#1|) (QUOTE (-349))) (|HasCategory| (-853 |#1|) (QUOTE (-138))))
(-336 GF |defpol|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
-(-337 -1334 GF)
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+(-337 -1327 GF)
((|constructor| (NIL "FiniteFieldPolynomialPackage2(\\spad{F},{}\\spad{GF}) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
@@ -1284,21 +1284,21 @@ NIL
((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,{}x**q,{}x**(q**2),{}...,{}x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,{}n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(\\spad{GF}) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(\\spad{GF}) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(\\spad{GF}) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive.")))
NIL
NIL
-(-339 -1334 FP FPP)
+(-339 -1327 FP FPP)
((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
(-340 GF |n|)
((|constructor| (NIL "FiniteFieldExtensionByPolynomial(\\spad{GF},{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-138))))
(-341 R |ls|)
((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{\\spad{ls}}.")))
NIL
NIL
(-342 S)
((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
-((-4266 . T))
+((-4270 . T))
NIL
(-343 S)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
@@ -1306,7 +1306,7 @@ NIL
NIL
(-344)
((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-345 |Name| S)
((|constructor| (NIL "This category provides an interface to operate on files in the computer\\spad{'s} file system. The precise method of naming files is determined by the Name parameter. The type of the contents of the file is determined by \\spad{S}.")) (|write!| ((|#2| $ |#2|) "\\spad{write!(f,{}s)} puts the value \\spad{s} into the file \\spad{f}. The state of \\spad{f} is modified so subsequents call to \\spad{write!} will append one after another.")) (|read!| ((|#2| $) "\\spad{read!(f)} extracts a value from file \\spad{f}. The state of \\spad{f} is modified so a subsequent call to \\spadfun{read!} will return the next element.")) (|iomode| (((|String|) $) "\\spad{iomode(f)} returns the status of the file \\spad{f}. The input/output status of \\spad{f} may be \"input\",{} \"output\" or \"closed\" mode.")) (|name| ((|#1| $) "\\spad{name(f)} returns the external name of the file \\spad{f}.")) (|close!| (($ $) "\\spad{close!(f)} returns the file \\spad{f} closed to input and output.")) (|reopen!| (($ $ (|String|)) "\\spad{reopen!(f,{}mode)} returns a file \\spad{f} reopened for operation in the indicated mode: \"input\" or \"output\". \\spad{reopen!(f,{}\"input\")} will reopen the file \\spad{f} for input.")) (|open| (($ |#1| (|String|)) "\\spad{open(s,{}mode)} returns a file \\spad{s} open for operation in the indicated mode: \"input\" or \"output\".") (($ |#1|) "\\spad{open(s)} returns the file \\spad{s} open for input.")))
@@ -1319,10 +1319,10 @@ NIL
(-347 S R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#2|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#2|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#2| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#2| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#2|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#2|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#2| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#2| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#2| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#2| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#2|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#2|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#2|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
NIL
-((|HasCategory| |#2| (QUOTE (-522))))
+((|HasCategory| |#2| (QUOTE (-523))))
(-348 R)
((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,{}b,{}c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Lie algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,{}+,{}@)} we can construct a Jordan algebra \\spad{(A,{}+,{}*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\\spad{\"*\"})} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0 = 2*associator(a,{}b,{}b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,{}b,{}a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,{}b,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,{}a,{}b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don\\spad{'t} know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,{}...,{}vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,{}...,{}vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,{}...,{}vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,{}...,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}...,{}am],{}[v1,{}...,{}vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am],{}[v1,{}...,{}vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,{}[v1,{}...,{}vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,{}...,{}vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,{}v2,{}...,{}vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,{}...,{}vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis.")))
-((-4266 |has| |#1| (-522)) (-4264 . T) (-4263 . T))
+((-4270 |has| |#1| (-523)) (-4268 . T) (-4267 . T))
NIL
(-349)
((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set.")))
@@ -1334,7 +1334,7 @@ NIL
((|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-344))))
(-351 R UP)
((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,{}..,{}vn])} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr}(\\spad{vi} * \\spad{vj}) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,{}..,{}vn])} returns \\spad{determinant(traceMatrix([v1,{}..,{}vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,{}..,{}an],{}[v1,{}..,{}vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm],{} basis)} returns the coordinates of the \\spad{vi}\\spad{'s} with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,{}basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,{}basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-352 S A R B)
((|constructor| (NIL "FiniteLinearAggregateFunctions2 provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain.")))
@@ -1343,14 +1343,14 @@ NIL
(-353 A S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))))
+((|HasAttribute| |#1| (QUOTE -4274)) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))))
(-354 S)
((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,{}u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,{}v,{}i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,{}a,{}n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} \\spad{>=} \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,{}a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,{}a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,{}a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(\\spad{<=},{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,{}a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,{}v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(\\spad{<=},{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,{}a,{}b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}.")))
-((-4269 . T) (-4100 . T))
+((-4273 . T) (-4120 . T))
NIL
(-355 |VarSet| R)
((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}\\spad{xn}],{} [\\spad{v1},{}...,{}\\spad{vn}])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4268 . T) (-4267 . T))
NIL
(-356 S V)
((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f,{} agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm.")))
@@ -1359,10 +1359,10 @@ NIL
(-357 S R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))))
+((|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))))
(-358 R)
((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}")))
-((-4266 . T))
+((-4270 . T))
NIL
(-359 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf,{} lv,{} eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf,{} eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,{}eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,{}eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,{}eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}.")))
@@ -1370,7 +1370,7 @@ NIL
NIL
(-360)
((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,{}exponent,{}\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,{}e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{\\spad{pi}},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|convert| (($ (|DoubleFloat|)) "\\spad{convert(x)} converts a \\spadtype{DoubleFloat} \\spad{x} to a \\spadtype{Float}.")) (|atan| (($ $ $) "\\spad{atan(x,{}y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n,{} b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f,{} n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,{}n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,{}y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}.")))
-((-4252 . T) (-4260 . T) (-4136 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4256 . T) (-4264 . T) (-4148 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-361 |Par|)
((|constructor| (NIL "\\indented{3}{This is a package for the approximation of real solutions for} systems of polynomial equations over the rational numbers. The results are expressed as either rational numbers or floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|realRoots| (((|List| |#1|) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{realRoots(rf,{} eps)} finds the real zeros of a univariate rational function with precision given by eps.") (((|List| (|List| |#1|)) (|List| (|Fraction| (|Polynomial| (|Integer|)))) (|List| (|Symbol|)) |#1|) "\\spad{realRoots(lp,{}lv,{}eps)} computes the list of the real solutions of the list \\spad{lp} of rational functions with rational coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}. Each solution is expressed as a list of numbers in order corresponding to the variables in \\spad{lv}.")) (|solve| (((|List| (|Equation| (|Polynomial| |#1|))) (|Equation| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(eq,{}eps)} finds all of the real solutions of the univariate equation \\spad{eq} of rational functions with respect to the unique variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| (|Integer|))) |#1|) "\\spad{solve(p,{}eps)} finds all of the real solutions of the univariate rational function \\spad{p} with rational coefficients with respect to the unique variable appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Integer|))))) |#1|) "\\spad{solve(leq,{}eps)} finds all of the real solutions of the system \\spad{leq} of equationas of rational functions with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| |#1|)))) (|List| (|Fraction| (|Polynomial| (|Integer|)))) |#1|) "\\spad{solve(lp,{}eps)} finds all of the real solutions of the system \\spad{lp} of rational functions over the rational numbers with respect to all the variables appearing in \\spad{lp},{} with precision \\spad{eps}.")))
@@ -1378,31 +1378,31 @@ NIL
NIL
(-362 R S)
((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
((|HasCategory| |#1| (QUOTE (-162))))
(-363 R |Basis|)
((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis,{} c: R)} such that \\spad{x} equals \\spad{reduce(+,{} map(x +-> monom(x.k,{} x.c),{} lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,{}r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,{}b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}.")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
NIL
(-364)
((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-4100 . T))
+((-4120 . T))
NIL
(-365)
((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4100 . T))
+((-4120 . T))
NIL
(-366 R S)
((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored.")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
((|HasCategory| |#1| (QUOTE (-162))))
(-367 S)
((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are nonnegative integers. The multiplication is not commutative.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|NonNegativeInteger|) (|NonNegativeInteger|)) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m},{} \\spad{y = m * r} and \\spad{l} and \\spad{r} have no overlap,{} \\spadignore{i.e.} \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|divide| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{divide(x,{} y)} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} \\spadignore{i.e.} \\spad{[l,{} r]} such that \\spad{x = l * y * r},{} \"failed\" if \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} by \\spad{y} \\spadignore{i.e.} \\spad{q} such that \\spad{x = y * q},{} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} \\spadignore{i.e.} the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
-((|HasCategory| |#1| (QUOTE (-795))))
+((|HasCategory| |#1| (QUOTE (-797))))
(-368)
((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-369)
((|constructor| (NIL "This domain provides an interface to names in the file system.")))
@@ -1414,13 +1414,13 @@ NIL
NIL
(-371 |n| |class| R)
((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
NIL
(-372)
((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack")))
NIL
NIL
-(-373 -1334 UP UPUP R)
+(-373 -1327 UP UPUP R)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented")))
NIL
NIL
@@ -1434,27 +1434,27 @@ NIL
NIL
(-376)
((|constructor| (NIL "\\axiomType{FortranProgramCategory} provides various models of FORTRAN subprograms. These can be transformed into actual FORTRAN code.")) (|outputAsFortran| (((|Void|) $) "\\axiom{outputAsFortran(\\spad{u})} translates \\axiom{\\spad{u}} into a legal FORTRAN subprogram.")))
-((-4100 . T))
+((-4120 . T))
NIL
(-377)
((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4100 . T))
+((-4120 . T))
NIL
(-378)
((|constructor| (NIL "provides an interface to the boot code for calling Fortran")) (|setLegalFortranSourceExtensions| (((|List| (|String|)) (|List| (|String|))) "\\spad{setLegalFortranSourceExtensions(l)} \\undocumented{}")) (|outputAsFortran| (((|Void|) (|FileName|)) "\\spad{outputAsFortran(fn)} \\undocumented{}")) (|linkToFortran| (((|SExpression|) (|Symbol|) (|List| (|Symbol|)) (|TheSymbolTable|) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}t,{}lv)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|)) (|Symbol|)) "\\spad{linkToFortran(s,{}l,{}ll,{}lv,{}t)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|)))) (|List| (|List| (|Union| (|:| |array| (|List| (|Symbol|))) (|:| |scalar| (|Symbol|))))) (|List| (|Symbol|))) "\\spad{linkToFortran(s,{}l,{}ll,{}lv)} \\undocumented{}")))
NIL
NIL
-(-379 -3907 |returnType| -2739 |symbols|)
+(-379 -3955 |returnType| -2687 |symbols|)
((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}")))
NIL
NIL
-(-380 -1334 UP)
+(-380 -1327 UP)
((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: 6 October 1993 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of ISSAC'93,{} Kiev,{} ACM Press.}")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{D(f)} returns the derivative of \\spad{f}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{} n)} returns the \\spad{n}-th derivative of \\spad{f}.") (($ $) "\\spad{differentiate(f)} returns the derivative of \\spad{f}.")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p,{} [[j,{} Dj,{} Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,{}Dj,{}Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}")))
NIL
NIL
(-381 R)
((|constructor| (NIL "A set \\spad{S} is PatternMatchable over \\spad{R} if \\spad{S} can lift the pattern-matching functions of \\spad{S} over the integers and float to itself (necessary for matching in towers).")))
-((-4100 . T))
+((-4120 . T))
NIL
(-382 S)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
@@ -1462,15 +1462,15 @@ NIL
NIL
(-383)
((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,{}s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,{}a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-384 S)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
NIL
-((|HasAttribute| |#1| (QUOTE -4252)) (|HasAttribute| |#1| (QUOTE -4260)))
+((|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#1| (QUOTE -4264)))
(-385)
((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\\spad{\"+\"}) does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling\\spad{'s} precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling\\spad{'s} precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,{}e,{}b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,{}e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\".")))
-((-4136 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4148 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-386 R S)
((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,{}u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type.")))
@@ -1482,20 +1482,20 @@ NIL
NIL
(-388 S)
((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then \\spad{gcd}\\spad{'s} between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical.")))
-((-4256 -12 (|has| |#1| (-6 -4267)) (|has| |#1| (-432)) (|has| |#1| (-6 -4256))) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-768))) (-1461 (|HasCategory| |#1| (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-795)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-1075))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-776)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-515))) (-12 (|HasAttribute| |#1| (QUOTE -4267)) (|HasAttribute| |#1| (QUOTE -4256)) (|HasCategory| |#1| (QUOTE (-432)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
+((-4260 -12 (|has| |#1| (-6 -4271)) (|has| |#1| (-432)) (|has| |#1| (-6 -4260))) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-770))) (-1435 (|HasCategory| |#1| (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-797)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-1078))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-778)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-516))) (-12 (|HasAttribute| |#1| (QUOTE -4271)) (|HasAttribute| |#1| (QUOTE -4260)) (|HasCategory| |#1| (QUOTE (-432)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
(-389 S R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#2|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#2|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#2|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#2|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#2|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
NIL
NIL
(-390 R UP)
((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(\\spad{vi} * vj)} ),{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}..,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,{}...,{}vm])} returns the coordinates of the \\spad{vi}\\spad{'s} with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-391 A S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))
+((|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))
(-392 S)
((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don\\spad{'t} retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991")))
NIL
@@ -1504,14 +1504,14 @@ NIL
((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,{}i)} \\undocumented{}")))
NIL
NIL
-(-394 R -1334 UP A)
+(-394 R -1327 UP A)
((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,{}x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,{}...,{}fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} returns the vector \\spad{[f1,{}...,{}fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,{}...,{}fn])} returns the ideal \\spad{(f1,{}...,{}fn)}.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-395 R -1334 UP A |ibasis|)
+(-395 R -1327 UP A |ibasis|)
((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,{}...,{}fn])} = the module generated by \\spad{(f1,{}...,{}fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,{}...,{}fn))} = the vector \\spad{[f1,{}...,{}fn]}.")))
NIL
-((|HasCategory| |#4| (LIST (QUOTE -975) (|devaluate| |#2|))))
+((|HasCategory| |#4| (LIST (QUOTE -977) (|devaluate| |#2|))))
(-396 AR R AS S)
((|constructor| (NIL "FramedNonAssociativeAlgebraFunctions2 implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}.")))
NIL
@@ -1522,12 +1522,12 @@ NIL
((|HasCategory| |#2| (QUOTE (-344))))
(-398 R)
((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,{}a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn\\spad{'t} fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,{}...,{}an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{\\spad{vi} * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|elt| ((|#1| $ (|Integer|)) "\\spad{elt(a,{}i)} returns the \\spad{i}-th coefficient of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,{}...,{}am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{\\spad{ai}} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis.")))
-((-4266 |has| |#1| (-522)) (-4264 . T) (-4263 . T))
+((-4270 |has| |#1| (-523)) (-4268 . T) (-4267 . T))
NIL
(-399 R)
((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and \\spad{gcd} are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| "nil" "sqfr" "irred" "prime")) "\\spad{flagFactor(base,{}exponent,{}flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| "nil" "sqfr" "irred" "prime") $ (|Integer|)) "\\spad{nthFlag(u,{}n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,{}n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,{}n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,{}exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,{}exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,{}listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -291) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -268) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-1139))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-1139)))) (|HasCategory| |#1| (QUOTE (-960))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-432))))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -291) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -268) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-1142))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-1142)))) (|HasCategory| |#1| (QUOTE (-962))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-432))))
(-400 R)
((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,{}v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,{}fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,{}2)} then \\spad{refine(u,{}factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,{}2) * primeFactor(5,{}2)}.")))
NIL
@@ -1551,40 +1551,40 @@ NIL
(-405 A S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-349))))
+((|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-349))))
(-406 S)
((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}.")))
-((-4269 . T) (-4259 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4263 . T) (-4274 . T) (-4120 . T))
NIL
-(-407 R -1334)
+(-407 R -1327)
((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")))
NIL
NIL
(-408 R E)
((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,{}r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,{}r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series")))
-((-4256 -12 (|has| |#1| (-6 -4256)) (|has| |#2| (-6 -4256))) (-4263 . T) (-4264 . T) (-4266 . T))
-((-12 (|HasAttribute| |#1| (QUOTE -4256)) (|HasAttribute| |#2| (QUOTE -4256))))
-(-409 R -1334)
+((-4260 -12 (|has| |#1| (-6 -4260)) (|has| |#2| (-6 -4260))) (-4267 . T) (-4268 . T) (-4270 . T))
+((-12 (|HasAttribute| |#1| (QUOTE -4260)) (|HasAttribute| |#2| (QUOTE -4260))))
+(-409 R -1327)
((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable.")))
NIL
NIL
(-410 S R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-1039))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))))
+((|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-1042))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))))
(-411 R)
((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f,{} k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n,{} x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,{}f)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,{}op)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x,{} s,{} n,{} f)} replaces every \\spad{s(a1,{}...,{}am)**n} in \\spad{x} by \\spad{f(a1,{}...,{}am)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a1,{}...,{}an)**ni} in \\spad{x} by \\spad{\\spad{fi}(a1,{}...,{}an)} for any a1,{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [n1,{}...,{}nm],{} [f1,{}...,{}fm])} replaces every \\spad{\\spad{si}(a)**ni} in \\spad{x} by \\spad{\\spad{fi}(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x,{} [s1,{}...,{}sm],{} [f1,{}...,{}fm],{} y)} replaces every \\spad{\\spad{si}(a)} in \\spad{x} by \\spad{\\spad{fi}(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x,{} s,{} f,{} y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f,{} [foo1,{}...,{}foon])} unquotes all the \\spad{fooi}\\spad{'s} in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f,{} foo)} unquotes all the foo\\spad{'s} in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo,{} [x1,{}...,{}xn])} returns \\spad{'foo(x1,{}...,{}xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z,{} t)} returns \\spad{'foo(x,{}y,{}z,{}t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo,{} x,{} y,{} z)} returns \\spad{'foo(x,{}y,{}z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo,{} x,{} y)} returns \\spad{'foo(x,{}y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo,{} x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}.")))
-((-4266 -1461 (|has| |#1| (-984)) (|has| |#1| (-453))) (-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) ((-4271 "*") |has| |#1| (-522)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-522)) (-4261 |has| |#1| (-522)) (-4100 . T))
+((-4270 -1435 (|has| |#1| (-986)) (|has| |#1| (-453))) (-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) ((-4275 "*") |has| |#1| (-523)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-523)) (-4265 |has| |#1| (-523)) (-4120 . T))
NIL
-(-412 R -1334)
+(-412 R -1327)
((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,{}y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,{}y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,{}y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,{}y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,{}y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,{}y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,{}x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator.")))
NIL
NIL
-(-413 R -1334)
+(-413 R -1327)
((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1,{} a2)} returns \\spad{[a,{} q1,{} q2,{} q]} such that \\spad{k(a1,{} a2) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for a2 may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve a2; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,{}...,{}an])} returns \\spad{[a,{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.")))
NIL
((|HasCategory| |#2| (QUOTE (-27))))
-(-414 R -1334)
+(-414 R -1327)
((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,{}k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented")))
NIL
NIL
@@ -1592,10 +1592,10 @@ NIL
((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\"")))
NIL
NIL
-(-416 R -1334 UP)
+(-416 R -1327 UP)
((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-47)))))
+((|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-47)))))
(-417)
((|constructor| (NIL "Code to manipulate Fortran templates")) (|fortranCarriageReturn| (((|Void|)) "\\spad{fortranCarriageReturn()} produces a carriage return on the current Fortran output stream")) (|fortranLiteral| (((|Void|) (|String|)) "\\spad{fortranLiteral(s)} writes \\spad{s} to the current Fortran output stream")) (|fortranLiteralLine| (((|Void|) (|String|)) "\\spad{fortranLiteralLine(s)} writes \\spad{s} to the current Fortran output stream,{} followed by a carriage return")) (|processTemplate| (((|FileName|) (|FileName|)) "\\spad{processTemplate(tp)} processes the template \\spad{tp},{} writing the result to the current FORTRAN output stream.") (((|FileName|) (|FileName|) (|FileName|)) "\\spad{processTemplate(tp,{}fn)} processes the template \\spad{tp},{} writing the result out to \\spad{fn}.")))
NIL
@@ -1610,17 +1610,17 @@ NIL
NIL
(-420)
((|constructor| (NIL "\\axiomType{FortranVectorCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Vector} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Vector| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}.")))
-((-4100 . T))
+((-4120 . T))
NIL
(-421)
((|constructor| (NIL "\\axiomType{FortranVectorFunctionCategory} is the catagory of arguments to NAG Library routines which return the values of vectors of functions.")) (|retractIfCan| (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Vector| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Vector| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Vector| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}")))
-((-4100 . T))
+((-4120 . T))
NIL
(-422 UP)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,{}sqf,{}pd,{}r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,{}sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r,{}sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,{}p,{}listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,{}p,{}r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,{}p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,{}d,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,{}listOfDegrees,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,{}listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,{}r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein\\spad{'s} criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein\\spad{'s} criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein\\spad{'s} criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object.")))
NIL
NIL
-(-423 R UP -1334)
+(-423 R UP -1327)
((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,{}p)} returns the \\spad{lp} norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,{}r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri\\spad{'s} norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,{}n)} returns the \\spad{n}th Bombieri\\spad{'s} norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri\\spad{'s} norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}.")))
NIL
NIL
@@ -1658,16 +1658,16 @@ NIL
NIL
(-432)
((|constructor| (NIL "This category describes domains where \\spadfun{\\spad{gcd}} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,{}y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common \\spad{gcd} of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,{}y)} returns the greatest common divisor of \\spad{x} and \\spad{y}.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-433 R |n| |ls| |gamma|)
((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,{}...,{}vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,{}b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,{}b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,{}ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,{}v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,{}s2,{}..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,{}\\%x2,{}..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed")))
-((-4266 |has| (-388 (-893 |#1|)) (-522)) (-4264 . T) (-4263 . T))
-((|HasCategory| (-388 (-893 |#1|)) (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| (-388 (-893 |#1|)) (QUOTE (-522))))
+((-4270 |has| (-388 (-895 |#1|)) (-523)) (-4268 . T) (-4267 . T))
+((|HasCategory| (-388 (-895 |#1|)) (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| (-388 (-895 |#1|)) (QUOTE (-523))))
(-434 |vl| R E)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-852))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138)))))
(-435 R BP)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,{}lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,{}table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,{}prime,{}lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,{}lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,{}prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it\\spad{'s} conditional.")))
NIL
@@ -1694,7 +1694,7 @@ NIL
NIL
(-441 |vl| R IS E |ff| P)
((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,{}e,{}x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,{}i,{}e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,{}x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
NIL
(-442 E V R P Q)
((|constructor| (NIL "Gosper\\spad{'s} summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b,{} n,{} new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}.")))
@@ -1702,8 +1702,8 @@ NIL
NIL
(-443 R E |VarSet| P)
((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(\\spad{lp})} returns the polynomial set whose members are the polynomials of \\axiom{\\spad{lp}}.")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806)))))
(-444 S R E)
((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra\\spad{''}. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product\\spad{''} is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,{}b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,{}b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,{}b) = product(a1,{}b) + product(a2,{}b)}} \\indented{2}{\\spad{product(a,{}b1+b2) = product(a,{}b1) + product(a,{}b2)}} \\indented{2}{\\spad{product(r*a,{}b) = product(a,{}r*b) = r*product(a,{}b)}} \\indented{2}{\\spad{product(a,{}product(b,{}c)) = product(product(a,{}b),{}c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}.")))
NIL
@@ -1732,7 +1732,7 @@ NIL
((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module\\spad{''},{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module.")))
NIL
NIL
-(-451 |lv| -1334 R)
+(-451 |lv| -1327 R)
((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,{}lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,{}lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,{}lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}.")))
NIL
NIL
@@ -1742,49 +1742,49 @@ NIL
NIL
(-453)
((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,{}q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,{}q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}.")))
-((-4266 . T))
+((-4270 . T))
NIL
(-454 |Coef| |var| |cen|)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))))
(-455 |Key| |Entry| |Tbl| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-795))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-797))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))))
(-456 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806)))))
(-457)
((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{\\spad{pi}()} returns the symbolic \\%\\spad{pi}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
(-458 |Key| |Entry| |hashfn|)
((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))))
(-459)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre\\spad{'s} book Lie Groups \\spad{--} Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens,{} maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens,{} leftCandidate,{} rightCandidate,{} left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,{}wt,{}rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight \\spad{<=} \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,{}n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2")))
NIL
NIL
(-460 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p,{} perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial")))
-(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-461 -3148 S)
+(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-852))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-461 -3169 S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1461 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4267 |has| |#2| (-986)) (-4268 |has| |#2| (-986)) (-4270 |has| |#2| (-6 -4270)) ((-4275 "*") |has| |#2| (-162)) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-743))) (-1435 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-743)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#2| (QUOTE (-986))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasAttribute| |#2| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))))
(-462)
((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|Symbol|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header \\spad{`h'}.")) (|name| (((|Symbol|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|List| (|Symbol|))) "\\spad{headAst [f,{}x1,{}..,{}xn]} constructs a function definition header.")))
NIL
NIL
(-463 S)
((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-464 -1334 UP UPUP R)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-464 -1327 UP UPUP R)
((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}\\spad{'s} are integers and the \\spad{P}\\spad{'s} are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree.")))
NIL
NIL
@@ -1794,15 +1794,15 @@ NIL
NIL
(-466)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion.")) (|coerce| (((|RadixExpansion| 16) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a radix expansion with base 16.") (((|Fraction| (|Integer|)) $) "\\spad{coerce(h)} converts a hexadecimal expansion to a rational number.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1461 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-531) (QUOTE (-852))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-531) (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-140))) (|HasCategory| (-531) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-962))) (|HasCategory| (-531) (QUOTE (-770))) (-1435 (|HasCategory| (-531) (QUOTE (-770))) (|HasCategory| (-531) (QUOTE (-797)))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-1078))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-531) (QUOTE (-216))) (|HasCategory| (-531) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-531) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -291) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -268) (QUOTE (-531)) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-289))) (|HasCategory| (-531) (QUOTE (-516))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-531) (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (|HasCategory| (-531) (QUOTE (-138)))))
(-467 A S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4269)) (|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
+((|HasAttribute| |#1| (QUOTE -4273)) (|HasAttribute| |#1| (QUOTE -4274)) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))))
(-468 S)
((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,{}u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,{}u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,{}u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,{}u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,{}u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,{}u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}.")))
-((-4100 . T))
+((-4120 . T))
NIL
(-469)
((|constructor| (NIL "This domain represents hostnames on computer network.")) (|host| (($ (|String|)) "\\spad{host(n)} constructs a Hostname from the name \\spad{`n'}.")))
@@ -1816,34 +1816,34 @@ NIL
((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}.")))
NIL
NIL
-(-472 -1334 UP |AlExt| |AlPol|)
+(-472 -1327 UP |AlExt| |AlPol|)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP\\spad{'s}.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p,{} f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP.")))
NIL
NIL
(-473)
((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,{}l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,{}k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,{}l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,{}k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,{}y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| $ (QUOTE (-984))) (|HasCategory| $ (LIST (QUOTE -975) (QUOTE (-530)))))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| $ (QUOTE (-986))) (|HasCategory| $ (LIST (QUOTE -977) (QUOTE (-531)))))
(-474 S |mn|)
((|constructor| (NIL "\\indented{1}{Author Micheal Monagan Aug/87} This is the basic one dimensional array data type.")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-475 R |mnRow| |mnCol|)
((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray\\spad{'s} with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
(-476 K R UP)
((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,{}lr,{}n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,{}q,{}n)} returns the list \\spad{[bas,{}bas^Frob,{}bas^(Frob^2),{}...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,{}n,{}m,{}j)} \\undocumented")))
NIL
NIL
-(-477 R UP -1334)
+(-477 R UP -1327)
((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,{}m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{\\spad{mi}} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn} and \\spad{\\spad{mi}} is a record \\spad{[basis,{}basisDen,{}basisInv]}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then a basis \\spad{v1,{}...,{}vn} for \\spad{\\spad{mi}} is given by \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1,{} m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,{}m2,{}d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,{}m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,{}n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,{}matrixOut,{}prime,{}n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,{}sing,{}n)} is \\spad{gcd(sing,{}g)} where \\spad{g} is the \\spad{gcd} of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}")))
NIL
NIL
(-478 |mn|)
((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}.")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-110) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-110) (QUOTE (-1027))) (|HasCategory| (-110) (LIST (QUOTE -571) (QUOTE (-804)))))
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| (-110) (QUOTE (-1030))) (|HasCategory| (-110) (LIST (QUOTE -291) (QUOTE (-110))))) (|HasCategory| (-110) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-110) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-110) (QUOTE (-1030))) (|HasCategory| (-110) (LIST (QUOTE -572) (QUOTE (-806)))))
(-479 K R UP L)
((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,{}p(x,{}y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,{}y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,{}mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,{}p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.")))
NIL
@@ -1856,2909 +1856,2921 @@ NIL
((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,{}...,{}qn])} returns \\spad{[[p1,{}...,{}pn],{} d]} such that \\spad{\\spad{qi} = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,{}...,{}qn])} returns \\spad{[p1,{}...,{}pn]} such that \\spad{\\spad{qi} = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}\\spad{'s}.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,{}...,{}qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}\\spad{qn}.")))
NIL
NIL
-(-482 -1334 |Expon| |VarSet| |DPoly|)
+(-482 -1327 |Expon| |VarSet| |DPoly|)
((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,{}f,{}lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,{}f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,{}lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,{}listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,{}listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,{}f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,{}J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,{}J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,{}lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,{}I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,{}J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,{}I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-1099)))))
+((|HasCategory| |#3| (LIST (QUOTE -573) (QUOTE (-1102)))))
(-483 |vl| |nv|)
((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,{}lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime.")))
NIL
NIL
-(-484 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+(-484)
+((|constructor| (NIL "This domain represents identifer AST.")))
NIL
NIL
(-485 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-486 A S)
-((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored.")))
NIL
NIL
(-487 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,{}s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}.")))
NIL
NIL
(-488 A S)
-((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored.")))
NIL
NIL
(-489 A S)
+((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored.")))
+NIL
+NIL
+(-490 A S)
((|constructor| (NIL "\\indented{1}{Indexed direct products of objects over a set \\spad{A}} of generators indexed by an ordered set \\spad{S}. All items have finite support.")))
NIL
NIL
-(-490 S A B)
+(-491 S A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-491 A B)
+(-492 A B)
((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation\\spad{''} substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#1|) (|List| |#2|)) "\\spad{eval(f,{} [x1,{}...,{}xn],{} [v1,{}...,{}vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#1| |#2|) "\\spad{eval(f,{} x,{} v)} replaces \\spad{x} by \\spad{v} in \\spad{f}.")))
NIL
NIL
-(-492 S E |un|)
+(-493 S E |un|)
((|constructor| (NIL "Internal implementation of a free abelian monoid.")))
NIL
-((|HasCategory| |#2| (QUOTE (-740))))
-(-493 S |mn|)
+((|HasCategory| |#2| (QUOTE (-742))))
+(-494 S |mn|)
((|constructor| (NIL "\\indented{1}{Author: Michael Monagan July/87,{} modified \\spad{SMW} June/91} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,{}a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,{}n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,{}n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-494 |p| |n|)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-495 |p| |n|)
((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| (-543 |#1|) (QUOTE (-138))) (|HasCategory| (-543 |#1|) (QUOTE (-349)))) (|HasCategory| (-543 |#1|) (QUOTE (-140))) (|HasCategory| (-543 |#1|) (QUOTE (-349))) (|HasCategory| (-543 |#1|) (QUOTE (-138))))
-(-495 R |mnRow| |mnCol| |Row| |Col|)
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| (-544 |#1|) (QUOTE (-138))) (|HasCategory| (-544 |#1|) (QUOTE (-349)))) (|HasCategory| (-544 |#1|) (QUOTE (-140))) (|HasCategory| (-544 |#1|) (QUOTE (-349))) (|HasCategory| (-544 |#1|) (QUOTE (-138))))
+(-496 R |mnRow| |mnCol| |Row| |Col|)
((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray\\spad{'s} of PrimitiveArray\\spad{'s}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-496 S |mn|)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-497 S |mn|)
((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,{}mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists.")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-497 R |Row| |Col| M)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-498 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} \\spad{m*h} and \\spad{h*m} are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")))
NIL
-((|HasAttribute| |#3| (QUOTE -4270)))
-(-498 R |Row| |Col| M QF |Row2| |Col2| M2)
+((|HasAttribute| |#3| (QUOTE -4274)))
+(-499 R |Row| |Col| M QF |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field.")))
NIL
-((|HasAttribute| |#7| (QUOTE -4270)))
-(-499 R |mnRow| |mnCol|)
+((|HasAttribute| |#7| (QUOTE -4274)))
+(-500 R |mnRow| |mnCol|)
((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-500 GF)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4275 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-501 GF)
((|constructor| (NIL "InnerNormalBasisFieldFunctions(\\spad{GF}) (unexposed): This package has functions used by every normal basis finite field extension domain.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{minimalPolynomial(x)} \\undocumented{} See \\axiomFunFrom{minimalPolynomial}{FiniteAlgebraicExtensionField}")) (|normalElement| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{normalElement(n)} \\undocumented{} See \\axiomFunFrom{normalElement}{FiniteAlgebraicExtensionField}")) (|basis| (((|Vector| (|Vector| |#1|)) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{} See \\axiomFunFrom{basis}{FiniteAlgebraicExtensionField}")) (|normal?| (((|Boolean|) (|Vector| |#1|)) "\\spad{normal?(x)} \\undocumented{} See \\axiomFunFrom{normal?}{FiniteAlgebraicExtensionField}")) (|lookup| (((|PositiveInteger|) (|Vector| |#1|)) "\\spad{lookup(x)} \\undocumented{} See \\axiomFunFrom{lookup}{Finite}")) (|inv| (((|Vector| |#1|) (|Vector| |#1|)) "\\spad{inv x} \\undocumented{} See \\axiomFunFrom{inv}{DivisionRing}")) (|trace| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{trace(x,{}n)} \\undocumented{} See \\axiomFunFrom{trace}{FiniteAlgebraicExtensionField}")) (|norm| (((|Vector| |#1|) (|Vector| |#1|) (|PositiveInteger|)) "\\spad{norm(x,{}n)} \\undocumented{} See \\axiomFunFrom{norm}{FiniteAlgebraicExtensionField}")) (/ (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x/y} \\undocumented{} See \\axiomFunFrom{/}{Field}")) (* (((|Vector| |#1|) (|Vector| |#1|) (|Vector| |#1|)) "\\spad{x*y} \\undocumented{} See \\axiomFunFrom{*}{SemiGroup}")) (** (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{x**n} \\undocumented{} See \\axiomFunFrom{\\spad{**}}{DivisionRing}")) (|qPot| (((|Vector| |#1|) (|Vector| |#1|) (|Integer|)) "\\spad{qPot(v,{}e)} computes \\spad{v**(q**e)},{} interpreting \\spad{v} as an element of normal basis field,{} \\spad{q} the size of the ground field. This is done by a cyclic \\spad{e}-shift of the vector \\spad{v}.")) (|expPot| (((|Vector| |#1|) (|Vector| |#1|) (|SingleInteger|) (|SingleInteger|)) "\\spad{expPot(v,{}e,{}d)} returns the sum from \\spad{i = 0} to \\spad{e - 1} of \\spad{v**(q**i*d)},{} interpreting \\spad{v} as an element of a normal basis field and where \\spad{q} is the size of the ground field. Note: for a description of the algorithm,{} see \\spad{T}.Itoh and \\spad{S}.Tsujii,{} \"A fast algorithm for computing multiplicative inverses in \\spad{GF}(2^m) using normal bases\",{} Information and Computation 78,{} \\spad{pp}.171-177,{} 1988.")) (|repSq| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|)) "\\spad{repSq(v,{}e)} computes \\spad{v**e} by repeated squaring,{} interpreting \\spad{v} as an element of a normal basis field.")) (|dAndcExp| (((|Vector| |#1|) (|Vector| |#1|) (|NonNegativeInteger|) (|SingleInteger|)) "\\spad{dAndcExp(v,{}n,{}k)} computes \\spad{v**e} interpreting \\spad{v} as an element of normal basis field. A divide and conquer algorithm similar to the one from \\spad{D}.\\spad{R}.Stinson,{} \"Some observations on parallel Algorithms for fast exponentiation in \\spad{GF}(2^n)\",{} Siam \\spad{J}. Computation,{} Vol.19,{} No.4,{} \\spad{pp}.711-717,{} August 1990 is used. Argument \\spad{k} is a parameter of this algorithm.")) (|xn| (((|SparseUnivariatePolynomial| |#1|) (|NonNegativeInteger|)) "\\spad{xn(n)} returns the polynomial \\spad{x**n-1}.")) (|pol| (((|SparseUnivariatePolynomial| |#1|) (|Vector| |#1|)) "\\spad{pol(v)} turns the vector \\spad{[v0,{}...,{}vn]} into the polynomial \\spad{v0+v1*x+ ... + vn*x**n}.")) (|index| (((|Vector| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{index(n,{}m)} is a index function for vectors of length \\spad{n} over the ground field.")) (|random| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{random(n)} creates a vector over the ground field with random entries.")) (|setFieldInfo| (((|Void|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) |#1|) "\\spad{setFieldInfo(m,{}p)} initializes the field arithmetic,{} where \\spad{m} is the multiplication table and \\spad{p} is the respective normal element of the ground field \\spad{GF}.")))
NIL
NIL
-(-501 R)
+(-502 R)
((|constructor| (NIL "This package provides operations to create incrementing functions.")) (|incrementBy| (((|Mapping| |#1| |#1|) |#1|) "\\spad{incrementBy(n)} produces a function which adds \\spad{n} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment(\\spad{n})} then \\spad{f x} is \\spad{x+n}.")) (|increment| (((|Mapping| |#1| |#1|)) "\\spad{increment()} produces a function which adds \\spad{1} to whatever argument it is given. For example,{} if {\\spad{f} \\spad{:=} increment()} then \\spad{f x} is \\spad{x+1}.")))
NIL
NIL
-(-502 |Varset|)
+(-503 |Varset|)
((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables")))
NIL
NIL
-(-503 K -1334 |Par|)
+(-504 K -1327 |Par|)
((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,{}eps,{}factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to \\spad{br} used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol,{} eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}")))
NIL
NIL
-(-504)
+(-505)
((|constructor| (NIL "Default infinity signatures for the interpreter; Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|minusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{minusInfinity()} returns minusInfinity.")) (|plusInfinity| (((|OrderedCompletion| (|Integer|))) "\\spad{plusInfinity()} returns plusIinfinity.")) (|infinity| (((|OnePointCompletion| (|Integer|))) "\\spad{infinity()} returns infinity.")))
NIL
NIL
-(-505 R)
+(-506 R)
((|constructor| (NIL "Tools for manipulating input forms.")) (|interpret| ((|#1| (|InputForm|)) "\\spad{interpret(f)} passes \\spad{f} to the interpreter,{} and transforms the result into an object of type \\spad{R}.")) (|packageCall| (((|InputForm|) (|Symbol|)) "\\spad{packageCall(f)} returns the input form corresponding to \\spad{f}\\$\\spad{R}.")))
NIL
NIL
-(-506)
+(-507)
((|constructor| (NIL "Domain of parsed forms which can be passed to the interpreter. This is also the interface between algebra code and facilities in the interpreter.")) (|compile| (((|Symbol|) (|Symbol|) (|List| $)) "\\spad{compile(f,{} [t1,{}...,{}tn])} forces the interpreter to compile the function \\spad{f} with signature \\spad{(t1,{}...,{}tn) -> ?}. returns the symbol \\spad{f} if successful. Error: if \\spad{f} was not defined beforehand in the interpreter,{} or if the \\spad{ti}\\spad{'s} are not valid types,{} or if the compiler fails.")) (|declare| (((|Symbol|) (|List| $)) "\\spad{declare(t)} returns a name \\spad{f} such that \\spad{f} has been declared to the interpreter to be of type \\spad{t},{} but has not been assigned a value yet. Note: \\spad{t} should be created as \\spad{devaluate(T)\\$Lisp} where \\spad{T} is the actual type of \\spad{f} (this hack is required for the case where \\spad{T} is a mapping type).")) (|unparse| (((|String|) $) "\\spad{unparse(f)} returns a string \\spad{s} such that the parser would transform \\spad{s} to \\spad{f}. Error: if \\spad{f} is not the parsed form of a string.")) (|flatten| (($ $) "\\spad{flatten(s)} returns an input form corresponding to \\spad{s} with all the nested operations flattened to triples using new local variables. If \\spad{s} is a piece of code,{} this speeds up the compilation tremendously later on.")) ((|One|) (($) "\\spad{1} returns the input form corresponding to 1.")) ((|Zero|) (($) "\\spad{0} returns the input form corresponding to 0.")) (** (($ $ (|Integer|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** b} returns the input form corresponding to \\spad{a ** b}.")) (/ (($ $ $) "\\spad{a / b} returns the input form corresponding to \\spad{a / b}.")) (* (($ $ $) "\\spad{a * b} returns the input form corresponding to \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the input form corresponding to \\spad{a + b}.")) (|lambda| (($ $ (|List| (|Symbol|))) "\\spad{lambda(code,{} [x1,{}...,{}xn])} returns the input form corresponding to \\spad{(x1,{}...,{}xn) +-> code} if \\spad{n > 1},{} or to \\spad{x1 +-> code} if \\spad{n = 1}.")) (|function| (($ $ (|List| (|Symbol|)) (|Symbol|)) "\\spad{function(code,{} [x1,{}...,{}xn],{} f)} returns the input form corresponding to \\spad{f(x1,{}...,{}xn) == code}.")) (|binary| (($ $ (|List| $)) "\\spad{binary(op,{} [a1,{}...,{}an])} returns the input form corresponding to \\spad{a1 op a2 op ... op an}.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} makes \\spad{s} into an input form.")) (|interpret| (((|Any|) $) "\\spad{interpret(f)} passes \\spad{f} to the interpreter.")))
NIL
NIL
-(-507 |Coef| UTS)
+(-508 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-508 K -1334 |Par|)
+(-509 K -1327 |Par|)
((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,{}lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,{}lden,{}lvar,{}eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,{}eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,{}eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}.")))
NIL
NIL
-(-509 R BP |pMod| |nextMod|)
+(-510 R BP |pMod| |nextMod|)
((|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(f,{}p)} reduces the coefficients of the polynomial \\spad{f} modulo the prime \\spad{p}.")) (|modularGcd| ((|#2| (|List| |#2|)) "\\spad{modularGcd(listf)} computes the \\spad{gcd} of the list of polynomials \\spad{listf} by modular methods.")) (|modularGcdPrimitive| ((|#2| (|List| |#2|)) "\\spad{modularGcdPrimitive(f1,{}f2)} computes the \\spad{gcd} of the two polynomials \\spad{f1} and \\spad{f2} by modular methods.")))
NIL
NIL
-(-510 OV E R P)
+(-511 OV E R P)
((|constructor| (NIL "\\indented{2}{This is an inner package for factoring multivariate polynomials} over various coefficient domains in characteristic 0. The univariate factor operation is passed as a parameter. Multivariate hensel lifting is used to lift the univariate factorization")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}. \\spad{p} is represented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|))) "\\spad{factor(p,{}ufact)} factors the multivariate polynomial \\spad{p} by specializing variables and calling the univariate factorizer \\spad{ufact}.")))
NIL
NIL
-(-511 K UP |Coef| UTS)
+(-512 K UP |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an arbitrary finite field.")) (|generalInfiniteProduct| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#4| |#4|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#4| |#4|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#4| |#4|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-512 |Coef| UTS)
+(-513 |Coef| UTS)
((|constructor| (NIL "This package computes infinite products of univariate Taylor series over a field of prime order.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-513 R UP)
+(-514 R UP)
((|constructor| (NIL "Find the sign of a polynomial around a point or infinity.")) (|signAround| (((|Union| (|Integer|) "failed") |#2| |#1| (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| |#1| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}r,{}i,{}f)} \\undocumented") (((|Union| (|Integer|) "failed") |#2| (|Integer|) (|Mapping| (|Union| (|Integer|) "failed") |#1|)) "\\spad{signAround(u,{}i,{}f)} \\undocumented")))
NIL
NIL
-(-514 S)
+(-515 S)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
NIL
NIL
-(-515)
+(-516)
((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,{}b)},{} \\spad{0<=a<b>1},{} \\spad{(a,{}b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,{}b,{}p)},{} \\spad{0<=a,{}b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|hash| (($ $) "\\spad{hash(n)} returns the hash code of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{n-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,{}b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,{}i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd.")))
-((-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4271 . T) (-4272 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-516 |Key| |Entry| |addDom|)
+(-517 |Key| |Entry| |addDom|)
((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-517 R -1334)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-518 R -1327)
((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f,{} x,{} y,{} d)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}.")))
NIL
NIL
-(-518 R0 -1334 UP UPUP R)
+(-519 R0 -1327 UP UPUP R)
((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f,{} d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f,{} d)} integrates \\spad{f} with respect to the derivation \\spad{d}.")))
NIL
NIL
-(-519)
+(-520)
((|constructor| (NIL "This package provides functions to lookup bits in integers")) (|bitTruth| (((|Boolean|) (|Integer|) (|Integer|)) "\\spad{bitTruth(n,{}m)} returns \\spad{true} if coefficient of 2**m in abs(\\spad{n}) is 1")) (|bitCoef| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{bitCoef(n,{}m)} returns the coefficient of 2**m in abs(\\spad{n})")) (|bitLength| (((|Integer|) (|Integer|)) "\\spad{bitLength(n)} returns the number of bits to represent abs(\\spad{n})")))
NIL
NIL
-(-520 R)
+(-521 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,{}f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,{}sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,{}sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} \\spad{<=} \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise.")))
-((-4136 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4148 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-521 S)
+(-522 S)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
NIL
NIL
-(-522)
+(-523)
((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,{}y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,{}c,{}a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-523 R -1334)
+(-524 R -1327)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,{}x,{}k,{}[k1,{}...,{}kn])} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}\\spad{kn} (the \\spad{ki}\\spad{'s} must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f,{} x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f,{} x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,{}x,{}[g1,{}...,{}gn])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} and \\spad{d(h+sum(\\spad{ci} log(\\spad{gi})))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f,{} x,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise.")))
NIL
NIL
-(-524 I)
+(-525 I)
((|constructor| (NIL "\\indented{1}{This Package contains basic methods for integer factorization.} The factor operation employs trial division up to 10,{}000. It then tests to see if \\spad{n} is a perfect power before using Pollards rho method. Because Pollards method may fail,{} the result of factor may contain composite factors. We should also employ Lenstra\\spad{'s} eliptic curve method.")) (|PollardSmallFactor| (((|Union| |#1| "failed") |#1|) "\\spad{PollardSmallFactor(n)} returns a factor of \\spad{n} or \"failed\" if no one is found")) (|BasicMethod| (((|Factored| |#1|) |#1|) "\\spad{BasicMethod(n)} returns the factorization of integer \\spad{n} by trial division")) (|squareFree| (((|Factored| |#1|) |#1|) "\\spad{squareFree(n)} returns the square free factorization of integer \\spad{n}")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(n)} returns the full factorization of integer \\spad{n}")))
NIL
NIL
-(-525)
+(-526)
((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions.")))
NIL
NIL
-(-526 R -1334 L)
+(-527 R -1327 L)
((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x,{} y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,{}g,{}x,{}y,{}z,{}t,{}c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op,{} g,{} x,{} y,{} d,{} p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,{}k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,{}k,{}f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,{}k,{}k,{}p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} t,{} c)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| "failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f,{} g,{} x,{} y,{} foo,{} d,{} p)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a,{} b,{} x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} z,{} t,{} c)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f,{} x,{} y,{} [u1,{}...,{}un],{} d,{} p)} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f,{} x,{} y,{} g,{} z,{} t,{} c)} returns functions \\spad{[h,{} d]} such that \\spad{dh/dx = f(x,{}y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f,{} x,{} y,{} g,{} d,{} p)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f,{} x,{} y,{} z,{} t,{} c)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,{}y)dx = c f(t,{}y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,{}y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f,{} x,{} y,{} d,{} p)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -607) (|devaluate| |#2|))))
-(-527)
+((|HasCategory| |#3| (LIST (QUOTE -609) (|devaluate| |#2|))))
+(-528)
((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,{}k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,{}p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,{}p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,{}b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,{}b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,{}k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,{}1/2)},{} where \\spad{E(n,{}x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,{}m1,{}x2,{}m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,{}0)},{} where \\spad{B(n,{}x)} is the \\spad{n}th Bernoulli polynomial.")))
NIL
NIL
-(-528 -1334 UP UPUP R)
+(-529 -1327 UP UPUP R)
((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} ')} returns \\spad{[g,{}h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles.")))
NIL
NIL
-(-529 -1334 UP)
+(-530 -1327 UP)
((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f,{} D)} returns \\spad{[g,{} h,{} s,{} p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}.")))
NIL
NIL
-(-530)
+(-531)
((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|infinite| ((|attribute|) "nextItem never returns \"failed\".")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")))
-((-4251 . T) (-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4255 . T) (-4261 . T) (-4265 . T) (-4260 . T) (-4271 . T) (-4272 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-531)
+(-532)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp,{} x = a..b,{} numerical)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\spad{\\tt} numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp,{} x = a..b,{} \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range,{} {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\spad{\\tt} \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel,{} routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsabs,{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...],{} epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp,{} [a..b,{}c..d,{}...])} is a top level ANNA function to integrate a multivariate expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp,{} a..b)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp,{} a..b,{} epsabs,{} epsrel)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp,{} a..b,{} epsrel,{} routines)} is a top level ANNA function to integrate an expression,{} {\\spad{\\tt} \\spad{exp}},{} over a given range {\\spad{\\tt} a} to {\\spad{\\tt} \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.")))
NIL
NIL
-(-532 R -1334 L)
+(-533 R -1327 L)
((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| "failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op,{} g,{} kx,{} y,{} x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| "failed") |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| "failed") |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp,{} f,{} g,{} x,{} y,{} foo)} returns a function \\spad{z(x,{}y)} such that \\spad{dz/dx + n * df/dx z(x,{}y) = g(x,{}y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a,{} b,{} x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f,{} x,{} y,{} [u1,{}...,{}un])} returns functions \\spad{[h,{}[[\\spad{ci},{} \\spad{ui}]]]} such that the \\spad{ui}\\spad{'s} are among \\spad{[u1,{}...,{}un]} and \\spad{d(h + sum(\\spad{ci} log(\\spad{ui})))/dx = f(x,{}y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f,{} x,{} y,{} g)} returns functions \\spad{[h,{} c]} such that \\spad{dh/dx = f(x,{}y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f,{} x,{} y)} returns the integral of \\spad{f(x,{}y)dx} where \\spad{y} is an algebraic function of \\spad{x}.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -607) (|devaluate| |#2|))))
-(-533 R -1334)
+((|HasCategory| |#3| (LIST (QUOTE -609) (|devaluate| |#2|))))
+(-534 R -1327)
((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f,{} x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f,{} x)} returns either \"failed\" or \\spad{[g,{}h]} such that \\spad{integrate(f,{}x) = g + integrate(h,{}x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f,{} x)} returns \\spad{[c,{} g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1063)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-583)))))
-(-534 -1334 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-1066)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-584)))))
+(-535 -1327 UP)
((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{}[[\\spad{ci},{} \\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(\\spad{ci} log(\\spad{gi})))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}.")))
NIL
NIL
-(-535 S)
+(-536 S)
((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer.")))
NIL
NIL
-(-536 -1334)
+(-537 -1327)
((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f,{} x,{} g)} returns fractions \\spad{[h,{} c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h,{} c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f,{} x,{} [g1,{}...,{}gn])} returns fractions \\spad{[h,{} [[\\spad{ci},{}\\spad{gi}]]]} such that the \\spad{gi}\\spad{'s} are among \\spad{[g1,{}...,{}gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(\\spad{ci} log(\\spad{gi})))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f,{} x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f,{} x)} returns \\spad{g} such that \\spad{dg/dx = f}.")))
NIL
NIL
-(-537 R)
+(-538 R)
((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals.")))
-((-4136 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4148 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-538)
+(-539)
((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")))
NIL
NIL
-(-539 R -1334)
+(-540 R -1327)
((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f,{} x,{} int,{} pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f,{} x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f,{} x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,{}...,{}fn],{}x)} returns the set-theoretic union of \\spad{(varselect(f1,{}x),{}...,{}varselect(fn,{}x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1,{} l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k,{} [k1,{}...,{}kn],{} x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,{}...,{}kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,{}...,{}kn],{} x)} returns the \\spad{ki} which involve \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-266))) (|HasCategory| |#2| (QUOTE (-583))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-266)))) (|HasCategory| |#1| (QUOTE (-522))))
-(-540 -1334 UP)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-266))) (|HasCategory| |#2| (QUOTE (-584))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102))))) (-12 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-266)))) (|HasCategory| |#1| (QUOTE (-523))))
+(-541 -1327 UP)
((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p,{} ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f,{} ')} returns \\spad{[ir,{} s,{} p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p,{} foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) "\\spad{primintfldpoly(p,{} ',{} t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f,{} ',{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[\\spad{ci} * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f,{} ',{} g)} returns \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f,{} ',{} foo,{} [u1,{}...,{}un])} returns \\spad{[v,{} [c1,{}...,{}cn],{} a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,{}[\\spad{ci} * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f,{} ',{} foo,{} g)} returns either \\spad{[v,{} c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) "\\spad{primintegrate(f,{} ',{} foo)} returns \\spad{[g,{} a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}.")))
NIL
NIL
-(-541 R -1334)
+(-542 R -1327)
((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f,{} s,{} t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form.")))
NIL
NIL
-(-542 |p| |unBalanced?|)
+(-543 |p| |unBalanced?|)
((|constructor| (NIL "This domain implements \\spad{Zp},{} the \\spad{p}-adic completion of the integers. This is an internal domain.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-543 |p|)
+(-544 |p|)
((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-349))))
-(-544)
+(-545)
((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor.")))
NIL
NIL
-(-545 R -1334)
+(-546 R -1327)
((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
NIL
-(-546 E -1334)
+(-547 E -1327)
((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,{}ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,{}ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,{}ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,{}ire)} \\undocumented")))
NIL
NIL
-(-547 -1334)
+(-548 -1327)
((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,{}x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,{}D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,{}x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over \\spad{F?}")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,{}l,{}ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}.")))
-((-4264 . T) (-4263 . T))
-((|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-1099)))))
-(-548 I)
+((-4268 . T) (-4267 . T))
+((|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-1102)))))
+(-549 I)
((|constructor| (NIL "The \\spadtype{IntegerRoots} package computes square roots and \\indented{2}{\\spad{n}th roots of integers efficiently.}")) (|approxSqrt| ((|#1| |#1|) "\\spad{approxSqrt(n)} returns an approximation \\spad{x} to \\spad{sqrt(n)} such that \\spad{-1 < x - sqrt(n) < 1}. Compute an approximation \\spad{s} to \\spad{sqrt(n)} such that \\indented{10}{\\spad{-1 < s - sqrt(n) < 1}} A variable precision Newton iteration is used. The running time is \\spad{O( log(n)**2 )}.")) (|perfectSqrt| (((|Union| |#1| "failed") |#1|) "\\spad{perfectSqrt(n)} returns the square root of \\spad{n} if \\spad{n} is a perfect square and returns \"failed\" otherwise")) (|perfectSquare?| (((|Boolean|) |#1|) "\\spad{perfectSquare?(n)} returns \\spad{true} if \\spad{n} is a perfect square and \\spad{false} otherwise")) (|approxNthRoot| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{approxRoot(n,{}r)} returns an approximation \\spad{x} to \\spad{n**(1/r)} such that \\spad{-1 < x - n**(1/r) < 1}")) (|perfectNthRoot| (((|Record| (|:| |base| |#1|) (|:| |exponent| (|NonNegativeInteger|))) |#1|) "\\spad{perfectNthRoot(n)} returns \\spad{[x,{}r]},{} where \\spad{n = x\\^r} and \\spad{r} is the largest integer such that \\spad{n} is a perfect \\spad{r}th power") (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{perfectNthRoot(n,{}r)} returns the \\spad{r}th root of \\spad{n} if \\spad{n} is an \\spad{r}th power and returns \"failed\" otherwise")) (|perfectNthPower?| (((|Boolean|) |#1| (|NonNegativeInteger|)) "\\spad{perfectNthPower?(n,{}r)} returns \\spad{true} if \\spad{n} is an \\spad{r}th power and \\spad{false} otherwise")))
NIL
NIL
-(-549 GF)
+(-550 GF)
((|constructor| (NIL "This package exports the function generateIrredPoly that computes a monic irreducible polynomial of degree \\spad{n} over a finite field.")) (|generateIrredPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{generateIrredPoly(n)} generates an irreducible univariate polynomial of the given degree \\spad{n} over the finite field.")))
NIL
NIL
-(-550 R)
+(-551 R)
((|constructor| (NIL "\\indented{2}{This package allows a sum of logs over the roots of a polynomial} \\indented{2}{to be expressed as explicit logarithms and arc tangents,{} provided} \\indented{2}{that the indexing polynomial can be factored into quadratics.} Date Created: 21 August 1988 Date Last Updated: 4 October 1993")) (|complexIntegrate| (((|Expression| |#1|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{complexIntegrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|integrate| (((|Union| (|Expression| |#1|) (|List| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{integrate(f,{} x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable..")) (|complexExpand| (((|Expression| |#1|) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| (|Expression| |#1|)) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|IntegrationResult| (|Fraction| (|Polynomial| |#1|)))) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,{}x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,{}x) + ... + sum_{Pn(a)=0} Q(a,{}x)} where \\spad{P1},{}...,{}\\spad{Pn} are the factors of \\spad{P}.")))
NIL
((|HasCategory| |#1| (QUOTE (-140))))
-(-551)
+(-552)
((|constructor| (NIL "IrrRepSymNatPackage contains functions for computing the ordinary irreducible representations of symmetric groups on \\spad{n} letters {\\em {1,{}2,{}...,{}n}} in Young\\spad{'s} natural form and their dimensions. These representations can be labelled by number partitions of \\spad{n},{} \\spadignore{i.e.} a weakly decreasing sequence of integers summing up to \\spad{n},{} \\spadignore{e.g.} {\\em [3,{}3,{}3,{}1]} labels an irreducible representation for \\spad{n} equals 10. Note: whenever a \\spadtype{List Integer} appears in a signature,{} a partition required.")) (|irreducibleRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|)) (|List| (|Permutation| (|Integer|)))) "\\spad{irreducibleRepresentation(lambda,{}listOfPerm)} is the list of the irreducible representations corresponding to {\\em lambda} in Young\\spad{'s} natural form for the list of permutations given by {\\em listOfPerm}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{irreducibleRepresentation(lambda)} is the list of the two irreducible representations corresponding to the partition {\\em lambda} in Young\\spad{'s} natural form for the following two generators of the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}},{} namely {\\em (1 2)} (2-cycle) and {\\em (1 2 ... n)} (\\spad{n}-cycle).") (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|Permutation| (|Integer|))) "\\spad{irreducibleRepresentation(lambda,{}\\spad{pi})} is the irreducible representation corresponding to partition {\\em lambda} in Young\\spad{'s} natural form of the permutation {\\em \\spad{pi}} in the symmetric group,{} whose elements permute {\\em {1,{}2,{}...,{}n}}.")) (|dimensionOfIrreducibleRepresentation| (((|NonNegativeInteger|) (|List| (|Integer|))) "\\spad{dimensionOfIrreducibleRepresentation(lambda)} is the dimension of the ordinary irreducible representation of the symmetric group corresponding to {\\em lambda}. Note: the Robinson-Thrall hook formula is implemented.")))
NIL
NIL
-(-552 R E V P TS)
+(-553 R E V P TS)
((|constructor| (NIL "\\indented{1}{An internal package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a square-free} \\indented{1}{triangular set.} \\indented{1}{The main operation is \\axiomOpFrom{rur}{InternalRationalUnivariateRepresentationPackage}.} \\indented{1}{It is based on the {\\em generic} algorithm description in [1]. \\newline References:} [1] \\spad{D}. LAZARD \"Solving Zero-dimensional Algebraic Systems\" \\indented{4}{Journal of Symbolic Computation,{} 1992,{} 13,{} 117-131}")) (|checkRur| (((|Boolean|) |#5| (|List| |#5|)) "\\spad{checkRur(ts,{}lus)} returns \\spad{true} if \\spad{lus} is a rational univariate representation of \\spad{ts}.")) (|rur| (((|List| |#5|) |#5| (|Boolean|)) "\\spad{rur(ts,{}univ?)} returns a rational univariate representation of \\spad{ts}. This assumes that the lowest polynomial in \\spad{ts} is a variable \\spad{v} which does not occur in the other polynomials of \\spad{ts}. This variable will be used to define the simple algebraic extension over which these other polynomials will be rewritten as univariate polynomials with degree one. If \\spad{univ?} is \\spad{true} then these polynomials will have a constant initial.")))
NIL
NIL
-(-553 |mn|)
+(-554 |mn|)
((|constructor| (NIL "This domain implements low-level strings")) (|hash| (((|Integer|) $) "\\spad{hash(x)} provides a hashing function for strings")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (-1461 (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027)))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-554 E V R P)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (-1435 (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-806)))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-137) (QUOTE (-1030)))) (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-137) (QUOTE (-1030))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-555 E V R P)
((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n),{} n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n),{} n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}.")))
NIL
NIL
-(-555 |Coef|)
-((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))) (|HasCategory| (-530) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))))
(-556 |Coef|)
+((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,{}r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,{}r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,{}refer,{}var,{}cen,{}r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,{}g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,{}g,{}taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,{}f)} returns the series \\spad{sum(fn(n) * an * x^n,{}n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,{}n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,{}str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}.")))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|)))) (|HasCategory| (-531) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))))
+(-557 |Coef|)
((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.") (($ $ |#1|) "\\spad{x*c} returns the product of \\spad{c} and the series \\spad{x}.") (($ |#1| $) "\\spad{c*x} returns the product of \\spad{c} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,{}n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}")))
-((-4264 |has| |#1| (-522)) (-4263 |has| |#1| (-522)) ((-4271 "*") |has| |#1| (-522)) (-4262 |has| |#1| (-522)) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-522))))
-(-557 A B)
+((-4268 |has| |#1| (-523)) (-4267 |has| |#1| (-523)) ((-4275 "*") |has| |#1| (-523)) (-4266 |has| |#1| (-523)) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-523))))
+(-558 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-558 A B C)
+(-559 A B C)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,{}a,{}b)} \\undocumented")))
NIL
NIL
-(-559 R -1334 FG)
+(-560 R -1327 FG)
((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and \\spad{FG} should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f,{} [k1,{}...,{}kn],{} [x1,{}...,{}xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{\\spad{xi}'s} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{\\spad{ki}'s},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain.")))
NIL
NIL
-(-560 S)
+(-561 S)
((|constructor| (NIL "\\indented{1}{This package implements 'infinite tuples' for the interpreter.} The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}s)} returns \\spad{[s,{}f(s),{}f(f(s)),{}...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,{}t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}.")))
NIL
NIL
-(-561 R |mn|)
+(-562 R |mn|)
((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index.")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-562 S |Index| |Entry|)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-943))) (|HasCategory| |#1| (QUOTE (-986)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-563 S |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-795))) (|HasAttribute| |#1| (QUOTE -4269)) (|HasCategory| |#3| (QUOTE (-1027))))
-(-563 |Index| |Entry|)
+((|HasAttribute| |#1| (QUOTE -4274)) (|HasCategory| |#2| (QUOTE (-797))) (|HasAttribute| |#1| (QUOTE -4273)) (|HasCategory| |#3| (QUOTE (-1030))))
+(-564 |Index| |Entry|)
((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,{}i,{}j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,{}x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,{}u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,{}u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-564)
+(-565)
((|constructor| (NIL "\\indented{1}{This domain defines the datatype for the Java} Virtual Machine byte codes.")) (|coerce| (($ (|Byte|)) "\\spad{coerce(x)} the numerical byte value into a \\spad{JVM} bytecode.")))
NIL
NIL
-(-565 R A)
+(-566 R A)
((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,{}b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A).")))
-((-4266 -1461 (-3380 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))) (-4264 . T) (-4263 . T))
-((-1461 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
-(-566 |Entry|)
+((-4270 -1435 (-3427 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))) (-4268 . T) (-4267 . T))
+((-1435 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
+(-567 |Entry|)
((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| (-1082) (QUOTE (-795))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-567 S |Key| |Entry|)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#1|)))))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| (-1085) (QUOTE (-797))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-568 S |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
NIL
NIL
-(-568 |Key| |Entry|)
+(-569 |Key| |Entry|)
((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,{}t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,{}t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,{}t)} tests if \\spad{k} is a key in table \\spad{t}.")))
-((-4270 . T) (-4100 . T))
+((-4274 . T) (-4120 . T))
NIL
-(-569 R S)
+(-570 R S)
((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented")))
NIL
NIL
-(-570 S)
+(-571 S)
((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,{}...,{}an),{} s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,{}...,{}an),{} f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op,{} [a1,{}...,{}an],{} m)} returns the kernel \\spad{op(a1,{}...,{}an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,{}...,{}an))} returns \\spad{[a1,{}...,{}an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,{}...,{}an))} returns the operator op.")) (|name| (((|Symbol|) $) "\\spad{name(op(a1,{}...,{}an))} returns the name of op.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))))
-(-571 S)
+((|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))))
+(-572 S)
((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-572 S)
+(-573 S)
((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}.")))
NIL
NIL
-(-573 -1334 UP)
+(-574 -1327 UP)
((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic\\spad{'s} algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2,{}ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,{}a_1,{}a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions.")))
NIL
NIL
-(-574 S R)
+(-575 S R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
NIL
NIL
-(-575 R)
+(-576 R)
((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-576 A R S)
+(-577 A R S)
((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-793))))
-(-577 R -1334)
+((-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-795))))
+(-578 R -1327)
((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f,{} t,{} s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t),{} t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f,{} t,{} s)} if it cannot compute the transform.")))
NIL
NIL
-(-578 R UP)
+(-579 R UP)
((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,{}n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,{}n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented")))
-((-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4262 . T) (-4266 . T))
-((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))
-(-579 R E V P TS ST)
+((-4268 . T) (-4267 . T) ((-4275 "*") . T) (-4266 . T) (-4270 . T))
+((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))
+(-580 R E V P TS ST)
((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(\\spad{lp},{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(\\spad{ts})} returns \\axiom{\\spad{ts}} in an normalized shape if \\axiom{\\spad{ts}} is zero-dimensional.")))
NIL
NIL
-(-580 OV E Z P)
+(-581 OV E Z P)
((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \\spad{\"F\"}.")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,{}unilist,{}plead,{}vl,{}lvar,{}lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod,{} numFacts,{} evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation.")))
NIL
NIL
-(-581 |VarSet| R |Order|)
+(-582 |VarSet| R |Order|)
((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(\\spad{lv})} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-582 R |ls|)
+(-583 R |ls|)
((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{} norm?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}}. If \\axiom{\\spad{lp}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(\\spad{lp})} returns the lexicographical Groebner basis of \\axiom{\\spad{lp}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lp})} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(\\spad{lp})} returns \\spad{true} iff \\axiom{\\spad{lp}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{\\spad{lp}}.")))
NIL
NIL
-(-583)
+(-584)
((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%\\spad{pi})} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{\\spad{li}(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{\\spad{Ci}(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{\\spad{Si}(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{\\spad{Ei}(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}.")))
NIL
NIL
-(-584 R -1334)
+(-585 R -1327)
((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,{}x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,{}x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{\\spad{li}(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{\\spad{Ci}(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{\\spad{Si}(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{\\spad{Ei}(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian")))
NIL
NIL
-(-585 |lv| -1334)
+(-586 |lv| -1327)
((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented")))
NIL
NIL
-(-586)
+(-587)
((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|elt| (((|Any|) $ (|Symbol|)) "\\spad{elt(lib,{}k)} or \\spad{lib}.\\spad{k} extracts the value corresponding to the key \\spad{k} from the library \\spad{lib}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file.")))
-((-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1874) (QUOTE (-51))))))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-1082) (QUOTE (-795))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-587 S R)
+((-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -1798) (QUOTE (-51))))))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-51) (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-1085) (QUOTE (-797))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-588 S R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
NIL
((|HasCategory| |#2| (QUOTE (-344))))
-(-588 R)
+(-589 R)
((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{\\spad{x/r}} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4268 . T) (-4267 . T))
NIL
-(-589 R A)
+(-590 R A)
((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,{}b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A).")))
-((-4266 -1461 (-3380 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))) (-4264 . T) (-4263 . T))
-((-1461 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
-(-590 R FE)
+((-4270 -1435 (-3427 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))) (-4268 . T) (-4267 . T))
+((-1435 (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -398) (|devaluate| |#1|))))) (|HasCategory| |#2| (LIST (QUOTE -348) (|devaluate| |#1|))))
+(-591 R FE)
((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit \\spad{lim(x -> a,{}f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) "failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),{}x=a,{}\"left\")} computes the left hand real limit \\spad{lim(x -> a-,{}f(x))}; \\spad{limit(f(x),{}x=a,{}\"right\")} computes the right hand real limit \\spad{lim(x -> a+,{}f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) "failed"))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),{}x = a)} computes the real limit \\spad{lim(x -> a,{}f(x))}.")))
NIL
NIL
-(-591 R)
+(-592 R)
((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),{}x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),{}x,{}a,{}\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed")) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) "failed"))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),{}x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")))
NIL
NIL
-(-592 S R)
+(-593 S R)
((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}\\spad{'s} exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over \\spad{S},{} \\spad{false} otherwise.")))
NIL
-((-3676 (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-344))))
-(-593 R)
+((-3745 (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-344))))
+(-594 R)
((|constructor| (NIL "An extension ring with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A,{} v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-594 A B)
+(-595 A B)
((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} a,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la,{} lb,{} f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la,{} lb,{} a,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la,{} lb,{} b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la,{} lb,{} a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la,{} lb)} creates a map with no default source or target values defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}.")))
NIL
NIL
-(-595 A B)
+(-596 A B)
((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,{}u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,{}[1,{}2,{}3]) = [1,{}4,{}9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,{}[1,{}2,{}3],{}0) = fn(3,{}fn(2,{}fn(1,{}0)))} and \\spad{reduce(*,{}[2,{}3],{}1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,{}u,{}ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,{}[1,{}2],{}0) = [fn(2,{}fn(1,{}0)),{}fn(1,{}0)]} and \\spad{scan(*,{}[2,{}3],{}1) = [2 * 1,{} 3 * (2 * 1)]}.")))
NIL
NIL
-(-596 A B C)
+(-597 A B C)
((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,{}list1,{} u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,{}[1,{}2,{}3],{}[4,{}5,{}6]) = [1/4,{}2/4,{}1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}.")))
NIL
NIL
-(-597 S)
-((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-776))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
(-598 S)
+((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,{}u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,{}u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,{}u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,{}u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,{}u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil()} returns the empty list.")))
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-778))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-599 T$)
+((|constructor| (NIL "This domain represents AST for Spad literals.")))
+NIL
+NIL
+(-600 S)
((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,{}y,{}d)} replace \\spad{x}\\spad{'s} with \\spad{y}\\spad{'s} in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-599 R)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-601 R)
((|constructor| (NIL "The category of left modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ |#1| $) "\\spad{r*x} returns the left multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-600 S E |un|)
+(-602 S E |un|)
((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f,{} a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f,{} a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,{}y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x,{} y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s,{} e,{} x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s,{} a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a,{} s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l,{} n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l,{} n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s,{} e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l,{} fop,{} fexp,{} unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a,{} b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a,{} n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n}).")))
NIL
NIL
-(-601 A S)
+(-603 A S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)))
-(-602 S)
+((|HasAttribute| |#1| (QUOTE -4274)))
+(-604 S)
((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,{}i..j,{}x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) \\spad{:=} \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} \\spad{:=} \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,{}u,{}k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,{}u,{}i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,{}i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,{}i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) \\spad{==} concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|elt| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{elt(u,{}i..j)} (also written: \\axiom{a(\\spad{i}..\\spad{j})}) returns the aggregate of elements \\axiom{\\spad{u}} for \\spad{k} from \\spad{i} to \\spad{j} in that order. Note: in general,{} \\axiom{a.\\spad{s} = [a.\\spad{k} for \\spad{i} in \\spad{s}]}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,{}u,{}v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) \\spad{==} concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,{}x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) \\spad{==} concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,{}x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-603 R -1334 L)
+(-605 R -1327 L)
((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op,{} g,{} x,{} a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{op y = g,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op,{} g,{} x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable.")))
NIL
NIL
-(-604 A)
+(-606 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
-(-605 A M)
+((-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
+(-607 A M)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}")))
-((-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
-(-606 S A)
+((-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
+(-608 S A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
NIL
((|HasCategory| |#2| (QUOTE (-344))))
-(-607 A)
+(-609 A)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,{}a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,{}n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,{}b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-608 -1334 UP)
+(-610 -1327 UP)
((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a,{} zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-609 A -2235)
+(-611 A -4032)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")))
-((-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
-(-610 A L)
+((-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
+(-612 A L)
((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,{}n,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,{}b,{}D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-611 S)
+(-613 S)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-612)
+(-614)
((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}.")))
NIL
NIL
-(-613 M R S)
+(-615 M R S)
((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}.")))
-((-4264 . T) (-4263 . T))
-((|HasCategory| |#1| (QUOTE (-739))))
-(-614 R)
+((-4268 . T) (-4267 . T))
+((|HasCategory| |#1| (QUOTE (-741))))
+(-616 R)
((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such exists.")))
NIL
NIL
-(-615 |VarSet| R)
+(-617 |VarSet| R)
((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned.")))
-((|JacobiIdentity| . T) (|NullSquare| . T) (-4264 . T) (-4263 . T))
+((|JacobiIdentity| . T) (|NullSquare| . T) (-4268 . T) (-4267 . T))
((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-162))))
-(-616 A S)
+(-618 A S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
NIL
NIL
-(-617 S)
+(-619 S)
((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}.")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-618 -1334)
+(-620 -1327)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package\\spad{'s} existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) "failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-619 -1334 |Row| |Col| M)
+(-621 -1327 |Row| |Col| M)
((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,{}B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,{}B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| "failed") |#4| |#3|) "\\spad{particularSolution(A,{}B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,{}LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,{}B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.")))
NIL
NIL
-(-620 R E OV P)
+(-622 R E OV P)
((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,{}lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}.")))
NIL
NIL
-(-621 |n| R)
+(-623 |n| R)
((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,{}R) b - b *\\$SQMATRIX(n,{}R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication.")))
-((-4266 . T) (-4269 . T) (-4263 . T) (-4264 . T))
-((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (-1461 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-522))) (-1461 (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-162))))
-(-622 |VarSet|)
+((-4270 . T) (-4273 . T) (-4267 . T) (-4268 . T))
+((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (-1435 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-523))) (-1435 (|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-162))))
+(-624 |VarSet|)
((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} \\spad{<=} \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.\\spad{fr}).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(\\spad{vl},{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList1(\\spad{vl},{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{\\spad{vl}},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")))
NIL
NIL
-(-623 A S)
+(-625 A S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
NIL
NIL
-(-624 S)
+(-626 S)
((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,{}n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least \\spad{'n'} explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length \\spad{<=} \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,{}st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,{}st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,{}st) = [x for x in st | not f(x)]}.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-625 R)
+(-627 R)
((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,{}x,{}y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,{}i,{}j,{}k,{}s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,{}i,{}j,{}k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,{}y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,{}j,{}k)} create a matrix with all zero terms")))
NIL
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-626 |VarSet|)
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-628 |VarSet|)
((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{\\spad{y*z}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}.")))
NIL
NIL
-(-627 A)
+(-629 A)
((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,{}g,{}x)} is \\spad{g(n,{}g(n-1,{}..g(1,{}x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,{}n,{}x)} applies \\spad{f n} times to \\spad{x}.")))
NIL
NIL
-(-628 A C)
+(-630 A C)
((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,{}c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,{}c)} selects its first argument.")))
NIL
NIL
-(-629 A B C)
+(-631 A B C)
((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,{}g,{}x)} is \\spad{f(g x)}.")))
NIL
NIL
-(-630 A)
+(-632 A)
((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,{}x)= g(n,{}g(n-1,{}..g(1,{}x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,{}n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}")))
NIL
NIL
-(-631 A C)
+(-633 A C)
((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,{}a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}")))
NIL
NIL
-(-632 A B C)
+(-634 A B C)
((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f(b,{}a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,{}b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,{}a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,{}b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,{}b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,{}b)}.}")))
NIL
NIL
-(-633 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+(-635 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-634 S R |Row| |Col|)
+(-636 S R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
NIL
-((|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-522))))
-(-635 R |Row| |Col|)
+((|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-523))))
+(-637 R |Row| |Col|)
((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,{}i1,{}j1,{}y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,{}j)} is set to \\spad{y(i-i1+1,{}j-j1+1)} for \\spad{i = i1,{}...,{}i1-1+nrows y} and \\spad{j = j1,{}...,{}j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,{}i1,{}i2,{}j1,{}j2)} extracts the submatrix \\spad{[x(i,{}j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,{}i,{}j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,{}rowList,{}colList,{}y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then \\spad{x(i<k>,{}j<l>)} is set to \\spad{y(k,{}l)} for \\spad{k = 1,{}...,{}m} and \\spad{l = 1,{}...,{}n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,{}rowList,{}colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,{}i<2>,{}...,{}i<m>]} and \\spad{colList = [j<1>,{}j<2>,{}...,{}j<n>]},{} then the \\spad{(k,{}l)}th entry of \\spad{elt(x,{}rowList,{}colList)} is \\spad{x(i<k>,{}j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,{}y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,{}y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,{}...,{}mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{\\spad{ri} := nrows \\spad{mi}},{} \\spad{\\spad{ci} := ncols \\spad{mi}},{} then \\spad{m} is an (\\spad{r1+}..\\spad{+rk}) by (\\spad{c1+}..\\spad{+ck}) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,{}r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,{}n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices")))
-((-4269 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4274 . T) (-4120 . T))
NIL
-(-636 R |Row| |Col| M)
+(-638 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that \\spad{m*n} = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,{}a,{}i,{}j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,{}a,{}i,{}j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} \\spad{~=j})")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,{}i,{}j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")))
NIL
-((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))))
-(-637 R)
+((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))))
+(-639 R)
((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal.")))
-((-4269 . T) (-4270 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-522))) (|HasAttribute| |#1| (QUOTE (-4271 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-638 R)
+((-4273 . T) (-4274 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-523))) (|HasAttribute| |#1| (QUOTE (-4275 "*"))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-640 R)
((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,{}b,{}c,{}m,{}n)} computes \\spad{m} \\spad{**} \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,{}a,{}b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,{}a,{}r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,{}r,{}a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,{}a,{}b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,{}a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,{}a,{}b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,{}a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")))
NIL
NIL
-(-639 T$)
+(-641 T$)
((|constructor| (NIL "This domain implements the notion of optional vallue,{} where a computation may fail to produce expected value.")) (|nothing| (($) "represents failure.")) (|autoCoerce| ((|#1| $) "same as above but implicitly called by the compiler.")) (|coerce| ((|#1| $) "x::T tries to extract the value of \\spad{T} from the computation \\spad{x}. Produces a runtime error when the computation fails.") (($ |#1|) "x::T injects the value \\spad{x} into \\%.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} evaluates \\spad{true} if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")))
NIL
NIL
-(-640 S -1334 FLAF FLAS)
+(-642 S -1327 FLAF FLAS)
((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,{}xlist,{}kl,{}ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} kl+ku+1 being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions kl+ku+1 by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row ku+1,{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,{}xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,{}xlist,{}k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,{}xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,{}xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,{}xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,{}xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")))
NIL
NIL
-(-641 R Q)
+(-643 R Q)
((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}.")))
NIL
NIL
-(-642)
+(-644)
((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex")))
-((-4262 . T) (-4267 |has| (-647) (-344)) (-4261 |has| (-647) (-344)) (-4146 . T) (-4268 |has| (-647) (-6 -4268)) (-4265 |has| (-647) (-6 -4265)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-647) (QUOTE (-140))) (|HasCategory| (-647) (QUOTE (-138))) (|HasCategory| (-647) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-647) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-647) (QUOTE (-349))) (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-647) (QUOTE (-216))) (-1461 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-330)))) (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (LIST (QUOTE -268) (QUOTE (-647)) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -291) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-647)))) (|HasCategory| (-647) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-647) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-647) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-647) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (-1461 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-330)))) (|HasCategory| (-647) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-647) (QUOTE (-960))) (|HasCategory| (-647) (QUOTE (-1121))) (-12 (|HasCategory| (-647) (QUOTE (-941))) (|HasCategory| (-647) (QUOTE (-1121)))) (-1461 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-344))) (-12 (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (QUOTE (-850))))) (-1461 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (-12 (|HasCategory| (-647) (QUOTE (-344))) (|HasCategory| (-647) (QUOTE (-850)))) (-12 (|HasCategory| (-647) (QUOTE (-330))) (|HasCategory| (-647) (QUOTE (-850))))) (|HasCategory| (-647) (QUOTE (-515))) (-12 (|HasCategory| (-647) (QUOTE (-993))) (|HasCategory| (-647) (QUOTE (-1121)))) (|HasCategory| (-647) (QUOTE (-993))) (-1461 (|HasCategory| (-647) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-647) (QUOTE (-344)))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850))) (-1461 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-344)))) (-1461 (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-522)))) (-12 (|HasCategory| (-647) (QUOTE (-216))) (|HasCategory| (-647) (QUOTE (-344)))) (-12 (|HasCategory| (-647) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-647) (QUOTE (-344)))) (|HasCategory| (-647) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-647) (QUOTE (-795))) (|HasCategory| (-647) (QUOTE (-522))) (|HasAttribute| (-647) (QUOTE -4268)) (|HasAttribute| (-647) (QUOTE -4265)) (-12 (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-138)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-647) (QUOTE (-289))) (|HasCategory| (-647) (QUOTE (-850)))) (|HasCategory| (-647) (QUOTE (-330)))))
-(-643 S)
+((-4266 . T) (-4271 |has| (-649) (-344)) (-4265 |has| (-649) (-344)) (-4157 . T) (-4272 |has| (-649) (-6 -4272)) (-4269 |has| (-649) (-6 -4269)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-649) (QUOTE (-140))) (|HasCategory| (-649) (QUOTE (-138))) (|HasCategory| (-649) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-649) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-649) (QUOTE (-349))) (|HasCategory| (-649) (QUOTE (-344))) (|HasCategory| (-649) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-649) (QUOTE (-216))) (-1435 (|HasCategory| (-649) (QUOTE (-344))) (|HasCategory| (-649) (QUOTE (-330)))) (|HasCategory| (-649) (QUOTE (-330))) (|HasCategory| (-649) (LIST (QUOTE -268) (QUOTE (-649)) (QUOTE (-649)))) (|HasCategory| (-649) (LIST (QUOTE -291) (QUOTE (-649)))) (|HasCategory| (-649) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-649)))) (|HasCategory| (-649) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-649) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-649) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-649) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (-1435 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-344))) (|HasCategory| (-649) (QUOTE (-330)))) (|HasCategory| (-649) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-649) (QUOTE (-962))) (|HasCategory| (-649) (QUOTE (-1124))) (-12 (|HasCategory| (-649) (QUOTE (-943))) (|HasCategory| (-649) (QUOTE (-1124)))) (-1435 (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-344))) (-12 (|HasCategory| (-649) (QUOTE (-330))) (|HasCategory| (-649) (QUOTE (-852))))) (-1435 (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (-12 (|HasCategory| (-649) (QUOTE (-344))) (|HasCategory| (-649) (QUOTE (-852)))) (-12 (|HasCategory| (-649) (QUOTE (-330))) (|HasCategory| (-649) (QUOTE (-852))))) (|HasCategory| (-649) (QUOTE (-516))) (-12 (|HasCategory| (-649) (QUOTE (-995))) (|HasCategory| (-649) (QUOTE (-1124)))) (|HasCategory| (-649) (QUOTE (-995))) (-1435 (|HasCategory| (-649) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-649) (QUOTE (-344)))) (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852))) (-1435 (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-344)))) (-1435 (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-523)))) (-12 (|HasCategory| (-649) (QUOTE (-216))) (|HasCategory| (-649) (QUOTE (-344)))) (-12 (|HasCategory| (-649) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-649) (QUOTE (-344)))) (|HasCategory| (-649) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-649) (QUOTE (-797))) (|HasCategory| (-649) (QUOTE (-523))) (|HasAttribute| (-649) (QUOTE -4272)) (|HasAttribute| (-649) (QUOTE -4269)) (-12 (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-138)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-649) (QUOTE (-289))) (|HasCategory| (-649) (QUOTE (-852)))) (|HasCategory| (-649) (QUOTE (-330)))))
+(-645 S)
((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,{}d,{}n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}.")))
-((-4270 . T) (-4100 . T))
+((-4274 . T) (-4120 . T))
NIL
-(-644 U)
+(-646 U)
((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,{}n,{}g,{}p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl,{} p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,{}p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,{}p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,{}p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,{}f2,{}p)} computes the \\spad{gcd} of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}.")))
NIL
NIL
-(-645)
+(-647)
((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: \\spad{??} Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,{}b,{}c,{}d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,{}t,{}u,{}f,{}s1,{}l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,{}g,{}s1,{}s2,{}l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,{}f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}s1,{}s2,{}l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,{}g,{}h,{}j,{}s1,{}s2,{}l)} \\undocumented")))
NIL
NIL
-(-646 OV E -1334 PG)
+(-648 OV E -1327 PG)
((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field.")))
NIL
NIL
-(-647)
+(-649)
((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,{}man,{}base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}")))
-((-4136 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4148 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-648 R)
+(-650 R)
((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,{}d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m,{} d,{} p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,{}p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m,{} d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus.")))
NIL
NIL
-(-649)
+(-651)
((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}")))
-((-4268 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4272 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-650 S D1 D2 I)
+(-652 S D1 D2 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,{}x,{}y)} returns a function \\spad{f: (D1,{} D2) -> I} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1,{} D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function")))
NIL
NIL
-(-651 S)
+(-653 S)
((|constructor| (NIL "MakeCachableSet(\\spad{S}) returns a cachable set which is equal to \\spad{S} as a set.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} returns \\spad{s} viewed as an element of \\%.")))
NIL
NIL
-(-652 S)
+(-654 S)
((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x,{} y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x,{} y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat},{} \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr,{} x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}.")))
NIL
NIL
-(-653 S)
+(-655 S)
((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e,{} foo,{} [x1,{}...,{}xn])} creates a function \\spad{foo(x1,{}...,{}xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x,{} y)} creates a function \\spad{foo(x,{} y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e,{} foo,{} x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e,{} foo)} creates a function \\spad{foo() == e}.")))
NIL
NIL
-(-654 S T$)
+(-656 S T$)
((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,{}b)} creates a record object with type Record(part1:S,{} part2:R),{} where part1 is \\spad{a} and part2 is \\spad{b}.")))
NIL
NIL
-(-655 S -3340 I)
+(-657 S -4020 I)
((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr,{} x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function")))
NIL
NIL
-(-656 E OV R P)
+(-658 E OV R P)
((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,{}lv,{}lu,{}lr,{}lp,{}lt,{}ln,{}t,{}r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,{}lv,{}lu,{}lr,{}lp,{}ln,{}r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,{}lv,{}lr,{}ln,{}lu,{}t,{}r)} \\undocumented")))
NIL
NIL
-(-657 R)
+(-659 R)
((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,{}1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i,{} i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-658 R1 UP1 UPUP1 R2 UP2 UPUP2)
+(-660 R1 UP1 UPUP1 R2 UP2 UPUP2)
((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f,{} p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}.")))
NIL
NIL
-(-659)
+(-661)
((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format.")))
NIL
NIL
-(-660 R |Mod| -1920 -3683 |exactQuo|)
+(-662 R |Mod| -3848 -3508 |exactQuo|)
((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-661 R |Rep|)
+(-663 R |Rep|)
((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|coerce| (($ |#2|) "\\spad{coerce(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-330))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-662 IS E |ff|)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4269 |has| |#1| (-344)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-330))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-664 IS E |ff|)
((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,{}e)} \\undocumented")) (|coerce| (((|Record| (|:| |index| |#1|) (|:| |exponent| |#2|)) $) "\\spad{coerce(x)} \\undocumented") (($ (|Record| (|:| |index| |#1|) (|:| |exponent| |#2|))) "\\spad{coerce(x)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented")))
NIL
NIL
-(-663 R M)
+(-665 R M)
((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,{}f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f,{} u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1,{} op2)} sets the adjoint of \\spad{op1} to be op2. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}.")))
-((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
+((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))))
-(-664 R |Mod| -1920 -3683 |exactQuo|)
+(-666 R |Mod| -3848 -3508 |exactQuo|)
((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,{}y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,{}m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-665 S R)
+(-667 S R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
NIL
NIL
-(-666 R)
+(-668 R)
((|constructor| (NIL "The category of modules over a commutative ring. \\blankline")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
NIL
-(-667 -1334)
+(-669 -1327)
((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,{}x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,{}b,{}c,{}d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,{}1],{}[1,{}0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,{}h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,{}0],{}[0,{}1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,{}h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,{}k],{}[0,{}1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,{}b,{}c,{}d)} returns \\spad{matrix [[a,{}b],{}[c,{}d]]}.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-668 S)
+(-670 S)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-669)
+(-671)
((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation.")))
NIL
NIL
-(-670 S)
+(-672 S)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-671)
+(-673)
((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)\\spad{->}\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn\\spad{'t} a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn\\spad{'t} exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,{}n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,{}n) := a * leftPower(a,{}n-1)} and \\spad{leftPower(a,{}0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,{}n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,{}n) := rightPower(a,{}n-1) * a} and \\spad{rightPower(a,{}0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1.")))
NIL
NIL
-(-672 S R UP)
+(-674 S R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
NIL
((|HasCategory| |#2| (QUOTE (-330))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))))
-(-673 R UP)
+(-675 R UP)
((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b,{} ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain.")))
-((-4262 |has| |#1| (-344)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 |has| |#1| (-344)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-674 S)
+(-676 S)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-675)
+(-677)
((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity.")))
NIL
NIL
-(-676 -1334 UP)
+(-678 -1327 UP)
((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f,{} D)} returns \\spad{[p,{}n,{}s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f,{} D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p,{} D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m,{} s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p,{} D)} returns \\spad{[n,{}s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-677 |VarSet| E1 E2 R S PR PS)
+(-679 |VarSet| E1 E2 R S PR PS)
((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (\\spad{PG})")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,{}p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-678 |Vars1| |Vars2| E1 E2 R PR1 PR2)
+(-680 |Vars1| |Vars2| E1 E2 R PR1 PR2)
((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-679 E OV R PPR)
+(-681 E OV R PPR)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-680 |vl| R)
+(-682 |vl| R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")))
-(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-806 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-681 E OV R PRF)
+(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-852))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-808 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-683 E OV R PRF)
((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,{}var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,{}var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,{}var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,{}var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-682 E OV R P)
+(-684 E OV R P)
((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}.")))
NIL
NIL
-(-683 R S M)
+(-685 R S M)
((|constructor| (NIL "MonoidRingFunctions2 implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,{}u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}.")))
NIL
NIL
-(-684 R M)
+(-686 R M)
((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,{}m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,{}m)} creates a scalar multiple of the basis element \\spad{m}.")))
-((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-795))))
-(-685 S)
+((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-797))))
+(-687 S)
((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements.")))
-((-4259 . T) (-4270 . T) (-4100 . T))
+((-4263 . T) (-4274 . T) (-4120 . T))
NIL
-(-686 S)
+(-688 S)
((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,{}ms,{}number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,{}ms,{}number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,{}ms,{}number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,{}ms,{}number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}.")))
-((-4269 . T) (-4259 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-687)
+((-4273 . T) (-4263 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-689)
((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned.")))
NIL
NIL
-(-688 S)
+(-690 S)
((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,{}l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}.")))
NIL
NIL
-(-689 |Coef| |Var|)
+(-691 |Coef| |Var|)
((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,{}x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,{}x,{}n)} returns \\spad{min(n,{}order(f,{}x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,{}x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,{}[x1,{}x2,{}...,{}xk],{}[n1,{}n2,{}...,{}nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,{}x,{}n)} returns the coefficient of \\spad{x^n} in \\spad{f}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4264 . T) (-4263 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4268 . T) (-4267 . T) (-4270 . T))
NIL
-(-690 OV E R P)
+(-692 OV E R P)
((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain")))
NIL
NIL
-(-691 E OV R P)
+(-693 E OV R P)
((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}.")))
NIL
NIL
-(-692 S R)
+(-694 S R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
NIL
NIL
-(-693 R)
+(-695 R)
((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{\\spad{r*}(a*b) = (r*a)\\spad{*b} = a*(\\spad{r*b})}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,{}n)} is recursively defined to be \\spad{plenaryPower(a,{}n-1)*plenaryPower(a,{}n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}.")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
NIL
-(-694)
+(-696)
((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{manpageXXc02}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,{}n,{}scale,{}ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,{}n,{}scale,{}ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre\\spad{'s} Method. See \\downlink{Manual Page}{manpageXXc02aff}.")))
NIL
NIL
-(-695)
+(-697)
((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{manpageXXc05}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,{}ldfjac,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,{}lwa,{}x,{}xtol,{}ifail,{}fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,{}b,{}eps,{}eta,{}ifail,{}f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}.")))
NIL
NIL
-(-696)
+(-698)
((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{manpageXXc06}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,{}n,{}x,{}ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,{}n,{}x,{}ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,{}y,{}ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,{}x,{}ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,{}n,{}init,{}x,{}y,{}trigm,{}trign,{}ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,{}n,{}init,{}x,{}y,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,{}n,{}init,{}x,{}trig,{}ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,{}n,{}x,{}y,{}ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,{}x,{}y,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,{}x,{}ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}.")))
NIL
NIL
-(-697)
+(-699)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{manpageXXd01}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,{}a,{}b,{}maxcls,{}eps,{}lenwrk,{}mincls,{}wrkstr,{}ifail,{}functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,{}y,{}n,{}ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,{}a,{}b,{}maxpts,{}eps,{}lenwrk,{}minpts,{}ifail,{}functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,{}b,{}itype,{}n,{}gtype,{}ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,{}omega,{}key,{}epsabs,{}limlst,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,{}b,{}c,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,{}b,{}alfa,{}beta,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,{}b,{}omega,{}key,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,{}inf,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,{}b,{}npts,{}points,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,{}b,{}epsabs,{}epsrel,{}lw,{}liw,{}ifail,{}f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}.")))
NIL
NIL
-(-698)
+(-700)
((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{manpageXXd02}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,{}mnp,{}numbeg,{}nummix,{}tol,{}init,{}iy,{}ijac,{}lwork,{}liwork,{}np,{}x,{}y,{}deleps,{}ifail,{}fcn,{}g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval,{}monit,{}report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,{}m,{}k,{}tol,{}maxfun,{}match,{}elam,{}delam,{}hmax,{}maxit,{}ifail,{}coeffn,{}bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains Asp12 and Asp33 are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,{}b,{}n,{}tol,{}mnp,{}lw,{}liw,{}c,{}d,{}gam,{}x,{}np,{}ifail,{}fcnf,{}fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,{}v,{}n,{}a,{}b,{}tol,{}mnp,{}lw,{}liw,{}x,{}np,{}ifail,{}fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,{}m,{}n,{}relabs,{}iw,{}x,{}y,{}tol,{}ifail,{}g,{}fcn,{}pederv,{}output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (\\spad{BDF}),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,{}m,{}n,{}tol,{}relabs,{}x,{}y,{}ifail,{}g,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,{}n,{}irelab,{}hmax,{}x,{}y,{}tol,{}ifail,{}g,{}fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,{}m,{}n,{}irelab,{}x,{}y,{}tol,{}ifail,{}fcn,{}output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}.")))
NIL
NIL
-(-699)
+(-701)
((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{manpageXXd03}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,{}xf,{}l,{}lbdcnd,{}bdxs,{}bdxf,{}ys,{}yf,{}m,{}mbdcnd,{}bdys,{}bdyf,{}zs,{}zf,{}n,{}nbdcnd,{}bdzs,{}bdzf,{}lambda,{}ldimf,{}mdimf,{}lwrk,{}f,{}ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,{}xmax,{}ymin,{}ymax,{}ngx,{}ngy,{}lda,{}scheme,{}ifail,{}pdef,{}bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,{}ngy,{}lda,{}maxit,{}acc,{}iout,{}a,{}rhs,{}ub,{}ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}.")))
NIL
NIL
-(-700)
+(-702)
((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{manpageXXe01}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,{}x,{}y,{}f,{}rnw,{}fnodes,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,{}x,{}y,{}f,{}nw,{}nq,{}rnw,{}rnq,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,{}x,{}y,{}f,{}triang,{}grads,{}px,{}py,{}ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,{}x,{}y,{}f,{}ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,{}my,{}x,{}y,{}f,{}ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,{}x,{}f,{}d,{}a,{}b,{}ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,{}x,{}f,{}d,{}m,{}px,{}ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,{}x,{}f,{}ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,{}x,{}y,{}lck,{}lwrk,{}ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}.")))
NIL
NIL
-(-701)
+(-703)
((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{manpageXXe02}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,{}py,{}lamda,{}mu,{}m,{}x,{}y,{}npoint,{}nadres,{}ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,{}la,{}nplus2,{}toler,{}a,{}b,{}ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,{}my,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}lwrk,{}liwrk,{}ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,{}px,{}py,{}x,{}y,{}lamda,{}mu,{}c,{}ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,{}m,{}x,{}y,{}f,{}w,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,{}mx,{}x,{}my,{}y,{}f,{}s,{}nxest,{}nyest,{}lwrk,{}liwrk,{}nx,{}lamda,{}ny,{}mu,{}wrk,{}iwrk,{}ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,{}px,{}py,{}x,{}y,{}f,{}w,{}mu,{}point,{}npoint,{}nc,{}nws,{}eps,{}lamda,{}ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,{}m,{}x,{}y,{}w,{}s,{}nest,{}lwrk,{}n,{}lamda,{}ifail,{}wrk,{}iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,{}lamda,{}c,{}ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,{}lamda,{}c,{}x,{}left,{}ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,{}lamda,{}c,{}x,{}ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,{}ncap7,{}x,{}y,{}w,{}lamda,{}ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}x,{}ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}qatm1,{}iaint1,{}laint,{}ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,{}xmin,{}xmax,{}a,{}ia1,{}la,{}iadif1,{}ladif,{}ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,{}kplus1,{}nrows,{}xmin,{}xmax,{}x,{}y,{}w,{}mf,{}xf,{}yf,{}lyf,{}ip,{}lwrk,{}liwrk,{}ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,{}a,{}xcap,{}ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,{}kplus1,{}nrows,{}x,{}y,{}w,{}ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}.")))
NIL
NIL
-(-702)
+(-704)
((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{manpageXXe04}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,{}m,{}n,{}fsumsq,{}s,{}lv,{}v,{}ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,{}nclin,{}ncnln,{}nrowa,{}nrowj,{}nrowr,{}a,{}bl,{}bu,{}liwork,{}lwork,{}sta,{}cra,{}der,{}fea,{}fun,{}hes,{}infb,{}infs,{}linf,{}lint,{}list,{}maji,{}majp,{}mini,{}minp,{}mon,{}nonf,{}opt,{}ste,{}stao,{}stac,{}stoo,{}stoc,{}ve,{}istate,{}cjac,{}clamda,{}r,{}x,{}ifail,{}confun,{}objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}nrowh,{}ncolh,{}bigbnd,{}a,{}bl,{}bu,{}cvec,{}featol,{}hess,{}cold,{}lpp,{}orthog,{}liwork,{}lwork,{}x,{}istate,{}ifail,{}qphess)} is a comprehensive programming (\\spad{QP}) or linear programming (\\spad{LP}) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,{}msglvl,{}n,{}nclin,{}nctotl,{}nrowa,{}a,{}bl,{}bu,{}cvec,{}linobj,{}liwork,{}lwork,{}x,{}ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,{}ibound,{}liw,{}lw,{}bl,{}bu,{}x,{}ifail,{}funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,{}n,{}liw,{}lw,{}x,{}ifail,{}lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,{}es,{}fu,{}it,{}lin,{}list,{}ma,{}op,{}pr,{}sta,{}sto,{}ve,{}x,{}ifail,{}objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}.")))
NIL
NIL
-(-703)
+(-705)
((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{manpageXXf01}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,{}m,{}n,{}ncolq,{}lda,{}theta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}theta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,{}m,{}n,{}ncolq,{}lda,{}zeta,{}a,{}ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,{}wheret,{}m,{}n,{}a,{}lda,{}zeta,{}ncolb,{}ldb,{}b,{}ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,{}n,{}lda,{}a,{}ifail)} finds the \\spad{QR} factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,{}avals,{}lal,{}nrow,{}ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,{}nz,{}licn,{}lirn,{}abort,{}avals,{}irn,{}icn,{}droptl,{}densw,{}ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,{}nz,{}licn,{}ivect,{}jvect,{}icn,{}ikeep,{}grow,{}eta,{}abort,{}idisp,{}avals,{}ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,{}nz,{}licn,{}lirn,{}pivot,{}lblock,{}grow,{}abort,{}a,{}irn,{}icn,{}ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}.")))
NIL
NIL
-(-704)
+(-706)
((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{manpageXXf02}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldph,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,{}n,{}lda,{}ncolb,{}ldb,{}wantq,{}ldq,{}wantp,{}ldpt,{}a,{}b,{}ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image,{}monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,{}k,{}tol,{}novecs,{}nrx,{}lwork,{}lrwork,{}liwork,{}m,{}noits,{}x,{}ifail,{}dot,{}image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,{}ia,{}ib,{}eps1,{}matv,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)\\spad{Bx} where A and \\spad{B} are real,{} square matrices,{} using the \\spad{QZ} algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,{}n,{}alb,{}ub,{}m,{}iv,{}a,{}ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,{}iar,{}\\spad{ai},{}iai,{}n,{}ivr,{}ivi,{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,{}iai,{}n,{}ivr,{}ivi,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,{}iai,{}n,{}ar,{}\\spad{ai},{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,{}n,{}ivr,{}ivi,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,{}n,{}a,{}ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,{}ib,{}n,{}iv,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,{}ib,{}n,{}a,{}b,{}ifail)} calculates all the eigenvalues of Ax=(lambda)\\spad{Bx},{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,{}ia,{}n,{}iv,{}ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,{}n,{}a,{}ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}.")))
NIL
NIL
-(-705)
+(-707)
((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{manpageXXf04}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,{}n,{}damp,{}atol,{}btol,{}conlim,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}b,{}ifail,{}aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,{}al,{}lal,{}d,{}nrow,{}ir,{}b,{}nrb,{}iselct,{}nrx,{}ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,{}b,{}precon,{}shift,{}itnlim,{}msglvl,{}lrwork,{}liwork,{}rtol,{}ifail,{}aprod,{}msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,{}nz,{}avals,{}licn,{}irn,{}lirn,{}icn,{}wkeep,{}ikeep,{}inform,{}b,{}acc,{}noits,{}ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,{}n,{}nra,{}tol,{}lwork,{}a,{}b,{}ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,{}n,{}d,{}e,{}b,{}ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,{}a,{}licn,{}icn,{}ikeep,{}mtype,{}idisp,{}rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A \\spad{x=b},{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,{}ia,{}b,{}n,{}iaa,{}ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,{}b,{}n,{}a,{}ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,{}b,{}n,{}a,{}ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,{}b,{}ib,{}n,{}m,{}ic,{}a,{}ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}.")))
NIL
NIL
-(-706)
+(-708)
((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{manpageXXf07}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,{}n,{}nrhs,{}a,{}lda,{}ldb,{}b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,{}n,{}lda,{}a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,{}n,{}nrhs,{}a,{}lda,{}ipiv,{}ldb,{}b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A \\spad{X=B},{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,{}n,{}lda,{}a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}.")))
NIL
NIL
-(-707)
+(-709)
((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,{}y,{}z,{}r,{}ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,{}y,{}z,{}ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,{}y,{}ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,{}ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,{}ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,{}ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,{}ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,{}ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,{}ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,{}ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,{}fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)\\spad{+n}\\space{8}(nu)\\spad{+n}} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,{}z,{}scale,{}ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,{}z,{}n,{}scale,{}ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)\\spad{+n}} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,{}ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,{}ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,{}ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,{}ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,{}ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,{}ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,{}ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,{}x,{}tol,{}ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,{}ifail)} returns a value for the log,{} \\spad{ln}(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,{}ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,{}ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,{}ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,{}ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,{}ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}.")))
NIL
NIL
-(-708)
+(-710)
((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,{}m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}")))
NIL
NIL
-(-709 S)
+(-711 S)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-710)
+(-712)
((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{\\spad{x*}(\\spad{y+z}) = x*y + \\spad{x*z}} \\indented{2}{(x+y)\\spad{*z} = \\spad{x*z} + \\spad{y*z}} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 \\spad{=>} a=0 or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,{}b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,{}b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,{}b,{}c)} returns \\spad{(a*b)*c-a*(b*c)}.")))
NIL
NIL
-(-711 S)
+(-713 S)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-712)
+(-714)
((|constructor| (NIL "A NonAssociativeRing is a non associative \\spad{rng} which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring.")))
NIL
NIL
-(-713 |Par|)
+(-715 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,{}eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable.")))
NIL
NIL
-(-714 -1334)
+(-716 -1327)
((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction.")))
NIL
NIL
-(-715 P -1334)
+(-717 P -1327)
((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")))
NIL
NIL
-(-716 UP -1334)
+(-718 UP -1327)
((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}.")))
NIL
NIL
-(-717)
+(-719)
((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-718 R)
+(-720 R)
((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-719)
+(-721)
((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,{}i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,{}b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,{}b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder.")))
-(((-4271 "*") . T))
+(((-4275 "*") . T))
NIL
-(-720 R -1334)
+(-722 R -1327)
((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,{}y),{} N(x,{}y),{} y,{} x)} returns \\spad{F(x,{}y)} such that \\spad{F(x,{}y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,{}y) dx + N(x,{}y) dy = 0},{} or \"failed\" if no first-integral can be found.")))
NIL
NIL
-(-721 S)
+(-723 S)
((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}.")))
NIL
NIL
-(-722)
+(-724)
((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code).")))
NIL
NIL
-(-723 R |PolR| E |PolE|)
+(-725 R |PolR| E |PolE|)
((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}.")))
NIL
NIL
-(-724 R E V P TS)
+(-726 R E V P TS)
((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}\\spad{ts})} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}\\spad{ts})} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}\\spad{ts})} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")))
NIL
NIL
-(-725 -1334 |ExtF| |SUEx| |ExtP| |n|)
+(-727 -1327 |ExtF| |SUEx| |ExtP| |n|)
((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented")))
NIL
NIL
-(-726 BP E OV R P)
+(-728 BP E OV R P)
((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented")))
NIL
NIL
-(-727 |Par|)
+(-729 |Par|)
((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,{}eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,{}eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,{}x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with variable \\spad{x}. Fraction \\spad{P} \\spad{RN}.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over \\spad{RN} with a new symbol as variable.")))
NIL
NIL
-(-728 R |VarSet|)
+(-730 R |VarSet|)
((|constructor| (NIL "A post-facto extension for \\axiomType{\\spad{SMP}} in order to speed up operations related to pseudo-division and \\spad{gcd}. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3676 (|HasCategory| |#1| (QUOTE (-515)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-530))))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-1099)))) (-3676 (|HasCategory| |#1| (LIST (QUOTE -932) (QUOTE (-530))))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-729 R S)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (-3745 (|HasCategory| |#1| (QUOTE (-516)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (QUOTE (-531))))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-1102)))) (-3745 (|HasCategory| |#1| (LIST (QUOTE -934) (QUOTE (-531))))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-731 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-730 R)
+(-732 R)
((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and \\spad{gcd} for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedResultant2(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedResultant1(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} \\spad{cb}]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}\\spad{cb}]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + \\spad{cb} * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} \\spad{cb}]} such that \\axiom{\\spad{g}} is a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + \\spad{cb} * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial \\spad{gcd} in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{c^n} * a = \\spad{q*b} \\spad{+r}} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{\\spad{c^n} * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a \\spad{-r}} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-731 R)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4269 |has| |#1| (-344)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-733 R)
((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,{}r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,{}r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,{}r)} \\undocumented")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))
-(-732 R E V P)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))
+(-734 R E V P)
((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,{}v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,{}v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,{}mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-733 S)
+(-735 S)
((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x,{} n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,{}n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x,{} n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-984))) (|HasCategory| |#1| (QUOTE (-162))))
-(-734)
+((-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-986))) (|HasCategory| |#1| (QUOTE (-162))))
+(-736)
((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}.")))
NIL
NIL
-(-735)
+(-737)
((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,{}hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-736)
+(-738)
((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,{}y,{}x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})\\spad{**}(-1/5)}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try ,{} did ,{} next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is the same as \\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation\\spad{'s} right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,{}n,{}x1,{}x2,{}ns,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs,{}t1,{}t2,{}t3,{}t4,{}t5,{}t6,{}t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |try| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,{}n,{}x1,{}step,{}eps,{}yscal,{}derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,{}n,{}x1,{}x2,{}eps,{}h,{}ns,{}derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs,{}t1,{}t2,{}t3,{}t4)} is the same as \\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,{}n,{}x1,{}h,{}derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,{}x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}.")))
NIL
NIL
-(-737)
+(-739)
((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,{}a,{}b,{}epsrel,{}epsabs,{}nmin,{}nmax,{}nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")))
NIL
NIL
-(-738 |Curve|)
+(-740 |Curve|)
((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,{}r,{}n)} creates a tube of radius \\spad{r} around the curve \\spad{c}.")))
NIL
NIL
-(-739)
+(-741)
((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-740)
+(-742)
((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-741)
+(-743)
((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,{}y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted.")))
NIL
NIL
-(-742)
+(-744)
((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}")))
NIL
NIL
-(-743)
+(-745)
((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering.")))
NIL
NIL
-(-744 S R)
+(-746 S R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-349))))
-(-745 R)
+((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-349))))
+(-747 R)
((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,{}\\spad{ri},{}rj,{}rk,{}rE,{}rI,{}rJ,{}rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-746 -1461 R OS S)
+(-748 -1435 R OS S)
((|constructor| (NIL "OctonionCategoryFunctions2 implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}.")))
NIL
NIL
-(-747 R)
+(-749 R)
((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,{}qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-1461 (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-938 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))))
-(-748)
+((-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (-1435 (|HasCategory| (-940 |#1|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (|HasCategory| (-940 |#1|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| (-940 |#1|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-940 |#1|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))))
+(-750)
((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-749 R -1334 L)
+(-751 R -1327 L)
((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op,{} g,{} x)} returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{\\spad{yi}}\\spad{'s} form a basis for the solutions of \\spad{op y = 0}.")))
NIL
NIL
-(-750 R -1334)
+(-752 R -1327)
((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq,{} y,{} x = a,{} [y0,{}...,{}ym])} returns either the solution of the initial value problem \\spad{eq,{} y(a) = y0,{} y'(a) = y1,{}...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,{}y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| "failed") (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq,{} y,{} x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h,{} [b1,{}...,{}bm]]} where \\spad{h} is a particular solution and \\spad{[b1,{}...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,{}y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,{}y)} where \\spad{h(x,{}y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,{}...,{}eq_n],{} [y_1,{}...,{}y_n],{} x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p,{} [b_1,{}...,{}b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,{}...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m,{} x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m,{} v,{} x)} returns \\spad{[v_p,{} [v_1,{}...,{}v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.")))
NIL
NIL
-(-751)
+(-753)
((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE\\spad{'s}.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions.")))
NIL
NIL
-(-752 R -1334)
+(-754 R -1327)
((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f,{} x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f,{} x)} returns the integral of \\spad{f} with respect to \\spad{x}.")))
NIL
NIL
-(-753)
+(-755)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}epsabs,{}epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}intVals,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}G,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial,{}tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,{}xStart,{}xEnd,{}yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,{}R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.")))
NIL
NIL
-(-754 -1334 UP UPUP R)
+(-756 -1327 UP UPUP R)
((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation.")))
NIL
NIL
-(-755 -1334 UP L LQ)
+(-757 -1327 UP L LQ)
((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op,{} [g1,{}...,{}gm])} returns \\spad{op0,{} [h1,{}...,{}hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op,{} a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op,{} p)} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,{}e1],{}...,{}[dq,{}eq]]} where the \\spad{d_i}\\spad{'s} are the affine singularities of \\spad{op},{} and the \\spad{e_i}\\spad{'s} are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op,{} [g1,{}...,{}gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op,{} g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution.")))
NIL
NIL
-(-756)
+(-758)
((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-757 -1334 UP L LQ)
+(-759 -1327 UP L LQ)
((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[\\spad{ai} D^i],{} a)} returns the operator \\spad{+/[\\spad{ai} (D+a)\\spad{^i}]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} zeros,{} ezfactor)} returns \\spad{[[f1,{} L1],{} [f2,{} L2],{} ... ,{} [fk,{} Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z=0}. \\spad{zeros(C(x),{}H(x,{}y))} returns all the \\spad{P_i(x)}\\spad{'s} such that \\spad{H(x,{}P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{} Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{\\spad{Li} z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op,{} ric)} returns \\spad{[[a1,{} L1],{} [a2,{} L2],{} ... ,{} [ak,{} Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}\\spad{'s} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1,{} p1],{} [m2,{} p2],{} ... ,{} [mk,{} pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree \\spad{mj} for some \\spad{j},{} and its leading coefficient is then a zero of \\spad{pj}. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {\\spad{gcd}(\\spad{d},{}\\spad{q}) = 1}.")))
NIL
NIL
-(-758 -1334 UP)
+(-760 -1327 UP)
((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op,{} [g1,{}...,{}gm])} returns \\spad{[[h1,{}...,{}hq],{} M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,{}...,{}dq,{}c1,{}...,{}cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) "failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op,{} g)} returns \\spad{[\"failed\",{} []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f,{} [y1,{}...,{}ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}\\spad{'s} form a basis for the rational solutions of the homogeneous equation.")))
NIL
NIL
-(-759 -1334 L UP A LO)
+(-761 -1327 L UP A LO)
((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op,{} g)} returns \\spad{[m,{} v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,{}...,{}z_m) . (b_1,{}...,{}b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}.")))
NIL
NIL
-(-760 -1334 UP)
+(-762 -1327 UP)
((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op,{} zeros)} returns \\spad{[[p1,{} L1],{} [p2,{} L2],{} ... ,{} [pk,{}Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{\\spad{Li} z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op,{} ezfactor)} returns \\spad{[[f1,{}L1],{} [f2,{}L2],{}...,{} [fk,{}Lk]]} such that the singular \\spad{++} part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}\\spad{'s} (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int \\spad{ai}}} is \\spad{\\spad{Li} z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op,{} zeros,{} ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op,{} zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")))
NIL
((|HasCategory| |#1| (QUOTE (-27))))
-(-761 -1334 LO)
+(-763 -1327 LO)
((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m,{} v,{} solve)} returns \\spad{[[v_1,{}...,{}v_m],{} v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m,{} v)} returns \\spad{[m_0,{} v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,{}v)} returns \\spad{A,{}[[C_1,{}g_1,{}L_1,{}h_1],{}...,{}[C_k,{}g_k,{}L_k,{}h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}.")))
NIL
NIL
-(-762 -1334 LODO)
+(-764 -1327 LODO)
((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op,{} g,{} [f1,{}...,{}fm],{} I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op,{} g,{} [f1,{}...,{}fm])} returns \\spad{[u1,{}...,{}um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,{}...,{}fm]} are linearly independent and \\spad{op(\\spad{fi})=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,{}...,{}fn],{} q,{} D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,{}...,{}fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),{}...,{}fn^(i-1)]}.")))
NIL
NIL
-(-763 -3148 S |f|)
+(-765 -3169 S |f|)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4263 |has| |#2| (-984)) (-4264 |has| |#2| (-984)) (-4266 |has| |#2| (-6 -4266)) ((-4271 "*") |has| |#2| (-162)) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-741))) (-1461 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793)))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-984)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-793)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-741))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-793))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-984)))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#2| (QUOTE (-984))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-1027)))) (|HasAttribute| |#2| (QUOTE -4266)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-764 R)
+((-4267 |has| |#2| (-986)) (-4268 |has| |#2| (-986)) (-4270 |has| |#2| (-6 -4270)) ((-4275 "*") |has| |#2| (-162)) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344)))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-743))) (-1435 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-986)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-25)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-162)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-349)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-743)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-743))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (QUOTE (-986)))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#2| (QUOTE (-986))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-1030)))) (|HasAttribute| |#2| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-25))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-766 R)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-766 (-1099)) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-765 |Kernels| R |var|)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-768 (-1102)) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-767 |Kernels| R |var|)
((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable.")) (|coerce| ((|#2| $) "\\spad{coerce(p)} views \\spad{p} as a valie in the partial differential ring.") (($ |#2|) "\\spad{coerce(r)} views \\spad{r} as a value in the ordinary differential ring.")))
-(((-4271 "*") |has| |#2| (-344)) (-4262 |has| |#2| (-344)) (-4267 |has| |#2| (-344)) (-4261 |has| |#2| (-344)) (-4266 . T) (-4264 . T) (-4263 . T))
+(((-4275 "*") |has| |#2| (-344)) (-4266 |has| |#2| (-344)) (-4271 |has| |#2| (-344)) (-4265 |has| |#2| (-344)) (-4270 . T) (-4268 . T) (-4267 . T))
((|HasCategory| |#2| (QUOTE (-344))))
-(-766 S)
+(-768 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u})).")))
NIL
NIL
-(-767 S)
+(-769 S)
((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,{}[\\spad{si} ** \\spad{ni}])} where the \\spad{si}\\spad{'s} are in \\spad{S},{} and the \\spad{ni}\\spad{'s} are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|NonNegativeInteger|)))) $) "\\spad{factors(a1\\^e1,{}...,{}an\\^en)} returns \\spad{[[a1,{} e1],{}...,{}[an,{} en]]}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x,{} n)} returns the factor of the \\spad{n-th} monomial of \\spad{x}.")) (|nthExpon| (((|NonNegativeInteger|) $ (|Integer|)) "\\spad{nthExpon(x,{} n)} returns the exponent of the \\spad{n-th} monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (|overlap| (((|Record| (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) "\\spad{overlap(x,{} y)} returns \\spad{[l,{} m,{} r]} such that \\spad{x = l * m} and \\spad{y = m * r} hold and such that \\spad{l} and \\spad{r} have no overlap,{} that is \\spad{overlap(l,{} r) = [l,{} 1,{} r]}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l,{} r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x,{} s)} returns the exact right quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{rquo(x,{} y)} returns the exact right quotient of \\spad{x} by \\spad{y} that is \\spad{q} such that \\spad{x = q * y},{} \"failed\" if \\spad{x} is not of the form \\spad{q * y}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x,{} s)} returns the exact left quotient of \\spad{x} by \\spad{s}.") (((|Union| $ "failed") $ $) "\\spad{lquo(x,{} y)} returns the exact left quotient of \\spad{x} \\indented{1}{by \\spad{y} that is \\spad{q} such that \\spad{x = y * q},{}} \"failed\" if \\spad{x} is not of the form \\spad{y * q}.")) (|hcrf| (($ $ $) "\\spad{hcrf(x,{} y)} returns the highest common right factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = a d} and \\spad{y = b d}.")) (|hclf| (($ $ $) "\\spad{hclf(x,{} y)} returns the highest common left factor of \\spad{x} and \\spad{y},{} that is the largest \\spad{d} such that \\spad{x = d a} and \\spad{y = d b}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,{}y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}.")) (** (($ |#1| (|NonNegativeInteger|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left.")))
NIL
NIL
-(-768)
+(-770)
((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-769)
+(-771)
((|constructor| (NIL "\\spadtype{OpenMathConnection} provides low-level functions for handling connections to and from \\spadtype{OpenMathDevice}\\spad{s}.")) (|OMbindTCP| (((|Boolean|) $ (|SingleInteger|)) "\\spad{OMbindTCP}")) (|OMconnectTCP| (((|Boolean|) $ (|String|) (|SingleInteger|)) "\\spad{OMconnectTCP}")) (|OMconnOutDevice| (((|OpenMathDevice|) $) "\\spad{OMconnOutDevice:}")) (|OMconnInDevice| (((|OpenMathDevice|) $) "\\spad{OMconnInDevice:}")) (|OMcloseConn| (((|Void|) $) "\\spad{OMcloseConn}")) (|OMmakeConn| (($ (|SingleInteger|)) "\\spad{OMmakeConn}")))
NIL
NIL
-(-770)
+(-772)
((|constructor| (NIL "\\spadtype{OpenMathDevice} provides support for reading and writing openMath objects to files,{} strings etc. It also provides access to low-level operations from within the interpreter.")) (|OMgetType| (((|Symbol|) $) "\\spad{OMgetType(dev)} returns the type of the next object on \\axiom{\\spad{dev}}.")) (|OMgetSymbol| (((|Record| (|:| |cd| (|String|)) (|:| |name| (|String|))) $) "\\spad{OMgetSymbol(dev)} reads a symbol from \\axiom{\\spad{dev}}.")) (|OMgetString| (((|String|) $) "\\spad{OMgetString(dev)} reads a string from \\axiom{\\spad{dev}}.")) (|OMgetVariable| (((|Symbol|) $) "\\spad{OMgetVariable(dev)} reads a variable from \\axiom{\\spad{dev}}.")) (|OMgetFloat| (((|DoubleFloat|) $) "\\spad{OMgetFloat(dev)} reads a float from \\axiom{\\spad{dev}}.")) (|OMgetInteger| (((|Integer|) $) "\\spad{OMgetInteger(dev)} reads an integer from \\axiom{\\spad{dev}}.")) (|OMgetEndObject| (((|Void|) $) "\\spad{OMgetEndObject(dev)} reads an end object token from \\axiom{\\spad{dev}}.")) (|OMgetEndError| (((|Void|) $) "\\spad{OMgetEndError(dev)} reads an end error token from \\axiom{\\spad{dev}}.")) (|OMgetEndBVar| (((|Void|) $) "\\spad{OMgetEndBVar(dev)} reads an end bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetEndBind| (((|Void|) $) "\\spad{OMgetEndBind(dev)} reads an end binder token from \\axiom{\\spad{dev}}.")) (|OMgetEndAttr| (((|Void|) $) "\\spad{OMgetEndAttr(dev)} reads an end attribute token from \\axiom{\\spad{dev}}.")) (|OMgetEndAtp| (((|Void|) $) "\\spad{OMgetEndAtp(dev)} reads an end attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetEndApp| (((|Void|) $) "\\spad{OMgetEndApp(dev)} reads an end application token from \\axiom{\\spad{dev}}.")) (|OMgetObject| (((|Void|) $) "\\spad{OMgetObject(dev)} reads a begin object token from \\axiom{\\spad{dev}}.")) (|OMgetError| (((|Void|) $) "\\spad{OMgetError(dev)} reads a begin error token from \\axiom{\\spad{dev}}.")) (|OMgetBVar| (((|Void|) $) "\\spad{OMgetBVar(dev)} reads a begin bound variable list token from \\axiom{\\spad{dev}}.")) (|OMgetBind| (((|Void|) $) "\\spad{OMgetBind(dev)} reads a begin binder token from \\axiom{\\spad{dev}}.")) (|OMgetAttr| (((|Void|) $) "\\spad{OMgetAttr(dev)} reads a begin attribute token from \\axiom{\\spad{dev}}.")) (|OMgetAtp| (((|Void|) $) "\\spad{OMgetAtp(dev)} reads a begin attribute pair token from \\axiom{\\spad{dev}}.")) (|OMgetApp| (((|Void|) $) "\\spad{OMgetApp(dev)} reads a begin application token from \\axiom{\\spad{dev}}.")) (|OMputSymbol| (((|Void|) $ (|String|) (|String|)) "\\spad{OMputSymbol(dev,{}cd,{}s)} writes the symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}} to \\axiom{\\spad{dev}}.")) (|OMputString| (((|Void|) $ (|String|)) "\\spad{OMputString(dev,{}i)} writes the string \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputVariable| (((|Void|) $ (|Symbol|)) "\\spad{OMputVariable(dev,{}i)} writes the variable \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputFloat| (((|Void|) $ (|DoubleFloat|)) "\\spad{OMputFloat(dev,{}i)} writes the float \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputInteger| (((|Void|) $ (|Integer|)) "\\spad{OMputInteger(dev,{}i)} writes the integer \\axiom{\\spad{i}} to \\axiom{\\spad{dev}}.")) (|OMputEndObject| (((|Void|) $) "\\spad{OMputEndObject(dev)} writes an end object token to \\axiom{\\spad{dev}}.")) (|OMputEndError| (((|Void|) $) "\\spad{OMputEndError(dev)} writes an end error token to \\axiom{\\spad{dev}}.")) (|OMputEndBVar| (((|Void|) $) "\\spad{OMputEndBVar(dev)} writes an end bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputEndBind| (((|Void|) $) "\\spad{OMputEndBind(dev)} writes an end binder token to \\axiom{\\spad{dev}}.")) (|OMputEndAttr| (((|Void|) $) "\\spad{OMputEndAttr(dev)} writes an end attribute token to \\axiom{\\spad{dev}}.")) (|OMputEndAtp| (((|Void|) $) "\\spad{OMputEndAtp(dev)} writes an end attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputEndApp| (((|Void|) $) "\\spad{OMputEndApp(dev)} writes an end application token to \\axiom{\\spad{dev}}.")) (|OMputObject| (((|Void|) $) "\\spad{OMputObject(dev)} writes a begin object token to \\axiom{\\spad{dev}}.")) (|OMputError| (((|Void|) $) "\\spad{OMputError(dev)} writes a begin error token to \\axiom{\\spad{dev}}.")) (|OMputBVar| (((|Void|) $) "\\spad{OMputBVar(dev)} writes a begin bound variable list token to \\axiom{\\spad{dev}}.")) (|OMputBind| (((|Void|) $) "\\spad{OMputBind(dev)} writes a begin binder token to \\axiom{\\spad{dev}}.")) (|OMputAttr| (((|Void|) $) "\\spad{OMputAttr(dev)} writes a begin attribute token to \\axiom{\\spad{dev}}.")) (|OMputAtp| (((|Void|) $) "\\spad{OMputAtp(dev)} writes a begin attribute pair token to \\axiom{\\spad{dev}}.")) (|OMputApp| (((|Void|) $) "\\spad{OMputApp(dev)} writes a begin application token to \\axiom{\\spad{dev}}.")) (|OMsetEncoding| (((|Void|) $ (|OpenMathEncoding|)) "\\spad{OMsetEncoding(dev,{}enc)} sets the encoding used for reading or writing OpenMath objects to or from \\axiom{\\spad{dev}} to \\axiom{\\spad{enc}}.")) (|OMclose| (((|Void|) $) "\\spad{OMclose(dev)} closes \\axiom{\\spad{dev}},{} flushing output if necessary.")) (|OMopenString| (($ (|String|) (|OpenMathEncoding|)) "\\spad{OMopenString(s,{}mode)} opens the string \\axiom{\\spad{s}} for reading or writing OpenMath objects in encoding \\axiom{enc}.")) (|OMopenFile| (($ (|String|) (|String|) (|OpenMathEncoding|)) "\\spad{OMopenFile(f,{}mode,{}enc)} opens file \\axiom{\\spad{f}} for reading or writing OpenMath objects (depending on \\axiom{\\spad{mode}} which can be \\spad{\"r\"},{} \\spad{\"w\"} or \"a\" for read,{} write and append respectively),{} in the encoding \\axiom{\\spad{enc}}.")))
NIL
NIL
-(-771)
+(-773)
((|constructor| (NIL "\\spadtype{OpenMathEncoding} is the set of valid OpenMath encodings.")) (|OMencodingBinary| (($) "\\spad{OMencodingBinary()} is the constant for the OpenMath binary encoding.")) (|OMencodingSGML| (($) "\\spad{OMencodingSGML()} is the constant for the deprecated OpenMath SGML encoding.")) (|OMencodingXML| (($) "\\spad{OMencodingXML()} is the constant for the OpenMath \\spad{XML} encoding.")) (|OMencodingUnknown| (($) "\\spad{OMencodingUnknown()} is the constant for unknown encoding types. If this is used on an input device,{} the encoding will be autodetected. It is invalid to use it on an output device.")))
NIL
NIL
-(-772)
+(-774)
((|constructor| (NIL "\\spadtype{OpenMathErrorKind} represents different kinds of OpenMath errors: specifically parse errors,{} unknown \\spad{CD} or symbol errors,{} and read errors.")) (|OMReadError?| (((|Boolean|) $) "\\spad{OMReadError?(u)} tests whether \\spad{u} is an OpenMath read error.")) (|OMUnknownSymbol?| (((|Boolean|) $) "\\spad{OMUnknownSymbol?(u)} tests whether \\spad{u} is an OpenMath unknown symbol error.")) (|OMUnknownCD?| (((|Boolean|) $) "\\spad{OMUnknownCD?(u)} tests whether \\spad{u} is an OpenMath unknown \\spad{CD} error.")) (|OMParseError?| (((|Boolean|) $) "\\spad{OMParseError?(u)} tests whether \\spad{u} is an OpenMath parsing error.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(u)} creates an OpenMath error object of an appropriate type if \\axiom{\\spad{u}} is one of \\axiom{OMParseError},{} \\axiom{OMReadError},{} \\axiom{OMUnknownCD} or \\axiom{OMUnknownSymbol},{} otherwise it raises a runtime error.")))
NIL
NIL
-(-773)
+(-775)
((|constructor| (NIL "\\spadtype{OpenMathError} is the domain of OpenMath errors.")) (|omError| (($ (|OpenMathErrorKind|) (|List| (|Symbol|))) "\\spad{omError(k,{}l)} creates an instance of OpenMathError.")) (|errorInfo| (((|List| (|Symbol|)) $) "\\spad{errorInfo(u)} returns information about the error \\spad{u}.")) (|errorKind| (((|OpenMathErrorKind|) $) "\\spad{errorKind(u)} returns the type of error which \\spad{u} represents.")))
NIL
NIL
-(-774 R)
+(-776 R)
((|constructor| (NIL "\\spadtype{ExpressionToOpenMath} provides support for converting objects of type \\spadtype{Expression} into OpenMath.")))
NIL
NIL
-(-775 P R)
+(-777 P R)
((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite\\spad{''} in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-216))))
-(-776)
+(-778)
((|constructor| (NIL "\\spadtype{OpenMath} provides operations for exporting an object in OpenMath format.")) (|OMwrite| (((|Void|) (|OpenMathDevice|) $ (|Boolean|)) "\\spad{OMwrite(dev,{} u,{} true)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object; OMwrite(\\spad{dev},{} \\spad{u},{} \\spad{false}) writes the object as an OpenMath fragment.") (((|Void|) (|OpenMathDevice|) $) "\\spad{OMwrite(dev,{} u)} writes the OpenMath form of \\axiom{\\spad{u}} to the OpenMath device \\axiom{\\spad{dev}} as a complete OpenMath object.") (((|String|) $ (|Boolean|)) "\\spad{OMwrite(u,{} true)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object; OMwrite(\\spad{u},{} \\spad{false}) returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as an OpenMath fragment.") (((|String|) $) "\\spad{OMwrite(u)} returns the OpenMath \\spad{XML} encoding of \\axiom{\\spad{u}} as a complete OpenMath object.")))
NIL
NIL
-(-777)
+(-779)
((|constructor| (NIL "\\spadtype{OpenMathPackage} provides some simple utilities to make reading OpenMath objects easier.")) (|OMunhandledSymbol| (((|Exit|) (|String|) (|String|)) "\\spad{OMunhandledSymbol(s,{}cd)} raises an error if AXIOM reads a symbol which it is unable to handle. Note that this is different from an unexpected symbol.")) (|OMsupportsSymbol?| (((|Boolean|) (|String|) (|String|)) "\\spad{OMsupportsSymbol?(s,{}cd)} returns \\spad{true} if AXIOM supports symbol \\axiom{\\spad{s}} from \\spad{CD} \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMsupportsCD?| (((|Boolean|) (|String|)) "\\spad{OMsupportsCD?(cd)} returns \\spad{true} if AXIOM supports \\axiom{\\spad{cd}},{} \\spad{false} otherwise.")) (|OMlistSymbols| (((|List| (|String|)) (|String|)) "\\spad{OMlistSymbols(cd)} lists all the symbols in \\axiom{\\spad{cd}}.")) (|OMlistCDs| (((|List| (|String|))) "\\spad{OMlistCDs()} lists all the \\spad{CDs} supported by AXIOM.")) (|OMreadStr| (((|Any|) (|String|)) "\\spad{OMreadStr(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMreadFile| (((|Any|) (|String|)) "\\spad{OMreadFile(f)} reads an OpenMath object from \\axiom{\\spad{f}} and passes it to AXIOM.")) (|OMread| (((|Any|) (|OpenMathDevice|)) "\\spad{OMread(dev)} reads an OpenMath object from \\axiom{\\spad{dev}} and passes it to AXIOM.")))
NIL
NIL
-(-778 S)
+(-780 S)
((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}.")))
-((-4269 . T) (-4259 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4263 . T) (-4274 . T) (-4120 . T))
NIL
-(-779)
+(-781)
((|constructor| (NIL "\\spadtype{OpenMathServerPackage} provides the necessary operations to run AXIOM as an OpenMath server,{} reading/writing objects to/from a port. Please note the facilities available here are very basic. The idea is that a user calls \\spadignore{e.g.} \\axiom{Omserve(4000,{}60)} and then another process sends OpenMath objects to port 4000 and reads the result.")) (|OMserve| (((|Void|) (|SingleInteger|) (|SingleInteger|)) "\\spad{OMserve(portnum,{}timeout)} puts AXIOM into server mode on port number \\axiom{\\spad{portnum}}. The parameter \\axiom{\\spad{timeout}} specifies the \\spad{timeout} period for the connection.")) (|OMsend| (((|Void|) (|OpenMathConnection|) (|Any|)) "\\spad{OMsend(c,{}u)} attempts to output \\axiom{\\spad{u}} on \\aciom{\\spad{c}} in OpenMath.")) (|OMreceive| (((|Any|) (|OpenMathConnection|)) "\\spad{OMreceive(c)} reads an OpenMath object from connection \\axiom{\\spad{c}} and returns the appropriate AXIOM object.")))
NIL
NIL
-(-780 R S)
+(-782 R S)
((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f,{} r,{} i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity.")))
NIL
NIL
-(-781 R)
+(-783 R)
((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity.")))
-((-4266 |has| |#1| (-793)))
-((|HasCategory| |#1| (QUOTE (-793))) (-1461 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-515))) (-1461 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-21))))
-(-782 R)
+((-4270 |has| |#1| (-795)))
+((|HasCategory| |#1| (QUOTE (-795))) (-1435 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-516))) (-1435 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-21))))
+(-784 R)
((|constructor| (NIL "Algebra of ADDITIVE operators over a ring.")))
-((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
+((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))))
-(-783)
+(-785)
((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \\spad{\"k\"} (constructors),{} \\spad{\"d\"} (domains),{} \\spad{\"c\"} (categories) or \\spad{\"p\"} (packages).")))
NIL
NIL
-(-784)
+(-786)
((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-785)
+(-787)
((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,{}start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,{}start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,{}start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,{}start,{}lower,{}cons,{}upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,{}routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")))
NIL
NIL
-(-786)
+(-788)
((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-787 R S)
+(-789 R S)
((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f,{} r,{} p,{} m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f,{} r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity.")))
NIL
NIL
-(-788 R)
+(-790 R)
((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity.")))
-((-4266 |has| |#1| (-793)))
-((|HasCategory| |#1| (QUOTE (-793))) (-1461 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-793)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-515))) (-1461 (|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-21))))
-(-789)
+((-4270 |has| |#1| (-795)))
+((|HasCategory| |#1| (QUOTE (-795))) (-1435 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-516))) (-1435 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-21))))
+(-791)
((|constructor| (NIL "Ordered finite sets.")))
NIL
NIL
-(-790 -3148 S)
+(-792 -3169 S)
((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,{}v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering.")))
NIL
NIL
-(-791)
+(-793)
((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline")))
NIL
NIL
-(-792 S)
+(-794 S)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
NIL
NIL
-(-793)
+(-795)
((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is 1 if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} 0 if \\spad{x} equals 0.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} tests whether \\spad{x} is strictly less than 0.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} tests whether \\spad{x} is strictly greater than 0.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-794 S)
+(-796 S)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-795)
+(-797)
((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,{}b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}.")) (|min| (($ $ $) "\\spad{min(x,{}y)} returns the minimum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (|max| (($ $ $) "\\spad{max(x,{}y)} returns the maximum of \\spad{x} and \\spad{y} relative to \\spad{\"<\"}.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} is a less than or equal test.")) (>= (((|Boolean|) $ $) "\\spad{x >= y} is a greater than or equal test.")) (> (((|Boolean|) $ $) "\\spad{x > y} is a greater than test.")) (< (((|Boolean|) $ $) "\\spad{x < y} is a strict total ordering on the elements of the set.")))
NIL
NIL
-(-796 S R)
+(-798 S R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
NIL
-((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))))
-(-797 R)
+((|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))))
+(-799 R)
((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = c * a + d * b = rightGcd(a,{} b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,{}b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,{}b)} returns \\spad{[c,{}d]} such that \\spad{g = a * c + b * d = leftGcd(a,{} b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,{}b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,{}b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,{}b)} computes the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the \\spad{gcd} of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,{}b)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l,{} a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p,{} c,{} m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,{}k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,{}1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,{}k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),{}n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),{}i),{} i = 0..n)}.}")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-798 R C)
+(-800 R C)
((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a,{} b,{} sigma)} returns the pair \\spad{[q,{}r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division\\spad{''}. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p,{} c,{} m,{} sigma,{} delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p,{} q,{} sigma,{} delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use.")))
NIL
-((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522))))
-(-799 R |sigma| -2903)
+((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523))))
+(-801 R |sigma| -1784)
((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{} x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
-(-800 |x| R |sigma| -2903)
+((-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-344))))
+(-802 |x| R |sigma| -1784)
((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} returns \\spad{x} as a skew-polynomial.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-344))))
-(-801 R)
+((-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-344))))
+(-803 R)
((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,{}x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n,{} n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,{}n,{}x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,{}x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!,{} n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,{}x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,{}x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n,{} n = 0..)}.")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))
-(-802)
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))
+(-804)
((|constructor| (NIL "Semigroups with compatible ordering.")))
NIL
NIL
-(-803)
+(-805)
((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}")))
NIL
NIL
-(-804)
+(-806)
((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,{}y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,{}g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,{}lowerlimit,{}upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,{}lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,{}f)} creates the form \\spad{f} with \\spad{\"x} overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,{}n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,{}n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,{}[sub1,{}super1,{}sub2,{}super2,{}...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f,{} [sub,{} super,{} presuper,{} presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,{}n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,{}n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,{}n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,{}n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,{}m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,{}n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \\spad{\"f} super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,{}g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,{}g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,{}g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,{}g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,{}n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,{}g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,{}f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,{}l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op,{} a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op,{} a,{} b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,{}l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,{}l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,{}g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,{}g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,{}n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,{}n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,{}n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,{}m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}.")))
NIL
NIL
-(-805)
+(-807)
((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,{}x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output\\spad{''} stream,{} as defined by \\spadsyscom{set output algebra}.")))
NIL
NIL
-(-806 |VariableList|)
+(-808 |VariableList|)
((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed")))
NIL
NIL
-(-807 R |vl| |wl| |wtlevel|)
+(-809 R |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(p)} coerces a Polynomial(\\spad{R}) into Weighted form,{} applying weights and ignoring terms") (((|Polynomial| |#1|) $) "\\spad{coerce(p)} converts back into a Polynomial(\\spad{R}),{} ignoring weights")))
-((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
+((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))))
-(-808 R PS UP)
+(-810 R PS UP)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,{}dd,{}ns,{}ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-809 R |x| |pt|)
+(-811 R |x| |pt|)
((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,{}dd,{}ns,{}ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")))
NIL
NIL
-(-810 |p|)
+(-812 |p|)
((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,{}a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,{}a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,{}n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-811 |p|)
+(-813 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Zp:} \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-812 |p|)
+(-814 |p|)
((|constructor| (NIL "Stream-based implementation of \\spad{Qp:} numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1).")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-811 |#1|) (QUOTE (-850))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-811 |#1|) (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-140))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-811 |#1|) (QUOTE (-960))) (|HasCategory| (-811 |#1|) (QUOTE (-768))) (-1461 (|HasCategory| (-811 |#1|) (QUOTE (-768))) (|HasCategory| (-811 |#1|) (QUOTE (-795)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (QUOTE (-1075))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-811 |#1|) (QUOTE (-216))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -811) (|devaluate| |#1|)) (LIST (QUOTE -811) (|devaluate| |#1|)))) (|HasCategory| (-811 |#1|) (QUOTE (-289))) (|HasCategory| (-811 |#1|) (QUOTE (-515))) (|HasCategory| (-811 |#1|) (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-811 |#1|) (QUOTE (-850)))) (|HasCategory| (-811 |#1|) (QUOTE (-138)))))
-(-813 |p| PADIC)
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-813 |#1|) (QUOTE (-852))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-813 |#1|) (QUOTE (-138))) (|HasCategory| (-813 |#1|) (QUOTE (-140))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-813 |#1|) (QUOTE (-962))) (|HasCategory| (-813 |#1|) (QUOTE (-770))) (-1435 (|HasCategory| (-813 |#1|) (QUOTE (-770))) (|HasCategory| (-813 |#1|) (QUOTE (-797)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-813 |#1|) (QUOTE (-1078))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-813 |#1|) (QUOTE (-216))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -813) (|devaluate| |#1|)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -291) (LIST (QUOTE -813) (|devaluate| |#1|)))) (|HasCategory| (-813 |#1|) (LIST (QUOTE -268) (LIST (QUOTE -813) (|devaluate| |#1|)) (LIST (QUOTE -813) (|devaluate| |#1|)))) (|HasCategory| (-813 |#1|) (QUOTE (-289))) (|HasCategory| (-813 |#1|) (QUOTE (-516))) (|HasCategory| (-813 |#1|) (QUOTE (-797))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-813 |#1|) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-813 |#1|) (QUOTE (-852)))) (|HasCategory| (-813 |#1|) (QUOTE (-138)))))
+(-815 |p| PADIC)
((|constructor| (NIL "This is the category of stream-based representations of \\spad{Qp}.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,{}n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-768))) (-1461 (|HasCategory| |#2| (QUOTE (-768))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-795))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-814 S T$)
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-770))) (-1435 (|HasCategory| |#2| (QUOTE (-770))) (|HasCategory| |#2| (QUOTE (-797)))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-797))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-816 S T$)
((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of \\spad{`p'}.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of \\spad{`p'}.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,{}t)} returns a pair object composed of \\spad{`s'} and \\spad{`t'}.")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))))
-(-815)
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))))
+(-817)
((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it\\spad{'s} highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it\\spad{'s} lowest value.")))
NIL
NIL
-(-816)
+(-818)
((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.")))
NIL
NIL
-(-817 CF1 CF2)
+(-819 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-818 |ComponentFunction|)
+(-820 |ComponentFunction|)
((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,{}c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}.")))
NIL
NIL
-(-819 CF1 CF2)
+(-821 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-820 |ComponentFunction|)
+(-822 |ComponentFunction|)
((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,{}i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,{}c2,{}c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-821)
+(-823)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result.")))
NIL
NIL
-(-822 CF1 CF2)
+(-824 CF1 CF2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,{}x)} \\undocumented")))
NIL
NIL
-(-823 |ComponentFunction|)
+(-825 |ComponentFunction|)
((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,{}i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,{}c2,{}c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}.")))
NIL
NIL
-(-824)
+(-826)
((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,{}2,{}3,{}...,{}n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,{}l1,{}l2,{}..,{}ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0\\spad{'s},{}\\spad{l1} 1\\spad{'s},{}\\spad{l2} 2\\spad{'s},{}...,{}\\spad{ln} \\spad{n}\\spad{'s}.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,{}l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,{}2,{}4],{}[2,{}3,{}5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}\\spad{'s},{} and 4 \\spad{5}\\spad{'s}.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,{}st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,{}l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|Integer|))) (|Stream| (|List| (|Integer|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|Integer|)) (|List| (|Integer|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}.")) (|partitions| (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l)} is the stream of all \\indented{1}{partitions whose number of} \\indented{1}{parts and largest part are no greater than \\spad{p} and \\spad{l}.}") (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{partitions(n)} is the stream of all partitions of \\spad{n}.") (((|Stream| (|List| (|Integer|))) (|Integer|) (|Integer|) (|Integer|)) "\\spad{partitions(p,{}l,{}n)} is the stream of partitions \\indented{1}{of \\spad{n} whose number of parts is no greater than \\spad{p}} \\indented{1}{and whose largest part is no greater than \\spad{l}.}")))
NIL
NIL
-(-825 R)
+(-827 R)
((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself.")))
NIL
NIL
-(-826 R S L)
+(-828 R S L)
((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,{}r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-827 S)
+(-829 S)
((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches.")))
NIL
NIL
-(-828 |Base| |Subject| |Pat|)
+(-830 |Base| |Subject| |Pat|)
((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr,{} pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,{}...,{}vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,{}...,{}en],{} pat)} matches the pattern pat on the list of expressions \\spad{[e1,{}...,{}en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,{}...,{}en],{} pat)} tests if the list of expressions \\spad{[e1,{}...,{}en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr,{} pat)} tests if the expression \\spad{expr} matches the pattern pat.")))
NIL
-((-12 (-3676 (|HasCategory| |#2| (QUOTE (-984)))) (-3676 (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (-12 (|HasCategory| |#2| (QUOTE (-984))) (-3676 (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))
-(-829 R A B)
+((-12 (-3745 (|HasCategory| |#2| (QUOTE (-986)))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))))) (-12 (|HasCategory| |#2| (QUOTE (-986))) (-3745 (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))))
+(-831 R A B)
((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f,{} [(v1,{}a1),{}...,{}(vn,{}an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(a1)),{}...,{}(\\spad{vn},{}\\spad{f}(an))].")))
NIL
NIL
-(-830 R S)
+(-832 R S)
((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r,{} p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don\\spad{'t},{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,{}e1],{}...,{}[vn,{}en])} returns the match result containing the matches (\\spad{v1},{}e1),{}...,{}(\\spad{vn},{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var,{} expr,{} r,{} val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var,{} expr,{} r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var,{} r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a,{} b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match.")))
NIL
NIL
-(-831 R -3340)
+(-833 R -4020)
((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,{}...,{}vn],{} p)} returns \\spad{f(v1,{}...,{}vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v,{} p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p,{} [a1,{}...,{}an],{} f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p,{} [f1,{}...,{}fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and \\spad{fn} to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p,{} f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned.")))
NIL
NIL
-(-832 R S)
+(-834 R S)
((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f,{} p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}.")))
NIL
NIL
-(-833 R)
+(-835 R)
((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a,{} b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p,{} v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,{}...,{}an],{} f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,{}...,{}an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x,{} [a1,{}...,{}an],{} f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,{}...,{}an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x,{} c?,{} o?,{} m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p,{} [p1,{}...,{}pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and \\spad{pn} to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p,{} [p1,{}...,{}pn])} attaches the predicate \\spad{p1} and ... and \\spad{pn} to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,{}...,{}pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and \\spad{pn}.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form \\spad{'s} for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the pattern \\spad{[a1,{}...,{}an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,{} [a1,{}...,{}an])} returns \\spad{op(a1,{}...,{}an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a,{} b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = [a1,{}...,{}an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a,{} b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q,{} n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op,{} [a1,{}...,{}an]]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p,{} op)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = op(a1,{}...,{}an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0")))
NIL
NIL
-(-834 |VarSet|)
+(-836 |VarSet|)
((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2,{} .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1,{} l2,{} .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list.")))
NIL
NIL
-(-835 UP R)
+(-837 UP R)
((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,{}q)} \\undocumented")))
NIL
NIL
-(-836)
+(-838)
((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,{}args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.")))
NIL
NIL
-(-837 UP -1334)
+(-839 UP -1327)
((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,{}n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,{}q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,{}m,{}n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented")))
NIL
NIL
-(-838)
+(-840)
((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,{}R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,{}ymin,{}xmax,{}ymax,{}ngx,{}ngy,{}pde,{}bounds,{}st,{}tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,{}routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE\\spad{'s} and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline \\spad{**} At the moment,{} only Second Order Elliptic Partial Differential Equations are solved \\spad{**}")))
NIL
NIL
-(-839)
+(-841)
((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}")))
NIL
NIL
-(-840 A S)
+(-842 A S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#2|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
NIL
NIL
-(-841 S)
+(-843 S)
((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1,{} n1)...,{} sn,{} nn)}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{D(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{D(...D(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{D(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,{} [s1,{}...,{}sn],{} [n1,{}...,{}nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,{} s,{} n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}-th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,{}[s1,{}...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x,{} s1)...,{} sn)}.") (($ $ |#1|) "\\spad{differentiate(x,{}v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-842 S)
+(-844 S)
((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})\\spad{'s}")) (|coerce| (((|Tree| |#1|) $) "\\spad{coerce(x)} \\undocumented")) (|ptree| (($ $ $) "\\spad{ptree(x,{}y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree")))
NIL
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-843 |n| R)
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-845 |n| R)
((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} \\spad{Ch}. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of \\spad{x:}\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} \\spad{ch}.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}")))
NIL
NIL
-(-844 S)
+(-846 S)
((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p,{} el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|elt| ((|#1| $ |#1|) "\\spad{elt(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|eval| ((|#1| $ |#1|) "\\spad{eval(p,{} el)} returns the image of {\\em el} under the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-845 S)
+(-847 S)
((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,{}m,{}n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,{}0,{}1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,{}gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,{}gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,{}ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,{}els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,{}el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,{}20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,{}i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,{}i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}.")))
NIL
NIL
-(-846 S)
+(-848 S)
((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,{}...,{}n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|movedPoints| (((|Set| |#1|) $) "\\spad{movedPoints(p)} returns the set of points moved by the permutation \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation.")))
-((-4266 . T))
-((-1461 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-795)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-795))))
-(-847 R E |VarSet| S)
+((-4270 . T))
+((-1435 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-797)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-797))))
+(-849 R E |VarSet| S)
((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,{}p,{}v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-848 R S)
+(-850 R S)
((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,{}...,{}pn],{}p)} returns the list of polynomials \\spad{[q1,{}...,{}qn]} such that \\spad{sum qi/pi = p / prod \\spad{pi}},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned.")))
NIL
NIL
-(-849 S)
+(-851 S)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
NIL
((|HasCategory| |#1| (QUOTE (-138))))
-(-850)
+(-852)
((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Union| $ "failed") $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \"failed\" if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1,{} ...,{} fn],{} g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod \\spad{fi} = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}\\spad{'s} exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,{}q)} returns the \\spad{gcd} of the univariate polynomials \\spad{p} \\spad{qnd} \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-851 |p|)
+(-853 |p|)
((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
((|HasCategory| $ (QUOTE (-140))) (|HasCategory| $ (QUOTE (-138))) (|HasCategory| $ (QUOTE (-349))))
-(-852 R0 -1334 UP UPUP R)
+(-854 R0 -1327 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-853 UP UPUP R)
+(-855 UP UPUP R)
((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented")))
NIL
NIL
-(-854 UP UPUP)
+(-856 UP UPUP)
((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}")))
NIL
NIL
-(-855 R)
+(-857 R)
((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact\\spad{''} form has only one fractional term per prime in the denominator,{} while the \\spad{``p}-adic\\spad{''} form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,{}denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,{}x)} is a utility function that expands the second argument \\spad{x} \\spad{``p}-adically\\spad{''} in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,{}n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-856 R)
+(-858 R)
((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num,{} facdenom,{} var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf,{} var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var.")))
NIL
NIL
-(-857 E OV R P)
+(-859 E OV R P)
((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the \\spad{gcd} of the list of primitive polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,{}q)} computes the \\spad{gcd} of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the \\spad{gcd} of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,{}q)} computes the \\spad{gcd} of the two polynomials \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-858)
+(-860)
((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik\\spad{'s} group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,{}...,{}nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic\\spad{'s} Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik\\spad{'s} Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic\\spad{'s} Cube acting on integers 10*i+j for 1 \\spad{<=} \\spad{i} \\spad{<=} 6,{} 1 \\spad{<=} \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(\\spad{li})} constructs the janko group acting on the 100 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(\\spad{li})} constructs the mathieu group acting on the 24 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(\\spad{li})} constructs the mathieu group acting on the 23 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(\\spad{li})} constructs the mathieu group acting on the 22 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. Error: if {\\em \\spad{li}} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(\\spad{li})} constructs the mathieu group acting on the 12 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed Error: if {\\em \\spad{li}} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(\\spad{li})} constructs the mathieu group acting on the 11 integers given in the list {\\em \\spad{li}}. Note: duplicates in the list will be removed. error,{} if {\\em \\spad{li}} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,{}...,{}ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,{}...,{}ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,{}...,{}nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em \\spad{ni}}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(\\spad{li})} constructs the alternating group acting on the integers in the list {\\em \\spad{li}},{} generators are in general the {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)} with {\\em n-2}-cycle {\\em (\\spad{li}.3,{}...,{}\\spad{li}.n)} and the 3-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2,{}\\spad{li}.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,{}2)} with {\\em n-2}-cycle {\\em (3,{}...,{}n)} and the 3-cycle {\\em (1,{}2,{}3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(\\spad{li})} constructs the symmetric group acting on the integers in the list {\\em \\spad{li}},{} generators are the cycle given by {\\em \\spad{li}} and the 2-cycle {\\em (\\spad{li}.1,{}\\spad{li}.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,{}...,{}n)} and the 2-cycle {\\em (1,{}2)}.")))
NIL
NIL
-(-859 -1334)
+(-861 -1327)
((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any \\spad{gcd} domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,{}lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}.")))
NIL
NIL
-(-860 R)
+(-862 R)
((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R}).")))
NIL
NIL
-(-861)
+(-863)
((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{expressIdealMember([f1,{}...,{}fn],{}h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \"failed\" if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,{}...,{}fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,{}...,{}fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-862)
+(-864)
((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = \\spad{y*x}")) (|gcd| (($ $ $) "\\spad{gcd(a,{}b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}.")))
-(((-4271 "*") . T))
+(((-4275 "*") . T))
NIL
-(-863 -1334 P)
+(-865 -1327 P)
((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,{}l2)} \\undocumented")))
NIL
NIL
-(-864 |xx| -1334)
+(-866 |xx| -1327)
((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,{}lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,{}lf,{}lg)} \\undocumented")))
NIL
NIL
-(-865 R |Var| |Expon| GR)
+(-867 R |Var| |Expon| GR)
((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(\\spad{pl}) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in \\spad{pl} is inconsistent. It is assumed that \\spad{pl} is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,{}c,{} w,{} p,{} r,{} rm,{} m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,{}g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,{}k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,{}sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,{}k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,{}g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,{}r)} computes a list of subdeterminants of each rank \\spad{>=} \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g,{} l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} \\spad{~=} 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c,{} w,{} r,{} s,{} m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,{}s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}k,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,{}w,{}k,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,{}s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,{}w,{}s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,{}w,{}k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks \\spad{>=} \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,{}w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}")))
NIL
NIL
-(-866 S)
+(-868 S)
((|constructor| (NIL "PlotFunctions1 provides facilities for plotting curves where functions \\spad{SF} \\spad{->} \\spad{SF} are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,{}theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}theta,{}seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}t,{}seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,{}x,{}seg)} plots the graph of \\spad{y = f(x)} on a interval")))
NIL
NIL
-(-867)
+(-869)
((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s,{}t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,{}f2,{}f3,{}f4,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}x,{}y,{}z,{}w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,{}g,{}h,{}a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")))
NIL
NIL
-(-868)
+(-870)
((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,{}r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r,{}s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,{}r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,{}2*\\%\\spad{pi}]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,{}a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,{}b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),{}g(t)),{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,{}r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b,{}c..d,{}e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}; \\spad{x}-range of \\spad{[c,{}d]} and \\spad{y}-range of \\spad{[e,{}f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}g,{}a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,{}b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b,{}c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,{}...,{}fm],{}a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b,{}c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}; \\spad{y}-range of \\spad{[c,{}d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,{}a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,{}b]}.")))
NIL
NIL
-(-869)
+(-871)
((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented")))
NIL
NIL
-(-870 R -1334)
+(-872 R -1327)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol.")))
NIL
NIL
-(-871)
+(-873)
((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol \\spad{'x} and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|String|)) "\\spad{assert(x,{} s)} makes the assertion \\spad{s} about \\spad{x}.")))
NIL
NIL
-(-872 S A B)
+(-874 S A B)
((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B).")))
NIL
NIL
-(-873 S R -1334)
+(-875 S R -1327)
((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-874 I)
+(-876 I)
((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n,{} pat,{} res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-875 S E)
+(-877 S E)
((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,{}...,{}en),{} pat,{} res)} matches the pattern \\spad{pat} to \\spad{f(e1,{}...,{}en)}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-876 S R L)
+(-878 S R L)
((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l,{} pat,{} res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-877 S E V R P)
+(-879 S E V R P)
((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p,{} pat,{} res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p,{} pat,{} res,{} vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables.")))
NIL
-((|HasCategory| |#3| (LIST (QUOTE -827) (|devaluate| |#1|))))
-(-878 R -1334 -3340)
+((|HasCategory| |#3| (LIST (QUOTE -829) (|devaluate| |#1|))))
+(-880 R -1327 -4020)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol.")))
NIL
NIL
-(-879 -3340)
+(-881 -4020)
((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x,{} [f1,{} f2,{} ...,{} fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and \\spad{fn} to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x,{} foo)} attaches the predicate foo to \\spad{x}.")))
NIL
NIL
-(-880 S R Q)
+(-882 S R Q)
((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b,{} pat,{} res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches.")))
NIL
NIL
-(-881 S)
+(-883 S)
((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr,{} pat,{} res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion).")))
NIL
NIL
-(-882 S R P)
+(-884 S R P)
((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj,{} lpat,{} res,{} match)} matches the product of patterns \\spad{reduce(*,{}lpat)} to the product of subjects \\spad{reduce(*,{}lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj,{} lpat,{} op,{} res,{} match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}.")))
NIL
NIL
-(-883)
+(-885)
((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n,{} n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!,{} n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!,{} n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,{}[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,{}x)} computed by solving the differential equation \\spad{differentiate(E(n,{}x),{}x) = n E(n-1,{}x)} where \\spad{E(0,{}x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,{}1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n,{} n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,{}x)} computed by solving the differential equation \\spad{differentiate(B(n,{}x),{}x) = n B(n-1,{}x)} where \\spad{B(0,{}x) = 1} and initial condition comes from \\spad{B(n) = B(n,{}0)}.")))
NIL
NIL
-(-884 R)
+(-886 R)
((|constructor| (NIL "This domain implements points in coordinate space")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-885 |lv| R)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-943))) (|HasCategory| |#1| (QUOTE (-986)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-887 |lv| R)
((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}.")))
NIL
NIL
-(-886 |TheField| |ThePols|)
+(-888 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}\\spad{sn})} is the number of sign variations in the list of non null numbers [s1::l]\\spad{@sn},{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}\\spad{p'})}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term")))
NIL
-((|HasCategory| |#1| (QUOTE (-793))))
-(-887 R S)
+((|HasCategory| |#1| (QUOTE (-795))))
+(-889 R S)
((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f,{} p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}.")))
NIL
NIL
-(-888 |x| R)
+(-890 |x| R)
((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p,{} x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,{}Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}.")))
NIL
NIL
-(-889 S R E |VarSet|)
+(-891 S R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-850))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#4| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#4| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#4| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-795))))
-(-890 R E |VarSet|)
+((|HasCategory| |#2| (QUOTE (-852))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#4| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#4| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#4| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-797))))
+(-892 R E |VarSet|)
((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,{}v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,{}v)} is the \\spad{gcd} of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the \\spad{gcd} of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,{}v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,{}q,{}v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),{}...,{}X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p,{} lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,{}...,{}mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,{}v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,{}[v1..vn],{}[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,{}x,{}n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,{}b,{}v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p,{} lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,{}v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,{}v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),{}...,{}a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p,{} lv,{} ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,{}v,{}n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,{}lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,{}v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
NIL
-(-891 E V R P -1334)
+(-893 E V R P -1327)
((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x,{} n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,{}...,{}an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}\\spad{mn}] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f,{} x,{} p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-892 E |Vars| R P S)
+(-894 E |Vars| R P S)
((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap,{} coefmap,{} p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}")))
NIL
NIL
-(-893 R)
+(-895 R)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,{}x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1099) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-894 E V R P -1334)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1102) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-896 E V R P -1327)
((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,{}n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f,{} n)} returns \\spad{[m,{}c,{}r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|coerce| (($ |#4|) "\\spad{coerce(p)} \\undocumented")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented")))
NIL
((|HasCategory| |#3| (QUOTE (-432))))
-(-895)
+(-897)
((|constructor| (NIL "This domain represents network port numbers (notable \\spad{TCP} and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer \\spad{`n'}.")))
NIL
NIL
-(-896)
+(-898)
((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-897 R L)
+(-899 R L)
((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op,{} m)} returns the matrix A such that \\spad{A w = (W',{}W'',{}...,{}W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L),{} m}.")))
NIL
NIL
-(-898 A B)
+(-900 A B)
((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,{}a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,{}a,{}r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,{}[1,{}2,{}3],{}0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,{}a,{}r)} successively applies \\spad{reduce(f,{}x,{}r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,{}a2,{}...]},{} then \\spad{scan(f,{}a,{}r)} returns \\spad{[reduce(f,{}[a1],{}r),{}reduce(f,{}[a1,{}a2],{}r),{}...]}.")))
NIL
NIL
-(-899 S)
+(-901 S)
((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt\\spad{'s}.} Minimum index is 0 in this type,{} cannot be changed")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-900)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-902)
((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f,{} x = a..b)} returns the formal definite integral of \\spad{f} \\spad{dx} for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f,{} x)} returns the formal integral of \\spad{f} \\spad{dx}.")))
NIL
NIL
-(-901 -1334)
+(-903 -1327)
((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an],{} a)} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,{}...,{}pn],{} [a1,{}...,{}an])} returns \\spad{[[c1,{}...,{}cn],{} [q1,{}...,{}qn],{} q]} such that then \\spad{k(a1,{}...,{}an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{\\spad{ai} = \\spad{qi}(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1,{} a1,{} p2,{} a2)} returns \\spad{[c1,{} c2,{} q]} such that \\spad{k(a1,{} a2) = k(a)} where \\spad{a = c1 a1 + c2 a2,{} and q(a) = 0}. The \\spad{pi}\\spad{'s} are the defining polynomials for the \\spad{ai}\\spad{'s}. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve a2. This operation uses \\spadfun{resultant}.")))
NIL
NIL
-(-902 I)
+(-904 I)
((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin\\spad{'s} probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,{}b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin\\spad{'s} probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for n<10**20. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime")))
NIL
NIL
-(-903)
+(-905)
((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter.")))
NIL
NIL
-(-904 R E)
+(-906 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-128)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)))
-(-905 A B)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-128)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)))
+(-907 A B)
((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,{}b)} \\undocumented")))
-((-4266 -12 (|has| |#2| (-453)) (|has| |#1| (-453))))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#1| (QUOTE (-741))) (|HasCategory| |#2| (QUOTE (-741))))) (-12 (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-675)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-795)))))
-(-906)
+((-4270 -12 (|has| |#2| (-453)) (|has| |#1| (-453))))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743)))) (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-797))))) (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743))))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-677))))) (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-349)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-453))) (|HasCategory| |#2| (QUOTE (-453)))) (-12 (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#1| (QUOTE (-743))) (|HasCategory| |#2| (QUOTE (-743))))) (-12 (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-677)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-128))) (|HasCategory| |#2| (QUOTE (-128)))) (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-797)))))
+(-908)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Symbol|) (|SExpression|)) "\\spad{property(n,{}val)} constructs a property with name \\spad{`n'} and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Symbol|) $) "\\spad{name(p)} returns the name of property \\spad{p}")))
NIL
NIL
-(-907 T$)
+(-909 T$)
((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|equivOperands| (((|Pair| $ $) $) "\\spad{equivOperands p} extracts the operands to the logical equivalence; otherwise errors.")) (|equiv?| (((|Boolean|) $) "\\spad{equiv? p} is \\spad{true} when \\spad{`p'} is a logical equivalence.")) (|impliesOperands| (((|Pair| $ $) $) "\\spad{impliesOperands p} extracts the operands to the logical implication; otherwise errors.")) (|implies?| (((|Boolean|) $) "\\spad{implies? p} is \\spad{true} when \\spad{`p'} is a logical implication.")) (|orOperands| (((|Pair| $ $) $) "\\spad{orOperands p} extracts the operands to the logical disjunction; otherwise errors.")) (|or?| (((|Boolean|) $) "\\spad{or? p} is \\spad{true} when \\spad{`p'} is a logical disjunction.")) (|andOperands| (((|Pair| $ $) $) "\\spad{andOperands p} extracts the operands of the logical conjunction; otherwise errors.")) (|and?| (((|Boolean|) $) "\\spad{and? p} is \\spad{true} when \\spad{`p'} is a logical conjunction.")) (|notOperand| (($ $) "\\spad{notOperand returns} the operand to the logical `not' operator; otherwise errors.")) (|not?| (((|Boolean|) $) "\\spad{not? p} is \\spad{true} when \\spad{`p'} is a logical negation")) (|variable| (((|Symbol|) $) "\\spad{variable p} extracts the variable name from \\spad{`p'}; otherwise errors.")) (|variable?| (((|Boolean|) $) "variables? \\spad{p} returns \\spad{true} when \\spad{`p'} really is a variable.")) (|term| ((|#1| $) "\\spad{term p} extracts the term value from \\spad{`p'}; otherwise errors.")) (|term?| (((|Boolean|) $) "\\spad{term? p} returns \\spad{true} when \\spad{`p'} really is a term")) (|variables| (((|Set| (|Symbol|)) $) "\\spad{variables(p)} returns the set of propositional variables appearing in the proposition \\spad{`p'}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional variable.") (($ |#1|) "\\spad{coerce(t)} turns the term \\spad{`t'} into a propositional formula")))
NIL
-((|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-908)
+((|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-910)
((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,{}q)} returns the logical equivalence of \\spad{`p'},{} \\spad{`q'}.")) (|implies| (($ $ $) "\\spad{implies(p,{}q)} returns the logical implication of \\spad{`q'} by \\spad{`p'}.")) (|or| (($ $ $) "\\spad{p or q} returns the logical disjunction of \\spad{`p'},{} \\spad{`q'}.")) (|and| (($ $ $) "\\spad{p and q} returns the logical conjunction of \\spad{`p'},{} \\spad{`q'}.")) (|not| (($ $) "\\spad{not p} returns the logical negation of \\spad{`p'}.")))
NIL
NIL
-(-909 S)
+(-911 S)
((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,{}q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,{}q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}.")))
-((-4269 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4274 . T) (-4120 . T))
NIL
-(-910 R |polR|)
+(-912 R |polR|)
((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean1}{PseudoRemainderSequence},{} \\axiomOpFrom{semiSubResultantGcdEuclidean2}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.\\spad{fr}}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{nextsousResultant2(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{\\spad{S_}{\\spad{e}-1}} where \\axiom{\\spad{P} ~ \\spad{S_d},{} \\spad{Q} = \\spad{S_}{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = \\spad{lc}(\\spad{S_d})}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard2(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)\\spad{**}(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{\\spad{gcd}(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{coef1 * \\spad{P} + coef2 * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{semiSubResultantGcdEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{+/-} S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the \\spad{gcd} of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean1(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{semiResultantEuclidean2(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) \\spad{>=} degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")))
NIL
((|HasCategory| |#1| (QUOTE (-432))))
-(-911)
+(-913)
((|constructor| (NIL "\\indented{1}{Partition is an OrderedCancellationAbelianMonoid which is used} as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|coerce| (((|List| (|Integer|)) $) "\\spad{coerce(p)} coerces a partition into a list of integers")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|Integer|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{powers(\\spad{li})} returns a list of 2-element lists. For each 2-element list,{} the first element is an entry of \\spad{li} and the second element is the multiplicity with which the first element occurs in \\spad{li}. There is a 2-element list for each value occurring in \\spad{l}.")) (|partition| (($ (|List| (|Integer|))) "\\spad{partition(\\spad{li})} converts a list of integers \\spad{li} to a partition")))
NIL
NIL
-(-912 S |Coef| |Expon| |Var|)
+(-914 S |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
NIL
NIL
-(-913 |Coef| |Expon| |Var|)
+(-915 |Coef| |Expon| |Var|)
((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,{}[x1,{}..,{}xk],{}[n1,{}..,{}nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,{}x,{}n)} computes \\spad{a*x**n}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-914)
+(-916)
((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x-},{} \\spad{y-},{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}.")))
NIL
NIL
-(-915 S R E |VarSet| P)
+(-917 S R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
NIL
-((|HasCategory| |#2| (QUOTE (-522))))
-(-916 R E |VarSet| P)
+((|HasCategory| |#2| (QUOTE (-523))))
+(-918 R E |VarSet| P)
((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{\\spad{ps}}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that every polynomial in \\axiom{\\spad{lr}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(\\spad{lp},{}\\spad{cs})} returns \\axiom{\\spad{lr}} such that the leading monomial of every polynomial in \\axiom{\\spad{lr}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{cs}} and \\axiom{(\\spad{lp},{}\\spad{cs})} and \\axiom{(\\spad{lr},{}\\spad{cs})} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}},{} \\axiom{r*a - \\spad{c*b}} lies in the ideal generated by \\axiom{\\spad{ps}}. Furthermore,{} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}\\spad{ps})} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ps}} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{\\spad{ps}}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(\\spad{ps})} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{\\spad{ps}} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{ps}} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}\\spad{ps})} returns \\axiom{us,{}\\spad{vs},{}\\spad{ws}} such that \\axiom{us} is \\axiom{collectUnder(\\spad{ps},{}\\spad{v})},{} \\axiom{\\spad{vs}} is \\axiom{collect(\\spad{ps},{}\\spad{v})} and \\axiom{\\spad{ws}} is \\axiom{collectUpper(\\spad{ps},{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(\\spad{ps},{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{\\spad{ps}} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}\\spad{ps})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ps}}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(\\spad{ps})} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{\\spad{ps}}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(\\spad{ps})} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{\\spad{ps}}.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{ps})} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(\\spad{lp})} returns an element of the domain whose elements are the members of \\axiom{\\spad{lp}} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned.")))
-((-4269 . T) (-4100 . T))
+((-4273 . T) (-4120 . T))
NIL
-(-917 R E V P)
+(-919 R E V P)
((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{irreducibleFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of \\spad{gcd} techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(\\spad{lp})} returns \\axiom{\\spad{lf}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lf} = [\\spad{f1},{}...,{}\\spad{fm}]} then \\axiom{p1*p2*...*pn=0} means \\axiom{f1*f2*...*fm=0},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{\\spad{lp}}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in the content of every polynomial of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{\\spad{lp}}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp},{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(\\spad{lp})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(\\spad{lp})} returns \\axiom{\\spad{lg}} where \\axiom{\\spad{lg}} is a list of the gcds of every pair in \\axiom{\\spad{lp}} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(\\spad{lp},{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} and \\axiom{\\spad{lp}} generate the same ideal in \\axiom{\\spad{R^}(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{lq}} has rank not higher than the one of \\axiom{\\spad{lp}}. Moreover,{} \\axiom{\\spad{lq}} is computed by reducing \\axiom{\\spad{lp}} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{\\spad{lp}}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(\\spad{lp},{}pred?,{}redOp?,{}redOp)} returns \\axiom{\\spad{lq}} where \\axiom{\\spad{lq}} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and and \\axiom{\\spad{lq}} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{\\spad{lq}}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(\\spad{lp})} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{\\spad{lp}}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(\\spad{lp})} returns \\axiom{\\spad{lq}} such that \\axiom{\\spad{lp}} and \\axiom{\\spad{lq}} generate the same ideal and no polynomial in \\axiom{\\spad{lq}} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}\\spad{lf})} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}\\spad{lf},{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf},{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lf})} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{\\spad{lp}} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{\\spad{lp}} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{\\spad{lf}}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(\\spad{lp})} returns \\axiom{\\spad{bps},{}nbps} where \\axiom{\\spad{bps}} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(\\spad{lp})} returns \\axiom{\\spad{lps},{}nlps} where \\axiom{\\spad{lps}} is a list of the linear polynomials in \\spad{lp},{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(\\spad{lp})} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(\\spad{lp})} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{\\spad{lp}} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{\\spad{bps}} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}\\spad{ps})} returns \\axiom{\\spad{gps},{}\\spad{bps}} where \\axiom{\\spad{gps}} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{\\spad{ps}} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{\\spad{bps}} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(\\spad{lp})} returns \\spad{true} iff the number of polynomials in \\axiom{\\spad{lp}} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}\\spad{llp})} returns \\spad{true} iff for every \\axiom{\\spad{lp}} in \\axiom{\\spad{llp}} certainlySubVariety?(newlp,{}\\spad{lp}) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}\\spad{lp})} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is \\spad{gcd}-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(\\spad{lp})} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in \\spad{lp}]} if \\axiom{\\spad{R}} is \\spad{gcd}-domain else returns \\axiom{\\spad{lp}}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq},{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(\\spad{lp},{}\\spad{lq})),{}\\spad{lq})} assuming that \\axiom{remOp(\\spad{lq})} returns \\axiom{\\spad{lq}} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{lq})} returns the same as \\axiom{removeRedundantFactors(concat(\\spad{lp},{}\\spad{lq}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(\\spad{lp},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}\\spad{lp}))} assuming that \\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lp}} up to replacing some polynomial \\axiom{\\spad{pj}} in \\axiom{\\spad{lp}} by some some polynomial \\axiom{\\spad{qj}} associated to \\axiom{\\spad{pj}}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(\\spad{lp})} returns \\axiom{\\spad{lq}} such that if \\axiom{\\spad{lp} = [\\spad{p1},{}...,{}\\spad{pn}]} and \\axiom{\\spad{lq} = [\\spad{q1},{}...,{}\\spad{qm}]} then the product \\axiom{p1*p2*...\\spad{*pn}} vanishes iff the product \\axiom{q1*q2*...\\spad{*qm}} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{\\spad{pj}},{} and no polynomial in \\axiom{\\spad{lq}} divides another polynomial in \\axiom{\\spad{lq}}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{\\spad{lq}} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is \\spad{gcd}-domain,{} the polynomials in \\axiom{\\spad{lq}} are pairwise without common non trivial factor.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-432))))
-(-918 K)
+(-920 K)
((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m,{} v)} returns \\spad{[[C_1,{} g_1],{}...,{}[C_k,{} g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,{}...,{}C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M,{} A,{} sig,{} der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M,{} sig,{} der)} returns \\spad{[R,{} A,{} A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation.")))
NIL
NIL
-(-919 |VarSet| E RC P)
+(-921 |VarSet| E RC P)
((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary \\spad{gcd} domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")))
NIL
NIL
-(-920 R)
+(-922 R)
((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,{}l,{}r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|convert| (($ (|List| |#1|)) "\\spad{convert(l)} takes a list of elements,{} \\spad{l},{} from the domain Ring and returns the form of point category.")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}.")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-921 R1 R2)
+(-923 R1 R2)
((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,{}p)} \\undocumented")))
NIL
NIL
-(-922 R)
+(-924 R)
((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")))
NIL
NIL
-(-923 K)
+(-925 K)
((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns \\spad{csc}(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,{}n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise.")))
NIL
NIL
-(-924 R E OV PPR)
+(-926 R E OV PPR)
((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,{}p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,{}v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,{}lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,{}v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol")))
NIL
NIL
-(-925 K R UP -1334)
+(-927 K R UP -1327)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,{}y]/(f(x,{}y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,{}y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If 'basis' is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if 'basisInv' is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-926 |vl| |nv|)
+(-928 |vl| |nv|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals")))
NIL
NIL
-(-927 R |Var| |Expon| |Dpoly|)
+(-929 R |Var| |Expon| |Dpoly|)
((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger\\spad{'s} algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) "failed")) "\\spad{setStatus(s,{}t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don\\spad{'t} know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) "failed") $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,{}q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} \\spad{~=} 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-289)))))
-(-928 R E V P TS)
+(-930 R E V P TS)
((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-929)
+(-931)
((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,{}\"a\")} creates a new equation.")))
NIL
NIL
-(-930 A B R S)
+(-932 A B R S)
((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,{}frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}.")))
NIL
NIL
-(-931 A S)
+(-933 A S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-960))) (|HasCategory| |#2| (QUOTE (-768))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-1075))))
-(-932 S)
+((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-962))) (|HasCategory| |#2| (QUOTE (-770))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-1078))))
+(-934 S)
((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}.")))
-((-4100 . T) (-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4120 . T) (-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-933 |n| K)
+(-935 |n| K)
((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|elt| ((|#2| $ (|DirectProduct| |#1| |#2|)) "\\spad{elt(qf,{}v)} evaluates the quadratic form \\spad{qf} on the vector \\spad{v},{} producing a scalar.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}.")))
NIL
NIL
-(-934 S)
+(-936 S)
((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\spad{#q}}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,{}q)} inserts \\spad{x} into the queue \\spad{q} at the back end.")))
-((-4269 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4274 . T) (-4120 . T))
NIL
-(-935 S R)
+(-937 S R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (QUOTE (-993))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-272))))
-(-936 R)
+((|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (QUOTE (-995))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-272))))
+(-938 R)
((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,{}i,{}j,{}k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}.")))
-((-4262 |has| |#1| (-272)) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 |has| |#1| (-272)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-937 QR R QS S)
+(-939 QR R QS S)
((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,{}u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}.")))
NIL
NIL
-(-938 R)
+(-940 R)
((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}")))
-((-4262 |has| |#1| (-272)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-993))) (|HasCategory| |#1| (QUOTE (-515))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))))
-(-939 S)
+((-4266 |has| |#1| (-272)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-272))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))) (|HasCategory| |#1| (LIST (QUOTE -268) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-995))) (|HasCategory| |#1| (QUOTE (-516))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))))
+(-941 S)
((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,{}y,{}...,{}z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-940 S)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-942 S)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-941)
+(-943)
((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,{}n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}.")))
NIL
NIL
-(-942 -1334 UP UPUP |radicnd| |n|)
+(-944 -1327 UP UPUP |radicnd| |n|)
((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x}).")))
-((-4262 |has| (-388 |#2|) (-344)) (-4267 |has| (-388 |#2|) (-344)) (-4261 |has| (-388 |#2|) (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1461 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1461 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1461 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1461 (|HasCategory| (-388 |#2|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
-(-943 |bb|)
+((-4266 |has| (-388 |#2|) (-344)) (-4271 |has| (-388 |#2|) (-344)) (-4265 |has| (-388 |#2|) (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-388 |#2|) (QUOTE (-138))) (|HasCategory| (-388 |#2|) (QUOTE (-140))) (|HasCategory| (-388 |#2|) (QUOTE (-330))) (-1435 (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (|HasCategory| (-388 |#2|) (QUOTE (-344))) (|HasCategory| (-388 |#2|) (QUOTE (-349))) (-1435 (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (|HasCategory| (-388 |#2|) (QUOTE (-330)))) (-1435 (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-330))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1435 (|HasCategory| (-388 |#2|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))) (-12 (|HasCategory| (-388 |#2|) (QUOTE (-216))) (|HasCategory| (-388 |#2|) (QUOTE (-344)))))
+(-945 |bb|)
((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,{}cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],{}[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,{}3,{}4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,{}1,{}4,{}2,{}8,{}5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,{}0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion.")) (|coerce| (((|Fraction| (|Integer|)) $) "\\spad{coerce(rx)} converts a radix expansion to a rational number.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-530) (QUOTE (-850))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| (-530) (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-140))) (|HasCategory| (-530) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-960))) (|HasCategory| (-530) (QUOTE (-768))) (-1461 (|HasCategory| (-530) (QUOTE (-768))) (|HasCategory| (-530) (QUOTE (-795)))) (|HasCategory| (-530) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-1075))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| (-530) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| (-530) (QUOTE (-216))) (|HasCategory| (-530) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| (-530) (LIST (QUOTE -491) (QUOTE (-1099)) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -291) (QUOTE (-530)))) (|HasCategory| (-530) (LIST (QUOTE -268) (QUOTE (-530)) (QUOTE (-530)))) (|HasCategory| (-530) (QUOTE (-289))) (|HasCategory| (-530) (QUOTE (-515))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-530) (LIST (QUOTE -593) (QUOTE (-530)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-530) (QUOTE (-850)))) (|HasCategory| (-530) (QUOTE (-138)))))
-(-944)
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-531) (QUOTE (-852))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| (-531) (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-140))) (|HasCategory| (-531) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-962))) (|HasCategory| (-531) (QUOTE (-770))) (-1435 (|HasCategory| (-531) (QUOTE (-770))) (|HasCategory| (-531) (QUOTE (-797)))) (|HasCategory| (-531) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-1078))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| (-531) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| (-531) (QUOTE (-216))) (|HasCategory| (-531) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| (-531) (LIST (QUOTE -492) (QUOTE (-1102)) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -291) (QUOTE (-531)))) (|HasCategory| (-531) (LIST (QUOTE -268) (QUOTE (-531)) (QUOTE (-531)))) (|HasCategory| (-531) (QUOTE (-289))) (|HasCategory| (-531) (QUOTE (-516))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-531) (LIST (QUOTE -594) (QUOTE (-531)))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-531) (QUOTE (-852)))) (|HasCategory| (-531) (QUOTE (-138)))))
+(-946)
((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,{}b)} converts \\spad{x} to a radix expansion in base \\spad{b}.")))
NIL
NIL
-(-945)
+(-947)
((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size().")))
NIL
NIL
-(-946 RP)
+(-948 RP)
((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers.")))
NIL
NIL
-(-947 S)
+(-949 S)
((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number.")))
NIL
NIL
-(-948 A S)
+(-950 A S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)) (|HasCategory| |#2| (QUOTE (-1027))))
-(-949 S)
+((|HasAttribute| |#1| (QUOTE -4274)) (|HasCategory| |#2| (QUOTE (-1030))))
+(-951 S)
((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,{}x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,{}\"value\",{}x)} (also written \\axiom{a . value \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,{}v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,{}v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,{}v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,{}v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,{}\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-950 S)
+(-952 S)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
NIL
NIL
-(-951)
+(-953)
((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} \\spad{**} (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} \\spad{**} (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}")))
-((-4262 . T) (-4267 . T) (-4261 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4266 . T))
+((-4266 . T) (-4271 . T) (-4265 . T) (-4268 . T) (-4267 . T) ((-4275 "*") . T) (-4270 . T))
NIL
-(-952 R -1334)
+(-954 R -1327)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n,{} f,{} g,{} x,{} lim,{} ext)} returns \\spad{[y,{} h,{} b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function.")))
NIL
NIL
-(-953 R -1334)
+(-955 R -1327)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n,{} f,{} g_1,{} g_2,{} x,{}lim,{}ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,{}dy2/dx) + ((0,{} - n df/dx),{}(n df/dx,{}0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function.")))
NIL
NIL
-(-954 -1334 UP)
+(-956 -1327 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a,{} B,{} C,{} n,{} D)} returns either: 1. \\spad{[Q,{} b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1,{} C1,{} m,{} \\alpha,{} \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f,{} g)} returns a \\spad{[y,{} b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,{}g,{}D)} returns \\spad{[A,{} B,{} C,{} T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use.")))
NIL
NIL
-(-955 -1334 UP)
+(-957 -1327 UP)
((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f,{} g1,{} g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} if \\spad{y_1,{}y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,{}g1,{}g2,{}D)} returns \\spad{[A,{} B,{} H,{} C1,{} C2,{} T]} such that \\spad{(y1',{} y2') + ((0,{} -f),{} (f,{} 0)) (y1,{}y2) = (g1,{}g2)} has a solution if and only if \\spad{y1 = Q1 / T,{} y2 = Q2 / T},{} where \\spad{B,{}C1,{}C2,{}Q1,{}Q2} have no normal poles and satisfy A \\spad{(Q1',{} Q2') + ((H,{} -B),{} (B,{} H)) (Q1,{}Q2) = (C1,{}C2)} \\spad{D} is the derivation to use.")))
NIL
NIL
-(-956 S)
+(-958 S)
((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,{}u,{}n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-957 F1 UP UPUP R F2)
+(-959 F1 UP UPUP R F2)
((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,{}u,{}g)} \\undocumented")))
NIL
NIL
-(-958 |Pol|)
+(-960 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-959 |Pol|)
+(-961 |Pol|)
((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol,{} int,{} range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol,{} int,{} eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} int,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol,{} eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol,{} range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}.")))
NIL
NIL
-(-960)
+(-962)
((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats.")))
NIL
NIL
-(-961)
+(-963)
((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,{}lv,{}eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,{}eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}.")))
NIL
NIL
-(-962 |TheField|)
+(-964 |TheField|)
((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number")))
-((-4262 . T) (-4267 . T) (-4261 . T) (-4264 . T) (-4263 . T) ((-4271 "*") . T) (-4266 . T))
-((-1461 (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-388 (-530)) (LIST (QUOTE -975) (QUOTE (-530)))))
-(-963 -1334 L)
+((-4266 . T) (-4271 . T) (-4265 . T) (-4268 . T) (-4267 . T) ((-4275 "*") . T) (-4270 . T))
+((-1435 (|HasCategory| (-388 (-531)) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-388 (-531)) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-388 (-531)) (LIST (QUOTE -977) (QUOTE (-531)))))
+(-965 -1327 L)
((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op,{} [f1,{}...,{}fk])} returns \\spad{[op1,{}[g1,{}...,{}gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{\\spad{fi}} must satisfy \\spad{op \\spad{fi} = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op,{} s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}.")))
NIL
NIL
-(-964 S)
+(-966 S)
((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,{}m)} same as \\spad{setelt(n,{}m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,{}m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1027))))
-(-965 R E V P)
+((|HasCategory| |#1| (QUOTE (-1030))))
+(-967 R E V P)
((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-966 R)
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-968 R)
((|constructor| (NIL "RepresentationPackage1 provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,{}4,{}3,{}2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,{}2,{}...,{}n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,{}...,{}pik],{}n)} returns the list of matrices {\\em [(deltai,{}pi1(i)),{}...,{}(deltai,{}pik(i))]} (Kronecker delta) for the permutations {\\em pi1,{}...,{}pik} of {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) if the permutation {\\em \\spad{pi}} is in list notation and permutes {\\em {1,{}2,{}...,{}n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(\\spad{pi},{}n)} returns the matrix {\\em (deltai,{}\\spad{pi}(i))} (Kronecker delta) for a permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...ak])} calculates the list of Kronecker products of each matrix {\\em \\spad{ai}} with itself for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,{}...,{}ak],{}[b1,{}...,{}bk])} calculates the list of Kronecker products of the matrices {\\em \\spad{ai}} and {\\em \\spad{bi}} for {1 \\spad{<=} \\spad{i} \\spad{<=} \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,{}b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,{}n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,{}0,{}...,{}0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,{}j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,{}n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,{}n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,{}1,{}...,{}1,{}0,{}0,{}...,{}0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.")))
NIL
-((|HasAttribute| |#1| (QUOTE (-4271 "*"))))
-(-967 R)
+((|HasAttribute| |#1| (QUOTE (-4275 "*"))))
+(-969 R)
((|constructor| (NIL "RepresentationPackage2 provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,{}n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,{}...,{}0,{}1,{}*,{}...,{}*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG,{} numberOfTries)} calls {\\em meatAxe(aG,{}true,{}numberOfTries,{}7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG,{} randomElements)} calls {\\em meatAxe(aG,{}false,{}6,{}7)},{} only using Parker\\spad{'s} fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,{}true,{}25,{}7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,{}false,{}25,{}7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker\\spad{'s} fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,{}randomElements,{}numberOfTries,{} maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton\\spad{'s} irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker\\spad{'s} fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,{}submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG,{} vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG,{} numberOfTries)} uses Norton\\spad{'s} irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}numberOfTries)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,{}aG1)} calls {\\em areEquivalent?(aG0,{}aG1,{}true,{}25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,{}aG1,{}randomelements,{}numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,{}v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,{}v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker\\spad{'s} \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,{}x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis.")))
NIL
((-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-289))))
-(-968 S)
+(-970 S)
((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i,{} r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-969)
+(-971)
((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,{}m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals.")))
NIL
NIL
-(-970 S)
+(-972 S)
((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r,{} i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}")))
NIL
NIL
-(-971 S)
+(-973 S)
((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used.")))
NIL
NIL
-(-972 -1334 |Expon| |VarSet| |FPol| |LFPol|)
+(-974 -1327 |Expon| |VarSet| |FPol| |LFPol|)
((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring")))
-(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-973)
+(-975)
((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1099))) (LIST (QUOTE |:|) (QUOTE -1874) (QUOTE (-51))))))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-1099) (QUOTE (-795))) (|HasCategory| (-51) (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-974 A S)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1102))) (LIST (QUOTE |:|) (QUOTE -1798) (QUOTE (-51))))))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-51) (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-1102) (QUOTE (-797))) (|HasCategory| (-51) (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-976 A S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-975 S)
+(-977 S)
((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}.")) (|coerce| (($ |#1|) "\\spad{coerce(a)} transforms a into an element of \\%.")))
NIL
NIL
-(-976 Q R)
+(-978 Q R)
((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible.")))
NIL
NIL
-(-977)
+(-979)
((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,{}m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,{}m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,{}g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,{}g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented")))
NIL
NIL
-(-978 UP)
+(-980 UP)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-979 R)
+(-981 R)
((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}.")))
NIL
NIL
-(-980 R)
+(-982 R)
((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f,{} [v1 = g1,{}...,{}vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f,{} [v1,{}...,{}vn],{} [g1,{}...,{}gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}\\spad{'s} appearing inside the \\spad{gi}\\spad{'s} are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f,{} v,{} g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f,{} v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f,{} v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}.")))
NIL
NIL
-(-981 R |ls|)
+(-983 R |ls|)
((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a \\spad{Gcd}-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?,{}info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}.")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| (-728 |#1| (-806 |#2|)) (QUOTE (-1027))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -728) (|devaluate| |#1|) (LIST (QUOTE -806) (|devaluate| |#2|)))))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-728 |#1| (-806 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| (-806 |#2|) (QUOTE (-349))) (|HasCategory| (-728 |#1| (-806 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-982)
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| (-730 |#1| (-808 |#2|)) (QUOTE (-1030))) (|HasCategory| (-730 |#1| (-808 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -730) (|devaluate| |#1|) (LIST (QUOTE -808) (|devaluate| |#2|)))))) (|HasCategory| (-730 |#1| (-808 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-730 |#1| (-808 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| (-808 |#2|) (QUOTE (-349))) (|HasCategory| (-730 |#1| (-808 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-984)
((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,{}j,{}k,{}l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,{}f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented")))
NIL
NIL
-(-983 S)
+(-985 S)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
NIL
NIL
-(-984)
+(-986)
((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} converts the integer \\spad{i} to a member of the given domain.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists.")))
-((-4266 . T))
+((-4270 . T))
NIL
-(-985 |xx| -1334)
+(-987 |xx| -1327)
((|constructor| (NIL "This package exports rational interpolation algorithms")))
NIL
NIL
-(-986 S |m| |n| R |Row| |Col|)
+(-988 S |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
NIL
-((|HasCategory| |#4| (QUOTE (-289))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-522))) (|HasCategory| |#4| (QUOTE (-162))))
-(-987 |m| |n| R |Row| |Col|)
+((|HasCategory| |#4| (QUOTE (-289))) (|HasCategory| |#4| (QUOTE (-344))) (|HasCategory| |#4| (QUOTE (-523))) (|HasCategory| |#4| (QUOTE (-162))))
+(-989 |m| |n| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,{}r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,{}a,{}b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,{}j) = f(a(i,{}j),{}b(i,{}j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,{}a)} returns \\spad{b},{} where \\spad{b(i,{}j) = a(i,{}j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,{}j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,{}i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,{}i,{}j,{}r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,{}i,{}j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = -m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,{}j] = m[j,{}i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite")))
-((-4269 . T) (-4100 . T) (-4264 . T) (-4263 . T))
+((-4273 . T) (-4120 . T) (-4268 . T) (-4267 . T))
NIL
-(-988 |m| |n| R)
+(-990 |m| |n| R)
((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|coerce| (((|Matrix| |#3|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{RectangularMatrix} to a matrix of type \\spad{Matrix}.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}.")))
-((-4269 . T) (-4264 . T) (-4263 . T))
-((-1461 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (QUOTE (-289))) (|HasCategory| |#3| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))))
-(-989 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
+((-4273 . T) (-4268 . T) (-4267 . T))
+((-1435 (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))))) (|HasCategory| |#3| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (QUOTE (-289))) (|HasCategory| |#3| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-806)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))))
+(-991 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2)
((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,{}m,{}r)} returns a matrix \\spad{n} where \\spad{n[i,{}j] = f(m[i,{}j],{}r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,{}m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.")))
NIL
NIL
-(-990 R)
+(-992 R)
((|constructor| (NIL "The category of right modules over an \\spad{rng} (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the \\spad{rng}. \\blankline")) (* (($ $ |#1|) "\\spad{x*r} returns the right multiplication of the module element \\spad{x} by the ring element \\spad{r}.")))
NIL
NIL
-(-991)
+(-993)
((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline")))
NIL
NIL
-(-992 S)
+(-994 S)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
NIL
NIL
-(-993)
+(-995)
((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|abs| (($ $) "\\spad{abs x} returns the absolute value of \\spad{x}.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-994 |TheField| |ThePolDom|)
+(-996 |TheField| |ThePolDom|)
((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval")))
NIL
NIL
-(-995)
+(-997)
((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|convert| (($ (|Symbol|)) "\\spad{convert(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality.")))
-((-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4261 . T) (-4265 . T) (-4260 . T) (-4271 . T) (-4272 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-996)
+(-998)
((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,{}routineName,{}ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,{}s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,{}s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,{}s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,{}s,{}newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,{}s,{}newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE\\spad{'s}")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE\\spad{'s}")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,{}y)} merges two tables \\spad{x} and \\spad{y}")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1099))) (LIST (QUOTE |:|) (QUOTE -1874) (QUOTE (-51))))))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-51) (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| (-51) (QUOTE (-1027))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (QUOTE (-1027))) (|HasCategory| (-1099) (QUOTE (-795))) (|HasCategory| (-51) (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-51) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-997 S R E V)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1102))) (LIST (QUOTE |:|) (QUOTE -1798) (QUOTE (-51))))))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-51) (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| (-51) (QUOTE (-1030))) (|HasCategory| (-51) (LIST (QUOTE -291) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (QUOTE (-1030))) (|HasCategory| (-1102) (QUOTE (-797))) (|HasCategory| (-51) (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-51) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-999 S R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
NIL
-((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-515))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -932) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-1099)))))
-(-998 R E V)
+((|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-516))) (|HasCategory| |#2| (LIST (QUOTE -37) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -934) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-1102)))))
+(-1000 R E V)
((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{\\spad{gcd}(\\spad{r},{}\\spad{p})} returns the \\spad{gcd} of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{nextsubResultant2(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{next_sousResultant2}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient2(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo \\spad{b**}(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{halfExtendedSubResultantGcd2(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}\\spad{cb}]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{halfExtendedSubResultantGcd1(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}\\spad{cb}]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}\\spad{cb},{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + \\spad{cb} * \\spad{cb} = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a \\spad{gcd} of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a \\spad{gcd}-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)\\spad{*r} = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}\\spad{lp})} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{\\spad{lp}}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
NIL
-(-999 S |TheField| |ThePols|)
+(-1001 S |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1000 |TheField| |ThePols|)
+(-1002 |TheField| |ThePols|)
((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}")))
NIL
NIL
-(-1001 R E V P TS)
+(-1003 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}\\spad{TS}). The same way it does not care about the way univariate polynomial \\spad{gcd} (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these \\spad{gcd} need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1002 S R E V P)
+(-1004 S R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#5| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
NIL
NIL
-(-1003 R E V P)
+(-1005 R E V P)
((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,{}...,{}xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,{}...,{}tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,{}...,{}\\spad{ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,{}...,{}\\spad{Ti}]}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(\\spad{Ti})} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,{}...,{}Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,{}...,{}Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{\\spad{Phd} Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,{}clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,{}lts)} returns the same as \\spad{concat([extend(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,{}ts)} if \\spad{lp = [p]} else \\spad{extend(first lp,{} extend(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,{}lts)} returns the same as \\spad{concat([extend(p,{}ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,{}ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp,{} internalAugment(first lp,{} ts))}") (($ |#4| $) "\\spad{internalAugment(p,{}ts)} assumes that \\spad{augment(p,{}ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,{}lts)} returns the same as \\spad{concat([augment(lp,{}ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,{}ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,{}ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp,{} augment(rest lp,{} ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,{}lts)} returns the same as \\spad{concat([augment(p,{}ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,{}ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,{}lts)} returns the same as \\spad{intersect([p],{}lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,{}lts)} returns the same as \\spad{concat([intersect(lp,{}ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,{}ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,{}ts)} returns the same as \\spad{intersect([p],{}ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,{}p2,{}ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial \\spad{gcd} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,{}p2,{}ts)} returns either \\spad{g} a quasi-monic \\spad{gcd} of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,{}ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,{}ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,{}lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,{}ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,{}ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,{}ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,{}ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-1004 R E V P TS)
+(-1006 R E V P TS)
((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}\\spad{ts},{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}\\spad{ts})} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1005 |f|)
+(-1007 |f|)
((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol")))
NIL
NIL
-(-1006 |Base| R -1334)
+(-1008 |Base| R -1327)
((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r,{} [a1,{}...,{}an],{} f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,{}...,{}an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f,{} g,{} [f1,{}...,{}fn])} creates the rewrite rule \\spad{f == eval(eval(g,{} g is f),{} [f1,{}...,{}fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}\\spad{fn} are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f,{} g)} creates the rewrite rule: \\spad{f == eval(g,{} g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}.")))
NIL
NIL
-(-1007 |Base| R -1334)
+(-1009 |Base| R -1327)
((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,{}f,{}n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,{}...,{}rn])} creates the rule set \\spad{{r1,{}...,{}rn}}.")))
NIL
NIL
-(-1008 R |ls|)
+(-1010 R |ls|)
((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,{}univ?,{}check?)} returns the same as \\spad{rur(lp,{}true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,{}true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,{}univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,{}univ?)} returns a list of items \\spad{[u,{}lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,{}lc]} in \\spad{rur(lp,{}univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor.")))
NIL
NIL
-(-1009 UP SAE UPA)
+(-1011 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1010 R UP M)
+(-1012 R UP M)
((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself.")))
-((-4262 |has| |#1| (-344)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-330)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099))))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))))
-(-1011 UP SAE UPA)
+((-4266 |has| |#1| (-344)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-330))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-330)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-349))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-330)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#1| (QUOTE (-330))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102))))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))))
+(-1013 UP SAE UPA)
((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}.")))
NIL
NIL
-(-1012)
+(-1014)
((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable")))
NIL
NIL
-(-1013 S)
+(-1015)
+((|constructor| (NIL "This is the category of Spad syntax objects.")))
+NIL
+NIL
+(-1016 S)
((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(x,{} y)} to determine whether \\spad{x < y (f(x,{}y) < 0),{} x = y (f(x,{}y) = 0)},{} or \\spad{x > y (f(x,{}y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x,{} f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache.")))
NIL
NIL
-(-1014)
+(-1017)
((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,{}s)} pushs a new contour with sole binding \\spad{`b'}.")) (|findBinding| (((|Union| (|Binding|) "failed") (|Symbol|) $) "\\spad{findBinding(n,{}s)} returns the first binding of \\spad{`n'} in \\spad{`s'}; otherwise `failed'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope.")))
NIL
NIL
-(-1015 R)
+(-1018 R)
((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,{}[v1,{}...,{}vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,{}mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}")))
NIL
NIL
-(-1016 R)
+(-1019 R)
((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1017 (-1099)) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1017 S)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1020 (-1102)) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1020 S)
((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u})).")))
NIL
NIL
-(-1018 R S)
+(-1021 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l),{} f(l+k),{}...,{} f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,{}l..h)} returns a new segment \\spad{f(l)..f(h)}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-793))))
-(-1019 R S)
+((|HasCategory| |#1| (QUOTE (-795))))
+(-1022 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,{}v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}.")))
NIL
NIL
-(-1020 S)
+(-1023 S)
((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions.")) (|segment| (((|Segment| |#1|) $) "\\spad{segment(segb)} returns the segment from the right hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{segment(segb)} returns \\spad{a..b}.")) (|variable| (((|Symbol|) $) "\\spad{variable(segb)} returns the variable from the left hand side of the \\spadtype{SegmentBinding}. For example,{} if \\spad{segb} is \\spad{v=a..b},{} then \\spad{variable(segb)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) (|Segment| |#1|)) "\\spad{equation(v,{}a..b)} creates a segment binding value with variable \\spad{v} and segment \\spad{a..b}. Note that the interpreter parses \\spad{v=a..b} to this form.")))
NIL
-((|HasCategory| |#1| (QUOTE (-1027))))
-(-1021 S)
+((|HasCategory| |#1| (QUOTE (-1030))))
+(-1024 S)
((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|convert| (($ |#1|) "\\spad{convert(i)} creates the segment \\spad{i..i}.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,{}j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{\\spad{hi}(s)} returns the second endpoint of \\spad{s}. Note: \\spad{\\spad{hi}(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-1022 S)
+(-1025 S)
((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1027))))
-(-1023 S L)
+((|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1030))))
+(-1026 S L)
((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,{}l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l),{} f(l+k),{} ...,{} f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l,{} l+k,{} ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,{}3,{}5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l,{} l+k,{} ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4,{} 7..9] = [1,{}2,{}3,{}4,{}7,{}8,{}9]}.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-1024 A S)
+(-1027 A S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
NIL
NIL
-(-1025 S)
+(-1028 S)
((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,{}u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,{}x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,{}v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,{}v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,{}v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,{}x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,{}v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,{}v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,{}y,{}...,{}z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}.")))
-((-4259 . T) (-4100 . T))
+((-4263 . T) (-4120 . T))
NIL
-(-1026 S)
+(-1029 S)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1027)
+(-1030)
((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}.")))
NIL
NIL
-(-1028 |m| |n|)
+(-1031 |m| |n|)
((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,{}k,{}p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the \\spad{k^}{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p,{} s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,{}...,{}a_m])} returns the set {a_1,{}...,{}a_m}. Error if {a_1,{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ "failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,{}k,{}p)} replaces the \\spad{k^}{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ "failed") $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,{}k)} increments the \\spad{k^}{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")))
NIL
NIL
-(-1029 S)
+(-1032 S)
((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,{}b,{}c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,{}m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{union(s,{}t)},{} \\spad{intersect(s,{}t)},{} \\spad{minus(s,{}t)},{} \\spad{symmetricDifference(s,{}t)} is \\spad{O(max(n,{}m))}} \\indented{2}{\\spad{member(x,{}t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,{}t)} and \\spad{remove(x,{}t)} is \\spad{O(n)}}")))
-((-4269 . T) (-4259 . T) (-4270 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1030 |Str| |Sym| |Int| |Flt| |Expr|)
+((-4273 . T) (-4263 . T) (-4274 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-349))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1033 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|elt| (($ $ (|List| (|Integer|))) "\\spad{elt((a1,{}...,{}an),{} [i1,{}...,{}im])} returns \\spad{(a_i1,{}...,{}a_im)}.") (($ $ (|Integer|)) "\\spad{elt((a1,{}...,{}an),{} i)} returns \\spad{\\spad{ai}}.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,{}...,{}an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,{}...,{}an))} returns \\spad{(a2,{}...,{}an)}.")) (|car| (($ $) "\\spad{car((a1,{}...,{}an))} returns a1.")) (|convert| (($ |#5|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#4|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#3|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#2|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ |#1|) "\\spad{convert(x)} returns the Lisp atom \\spad{x}.") (($ (|List| $)) "\\spad{convert([a1,{}...,{}an])} returns the \\spad{S}-expression \\spad{(a1,{}...,{}an)}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of \\spad{Flt}; Error: if \\spad{s} is not an atom that also belongs to \\spad{Flt}.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of \\spad{Sym}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Sym}.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of \\spad{Str}. Error: if \\spad{s} is not an atom that also belongs to \\spad{Str}.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,{}...,{}an))} returns the list [a1,{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Flt}.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Sym}.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to \\spad{Str}.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s,{} t)} is \\spad{true} if EQ(\\spad{s},{}\\spad{t}) is \\spad{true} in Lisp.")))
NIL
NIL
-(-1031)
+(-1034)
((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values.")))
NIL
NIL
-(-1032 |Str| |Sym| |Int| |Flt| |Expr|)
+(-1035 |Str| |Sym| |Int| |Flt| |Expr|)
((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types.")))
NIL
NIL
-(-1033 R FS)
+(-1036 R FS)
((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,{}ftype,{}body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program.")))
NIL
NIL
-(-1034 R E V P TS)
+(-1037 R E V P TS)
((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}\\spad{ts},{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(\\spad{lp},{}\\spad{lts},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(lpwt1,{}lpwt2)} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(\\spad{lts})} removes from \\axiom{\\spad{lts}} any \\spad{ts} such that \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for another \\spad{us} in \\axiom{\\spad{lts}}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(\\spad{ts},{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(\\spad{ts},{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(\\spad{ts},{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(\\spad{ts},{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{\\spad{ts}} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(\\spad{ts},{}us)} returns \\spad{false} iff \\axiom{\\spad{ts}} and \\axiom{us} are both empty,{} or \\axiom{\\spad{ts}} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(\\spad{lts})} sorts \\axiom{\\spad{lts}} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(\\spad{ts},{}us)} returns \\spad{true} iff \\axiom{\\spad{ts}} has less elements than \\axiom{us} otherwise if \\axiom{\\spad{ts}} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")))
NIL
NIL
-(-1035 R E V P TS)
+(-1038 R E V P TS)
((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of \\spad{gcd} over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of AAECC11} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1036 R E V P)
+(-1039 R E V P)
((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the \\spad{gcd} of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,{}mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-1037)
+(-1040)
((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,{}0,{}0] < [0,{}3,{}0] < [0,{}0,{}3] < [2,{}1,{}0] < [2,{}0,{}1] < [0,{}2,{}1] < [1,{}2,{}0] < [1,{}0,{}2] < [0,{}1,{}2] < [1,{}1,{}1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,{}m,{}k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,{}0,{}3] < [0,{}1,{}2] < [0,{}2,{}1] < [0,{}3,{}0] < [1,{}0,{}2] < [1,{}1,{}1] < [1,{}2,{}0] < [2,{}0,{}1] < [2,{}1,{}0] < [3,{}0,{}0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,{}m,{}k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,{}1,{}...,{}(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,{}...,{}(m-1)} into {\\em 0,{}...,{}(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,{}m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,{}3)} is 10,{} since {\\em [0,{}0,{}3],{} [0,{}1,{}2],{} [0,{}2,{}1],{} [0,{}3,{}0],{} [1,{}0,{}2],{} [1,{}1,{}1],{} [1,{}2,{}0],{} [2,{}0,{}1],{} [2,{}1,{}0],{} [3,{}0,{}0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,{}part,{}number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,{}lattP,{}constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,{}beta,{}C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,{}1,{}0)}. Also,{} {\\em new(1,{}1,{}0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,{}gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,{}...,{}n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|Integer|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,{}...,{}n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,{}beta,{}C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em \\spad{pi}} in the corresponding double coset. Note: the resulting permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,{}beta,{}\\spad{pi})}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em \\spad{pi}} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha,{} beta,{} \\spad{pi}}. Note: The permutation {\\em \\spad{pi}} of {\\em {1,{}2,{}...,{}n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em \\spad{pi}} is the lexicographical smallest permutation in the coset). For details see James/Kerber.")))
NIL
NIL
-(-1038 S)
+(-1041 S)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1039)
+(-1042)
((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}.")))
NIL
NIL
-(-1040 |dimtot| |dim1| S)
+(-1043 |dimtot| |dim1| S)
((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The dim1 parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}.")))
-((-4263 |has| |#3| (-984)) (-4264 |has| |#3| (-984)) (-4266 |has| |#3| (-6 -4266)) ((-4271 "*") |has| |#3| (-162)) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#3| (QUOTE (-344))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-741))) (-1461 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793)))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-162))) (-1461 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (QUOTE (-1027)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-984)))) (-1461 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-128)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-675)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-741)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-793)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027))))) (-1461 (-12 (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-675))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-741))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-793))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (|HasCategory| (-530) (QUOTE (-795))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-984)))) (-12 (|HasCategory| |#3| (QUOTE (-984))) (|HasCategory| |#3| (LIST (QUOTE -841) (QUOTE (-1099))))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530))))) (-1461 (|HasCategory| |#3| (QUOTE (-984))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -975) (QUOTE (-530)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#3| (QUOTE (-1027)))) (|HasAttribute| |#3| (QUOTE -4266)) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1027))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1041 R |x|)
+((-4267 |has| |#3| (-986)) (-4268 |has| |#3| (-986)) (-4270 |has| |#3| (-6 -4270)) ((-4275 "*") |has| |#3| (-162)) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030)))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#3| (QUOTE (-344))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-344)))) (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (QUOTE (-743))) (-1435 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (QUOTE (-795)))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (QUOTE (-162))) (-1435 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (QUOTE (-1030)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (QUOTE (-986)))) (-1435 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-25)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-128)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-162)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-216)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-344)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-349)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-677)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-743)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-795)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030))))) (-1435 (-12 (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-162))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-344))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-677))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-743))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-795))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))))) (|HasCategory| (-531) (QUOTE (-797))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#3| (QUOTE (-216))) (|HasCategory| |#3| (QUOTE (-986)))) (-12 (|HasCategory| |#3| (QUOTE (-986))) (|HasCategory| |#3| (LIST (QUOTE -843) (QUOTE (-1102))))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531))))) (-1435 (|HasCategory| |#3| (QUOTE (-986))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -977) (QUOTE (-531)))))) (-12 (|HasCategory| |#3| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#3| (QUOTE (-1030)))) (|HasAttribute| |#3| (QUOTE -4270)) (|HasCategory| |#3| (QUOTE (-128))) (|HasCategory| |#3| (QUOTE (-25))) (-12 (|HasCategory| |#3| (QUOTE (-1030))) (|HasCategory| |#3| (LIST (QUOTE -291) (|devaluate| |#3|)))) (|HasCategory| |#3| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1044 R |x|)
((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,{}p2)} computes \\spad{c_}{+}\\spad{-c_}{-} where \\spad{c_}{+} is the number of real roots of \\spad{p1} with p2>0 and \\spad{c_}{-} is the number of real roots of \\spad{p1} with p2<0. If p2=1 what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,{}p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,{}p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,{}p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}")))
NIL
((|HasCategory| |#1| (QUOTE (-432))))
-(-1042 R -1334)
+(-1045 R -1327)
((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1043 R)
+(-1046 R)
((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f,{} x,{} a,{} s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f,{} x,{} a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere.")))
NIL
NIL
-(-1044)
-((|constructor| (NIL "This is the datatype for operation signatures as used by the compiler and the interpreter. See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|ConstructorCall|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|ConstructorCall|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")))
+(-1047)
+((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of \\spad{`s'}.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature \\spad{`s'}.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,{}t)} constructs a Signature object with parameter types indicaded by \\spad{`s'},{} and return type indicated by \\spad{`t'}.")))
NIL
NIL
-(-1045)
+(-1048)
((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}")))
NIL
NIL
-(-1046)
+(-1049)
((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,{}m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,{}m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,{}m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|\\/| (($ $ $) "\\spad{n} \\spad{\\/} \\spad{m} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|/\\| (($ $ $) "\\spad{n} \\spad{/\\} \\spad{m} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (~ (($ $) "\\spad{~ n} returns the bit-by-bit logical {\\em not } of the single integer \\spad{n}.")) (|not| (($ $) "\\spad{not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|min| (($) "\\spad{min()} returns the smallest single integer.")) (|max| (($) "\\spad{max()} returns the largest single integer.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality.")))
-((-4257 . T) (-4261 . T) (-4256 . T) (-4267 . T) (-4268 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4261 . T) (-4265 . T) (-4260 . T) (-4271 . T) (-4272 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1047 S)
+(-1050 S)
((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\spad{#s}}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,{}s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}.")))
-((-4269 . T) (-4270 . T) (-4100 . T))
+((-4273 . T) (-4274 . T) (-4120 . T))
NIL
-(-1048 S |ndim| R |Row| |Col|)
+(-1051 S |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
NIL
-((|HasCategory| |#3| (QUOTE (-344))) (|HasAttribute| |#3| (QUOTE (-4271 "*"))) (|HasCategory| |#3| (QUOTE (-162))))
-(-1049 |ndim| R |Row| |Col|)
+((|HasCategory| |#3| (QUOTE (-344))) (|HasAttribute| |#3| (QUOTE (-4275 "*"))) (|HasCategory| |#3| (QUOTE (-162))))
+(-1052 |ndim| R |Row| |Col|)
((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}\\spad{'s} on the diagonal and zeroes elsewhere.")))
-((-4100 . T) (-4269 . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4120 . T) (-4273 . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1050 R |Row| |Col| M)
+(-1053 R |Row| |Col| M)
((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,{}B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}.")))
NIL
NIL
-(-1051 R |VarSet|)
+(-1054 R |VarSet|)
((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1052 |Coef| |Var| SMP)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1055 |Coef| |Var| SMP)
((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain \\spad{SMP}. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,{}b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial \\spad{SMP}.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))))
-(-1053 R E V P)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344))))
+(-1056 R E V P)
((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-1054 UP -1334)
+(-1057 UP -1327)
((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,{}g,{}h,{}i,{}k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,{}g,{}h,{}j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,{}g,{}h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,{}g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,{}g,{}h,{}i,{}j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,{}g,{}h,{}i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,{}g,{}h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,{}g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,{}f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented")))
NIL
NIL
-(-1055 R)
+(-1058 R)
((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,{}lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,{}x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,{}lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,{}x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,{}x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function.")))
NIL
NIL
-(-1056 R)
+(-1059 R)
((|constructor| (NIL "This package finds the function func3 where func1 and func2 \\indented{1}{are given and\\space{2}func1 = func3(func2) .\\space{2}If there is no solution then} \\indented{1}{function func1 will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect,{} var,{} n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1,{} func2,{} newvar)} returns a function func3 where \\spad{func1} = func3(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned.")))
NIL
NIL
-(-1057 R)
+(-1060 R)
((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs,{} lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,{}x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,{}x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq.")))
NIL
NIL
-(-1058 S A)
+(-1061 S A)
((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,{}f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,{}f)} \\undocumented")))
NIL
-((|HasCategory| |#1| (QUOTE (-795))))
-(-1059 R)
+((|HasCategory| |#1| (QUOTE (-797))))
+(-1062 R)
((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")))
NIL
NIL
-(-1060 R)
+(-1063 R)
((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} creates a surface defined over a list of curves,{} \\spad{p0} through \\spad{pn},{} which are lists of points; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); close2 set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],{}[p1],{}...,{}[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through \\spad{pn},{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and close2 indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if close2 is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{} close1,{} close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and close2 indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument close2 equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[ [[r10]...,{}[r1m]],{} [[r20]...,{}[r2m]],{}...,{} [[rn0]...,{}[rnm]] ],{} [props],{} prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size \\spad{WxH} where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,{}[[p0],{}[p1],{}...,{}[pn]],{}[props],{}prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,{}p1,{}...,{}pn])} creates a polygon defined by a list of points,{} \\spad{p0} through \\spad{pn},{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,{}[[r0],{}[r1],{}...,{}[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,{}[p0,{}p1,{}...,{}pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,{}R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,{}[[lr0],{}[lr1],{}...,{}[lrn],{}[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,{}[p0,{}p1,{}...,{}pn,{}p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,{}p1,{}p2,{}...,{}pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,{}[[p0],{}[p1],{}...,{}[pn]])} adds a space curve which is a list of points \\spad{p0} through \\spad{pn} defined by lists of elements from the domain \\spad{PointDomain(m,{}R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,{}[p0,{}p1,{}...,{}pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,{}i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,{}[x,{}y,{}z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,{}p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,{}i,{}p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,{}[p0,{}p1,{}...,{}pn])} adds a list of points from \\spad{p0} through \\spad{pn} to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,{}s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,{}s2,{}...,{}sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1061)
+(-1064)
((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful.")))
NIL
NIL
-(-1062)
+(-1065)
((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,{}o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.")))
NIL
NIL
-(-1063)
+(-1066)
((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{\\spad{Bi}(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{\\spad{Ai}(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,{}z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,{}z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,{}z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,{}z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,{}x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,{}x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,{}y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,{}x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")))
NIL
NIL
-(-1064 V C)
+(-1067 V C)
((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}o2)} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}o1,{}o2)} returns \\spad{true} iff \\axiom{o1(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{o2(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}\\spad{lt})} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in \\spad{lt}]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(\\spad{lvt})} returns the same as \\axiom{[construct(\\spad{vt}.val,{}\\spad{vt}.tower) for \\spad{vt} in \\spad{lvt}]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(\\spad{vt})} returns the same as \\axiom{construct(\\spad{vt}.val,{}\\spad{vt}.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}")))
NIL
NIL
-(-1065 V C)
+(-1068 V C)
((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls},{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}\\spad{ls})} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls} | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{\\spad{ls}} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$\\spad{VT} for \\spad{s} in \\spad{ls}]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}\\spad{lt})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{ls})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in \\spad{ls}]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1064) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027))) (-1461 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -571) (QUOTE (-804)))) (-12 (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1064) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1064 |#1| |#2|) (QUOTE (-1027))))) (|HasCategory| (-1064 |#1| |#2|) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1066 |ndim| R)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-1067 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1067) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1067 |#1| |#2|) (QUOTE (-1030)))) (|HasCategory| (-1067 |#1| |#2|) (QUOTE (-1030))) (-1435 (|HasCategory| (-1067 |#1| |#2|) (LIST (QUOTE -572) (QUOTE (-806)))) (-12 (|HasCategory| (-1067 |#1| |#2|) (LIST (QUOTE -291) (LIST (QUOTE -1067) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1067 |#1| |#2|) (QUOTE (-1030))))) (|HasCategory| (-1067 |#1| |#2|) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1069 |ndim| R)
((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|coerce| (((|Matrix| |#2|) $) "\\spad{coerce(m)} converts a matrix of type \\spadtype{SquareMatrix} to a matrix of type \\spadtype{Matrix}.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")))
-((-4266 . T) (-4258 |has| |#2| (-6 (-4271 "*"))) (-4269 . T) (-4263 . T) (-4264 . T))
-((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (-1461 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-344))) (-1461 (|HasAttribute| |#2| (QUOTE (-4271 "*"))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-162))))
-(-1067 S)
+((-4270 . T) (-4262 |has| |#2| (-6 (-4275 "*"))) (-4273 . T) (-4267 . T) (-4268 . T))
+((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (-1435 (-12 (|HasCategory| |#2| (QUOTE (-216))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (QUOTE (-289))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-344))) (-1435 (|HasAttribute| |#2| (QUOTE (-4275 "*"))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#2| (QUOTE (-216)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-162))))
+(-1070 S)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
NIL
NIL
-(-1068)
+(-1071)
((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,{}t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,{}cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,{}c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,{}cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,{}c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,{}cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,{}c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,{}cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,{}c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,{}t,{}i)} returns the position \\axiom{\\spad{j} \\spad{>=} \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,{}t,{}i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} \\spad{>=} \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,{}i..j,{}t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,{}t,{}c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,{}s,{}wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\\spad{\"*\"})} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,{}t,{}i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,{}t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,{}t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) \\spad{==} reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case.")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-1069 R E V P TS)
+(-1072 R E V P TS)
((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener\\spad{'s} algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,{}E,{}V,{}P,{}TS)} and \\spad{RSETGCD(R,{}E,{}V,{}P,{}TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{\\spad{TS}}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")))
NIL
NIL
-(-1070 R E V P)
+(-1073 R E V P)
((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(\\spad{lp},{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(\\spad{lp},{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}\\spad{ts},{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1071 S)
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1074 S)
((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,{}y,{}...,{}z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1072 A S)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1075 A S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
NIL
NIL
-(-1073 S)
+(-1076 S)
((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-1074 |Key| |Ent| |dent|)
+(-1077 |Key| |Ent| |dent|)
((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key.")))
-((-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-795))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1075)
+((-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-797))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1078)
((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For infinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline Conditional attributes: \\indented{2}{infinite\\tab{15}repeated \\spad{nextItem}\\spad{'s} are never \"failed\".}")) (|nextItem| (((|Union| $ "failed") $) "\\spad{nextItem(x)} returns the next item,{} or \"failed\" if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping.")))
NIL
NIL
-(-1076 |Coef|)
+(-1079 |Coef|)
((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),{}a,{}d)} computes \\spad{product(n=a,{}a+d,{}a+2*d,{}...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,{}3,{}5...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,{}4,{}6...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,{}2,{}3...,{}f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")))
NIL
NIL
-(-1077 S)
+(-1080 S)
((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,{}u)}.")))
NIL
NIL
-(-1078 A B)
+(-1081 A B)
((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,{}f,{}u)},{} where \\spad{u} is a finite stream \\spad{[x0,{}x1,{}...,{}xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,{}b),{} r1 = f(x1,{}r0),{}...,{} r(n) = f(xn,{}r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,{}h,{}[x0,{}x1,{}x2,{}...])} returns \\spad{[y0,{}y1,{}y2,{}...]},{} where \\spad{y0 = h(x0,{}b)},{} \\spad{y1 = h(x1,{}y0)},{}\\spad{...} \\spad{yn = h(xn,{}y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,{}s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}...]) = [f(x0),{}f(x1),{}f(x2),{}..]}.")))
NIL
NIL
-(-1079 A B C)
+(-1082 A B C)
((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,{}st1,{}st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,{}[x0,{}x1,{}x2,{}..],{}[y0,{}y1,{}y2,{}..]) = [f(x0,{}y0),{}f(x1,{}y1),{}..]}.")))
NIL
NIL
-(-1080 S)
+(-1083 S)
((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,{}s)} returns \\spad{[x0,{}x1,{}...,{}x(n-1)]} where \\spad{s = [x0,{}x1,{}x2,{}..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,{}x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,{}x) = [x,{}f(x),{}f(f(x)),{}...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),{}f(),{}f(),{}...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,{}n,{}y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,{}st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,{}s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,{}s) = concat(a,{}s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,{}st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,{}s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(l)} converts a list \\spad{l} to a stream.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries.")))
-((-4270 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1081)
+((-4274 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1084)
((|constructor| (NIL "A category for string-like objects")) (|string| (($ (|Integer|)) "\\spad{string(i)} returns the decimal representation of \\spad{i} in a string")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-1082)
+(-1085)
NIL
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| (-137) (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| (-137) (QUOTE (-1027))) (-12 (|HasCategory| (-137) (QUOTE (-1027))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1083 |Entry|)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137)))))) (|HasCategory| (-137) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| (-137) (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| (-137) (QUOTE (-1030))) (-12 (|HasCategory| (-137) (QUOTE (-1030))) (|HasCategory| (-137) (LIST (QUOTE -291) (QUOTE (-137))))) (|HasCategory| (-137) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1086 |Entry|)
((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used.")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (QUOTE (-1082))) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#1|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (QUOTE (-1027))) (|HasCategory| (-1082) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1084 A)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (QUOTE (-1085))) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#1|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (QUOTE (-1030))) (|HasCategory| (-1085) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1087 A)
((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,{}f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,{}r,{}g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0/b0,{}a1/b1,{}..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,{}f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,{}0>,{}b<0,{}1>,{}...],{}[b<1,{}0>,{}b<1,{}1>,{}.],{}...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,{}j=0 to infinity,{}b<i,{}j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,{}f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,{}a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,{}[a0,{}a1,{}a2,{}...]) = [a,{}a0,{}a1/2,{}a2/3,{}...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,{}b,{}st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,{}b,{}st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),{}n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),{}n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),{}n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,{}0>,{}a<0,{}1>,{}..],{}[a<1,{}0>,{}a<1,{}1>,{}..],{}[a<2,{}0>,{}a<2,{}1>,{}..],{}..]} and \\spad{addiag(x) = [b<0,{}b<1>,{}...],{} then b<k> = sum(i+j=k,{}a<i,{}j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient 1.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,{}b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,{}r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,{}[a0,{}a1,{}a2,{}..])} returns \\spad{[f(0)*a0,{}f(1)*a1,{}f(2)*a2,{}..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,{}a1,{}a2,{}...])} returns \\spad{[a1,{}2 a2,{}3 a3,{}...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,{}a1,{}..],{}[b0,{}b1,{}..])} returns \\spad{[a0*b0,{}a1*b1,{}..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,{}n+2,{}n+4,{}...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,{}n+1,{}n+2,{}...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,{}coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,{}b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by \\spad{r:} \\spad{[a0,{}a1,{}...] * r = [a0 * r,{}a1 * r,{}...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,{}a1,{}...] = [r * a0,{}r * a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and \\spad{b:} \\spad{[a0,{}a1,{}...] * [b0,{}b1,{}...] = [c0,{}c1,{}...]} where \\spad{ck = sum(i + j = k,{}\\spad{ai} * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,{}a1,{}...] = [- a0,{}- a1,{}...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] - [b0,{}b1,{}..] = [a0 - b0,{}a1 - b1,{}..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,{}a1,{}..] + [b0,{}b1,{}..] = [a0 + b0,{}a1 + b1,{}..]}")))
NIL
-((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))
-(-1085 |Coef|)
+((|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))
+(-1088 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1086 |Coef|)
+(-1089 |Coef|)
((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}.")))
NIL
NIL
-(-1087 R UP)
+(-1090 R UP)
((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p,{} q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p,{} q)} returns \\spad{[p0,{}...,{}pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p,{} q)}.")))
NIL
((|HasCategory| |#1| (QUOTE (-289))))
-(-1088 |n| R)
+(-1091 |n| R)
((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,{}\\spad{li})} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,{}\\spad{li},{}p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,{}\\spad{li},{}b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,{}ind,{}p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,{}\\spad{li},{}i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,{}\\spad{li},{}p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,{}s2,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,{}p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,{}\\spad{li},{}i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,{}\\spad{li},{}p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It\\spad{'s} length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,{}s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,{}n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented")))
NIL
NIL
-(-1089 S1 S2)
+(-1092 S1 S2)
((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,{}t)} makes a form \\spad{s:t}")))
NIL
NIL
-(-1090 |Coef| |var| |cen|)
+(-1093 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4271 "*") -1461 (-3380 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-768))) (|has| |#1| (-162)) (-3380 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-850)))) (-4262 -1461 (-3380 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-768))) (|has| |#1| (-522)) (-3380 (|has| |#1| (-344)) (|has| (-1097 |#1| |#2| |#3|) (-850)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1097) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1097 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1091 R -1334)
+(((-4275 "*") -1435 (-3427 (|has| |#1| (-344)) (|has| (-1100 |#1| |#2| |#3|) (-770))) (|has| |#1| (-162)) (-3427 (|has| |#1| (-344)) (|has| (-1100 |#1| |#2| |#3|) (-852)))) (-4266 -1435 (-3427 (|has| |#1| (-344)) (|has| (-1100 |#1| |#2| |#3|) (-770))) (|has| |#1| (-523)) (-3427 (|has| |#1| (-344)) (|has| (-1100 |#1| |#2| |#3|) (-852)))) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|)))))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (|HasCategory| (-531) (QUOTE (-1042))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1100) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1100 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1094 R -1327)
((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f}(a) + \\spad{f}(a+1) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n),{} n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n}).")))
NIL
NIL
-(-1092 R)
+(-1095 R)
((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n),{} n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n),{} n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.")))
NIL
NIL
-(-1093 R S)
+(-1096 R S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1094 E OV R P)
+(-1097 E OV R P)
((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}.")))
NIL
NIL
-(-1095 R)
+(-1098 R)
((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,{}var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1075))) (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4267)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1096 |Coef| |var| |cen|)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4269 |has| |#1| (-344)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-1078))) (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-216))) (|HasAttribute| |#1| (QUOTE -4271)) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1099 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
-(-1097 |Coef| |var| |cen|)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))))
+(-1100 |Coef| |var| |cen|)
((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|)))) (|HasCategory| (-719) (QUOTE (-1039))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
-(-1098)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-721)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-721)) (|devaluate| |#1|)))) (|HasCategory| (-721) (QUOTE (-1042))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-721))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-721))))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))))
+(-1101)
((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,{}y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}")))
NIL
NIL
-(-1099)
+(-1102)
((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,{}[a1,{}...,{}an])} or \\spad{s}([a1,{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s,{} [a1,{}...,{}an])} returns \\spad{s} arg-scripted by \\spad{[a1,{}...,{}an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s,{} [a1,{}...,{}an])} returns \\spad{s} superscripted by \\spad{[a1,{}...,{}an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s,{} [a1,{}...,{}an])} returns \\spad{s} subscripted by \\spad{[a1,{}...,{}an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s,{} [a,{}b,{}c,{}d,{}e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s,{} [a,{}b,{}c])} is equivalent to \\spad{script(s,{}[a,{}b,{}c,{}[],{}[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|coerce| (($ (|String|)) "\\spad{coerce(s)} converts the string \\spad{s} to a symbol.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%.")))
NIL
NIL
-(-1100 R)
+(-1103 R)
((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r,{} n)} returns the vector of the elementary symmetric functions in \\spad{[r,{}r,{}...,{}r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,{}...,{}rn])} returns the vector of the elementary symmetric functions in the \\spad{\\spad{ri}'s}: \\spad{[r1 + ... + rn,{} r1 r2 + ... + r(n-1) rn,{} ...,{} r1 r2 ... rn]}.")))
NIL
NIL
-(-1101 R)
+(-1104 R)
((|constructor| (NIL "This domain implements symmetric polynomial")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-6 -4267)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| (-911) (QUOTE (-128))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasAttribute| |#1| (QUOTE -4267)))
-(-1102)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-6 -4271)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-432))) (-12 (|HasCategory| (-913) (QUOTE (-128))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasAttribute| |#1| (QUOTE -4271)))
+(-1105)
((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,{}tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,{}tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) (|Symbol|) $) "\\spad{returnTypeOf(f,{}tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,{}tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void"))) "\\spad{returnType!(f,{}t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| "void")) $) "\\spad{returnType!(f,{}t,{}tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,{}l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,{}l,{}tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,{}t,{}asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,{}t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,{}t,{}asp,{}tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table.")))
NIL
NIL
-(-1103)
+(-1106)
((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,{}tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,{}tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,{}t,{}tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,{}t,{}tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}")))
NIL
NIL
-(-1104)
+(-1107)
((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} building complete representation of Spad programs as objects of a term algebra built from ground terms of type integers,{} foats,{} symbols,{} and strings. This domain differs from InputForm in that it represents any entity in a Spad program,{} not just expressions. Related Constructors: Boolean,{} Integer,{} Float,{} Symbol,{} String,{} SExpression. See Also: SExpression,{} SetCategory. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if \\spad{`x'} really is a String") (((|Boolean|) $ (|[\|\|]| (|Symbol|))) "\\spad{x case Symbol} is \\spad{true} if \\spad{`x'} really is a Symbol") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if \\spad{`x'} really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if \\spad{`x'} really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when \\spad{`x'} is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in \\spad{`x'}.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Symbol|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax \\spad{`x'}. The value returned is itself a syntax if \\spad{`x'} really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when \\spad{`s'} is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).") (($ (|Symbol|) (|List| $)) "\\spad{buildSyntax(op,{} [a1,{} ...,{} an])} builds a syntax object for \\spad{op}(a1,{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.") (((|Symbol|) $) "\\spad{autoCoerce(s)} forcibly extracts a symbo from the Syntax domain \\spad{`s'}; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax \\spad{`s'}; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax \\spad{`s'}.") (($ (|String|)) "\\spad{coerce(s)} injects the string value \\spad{`s'} into the syntax domain") (((|Symbol|) $) "\\spad{coerce(s)} extracts a symbol from the syntax \\spad{`s'}.") (($ (|Symbol|)) "\\spad{coerce(s)} injects the symbol \\spad{`s'} into the Syntax domain.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax \\spad{`s'}.") (($ (|DoubleFloat|)) "\\spad{coerce(f)} injects the float value \\spad{`f'} into the Syntax domain") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax \\spad{`s'}") (($ (|Integer|)) "\\spad{coerce(i)} injects the integer value `i' into the Syntax domain.")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when \\spad{`s'} is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax.")))
NIL
NIL
-(-1105 R)
+(-1108 R)
((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,{}lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,{}v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,{}v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,{}lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,{}lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")))
NIL
NIL
-(-1106)
+(-1109)
((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension()} returns a string representation of a filename extension for native modules.")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform()} returns a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system.")))
NIL
NIL
-(-1107 S)
+(-1110 S)
((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,{}b,{}c,{}d,{}e)} is an auxiliary function for \\spad{mr}")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{ListFunctions3}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{tab1}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation bat1 is the inverse of tab1.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,{}llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,{}pr,{}t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,{}pr,{}r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record")))
NIL
NIL
-(-1108 S)
+(-1111 S)
((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau.")))
NIL
NIL
-(-1109 |Key| |Entry|)
+(-1112 |Key| |Entry|)
((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}")))
-((-4269 . T) (-4270 . T))
-((-12 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3078) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1874) (|devaluate| |#2|)))))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#2| (QUOTE (-1027)))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -572) (QUOTE (-506)))) (-12 (|HasCategory| |#2| (QUOTE (-1027))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#2| (QUOTE (-1027))) (-1461 (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#2| (LIST (QUOTE -571) (QUOTE (-804)))) (|HasCategory| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1110 R)
+((-4273 . T) (-4274 . T))
+((-12 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -291) (LIST (QUOTE -2) (LIST (QUOTE |:|) (QUOTE -3033) (|devaluate| |#1|)) (LIST (QUOTE |:|) (QUOTE -1798) (|devaluate| |#2|)))))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#2| (QUOTE (-1030)))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -573) (QUOTE (-507)))) (-12 (|HasCategory| |#2| (QUOTE (-1030))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#2| (QUOTE (-1030))) (-1435 (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-806)))) (|HasCategory| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1113 R)
((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a,{} n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a,{} n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,{}...,{}an])} returns \\spad{f(a1,{}...,{}an)} such that if \\spad{\\spad{ai} = tan(\\spad{ui})} then \\spad{f(a1,{}...,{}an) = tan(u1 + ... + un)}.")))
NIL
NIL
-(-1111 S |Key| |Entry|)
+(-1114 S |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
NIL
NIL
-(-1112 |Key| |Entry|)
+(-1115 |Key| |Entry|)
((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,{}t1,{}t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,{}y,{}...,{}z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,{}k,{}e)} (also written \\axiom{\\spad{t}.\\spad{k} \\spad{:=} \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}.")))
-((-4270 . T) (-4100 . T))
+((-4274 . T) (-4120 . T))
NIL
-(-1113 |Key| |Entry|)
+(-1116 |Key| |Entry|)
((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key \\spad{->} Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table.")))
NIL
NIL
-(-1114)
+(-1117)
((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it.")))
NIL
NIL
-(-1115 S)
+(-1118 S)
((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format.")))
NIL
NIL
-(-1116)
+(-1119)
((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain \\spad{``}\\verb+\\spad{\\[}+\\spad{''} and \\spad{``}\\verb+\\spad{\\]}+\\spad{''},{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,{}strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,{}strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,{}strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,{}width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,{}step,{}type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,{}step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.")) (|coerce| (($ (|OutputForm|)) "\\spad{coerce(o)} changes \\spad{o} in the standard output format to TeX format.")))
NIL
NIL
-(-1117)
+(-1120)
((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,{}\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,{}s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned.")))
NIL
NIL
-(-1118 R)
+(-1121 R)
((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented")))
NIL
NIL
-(-1119)
+(-1122)
((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination.")))
NIL
NIL
-(-1120 S)
+(-1123 S)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1121)
+(-1124)
((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{\\spad{pi}()} returns the constant \\spad{pi}.")))
NIL
NIL
-(-1122 S)
+(-1125 S)
((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1,{} t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,{}ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}.")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1027))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1123 S)
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1030))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1126 S)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1124)
+(-1127)
((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}.")))
NIL
NIL
-(-1125 R -1334)
+(-1128 R -1327)
((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f,{} imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f,{} x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log,{} exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f,{} x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels.")))
NIL
NIL
-(-1126 R |Row| |Col| M)
+(-1129 R |Row| |Col| M)
((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,{}d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")))
NIL
NIL
-(-1127 R -1334)
+(-1130 R -1327)
((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on \\spad{f:}\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on \\spad{f:}\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}")))
NIL
-((-12 (|HasCategory| |#1| (LIST (QUOTE -572) (LIST (QUOTE -833) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -827) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -827) (|devaluate| |#1|)))))
-(-1128 S R E V P)
+((-12 (|HasCategory| |#1| (LIST (QUOTE -573) (LIST (QUOTE -835) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -829) (|devaluate| |#1|))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (|devaluate| |#1|)))) (|HasCategory| |#2| (LIST (QUOTE -829) (|devaluate| |#1|)))))
+(-1131 S R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#5|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
NIL
((|HasCategory| |#4| (QUOTE (-349))))
-(-1129 R E V P)
+(-1132 R E V P)
((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < \\spad{Xn}}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}\\spad{Xn}]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(\\spad{ts})} returns \\axiom{size()\\spad{\\$}\\spad{V}} minus \\axiom{\\spad{\\#}\\spad{ts}}.")) (|extend| (($ $ |#4|) "\\axiom{extend(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(\\spad{ts},{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{\\spad{ts}},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(\\spad{ts},{}\\spad{v})} returns the polynomial of \\axiom{\\spad{ts}} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{\\spad{ts}}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(\\spad{ts})} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{\\spad{ts}}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(\\spad{ts})} returns the polynomials of \\axiom{\\spad{ts}} with smaller main variable than \\axiom{mvar(\\spad{ts})} if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with smallest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(\\spad{ts})} returns the polynomial of \\axiom{\\spad{ts}} with greatest main variable if \\axiom{\\spad{ts}} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(\\spad{lp})} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[\\spad{tsn},{}\\spad{qsn}]]} such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{\\spad{ts}} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(\\spad{lp})} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{lp}} is the union of the closures of the regular zero sets of the members of \\axiom{\\spad{lts}}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}\\spad{ts})} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(\\spad{ts})).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(\\spad{ts})} returns the subset of \\axiom{\\spad{ts}} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}\\spad{ts})} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{ts}} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}\\spad{ts})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}\\spad{ts})} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(\\spad{lp},{}\\spad{ts},{}redOp,{}redOp?)} returns a list \\axiom{\\spad{lq}} of polynomials such that \\axiom{[reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?) for \\spad{p} in \\spad{lp}]} and \\axiom{\\spad{lp}} have the same zeros inside the regular zero set of \\axiom{\\spad{ts}}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{\\spad{lq}} and every polynomial \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{\\spad{lp}} and a product \\axiom{\\spad{h}} of \\axiom{initials(\\spad{ts})} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}\\spad{ts},{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{\\spad{ts}} such that \\axiom{\\spad{h*p} - \\spad{r}} lies in the ideal generated by \\axiom{\\spad{ts}}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(\\spad{ts},{}redOp?)} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{\\spad{ts}} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(\\spad{ts})} returns \\spad{true} iff every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{ts}}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}\\spad{ts},{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{\\spad{ts}} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(\\spad{ts})} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{\\spad{ts}} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(\\spad{ts},{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}\\spad{ts})} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{\\spad{ts}}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(\\spad{ts})} returns \\axiom{[\\spad{lp},{}\\spad{lq}]} where \\axiom{\\spad{lp}} is the list of the members of \\axiom{\\spad{ts}} and \\axiom{\\spad{lq}}is \\axiom{initials(\\spad{ts})}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{ts})} returns the product of main degrees of the members of \\axiom{\\spad{ts}}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(\\spad{ts})} returns the list of the non-constant initials of the members of \\axiom{\\spad{ts}}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(\\spad{qs},{}redOp?)} where \\axiom{\\spad{qs}} consists of the polynomials of \\axiom{\\spad{ps}} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(\\spad{ps},{}redOp?)} returns \\axiom{[\\spad{bs},{}\\spad{ts}]} where \\axiom{concat(\\spad{bs},{}\\spad{ts})} is \\axiom{\\spad{ps}} and \\axiom{\\spad{bs}} is a basic set in Wu Wen Tsun sense of \\axiom{\\spad{ps}} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{\\spad{ps}},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense.")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-1130 |Coef|)
+(-1133 |Coef|)
((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,{}v,{}c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,{}v,{}c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s,{} n)} gives the terms of total degree \\spad{n}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-344))))
-(-1131 |Curve|)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-138))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-344))))
+(-1134 |Curve|)
((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,{}ll,{}b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,{}b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}.")))
NIL
NIL
-(-1132)
+(-1135)
((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,{}n,{}b,{}r,{}lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,{}sin(n - 1) a],{}...,{}[cos 2 a,{}sin 2 a],{}[cos a,{}sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,{}q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,{}q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,{}x2,{}x3,{}c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point.")))
NIL
NIL
-(-1133 S)
+(-1136 S)
((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter\\spad{'s} notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,{}n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based")) (|coerce| (($ (|PrimitiveArray| |#1|)) "\\spad{coerce(a)} makes a tuple from primitive array a")))
NIL
-((|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1134 -1334)
+((|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1137 -1327)
((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,{}n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")))
NIL
NIL
-(-1135)
+(-1138)
((|constructor| (NIL "The fundamental Type.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-1136 S)
+(-1139 S)
((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l,{} fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by \\spad{fn}.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a,{} b,{} fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a,{} b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a,{} b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,{}...,{}bm],{}[a1,{}...,{}an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < \\spad{ai}}\\space{2}for \\spad{c} not among the \\spad{ai}\\spad{'s} and \\spad{bj}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,{}d)} if neither is among the \\spad{ai}\\spad{'s},{}\\spad{bj}\\spad{'s}.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,{}...,{}an])} defines a partial ordering on \\spad{S} given \\spad{by:} \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < \\spad{ai}\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}\\spad{'s}.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b,{} c)} if neither is among the \\spad{ai}\\spad{'s}.}")))
NIL
-((|HasCategory| |#1| (QUOTE (-795))))
-(-1137)
+((|HasCategory| |#1| (QUOTE (-797))))
+(-1140)
((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,{}...,{}bm],{} [a1,{}...,{}an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,{}...,{}bm],{} [a1,{}...,{}an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,{}...,{}an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}.")))
NIL
NIL
-(-1138 S)
+(-1141 S)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
NIL
NIL
-(-1139)
+(-1142)
((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element.")))
-((-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1140 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1143 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}.")))
NIL
NIL
-(-1141 |Coef|)
+(-1144 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,{}k1,{}k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,{}k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{<=} \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = n0..infinity,{}a[n] * x**n)) = sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1142 S |Coef| UTS)
+(-1145 S |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
NIL
((|HasCategory| |#2| (QUOTE (-344))))
-(-1143 |Coef| UTS)
+(-1146 |Coef| UTS)
((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Taylor series \\spad{f(x)} to a Laurent series.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,{}f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,{}g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,{}f(x))} returns \\spad{x**n * f(x)}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4100 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4120 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1144 |Coef| UTS)
+(-1147 |Coef| UTS)
((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,{}f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-960)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))) (-1461 (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-140))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-216)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-1099))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-960)))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-768)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -491) (QUOTE (-1099)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-795)))) (|HasCategory| |#2| (QUOTE (-850))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-515)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))))
-(-1145 |Coef| |var| |cen|)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-797)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-962)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))) (-1435 (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-140))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-216)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (|HasCategory| (-531) (QUOTE (-1042))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-852)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-1102))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-962)))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-770)))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-770)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-797))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1078)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -268) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -291) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -492) (QUOTE (-1102)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-797)))) (|HasCategory| |#2| (QUOTE (-852))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-516)))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-289)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#1| (QUOTE (-138))) (-12 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-138))))))
+(-1148 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,{}x,{}3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series.")))
-(((-4271 "*") -1461 (-3380 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-768))) (|has| |#1| (-162)) (-3380 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-850)))) (-4262 -1461 (-3380 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-768))) (|has| |#1| (-522)) (-3380 (|has| |#1| (-344)) (|has| (-1173 |#1| |#2| |#3|) (-850)))) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
-((-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|)))))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-530)) (|devaluate| |#1|))))) (|HasCategory| (-530) (QUOTE (-1039))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-1099)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-960))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-1075))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -491) (QUOTE (-1099)) (LIST (QUOTE -1173) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-530))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-515))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-768))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-850))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1173 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))))
-(-1146 ZP)
+(((-4275 "*") -1435 (-3427 (|has| |#1| (-344)) (|has| (-1176 |#1| |#2| |#3|) (-770))) (|has| |#1| (-162)) (-3427 (|has| |#1| (-344)) (|has| (-1176 |#1| |#2| |#3|) (-852)))) (-4266 -1435 (-3427 (|has| |#1| (-344)) (|has| (-1176 |#1| |#2| |#3|) (-770))) (|has| |#1| (-523)) (-3427 (|has| |#1| (-344)) (|has| (-1176 |#1| |#2| |#3|) (-852)))) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
+((-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-140))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-140)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|)))))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-216))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-531)) (|devaluate| |#1|))))) (|HasCategory| (-531) (QUOTE (-1042))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-344))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-1102)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-962))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344))))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-1078))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -268) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -291) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -492) (QUOTE (-1102)) (LIST (QUOTE -1176) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-531))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-516))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-289))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-138))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-770))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-162)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-852))) (|HasCategory| |#1| (QUOTE (-344)))) (-12 (|HasCategory| (-1176 |#1| |#2| |#3|) (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-344)))) (|HasCategory| |#1| (QUOTE (-138)))))
+(-1149 ZP)
((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,{}flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}")))
NIL
NIL
-(-1147 R S)
+(-1150 R S)
((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,{}seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}.")))
NIL
-((|HasCategory| |#1| (QUOTE (-793))))
-(-1148 S)
+((|HasCategory| |#1| (QUOTE (-795))))
+(-1151 S)
((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound.")))
NIL
-((|HasCategory| |#1| (QUOTE (-793))) (|HasCategory| |#1| (QUOTE (-1027))))
-(-1149 |x| R |y| S)
+((|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1030))))
+(-1152 |x| R |y| S)
((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func,{} poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly.")))
NIL
NIL
-(-1150 R Q UP)
+(-1153 R Q UP)
((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a \\spad{gcd} domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p,{} d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}.")))
NIL
NIL
-(-1151 R UP)
+(-1154 R UP)
((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} \\spad{fn} ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} \\spad{fn}).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,{}h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,{}d,{}c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,{}d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")))
NIL
NIL
-(-1152 R UP)
+(-1155 R UP)
((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,{}g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded.")))
NIL
NIL
-(-1153 R U)
+(-1156 R U)
((|constructor| (NIL "This package implements Karatsuba\\spad{'s} trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,{}b,{}l,{}k)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,{}b)} returns \\spad{a*b} by applying Karatsuba\\spad{'s} trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,{}b)} returns \\spad{a*b} without using Karatsuba\\spad{'s} trick at all.")))
NIL
NIL
-(-1154 |x| R)
+(-1157 |x| R)
((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,{}e,{}r,{}p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|coerce| (($ (|Variable| |#1|)) "\\spad{coerce(x)} converts the variable \\spad{x} to a univariate polynomial.")))
-(((-4271 "*") |has| |#2| (-162)) (-4262 |has| |#2| (-522)) (-4265 |has| |#2| (-344)) (-4267 |has| |#2| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-850))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-522)))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-360))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -827) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -827) (QUOTE (-530))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-360)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -572) (LIST (QUOTE -833) (QUOTE (-530)))))) (-12 (|HasCategory| (-1012) (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#2| (LIST (QUOTE -572) (QUOTE (-506))))) (|HasCategory| |#2| (QUOTE (-795))) (|HasCategory| |#2| (LIST (QUOTE -593) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (-1461 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1075))) (|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (-1461 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE -4267)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (-1461 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-850)))) (|HasCategory| |#2| (QUOTE (-138)))))
-(-1155 R PR S PS)
+(((-4275 "*") |has| |#2| (-162)) (-4266 |has| |#2| (-523)) (-4269 |has| |#2| (-344)) (-4271 |has| |#2| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-852))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-523)))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-360)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-360))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -829) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -829) (QUOTE (-531))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-360)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -573) (LIST (QUOTE -835) (QUOTE (-531)))))) (-12 (|HasCategory| (-1014) (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#2| (LIST (QUOTE -573) (QUOTE (-507))))) (|HasCategory| |#2| (QUOTE (-797))) (|HasCategory| |#2| (LIST (QUOTE -594) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-140))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (-1435 (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-1078))) (|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (-1435 (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| |#2| (QUOTE (-216))) (|HasAttribute| |#2| (QUOTE -4271)) (|HasCategory| |#2| (QUOTE (-432))) (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (-1435 (-12 (|HasCategory| $ (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-852)))) (|HasCategory| |#2| (QUOTE (-138)))))
+(-1158 R PR S PS)
((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,{} p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero.")))
NIL
NIL
-(-1156 S R)
+(-1159 S R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-522))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-1075))))
-(-1157 R)
+((|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))) (|HasCategory| |#2| (QUOTE (-432))) (|HasCategory| |#2| (QUOTE (-523))) (|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (QUOTE (-1078))))
+(-1160 R)
((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p,{} q)} returns \\spad{[a,{} b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,{}q)} returns \\spad{[c,{} q,{} r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,{}q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f,{} q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p,{} q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,{}q)} computes the \\spad{gcd} of the polynomials \\spad{p} and \\spad{q} using the SubResultant \\spad{GCD} algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p,{} q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,{}r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,{}b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,{}q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p,{} d,{} x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where \\spad{Dx} is given by \\spad{x'},{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,{}q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,{}n)} returns \\spad{p * monomial(1,{}n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,{}n)} returns \\spad{monicDivide(p,{}monomial(1,{}n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,{}n)} returns the same as \\spad{monicDivide(p,{}monomial(1,{}n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,{}q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient,{} remainder]}. Error: if \\spad{q} isn\\spad{'t} monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,{}n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,{}n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p,{} n)} returns \\spad{[a0,{}...,{}a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4265 |has| |#1| (-344)) (-4267 |has| |#1| (-6 -4267)) (-4264 . T) (-4263 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4269 |has| |#1| (-344)) (-4271 |has| |#1| (-6 -4271)) (-4268 . T) (-4267 . T) (-4270 . T))
NIL
-(-1158 S |Coef| |Expon|)
+(-1161 S |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#2| $ |#3|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1039))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2366) (LIST (|devaluate| |#2|) (QUOTE (-1099))))))
-(-1159 |Coef| |Expon|)
+((|HasCategory| |#2| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#2| (LIST (QUOTE *) (LIST (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1042))) (|HasSignature| |#2| (LIST (QUOTE **) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (LIST (QUOTE -2265) (LIST (|devaluate| |#2|) (QUOTE (-1102))))))
+(-1162 |Coef| |Expon|)
((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,{}a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,{}n)} causes all terms of \\spad{f} of degree \\spad{<=} \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,{}k1,{}k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,{}k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,{}n) = min(m,{}n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,{}n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|elt| ((|#1| $ |#2|) "\\spad{elt(f(x),{}r)} returns the coefficient of the term of degree \\spad{r} in \\spad{f(x)}. This is the same as the function \\spadfun{coefficient}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1160 RC P)
+(-1163 RC P)
((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,{}q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}.")))
NIL
NIL
-(-1161 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
+(-1164 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|)
((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}.")))
NIL
NIL
-(-1162 |Coef|)
+(-1165 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,{}r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,{}st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1163 S |Coef| ULS)
+(-1166 S |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#3|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
NIL
NIL
-(-1164 |Coef| ULS)
+(-1167 |Coef| ULS)
((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|coerce| (($ |#2|) "\\spad{coerce(f(x))} converts the Laurent series \\spad{f(x)} to a Puiseux series.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,{}g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,{}f(x))} returns \\spad{f(x^r)}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1165 |Coef| ULS)
+(-1168 |Coef| ULS)
((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,{}f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))))
-(-1166 |Coef| |var| |cen|)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))))
+(-1169 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,{}x,{}3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} returns the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4267 |has| |#1| (-344)) (-4261 |has| |#1| (-344)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#1| (QUOTE (-162))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-530)) (QUOTE (-1039))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-1461 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-522)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-530)))))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
-(-1167 R FE |var| |cen|)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4271 |has| |#1| (-344)) (-4265 |has| |#1| (-344)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#1| (QUOTE (-162))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531))) (|devaluate| |#1|)))) (|HasCategory| (-388 (-531)) (QUOTE (-1042))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-1435 (|HasCategory| |#1| (QUOTE (-344))) (|HasCategory| |#1| (QUOTE (-523)))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (LIST (QUOTE -388) (QUOTE (-531)))))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))))
+(-1170 R FE |var| |cen|)
((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,{}f(var))}.")))
-(((-4271 "*") |has| (-1166 |#2| |#3| |#4|) (-162)) (-4262 |has| (-1166 |#2| |#3| |#4|) (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-162))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (QUOTE (-530)))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-344))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-432))) (-1461 (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (LIST (QUOTE -975) (LIST (QUOTE -388) (QUOTE (-530)))))) (|HasCategory| (-1166 |#2| |#3| |#4|) (QUOTE (-522))))
-(-1168 A S)
+(((-4275 "*") |has| (-1169 |#2| |#3| |#4|) (-162)) (-4266 |has| (-1169 |#2| |#3| |#4|) (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-138))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-140))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-162))) (|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -977) (QUOTE (-531)))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-344))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-432))) (-1435 (|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| (-1169 |#2| |#3| |#4|) (LIST (QUOTE -977) (LIST (QUOTE -388) (QUOTE (-531)))))) (|HasCategory| (-1169 |#2| |#3| |#4|) (QUOTE (-523))))
+(-1171 A S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
NIL
-((|HasAttribute| |#1| (QUOTE -4270)))
-(-1169 S)
+((|HasAttribute| |#1| (QUOTE -4274)))
+(-1172 S)
((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,{}n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,{}x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,{}v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,{}\"last\",{}x)} (also written: \\axiom{\\spad{u}.last \\spad{:=} \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,{}\"rest\",{}v)} (also written: \\axiom{\\spad{u}.rest \\spad{:=} \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,{}\"first\",{}x)} (also written: \\axiom{\\spad{u}.first \\spad{:=} \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,{}x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,{}x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,{}v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast_!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,{}n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,{}n)} returns the \\axiom{\\spad{n}}th (\\spad{n} \\spad{>=} 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,{}\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,{}\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,{}\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,{}n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} \\spad{>=} 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,{}u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,{}v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-1170 |Coef1| |Coef2| UTS1 UTS2)
+(-1173 |Coef1| |Coef2| UTS1 UTS2)
((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,{}g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}")))
NIL
NIL
-(-1171 S |Coef|)
+(-1174 S |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
NIL
-((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#2| (QUOTE (-900))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasSignature| |#2| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1545) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1099))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#2| (QUOTE (-344))))
-(-1172 |Coef|)
+((|HasCategory| |#2| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#2| (QUOTE (-902))) (|HasCategory| |#2| (QUOTE (-1124))) (|HasSignature| |#2| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#2|)))) (|HasSignature| |#2| (LIST (QUOTE -1788) (LIST (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1102))))) (|HasCategory| |#2| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#2| (QUOTE (-344))))
+(-1175 |Coef|)
((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),{}y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k1,{}k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,{}k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,{}sum(n = 0..infinity,{}a[n] * x**n))} returns \\spad{sum(n = 0..infinity,{}f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,{}a1,{}a2,{}...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,{}a1,{}a2,{}...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1173 |Coef| |var| |cen|)
+(-1176 |Coef| |var| |cen|)
((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),{}x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,{}b,{}f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,{}b,{}f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and 1st order coefficient 1.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),{}a,{}d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,{}f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,{}f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|differentiate| (($ $ (|Variable| |#2|)) "\\spad{differentiate(f(x),{}x)} computes the derivative of \\spad{f(x)} with respect to \\spad{x}.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,{}k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}.")))
-(((-4271 "*") |has| |#1| (-162)) (-4262 |has| |#1| (-522)) (-4263 . T) (-4264 . T) (-4266 . T))
-((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasCategory| |#1| (QUOTE (-522))) (-1461 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-522)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -841) (QUOTE (-1099)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-719)) (|devaluate| |#1|)))) (|HasCategory| (-719) (QUOTE (-1039))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasSignature| |#1| (LIST (QUOTE -2366) (LIST (|devaluate| |#1|) (QUOTE (-1099)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-719))))) (|HasCategory| |#1| (QUOTE (-344))) (-1461 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-530)))) (|HasCategory| |#1| (QUOTE (-900))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasSignature| |#1| (LIST (QUOTE -1545) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1099))))) (|HasSignature| |#1| (LIST (QUOTE -2746) (LIST (LIST (QUOTE -597) (QUOTE (-1099))) (|devaluate| |#1|)))))))
-(-1174 |Coef| UTS)
+(((-4275 "*") |has| |#1| (-162)) (-4266 |has| |#1| (-523)) (-4267 . T) (-4268 . T) (-4270 . T))
+((|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasCategory| |#1| (QUOTE (-523))) (-1435 (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-523)))) (|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-138))) (|HasCategory| |#1| (QUOTE (-140))) (-12 (|HasCategory| |#1| (LIST (QUOTE -843) (QUOTE (-1102)))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-721)) (|devaluate| |#1|))))) (|HasSignature| |#1| (LIST (QUOTE *) (LIST (|devaluate| |#1|) (QUOTE (-721)) (|devaluate| |#1|)))) (|HasCategory| (-721) (QUOTE (-1042))) (-12 (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-721))))) (|HasSignature| |#1| (LIST (QUOTE -2265) (LIST (|devaluate| |#1|) (QUOTE (-1102)))))) (|HasSignature| |#1| (LIST (QUOTE **) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-721))))) (|HasCategory| |#1| (QUOTE (-344))) (-1435 (-12 (|HasCategory| |#1| (LIST (QUOTE -29) (QUOTE (-531)))) (|HasCategory| |#1| (QUOTE (-902))) (|HasCategory| |#1| (QUOTE (-1124))) (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531)))))) (-12 (|HasCategory| |#1| (LIST (QUOTE -37) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasSignature| |#1| (LIST (QUOTE -1788) (LIST (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1102))))) (|HasSignature| |#1| (LIST (QUOTE -2695) (LIST (LIST (QUOTE -598) (QUOTE (-1102))) (|devaluate| |#1|)))))))
+(-1177 |Coef| UTS)
((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,{}f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,{}y[1],{}y[2],{}...,{}y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,{}cl)} is the solution to \\spad{y<n>=f(y,{}y',{}..,{}y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,{}c0,{}c1)} is the solution to \\spad{y'' = f(y,{}y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,{}c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,{}g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")))
NIL
NIL
-(-1175 -1334 UP L UTS)
+(-1178 -1327 UP L UTS)
((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s,{} n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series.")))
NIL
-((|HasCategory| |#1| (QUOTE (-522))))
-(-1176)
+((|HasCategory| |#1| (QUOTE (-523))))
+(-1179)
((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators.")))
-((-4100 . T))
+((-4120 . T))
NIL
-(-1177 |sym|)
+(-1180 |sym|)
((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol")))
NIL
NIL
-(-1178 S R)
+(-1181 S R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
NIL
-((|HasCategory| |#2| (QUOTE (-941))) (|HasCategory| |#2| (QUOTE (-984))) (|HasCategory| |#2| (QUOTE (-675))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
-(-1179 R)
+((|HasCategory| |#2| (QUOTE (-943))) (|HasCategory| |#2| (QUOTE (-986))) (|HasCategory| |#2| (QUOTE (-677))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))))
+(-1182 R)
((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,{}v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})\\spad{*v}(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,{}y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")))
-((-4270 . T) (-4269 . T) (-4100 . T))
+((-4274 . T) (-4273 . T) (-4120 . T))
NIL
-(-1180 A B)
+(-1183 A B)
((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f,{} v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,{}vec,{}ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,{}vec,{}ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}.")))
NIL
NIL
-(-1181 R)
+(-1184 R)
((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector.")))
-((-4270 . T) (-4269 . T))
-((-1461 (-12 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1461 (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804))))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-506)))) (-1461 (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027)))) (|HasCategory| |#1| (QUOTE (-795))) (|HasCategory| (-530) (QUOTE (-795))) (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-675))) (|HasCategory| |#1| (QUOTE (-984))) (-12 (|HasCategory| |#1| (QUOTE (-941))) (|HasCategory| |#1| (QUOTE (-984)))) (-12 (|HasCategory| |#1| (QUOTE (-1027))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1182)
+((-4274 . T) (-4273 . T))
+((-1435 (-12 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|))))) (-1435 (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806))))) (|HasCategory| |#1| (LIST (QUOTE -573) (QUOTE (-507)))) (-1435 (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030)))) (|HasCategory| |#1| (QUOTE (-797))) (|HasCategory| (-531) (QUOTE (-797))) (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-677))) (|HasCategory| |#1| (QUOTE (-986))) (-12 (|HasCategory| |#1| (QUOTE (-943))) (|HasCategory| |#1| (QUOTE (-986)))) (-12 (|HasCategory| |#1| (QUOTE (-1030))) (|HasCategory| |#1| (LIST (QUOTE -291) (|devaluate| |#1|)))) (|HasCategory| |#1| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1185)
((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,{}gr,{}n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,{}n,{}s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,{}n,{}dx,{}dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,{}n,{}sx,{}sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,{}n,{}s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,{}n,{}s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,{}n,{}s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,{}n,{}c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,{}n,{}s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,{}n,{}c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,{}n,{}s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,{}n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,{}\\spad{gi},{}n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{\\spad{gi}} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{\\spad{gi}} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,{}num,{}sX,{}sY,{}dX,{}dY,{}pts,{}lns,{}box,{}axes,{}axesC,{}un,{}unC,{}cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it\\spad{'s} draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(\\spad{gi},{}lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{\\spad{gi}},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc.")))
NIL
NIL
-(-1183)
+(-1186)
((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,{}s,{}lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,{}s,{}f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,{}s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,{}c1,{}c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,{}i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,{}x,{}y,{}z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,{}s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,{}s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,{}s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,{}h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,{}d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,{}s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,{}dx,{}dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,{}sx,{}sy,{}sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,{}s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,{}th,{}phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,{}s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,{}s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,{}s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,{}s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,{}s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}rotx,{}roty,{}rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,{}viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,{}th,{}phi,{}s,{}dx,{}dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,{}x,{}y,{}width,{}height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,{}s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,{}w,{}h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,{}x,{}y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,{}lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,{}ind,{}pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,{}sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,{}lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,{}s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians.")))
NIL
NIL
-(-1184)
+(-1187)
((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,{}h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,{}y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport.")))
NIL
NIL
-(-1185)
+(-1188)
((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(\\spad{gi})} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through \\spad{pn}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],{}[p1],{}...,{}[pn]],{}ptColor,{}lineColor,{}ptSize,{}[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught \\spad{pn},{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}.")))
NIL
NIL
-(-1186)
+(-1189)
((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} coerces void object to outputForm.")) (|void| (($) "\\spad{void()} produces a void object.")))
NIL
NIL
-(-1187 A S)
+(-1190 A S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
NIL
NIL
-(-1188 S)
+(-1191 S)
((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}.")))
-((-4264 . T) (-4263 . T))
+((-4268 . T) (-4267 . T))
NIL
-(-1189 R)
+(-1192 R)
((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]\\spad{*v} + A[2]*v**2 + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,{}s,{}st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,{}ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,{}s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally.")))
NIL
NIL
-(-1190 K R UP -1334)
+(-1193 K R UP -1327)
((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,{}basisDen,{}basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,{}w2,{}...,{}wn}. If \\spad{basis} is the matrix \\spad{(aij,{} i = 1..n,{} j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{\\spad{vi} = (1/basisDen) * sum(aij * wj,{} j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{\\spad{wi}} with respect to the basis \\spad{v1,{}...,{}vn}: if \\spad{basisInv} is the matrix \\spad{(bij,{} i = 1..n,{} j = 1..n)},{} then \\spad{\\spad{wi} = sum(bij * vj,{} j = 1..n)}.")))
NIL
NIL
-(-1191 R |VarSet| E P |vl| |wl| |wtlevel|)
+(-1194 R |VarSet| E P |vl| |wl| |wtlevel|)
((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: \\spad{NB:} previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)")) (|coerce| (($ |#4|) "\\spad{coerce(p)} coerces \\spad{p} into Weighted form,{} applying weights and ignoring terms") ((|#4| $) "convert back into a \\spad{\"P\"},{} ignoring weights")))
-((-4264 |has| |#1| (-162)) (-4263 |has| |#1| (-162)) (-4266 . T))
+((-4268 |has| |#1| (-162)) (-4267 |has| |#1| (-162)) (-4270 . T))
((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))))
-(-1192 R E V P)
+(-1195 R E V P)
((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{\\spad{MM} Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. DISCO'92. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(\\spad{ps})} returns the same as \\axiom{characteristicSerie(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(\\spad{ps},{}redOp?,{}redOp)} returns a list \\axiom{\\spad{lts}} of triangular sets such that the zero set of \\axiom{\\spad{ps}} is the union of the regular zero sets of the members of \\axiom{\\spad{lts}}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(\\spad{ps})} returns the same as \\axiom{characteristicSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(\\spad{ps},{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{\\spad{ps}} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = \\spad{f*q} + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(\\spad{ps})} returns the same as \\axiom{medialSet(\\spad{ps},{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(\\spad{ps},{}redOp?,{}redOp)} returns \\axiom{\\spad{bs}} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{\\spad{ps}} (with rank not higher than any basic set of \\axiom{\\spad{ps}}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{\\spad{bs}} has to be understood as a candidate for being a characteristic set of \\axiom{\\spad{ps}}. In the original algorithm,{} \\axiom{\\spad{bs}} is simply a basic set of \\axiom{\\spad{ps}}.")))
-((-4270 . T) (-4269 . T))
-((-12 (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-506)))) (|HasCategory| |#4| (QUOTE (-1027))) (|HasCategory| |#1| (QUOTE (-522))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -571) (QUOTE (-804)))))
-(-1193 R)
+((-4274 . T) (-4273 . T))
+((-12 (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#4| (LIST (QUOTE -291) (|devaluate| |#4|)))) (|HasCategory| |#4| (LIST (QUOTE -573) (QUOTE (-507)))) (|HasCategory| |#4| (QUOTE (-1030))) (|HasCategory| |#1| (QUOTE (-523))) (|HasCategory| |#3| (QUOTE (-349))) (|HasCategory| |#4| (LIST (QUOTE -572) (QUOTE (-806)))))
+(-1196 R)
((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.\\spad{fr})")) (|coerce| (($ |#1|) "\\spad{coerce(r)} equals \\spad{r*1}.")))
-((-4263 . T) (-4264 . T) (-4266 . T))
+((-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1194 |vl| R)
+(-1197 |vl| R)
((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute.")))
-((-4266 . T) (-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4262)))
-(-1195 R |VarSet| XPOLY)
+((-4270 . T) (-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4266)))
+(-1198 R |VarSet| XPOLY)
((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")))
NIL
NIL
-(-1196 |vl| R)
+(-1199 |vl| R)
((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,{}n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,{}y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,{}r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,{}y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,{}w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,{}v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,{}y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,{}w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,{}v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,{}y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,{}w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}.")))
-((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
+((-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T))
NIL
-(-1197 S -1334)
+(-1200 S -1327)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
NIL
((|HasCategory| |#2| (QUOTE (-349))) (|HasCategory| |#2| (QUOTE (-138))) (|HasCategory| |#2| (QUOTE (-140))))
-(-1198 -1334)
+(-1201 -1327)
((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,{}s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}.")))
-((-4261 . T) (-4267 . T) (-4262 . T) ((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+((-4265 . T) (-4271 . T) (-4266 . T) ((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
-(-1199 |VarSet| R)
+(-1202 |VarSet| R)
((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.\\spad{fr}).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}.")))
-((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -666) (LIST (QUOTE -388) (QUOTE (-530))))) (|HasAttribute| |#2| (QUOTE -4262)))
-(-1200 |vl| R)
+((-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasCategory| |#2| (LIST (QUOTE -668) (LIST (QUOTE -388) (QUOTE (-531))))) (|HasAttribute| |#2| (QUOTE -4266)))
+(-1203 |vl| R)
((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,{}n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}.")))
-((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
+((-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T))
NIL
-(-1201 R)
+(-1204 R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute.")))
-((-4262 |has| |#1| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasAttribute| |#1| (QUOTE -4262)))
-(-1202 R E)
+((-4266 |has| |#1| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasAttribute| |#1| (QUOTE -4266)))
+(-1205 R E)
((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,{}x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,{}e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|coerce| (($ |#2|) "\\spad{coerce(e)} returns \\spad{1*e}")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}.")))
-((-4266 . T) (-4267 |has| |#1| (-6 -4267)) (-4262 |has| |#1| (-6 -4262)) (-4264 . T) (-4263 . T))
-((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasAttribute| |#1| (QUOTE -4266)) (|HasAttribute| |#1| (QUOTE -4267)) (|HasAttribute| |#1| (QUOTE -4262)))
-(-1203 |VarSet| R)
+((-4270 . T) (-4271 |has| |#1| (-6 -4271)) (-4266 |has| |#1| (-6 -4266)) (-4268 . T) (-4267 . T))
+((|HasCategory| |#1| (QUOTE (-162))) (|HasCategory| |#1| (QUOTE (-344))) (|HasAttribute| |#1| (QUOTE -4270)) (|HasAttribute| |#1| (QUOTE -4271)) (|HasAttribute| |#1| (QUOTE -4266)))
+(-1206 |VarSet| R)
((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form.")))
-((-4262 |has| |#2| (-6 -4262)) (-4264 . T) (-4263 . T) (-4266 . T))
-((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4262)))
-(-1204 A)
+((-4266 |has| |#2| (-6 -4266)) (-4268 . T) (-4267 . T) (-4270 . T))
+((|HasCategory| |#2| (QUOTE (-162))) (|HasAttribute| |#2| (QUOTE -4266)))
+(-1207 A)
((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,{}n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}.")))
NIL
NIL
-(-1205 R |ls| |ls2|)
+(-1208 R |ls| |ls2|)
((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,{}s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}.") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,{}info?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,{}info?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,{}info?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,{}false,{}false,{}false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,{}info?)} returns the same as \\spad{realSolve(ts,{}info?,{}false,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?)} returns the same as \\spad{realSolve(ts,{}info?,{}check?,{}false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,{}info?,{}check?,{}lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,{}false,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}false,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?)} returns the same as \\spad{univariateSolve(lp,{}info?,{}check?,{}false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,{}info?,{}check?,{}lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,{}false,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,{}info?)} returns the same as \\spad{triangSolve(lp,{}false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,{}info?,{}lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.")))
NIL
NIL
-(-1206 R)
+(-1209 R)
((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,{}...,{}vn],{} u)} returns \\spad{[c1,{}...,{}cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}\\spad{'s} exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,{}...,{}vn])} returns \\spad{[c1,{}...,{}cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}\\spad{'s} are 0,{} \"failed\" if the \\spad{vi}\\spad{'s} are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,{}...,{}vn])} returns \\spad{true} if the \\spad{vi}\\spad{'s} are linearly dependent over the integers,{} \\spad{false} otherwise.")))
NIL
NIL
-(-1207 |p|)
+(-1210 |p|)
((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}.")))
-(((-4271 "*") . T) (-4263 . T) (-4264 . T) (-4266 . T))
+(((-4275 "*") . T) (-4267 . T) (-4268 . T) (-4270 . T))
NIL
NIL
NIL
@@ -4776,4 +4788,4 @@ NIL
NIL
NIL
NIL
-((-3 NIL 2242545 2242550 2242555 2242560) (-2 NIL 2242525 2242530 2242535 2242540) (-1 NIL 2242505 2242510 2242515 2242520) (0 NIL 2242485 2242490 2242495 2242500) (-1207 "ZMOD.spad" 2242294 2242307 2242423 2242480) (-1206 "ZLINDEP.spad" 2241338 2241349 2242284 2242289) (-1205 "ZDSOLVE.spad" 2231187 2231209 2241328 2241333) (-1204 "YSTREAM.spad" 2230680 2230691 2231177 2231182) (-1203 "XRPOLY.spad" 2229900 2229920 2230536 2230605) (-1202 "XPR.spad" 2227629 2227642 2229618 2229717) (-1201 "XPOLY.spad" 2227184 2227195 2227485 2227554) (-1200 "XPOLYC.spad" 2226501 2226517 2227110 2227179) (-1199 "XPBWPOLY.spad" 2224938 2224958 2226281 2226350) (-1198 "XF.spad" 2223399 2223414 2224840 2224933) (-1197 "XF.spad" 2221840 2221857 2223283 2223288) (-1196 "XFALG.spad" 2218864 2218880 2221766 2221835) (-1195 "XEXPPKG.spad" 2218115 2218141 2218854 2218859) (-1194 "XDPOLY.spad" 2217729 2217745 2217971 2218040) (-1193 "XALG.spad" 2217327 2217338 2217685 2217724) (-1192 "WUTSET.spad" 2213166 2213183 2216973 2217000) (-1191 "WP.spad" 2212180 2212224 2213024 2213091) (-1190 "WFFINTBS.spad" 2209743 2209765 2212170 2212175) (-1189 "WEIER.spad" 2207957 2207968 2209733 2209738) (-1188 "VSPACE.spad" 2207630 2207641 2207925 2207952) (-1187 "VSPACE.spad" 2207323 2207336 2207620 2207625) (-1186 "VOID.spad" 2206913 2206922 2207313 2207318) (-1185 "VIEW.spad" 2204535 2204544 2206903 2206908) (-1184 "VIEWDEF.spad" 2199732 2199741 2204525 2204530) (-1183 "VIEW3D.spad" 2183567 2183576 2199722 2199727) (-1182 "VIEW2D.spad" 2171304 2171313 2183557 2183562) (-1181 "VECTOR.spad" 2169981 2169992 2170232 2170259) (-1180 "VECTOR2.spad" 2168608 2168621 2169971 2169976) (-1179 "VECTCAT.spad" 2166496 2166507 2168564 2168603) (-1178 "VECTCAT.spad" 2164205 2164218 2166275 2166280) (-1177 "VARIABLE.spad" 2163985 2164000 2164195 2164200) (-1176 "UTYPE.spad" 2163619 2163628 2163965 2163980) (-1175 "UTSODETL.spad" 2162912 2162936 2163575 2163580) (-1174 "UTSODE.spad" 2161100 2161120 2162902 2162907) (-1173 "UTS.spad" 2155889 2155917 2159567 2159664) (-1172 "UTSCAT.spad" 2153340 2153356 2155787 2155884) (-1171 "UTSCAT.spad" 2150435 2150453 2152884 2152889) (-1170 "UTS2.spad" 2150028 2150063 2150425 2150430) (-1169 "URAGG.spad" 2144650 2144661 2150008 2150023) (-1168 "URAGG.spad" 2139246 2139259 2144606 2144611) (-1167 "UPXSSING.spad" 2136892 2136918 2138330 2138463) (-1166 "UPXS.spad" 2133919 2133947 2135024 2135173) (-1165 "UPXSCONS.spad" 2131676 2131696 2132051 2132200) (-1164 "UPXSCCA.spad" 2130134 2130154 2131522 2131671) (-1163 "UPXSCCA.spad" 2128734 2128756 2130124 2130129) (-1162 "UPXSCAT.spad" 2127315 2127331 2128580 2128729) (-1161 "UPXS2.spad" 2126856 2126909 2127305 2127310) (-1160 "UPSQFREE.spad" 2125268 2125282 2126846 2126851) (-1159 "UPSCAT.spad" 2122861 2122885 2125166 2125263) (-1158 "UPSCAT.spad" 2120160 2120186 2122467 2122472) (-1157 "UPOLYC.spad" 2115138 2115149 2120002 2120155) (-1156 "UPOLYC.spad" 2110008 2110021 2114874 2114879) (-1155 "UPOLYC2.spad" 2109477 2109496 2109998 2110003) (-1154 "UP.spad" 2106522 2106537 2107030 2107183) (-1153 "UPMP.spad" 2105412 2105425 2106512 2106517) (-1152 "UPDIVP.spad" 2104975 2104989 2105402 2105407) (-1151 "UPDECOMP.spad" 2103212 2103226 2104965 2104970) (-1150 "UPCDEN.spad" 2102419 2102435 2103202 2103207) (-1149 "UP2.spad" 2101781 2101802 2102409 2102414) (-1148 "UNISEG.spad" 2101134 2101145 2101700 2101705) (-1147 "UNISEG2.spad" 2100627 2100640 2101090 2101095) (-1146 "UNIFACT.spad" 2099728 2099740 2100617 2100622) (-1145 "ULS.spad" 2090287 2090315 2091380 2091809) (-1144 "ULSCONS.spad" 2084330 2084350 2084702 2084851) (-1143 "ULSCCAT.spad" 2081927 2081947 2084150 2084325) (-1142 "ULSCCAT.spad" 2079658 2079680 2081883 2081888) (-1141 "ULSCAT.spad" 2077874 2077890 2079504 2079653) (-1140 "ULS2.spad" 2077386 2077439 2077864 2077869) (-1139 "UFD.spad" 2076451 2076460 2077312 2077381) (-1138 "UFD.spad" 2075578 2075589 2076441 2076446) (-1137 "UDVO.spad" 2074425 2074434 2075568 2075573) (-1136 "UDPO.spad" 2071852 2071863 2074381 2074386) (-1135 "TYPE.spad" 2071774 2071783 2071832 2071847) (-1134 "TWOFACT.spad" 2070424 2070439 2071764 2071769) (-1133 "TUPLE.spad" 2069810 2069821 2070323 2070328) (-1132 "TUBETOOL.spad" 2066647 2066656 2069800 2069805) (-1131 "TUBE.spad" 2065288 2065305 2066637 2066642) (-1130 "TS.spad" 2063877 2063893 2064853 2064950) (-1129 "TSETCAT.spad" 2050992 2051009 2063833 2063872) (-1128 "TSETCAT.spad" 2038105 2038124 2050948 2050953) (-1127 "TRMANIP.spad" 2032471 2032488 2037811 2037816) (-1126 "TRIMAT.spad" 2031430 2031455 2032461 2032466) (-1125 "TRIGMNIP.spad" 2029947 2029964 2031420 2031425) (-1124 "TRIGCAT.spad" 2029459 2029468 2029937 2029942) (-1123 "TRIGCAT.spad" 2028969 2028980 2029449 2029454) (-1122 "TREE.spad" 2027540 2027551 2028576 2028603) (-1121 "TRANFUN.spad" 2027371 2027380 2027530 2027535) (-1120 "TRANFUN.spad" 2027200 2027211 2027361 2027366) (-1119 "TOPSP.spad" 2026874 2026883 2027190 2027195) (-1118 "TOOLSIGN.spad" 2026537 2026548 2026864 2026869) (-1117 "TEXTFILE.spad" 2025094 2025103 2026527 2026532) (-1116 "TEX.spad" 2022111 2022120 2025084 2025089) (-1115 "TEX1.spad" 2021667 2021678 2022101 2022106) (-1114 "TEMUTL.spad" 2021222 2021231 2021657 2021662) (-1113 "TBCMPPK.spad" 2019315 2019338 2021212 2021217) (-1112 "TBAGG.spad" 2018339 2018362 2019283 2019310) (-1111 "TBAGG.spad" 2017383 2017408 2018329 2018334) (-1110 "TANEXP.spad" 2016759 2016770 2017373 2017378) (-1109 "TABLE.spad" 2015170 2015193 2015440 2015467) (-1108 "TABLEAU.spad" 2014651 2014662 2015160 2015165) (-1107 "TABLBUMP.spad" 2011434 2011445 2014641 2014646) (-1106 "SYSTEM.spad" 2010708 2010717 2011424 2011429) (-1105 "SYSSOLP.spad" 2008181 2008192 2010698 2010703) (-1104 "SYNTAX.spad" 2004373 2004382 2008171 2008176) (-1103 "SYMTAB.spad" 2002429 2002438 2004363 2004368) (-1102 "SYMS.spad" 1998414 1998423 2002419 2002424) (-1101 "SYMPOLY.spad" 1997424 1997435 1997506 1997633) (-1100 "SYMFUNC.spad" 1996899 1996910 1997414 1997419) (-1099 "SYMBOL.spad" 1994235 1994244 1996889 1996894) (-1098 "SWITCH.spad" 1990992 1991001 1994225 1994230) (-1097 "SUTS.spad" 1987891 1987919 1989459 1989556) (-1096 "SUPXS.spad" 1984905 1984933 1986023 1986172) (-1095 "SUP.spad" 1981677 1981688 1982458 1982611) (-1094 "SUPFRACF.spad" 1980782 1980800 1981667 1981672) (-1093 "SUP2.spad" 1980172 1980185 1980772 1980777) (-1092 "SUMRF.spad" 1979138 1979149 1980162 1980167) (-1091 "SUMFS.spad" 1978771 1978788 1979128 1979133) (-1090 "SULS.spad" 1969317 1969345 1970423 1970852) (-1089 "SUCH.spad" 1968997 1969012 1969307 1969312) (-1088 "SUBSPACE.spad" 1961004 1961019 1968987 1968992) (-1087 "SUBRESP.spad" 1960164 1960178 1960960 1960965) (-1086 "STTF.spad" 1956263 1956279 1960154 1960159) (-1085 "STTFNC.spad" 1952731 1952747 1956253 1956258) (-1084 "STTAYLOR.spad" 1945129 1945140 1952612 1952617) (-1083 "STRTBL.spad" 1943634 1943651 1943783 1943810) (-1082 "STRING.spad" 1943043 1943052 1943057 1943084) (-1081 "STRICAT.spad" 1942819 1942828 1942999 1943038) (-1080 "STREAM.spad" 1939587 1939598 1942344 1942359) (-1079 "STREAM3.spad" 1939132 1939147 1939577 1939582) (-1078 "STREAM2.spad" 1938200 1938213 1939122 1939127) (-1077 "STREAM1.spad" 1937904 1937915 1938190 1938195) (-1076 "STINPROD.spad" 1936810 1936826 1937894 1937899) (-1075 "STEP.spad" 1936011 1936020 1936800 1936805) (-1074 "STBL.spad" 1934537 1934565 1934704 1934719) (-1073 "STAGG.spad" 1933602 1933613 1934517 1934532) (-1072 "STAGG.spad" 1932675 1932688 1933592 1933597) (-1071 "STACK.spad" 1932026 1932037 1932282 1932309) (-1070 "SREGSET.spad" 1929730 1929747 1931672 1931699) (-1069 "SRDCMPK.spad" 1928275 1928295 1929720 1929725) (-1068 "SRAGG.spad" 1923360 1923369 1928231 1928270) (-1067 "SRAGG.spad" 1918477 1918488 1923350 1923355) (-1066 "SQMATRIX.spad" 1916103 1916121 1917011 1917098) (-1065 "SPLTREE.spad" 1910655 1910668 1915539 1915566) (-1064 "SPLNODE.spad" 1907243 1907256 1910645 1910650) (-1063 "SPFCAT.spad" 1906020 1906029 1907233 1907238) (-1062 "SPECOUT.spad" 1904570 1904579 1906010 1906015) (-1061 "spad-parser.spad" 1904035 1904044 1904560 1904565) (-1060 "SPACEC.spad" 1888048 1888059 1904025 1904030) (-1059 "SPACE3.spad" 1887824 1887835 1888038 1888043) (-1058 "SORTPAK.spad" 1887369 1887382 1887780 1887785) (-1057 "SOLVETRA.spad" 1885126 1885137 1887359 1887364) (-1056 "SOLVESER.spad" 1883646 1883657 1885116 1885121) (-1055 "SOLVERAD.spad" 1879656 1879667 1883636 1883641) (-1054 "SOLVEFOR.spad" 1878076 1878094 1879646 1879651) (-1053 "SNTSCAT.spad" 1877664 1877681 1878032 1878071) (-1052 "SMTS.spad" 1875924 1875950 1877229 1877326) (-1051 "SMP.spad" 1873366 1873386 1873756 1873883) (-1050 "SMITH.spad" 1872209 1872234 1873356 1873361) (-1049 "SMATCAT.spad" 1870307 1870337 1872141 1872204) (-1048 "SMATCAT.spad" 1868349 1868381 1870185 1870190) (-1047 "SKAGG.spad" 1867298 1867309 1868305 1868344) (-1046 "SINT.spad" 1865606 1865615 1867164 1867293) (-1045 "SIMPAN.spad" 1865334 1865343 1865596 1865601) (-1044 "SIG.spad" 1864931 1864940 1865324 1865329) (-1043 "SIGNRF.spad" 1864039 1864050 1864921 1864926) (-1042 "SIGNEF.spad" 1863308 1863325 1864029 1864034) (-1041 "SHP.spad" 1861226 1861241 1863264 1863269) (-1040 "SHDP.spad" 1852262 1852289 1852771 1852900) (-1039 "SGROUP.spad" 1851870 1851879 1852252 1852257) (-1038 "SGROUP.spad" 1851476 1851487 1851860 1851865) (-1037 "SGCF.spad" 1844357 1844366 1851466 1851471) (-1036 "SFRTCAT.spad" 1843273 1843290 1844313 1844352) (-1035 "SFRGCD.spad" 1842336 1842356 1843263 1843268) (-1034 "SFQCMPK.spad" 1836973 1836993 1842326 1842331) (-1033 "SFORT.spad" 1836408 1836422 1836963 1836968) (-1032 "SEXOF.spad" 1836251 1836291 1836398 1836403) (-1031 "SEX.spad" 1836143 1836152 1836241 1836246) (-1030 "SEXCAT.spad" 1833247 1833287 1836133 1836138) (-1029 "SET.spad" 1831547 1831558 1832668 1832707) (-1028 "SETMN.spad" 1829981 1829998 1831537 1831542) (-1027 "SETCAT.spad" 1829466 1829475 1829971 1829976) (-1026 "SETCAT.spad" 1828949 1828960 1829456 1829461) (-1025 "SETAGG.spad" 1825458 1825469 1828917 1828944) (-1024 "SETAGG.spad" 1821987 1822000 1825448 1825453) (-1023 "SEGXCAT.spad" 1821099 1821112 1821967 1821982) (-1022 "SEG.spad" 1820912 1820923 1821018 1821023) (-1021 "SEGCAT.spad" 1819731 1819742 1820892 1820907) (-1020 "SEGBIND.spad" 1818803 1818814 1819686 1819691) (-1019 "SEGBIND2.spad" 1818499 1818512 1818793 1818798) (-1018 "SEG2.spad" 1817924 1817937 1818455 1818460) (-1017 "SDVAR.spad" 1817200 1817211 1817914 1817919) (-1016 "SDPOL.spad" 1814593 1814604 1814884 1815011) (-1015 "SCPKG.spad" 1812672 1812683 1814583 1814588) (-1014 "SCOPE.spad" 1811817 1811826 1812662 1812667) (-1013 "SCACHE.spad" 1810499 1810510 1811807 1811812) (-1012 "SAOS.spad" 1810371 1810380 1810489 1810494) (-1011 "SAERFFC.spad" 1810084 1810104 1810361 1810366) (-1010 "SAE.spad" 1808262 1808278 1808873 1809008) (-1009 "SAEFACT.spad" 1807963 1807983 1808252 1808257) (-1008 "RURPK.spad" 1805604 1805620 1807953 1807958) (-1007 "RULESET.spad" 1805045 1805069 1805594 1805599) (-1006 "RULE.spad" 1803249 1803273 1805035 1805040) (-1005 "RULECOLD.spad" 1803101 1803114 1803239 1803244) (-1004 "RSETGCD.spad" 1799479 1799499 1803091 1803096) (-1003 "RSETCAT.spad" 1789251 1789268 1799435 1799474) (-1002 "RSETCAT.spad" 1779055 1779074 1789241 1789246) (-1001 "RSDCMPK.spad" 1777507 1777527 1779045 1779050) (-1000 "RRCC.spad" 1775891 1775921 1777497 1777502) (-999 "RRCC.spad" 1774274 1774305 1775881 1775886) (-998 "RPOLCAT.spad" 1753635 1753649 1774142 1774269) (-997 "RPOLCAT.spad" 1732711 1732727 1753220 1753225) (-996 "ROUTINE.spad" 1728575 1728583 1731358 1731385) (-995 "ROMAN.spad" 1727808 1727816 1728441 1728570) (-994 "ROIRC.spad" 1726889 1726920 1727798 1727803) (-993 "RNS.spad" 1725793 1725801 1726791 1726884) (-992 "RNS.spad" 1724783 1724793 1725783 1725788) (-991 "RNG.spad" 1724519 1724527 1724773 1724778) (-990 "RMODULE.spad" 1724158 1724168 1724509 1724514) (-989 "RMCAT2.spad" 1723567 1723623 1724148 1724153) (-988 "RMATRIX.spad" 1722247 1722265 1722734 1722773) (-987 "RMATCAT.spad" 1717769 1717799 1722191 1722242) (-986 "RMATCAT.spad" 1713193 1713225 1717617 1717622) (-985 "RINTERP.spad" 1713082 1713101 1713183 1713188) (-984 "RING.spad" 1712440 1712448 1713062 1713077) (-983 "RING.spad" 1711806 1711816 1712430 1712435) (-982 "RIDIST.spad" 1711191 1711199 1711796 1711801) (-981 "RGCHAIN.spad" 1709771 1709786 1710676 1710703) (-980 "RF.spad" 1707386 1707396 1709761 1709766) (-979 "RFFACTOR.spad" 1706849 1706859 1707376 1707381) (-978 "RFFACT.spad" 1706585 1706596 1706839 1706844) (-977 "RFDIST.spad" 1705574 1705582 1706575 1706580) (-976 "RETSOL.spad" 1704992 1705004 1705564 1705569) (-975 "RETRACT.spad" 1704342 1704352 1704982 1704987) (-974 "RETRACT.spad" 1703690 1703702 1704332 1704337) (-973 "RESULT.spad" 1701751 1701759 1702337 1702364) (-972 "RESRING.spad" 1701099 1701145 1701689 1701746) (-971 "RESLATC.spad" 1700424 1700434 1701089 1701094) (-970 "REPSQ.spad" 1700154 1700164 1700414 1700419) (-969 "REP.spad" 1697707 1697715 1700144 1700149) (-968 "REPDB.spad" 1697413 1697423 1697697 1697702) (-967 "REP2.spad" 1686986 1686996 1697255 1697260) (-966 "REP1.spad" 1680977 1680987 1686936 1686941) (-965 "REGSET.spad" 1678775 1678791 1680623 1680650) (-964 "REF.spad" 1678105 1678115 1678730 1678735) (-963 "REDORDER.spad" 1677282 1677298 1678095 1678100) (-962 "RECLOS.spad" 1676072 1676091 1676775 1676868) (-961 "REALSOLV.spad" 1675205 1675213 1676062 1676067) (-960 "REAL.spad" 1675078 1675086 1675195 1675200) (-959 "REAL0Q.spad" 1672361 1672375 1675068 1675073) (-958 "REAL0.spad" 1669190 1669204 1672351 1672356) (-957 "RDIV.spad" 1668842 1668866 1669180 1669185) (-956 "RDIST.spad" 1668406 1668416 1668832 1668837) (-955 "RDETRS.spad" 1667203 1667220 1668396 1668401) (-954 "RDETR.spad" 1665311 1665328 1667193 1667198) (-953 "RDEEFS.spad" 1664385 1664401 1665301 1665306) (-952 "RDEEF.spad" 1663382 1663398 1664375 1664380) (-951 "RCFIELD.spad" 1660569 1660577 1663284 1663377) (-950 "RCFIELD.spad" 1657842 1657852 1660559 1660564) (-949 "RCAGG.spad" 1655745 1655755 1657822 1657837) (-948 "RCAGG.spad" 1653585 1653597 1655664 1655669) (-947 "RATRET.spad" 1652946 1652956 1653575 1653580) (-946 "RATFACT.spad" 1652639 1652650 1652936 1652941) (-945 "RANDSRC.spad" 1651959 1651967 1652629 1652634) (-944 "RADUTIL.spad" 1651714 1651722 1651949 1651954) (-943 "RADIX.spad" 1648507 1648520 1650184 1650277) (-942 "RADFF.spad" 1646924 1646960 1647042 1647198) (-941 "RADCAT.spad" 1646518 1646526 1646914 1646919) (-940 "RADCAT.spad" 1646110 1646120 1646508 1646513) (-939 "QUEUE.spad" 1645453 1645463 1645717 1645744) (-938 "QUAT.spad" 1644039 1644049 1644381 1644446) (-937 "QUATCT2.spad" 1643658 1643676 1644029 1644034) (-936 "QUATCAT.spad" 1641823 1641833 1643588 1643653) (-935 "QUATCAT.spad" 1639740 1639752 1641507 1641512) (-934 "QUAGG.spad" 1638554 1638564 1639696 1639735) (-933 "QFORM.spad" 1638017 1638031 1638544 1638549) (-932 "QFCAT.spad" 1636708 1636718 1637907 1638012) (-931 "QFCAT.spad" 1635005 1635017 1636206 1636211) (-930 "QFCAT2.spad" 1634696 1634712 1634995 1635000) (-929 "QEQUAT.spad" 1634253 1634261 1634686 1634691) (-928 "QCMPACK.spad" 1629000 1629019 1634243 1634248) (-927 "QALGSET.spad" 1625075 1625107 1628914 1628919) (-926 "QALGSET2.spad" 1623071 1623089 1625065 1625070) (-925 "PWFFINTB.spad" 1620381 1620402 1623061 1623066) (-924 "PUSHVAR.spad" 1619710 1619729 1620371 1620376) (-923 "PTRANFN.spad" 1615836 1615846 1619700 1619705) (-922 "PTPACK.spad" 1612924 1612934 1615826 1615831) (-921 "PTFUNC2.spad" 1612745 1612759 1612914 1612919) (-920 "PTCAT.spad" 1611827 1611837 1612701 1612740) (-919 "PSQFR.spad" 1611134 1611158 1611817 1611822) (-918 "PSEUDLIN.spad" 1609992 1610002 1611124 1611129) (-917 "PSETPK.spad" 1595425 1595441 1609870 1609875) (-916 "PSETCAT.spad" 1589333 1589356 1595393 1595420) (-915 "PSETCAT.spad" 1583227 1583252 1589289 1589294) (-914 "PSCURVE.spad" 1582210 1582218 1583217 1583222) (-913 "PSCAT.spad" 1580977 1581006 1582108 1582205) (-912 "PSCAT.spad" 1579834 1579865 1580967 1580972) (-911 "PRTITION.spad" 1578677 1578685 1579824 1579829) (-910 "PRS.spad" 1568239 1568256 1578633 1578638) (-909 "PRQAGG.spad" 1567658 1567668 1568195 1568234) (-908 "PROPLOG.spad" 1567061 1567069 1567648 1567653) (-907 "PROPFRML.spad" 1564925 1564936 1566997 1567002) (-906 "PROPERTY.spad" 1564419 1564427 1564915 1564920) (-905 "PRODUCT.spad" 1562099 1562111 1562385 1562440) (-904 "PR.spad" 1560488 1560500 1561193 1561320) (-903 "PRINT.spad" 1560240 1560248 1560478 1560483) (-902 "PRIMES.spad" 1558491 1558501 1560230 1560235) (-901 "PRIMELT.spad" 1556472 1556486 1558481 1558486) (-900 "PRIMCAT.spad" 1556095 1556103 1556462 1556467) (-899 "PRIMARR.spad" 1555100 1555110 1555278 1555305) (-898 "PRIMARR2.spad" 1553823 1553835 1555090 1555095) (-897 "PREASSOC.spad" 1553195 1553207 1553813 1553818) (-896 "PPCURVE.spad" 1552332 1552340 1553185 1553190) (-895 "PORTNUM.spad" 1552107 1552115 1552322 1552327) (-894 "POLYROOT.spad" 1550879 1550901 1552063 1552068) (-893 "POLY.spad" 1548179 1548189 1548696 1548823) (-892 "POLYLIFT.spad" 1547440 1547463 1548169 1548174) (-891 "POLYCATQ.spad" 1545542 1545564 1547430 1547435) (-890 "POLYCAT.spad" 1538948 1538969 1545410 1545537) (-889 "POLYCAT.spad" 1531656 1531679 1538120 1538125) (-888 "POLY2UP.spad" 1531104 1531118 1531646 1531651) (-887 "POLY2.spad" 1530699 1530711 1531094 1531099) (-886 "POLUTIL.spad" 1529640 1529669 1530655 1530660) (-885 "POLTOPOL.spad" 1528388 1528403 1529630 1529635) (-884 "POINT.spad" 1527229 1527239 1527316 1527343) (-883 "PNTHEORY.spad" 1523895 1523903 1527219 1527224) (-882 "PMTOOLS.spad" 1522652 1522666 1523885 1523890) (-881 "PMSYM.spad" 1522197 1522207 1522642 1522647) (-880 "PMQFCAT.spad" 1521784 1521798 1522187 1522192) (-879 "PMPRED.spad" 1521253 1521267 1521774 1521779) (-878 "PMPREDFS.spad" 1520697 1520719 1521243 1521248) (-877 "PMPLCAT.spad" 1519767 1519785 1520629 1520634) (-876 "PMLSAGG.spad" 1519348 1519362 1519757 1519762) (-875 "PMKERNEL.spad" 1518915 1518927 1519338 1519343) (-874 "PMINS.spad" 1518491 1518501 1518905 1518910) (-873 "PMFS.spad" 1518064 1518082 1518481 1518486) (-872 "PMDOWN.spad" 1517350 1517364 1518054 1518059) (-871 "PMASS.spad" 1516362 1516370 1517340 1517345) (-870 "PMASSFS.spad" 1515331 1515347 1516352 1516357) (-869 "PLOTTOOL.spad" 1515111 1515119 1515321 1515326) (-868 "PLOT.spad" 1509942 1509950 1515101 1515106) (-867 "PLOT3D.spad" 1506362 1506370 1509932 1509937) (-866 "PLOT1.spad" 1505503 1505513 1506352 1506357) (-865 "PLEQN.spad" 1492719 1492746 1505493 1505498) (-864 "PINTERP.spad" 1492335 1492354 1492709 1492714) (-863 "PINTERPA.spad" 1492117 1492133 1492325 1492330) (-862 "PI.spad" 1491724 1491732 1492091 1492112) (-861 "PID.spad" 1490680 1490688 1491650 1491719) (-860 "PICOERCE.spad" 1490337 1490347 1490670 1490675) (-859 "PGROEB.spad" 1488934 1488948 1490327 1490332) (-858 "PGE.spad" 1480187 1480195 1488924 1488929) (-857 "PGCD.spad" 1479069 1479086 1480177 1480182) (-856 "PFRPAC.spad" 1478212 1478222 1479059 1479064) (-855 "PFR.spad" 1474869 1474879 1478114 1478207) (-854 "PFOTOOLS.spad" 1474127 1474143 1474859 1474864) (-853 "PFOQ.spad" 1473497 1473515 1474117 1474122) (-852 "PFO.spad" 1472916 1472943 1473487 1473492) (-851 "PF.spad" 1472490 1472502 1472721 1472814) (-850 "PFECAT.spad" 1470156 1470164 1472416 1472485) (-849 "PFECAT.spad" 1467850 1467860 1470112 1470117) (-848 "PFBRU.spad" 1465720 1465732 1467840 1467845) (-847 "PFBR.spad" 1463258 1463281 1465710 1465715) (-846 "PERM.spad" 1458939 1458949 1463088 1463103) (-845 "PERMGRP.spad" 1453675 1453685 1458929 1458934) (-844 "PERMCAT.spad" 1452227 1452237 1453655 1453670) (-843 "PERMAN.spad" 1450759 1450773 1452217 1452222) (-842 "PENDTREE.spad" 1450032 1450042 1450388 1450393) (-841 "PDRING.spad" 1448523 1448533 1450012 1450027) (-840 "PDRING.spad" 1447022 1447034 1448513 1448518) (-839 "PDEPROB.spad" 1445979 1445987 1447012 1447017) (-838 "PDEPACK.spad" 1439981 1439989 1445969 1445974) (-837 "PDECOMP.spad" 1439443 1439460 1439971 1439976) (-836 "PDECAT.spad" 1437797 1437805 1439433 1439438) (-835 "PCOMP.spad" 1437648 1437661 1437787 1437792) (-834 "PBWLB.spad" 1436230 1436247 1437638 1437643) (-833 "PATTERN.spad" 1430661 1430671 1436220 1436225) (-832 "PATTERN2.spad" 1430397 1430409 1430651 1430656) (-831 "PATTERN1.spad" 1428699 1428715 1430387 1430392) (-830 "PATRES.spad" 1426246 1426258 1428689 1428694) (-829 "PATRES2.spad" 1425908 1425922 1426236 1426241) (-828 "PATMATCH.spad" 1424070 1424101 1425621 1425626) (-827 "PATMAB.spad" 1423495 1423505 1424060 1424065) (-826 "PATLRES.spad" 1422579 1422593 1423485 1423490) (-825 "PATAB.spad" 1422343 1422353 1422569 1422574) (-824 "PARTPERM.spad" 1419705 1419713 1422333 1422338) (-823 "PARSURF.spad" 1419133 1419161 1419695 1419700) (-822 "PARSU2.spad" 1418928 1418944 1419123 1419128) (-821 "script-parser.spad" 1418448 1418456 1418918 1418923) (-820 "PARSCURV.spad" 1417876 1417904 1418438 1418443) (-819 "PARSC2.spad" 1417665 1417681 1417866 1417871) (-818 "PARPCURV.spad" 1417123 1417151 1417655 1417660) (-817 "PARPC2.spad" 1416912 1416928 1417113 1417118) (-816 "PAN2EXPR.spad" 1416324 1416332 1416902 1416907) (-815 "PALETTE.spad" 1415294 1415302 1416314 1416319) (-814 "PAIR.spad" 1414277 1414290 1414882 1414887) (-813 "PADICRC.spad" 1411610 1411628 1412785 1412878) (-812 "PADICRAT.spad" 1409628 1409640 1409849 1409942) (-811 "PADIC.spad" 1409323 1409335 1409554 1409623) (-810 "PADICCT.spad" 1407864 1407876 1409249 1409318) (-809 "PADEPAC.spad" 1406543 1406562 1407854 1407859) (-808 "PADE.spad" 1405283 1405299 1406533 1406538) (-807 "OWP.spad" 1404267 1404297 1405141 1405208) (-806 "OVAR.spad" 1404048 1404071 1404257 1404262) (-805 "OUT.spad" 1403132 1403140 1404038 1404043) (-804 "OUTFORM.spad" 1392546 1392554 1403122 1403127) (-803 "OSI.spad" 1392021 1392029 1392536 1392541) (-802 "OSGROUP.spad" 1391939 1391947 1392011 1392016) (-801 "ORTHPOL.spad" 1390400 1390410 1391856 1391861) (-800 "OREUP.spad" 1389760 1389788 1390082 1390121) (-799 "ORESUP.spad" 1389061 1389085 1389442 1389481) (-798 "OREPCTO.spad" 1386880 1386892 1388981 1388986) (-797 "OREPCAT.spad" 1380937 1380947 1386836 1386875) (-796 "OREPCAT.spad" 1374884 1374896 1380785 1380790) (-795 "ORDSET.spad" 1374050 1374058 1374874 1374879) (-794 "ORDSET.spad" 1373214 1373224 1374040 1374045) (-793 "ORDRING.spad" 1372604 1372612 1373194 1373209) (-792 "ORDRING.spad" 1372002 1372012 1372594 1372599) (-791 "ORDMON.spad" 1371857 1371865 1371992 1371997) (-790 "ORDFUNS.spad" 1370983 1370999 1371847 1371852) (-789 "ORDFIN.spad" 1370917 1370925 1370973 1370978) (-788 "ORDCOMP.spad" 1369385 1369395 1370467 1370496) (-787 "ORDCOMP2.spad" 1368670 1368682 1369375 1369380) (-786 "OPTPROB.spad" 1367250 1367258 1368660 1368665) (-785 "OPTPACK.spad" 1359635 1359643 1367240 1367245) (-784 "OPTCAT.spad" 1357310 1357318 1359625 1359630) (-783 "OPQUERY.spad" 1356859 1356867 1357300 1357305) (-782 "OP.spad" 1356601 1356611 1356681 1356748) (-781 "ONECOMP.spad" 1355349 1355359 1356151 1356180) (-780 "ONECOMP2.spad" 1354767 1354779 1355339 1355344) (-779 "OMSERVER.spad" 1353769 1353777 1354757 1354762) (-778 "OMSAGG.spad" 1353545 1353555 1353713 1353764) (-777 "OMPKG.spad" 1352157 1352165 1353535 1353540) (-776 "OM.spad" 1351122 1351130 1352147 1352152) (-775 "OMLO.spad" 1350547 1350559 1351008 1351047) (-774 "OMEXPR.spad" 1350381 1350391 1350537 1350542) (-773 "OMERR.spad" 1349924 1349932 1350371 1350376) (-772 "OMERRK.spad" 1348958 1348966 1349914 1349919) (-771 "OMENC.spad" 1348302 1348310 1348948 1348953) (-770 "OMDEV.spad" 1342591 1342599 1348292 1348297) (-769 "OMCONN.spad" 1342000 1342008 1342581 1342586) (-768 "OINTDOM.spad" 1341763 1341771 1341926 1341995) (-767 "OFMONOID.spad" 1337950 1337960 1341753 1341758) (-766 "ODVAR.spad" 1337211 1337221 1337940 1337945) (-765 "ODR.spad" 1336659 1336685 1337023 1337172) (-764 "ODPOL.spad" 1334008 1334018 1334348 1334475) (-763 "ODP.spad" 1325180 1325200 1325553 1325682) (-762 "ODETOOLS.spad" 1323763 1323782 1325170 1325175) (-761 "ODESYS.spad" 1321413 1321430 1323753 1323758) (-760 "ODERTRIC.spad" 1317354 1317371 1321370 1321375) (-759 "ODERED.spad" 1316741 1316765 1317344 1317349) (-758 "ODERAT.spad" 1314292 1314309 1316731 1316736) (-757 "ODEPRRIC.spad" 1311183 1311205 1314282 1314287) (-756 "ODEPROB.spad" 1310382 1310390 1311173 1311178) (-755 "ODEPRIM.spad" 1307656 1307678 1310372 1310377) (-754 "ODEPAL.spad" 1307032 1307056 1307646 1307651) (-753 "ODEPACK.spad" 1293634 1293642 1307022 1307027) (-752 "ODEINT.spad" 1293065 1293081 1293624 1293629) (-751 "ODEIFTBL.spad" 1290460 1290468 1293055 1293060) (-750 "ODEEF.spad" 1285827 1285843 1290450 1290455) (-749 "ODECONST.spad" 1285346 1285364 1285817 1285822) (-748 "ODECAT.spad" 1283942 1283950 1285336 1285341) (-747 "OCT.spad" 1282089 1282099 1282805 1282844) (-746 "OCTCT2.spad" 1281733 1281754 1282079 1282084) (-745 "OC.spad" 1279507 1279517 1281689 1281728) (-744 "OC.spad" 1277007 1277019 1279191 1279196) (-743 "OCAMON.spad" 1276855 1276863 1276997 1277002) (-742 "OASGP.spad" 1276670 1276678 1276845 1276850) (-741 "OAMONS.spad" 1276190 1276198 1276660 1276665) (-740 "OAMON.spad" 1276051 1276059 1276180 1276185) (-739 "OAGROUP.spad" 1275913 1275921 1276041 1276046) (-738 "NUMTUBE.spad" 1275500 1275516 1275903 1275908) (-737 "NUMQUAD.spad" 1263362 1263370 1275490 1275495) (-736 "NUMODE.spad" 1254498 1254506 1263352 1263357) (-735 "NUMINT.spad" 1252056 1252064 1254488 1254493) (-734 "NUMFMT.spad" 1250896 1250904 1252046 1252051) (-733 "NUMERIC.spad" 1242969 1242979 1250702 1250707) (-732 "NTSCAT.spad" 1241459 1241475 1242925 1242964) (-731 "NTPOLFN.spad" 1241004 1241014 1241376 1241381) (-730 "NSUP.spad" 1234017 1234027 1238557 1238710) (-729 "NSUP2.spad" 1233409 1233421 1234007 1234012) (-728 "NSMP.spad" 1229608 1229627 1229916 1230043) (-727 "NREP.spad" 1227980 1227994 1229598 1229603) (-726 "NPCOEF.spad" 1227226 1227246 1227970 1227975) (-725 "NORMRETR.spad" 1226824 1226863 1227216 1227221) (-724 "NORMPK.spad" 1224726 1224745 1226814 1226819) (-723 "NORMMA.spad" 1224414 1224440 1224716 1224721) (-722 "NONE.spad" 1224155 1224163 1224404 1224409) (-721 "NONE1.spad" 1223831 1223841 1224145 1224150) (-720 "NODE1.spad" 1223300 1223316 1223821 1223826) (-719 "NNI.spad" 1222187 1222195 1223274 1223295) (-718 "NLINSOL.spad" 1220809 1220819 1222177 1222182) (-717 "NIPROB.spad" 1219292 1219300 1220799 1220804) (-716 "NFINTBAS.spad" 1216752 1216769 1219282 1219287) (-715 "NCODIV.spad" 1214950 1214966 1216742 1216747) (-714 "NCNTFRAC.spad" 1214592 1214606 1214940 1214945) (-713 "NCEP.spad" 1212752 1212766 1214582 1214587) (-712 "NASRING.spad" 1212348 1212356 1212742 1212747) (-711 "NASRING.spad" 1211942 1211952 1212338 1212343) (-710 "NARNG.spad" 1211286 1211294 1211932 1211937) (-709 "NARNG.spad" 1210628 1210638 1211276 1211281) (-708 "NAGSP.spad" 1209701 1209709 1210618 1210623) (-707 "NAGS.spad" 1199226 1199234 1209691 1209696) (-706 "NAGF07.spad" 1197619 1197627 1199216 1199221) (-705 "NAGF04.spad" 1191851 1191859 1197609 1197614) (-704 "NAGF02.spad" 1185660 1185668 1191841 1191846) (-703 "NAGF01.spad" 1181263 1181271 1185650 1185655) (-702 "NAGE04.spad" 1174723 1174731 1181253 1181258) (-701 "NAGE02.spad" 1165065 1165073 1174713 1174718) (-700 "NAGE01.spad" 1160949 1160957 1165055 1165060) (-699 "NAGD03.spad" 1158869 1158877 1160939 1160944) (-698 "NAGD02.spad" 1151400 1151408 1158859 1158864) (-697 "NAGD01.spad" 1145513 1145521 1151390 1151395) (-696 "NAGC06.spad" 1141300 1141308 1145503 1145508) (-695 "NAGC05.spad" 1139769 1139777 1141290 1141295) (-694 "NAGC02.spad" 1139024 1139032 1139759 1139764) (-693 "NAALG.spad" 1138559 1138569 1138992 1139019) (-692 "NAALG.spad" 1138114 1138126 1138549 1138554) (-691 "MULTSQFR.spad" 1135072 1135089 1138104 1138109) (-690 "MULTFACT.spad" 1134455 1134472 1135062 1135067) (-689 "MTSCAT.spad" 1132489 1132510 1134353 1134450) (-688 "MTHING.spad" 1132146 1132156 1132479 1132484) (-687 "MSYSCMD.spad" 1131580 1131588 1132136 1132141) (-686 "MSET.spad" 1129522 1129532 1131286 1131325) (-685 "MSETAGG.spad" 1129355 1129365 1129478 1129517) (-684 "MRING.spad" 1126326 1126338 1129063 1129130) (-683 "MRF2.spad" 1125894 1125908 1126316 1126321) (-682 "MRATFAC.spad" 1125440 1125457 1125884 1125889) (-681 "MPRFF.spad" 1123470 1123489 1125430 1125435) (-680 "MPOLY.spad" 1120908 1120923 1121267 1121394) (-679 "MPCPF.spad" 1120172 1120191 1120898 1120903) (-678 "MPC3.spad" 1119987 1120027 1120162 1120167) (-677 "MPC2.spad" 1119629 1119662 1119977 1119982) (-676 "MONOTOOL.spad" 1117964 1117981 1119619 1119624) (-675 "MONOID.spad" 1117283 1117291 1117954 1117959) (-674 "MONOID.spad" 1116600 1116610 1117273 1117278) (-673 "MONOGEN.spad" 1115346 1115359 1116460 1116595) (-672 "MONOGEN.spad" 1114114 1114129 1115230 1115235) (-671 "MONADWU.spad" 1112128 1112136 1114104 1114109) (-670 "MONADWU.spad" 1110140 1110150 1112118 1112123) (-669 "MONAD.spad" 1109284 1109292 1110130 1110135) (-668 "MONAD.spad" 1108426 1108436 1109274 1109279) (-667 "MOEBIUS.spad" 1107112 1107126 1108406 1108421) (-666 "MODULE.spad" 1106982 1106992 1107080 1107107) (-665 "MODULE.spad" 1106872 1106884 1106972 1106977) (-664 "MODRING.spad" 1106203 1106242 1106852 1106867) (-663 "MODOP.spad" 1104862 1104874 1106025 1106092) (-662 "MODMONOM.spad" 1104394 1104412 1104852 1104857) (-661 "MODMON.spad" 1101099 1101115 1101875 1102028) (-660 "MODFIELD.spad" 1100457 1100496 1101001 1101094) (-659 "MMLFORM.spad" 1099317 1099325 1100447 1100452) (-658 "MMAP.spad" 1099057 1099091 1099307 1099312) (-657 "MLO.spad" 1097484 1097494 1099013 1099052) (-656 "MLIFT.spad" 1096056 1096073 1097474 1097479) (-655 "MKUCFUNC.spad" 1095589 1095607 1096046 1096051) (-654 "MKRECORD.spad" 1095191 1095204 1095579 1095584) (-653 "MKFUNC.spad" 1094572 1094582 1095181 1095186) (-652 "MKFLCFN.spad" 1093528 1093538 1094562 1094567) (-651 "MKCHSET.spad" 1093304 1093314 1093518 1093523) (-650 "MKBCFUNC.spad" 1092789 1092807 1093294 1093299) (-649 "MINT.spad" 1092228 1092236 1092691 1092784) (-648 "MHROWRED.spad" 1090729 1090739 1092218 1092223) (-647 "MFLOAT.spad" 1089174 1089182 1090619 1090724) (-646 "MFINFACT.spad" 1088574 1088596 1089164 1089169) (-645 "MESH.spad" 1086306 1086314 1088564 1088569) (-644 "MDDFACT.spad" 1084499 1084509 1086296 1086301) (-643 "MDAGG.spad" 1083774 1083784 1084467 1084494) (-642 "MCMPLX.spad" 1079754 1079762 1080368 1080569) (-641 "MCDEN.spad" 1078962 1078974 1079744 1079749) (-640 "MCALCFN.spad" 1076064 1076090 1078952 1078957) (-639 "MAYBE.spad" 1075313 1075324 1076054 1076059) (-638 "MATSTOR.spad" 1072589 1072599 1075303 1075308) (-637 "MATRIX.spad" 1071293 1071303 1071777 1071804) (-636 "MATLIN.spad" 1068619 1068643 1071177 1071182) (-635 "MATCAT.spad" 1060192 1060214 1068575 1068614) (-634 "MATCAT.spad" 1051649 1051673 1060034 1060039) (-633 "MATCAT2.spad" 1050917 1050965 1051639 1051644) (-632 "MAPPKG3.spad" 1049816 1049830 1050907 1050912) (-631 "MAPPKG2.spad" 1049150 1049162 1049806 1049811) (-630 "MAPPKG1.spad" 1047968 1047978 1049140 1049145) (-629 "MAPHACK3.spad" 1047776 1047790 1047958 1047963) (-628 "MAPHACK2.spad" 1047541 1047553 1047766 1047771) (-627 "MAPHACK1.spad" 1047171 1047181 1047531 1047536) (-626 "MAGMA.spad" 1044961 1044978 1047161 1047166) (-625 "M3D.spad" 1042659 1042669 1044341 1044346) (-624 "LZSTAGG.spad" 1039877 1039887 1042639 1042654) (-623 "LZSTAGG.spad" 1037103 1037115 1039867 1039872) (-622 "LWORD.spad" 1033808 1033825 1037093 1037098) (-621 "LSQM.spad" 1032036 1032050 1032434 1032485) (-620 "LSPP.spad" 1031569 1031586 1032026 1032031) (-619 "LSMP.spad" 1030409 1030437 1031559 1031564) (-618 "LSMP1.spad" 1028213 1028227 1030399 1030404) (-617 "LSAGG.spad" 1027870 1027880 1028169 1028208) (-616 "LSAGG.spad" 1027559 1027571 1027860 1027865) (-615 "LPOLY.spad" 1026513 1026532 1027415 1027484) (-614 "LPEFRAC.spad" 1025770 1025780 1026503 1026508) (-613 "LO.spad" 1025171 1025185 1025704 1025731) (-612 "LOGIC.spad" 1024773 1024781 1025161 1025166) (-611 "LOGIC.spad" 1024373 1024383 1024763 1024768) (-610 "LODOOPS.spad" 1023291 1023303 1024363 1024368) (-609 "LODO.spad" 1022677 1022693 1022973 1023012) (-608 "LODOF.spad" 1021721 1021738 1022634 1022639) (-607 "LODOCAT.spad" 1020379 1020389 1021677 1021716) (-606 "LODOCAT.spad" 1019035 1019047 1020335 1020340) (-605 "LODO2.spad" 1018310 1018322 1018717 1018756) (-604 "LODO1.spad" 1017712 1017722 1017992 1018031) (-603 "LODEEF.spad" 1016484 1016502 1017702 1017707) (-602 "LNAGG.spad" 1012276 1012286 1016464 1016479) (-601 "LNAGG.spad" 1008042 1008054 1012232 1012237) (-600 "LMOPS.spad" 1004778 1004795 1008032 1008037) (-599 "LMODULE.spad" 1004420 1004430 1004768 1004773) (-598 "LMDICT.spad" 1003703 1003713 1003971 1003998) (-597 "LIST.spad" 1001421 1001431 1002850 1002877) (-596 "LIST3.spad" 1000712 1000726 1001411 1001416) (-595 "LIST2.spad" 999352 999364 1000702 1000707) (-594 "LIST2MAP.spad" 996229 996241 999342 999347) (-593 "LINEXP.spad" 995661 995671 996209 996224) (-592 "LINDEP.spad" 994438 994450 995573 995578) (-591 "LIMITRF.spad" 992352 992362 994428 994433) (-590 "LIMITPS.spad" 991235 991248 992342 992347) (-589 "LIE.spad" 989249 989261 990525 990670) (-588 "LIECAT.spad" 988725 988735 989175 989244) (-587 "LIECAT.spad" 988229 988241 988681 988686) (-586 "LIB.spad" 986277 986285 986888 986903) (-585 "LGROBP.spad" 983630 983649 986267 986272) (-584 "LF.spad" 982549 982565 983620 983625) (-583 "LFCAT.spad" 981568 981576 982539 982544) (-582 "LEXTRIPK.spad" 977071 977086 981558 981563) (-581 "LEXP.spad" 975074 975101 977051 977066) (-580 "LEADCDET.spad" 973458 973475 975064 975069) (-579 "LAZM3PK.spad" 972162 972184 973448 973453) (-578 "LAUPOL.spad" 970853 970866 971757 971826) (-577 "LAPLACE.spad" 970426 970442 970843 970848) (-576 "LA.spad" 969866 969880 970348 970387) (-575 "LALG.spad" 969642 969652 969846 969861) (-574 "LALG.spad" 969426 969438 969632 969637) (-573 "KOVACIC.spad" 968139 968156 969416 969421) (-572 "KONVERT.spad" 967861 967871 968129 968134) (-571 "KOERCE.spad" 967598 967608 967851 967856) (-570 "KERNEL.spad" 966133 966143 967382 967387) (-569 "KERNEL2.spad" 965836 965848 966123 966128) (-568 "KDAGG.spad" 964927 964949 965804 965831) (-567 "KDAGG.spad" 964038 964062 964917 964922) (-566 "KAFILE.spad" 963001 963017 963236 963263) (-565 "JORDAN.spad" 960828 960840 962291 962436) (-564 "JAVACODE.spad" 960594 960602 960818 960823) (-563 "IXAGG.spad" 958707 958731 960574 960589) (-562 "IXAGG.spad" 956685 956711 958554 958559) (-561 "IVECTOR.spad" 955458 955473 955613 955640) (-560 "ITUPLE.spad" 954603 954613 955448 955453) (-559 "ITRIGMNP.spad" 953414 953433 954593 954598) (-558 "ITFUN3.spad" 952908 952922 953404 953409) (-557 "ITFUN2.spad" 952638 952650 952898 952903) (-556 "ITAYLOR.spad" 950430 950445 952474 952599) (-555 "ISUPS.spad" 942841 942856 949404 949501) (-554 "ISUMP.spad" 942338 942354 942831 942836) (-553 "ISTRING.spad" 941341 941354 941507 941534) (-552 "IRURPK.spad" 940054 940073 941331 941336) (-551 "IRSN.spad" 938014 938022 940044 940049) (-550 "IRRF2F.spad" 936489 936499 937970 937975) (-549 "IRREDFFX.spad" 936090 936101 936479 936484) (-548 "IROOT.spad" 934421 934431 936080 936085) (-547 "IR.spad" 932211 932225 934277 934304) (-546 "IR2.spad" 931231 931247 932201 932206) (-545 "IR2F.spad" 930431 930447 931221 931226) (-544 "IPRNTPK.spad" 930191 930199 930421 930426) (-543 "IPF.spad" 929756 929768 929996 930089) (-542 "IPADIC.spad" 929517 929543 929682 929751) (-541 "INVLAPLA.spad" 929162 929178 929507 929512) (-540 "INTTR.spad" 922408 922425 929152 929157) (-539 "INTTOOLS.spad" 920120 920136 921983 921988) (-538 "INTSLPE.spad" 919426 919434 920110 920115) (-537 "INTRVL.spad" 918992 919002 919340 919421) (-536 "INTRF.spad" 917356 917370 918982 918987) (-535 "INTRET.spad" 916788 916798 917346 917351) (-534 "INTRAT.spad" 915463 915480 916778 916783) (-533 "INTPM.spad" 913826 913842 915106 915111) (-532 "INTPAF.spad" 911594 911612 913758 913763) (-531 "INTPACK.spad" 901904 901912 911584 911589) (-530 "INT.spad" 901265 901273 901758 901899) (-529 "INTHERTR.spad" 900531 900548 901255 901260) (-528 "INTHERAL.spad" 900197 900221 900521 900526) (-527 "INTHEORY.spad" 896610 896618 900187 900192) (-526 "INTG0.spad" 890073 890091 896542 896547) (-525 "INTFTBL.spad" 884102 884110 890063 890068) (-524 "INTFACT.spad" 883161 883171 884092 884097) (-523 "INTEF.spad" 881476 881492 883151 883156) (-522 "INTDOM.spad" 880091 880099 881402 881471) (-521 "INTDOM.spad" 878768 878778 880081 880086) (-520 "INTCAT.spad" 877021 877031 878682 878763) (-519 "INTBIT.spad" 876524 876532 877011 877016) (-518 "INTALG.spad" 875706 875733 876514 876519) (-517 "INTAF.spad" 875198 875214 875696 875701) (-516 "INTABL.spad" 873716 873747 873879 873906) (-515 "INS.spad" 871112 871120 873618 873711) (-514 "INS.spad" 868594 868604 871102 871107) (-513 "INPSIGN.spad" 868028 868041 868584 868589) (-512 "INPRODPF.spad" 867094 867113 868018 868023) (-511 "INPRODFF.spad" 866152 866176 867084 867089) (-510 "INNMFACT.spad" 865123 865140 866142 866147) (-509 "INMODGCD.spad" 864607 864637 865113 865118) (-508 "INFSP.spad" 862892 862914 864597 864602) (-507 "INFPROD0.spad" 861942 861961 862882 862887) (-506 "INFORM.spad" 859210 859218 861932 861937) (-505 "INFORM1.spad" 858835 858845 859200 859205) (-504 "INFINITY.spad" 858387 858395 858825 858830) (-503 "INEP.spad" 856919 856941 858377 858382) (-502 "INDE.spad" 856648 856665 856909 856914) (-501 "INCRMAPS.spad" 856069 856079 856638 856643) (-500 "INBFF.spad" 851839 851850 856059 856064) (-499 "IMATRIX.spad" 850784 850810 851296 851323) (-498 "IMATQF.spad" 849878 849922 850740 850745) (-497 "IMATLIN.spad" 848483 848507 849834 849839) (-496 "ILIST.spad" 847139 847154 847666 847693) (-495 "IIARRAY2.spad" 846527 846565 846746 846773) (-494 "IFF.spad" 845937 845953 846208 846301) (-493 "IFARRAY.spad" 843424 843439 845120 845147) (-492 "IFAMON.spad" 843286 843303 843380 843385) (-491 "IEVALAB.spad" 842675 842687 843276 843281) (-490 "IEVALAB.spad" 842062 842076 842665 842670) (-489 "IDPO.spad" 841860 841872 842052 842057) (-488 "IDPOAMS.spad" 841616 841628 841850 841855) (-487 "IDPOAM.spad" 841336 841348 841606 841611) (-486 "IDPC.spad" 840270 840282 841326 841331) (-485 "IDPAM.spad" 840015 840027 840260 840265) (-484 "IDPAG.spad" 839762 839774 840005 840010) (-483 "IDECOMP.spad" 836999 837017 839752 839757) (-482 "IDEAL.spad" 831922 831961 836934 836939) (-481 "ICDEN.spad" 831073 831089 831912 831917) (-480 "ICARD.spad" 830262 830270 831063 831068) (-479 "IBPTOOLS.spad" 828855 828872 830252 830257) (-478 "IBITS.spad" 828054 828067 828491 828518) (-477 "IBATOOL.spad" 824929 824948 828044 828049) (-476 "IBACHIN.spad" 823416 823431 824919 824924) (-475 "IARRAY2.spad" 822404 822430 823023 823050) (-474 "IARRAY1.spad" 821449 821464 821587 821614) (-473 "IAN.spad" 819664 819672 821267 821360) (-472 "IALGFACT.spad" 819265 819298 819654 819659) (-471 "HYPCAT.spad" 818689 818697 819255 819260) (-470 "HYPCAT.spad" 818111 818121 818679 818684) (-469 "HOSTNAME.spad" 817919 817927 818101 818106) (-468 "HOAGG.spad" 815177 815187 817899 817914) (-467 "HOAGG.spad" 812220 812232 814944 814949) (-466 "HEXADEC.spad" 810092 810100 810690 810783) (-465 "HEUGCD.spad" 809107 809118 810082 810087) (-464 "HELLFDIV.spad" 808697 808721 809097 809102) (-463 "HEAP.spad" 808089 808099 808304 808331) (-462 "HEADAST.spad" 807648 807656 808079 808084) (-461 "HDP.spad" 798816 798832 799193 799322) (-460 "HDMP.spad" 795995 796010 796613 796740) (-459 "HB.spad" 794232 794240 795985 795990) (-458 "HASHTBL.spad" 792702 792733 792913 792940) (-457 "HACKPI.spad" 792185 792193 792604 792697) (-456 "GTSET.spad" 791124 791140 791831 791858) (-455 "GSTBL.spad" 789643 789678 789817 789832) (-454 "GSERIES.spad" 786810 786837 787775 787924) (-453 "GROUP.spad" 786079 786087 786790 786805) (-452 "GROUP.spad" 785356 785366 786069 786074) (-451 "GROEBSOL.spad" 783844 783865 785346 785351) (-450 "GRMOD.spad" 782415 782427 783834 783839) (-449 "GRMOD.spad" 780984 780998 782405 782410) (-448 "GRIMAGE.spad" 773589 773597 780974 780979) (-447 "GRDEF.spad" 771968 771976 773579 773584) (-446 "GRAY.spad" 770427 770435 771958 771963) (-445 "GRALG.spad" 769474 769486 770417 770422) (-444 "GRALG.spad" 768519 768533 769464 769469) (-443 "GPOLSET.spad" 767973 767996 768201 768228) (-442 "GOSPER.spad" 767238 767256 767963 767968) (-441 "GMODPOL.spad" 766376 766403 767206 767233) (-440 "GHENSEL.spad" 765445 765459 766366 766371) (-439 "GENUPS.spad" 761546 761559 765435 765440) (-438 "GENUFACT.spad" 761123 761133 761536 761541) (-437 "GENPGCD.spad" 760707 760724 761113 761118) (-436 "GENMFACT.spad" 760159 760178 760697 760702) (-435 "GENEEZ.spad" 758098 758111 760149 760154) (-434 "GDMP.spad" 755119 755136 755895 756022) (-433 "GCNAALG.spad" 749014 749041 754913 754980) (-432 "GCDDOM.spad" 748186 748194 748940 749009) (-431 "GCDDOM.spad" 747420 747430 748176 748181) (-430 "GB.spad" 744938 744976 747376 747381) (-429 "GBINTERN.spad" 740958 740996 744928 744933) (-428 "GBF.spad" 736715 736753 740948 740953) (-427 "GBEUCLID.spad" 734589 734627 736705 736710) (-426 "GAUSSFAC.spad" 733886 733894 734579 734584) (-425 "GALUTIL.spad" 732208 732218 733842 733847) (-424 "GALPOLYU.spad" 730654 730667 732198 732203) (-423 "GALFACTU.spad" 728819 728838 730644 730649) (-422 "GALFACT.spad" 718952 718963 728809 728814) (-421 "FVFUN.spad" 715965 715973 718932 718947) (-420 "FVC.spad" 715007 715015 715945 715960) (-419 "FUNCTION.spad" 714856 714868 714997 715002) (-418 "FT.spad" 713068 713076 714846 714851) (-417 "FTEM.spad" 712231 712239 713058 713063) (-416 "FSUPFACT.spad" 711132 711151 712168 712173) (-415 "FST.spad" 709218 709226 711122 711127) (-414 "FSRED.spad" 708696 708712 709208 709213) (-413 "FSPRMELT.spad" 707520 707536 708653 708658) (-412 "FSPECF.spad" 705597 705613 707510 707515) (-411 "FS.spad" 699648 699658 705361 705592) (-410 "FS.spad" 693490 693502 699205 699210) (-409 "FSINT.spad" 693148 693164 693480 693485) (-408 "FSERIES.spad" 692335 692347 692968 693067) (-407 "FSCINT.spad" 691648 691664 692325 692330) (-406 "FSAGG.spad" 690753 690763 691592 691643) (-405 "FSAGG.spad" 689832 689844 690673 690678) (-404 "FSAGG2.spad" 688531 688547 689822 689827) (-403 "FS2UPS.spad" 682920 682954 688521 688526) (-402 "FS2.spad" 682565 682581 682910 682915) (-401 "FS2EXPXP.spad" 681688 681711 682555 682560) (-400 "FRUTIL.spad" 680630 680640 681678 681683) (-399 "FR.spad" 674327 674337 679657 679726) (-398 "FRNAALG.spad" 669414 669424 674269 674322) (-397 "FRNAALG.spad" 664513 664525 669370 669375) (-396 "FRNAAF2.spad" 663967 663985 664503 664508) (-395 "FRMOD.spad" 663362 663392 663899 663904) (-394 "FRIDEAL.spad" 662557 662578 663342 663357) (-393 "FRIDEAL2.spad" 662159 662191 662547 662552) (-392 "FRETRCT.spad" 661670 661680 662149 662154) (-391 "FRETRCT.spad" 661049 661061 661530 661535) (-390 "FRAMALG.spad" 659377 659390 661005 661044) (-389 "FRAMALG.spad" 657737 657752 659367 659372) (-388 "FRAC.spad" 654840 654850 655243 655416) (-387 "FRAC2.spad" 654443 654455 654830 654835) (-386 "FR2.spad" 653777 653789 654433 654438) (-385 "FPS.spad" 650586 650594 653667 653772) (-384 "FPS.spad" 647423 647433 650506 650511) (-383 "FPC.spad" 646465 646473 647325 647418) (-382 "FPC.spad" 645593 645603 646455 646460) (-381 "FPATMAB.spad" 645345 645355 645573 645588) (-380 "FPARFRAC.spad" 643818 643835 645335 645340) (-379 "FORTRAN.spad" 642324 642367 643808 643813) (-378 "FORT.spad" 641253 641261 642314 642319) (-377 "FORTFN.spad" 638413 638421 641233 641248) (-376 "FORTCAT.spad" 638087 638095 638393 638408) (-375 "FORMULA.spad" 635425 635433 638077 638082) (-374 "FORMULA1.spad" 634904 634914 635415 635420) (-373 "FORDER.spad" 634595 634619 634894 634899) (-372 "FOP.spad" 633796 633804 634585 634590) (-371 "FNLA.spad" 633220 633242 633764 633791) (-370 "FNCAT.spad" 631548 631556 633210 633215) (-369 "FNAME.spad" 631440 631448 631538 631543) (-368 "FMTC.spad" 631238 631246 631366 631435) (-367 "FMONOID.spad" 628293 628303 631194 631199) (-366 "FM.spad" 627988 628000 628227 628254) (-365 "FMFUN.spad" 625008 625016 627968 627983) (-364 "FMC.spad" 624050 624058 624988 625003) (-363 "FMCAT.spad" 621704 621722 624018 624045) (-362 "FM1.spad" 621061 621073 621638 621665) (-361 "FLOATRP.spad" 618782 618796 621051 621056) (-360 "FLOAT.spad" 611946 611954 618648 618777) (-359 "FLOATCP.spad" 609363 609377 611936 611941) (-358 "FLINEXP.spad" 609075 609085 609343 609358) (-357 "FLINEXP.spad" 608741 608753 609011 609016) (-356 "FLASORT.spad" 608061 608073 608731 608736) (-355 "FLALG.spad" 605707 605726 607987 608056) (-354 "FLAGG.spad" 602713 602723 605675 605702) (-353 "FLAGG.spad" 599632 599644 602596 602601) (-352 "FLAGG2.spad" 598313 598329 599622 599627) (-351 "FINRALG.spad" 596342 596355 598269 598308) (-350 "FINRALG.spad" 594297 594312 596226 596231) (-349 "FINITE.spad" 593449 593457 594287 594292) (-348 "FINAALG.spad" 582430 582440 593391 593444) (-347 "FINAALG.spad" 571423 571435 582386 582391) (-346 "FILE.spad" 571006 571016 571413 571418) (-345 "FILECAT.spad" 569524 569541 570996 571001) (-344 "FIELD.spad" 568930 568938 569426 569519) (-343 "FIELD.spad" 568422 568432 568920 568925) (-342 "FGROUP.spad" 567031 567041 568402 568417) (-341 "FGLMICPK.spad" 565818 565833 567021 567026) (-340 "FFX.spad" 565193 565208 565534 565627) (-339 "FFSLPE.spad" 564682 564703 565183 565188) (-338 "FFPOLY.spad" 555934 555945 564672 564677) (-337 "FFPOLY2.spad" 554994 555011 555924 555929) (-336 "FFP.spad" 554391 554411 554710 554803) (-335 "FF.spad" 553839 553855 554072 554165) (-334 "FFNBX.spad" 552351 552371 553555 553648) (-333 "FFNBP.spad" 550864 550881 552067 552160) (-332 "FFNB.spad" 549329 549350 550545 550638) (-331 "FFINTBAS.spad" 546743 546762 549319 549324) (-330 "FFIELDC.spad" 544318 544326 546645 546738) (-329 "FFIELDC.spad" 541979 541989 544308 544313) (-328 "FFHOM.spad" 540727 540744 541969 541974) (-327 "FFF.spad" 538162 538173 540717 540722) (-326 "FFCGX.spad" 537009 537029 537878 537971) (-325 "FFCGP.spad" 535898 535918 536725 536818) (-324 "FFCG.spad" 534690 534711 535579 535672) (-323 "FFCAT.spad" 527717 527739 534529 534685) (-322 "FFCAT.spad" 520823 520847 527637 527642) (-321 "FFCAT2.spad" 520568 520608 520813 520818) (-320 "FEXPR.spad" 512281 512327 520328 520367) (-319 "FEVALAB.spad" 511987 511997 512271 512276) (-318 "FEVALAB.spad" 511478 511490 511764 511769) (-317 "FDIV.spad" 510920 510944 511468 511473) (-316 "FDIVCAT.spad" 508962 508986 510910 510915) (-315 "FDIVCAT.spad" 507002 507028 508952 508957) (-314 "FDIV2.spad" 506656 506696 506992 506997) (-313 "FCPAK1.spad" 505209 505217 506646 506651) (-312 "FCOMP.spad" 504588 504598 505199 505204) (-311 "FC.spad" 494413 494421 504578 504583) (-310 "FAXF.spad" 487348 487362 494315 494408) (-309 "FAXF.spad" 480335 480351 487304 487309) (-308 "FARRAY.spad" 478481 478491 479518 479545) (-307 "FAMR.spad" 476601 476613 478379 478476) (-306 "FAMR.spad" 474705 474719 476485 476490) (-305 "FAMONOID.spad" 474355 474365 474659 474664) (-304 "FAMONC.spad" 472577 472589 474345 474350) (-303 "FAGROUP.spad" 472183 472193 472473 472500) (-302 "FACUTIL.spad" 470379 470396 472173 472178) (-301 "FACTFUNC.spad" 469555 469565 470369 470374) (-300 "EXPUPXS.spad" 466388 466411 467687 467836) (-299 "EXPRTUBE.spad" 463616 463624 466378 466383) (-298 "EXPRODE.spad" 460488 460504 463606 463611) (-297 "EXPR.spad" 455790 455800 456504 456907) (-296 "EXPR2UPS.spad" 451882 451895 455780 455785) (-295 "EXPR2.spad" 451585 451597 451872 451877) (-294 "EXPEXPAN.spad" 448526 448551 449160 449253) (-293 "EXIT.spad" 448197 448205 448516 448521) (-292 "EVALCYC.spad" 447655 447669 448187 448192) (-291 "EVALAB.spad" 447219 447229 447645 447650) (-290 "EVALAB.spad" 446781 446793 447209 447214) (-289 "EUCDOM.spad" 444323 444331 446707 446776) (-288 "EUCDOM.spad" 441927 441937 444313 444318) (-287 "ESTOOLS.spad" 433767 433775 441917 441922) (-286 "ESTOOLS2.spad" 433368 433382 433757 433762) (-285 "ESTOOLS1.spad" 433053 433064 433358 433363) (-284 "ES.spad" 425600 425608 433043 433048) (-283 "ES.spad" 418055 418065 425500 425505) (-282 "ESCONT.spad" 414828 414836 418045 418050) (-281 "ESCONT1.spad" 414577 414589 414818 414823) (-280 "ES2.spad" 414072 414088 414567 414572) (-279 "ES1.spad" 413638 413654 414062 414067) (-278 "ERROR.spad" 410959 410967 413628 413633) (-277 "EQTBL.spad" 409431 409453 409640 409667) (-276 "EQ.spad" 404315 404325 407114 407223) (-275 "EQ2.spad" 404031 404043 404305 404310) (-274 "EP.spad" 400345 400355 404021 404026) (-273 "ENV.spad" 399047 399055 400335 400340) (-272 "ENTIRER.spad" 398715 398723 398991 399042) (-271 "EMR.spad" 397916 397957 398641 398710) (-270 "ELTAGG.spad" 396156 396175 397906 397911) (-269 "ELTAGG.spad" 394360 394381 396112 396117) (-268 "ELTAB.spad" 393807 393825 394350 394355) (-267 "ELFUTS.spad" 393186 393205 393797 393802) (-266 "ELEMFUN.spad" 392875 392883 393176 393181) (-265 "ELEMFUN.spad" 392562 392572 392865 392870) (-264 "ELAGG.spad" 390493 390503 392530 392557) (-263 "ELAGG.spad" 388373 388385 390412 390417) (-262 "ELABEXPR.spad" 387304 387312 388363 388368) (-261 "EFUPXS.spad" 384080 384110 387260 387265) (-260 "EFULS.spad" 380916 380939 384036 384041) (-259 "EFSTRUC.spad" 378871 378887 380906 380911) (-258 "EF.spad" 373637 373653 378861 378866) (-257 "EAB.spad" 371913 371921 373627 373632) (-256 "E04UCFA.spad" 371449 371457 371903 371908) (-255 "E04NAFA.spad" 371026 371034 371439 371444) (-254 "E04MBFA.spad" 370606 370614 371016 371021) (-253 "E04JAFA.spad" 370142 370150 370596 370601) (-252 "E04GCFA.spad" 369678 369686 370132 370137) (-251 "E04FDFA.spad" 369214 369222 369668 369673) (-250 "E04DGFA.spad" 368750 368758 369204 369209) (-249 "E04AGNT.spad" 364592 364600 368740 368745) (-248 "DVARCAT.spad" 361277 361287 364582 364587) (-247 "DVARCAT.spad" 357960 357972 361267 361272) (-246 "DSMP.spad" 355394 355408 355699 355826) (-245 "DROPT.spad" 349339 349347 355384 355389) (-244 "DROPT1.spad" 349002 349012 349329 349334) (-243 "DROPT0.spad" 343829 343837 348992 348997) (-242 "DRAWPT.spad" 341984 341992 343819 343824) (-241 "DRAW.spad" 334584 334597 341974 341979) (-240 "DRAWHACK.spad" 333892 333902 334574 334579) (-239 "DRAWCX.spad" 331334 331342 333882 333887) (-238 "DRAWCURV.spad" 330871 330886 331324 331329) (-237 "DRAWCFUN.spad" 320043 320051 330861 330866) (-236 "DQAGG.spad" 318199 318209 319999 320038) (-235 "DPOLCAT.spad" 313540 313556 318067 318194) (-234 "DPOLCAT.spad" 308967 308985 313496 313501) (-233 "DPMO.spad" 302317 302333 302455 302751) (-232 "DPMM.spad" 295680 295698 295805 296101) (-231 "DOMAIN.spad" 294951 294959 295670 295675) (-230 "DMP.spad" 292176 292191 292748 292875) (-229 "DLP.spad" 291524 291534 292166 292171) (-228 "DLIST.spad" 289936 289946 290707 290734) (-227 "DLAGG.spad" 288337 288347 289916 289931) (-226 "DIVRING.spad" 287879 287887 288281 288332) (-225 "DIVRING.spad" 287465 287475 287869 287874) (-224 "DISPLAY.spad" 285645 285653 287455 287460) (-223 "DIRPROD.spad" 276550 276566 277190 277319) (-222 "DIRPROD2.spad" 275358 275376 276540 276545) (-221 "DIRPCAT.spad" 274290 274306 275212 275353) (-220 "DIRPCAT.spad" 272962 272980 273886 273891) (-219 "DIOSP.spad" 271787 271795 272952 272957) (-218 "DIOPS.spad" 270759 270769 271755 271782) (-217 "DIOPS.spad" 269717 269729 270715 270720) (-216 "DIFRING.spad" 269009 269017 269697 269712) (-215 "DIFRING.spad" 268309 268319 268999 269004) (-214 "DIFEXT.spad" 267468 267478 268289 268304) (-213 "DIFEXT.spad" 266544 266556 267367 267372) (-212 "DIAGG.spad" 266162 266172 266512 266539) (-211 "DIAGG.spad" 265800 265812 266152 266157) (-210 "DHMATRIX.spad" 264104 264114 265257 265284) (-209 "DFSFUN.spad" 257512 257520 264094 264099) (-208 "DFLOAT.spad" 254035 254043 257402 257507) (-207 "DFINTTLS.spad" 252244 252260 254025 254030) (-206 "DERHAM.spad" 250154 250186 252224 252239) (-205 "DEQUEUE.spad" 249472 249482 249761 249788) (-204 "DEGRED.spad" 249087 249101 249462 249467) (-203 "DEFINTRF.spad" 246612 246622 249077 249082) (-202 "DEFINTEF.spad" 245108 245124 246602 246607) (-201 "DECIMAL.spad" 242992 243000 243578 243671) (-200 "DDFACT.spad" 240791 240808 242982 242987) (-199 "DBLRESP.spad" 240389 240413 240781 240786) (-198 "DBASE.spad" 238961 238971 240379 240384) (-197 "DATABUF.spad" 238449 238462 238951 238956) (-196 "D03FAFA.spad" 238277 238285 238439 238444) (-195 "D03EEFA.spad" 238097 238105 238267 238272) (-194 "D03AGNT.spad" 237177 237185 238087 238092) (-193 "D02EJFA.spad" 236639 236647 237167 237172) (-192 "D02CJFA.spad" 236117 236125 236629 236634) (-191 "D02BHFA.spad" 235607 235615 236107 236112) (-190 "D02BBFA.spad" 235097 235105 235597 235602) (-189 "D02AGNT.spad" 229901 229909 235087 235092) (-188 "D01WGTS.spad" 228220 228228 229891 229896) (-187 "D01TRNS.spad" 228197 228205 228210 228215) (-186 "D01GBFA.spad" 227719 227727 228187 228192) (-185 "D01FCFA.spad" 227241 227249 227709 227714) (-184 "D01ASFA.spad" 226709 226717 227231 227236) (-183 "D01AQFA.spad" 226155 226163 226699 226704) (-182 "D01APFA.spad" 225579 225587 226145 226150) (-181 "D01ANFA.spad" 225073 225081 225569 225574) (-180 "D01AMFA.spad" 224583 224591 225063 225068) (-179 "D01ALFA.spad" 224123 224131 224573 224578) (-178 "D01AKFA.spad" 223649 223657 224113 224118) (-177 "D01AJFA.spad" 223172 223180 223639 223644) (-176 "D01AGNT.spad" 219231 219239 223162 223167) (-175 "CYCLOTOM.spad" 218737 218745 219221 219226) (-174 "CYCLES.spad" 215569 215577 218727 218732) (-173 "CVMP.spad" 214986 214996 215559 215564) (-172 "CTRIGMNP.spad" 213476 213492 214976 214981) (-171 "CTORCALL.spad" 213064 213072 213466 213471) (-170 "CSTTOOLS.spad" 212307 212320 213054 213059) (-169 "CRFP.spad" 206011 206024 212297 212302) (-168 "CRAPACK.spad" 205054 205064 206001 206006) (-167 "CPMATCH.spad" 204554 204569 204979 204984) (-166 "CPIMA.spad" 204259 204278 204544 204549) (-165 "COORDSYS.spad" 199152 199162 204249 204254) (-164 "CONTOUR.spad" 198554 198562 199142 199147) (-163 "CONTFRAC.spad" 194166 194176 198456 198549) (-162 "COMRING.spad" 193840 193848 194104 194161) (-161 "COMPPROP.spad" 193354 193362 193830 193835) (-160 "COMPLPAT.spad" 193121 193136 193344 193349) (-159 "COMPLEX.spad" 187154 187164 187398 187659) (-158 "COMPLEX2.spad" 186867 186879 187144 187149) (-157 "COMPFACT.spad" 186469 186483 186857 186862) (-156 "COMPCAT.spad" 184525 184535 186191 186464) (-155 "COMPCAT.spad" 182288 182300 183956 183961) (-154 "COMMUPC.spad" 182034 182052 182278 182283) (-153 "COMMONOP.spad" 181567 181575 182024 182029) (-152 "COMM.spad" 181376 181384 181557 181562) (-151 "COMBOPC.spad" 180281 180289 181366 181371) (-150 "COMBINAT.spad" 179026 179036 180271 180276) (-149 "COMBF.spad" 176394 176410 179016 179021) (-148 "COLOR.spad" 175231 175239 176384 176389) (-147 "CMPLXRT.spad" 174940 174957 175221 175226) (-146 "CLIP.spad" 171032 171040 174930 174935) (-145 "CLIF.spad" 169671 169687 170988 171027) (-144 "CLAGG.spad" 166146 166156 169651 169666) (-143 "CLAGG.spad" 162502 162514 166009 166014) (-142 "CINTSLPE.spad" 161827 161840 162492 162497) (-141 "CHVAR.spad" 159905 159927 161817 161822) (-140 "CHARZ.spad" 159820 159828 159885 159900) (-139 "CHARPOL.spad" 159328 159338 159810 159815) (-138 "CHARNZ.spad" 159081 159089 159308 159323) (-137 "CHAR.spad" 156949 156957 159071 159076) (-136 "CFCAT.spad" 156265 156273 156939 156944) (-135 "CDEN.spad" 155423 155437 156255 156260) (-134 "CCLASS.spad" 153572 153580 154834 154873) (-133 "CATEGORY.spad" 153351 153359 153562 153567) (-132 "CARTEN.spad" 148454 148478 153341 153346) (-131 "CARTEN2.spad" 147840 147867 148444 148449) (-130 "CARD.spad" 145129 145137 147814 147835) (-129 "CACHSET.spad" 144751 144759 145119 145124) (-128 "CABMON.spad" 144304 144312 144741 144746) (-127 "BYTE.spad" 143698 143706 144294 144299) (-126 "BYTEARY.spad" 142773 142781 142867 142894) (-125 "BTREE.spad" 141842 141852 142380 142407) (-124 "BTOURN.spad" 140845 140855 141449 141476) (-123 "BTCAT.spad" 140221 140231 140801 140840) (-122 "BTCAT.spad" 139629 139641 140211 140216) (-121 "BTAGG.spad" 138739 138747 139585 139624) (-120 "BTAGG.spad" 137881 137891 138729 138734) (-119 "BSTREE.spad" 136616 136626 137488 137515) (-118 "BRILL.spad" 134811 134822 136606 136611) (-117 "BRAGG.spad" 133725 133735 134791 134806) (-116 "BRAGG.spad" 132613 132625 133681 133686) (-115 "BPADICRT.spad" 130597 130609 130852 130945) (-114 "BPADIC.spad" 130261 130273 130523 130592) (-113 "BOUNDZRO.spad" 129917 129934 130251 130256) (-112 "BOP.spad" 125381 125389 129907 129912) (-111 "BOP1.spad" 122767 122777 125337 125342) (-110 "BOOLEAN.spad" 122091 122099 122757 122762) (-109 "BMODULE.spad" 121803 121815 122059 122086) (-108 "BITS.spad" 121222 121230 121439 121466) (-107 "BINFILE.spad" 120565 120573 121212 121217) (-106 "BINDING.spad" 119984 119992 120555 120560) (-105 "BINARY.spad" 117877 117885 118454 118547) (-104 "BGAGG.spad" 117062 117072 117845 117872) (-103 "BGAGG.spad" 116267 116279 117052 117057) (-102 "BFUNCT.spad" 115831 115839 116247 116262) (-101 "BEZOUT.spad" 114965 114992 115781 115786) (-100 "BBTREE.spad" 111784 111794 114572 114599) (-99 "BASTYPE.spad" 111457 111464 111774 111779) (-98 "BASTYPE.spad" 111128 111137 111447 111452) (-97 "BALFACT.spad" 110568 110580 111118 111123) (-96 "AUTOMOR.spad" 110015 110024 110548 110563) (-95 "ATTREG.spad" 106734 106741 109767 110010) (-94 "ATTRBUT.spad" 102757 102764 106714 106729) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
+((-3 NIL 2243084 2243089 2243094 2243099) (-2 NIL 2243064 2243069 2243074 2243079) (-1 NIL 2243044 2243049 2243054 2243059) (0 NIL 2243024 2243029 2243034 2243039) (-1210 "ZMOD.spad" 2242833 2242846 2242962 2243019) (-1209 "ZLINDEP.spad" 2241877 2241888 2242823 2242828) (-1208 "ZDSOLVE.spad" 2231726 2231748 2241867 2241872) (-1207 "YSTREAM.spad" 2231219 2231230 2231716 2231721) (-1206 "XRPOLY.spad" 2230439 2230459 2231075 2231144) (-1205 "XPR.spad" 2228168 2228181 2230157 2230256) (-1204 "XPOLY.spad" 2227723 2227734 2228024 2228093) (-1203 "XPOLYC.spad" 2227040 2227056 2227649 2227718) (-1202 "XPBWPOLY.spad" 2225477 2225497 2226820 2226889) (-1201 "XF.spad" 2223938 2223953 2225379 2225472) (-1200 "XF.spad" 2222379 2222396 2223822 2223827) (-1199 "XFALG.spad" 2219403 2219419 2222305 2222374) (-1198 "XEXPPKG.spad" 2218654 2218680 2219393 2219398) (-1197 "XDPOLY.spad" 2218268 2218284 2218510 2218579) (-1196 "XALG.spad" 2217866 2217877 2218224 2218263) (-1195 "WUTSET.spad" 2213705 2213722 2217512 2217539) (-1194 "WP.spad" 2212719 2212763 2213563 2213630) (-1193 "WFFINTBS.spad" 2210282 2210304 2212709 2212714) (-1192 "WEIER.spad" 2208496 2208507 2210272 2210277) (-1191 "VSPACE.spad" 2208169 2208180 2208464 2208491) (-1190 "VSPACE.spad" 2207862 2207875 2208159 2208164) (-1189 "VOID.spad" 2207452 2207461 2207852 2207857) (-1188 "VIEW.spad" 2205074 2205083 2207442 2207447) (-1187 "VIEWDEF.spad" 2200271 2200280 2205064 2205069) (-1186 "VIEW3D.spad" 2184106 2184115 2200261 2200266) (-1185 "VIEW2D.spad" 2171843 2171852 2184096 2184101) (-1184 "VECTOR.spad" 2170520 2170531 2170771 2170798) (-1183 "VECTOR2.spad" 2169147 2169160 2170510 2170515) (-1182 "VECTCAT.spad" 2167035 2167046 2169103 2169142) (-1181 "VECTCAT.spad" 2164744 2164757 2166814 2166819) (-1180 "VARIABLE.spad" 2164524 2164539 2164734 2164739) (-1179 "UTYPE.spad" 2164158 2164167 2164504 2164519) (-1178 "UTSODETL.spad" 2163451 2163475 2164114 2164119) (-1177 "UTSODE.spad" 2161639 2161659 2163441 2163446) (-1176 "UTS.spad" 2156428 2156456 2160106 2160203) (-1175 "UTSCAT.spad" 2153879 2153895 2156326 2156423) (-1174 "UTSCAT.spad" 2150974 2150992 2153423 2153428) (-1173 "UTS2.spad" 2150567 2150602 2150964 2150969) (-1172 "URAGG.spad" 2145189 2145200 2150547 2150562) (-1171 "URAGG.spad" 2139785 2139798 2145145 2145150) (-1170 "UPXSSING.spad" 2137431 2137457 2138869 2139002) (-1169 "UPXS.spad" 2134458 2134486 2135563 2135712) (-1168 "UPXSCONS.spad" 2132215 2132235 2132590 2132739) (-1167 "UPXSCCA.spad" 2130673 2130693 2132061 2132210) (-1166 "UPXSCCA.spad" 2129273 2129295 2130663 2130668) (-1165 "UPXSCAT.spad" 2127854 2127870 2129119 2129268) (-1164 "UPXS2.spad" 2127395 2127448 2127844 2127849) (-1163 "UPSQFREE.spad" 2125807 2125821 2127385 2127390) (-1162 "UPSCAT.spad" 2123400 2123424 2125705 2125802) (-1161 "UPSCAT.spad" 2120699 2120725 2123006 2123011) (-1160 "UPOLYC.spad" 2115677 2115688 2120541 2120694) (-1159 "UPOLYC.spad" 2110547 2110560 2115413 2115418) (-1158 "UPOLYC2.spad" 2110016 2110035 2110537 2110542) (-1157 "UP.spad" 2107061 2107076 2107569 2107722) (-1156 "UPMP.spad" 2105951 2105964 2107051 2107056) (-1155 "UPDIVP.spad" 2105514 2105528 2105941 2105946) (-1154 "UPDECOMP.spad" 2103751 2103765 2105504 2105509) (-1153 "UPCDEN.spad" 2102958 2102974 2103741 2103746) (-1152 "UP2.spad" 2102320 2102341 2102948 2102953) (-1151 "UNISEG.spad" 2101673 2101684 2102239 2102244) (-1150 "UNISEG2.spad" 2101166 2101179 2101629 2101634) (-1149 "UNIFACT.spad" 2100267 2100279 2101156 2101161) (-1148 "ULS.spad" 2090826 2090854 2091919 2092348) (-1147 "ULSCONS.spad" 2084869 2084889 2085241 2085390) (-1146 "ULSCCAT.spad" 2082466 2082486 2084689 2084864) (-1145 "ULSCCAT.spad" 2080197 2080219 2082422 2082427) (-1144 "ULSCAT.spad" 2078413 2078429 2080043 2080192) (-1143 "ULS2.spad" 2077925 2077978 2078403 2078408) (-1142 "UFD.spad" 2076990 2076999 2077851 2077920) (-1141 "UFD.spad" 2076117 2076128 2076980 2076985) (-1140 "UDVO.spad" 2074964 2074973 2076107 2076112) (-1139 "UDPO.spad" 2072391 2072402 2074920 2074925) (-1138 "TYPE.spad" 2072313 2072322 2072371 2072386) (-1137 "TWOFACT.spad" 2070963 2070978 2072303 2072308) (-1136 "TUPLE.spad" 2070349 2070360 2070862 2070867) (-1135 "TUBETOOL.spad" 2067186 2067195 2070339 2070344) (-1134 "TUBE.spad" 2065827 2065844 2067176 2067181) (-1133 "TS.spad" 2064416 2064432 2065392 2065489) (-1132 "TSETCAT.spad" 2051531 2051548 2064372 2064411) (-1131 "TSETCAT.spad" 2038644 2038663 2051487 2051492) (-1130 "TRMANIP.spad" 2033010 2033027 2038350 2038355) (-1129 "TRIMAT.spad" 2031969 2031994 2033000 2033005) (-1128 "TRIGMNIP.spad" 2030486 2030503 2031959 2031964) (-1127 "TRIGCAT.spad" 2029998 2030007 2030476 2030481) (-1126 "TRIGCAT.spad" 2029508 2029519 2029988 2029993) (-1125 "TREE.spad" 2028079 2028090 2029115 2029142) (-1124 "TRANFUN.spad" 2027910 2027919 2028069 2028074) (-1123 "TRANFUN.spad" 2027739 2027750 2027900 2027905) (-1122 "TOPSP.spad" 2027413 2027422 2027729 2027734) (-1121 "TOOLSIGN.spad" 2027076 2027087 2027403 2027408) (-1120 "TEXTFILE.spad" 2025633 2025642 2027066 2027071) (-1119 "TEX.spad" 2022650 2022659 2025623 2025628) (-1118 "TEX1.spad" 2022206 2022217 2022640 2022645) (-1117 "TEMUTL.spad" 2021761 2021770 2022196 2022201) (-1116 "TBCMPPK.spad" 2019854 2019877 2021751 2021756) (-1115 "TBAGG.spad" 2018878 2018901 2019822 2019849) (-1114 "TBAGG.spad" 2017922 2017947 2018868 2018873) (-1113 "TANEXP.spad" 2017298 2017309 2017912 2017917) (-1112 "TABLE.spad" 2015709 2015732 2015979 2016006) (-1111 "TABLEAU.spad" 2015190 2015201 2015699 2015704) (-1110 "TABLBUMP.spad" 2011973 2011984 2015180 2015185) (-1109 "SYSTEM.spad" 2011247 2011256 2011963 2011968) (-1108 "SYSSOLP.spad" 2008720 2008731 2011237 2011242) (-1107 "SYNTAX.spad" 2004912 2004921 2008710 2008715) (-1106 "SYMTAB.spad" 2002968 2002977 2004902 2004907) (-1105 "SYMS.spad" 1998953 1998962 2002958 2002963) (-1104 "SYMPOLY.spad" 1997963 1997974 1998045 1998172) (-1103 "SYMFUNC.spad" 1997438 1997449 1997953 1997958) (-1102 "SYMBOL.spad" 1994774 1994783 1997428 1997433) (-1101 "SWITCH.spad" 1991531 1991540 1994764 1994769) (-1100 "SUTS.spad" 1988430 1988458 1989998 1990095) (-1099 "SUPXS.spad" 1985444 1985472 1986562 1986711) (-1098 "SUP.spad" 1982216 1982227 1982997 1983150) (-1097 "SUPFRACF.spad" 1981321 1981339 1982206 1982211) (-1096 "SUP2.spad" 1980711 1980724 1981311 1981316) (-1095 "SUMRF.spad" 1979677 1979688 1980701 1980706) (-1094 "SUMFS.spad" 1979310 1979327 1979667 1979672) (-1093 "SULS.spad" 1969856 1969884 1970962 1971391) (-1092 "SUCH.spad" 1969536 1969551 1969846 1969851) (-1091 "SUBSPACE.spad" 1961543 1961558 1969526 1969531) (-1090 "SUBRESP.spad" 1960703 1960717 1961499 1961504) (-1089 "STTF.spad" 1956802 1956818 1960693 1960698) (-1088 "STTFNC.spad" 1953270 1953286 1956792 1956797) (-1087 "STTAYLOR.spad" 1945668 1945679 1953151 1953156) (-1086 "STRTBL.spad" 1944173 1944190 1944322 1944349) (-1085 "STRING.spad" 1943582 1943591 1943596 1943623) (-1084 "STRICAT.spad" 1943358 1943367 1943538 1943577) (-1083 "STREAM.spad" 1940126 1940137 1942883 1942898) (-1082 "STREAM3.spad" 1939671 1939686 1940116 1940121) (-1081 "STREAM2.spad" 1938739 1938752 1939661 1939666) (-1080 "STREAM1.spad" 1938443 1938454 1938729 1938734) (-1079 "STINPROD.spad" 1937349 1937365 1938433 1938438) (-1078 "STEP.spad" 1936550 1936559 1937339 1937344) (-1077 "STBL.spad" 1935076 1935104 1935243 1935258) (-1076 "STAGG.spad" 1934141 1934152 1935056 1935071) (-1075 "STAGG.spad" 1933214 1933227 1934131 1934136) (-1074 "STACK.spad" 1932565 1932576 1932821 1932848) (-1073 "SREGSET.spad" 1930269 1930286 1932211 1932238) (-1072 "SRDCMPK.spad" 1928814 1928834 1930259 1930264) (-1071 "SRAGG.spad" 1923899 1923908 1928770 1928809) (-1070 "SRAGG.spad" 1919016 1919027 1923889 1923894) (-1069 "SQMATRIX.spad" 1916642 1916660 1917550 1917637) (-1068 "SPLTREE.spad" 1911194 1911207 1916078 1916105) (-1067 "SPLNODE.spad" 1907782 1907795 1911184 1911189) (-1066 "SPFCAT.spad" 1906559 1906568 1907772 1907777) (-1065 "SPECOUT.spad" 1905109 1905118 1906549 1906554) (-1064 "spad-parser.spad" 1904574 1904583 1905099 1905104) (-1063 "SPACEC.spad" 1888587 1888598 1904564 1904569) (-1062 "SPACE3.spad" 1888363 1888374 1888577 1888582) (-1061 "SORTPAK.spad" 1887908 1887921 1888319 1888324) (-1060 "SOLVETRA.spad" 1885665 1885676 1887898 1887903) (-1059 "SOLVESER.spad" 1884185 1884196 1885655 1885660) (-1058 "SOLVERAD.spad" 1880195 1880206 1884175 1884180) (-1057 "SOLVEFOR.spad" 1878615 1878633 1880185 1880190) (-1056 "SNTSCAT.spad" 1878203 1878220 1878571 1878610) (-1055 "SMTS.spad" 1876463 1876489 1877768 1877865) (-1054 "SMP.spad" 1873905 1873925 1874295 1874422) (-1053 "SMITH.spad" 1872748 1872773 1873895 1873900) (-1052 "SMATCAT.spad" 1870846 1870876 1872680 1872743) (-1051 "SMATCAT.spad" 1868888 1868920 1870724 1870729) (-1050 "SKAGG.spad" 1867837 1867848 1868844 1868883) (-1049 "SINT.spad" 1866145 1866154 1867703 1867832) (-1048 "SIMPAN.spad" 1865873 1865882 1866135 1866140) (-1047 "SIG.spad" 1865201 1865210 1865863 1865868) (-1046 "SIGNRF.spad" 1864309 1864320 1865191 1865196) (-1045 "SIGNEF.spad" 1863578 1863595 1864299 1864304) (-1044 "SHP.spad" 1861496 1861511 1863534 1863539) (-1043 "SHDP.spad" 1852532 1852559 1853041 1853170) (-1042 "SGROUP.spad" 1852140 1852149 1852522 1852527) (-1041 "SGROUP.spad" 1851746 1851757 1852130 1852135) (-1040 "SGCF.spad" 1844627 1844636 1851736 1851741) (-1039 "SFRTCAT.spad" 1843543 1843560 1844583 1844622) (-1038 "SFRGCD.spad" 1842606 1842626 1843533 1843538) (-1037 "SFQCMPK.spad" 1837243 1837263 1842596 1842601) (-1036 "SFORT.spad" 1836678 1836692 1837233 1837238) (-1035 "SEXOF.spad" 1836521 1836561 1836668 1836673) (-1034 "SEX.spad" 1836413 1836422 1836511 1836516) (-1033 "SEXCAT.spad" 1833517 1833557 1836403 1836408) (-1032 "SET.spad" 1831817 1831828 1832938 1832977) (-1031 "SETMN.spad" 1830251 1830268 1831807 1831812) (-1030 "SETCAT.spad" 1829736 1829745 1830241 1830246) (-1029 "SETCAT.spad" 1829219 1829230 1829726 1829731) (-1028 "SETAGG.spad" 1825728 1825739 1829187 1829214) (-1027 "SETAGG.spad" 1822257 1822270 1825718 1825723) (-1026 "SEGXCAT.spad" 1821369 1821382 1822237 1822252) (-1025 "SEG.spad" 1821182 1821193 1821288 1821293) (-1024 "SEGCAT.spad" 1820001 1820012 1821162 1821177) (-1023 "SEGBIND.spad" 1819073 1819084 1819956 1819961) (-1022 "SEGBIND2.spad" 1818769 1818782 1819063 1819068) (-1021 "SEG2.spad" 1818194 1818207 1818725 1818730) (-1020 "SDVAR.spad" 1817470 1817481 1818184 1818189) (-1019 "SDPOL.spad" 1814863 1814874 1815154 1815281) (-1018 "SCPKG.spad" 1812942 1812953 1814853 1814858) (-1017 "SCOPE.spad" 1812087 1812096 1812932 1812937) (-1016 "SCACHE.spad" 1810769 1810780 1812077 1812082) (-1015 "SASTCAT.spad" 1810678 1810687 1810759 1810764) (-1014 "SAOS.spad" 1810550 1810559 1810668 1810673) (-1013 "SAERFFC.spad" 1810263 1810283 1810540 1810545) (-1012 "SAE.spad" 1808441 1808457 1809052 1809187) (-1011 "SAEFACT.spad" 1808142 1808162 1808431 1808436) (-1010 "RURPK.spad" 1805783 1805799 1808132 1808137) (-1009 "RULESET.spad" 1805224 1805248 1805773 1805778) (-1008 "RULE.spad" 1803428 1803452 1805214 1805219) (-1007 "RULECOLD.spad" 1803280 1803293 1803418 1803423) (-1006 "RSETGCD.spad" 1799658 1799678 1803270 1803275) (-1005 "RSETCAT.spad" 1789430 1789447 1799614 1799653) (-1004 "RSETCAT.spad" 1779234 1779253 1789420 1789425) (-1003 "RSDCMPK.spad" 1777686 1777706 1779224 1779229) (-1002 "RRCC.spad" 1776070 1776100 1777676 1777681) (-1001 "RRCC.spad" 1774452 1774484 1776060 1776065) (-1000 "RPOLCAT.spad" 1753812 1753827 1774320 1774447) (-999 "RPOLCAT.spad" 1732888 1732904 1753397 1753402) (-998 "ROUTINE.spad" 1728752 1728760 1731535 1731562) (-997 "ROMAN.spad" 1727985 1727993 1728618 1728747) (-996 "ROIRC.spad" 1727066 1727097 1727975 1727980) (-995 "RNS.spad" 1725970 1725978 1726968 1727061) (-994 "RNS.spad" 1724960 1724970 1725960 1725965) (-993 "RNG.spad" 1724696 1724704 1724950 1724955) (-992 "RMODULE.spad" 1724335 1724345 1724686 1724691) (-991 "RMCAT2.spad" 1723744 1723800 1724325 1724330) (-990 "RMATRIX.spad" 1722424 1722442 1722911 1722950) (-989 "RMATCAT.spad" 1717946 1717976 1722368 1722419) (-988 "RMATCAT.spad" 1713370 1713402 1717794 1717799) (-987 "RINTERP.spad" 1713259 1713278 1713360 1713365) (-986 "RING.spad" 1712617 1712625 1713239 1713254) (-985 "RING.spad" 1711983 1711993 1712607 1712612) (-984 "RIDIST.spad" 1711368 1711376 1711973 1711978) (-983 "RGCHAIN.spad" 1709948 1709963 1710853 1710880) (-982 "RF.spad" 1707563 1707573 1709938 1709943) (-981 "RFFACTOR.spad" 1707026 1707036 1707553 1707558) (-980 "RFFACT.spad" 1706762 1706773 1707016 1707021) (-979 "RFDIST.spad" 1705751 1705759 1706752 1706757) (-978 "RETSOL.spad" 1705169 1705181 1705741 1705746) (-977 "RETRACT.spad" 1704519 1704529 1705159 1705164) (-976 "RETRACT.spad" 1703867 1703879 1704509 1704514) (-975 "RESULT.spad" 1701928 1701936 1702514 1702541) (-974 "RESRING.spad" 1701276 1701322 1701866 1701923) (-973 "RESLATC.spad" 1700601 1700611 1701266 1701271) (-972 "REPSQ.spad" 1700331 1700341 1700591 1700596) (-971 "REP.spad" 1697884 1697892 1700321 1700326) (-970 "REPDB.spad" 1697590 1697600 1697874 1697879) (-969 "REP2.spad" 1687163 1687173 1697432 1697437) (-968 "REP1.spad" 1681154 1681164 1687113 1687118) (-967 "REGSET.spad" 1678952 1678968 1680800 1680827) (-966 "REF.spad" 1678282 1678292 1678907 1678912) (-965 "REDORDER.spad" 1677459 1677475 1678272 1678277) (-964 "RECLOS.spad" 1676249 1676268 1676952 1677045) (-963 "REALSOLV.spad" 1675382 1675390 1676239 1676244) (-962 "REAL.spad" 1675255 1675263 1675372 1675377) (-961 "REAL0Q.spad" 1672538 1672552 1675245 1675250) (-960 "REAL0.spad" 1669367 1669381 1672528 1672533) (-959 "RDIV.spad" 1669019 1669043 1669357 1669362) (-958 "RDIST.spad" 1668583 1668593 1669009 1669014) (-957 "RDETRS.spad" 1667380 1667397 1668573 1668578) (-956 "RDETR.spad" 1665488 1665505 1667370 1667375) (-955 "RDEEFS.spad" 1664562 1664578 1665478 1665483) (-954 "RDEEF.spad" 1663559 1663575 1664552 1664557) (-953 "RCFIELD.spad" 1660746 1660754 1663461 1663554) (-952 "RCFIELD.spad" 1658019 1658029 1660736 1660741) (-951 "RCAGG.spad" 1655922 1655932 1657999 1658014) (-950 "RCAGG.spad" 1653762 1653774 1655841 1655846) (-949 "RATRET.spad" 1653123 1653133 1653752 1653757) (-948 "RATFACT.spad" 1652816 1652827 1653113 1653118) (-947 "RANDSRC.spad" 1652136 1652144 1652806 1652811) (-946 "RADUTIL.spad" 1651891 1651899 1652126 1652131) (-945 "RADIX.spad" 1648684 1648697 1650361 1650454) (-944 "RADFF.spad" 1647101 1647137 1647219 1647375) (-943 "RADCAT.spad" 1646695 1646703 1647091 1647096) (-942 "RADCAT.spad" 1646287 1646297 1646685 1646690) (-941 "QUEUE.spad" 1645630 1645640 1645894 1645921) (-940 "QUAT.spad" 1644216 1644226 1644558 1644623) (-939 "QUATCT2.spad" 1643835 1643853 1644206 1644211) (-938 "QUATCAT.spad" 1642000 1642010 1643765 1643830) (-937 "QUATCAT.spad" 1639917 1639929 1641684 1641689) (-936 "QUAGG.spad" 1638731 1638741 1639873 1639912) (-935 "QFORM.spad" 1638194 1638208 1638721 1638726) (-934 "QFCAT.spad" 1636885 1636895 1638084 1638189) (-933 "QFCAT.spad" 1635182 1635194 1636383 1636388) (-932 "QFCAT2.spad" 1634873 1634889 1635172 1635177) (-931 "QEQUAT.spad" 1634430 1634438 1634863 1634868) (-930 "QCMPACK.spad" 1629177 1629196 1634420 1634425) (-929 "QALGSET.spad" 1625252 1625284 1629091 1629096) (-928 "QALGSET2.spad" 1623248 1623266 1625242 1625247) (-927 "PWFFINTB.spad" 1620558 1620579 1623238 1623243) (-926 "PUSHVAR.spad" 1619887 1619906 1620548 1620553) (-925 "PTRANFN.spad" 1616013 1616023 1619877 1619882) (-924 "PTPACK.spad" 1613101 1613111 1616003 1616008) (-923 "PTFUNC2.spad" 1612922 1612936 1613091 1613096) (-922 "PTCAT.spad" 1612004 1612014 1612878 1612917) (-921 "PSQFR.spad" 1611311 1611335 1611994 1611999) (-920 "PSEUDLIN.spad" 1610169 1610179 1611301 1611306) (-919 "PSETPK.spad" 1595602 1595618 1610047 1610052) (-918 "PSETCAT.spad" 1589510 1589533 1595570 1595597) (-917 "PSETCAT.spad" 1583404 1583429 1589466 1589471) (-916 "PSCURVE.spad" 1582387 1582395 1583394 1583399) (-915 "PSCAT.spad" 1581154 1581183 1582285 1582382) (-914 "PSCAT.spad" 1580011 1580042 1581144 1581149) (-913 "PRTITION.spad" 1578854 1578862 1580001 1580006) (-912 "PRS.spad" 1568416 1568433 1578810 1578815) (-911 "PRQAGG.spad" 1567835 1567845 1568372 1568411) (-910 "PROPLOG.spad" 1567238 1567246 1567825 1567830) (-909 "PROPFRML.spad" 1565102 1565113 1567174 1567179) (-908 "PROPERTY.spad" 1564596 1564604 1565092 1565097) (-907 "PRODUCT.spad" 1562276 1562288 1562562 1562617) (-906 "PR.spad" 1560665 1560677 1561370 1561497) (-905 "PRINT.spad" 1560417 1560425 1560655 1560660) (-904 "PRIMES.spad" 1558668 1558678 1560407 1560412) (-903 "PRIMELT.spad" 1556649 1556663 1558658 1558663) (-902 "PRIMCAT.spad" 1556272 1556280 1556639 1556644) (-901 "PRIMARR.spad" 1555277 1555287 1555455 1555482) (-900 "PRIMARR2.spad" 1554000 1554012 1555267 1555272) (-899 "PREASSOC.spad" 1553372 1553384 1553990 1553995) (-898 "PPCURVE.spad" 1552509 1552517 1553362 1553367) (-897 "PORTNUM.spad" 1552284 1552292 1552499 1552504) (-896 "POLYROOT.spad" 1551056 1551078 1552240 1552245) (-895 "POLY.spad" 1548356 1548366 1548873 1549000) (-894 "POLYLIFT.spad" 1547617 1547640 1548346 1548351) (-893 "POLYCATQ.spad" 1545719 1545741 1547607 1547612) (-892 "POLYCAT.spad" 1539125 1539146 1545587 1545714) (-891 "POLYCAT.spad" 1531833 1531856 1538297 1538302) (-890 "POLY2UP.spad" 1531281 1531295 1531823 1531828) (-889 "POLY2.spad" 1530876 1530888 1531271 1531276) (-888 "POLUTIL.spad" 1529817 1529846 1530832 1530837) (-887 "POLTOPOL.spad" 1528565 1528580 1529807 1529812) (-886 "POINT.spad" 1527406 1527416 1527493 1527520) (-885 "PNTHEORY.spad" 1524072 1524080 1527396 1527401) (-884 "PMTOOLS.spad" 1522829 1522843 1524062 1524067) (-883 "PMSYM.spad" 1522374 1522384 1522819 1522824) (-882 "PMQFCAT.spad" 1521961 1521975 1522364 1522369) (-881 "PMPRED.spad" 1521430 1521444 1521951 1521956) (-880 "PMPREDFS.spad" 1520874 1520896 1521420 1521425) (-879 "PMPLCAT.spad" 1519944 1519962 1520806 1520811) (-878 "PMLSAGG.spad" 1519525 1519539 1519934 1519939) (-877 "PMKERNEL.spad" 1519092 1519104 1519515 1519520) (-876 "PMINS.spad" 1518668 1518678 1519082 1519087) (-875 "PMFS.spad" 1518241 1518259 1518658 1518663) (-874 "PMDOWN.spad" 1517527 1517541 1518231 1518236) (-873 "PMASS.spad" 1516539 1516547 1517517 1517522) (-872 "PMASSFS.spad" 1515508 1515524 1516529 1516534) (-871 "PLOTTOOL.spad" 1515288 1515296 1515498 1515503) (-870 "PLOT.spad" 1510119 1510127 1515278 1515283) (-869 "PLOT3D.spad" 1506539 1506547 1510109 1510114) (-868 "PLOT1.spad" 1505680 1505690 1506529 1506534) (-867 "PLEQN.spad" 1492896 1492923 1505670 1505675) (-866 "PINTERP.spad" 1492512 1492531 1492886 1492891) (-865 "PINTERPA.spad" 1492294 1492310 1492502 1492507) (-864 "PI.spad" 1491901 1491909 1492268 1492289) (-863 "PID.spad" 1490857 1490865 1491827 1491896) (-862 "PICOERCE.spad" 1490514 1490524 1490847 1490852) (-861 "PGROEB.spad" 1489111 1489125 1490504 1490509) (-860 "PGE.spad" 1480364 1480372 1489101 1489106) (-859 "PGCD.spad" 1479246 1479263 1480354 1480359) (-858 "PFRPAC.spad" 1478389 1478399 1479236 1479241) (-857 "PFR.spad" 1475046 1475056 1478291 1478384) (-856 "PFOTOOLS.spad" 1474304 1474320 1475036 1475041) (-855 "PFOQ.spad" 1473674 1473692 1474294 1474299) (-854 "PFO.spad" 1473093 1473120 1473664 1473669) (-853 "PF.spad" 1472667 1472679 1472898 1472991) (-852 "PFECAT.spad" 1470333 1470341 1472593 1472662) (-851 "PFECAT.spad" 1468027 1468037 1470289 1470294) (-850 "PFBRU.spad" 1465897 1465909 1468017 1468022) (-849 "PFBR.spad" 1463435 1463458 1465887 1465892) (-848 "PERM.spad" 1459116 1459126 1463265 1463280) (-847 "PERMGRP.spad" 1453852 1453862 1459106 1459111) (-846 "PERMCAT.spad" 1452404 1452414 1453832 1453847) (-845 "PERMAN.spad" 1450936 1450950 1452394 1452399) (-844 "PENDTREE.spad" 1450209 1450219 1450565 1450570) (-843 "PDRING.spad" 1448700 1448710 1450189 1450204) (-842 "PDRING.spad" 1447199 1447211 1448690 1448695) (-841 "PDEPROB.spad" 1446156 1446164 1447189 1447194) (-840 "PDEPACK.spad" 1440158 1440166 1446146 1446151) (-839 "PDECOMP.spad" 1439620 1439637 1440148 1440153) (-838 "PDECAT.spad" 1437974 1437982 1439610 1439615) (-837 "PCOMP.spad" 1437825 1437838 1437964 1437969) (-836 "PBWLB.spad" 1436407 1436424 1437815 1437820) (-835 "PATTERN.spad" 1430838 1430848 1436397 1436402) (-834 "PATTERN2.spad" 1430574 1430586 1430828 1430833) (-833 "PATTERN1.spad" 1428876 1428892 1430564 1430569) (-832 "PATRES.spad" 1426423 1426435 1428866 1428871) (-831 "PATRES2.spad" 1426085 1426099 1426413 1426418) (-830 "PATMATCH.spad" 1424247 1424278 1425798 1425803) (-829 "PATMAB.spad" 1423672 1423682 1424237 1424242) (-828 "PATLRES.spad" 1422756 1422770 1423662 1423667) (-827 "PATAB.spad" 1422520 1422530 1422746 1422751) (-826 "PARTPERM.spad" 1419882 1419890 1422510 1422515) (-825 "PARSURF.spad" 1419310 1419338 1419872 1419877) (-824 "PARSU2.spad" 1419105 1419121 1419300 1419305) (-823 "script-parser.spad" 1418625 1418633 1419095 1419100) (-822 "PARSCURV.spad" 1418053 1418081 1418615 1418620) (-821 "PARSC2.spad" 1417842 1417858 1418043 1418048) (-820 "PARPCURV.spad" 1417300 1417328 1417832 1417837) (-819 "PARPC2.spad" 1417089 1417105 1417290 1417295) (-818 "PAN2EXPR.spad" 1416501 1416509 1417079 1417084) (-817 "PALETTE.spad" 1415471 1415479 1416491 1416496) (-816 "PAIR.spad" 1414454 1414467 1415059 1415064) (-815 "PADICRC.spad" 1411787 1411805 1412962 1413055) (-814 "PADICRAT.spad" 1409805 1409817 1410026 1410119) (-813 "PADIC.spad" 1409500 1409512 1409731 1409800) (-812 "PADICCT.spad" 1408041 1408053 1409426 1409495) (-811 "PADEPAC.spad" 1406720 1406739 1408031 1408036) (-810 "PADE.spad" 1405460 1405476 1406710 1406715) (-809 "OWP.spad" 1404444 1404474 1405318 1405385) (-808 "OVAR.spad" 1404225 1404248 1404434 1404439) (-807 "OUT.spad" 1403309 1403317 1404215 1404220) (-806 "OUTFORM.spad" 1392723 1392731 1403299 1403304) (-805 "OSI.spad" 1392198 1392206 1392713 1392718) (-804 "OSGROUP.spad" 1392116 1392124 1392188 1392193) (-803 "ORTHPOL.spad" 1390577 1390587 1392033 1392038) (-802 "OREUP.spad" 1389937 1389965 1390259 1390298) (-801 "ORESUP.spad" 1389238 1389262 1389619 1389658) (-800 "OREPCTO.spad" 1387057 1387069 1389158 1389163) (-799 "OREPCAT.spad" 1381114 1381124 1387013 1387052) (-798 "OREPCAT.spad" 1375061 1375073 1380962 1380967) (-797 "ORDSET.spad" 1374227 1374235 1375051 1375056) (-796 "ORDSET.spad" 1373391 1373401 1374217 1374222) (-795 "ORDRING.spad" 1372781 1372789 1373371 1373386) (-794 "ORDRING.spad" 1372179 1372189 1372771 1372776) (-793 "ORDMON.spad" 1372034 1372042 1372169 1372174) (-792 "ORDFUNS.spad" 1371160 1371176 1372024 1372029) (-791 "ORDFIN.spad" 1371094 1371102 1371150 1371155) (-790 "ORDCOMP.spad" 1369562 1369572 1370644 1370673) (-789 "ORDCOMP2.spad" 1368847 1368859 1369552 1369557) (-788 "OPTPROB.spad" 1367427 1367435 1368837 1368842) (-787 "OPTPACK.spad" 1359812 1359820 1367417 1367422) (-786 "OPTCAT.spad" 1357487 1357495 1359802 1359807) (-785 "OPQUERY.spad" 1357036 1357044 1357477 1357482) (-784 "OP.spad" 1356778 1356788 1356858 1356925) (-783 "ONECOMP.spad" 1355526 1355536 1356328 1356357) (-782 "ONECOMP2.spad" 1354944 1354956 1355516 1355521) (-781 "OMSERVER.spad" 1353946 1353954 1354934 1354939) (-780 "OMSAGG.spad" 1353722 1353732 1353890 1353941) (-779 "OMPKG.spad" 1352334 1352342 1353712 1353717) (-778 "OM.spad" 1351299 1351307 1352324 1352329) (-777 "OMLO.spad" 1350724 1350736 1351185 1351224) (-776 "OMEXPR.spad" 1350558 1350568 1350714 1350719) (-775 "OMERR.spad" 1350101 1350109 1350548 1350553) (-774 "OMERRK.spad" 1349135 1349143 1350091 1350096) (-773 "OMENC.spad" 1348479 1348487 1349125 1349130) (-772 "OMDEV.spad" 1342768 1342776 1348469 1348474) (-771 "OMCONN.spad" 1342177 1342185 1342758 1342763) (-770 "OINTDOM.spad" 1341940 1341948 1342103 1342172) (-769 "OFMONOID.spad" 1338127 1338137 1341930 1341935) (-768 "ODVAR.spad" 1337388 1337398 1338117 1338122) (-767 "ODR.spad" 1336836 1336862 1337200 1337349) (-766 "ODPOL.spad" 1334185 1334195 1334525 1334652) (-765 "ODP.spad" 1325357 1325377 1325730 1325859) (-764 "ODETOOLS.spad" 1323940 1323959 1325347 1325352) (-763 "ODESYS.spad" 1321590 1321607 1323930 1323935) (-762 "ODERTRIC.spad" 1317531 1317548 1321547 1321552) (-761 "ODERED.spad" 1316918 1316942 1317521 1317526) (-760 "ODERAT.spad" 1314469 1314486 1316908 1316913) (-759 "ODEPRRIC.spad" 1311360 1311382 1314459 1314464) (-758 "ODEPROB.spad" 1310559 1310567 1311350 1311355) (-757 "ODEPRIM.spad" 1307833 1307855 1310549 1310554) (-756 "ODEPAL.spad" 1307209 1307233 1307823 1307828) (-755 "ODEPACK.spad" 1293811 1293819 1307199 1307204) (-754 "ODEINT.spad" 1293242 1293258 1293801 1293806) (-753 "ODEIFTBL.spad" 1290637 1290645 1293232 1293237) (-752 "ODEEF.spad" 1286004 1286020 1290627 1290632) (-751 "ODECONST.spad" 1285523 1285541 1285994 1285999) (-750 "ODECAT.spad" 1284119 1284127 1285513 1285518) (-749 "OCT.spad" 1282266 1282276 1282982 1283021) (-748 "OCTCT2.spad" 1281910 1281931 1282256 1282261) (-747 "OC.spad" 1279684 1279694 1281866 1281905) (-746 "OC.spad" 1277184 1277196 1279368 1279373) (-745 "OCAMON.spad" 1277032 1277040 1277174 1277179) (-744 "OASGP.spad" 1276847 1276855 1277022 1277027) (-743 "OAMONS.spad" 1276367 1276375 1276837 1276842) (-742 "OAMON.spad" 1276228 1276236 1276357 1276362) (-741 "OAGROUP.spad" 1276090 1276098 1276218 1276223) (-740 "NUMTUBE.spad" 1275677 1275693 1276080 1276085) (-739 "NUMQUAD.spad" 1263539 1263547 1275667 1275672) (-738 "NUMODE.spad" 1254675 1254683 1263529 1263534) (-737 "NUMINT.spad" 1252233 1252241 1254665 1254670) (-736 "NUMFMT.spad" 1251073 1251081 1252223 1252228) (-735 "NUMERIC.spad" 1243146 1243156 1250879 1250884) (-734 "NTSCAT.spad" 1241636 1241652 1243102 1243141) (-733 "NTPOLFN.spad" 1241181 1241191 1241553 1241558) (-732 "NSUP.spad" 1234194 1234204 1238734 1238887) (-731 "NSUP2.spad" 1233586 1233598 1234184 1234189) (-730 "NSMP.spad" 1229785 1229804 1230093 1230220) (-729 "NREP.spad" 1228157 1228171 1229775 1229780) (-728 "NPCOEF.spad" 1227403 1227423 1228147 1228152) (-727 "NORMRETR.spad" 1227001 1227040 1227393 1227398) (-726 "NORMPK.spad" 1224903 1224922 1226991 1226996) (-725 "NORMMA.spad" 1224591 1224617 1224893 1224898) (-724 "NONE.spad" 1224332 1224340 1224581 1224586) (-723 "NONE1.spad" 1224008 1224018 1224322 1224327) (-722 "NODE1.spad" 1223477 1223493 1223998 1224003) (-721 "NNI.spad" 1222364 1222372 1223451 1223472) (-720 "NLINSOL.spad" 1220986 1220996 1222354 1222359) (-719 "NIPROB.spad" 1219469 1219477 1220976 1220981) (-718 "NFINTBAS.spad" 1216929 1216946 1219459 1219464) (-717 "NCODIV.spad" 1215127 1215143 1216919 1216924) (-716 "NCNTFRAC.spad" 1214769 1214783 1215117 1215122) (-715 "NCEP.spad" 1212929 1212943 1214759 1214764) (-714 "NASRING.spad" 1212525 1212533 1212919 1212924) (-713 "NASRING.spad" 1212119 1212129 1212515 1212520) (-712 "NARNG.spad" 1211463 1211471 1212109 1212114) (-711 "NARNG.spad" 1210805 1210815 1211453 1211458) (-710 "NAGSP.spad" 1209878 1209886 1210795 1210800) (-709 "NAGS.spad" 1199403 1199411 1209868 1209873) (-708 "NAGF07.spad" 1197796 1197804 1199393 1199398) (-707 "NAGF04.spad" 1192028 1192036 1197786 1197791) (-706 "NAGF02.spad" 1185837 1185845 1192018 1192023) (-705 "NAGF01.spad" 1181440 1181448 1185827 1185832) (-704 "NAGE04.spad" 1174900 1174908 1181430 1181435) (-703 "NAGE02.spad" 1165242 1165250 1174890 1174895) (-702 "NAGE01.spad" 1161126 1161134 1165232 1165237) (-701 "NAGD03.spad" 1159046 1159054 1161116 1161121) (-700 "NAGD02.spad" 1151577 1151585 1159036 1159041) (-699 "NAGD01.spad" 1145690 1145698 1151567 1151572) (-698 "NAGC06.spad" 1141477 1141485 1145680 1145685) (-697 "NAGC05.spad" 1139946 1139954 1141467 1141472) (-696 "NAGC02.spad" 1139201 1139209 1139936 1139941) (-695 "NAALG.spad" 1138736 1138746 1139169 1139196) (-694 "NAALG.spad" 1138291 1138303 1138726 1138731) (-693 "MULTSQFR.spad" 1135249 1135266 1138281 1138286) (-692 "MULTFACT.spad" 1134632 1134649 1135239 1135244) (-691 "MTSCAT.spad" 1132666 1132687 1134530 1134627) (-690 "MTHING.spad" 1132323 1132333 1132656 1132661) (-689 "MSYSCMD.spad" 1131757 1131765 1132313 1132318) (-688 "MSET.spad" 1129699 1129709 1131463 1131502) (-687 "MSETAGG.spad" 1129532 1129542 1129655 1129694) (-686 "MRING.spad" 1126503 1126515 1129240 1129307) (-685 "MRF2.spad" 1126071 1126085 1126493 1126498) (-684 "MRATFAC.spad" 1125617 1125634 1126061 1126066) (-683 "MPRFF.spad" 1123647 1123666 1125607 1125612) (-682 "MPOLY.spad" 1121085 1121100 1121444 1121571) (-681 "MPCPF.spad" 1120349 1120368 1121075 1121080) (-680 "MPC3.spad" 1120164 1120204 1120339 1120344) (-679 "MPC2.spad" 1119806 1119839 1120154 1120159) (-678 "MONOTOOL.spad" 1118141 1118158 1119796 1119801) (-677 "MONOID.spad" 1117460 1117468 1118131 1118136) (-676 "MONOID.spad" 1116777 1116787 1117450 1117455) (-675 "MONOGEN.spad" 1115523 1115536 1116637 1116772) (-674 "MONOGEN.spad" 1114291 1114306 1115407 1115412) (-673 "MONADWU.spad" 1112305 1112313 1114281 1114286) (-672 "MONADWU.spad" 1110317 1110327 1112295 1112300) (-671 "MONAD.spad" 1109461 1109469 1110307 1110312) (-670 "MONAD.spad" 1108603 1108613 1109451 1109456) (-669 "MOEBIUS.spad" 1107289 1107303 1108583 1108598) (-668 "MODULE.spad" 1107159 1107169 1107257 1107284) (-667 "MODULE.spad" 1107049 1107061 1107149 1107154) (-666 "MODRING.spad" 1106380 1106419 1107029 1107044) (-665 "MODOP.spad" 1105039 1105051 1106202 1106269) (-664 "MODMONOM.spad" 1104571 1104589 1105029 1105034) (-663 "MODMON.spad" 1101276 1101292 1102052 1102205) (-662 "MODFIELD.spad" 1100634 1100673 1101178 1101271) (-661 "MMLFORM.spad" 1099494 1099502 1100624 1100629) (-660 "MMAP.spad" 1099234 1099268 1099484 1099489) (-659 "MLO.spad" 1097661 1097671 1099190 1099229) (-658 "MLIFT.spad" 1096233 1096250 1097651 1097656) (-657 "MKUCFUNC.spad" 1095766 1095784 1096223 1096228) (-656 "MKRECORD.spad" 1095368 1095381 1095756 1095761) (-655 "MKFUNC.spad" 1094749 1094759 1095358 1095363) (-654 "MKFLCFN.spad" 1093705 1093715 1094739 1094744) (-653 "MKCHSET.spad" 1093481 1093491 1093695 1093700) (-652 "MKBCFUNC.spad" 1092966 1092984 1093471 1093476) (-651 "MINT.spad" 1092405 1092413 1092868 1092961) (-650 "MHROWRED.spad" 1090906 1090916 1092395 1092400) (-649 "MFLOAT.spad" 1089351 1089359 1090796 1090901) (-648 "MFINFACT.spad" 1088751 1088773 1089341 1089346) (-647 "MESH.spad" 1086483 1086491 1088741 1088746) (-646 "MDDFACT.spad" 1084676 1084686 1086473 1086478) (-645 "MDAGG.spad" 1083951 1083961 1084644 1084671) (-644 "MCMPLX.spad" 1079931 1079939 1080545 1080746) (-643 "MCDEN.spad" 1079139 1079151 1079921 1079926) (-642 "MCALCFN.spad" 1076241 1076267 1079129 1079134) (-641 "MAYBE.spad" 1075490 1075501 1076231 1076236) (-640 "MATSTOR.spad" 1072766 1072776 1075480 1075485) (-639 "MATRIX.spad" 1071470 1071480 1071954 1071981) (-638 "MATLIN.spad" 1068796 1068820 1071354 1071359) (-637 "MATCAT.spad" 1060369 1060391 1068752 1068791) (-636 "MATCAT.spad" 1051826 1051850 1060211 1060216) (-635 "MATCAT2.spad" 1051094 1051142 1051816 1051821) (-634 "MAPPKG3.spad" 1049993 1050007 1051084 1051089) (-633 "MAPPKG2.spad" 1049327 1049339 1049983 1049988) (-632 "MAPPKG1.spad" 1048145 1048155 1049317 1049322) (-631 "MAPHACK3.spad" 1047953 1047967 1048135 1048140) (-630 "MAPHACK2.spad" 1047718 1047730 1047943 1047948) (-629 "MAPHACK1.spad" 1047348 1047358 1047708 1047713) (-628 "MAGMA.spad" 1045138 1045155 1047338 1047343) (-627 "M3D.spad" 1042836 1042846 1044518 1044523) (-626 "LZSTAGG.spad" 1040054 1040064 1042816 1042831) (-625 "LZSTAGG.spad" 1037280 1037292 1040044 1040049) (-624 "LWORD.spad" 1033985 1034002 1037270 1037275) (-623 "LSQM.spad" 1032213 1032227 1032611 1032662) (-622 "LSPP.spad" 1031746 1031763 1032203 1032208) (-621 "LSMP.spad" 1030586 1030614 1031736 1031741) (-620 "LSMP1.spad" 1028390 1028404 1030576 1030581) (-619 "LSAGG.spad" 1028047 1028057 1028346 1028385) (-618 "LSAGG.spad" 1027736 1027748 1028037 1028042) (-617 "LPOLY.spad" 1026690 1026709 1027592 1027661) (-616 "LPEFRAC.spad" 1025947 1025957 1026680 1026685) (-615 "LO.spad" 1025348 1025362 1025881 1025908) (-614 "LOGIC.spad" 1024950 1024958 1025338 1025343) (-613 "LOGIC.spad" 1024550 1024560 1024940 1024945) (-612 "LODOOPS.spad" 1023468 1023480 1024540 1024545) (-611 "LODO.spad" 1022854 1022870 1023150 1023189) (-610 "LODOF.spad" 1021898 1021915 1022811 1022816) (-609 "LODOCAT.spad" 1020556 1020566 1021854 1021893) (-608 "LODOCAT.spad" 1019212 1019224 1020512 1020517) (-607 "LODO2.spad" 1018487 1018499 1018894 1018933) (-606 "LODO1.spad" 1017889 1017899 1018169 1018208) (-605 "LODEEF.spad" 1016661 1016679 1017879 1017884) (-604 "LNAGG.spad" 1012453 1012463 1016641 1016656) (-603 "LNAGG.spad" 1008219 1008231 1012409 1012414) (-602 "LMOPS.spad" 1004955 1004972 1008209 1008214) (-601 "LMODULE.spad" 1004597 1004607 1004945 1004950) (-600 "LMDICT.spad" 1003880 1003890 1004148 1004175) (-599 "LITERAL.spad" 1003786 1003797 1003870 1003875) (-598 "LIST.spad" 1001504 1001514 1002933 1002960) (-597 "LIST3.spad" 1000795 1000809 1001494 1001499) (-596 "LIST2.spad" 999435 999447 1000785 1000790) (-595 "LIST2MAP.spad" 996312 996324 999425 999430) (-594 "LINEXP.spad" 995744 995754 996292 996307) (-593 "LINDEP.spad" 994521 994533 995656 995661) (-592 "LIMITRF.spad" 992435 992445 994511 994516) (-591 "LIMITPS.spad" 991318 991331 992425 992430) (-590 "LIE.spad" 989332 989344 990608 990753) (-589 "LIECAT.spad" 988808 988818 989258 989327) (-588 "LIECAT.spad" 988312 988324 988764 988769) (-587 "LIB.spad" 986360 986368 986971 986986) (-586 "LGROBP.spad" 983713 983732 986350 986355) (-585 "LF.spad" 982632 982648 983703 983708) (-584 "LFCAT.spad" 981651 981659 982622 982627) (-583 "LEXTRIPK.spad" 977154 977169 981641 981646) (-582 "LEXP.spad" 975157 975184 977134 977149) (-581 "LEADCDET.spad" 973541 973558 975147 975152) (-580 "LAZM3PK.spad" 972245 972267 973531 973536) (-579 "LAUPOL.spad" 970936 970949 971840 971909) (-578 "LAPLACE.spad" 970509 970525 970926 970931) (-577 "LA.spad" 969949 969963 970431 970470) (-576 "LALG.spad" 969725 969735 969929 969944) (-575 "LALG.spad" 969509 969521 969715 969720) (-574 "KOVACIC.spad" 968222 968239 969499 969504) (-573 "KONVERT.spad" 967944 967954 968212 968217) (-572 "KOERCE.spad" 967681 967691 967934 967939) (-571 "KERNEL.spad" 966216 966226 967465 967470) (-570 "KERNEL2.spad" 965919 965931 966206 966211) (-569 "KDAGG.spad" 965010 965032 965887 965914) (-568 "KDAGG.spad" 964121 964145 965000 965005) (-567 "KAFILE.spad" 963084 963100 963319 963346) (-566 "JORDAN.spad" 960911 960923 962374 962519) (-565 "JAVACODE.spad" 960677 960685 960901 960906) (-564 "IXAGG.spad" 958790 958814 960657 960672) (-563 "IXAGG.spad" 956768 956794 958637 958642) (-562 "IVECTOR.spad" 955541 955556 955696 955723) (-561 "ITUPLE.spad" 954686 954696 955531 955536) (-560 "ITRIGMNP.spad" 953497 953516 954676 954681) (-559 "ITFUN3.spad" 952991 953005 953487 953492) (-558 "ITFUN2.spad" 952721 952733 952981 952986) (-557 "ITAYLOR.spad" 950513 950528 952557 952682) (-556 "ISUPS.spad" 942924 942939 949487 949584) (-555 "ISUMP.spad" 942421 942437 942914 942919) (-554 "ISTRING.spad" 941424 941437 941590 941617) (-553 "IRURPK.spad" 940137 940156 941414 941419) (-552 "IRSN.spad" 938097 938105 940127 940132) (-551 "IRRF2F.spad" 936572 936582 938053 938058) (-550 "IRREDFFX.spad" 936173 936184 936562 936567) (-549 "IROOT.spad" 934504 934514 936163 936168) (-548 "IR.spad" 932294 932308 934360 934387) (-547 "IR2.spad" 931314 931330 932284 932289) (-546 "IR2F.spad" 930514 930530 931304 931309) (-545 "IPRNTPK.spad" 930274 930282 930504 930509) (-544 "IPF.spad" 929839 929851 930079 930172) (-543 "IPADIC.spad" 929600 929626 929765 929834) (-542 "INVLAPLA.spad" 929245 929261 929590 929595) (-541 "INTTR.spad" 922491 922508 929235 929240) (-540 "INTTOOLS.spad" 920203 920219 922066 922071) (-539 "INTSLPE.spad" 919509 919517 920193 920198) (-538 "INTRVL.spad" 919075 919085 919423 919504) (-537 "INTRF.spad" 917439 917453 919065 919070) (-536 "INTRET.spad" 916871 916881 917429 917434) (-535 "INTRAT.spad" 915546 915563 916861 916866) (-534 "INTPM.spad" 913909 913925 915189 915194) (-533 "INTPAF.spad" 911677 911695 913841 913846) (-532 "INTPACK.spad" 901987 901995 911667 911672) (-531 "INT.spad" 901348 901356 901841 901982) (-530 "INTHERTR.spad" 900614 900631 901338 901343) (-529 "INTHERAL.spad" 900280 900304 900604 900609) (-528 "INTHEORY.spad" 896693 896701 900270 900275) (-527 "INTG0.spad" 890156 890174 896625 896630) (-526 "INTFTBL.spad" 884185 884193 890146 890151) (-525 "INTFACT.spad" 883244 883254 884175 884180) (-524 "INTEF.spad" 881559 881575 883234 883239) (-523 "INTDOM.spad" 880174 880182 881485 881554) (-522 "INTDOM.spad" 878851 878861 880164 880169) (-521 "INTCAT.spad" 877104 877114 878765 878846) (-520 "INTBIT.spad" 876607 876615 877094 877099) (-519 "INTALG.spad" 875789 875816 876597 876602) (-518 "INTAF.spad" 875281 875297 875779 875784) (-517 "INTABL.spad" 873799 873830 873962 873989) (-516 "INS.spad" 871195 871203 873701 873794) (-515 "INS.spad" 868677 868687 871185 871190) (-514 "INPSIGN.spad" 868111 868124 868667 868672) (-513 "INPRODPF.spad" 867177 867196 868101 868106) (-512 "INPRODFF.spad" 866235 866259 867167 867172) (-511 "INNMFACT.spad" 865206 865223 866225 866230) (-510 "INMODGCD.spad" 864690 864720 865196 865201) (-509 "INFSP.spad" 862975 862997 864680 864685) (-508 "INFPROD0.spad" 862025 862044 862965 862970) (-507 "INFORM.spad" 859293 859301 862015 862020) (-506 "INFORM1.spad" 858918 858928 859283 859288) (-505 "INFINITY.spad" 858470 858478 858908 858913) (-504 "INEP.spad" 857002 857024 858460 858465) (-503 "INDE.spad" 856731 856748 856992 856997) (-502 "INCRMAPS.spad" 856152 856162 856721 856726) (-501 "INBFF.spad" 851922 851933 856142 856147) (-500 "IMATRIX.spad" 850867 850893 851379 851406) (-499 "IMATQF.spad" 849961 850005 850823 850828) (-498 "IMATLIN.spad" 848566 848590 849917 849922) (-497 "ILIST.spad" 847222 847237 847749 847776) (-496 "IIARRAY2.spad" 846610 846648 846829 846856) (-495 "IFF.spad" 846020 846036 846291 846384) (-494 "IFARRAY.spad" 843507 843522 845203 845230) (-493 "IFAMON.spad" 843369 843386 843463 843468) (-492 "IEVALAB.spad" 842758 842770 843359 843364) (-491 "IEVALAB.spad" 842145 842159 842748 842753) (-490 "IDPO.spad" 841943 841955 842135 842140) (-489 "IDPOAMS.spad" 841699 841711 841933 841938) (-488 "IDPOAM.spad" 841419 841431 841689 841694) (-487 "IDPC.spad" 840353 840365 841409 841414) (-486 "IDPAM.spad" 840098 840110 840343 840348) (-485 "IDPAG.spad" 839845 839857 840088 840093) (-484 "IDENT.spad" 839762 839770 839835 839840) (-483 "IDECOMP.spad" 836999 837017 839752 839757) (-482 "IDEAL.spad" 831922 831961 836934 836939) (-481 "ICDEN.spad" 831073 831089 831912 831917) (-480 "ICARD.spad" 830262 830270 831063 831068) (-479 "IBPTOOLS.spad" 828855 828872 830252 830257) (-478 "IBITS.spad" 828054 828067 828491 828518) (-477 "IBATOOL.spad" 824929 824948 828044 828049) (-476 "IBACHIN.spad" 823416 823431 824919 824924) (-475 "IARRAY2.spad" 822404 822430 823023 823050) (-474 "IARRAY1.spad" 821449 821464 821587 821614) (-473 "IAN.spad" 819664 819672 821267 821360) (-472 "IALGFACT.spad" 819265 819298 819654 819659) (-471 "HYPCAT.spad" 818689 818697 819255 819260) (-470 "HYPCAT.spad" 818111 818121 818679 818684) (-469 "HOSTNAME.spad" 817919 817927 818101 818106) (-468 "HOAGG.spad" 815177 815187 817899 817914) (-467 "HOAGG.spad" 812220 812232 814944 814949) (-466 "HEXADEC.spad" 810092 810100 810690 810783) (-465 "HEUGCD.spad" 809107 809118 810082 810087) (-464 "HELLFDIV.spad" 808697 808721 809097 809102) (-463 "HEAP.spad" 808089 808099 808304 808331) (-462 "HEADAST.spad" 807648 807656 808079 808084) (-461 "HDP.spad" 798816 798832 799193 799322) (-460 "HDMP.spad" 795995 796010 796613 796740) (-459 "HB.spad" 794232 794240 795985 795990) (-458 "HASHTBL.spad" 792702 792733 792913 792940) (-457 "HACKPI.spad" 792185 792193 792604 792697) (-456 "GTSET.spad" 791124 791140 791831 791858) (-455 "GSTBL.spad" 789643 789678 789817 789832) (-454 "GSERIES.spad" 786810 786837 787775 787924) (-453 "GROUP.spad" 786079 786087 786790 786805) (-452 "GROUP.spad" 785356 785366 786069 786074) (-451 "GROEBSOL.spad" 783844 783865 785346 785351) (-450 "GRMOD.spad" 782415 782427 783834 783839) (-449 "GRMOD.spad" 780984 780998 782405 782410) (-448 "GRIMAGE.spad" 773589 773597 780974 780979) (-447 "GRDEF.spad" 771968 771976 773579 773584) (-446 "GRAY.spad" 770427 770435 771958 771963) (-445 "GRALG.spad" 769474 769486 770417 770422) (-444 "GRALG.spad" 768519 768533 769464 769469) (-443 "GPOLSET.spad" 767973 767996 768201 768228) (-442 "GOSPER.spad" 767238 767256 767963 767968) (-441 "GMODPOL.spad" 766376 766403 767206 767233) (-440 "GHENSEL.spad" 765445 765459 766366 766371) (-439 "GENUPS.spad" 761546 761559 765435 765440) (-438 "GENUFACT.spad" 761123 761133 761536 761541) (-437 "GENPGCD.spad" 760707 760724 761113 761118) (-436 "GENMFACT.spad" 760159 760178 760697 760702) (-435 "GENEEZ.spad" 758098 758111 760149 760154) (-434 "GDMP.spad" 755119 755136 755895 756022) (-433 "GCNAALG.spad" 749014 749041 754913 754980) (-432 "GCDDOM.spad" 748186 748194 748940 749009) (-431 "GCDDOM.spad" 747420 747430 748176 748181) (-430 "GB.spad" 744938 744976 747376 747381) (-429 "GBINTERN.spad" 740958 740996 744928 744933) (-428 "GBF.spad" 736715 736753 740948 740953) (-427 "GBEUCLID.spad" 734589 734627 736705 736710) (-426 "GAUSSFAC.spad" 733886 733894 734579 734584) (-425 "GALUTIL.spad" 732208 732218 733842 733847) (-424 "GALPOLYU.spad" 730654 730667 732198 732203) (-423 "GALFACTU.spad" 728819 728838 730644 730649) (-422 "GALFACT.spad" 718952 718963 728809 728814) (-421 "FVFUN.spad" 715965 715973 718932 718947) (-420 "FVC.spad" 715007 715015 715945 715960) (-419 "FUNCTION.spad" 714856 714868 714997 715002) (-418 "FT.spad" 713068 713076 714846 714851) (-417 "FTEM.spad" 712231 712239 713058 713063) (-416 "FSUPFACT.spad" 711132 711151 712168 712173) (-415 "FST.spad" 709218 709226 711122 711127) (-414 "FSRED.spad" 708696 708712 709208 709213) (-413 "FSPRMELT.spad" 707520 707536 708653 708658) (-412 "FSPECF.spad" 705597 705613 707510 707515) (-411 "FS.spad" 699648 699658 705361 705592) (-410 "FS.spad" 693490 693502 699205 699210) (-409 "FSINT.spad" 693148 693164 693480 693485) (-408 "FSERIES.spad" 692335 692347 692968 693067) (-407 "FSCINT.spad" 691648 691664 692325 692330) (-406 "FSAGG.spad" 690753 690763 691592 691643) (-405 "FSAGG.spad" 689832 689844 690673 690678) (-404 "FSAGG2.spad" 688531 688547 689822 689827) (-403 "FS2UPS.spad" 682920 682954 688521 688526) (-402 "FS2.spad" 682565 682581 682910 682915) (-401 "FS2EXPXP.spad" 681688 681711 682555 682560) (-400 "FRUTIL.spad" 680630 680640 681678 681683) (-399 "FR.spad" 674327 674337 679657 679726) (-398 "FRNAALG.spad" 669414 669424 674269 674322) (-397 "FRNAALG.spad" 664513 664525 669370 669375) (-396 "FRNAAF2.spad" 663967 663985 664503 664508) (-395 "FRMOD.spad" 663362 663392 663899 663904) (-394 "FRIDEAL.spad" 662557 662578 663342 663357) (-393 "FRIDEAL2.spad" 662159 662191 662547 662552) (-392 "FRETRCT.spad" 661670 661680 662149 662154) (-391 "FRETRCT.spad" 661049 661061 661530 661535) (-390 "FRAMALG.spad" 659377 659390 661005 661044) (-389 "FRAMALG.spad" 657737 657752 659367 659372) (-388 "FRAC.spad" 654840 654850 655243 655416) (-387 "FRAC2.spad" 654443 654455 654830 654835) (-386 "FR2.spad" 653777 653789 654433 654438) (-385 "FPS.spad" 650586 650594 653667 653772) (-384 "FPS.spad" 647423 647433 650506 650511) (-383 "FPC.spad" 646465 646473 647325 647418) (-382 "FPC.spad" 645593 645603 646455 646460) (-381 "FPATMAB.spad" 645345 645355 645573 645588) (-380 "FPARFRAC.spad" 643818 643835 645335 645340) (-379 "FORTRAN.spad" 642324 642367 643808 643813) (-378 "FORT.spad" 641253 641261 642314 642319) (-377 "FORTFN.spad" 638413 638421 641233 641248) (-376 "FORTCAT.spad" 638087 638095 638393 638408) (-375 "FORMULA.spad" 635425 635433 638077 638082) (-374 "FORMULA1.spad" 634904 634914 635415 635420) (-373 "FORDER.spad" 634595 634619 634894 634899) (-372 "FOP.spad" 633796 633804 634585 634590) (-371 "FNLA.spad" 633220 633242 633764 633791) (-370 "FNCAT.spad" 631548 631556 633210 633215) (-369 "FNAME.spad" 631440 631448 631538 631543) (-368 "FMTC.spad" 631238 631246 631366 631435) (-367 "FMONOID.spad" 628293 628303 631194 631199) (-366 "FM.spad" 627988 628000 628227 628254) (-365 "FMFUN.spad" 625008 625016 627968 627983) (-364 "FMC.spad" 624050 624058 624988 625003) (-363 "FMCAT.spad" 621704 621722 624018 624045) (-362 "FM1.spad" 621061 621073 621638 621665) (-361 "FLOATRP.spad" 618782 618796 621051 621056) (-360 "FLOAT.spad" 611946 611954 618648 618777) (-359 "FLOATCP.spad" 609363 609377 611936 611941) (-358 "FLINEXP.spad" 609075 609085 609343 609358) (-357 "FLINEXP.spad" 608741 608753 609011 609016) (-356 "FLASORT.spad" 608061 608073 608731 608736) (-355 "FLALG.spad" 605707 605726 607987 608056) (-354 "FLAGG.spad" 602713 602723 605675 605702) (-353 "FLAGG.spad" 599632 599644 602596 602601) (-352 "FLAGG2.spad" 598313 598329 599622 599627) (-351 "FINRALG.spad" 596342 596355 598269 598308) (-350 "FINRALG.spad" 594297 594312 596226 596231) (-349 "FINITE.spad" 593449 593457 594287 594292) (-348 "FINAALG.spad" 582430 582440 593391 593444) (-347 "FINAALG.spad" 571423 571435 582386 582391) (-346 "FILE.spad" 571006 571016 571413 571418) (-345 "FILECAT.spad" 569524 569541 570996 571001) (-344 "FIELD.spad" 568930 568938 569426 569519) (-343 "FIELD.spad" 568422 568432 568920 568925) (-342 "FGROUP.spad" 567031 567041 568402 568417) (-341 "FGLMICPK.spad" 565818 565833 567021 567026) (-340 "FFX.spad" 565193 565208 565534 565627) (-339 "FFSLPE.spad" 564682 564703 565183 565188) (-338 "FFPOLY.spad" 555934 555945 564672 564677) (-337 "FFPOLY2.spad" 554994 555011 555924 555929) (-336 "FFP.spad" 554391 554411 554710 554803) (-335 "FF.spad" 553839 553855 554072 554165) (-334 "FFNBX.spad" 552351 552371 553555 553648) (-333 "FFNBP.spad" 550864 550881 552067 552160) (-332 "FFNB.spad" 549329 549350 550545 550638) (-331 "FFINTBAS.spad" 546743 546762 549319 549324) (-330 "FFIELDC.spad" 544318 544326 546645 546738) (-329 "FFIELDC.spad" 541979 541989 544308 544313) (-328 "FFHOM.spad" 540727 540744 541969 541974) (-327 "FFF.spad" 538162 538173 540717 540722) (-326 "FFCGX.spad" 537009 537029 537878 537971) (-325 "FFCGP.spad" 535898 535918 536725 536818) (-324 "FFCG.spad" 534690 534711 535579 535672) (-323 "FFCAT.spad" 527717 527739 534529 534685) (-322 "FFCAT.spad" 520823 520847 527637 527642) (-321 "FFCAT2.spad" 520568 520608 520813 520818) (-320 "FEXPR.spad" 512281 512327 520328 520367) (-319 "FEVALAB.spad" 511987 511997 512271 512276) (-318 "FEVALAB.spad" 511478 511490 511764 511769) (-317 "FDIV.spad" 510920 510944 511468 511473) (-316 "FDIVCAT.spad" 508962 508986 510910 510915) (-315 "FDIVCAT.spad" 507002 507028 508952 508957) (-314 "FDIV2.spad" 506656 506696 506992 506997) (-313 "FCPAK1.spad" 505209 505217 506646 506651) (-312 "FCOMP.spad" 504588 504598 505199 505204) (-311 "FC.spad" 494413 494421 504578 504583) (-310 "FAXF.spad" 487348 487362 494315 494408) (-309 "FAXF.spad" 480335 480351 487304 487309) (-308 "FARRAY.spad" 478481 478491 479518 479545) (-307 "FAMR.spad" 476601 476613 478379 478476) (-306 "FAMR.spad" 474705 474719 476485 476490) (-305 "FAMONOID.spad" 474355 474365 474659 474664) (-304 "FAMONC.spad" 472577 472589 474345 474350) (-303 "FAGROUP.spad" 472183 472193 472473 472500) (-302 "FACUTIL.spad" 470379 470396 472173 472178) (-301 "FACTFUNC.spad" 469555 469565 470369 470374) (-300 "EXPUPXS.spad" 466388 466411 467687 467836) (-299 "EXPRTUBE.spad" 463616 463624 466378 466383) (-298 "EXPRODE.spad" 460488 460504 463606 463611) (-297 "EXPR.spad" 455790 455800 456504 456907) (-296 "EXPR2UPS.spad" 451882 451895 455780 455785) (-295 "EXPR2.spad" 451585 451597 451872 451877) (-294 "EXPEXPAN.spad" 448526 448551 449160 449253) (-293 "EXIT.spad" 448197 448205 448516 448521) (-292 "EVALCYC.spad" 447655 447669 448187 448192) (-291 "EVALAB.spad" 447219 447229 447645 447650) (-290 "EVALAB.spad" 446781 446793 447209 447214) (-289 "EUCDOM.spad" 444323 444331 446707 446776) (-288 "EUCDOM.spad" 441927 441937 444313 444318) (-287 "ESTOOLS.spad" 433767 433775 441917 441922) (-286 "ESTOOLS2.spad" 433368 433382 433757 433762) (-285 "ESTOOLS1.spad" 433053 433064 433358 433363) (-284 "ES.spad" 425600 425608 433043 433048) (-283 "ES.spad" 418055 418065 425500 425505) (-282 "ESCONT.spad" 414828 414836 418045 418050) (-281 "ESCONT1.spad" 414577 414589 414818 414823) (-280 "ES2.spad" 414072 414088 414567 414572) (-279 "ES1.spad" 413638 413654 414062 414067) (-278 "ERROR.spad" 410959 410967 413628 413633) (-277 "EQTBL.spad" 409431 409453 409640 409667) (-276 "EQ.spad" 404315 404325 407114 407223) (-275 "EQ2.spad" 404031 404043 404305 404310) (-274 "EP.spad" 400345 400355 404021 404026) (-273 "ENV.spad" 399047 399055 400335 400340) (-272 "ENTIRER.spad" 398715 398723 398991 399042) (-271 "EMR.spad" 397916 397957 398641 398710) (-270 "ELTAGG.spad" 396156 396175 397906 397911) (-269 "ELTAGG.spad" 394360 394381 396112 396117) (-268 "ELTAB.spad" 393807 393825 394350 394355) (-267 "ELFUTS.spad" 393186 393205 393797 393802) (-266 "ELEMFUN.spad" 392875 392883 393176 393181) (-265 "ELEMFUN.spad" 392562 392572 392865 392870) (-264 "ELAGG.spad" 390493 390503 392530 392557) (-263 "ELAGG.spad" 388373 388385 390412 390417) (-262 "ELABEXPR.spad" 387304 387312 388363 388368) (-261 "EFUPXS.spad" 384080 384110 387260 387265) (-260 "EFULS.spad" 380916 380939 384036 384041) (-259 "EFSTRUC.spad" 378871 378887 380906 380911) (-258 "EF.spad" 373637 373653 378861 378866) (-257 "EAB.spad" 371913 371921 373627 373632) (-256 "E04UCFA.spad" 371449 371457 371903 371908) (-255 "E04NAFA.spad" 371026 371034 371439 371444) (-254 "E04MBFA.spad" 370606 370614 371016 371021) (-253 "E04JAFA.spad" 370142 370150 370596 370601) (-252 "E04GCFA.spad" 369678 369686 370132 370137) (-251 "E04FDFA.spad" 369214 369222 369668 369673) (-250 "E04DGFA.spad" 368750 368758 369204 369209) (-249 "E04AGNT.spad" 364592 364600 368740 368745) (-248 "DVARCAT.spad" 361277 361287 364582 364587) (-247 "DVARCAT.spad" 357960 357972 361267 361272) (-246 "DSMP.spad" 355394 355408 355699 355826) (-245 "DROPT.spad" 349339 349347 355384 355389) (-244 "DROPT1.spad" 349002 349012 349329 349334) (-243 "DROPT0.spad" 343829 343837 348992 348997) (-242 "DRAWPT.spad" 341984 341992 343819 343824) (-241 "DRAW.spad" 334584 334597 341974 341979) (-240 "DRAWHACK.spad" 333892 333902 334574 334579) (-239 "DRAWCX.spad" 331334 331342 333882 333887) (-238 "DRAWCURV.spad" 330871 330886 331324 331329) (-237 "DRAWCFUN.spad" 320043 320051 330861 330866) (-236 "DQAGG.spad" 318199 318209 319999 320038) (-235 "DPOLCAT.spad" 313540 313556 318067 318194) (-234 "DPOLCAT.spad" 308967 308985 313496 313501) (-233 "DPMO.spad" 302317 302333 302455 302751) (-232 "DPMM.spad" 295680 295698 295805 296101) (-231 "DOMAIN.spad" 294951 294959 295670 295675) (-230 "DMP.spad" 292176 292191 292748 292875) (-229 "DLP.spad" 291524 291534 292166 292171) (-228 "DLIST.spad" 289936 289946 290707 290734) (-227 "DLAGG.spad" 288337 288347 289916 289931) (-226 "DIVRING.spad" 287879 287887 288281 288332) (-225 "DIVRING.spad" 287465 287475 287869 287874) (-224 "DISPLAY.spad" 285645 285653 287455 287460) (-223 "DIRPROD.spad" 276550 276566 277190 277319) (-222 "DIRPROD2.spad" 275358 275376 276540 276545) (-221 "DIRPCAT.spad" 274290 274306 275212 275353) (-220 "DIRPCAT.spad" 272962 272980 273886 273891) (-219 "DIOSP.spad" 271787 271795 272952 272957) (-218 "DIOPS.spad" 270759 270769 271755 271782) (-217 "DIOPS.spad" 269717 269729 270715 270720) (-216 "DIFRING.spad" 269009 269017 269697 269712) (-215 "DIFRING.spad" 268309 268319 268999 269004) (-214 "DIFEXT.spad" 267468 267478 268289 268304) (-213 "DIFEXT.spad" 266544 266556 267367 267372) (-212 "DIAGG.spad" 266162 266172 266512 266539) (-211 "DIAGG.spad" 265800 265812 266152 266157) (-210 "DHMATRIX.spad" 264104 264114 265257 265284) (-209 "DFSFUN.spad" 257512 257520 264094 264099) (-208 "DFLOAT.spad" 254035 254043 257402 257507) (-207 "DFINTTLS.spad" 252244 252260 254025 254030) (-206 "DERHAM.spad" 250154 250186 252224 252239) (-205 "DEQUEUE.spad" 249472 249482 249761 249788) (-204 "DEGRED.spad" 249087 249101 249462 249467) (-203 "DEFINTRF.spad" 246612 246622 249077 249082) (-202 "DEFINTEF.spad" 245108 245124 246602 246607) (-201 "DECIMAL.spad" 242992 243000 243578 243671) (-200 "DDFACT.spad" 240791 240808 242982 242987) (-199 "DBLRESP.spad" 240389 240413 240781 240786) (-198 "DBASE.spad" 238961 238971 240379 240384) (-197 "DATABUF.spad" 238449 238462 238951 238956) (-196 "D03FAFA.spad" 238277 238285 238439 238444) (-195 "D03EEFA.spad" 238097 238105 238267 238272) (-194 "D03AGNT.spad" 237177 237185 238087 238092) (-193 "D02EJFA.spad" 236639 236647 237167 237172) (-192 "D02CJFA.spad" 236117 236125 236629 236634) (-191 "D02BHFA.spad" 235607 235615 236107 236112) (-190 "D02BBFA.spad" 235097 235105 235597 235602) (-189 "D02AGNT.spad" 229901 229909 235087 235092) (-188 "D01WGTS.spad" 228220 228228 229891 229896) (-187 "D01TRNS.spad" 228197 228205 228210 228215) (-186 "D01GBFA.spad" 227719 227727 228187 228192) (-185 "D01FCFA.spad" 227241 227249 227709 227714) (-184 "D01ASFA.spad" 226709 226717 227231 227236) (-183 "D01AQFA.spad" 226155 226163 226699 226704) (-182 "D01APFA.spad" 225579 225587 226145 226150) (-181 "D01ANFA.spad" 225073 225081 225569 225574) (-180 "D01AMFA.spad" 224583 224591 225063 225068) (-179 "D01ALFA.spad" 224123 224131 224573 224578) (-178 "D01AKFA.spad" 223649 223657 224113 224118) (-177 "D01AJFA.spad" 223172 223180 223639 223644) (-176 "D01AGNT.spad" 219231 219239 223162 223167) (-175 "CYCLOTOM.spad" 218737 218745 219221 219226) (-174 "CYCLES.spad" 215569 215577 218727 218732) (-173 "CVMP.spad" 214986 214996 215559 215564) (-172 "CTRIGMNP.spad" 213476 213492 214976 214981) (-171 "CTORCALL.spad" 213064 213072 213466 213471) (-170 "CSTTOOLS.spad" 212307 212320 213054 213059) (-169 "CRFP.spad" 206011 206024 212297 212302) (-168 "CRAPACK.spad" 205054 205064 206001 206006) (-167 "CPMATCH.spad" 204554 204569 204979 204984) (-166 "CPIMA.spad" 204259 204278 204544 204549) (-165 "COORDSYS.spad" 199152 199162 204249 204254) (-164 "CONTOUR.spad" 198554 198562 199142 199147) (-163 "CONTFRAC.spad" 194166 194176 198456 198549) (-162 "COMRING.spad" 193840 193848 194104 194161) (-161 "COMPPROP.spad" 193354 193362 193830 193835) (-160 "COMPLPAT.spad" 193121 193136 193344 193349) (-159 "COMPLEX.spad" 187154 187164 187398 187659) (-158 "COMPLEX2.spad" 186867 186879 187144 187149) (-157 "COMPFACT.spad" 186469 186483 186857 186862) (-156 "COMPCAT.spad" 184525 184535 186191 186464) (-155 "COMPCAT.spad" 182288 182300 183956 183961) (-154 "COMMUPC.spad" 182034 182052 182278 182283) (-153 "COMMONOP.spad" 181567 181575 182024 182029) (-152 "COMM.spad" 181376 181384 181557 181562) (-151 "COMBOPC.spad" 180281 180289 181366 181371) (-150 "COMBINAT.spad" 179026 179036 180271 180276) (-149 "COMBF.spad" 176394 176410 179016 179021) (-148 "COLOR.spad" 175231 175239 176384 176389) (-147 "CMPLXRT.spad" 174940 174957 175221 175226) (-146 "CLIP.spad" 171032 171040 174930 174935) (-145 "CLIF.spad" 169671 169687 170988 171027) (-144 "CLAGG.spad" 166146 166156 169651 169666) (-143 "CLAGG.spad" 162502 162514 166009 166014) (-142 "CINTSLPE.spad" 161827 161840 162492 162497) (-141 "CHVAR.spad" 159905 159927 161817 161822) (-140 "CHARZ.spad" 159820 159828 159885 159900) (-139 "CHARPOL.spad" 159328 159338 159810 159815) (-138 "CHARNZ.spad" 159081 159089 159308 159323) (-137 "CHAR.spad" 156949 156957 159071 159076) (-136 "CFCAT.spad" 156265 156273 156939 156944) (-135 "CDEN.spad" 155423 155437 156255 156260) (-134 "CCLASS.spad" 153572 153580 154834 154873) (-133 "CATEGORY.spad" 153351 153359 153562 153567) (-132 "CARTEN.spad" 148454 148478 153341 153346) (-131 "CARTEN2.spad" 147840 147867 148444 148449) (-130 "CARD.spad" 145129 145137 147814 147835) (-129 "CACHSET.spad" 144751 144759 145119 145124) (-128 "CABMON.spad" 144304 144312 144741 144746) (-127 "BYTE.spad" 143698 143706 144294 144299) (-126 "BYTEARY.spad" 142773 142781 142867 142894) (-125 "BTREE.spad" 141842 141852 142380 142407) (-124 "BTOURN.spad" 140845 140855 141449 141476) (-123 "BTCAT.spad" 140221 140231 140801 140840) (-122 "BTCAT.spad" 139629 139641 140211 140216) (-121 "BTAGG.spad" 138739 138747 139585 139624) (-120 "BTAGG.spad" 137881 137891 138729 138734) (-119 "BSTREE.spad" 136616 136626 137488 137515) (-118 "BRILL.spad" 134811 134822 136606 136611) (-117 "BRAGG.spad" 133725 133735 134791 134806) (-116 "BRAGG.spad" 132613 132625 133681 133686) (-115 "BPADICRT.spad" 130597 130609 130852 130945) (-114 "BPADIC.spad" 130261 130273 130523 130592) (-113 "BOUNDZRO.spad" 129917 129934 130251 130256) (-112 "BOP.spad" 125381 125389 129907 129912) (-111 "BOP1.spad" 122767 122777 125337 125342) (-110 "BOOLEAN.spad" 122091 122099 122757 122762) (-109 "BMODULE.spad" 121803 121815 122059 122086) (-108 "BITS.spad" 121222 121230 121439 121466) (-107 "BINFILE.spad" 120565 120573 121212 121217) (-106 "BINDING.spad" 119984 119992 120555 120560) (-105 "BINARY.spad" 117877 117885 118454 118547) (-104 "BGAGG.spad" 117062 117072 117845 117872) (-103 "BGAGG.spad" 116267 116279 117052 117057) (-102 "BFUNCT.spad" 115831 115839 116247 116262) (-101 "BEZOUT.spad" 114965 114992 115781 115786) (-100 "BBTREE.spad" 111784 111794 114572 114599) (-99 "BASTYPE.spad" 111457 111464 111774 111779) (-98 "BASTYPE.spad" 111128 111137 111447 111452) (-97 "BALFACT.spad" 110568 110580 111118 111123) (-96 "AUTOMOR.spad" 110015 110024 110548 110563) (-95 "ATTREG.spad" 106734 106741 109767 110010) (-94 "ATTRBUT.spad" 102757 102764 106714 106729) (-93 "ATRIG.spad" 102227 102234 102747 102752) (-92 "ATRIG.spad" 101695 101704 102217 102222) (-91 "ASTCAT.spad" 101599 101606 101685 101690) (-90 "ASTCAT.spad" 101501 101510 101589 101594) (-89 "ASTACK.spad" 100834 100843 101108 101135) (-88 "ASSOCEQ.spad" 99634 99645 100790 100795) (-87 "ASP9.spad" 98715 98728 99624 99629) (-86 "ASP8.spad" 97758 97771 98705 98710) (-85 "ASP80.spad" 97080 97093 97748 97753) (-84 "ASP7.spad" 96240 96253 97070 97075) (-83 "ASP78.spad" 95691 95704 96230 96235) (-82 "ASP77.spad" 95060 95073 95681 95686) (-81 "ASP74.spad" 94152 94165 95050 95055) (-80 "ASP73.spad" 93423 93436 94142 94147) (-79 "ASP6.spad" 92055 92068 93413 93418) (-78 "ASP55.spad" 90564 90577 92045 92050) (-77 "ASP50.spad" 88381 88394 90554 90559) (-76 "ASP4.spad" 87676 87689 88371 88376) (-75 "ASP49.spad" 86675 86688 87666 87671) (-74 "ASP42.spad" 85082 85121 86665 86670) (-73 "ASP41.spad" 83661 83700 85072 85077) (-72 "ASP35.spad" 82649 82662 83651 83656) (-71 "ASP34.spad" 81950 81963 82639 82644) (-70 "ASP33.spad" 81510 81523 81940 81945) (-69 "ASP31.spad" 80650 80663 81500 81505) (-68 "ASP30.spad" 79542 79555 80640 80645) (-67 "ASP29.spad" 79008 79021 79532 79537) (-66 "ASP28.spad" 70281 70294 78998 79003) (-65 "ASP27.spad" 69178 69191 70271 70276) (-64 "ASP24.spad" 68265 68278 69168 69173) (-63 "ASP20.spad" 67481 67494 68255 68260) (-62 "ASP1.spad" 66862 66875 67471 67476) (-61 "ASP19.spad" 61548 61561 66852 66857) (-60 "ASP12.spad" 60962 60975 61538 61543) (-59 "ASP10.spad" 60233 60246 60952 60957) (-58 "ARRAY2.spad" 59593 59602 59840 59867) (-57 "ARRAY1.spad" 58428 58437 58776 58803) (-56 "ARRAY12.spad" 57097 57108 58418 58423) (-55 "ARR2CAT.spad" 52747 52768 57053 57092) (-54 "ARR2CAT.spad" 48429 48452 52737 52742) (-53 "APPRULE.spad" 47673 47695 48419 48424) (-52 "APPLYORE.spad" 47288 47301 47663 47668) (-51 "ANY.spad" 45630 45637 47278 47283) (-50 "ANY1.spad" 44701 44710 45620 45625) (-49 "ANTISYM.spad" 43140 43156 44681 44696) (-48 "ANON.spad" 42837 42844 43130 43135) (-47 "AN.spad" 41140 41147 42655 42748) (-46 "AMR.spad" 39319 39330 41038 41135) (-45 "AMR.spad" 37335 37348 39056 39061) (-44 "ALIST.spad" 34747 34768 35097 35124) (-43 "ALGSC.spad" 33870 33896 34619 34672) (-42 "ALGPKG.spad" 29579 29590 33826 33831) (-41 "ALGMFACT.spad" 28768 28782 29569 29574) (-40 "ALGMANIP.spad" 26189 26204 28566 28571) (-39 "ALGFF.spad" 24507 24534 24724 24880) (-38 "ALGFACT.spad" 23628 23638 24497 24502) (-37 "ALGEBRA.spad" 23359 23368 23584 23623) (-36 "ALGEBRA.spad" 23122 23133 23349 23354) (-35 "ALAGG.spad" 22620 22641 23078 23117) (-34 "AHYP.spad" 22001 22008 22610 22615) (-33 "AGG.spad" 20300 20307 21981 21996) (-32 "AGG.spad" 18573 18582 20256 20261) (-31 "AF.spad" 16999 17014 18509 18514) (-30 "ACPLOT.spad" 15570 15577 16989 16994) (-29 "ACFS.spad" 13309 13318 15460 15565) (-28 "ACFS.spad" 11146 11157 13299 13304) (-27 "ACF.spad" 7748 7755 11048 11141) (-26 "ACF.spad" 4436 4445 7738 7743) (-25 "ABELSG.spad" 3977 3984 4426 4431) (-24 "ABELSG.spad" 3516 3525 3967 3972) (-23 "ABELMON.spad" 3059 3066 3506 3511) (-22 "ABELMON.spad" 2600 2609 3049 3054) (-21 "ABELGRP.spad" 2172 2179 2590 2595) (-20 "ABELGRP.spad" 1742 1751 2162 2167) (-19 "A1AGG.spad" 870 879 1698 1737) (-18 "A1AGG.spad" 30 41 860 865)) \ No newline at end of file
diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase
index b731f09c..675615ac 100644
--- a/src/share/algebra/category.daase
+++ b/src/share/algebra/category.daase
@@ -1,1207 +1,1207 @@
-(143433 . 3429259033)
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+(143530 . 3429317354)
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
(((|#2| |#2|) . T))
-((((-530)) . T))
-((($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2| |#2|) . T) ((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))))
+((((-531)) . T))
+((($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) ((|#2| |#2|) . T) ((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))))
((($) . T))
(((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
(((|#2|) . T))
-((($) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
-(|has| |#1| (-850))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((($) . T) (((-388 (-530))) . T))
+((($) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) ((|#2|) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))))
+(|has| |#1| (-852))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((($) . T) (((-388 (-531))) . T))
((($) . T))
((($) . T))
(((|#2| |#2|) . T))
((((-137)) . T))
-((((-506)) . T) (((-1082)) . T) (((-208)) . T) (((-360)) . T) (((-833 (-360))) . T))
-(((|#1|) . T))
-((((-208)) . T) (((-804)) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
-((($ $) . T) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T))
-(-1461 (|has| |#1| (-768)) (|has| |#1| (-795)))
-((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
-((((-804)) . T))
-((((-804)) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(|has| |#1| (-793))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-507)) . T) (((-1085)) . T) (((-208)) . T) (((-360)) . T) (((-835 (-360))) . T))
+(((|#1|) . T))
+((((-208)) . T) (((-806)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) . T))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-795)))
+((($ $) . T) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T))
+(-1435 (|has| |#1| (-770)) (|has| |#1| (-797)))
+((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T))
+((((-806)) . T))
+((((-806)) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-795))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#1| |#2| |#3|) . T))
(((|#4|) . T))
-((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
-((((-804)) . T))
-((((-804)) |has| |#1| (-1027)))
+((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((((-806)) . T))
+((((-806)) |has| |#1| (-1030)))
(((|#1|) . T) ((|#2|) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(((|#2| (-461 (-2267 |#1|) (-719))) . T))
-(((|#1| (-502 (-1099))) . T))
-(((#0=(-811 |#1|) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(((|#2| (-461 (-2167 |#1|) (-721))) . T))
+(((|#1| (-503 (-1102))) . T))
+(((#0=(-813 |#1|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
(|has| |#4| (-349))
(|has| |#3| (-349))
(((|#1|) . T))
-((((-811 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
+((((-813 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
(((|#1| |#2|) . T))
((($) . T))
(|has| |#1| (-138))
(|has| |#1| (-140))
-(|has| |#1| (-522))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-((($) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-((($) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T))
-((($) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-804)) . T))
-((((-804)) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
-((((-804)) . T))
-((((-804)) . T))
-(((|#1|) . T))
-((((-804)) . T))
-(((|#1|) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
-(((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) (($) . T))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(|has| |#1| (-523))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+((($) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T))
+((($) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-806)) . T))
+((((-806)) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+((((-806)) . T))
+((((-806)) . T))
+(((|#1|) . T))
+((((-806)) . T))
+(((|#1|) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) . T))
+(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
(((|#1| |#2|) . T))
-((((-804)) . T))
+((((-806)) . T))
(((|#1|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+(((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))) ((|#2| |#2|) . T) (($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
(((|#1|) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))))
((($ $) . T))
(((|#2|) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T) (($) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))))
((($) . T))
(|has| |#1| (-349))
(((|#1|) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-804)) . T))
-((((-804)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-806)) . T))
+((((-806)) . T))
(((|#1| |#2|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)))
(((|#1| |#1|) . T))
-(|has| |#1| (-522))
-(((|#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) (((-1099) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1099) |#2|))))
-((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
-((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(|has| |#1| (-1027))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(|has| |#1| (-1027))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(|has| |#1| (-793))
-((($) . T) (((-388 (-530))) . T))
-(((|#1|) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-(-1461 (|has| |#4| (-741)) (|has| |#4| (-793)))
-(-1461 (|has| |#4| (-741)) (|has| |#4| (-793)))
-(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
-(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
+(|has| |#1| (-523))
+(((|#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) (((-1102) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-492 (-1102) |#2|))))
+((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-795)))
+((($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(|has| |#1| (-1030))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(|has| |#1| (-1030))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(|has| |#1| (-795))
+((($) . T) (((-388 (-531))) . T))
+(((|#1|) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1435 (|has| |#4| (-743)) (|has| |#4| (-795)))
+(-1435 (|has| |#4| (-743)) (|has| |#4| (-795)))
+(-1435 (|has| |#3| (-743)) (|has| |#3| (-795)))
+(-1435 (|has| |#3| (-743)) (|has| |#3| (-795)))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-1027))
-(|has| |#1| (-1027))
-(((|#1| (-1099) (-1017 (-1099)) (-502 (-1017 (-1099)))) . T))
-((((-530) |#1|) . T))
-((((-530)) . T))
-((((-530)) . T))
-((((-851 |#1|)) . T))
-(((|#1| (-502 |#2|)) . T))
-((((-530)) . T))
-((((-530)) . T))
-(((|#1|) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(((|#1| (-719)) . T))
-(|has| |#2| (-741))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(|has| |#2| (-793))
+(|has| |#1| (-1030))
+(|has| |#1| (-1030))
+(((|#1| (-1102) (-1020 (-1102)) (-503 (-1020 (-1102)))) . T))
+((((-531) |#1|) . T))
+((((-531)) . T))
+((((-531)) . T))
+((((-853 |#1|)) . T))
+(((|#1| (-503 |#2|)) . T))
+((((-531)) . T))
+((((-531)) . T))
+(((|#1|) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(((|#1| (-721)) . T))
+(|has| |#2| (-743))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
+(|has| |#2| (-795))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-((((-1082) |#1|) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-1085) |#1|) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
(((|#1|) . T))
-(((|#3| (-719)) . T))
+(((|#3| (-721)) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(|has| |#1| (-1027))
-((((-388 (-530))) . T) (((-530)) . T))
-((((-1099) |#2|) |has| |#2| (-491 (-1099) |#2|)) ((|#2| |#2|) |has| |#2| (-291 |#2|)))
-((((-388 (-530))) . T) (((-530)) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-1030))
+((((-388 (-531))) . T) (((-531)) . T))
+((((-1102) |#2|) |has| |#2| (-492 (-1102) |#2|)) ((|#2| |#2|) |has| |#2| (-291 |#2|)))
+((((-388 (-531))) . T) (((-531)) . T))
(((|#1|) . T) (($) . T))
-((((-530)) . T))
-((((-530)) . T))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
-((((-530)) . T))
-((((-530)) . T))
-(((#0=(-647) (-1095 #0#)) . T))
-((((-388 (-530))) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-((((-530) |#1|) . T))
-((($) . T) (((-530)) . T) (((-388 (-530))) . T))
+((((-531)) . T))
+((((-531)) . T))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+((((-531)) . T))
+((((-531)) . T))
+(((#0=(-649) (-1098 #0#)) . T))
+((((-388 (-531))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+((((-531) |#1|) . T))
+((($) . T) (((-531)) . T) (((-388 (-531))) . T))
(((|#1|) . T))
(|has| |#2| (-344))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-804)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-1082) |#1|) . T))
+((((-806)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-1085) |#1|) . T))
(((|#3| |#3|) . T))
-((((-804)) . T))
-((((-804)) . T))
+((((-806)) . T))
+((((-806)) . T))
(((|#1| |#1|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-(((|#1|) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($) -1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-530) |#1|) . T))
-((((-159 (-208))) |has| |#1| (-960)) (((-159 (-360))) |has| |#1| (-960)) (((-506)) |has| |#1| (-572 (-506))) (((-1095 |#1|)) . T) (((-833 (-530))) |has| |#1| (-572 (-833 (-530)))) (((-833 (-360))) |has| |#1| (-572 (-833 (-360)))))
-((((-804)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
+(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+(((|#1|) . T))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((($) -1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) ((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-531) |#1|) . T))
+((((-159 (-208))) |has| |#1| (-962)) (((-159 (-360))) |has| |#1| (-962)) (((-507)) |has| |#1| (-573 (-507))) (((-1098 |#1|)) . T) (((-835 (-531))) |has| |#1| (-573 (-835 (-531)))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360)))))
+((((-806)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) . T))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-795)))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-795)))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))))
(|has| |#1| (-344))
-(-12 (|has| |#4| (-216)) (|has| |#4| (-984)))
-(-12 (|has| |#3| (-216)) (|has| |#3| (-984)))
-(-1461 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984)))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-((((-804)) . T))
-(((|#1|) . T))
-((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
-(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(((|#1|) . T) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-(|has| |#1| (-522))
-(|has| |#1| (-522))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(((|#1|) . T))
-(|has| |#1| (-522))
-(|has| |#1| (-522))
-(|has| |#1| (-522))
-((((-647)) . T))
-(((|#1|) . T))
-(-12 (|has| |#1| (-941)) (|has| |#1| (-1121)))
-(((|#2|) . T) (($) . T) (((-388 (-530))) . T))
-(-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))
-((($) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
-(((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) (($) . T))
-(((|#4| |#4|) -1461 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))) (($ $) |has| |#4| (-162)))
-(((|#3| |#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($ $) |has| |#3| (-162)))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-506)) |has| |#2| (-572 (-506))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))))
-((((-804)) . T))
+(-12 (|has| |#4| (-216)) (|has| |#4| (-986)))
+(-12 (|has| |#3| (-216)) (|has| |#3| (-986)))
+(-1435 (|has| |#4| (-162)) (|has| |#4| (-795)) (|has| |#4| (-986)))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+((((-806)) . T))
+(((|#1|) . T))
+((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T))
+(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531))))
+(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(((|#1|) . T) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(((|#1|) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+((((-649)) . T))
+(((|#1|) . T))
+(-12 (|has| |#1| (-943)) (|has| |#1| (-1124)))
+(((|#2|) . T) (($) . T) (((-388 (-531))) . T))
+(-12 (|has| |#1| (-1030)) (|has| |#2| (-1030)))
+((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) . T))
+(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T))
+(((|#4| |#4|) -1435 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-986))) (($ $) |has| |#4| (-162)))
+(((|#3| |#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))) (($ $) |has| |#3| (-162)))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-507)) |has| |#2| (-573 (-507))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531)))))
+((((-806)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-804)) . T))
-((((-506)) |has| |#1| (-572 (-506))) (((-833 (-360))) |has| |#1| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#1| (-572 (-833 (-530)))))
-((((-804)) . T))
-(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($) |has| |#3| (-162)))
-(((|#4|) -1461 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))) (($) |has| |#4| (-162)))
-((((-804)) . T))
-((((-506)) . T) (((-530)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-((($) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T))
-((((-388 $) (-388 $)) |has| |#2| (-522)) (($ $) . T) ((|#2| |#2|) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) . T))
-(((|#1|) . T))
-(|has| |#2| (-850))
-((((-1082) (-51)) . T))
-((((-530)) |has| #0=(-388 |#2|) (-593 (-530))) ((#0#) . T))
-((((-506)) . T) (((-208)) . T) (((-360)) . T) (((-833 (-360))) . T))
-((((-804)) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+((((-806)) . T))
+((((-507)) |has| |#1| (-573 (-507))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#1| (-573 (-835 (-531)))))
+((((-806)) . T))
+(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))) (($) |has| |#3| (-162)))
+(((|#4|) -1435 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-986))) (($) |has| |#4| (-162)))
+((((-806)) . T))
+((((-507)) . T) (((-531)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T))
+(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+((($) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T))
+((((-388 $) (-388 $)) |has| |#2| (-523)) (($ $) . T) ((|#2| |#2|) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) . T))
+(((|#1|) . T))
+(|has| |#2| (-852))
+((((-1085) (-51)) . T))
+((((-531)) |has| #0=(-388 |#2|) (-594 (-531))) ((#0#) . T))
+((((-507)) . T) (((-208)) . T) (((-360)) . T) (((-835 (-360))) . T))
+((((-806)) . T))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)))
(((|#1|) |has| |#1| (-162)))
(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
-((((-804)) . T))
-((((-804)) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-804)) . T))
-(|has| |#1| (-795))
-(|has| |#1| (-1027))
-(((|#1|) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
+((((-806)) . T))
+((((-806)) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-806)) . T))
+(|has| |#1| (-797))
+(|has| |#1| (-1030))
+(((|#1|) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
((((-127)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
((((-127)) . T))
-((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
(|has| |#1| (-216))
-((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#1| (-502 (-766 (-1099)))) . T))
-(((|#1| (-911)) . T))
-(((#0=(-811 |#1|) $) |has| #0# (-268 #0# #0#)))
-((((-530) |#4|) . T))
-((((-530) |#3|) . T))
+((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#1| (-503 (-768 (-1102)))) . T))
+(((|#1| (-913)) . T))
+(((#0=(-813 |#1|) $) |has| #0# (-268 #0# #0#)))
+((((-531) |#4|) . T))
+((((-531) |#3|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
-(|has| |#1| (-1075))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-(|has| (-1167 |#1| |#2| |#3| |#4|) (-138))
-(|has| (-1167 |#1| |#2| |#3| |#4|) (-140))
+(|has| |#1| (-1078))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+(|has| (-1170 |#1| |#2| |#3| |#4|) (-138))
+(|has| (-1170 |#1| |#2| |#3| |#4|) (-140))
(|has| |#1| (-138))
(|has| |#1| (-140))
(((|#1|) |has| |#1| (-162)))
-((((-1099)) -12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984))))
+((((-1102)) -12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986))))
(((|#2|) . T))
-(|has| |#1| (-1027))
-((((-1082) |#1|) . T))
+(|has| |#1| (-1030))
+((((-1085) |#1|) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
+(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531))))
(|has| |#2| (-349))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
((($) . T) ((|#1|) . T))
-(((|#2|) |has| |#2| (-984)))
-((((-804)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+(((|#2|) |has| |#2| (-986)))
+((((-806)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
(((|#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((#0=(-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) #0#) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))))
-((((-530) |#1|) . T))
-((((-804)) . T))
-((((-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506)))) (((-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360))))) (((-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530))))))
-((((-804)) . T))
-((((-804)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((#0=(-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) #0#) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))))
+((((-531) |#1|) . T))
+((((-806)) . T))
+((((-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#2| (-573 (-507)))) (((-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360))))) (((-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531))))))
+((((-806)) . T))
+((((-806)) . T))
((($) . T))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
((($) . T))
((($) . T))
((($) . T))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) . T))
-((((-804)) . T))
-(|has| (-1166 |#2| |#3| |#4|) (-140))
-(|has| (-1166 |#2| |#3| |#4|) (-138))
-(((|#2|) |has| |#2| (-1027)) (((-530)) -12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (((-388 (-530))) -12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-806)) . T))
+((((-806)) . T))
+(|has| (-1169 |#2| |#3| |#4|) (-140))
+(|has| (-1169 |#2| |#3| |#4|) (-138))
+(((|#2|) |has| |#2| (-1030)) (((-531)) -12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (((-388 (-531))) -12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030))))
(((|#1|) . T))
-(|has| |#1| (-1027))
-((((-804)) . T))
+(|has| |#1| (-1030))
+((((-806)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)))
(((|#1|) . T))
-((((-530) |#1|) . T))
+((((-531) |#1|) . T))
(((|#2|) |has| |#2| (-162)))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
-((((-804)) |has| |#1| (-1027)))
-(-1461 (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-((((-851 |#1|)) . T))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-795)))
+((((-806)) |has| |#1| (-1030)))
+(-1435 (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)) (|has| |#1| (-1042)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+((((-853 |#1|)) . T))
((((-388 |#2|) |#3|) . T))
-(|has| |#1| (-15 * (|#1| (-530) |#1|)))
-((((-388 (-530))) . T) (($) . T))
-(|has| |#1| (-795))
+(|has| |#1| (-15 * (|#1| (-531) |#1|)))
+((((-388 (-531))) . T) (($) . T))
+(|has| |#1| (-797))
(((|#1|) . T) (($) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-804)) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-806)) . T))
(((|#1|) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
(|has| |#1| (-344))
-(-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))
-(|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))
+(-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))
+(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))
(|has| |#1| (-344))
-((((-530)) . T))
-(|has| |#1| (-15 * (|#1| (-719) |#1|)))
-((((-1066 |#2| (-388 (-893 |#1|)))) . T) (((-388 (-893 |#1|))) . T))
+((((-531)) . T))
+(|has| |#1| (-15 * (|#1| (-721) |#1|)))
+((((-1069 |#2| (-388 (-895 |#1|)))) . T) (((-388 (-895 |#1|))) . T))
((($) . T))
(((|#1|) |has| |#1| (-162)) (($) . T))
-(((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) (($) . T))
-(((|#1|) . T))
-((((-530) |#1|) . T))
-(((|#2|) . T))
-(-1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(((|#1|) . T))
-((((-1099)) -12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
-(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522)))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
-((($ $) |has| |#1| (-522)))
-(((#0=(-647) (-1095 #0#)) . T))
-((((-804)) . T))
-((((-804)) . T) (((-1181 |#4|)) . T))
-((((-804)) . T) (((-1181 |#3|)) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
-((($) |has| |#1| (-522)))
-((((-804)) . T))
-((($) . T))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((#1=(-1173 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
-(((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
-(((|#3|) |has| |#3| (-984)))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(|has| |#1| (-1027))
-(((|#2| (-767 |#1|)) . T))
+(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T))
+(((|#1|) . T))
+((((-531) |#1|) . T))
+(((|#2|) . T))
+(-1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
+(((|#1|) . T))
+((((-1102)) -12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-770)))
+(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-523)))
+(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))))
+((($ $) |has| |#1| (-523)))
+(((#0=(-649) (-1098 #0#)) . T))
+((((-806)) . T))
+((((-806)) . T) (((-1184 |#4|)) . T))
+((((-806)) . T) (((-1184 |#3|)) . T))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))))
+((($) |has| |#1| (-523)))
+((((-806)) . T))
+((($) . T))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((#1=(-1176 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
+(((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))))
+(((|#3|) |has| |#3| (-986)))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(|has| |#1| (-1030))
+(((|#2| (-769 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-344))
-((((-388 $) (-388 $)) |has| |#1| (-522)) (($ $) . T) ((|#1| |#1|) . T))
-(((#0=(-1012) |#2|) . T) ((#0# $) . T) (($ $) . T))
-((((-851 |#1|)) . T))
+((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T))
+(((#0=(-1014) |#2|) . T) ((#0# $) . T) (($ $) . T))
+((((-853 |#1|)) . T))
((((-137)) . T))
((((-137)) . T))
-(((|#3|) |has| |#3| (-1027)) (((-530)) -12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (((-388 (-530))) -12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))
-((((-804)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+(((|#3|) |has| |#3| (-1030)) (((-531)) -12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030))) (((-388 (-531))) -12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030))))
+((((-806)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
(((|#1|) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T))
(|has| |#1| (-344))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
-((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
-(|has| |#2| (-768))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-793))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-((((-804)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-506)) |has| |#1| (-572 (-506))))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-795)))
+((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
+(|has| |#2| (-770))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-795))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+((((-806)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-507)) |has| |#1| (-573 (-507))))
(((|#1| |#2|) . T))
-((((-1099)) -12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099)))))
-((((-1082) |#1|) . T))
-(((|#1| |#2| |#3| (-502 |#3|)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-1102)) -12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102)))))
+((((-1085) |#1|) . T))
+(((|#1| |#2| |#3| (-503 |#3|)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
-((((-804)) . T))
+((((-806)) . T))
(((|#1|) . T))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
(|has| |#1| (-349))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-((((-530)) . T))
-((((-530)) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-((((-804)) . T))
-((((-804)) . T))
-(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
-((((-1099) #0=(-811 |#1|)) |has| #0# (-491 (-1099) #0#)) ((#0# #0#) |has| #0# (-291 #0#)))
-(((|#1|) . T))
-((((-530) |#4|) . T))
-((((-530) |#3|) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-388 (-530))) . T) (((-530)) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+((((-531)) . T))
+((((-531)) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+((((-806)) . T))
+((((-806)) . T))
+(-12 (|has| |#2| (-216)) (|has| |#2| (-986)))
+((((-1102) #0=(-813 |#1|)) |has| #0# (-492 (-1102) #0#)) ((#0# #0#) |has| #0# (-291 #0#)))
+(((|#1|) . T))
+((((-531) |#4|) . T))
+((((-531) |#3|) . T))
+(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531))))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+((((-1170 |#1| |#2| |#3| |#4|)) . T))
+((((-388 (-531))) . T) (((-531)) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-530)) . T) (((-388 (-530))) . T))
-((((-530)) . T))
-((((-530)) . T))
-((($) . T) (((-530)) . T) (((-388 (-530))) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
+((($) . T) (((-531)) . T) (((-388 (-531))) . T))
+((((-531)) . T))
+((((-531)) . T))
+((($) . T) (((-531)) . T) (((-388 (-531))) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((#0=(-530) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
-(((|#1|) |has| |#1| (-522)))
-((((-530) |#4|) . T))
-((((-530) |#3|) . T))
-((((-804)) . T))
-((((-530)) . T) (((-388 (-530))) . T) (($) . T))
-((((-804)) . T))
-((((-530) |#1|) . T))
+(((#0=(-531) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
+(((|#1|) |has| |#1| (-523)))
+((((-531) |#4|) . T))
+((((-531) |#3|) . T))
+((((-806)) . T))
+((((-531)) . T) (((-388 (-531))) . T) (($) . T))
+((((-806)) . T))
+((((-531) |#1|) . T))
(((|#1|) . T))
-((($ $) . T) ((#0=(-806 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-808 |#1|) $) . T) ((#0# |#2|) . T))
((($) . T))
-((($ $) . T) ((#0=(-1099) $) . T) ((#0# |#1|) . T))
+((($ $) . T) ((#0=(-1102) $) . T) ((#0# |#1|) . T))
(((|#2|) |has| |#2| (-162)))
-((($) -1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) |has| |#2| (-162)) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
-(((|#2| |#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
+((($) -1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) ((|#2|) |has| |#2| (-162)) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))))
+(((|#2| |#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($ $) |has| |#2| (-162)))
((((-137)) . T))
(((|#1|) . T))
(-12 (|has| |#1| (-349)) (|has| |#2| (-349)))
-((((-804)) . T))
-(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
+((((-806)) . T))
+(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($) |has| |#2| (-162)))
(((|#1|) . T))
-((((-804)) . T))
-(|has| |#1| (-1027))
+((((-806)) . T))
+(|has| |#1| (-1030))
(|has| $ (-140))
-((((-530) |#1|) . T))
-((($) -1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
-((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
+((((-531) |#1|) . T))
+((($) -1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))))
(|has| |#1| (-344))
-(-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))
-(|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))
+(-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))
+(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))
(|has| |#1| (-344))
-(|has| |#1| (-15 * (|#1| (-719) |#1|)))
-(((|#1|) . T))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-((((-804)) . T))
-((((-530) (-127)) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(((|#2| (-502 (-806 |#1|))) . T))
-((((-804)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-((((-543 |#1|)) . T))
+(|has| |#1| (-15 * (|#1| (-721) |#1|)))
+(((|#1|) . T))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+((((-806)) . T))
+((((-531) (-127)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+(((|#2| (-503 (-808 |#1|))) . T))
+((((-806)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+((((-544 |#1|)) . T))
((($) . T))
(((|#1|) . T) (($) . T))
-((((-530)) |has| |#1| (-593 (-530))) ((|#1|) . T))
+((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T))
(((|#4|) . T))
(((|#3|) . T))
-((((-811 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
-((((-1099)) -12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984))))
-(((|#1|) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-530) |#2|) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
+((((-813 |#1|)) . T) (($) . T) (((-388 (-531))) . T))
+((((-1102)) -12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986))))
+(((|#1|) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-531) |#2|) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
(((|#1| |#2| |#3| |#4| |#5|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((#1=(-1097 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-(((|#2|) |has| |#2| (-984)))
-(|has| |#1| (-1027))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
-(((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((#1=(-1100 |#1| |#2| |#3|) #1#) |has| |#1| (-344)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+(((|#2|) |has| |#2| (-986)))
+(|has| |#1| (-1030))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) . T))
+(((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
(((|#1|) |has| |#1| (-162)) (($) . T))
(((|#1|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((((-804)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+(((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))) ((|#2| |#2|) . T) (($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((((-806)) . T))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-(((#0=(-1012) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))))
+(((#0=(-1014) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T) (($) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
((($) . T))
-(((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) (($) . T))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
(((|#2|) |has| |#1| (-344)))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1027)) (((-530)) -12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (((-388 (-530))) -12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027))))
-((((-530) |#1|) . T))
-((((-804)) . T))
+(((|#2|) |has| |#2| (-1030)) (((-531)) -12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (((-388 (-531))) -12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030))))
+((((-531) |#1|) . T))
+((((-806)) . T))
((((-388 |#2|) |#3|) . T))
-(((|#1| (-388 (-530))) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-388 (-530))) . T) (($) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
+(((|#1| (-388 (-531))) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-388 (-531))) . T) (($) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
(|has| |#1| (-138))
(|has| |#1| (-140))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-388 (-530))) . T) (($) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-388 (-530))) . T) (($) . T))
-(((|#2| |#3| (-806 |#1|)) . T))
-((((-1099)) |has| |#2| (-841 (-1099))))
-(((|#1|) . T))
-(((|#1| (-502 |#2|) |#2|) . T))
-(((|#1| (-719) (-1012)) . T))
-((((-388 (-530))) |has| |#2| (-344)) (($) . T))
-(((|#1| (-502 (-1017 (-1099))) (-1017 (-1099))) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(((|#1|) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(|has| |#2| (-741))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-388 (-531))) . T) (($) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-388 (-531))) . T) (($) . T))
+(((|#2| |#3| (-808 |#1|)) . T))
+((((-1102)) |has| |#2| (-843 (-1102))))
+(((|#1|) . T))
+(((|#1| (-503 |#2|) |#2|) . T))
+(((|#1| (-721) (-1014)) . T))
+((((-388 (-531))) |has| |#2| (-344)) (($) . T))
+(((|#1| (-503 (-1020 (-1102))) (-1020 (-1102))) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(((|#1|) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(|has| |#2| (-743))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
-(|has| |#2| (-793))
-((((-834 |#1|)) . T) (((-767 |#1|)) . T))
-((((-767 (-1099))) . T))
+(|has| |#2| (-795))
+((((-836 |#1|)) . T) (((-769 |#1|)) . T))
+((((-769 (-1102))) . T))
(((|#1|) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-597 (-530))) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-506)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-598 (-531))) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-507)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T))
(|has| |#1| (-216))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
((($ $) . T))
(((|#1| |#1|) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-1173 |#1| |#2| |#3|) $) -12 (|has| (-1173 |#1| |#2| |#3|) (-268 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))) (($ $) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-1176 |#1| |#2| |#3|) $) -12 (|has| (-1176 |#1| |#2| |#3|) (-268 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1|) . T))
-((((-1064 |#1| |#2|)) |has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))))
-(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#2|) . T) (((-530)) |has| |#2| (-975 (-530))) (((-388 (-530))) |has| |#2| (-975 (-388 (-530)))))
-(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+((((-1067 |#1| |#2|)) |has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+(((|#2|) . T) (((-531)) |has| |#2| (-977 (-531))) (((-388 (-531))) |has| |#2| (-977 (-388 (-531)))))
+(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
(((|#1|) . T))
(((|#1| |#2|) . T))
((($) . T))
((($) . T))
(((|#2|) . T))
(((|#3|) . T))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
(((|#2|) . T))
-((((-804)) -1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
+((((-806)) -1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-572 (-806))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) (((-1184 |#2|)) . T))
(((|#1|) |has| |#1| (-162)))
-((((-530)) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-530) (-137)) . T))
-((($) -1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
-(((|#1|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+((((-531)) . T))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-531) (-137)) . T))
+((($) -1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) ((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986)))
+(((|#1|) . T))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986)))
(((|#2|) |has| |#1| (-344)))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#1| |#1|) . T) (($ $) . T))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| (-502 #0=(-1099)) #0#) . T))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| (-503 #0=(-1102)) #0#) . T))
(((|#1|) . T) (($) . T))
(|has| |#4| (-162))
(|has| |#3| (-162))
-(((#0=(-388 (-893 |#1|)) #0#) . T))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(|has| |#1| (-1027))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(|has| |#1| (-1027))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(((#0=(-388 (-895 |#1|)) #0#) . T))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(|has| |#1| (-1030))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(|has| |#1| (-1030))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
(((|#1| |#1|) |has| |#1| (-162)))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#1|) . T))
-((((-388 (-893 |#1|))) . T))
-((((-530) (-127)) . T))
+((((-388 (-895 |#1|))) . T))
+((((-531) (-127)) . T))
(((|#1|) |has| |#1| (-162)))
((((-127)) . T))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-((((-804)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-984)) (((-530)) -12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+((((-806)) . T))
+((((-1170 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-986)) (((-531)) -12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))
(((|#1| |#2|) . T))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-(|has| |#3| (-741))
-(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
-(|has| |#3| (-793))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
-(((|#2|) . T))
-((((-530) (-127)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-530) |#2|) . T))
-(((|#1| (-1080 |#1|)) |has| |#1| (-793)))
-(|has| |#1| (-1027))
-(((|#1|) . T))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-1075)))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(|has| |#1| (-1027))
-(((|#2|) . T))
-((((-506)) |has| |#2| (-572 (-506))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))))
-(((|#4|) -1461 (|has| |#4| (-162)) (|has| |#4| (-344))))
-(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344))))
-((((-804)) . T))
-(((|#1|) . T))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-850)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
-((($ $) . T) ((#0=(-1099) $) |has| |#1| (-216)) ((#0# |#1|) |has| |#1| (-216)) ((#1=(-766 (-1099)) |#1|) . T) ((#1# $) . T))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
-((((-530) |#2|) . T))
-((((-804)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((($) -1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984))) ((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))))
-((((-530) |#1|) . T))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-677)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+(|has| |#3| (-743))
+(-1435 (|has| |#3| (-743)) (|has| |#3| (-795)))
+(|has| |#3| (-795))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#2|) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))))
+(((|#2|) . T))
+((((-531) (-127)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-531) |#2|) . T))
+(((|#1| (-1083 |#1|)) |has| |#1| (-795)))
+(|has| |#1| (-1030))
+(((|#1|) . T))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-1078)))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(|has| |#1| (-1030))
+(((|#2|) . T))
+((((-507)) |has| |#2| (-573 (-507))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531)))))
+(((|#4|) -1435 (|has| |#4| (-162)) (|has| |#4| (-344))))
+(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344))))
+((((-806)) . T))
+(((|#1|) . T))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-852)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-852)))
+((($ $) . T) ((#0=(-1102) $) |has| |#1| (-216)) ((#0# |#1|) |has| |#1| (-216)) ((#1=(-768 (-1102)) |#1|) . T) ((#1# $) . T))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-852)))
+((((-531) |#2|) . T))
+((((-806)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((($) -1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986))) ((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))))
+((((-531) |#1|) . T))
(|has| (-388 |#2|) (-140))
(|has| (-388 |#2|) (-138))
(((|#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))))
-(|has| |#1| (-37 (-388 (-530))))
-(((|#1|) . T))
-(((|#2|) . T) (($) . T) (((-388 (-530))) . T))
-((((-804)) . T))
-(|has| |#1| (-522))
-(|has| |#1| (-522))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-804)) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-(|has| |#1| (-37 (-388 (-530))))
-((((-369) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#2| (-1075))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(((|#1|) . T))
-((((-369) (-1082)) . T))
-(|has| |#1| (-522))
+(|has| |#1| (-37 (-388 (-531))))
+(((|#1|) . T))
+(((|#2|) . T) (($) . T) (((-388 (-531))) . T))
+((((-806)) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-806)) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+(|has| |#1| (-37 (-388 (-531))))
+((((-369) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#2| (-1078))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(((|#1|) . T))
+((((-369) (-1085)) . T))
+(|has| |#1| (-523))
((((-114 |#1|)) . T))
((((-127)) . T))
-((((-530) |#1|) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+((((-531) |#1|) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
(((|#2|) . T))
-((((-804)) . T))
-((((-767 |#1|)) . T))
+((((-806)) . T))
+((((-769 |#1|)) . T))
(((|#2|) |has| |#2| (-162)))
-((((-1099) (-51)) . T))
+((((-1102) (-51)) . T))
(((|#1|) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-522))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-523))
(((|#1|) |has| |#1| (-162)))
-((((-804)) . T))
-((((-506)) |has| |#1| (-572 (-506))))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+((((-806)) . T))
+((((-507)) |has| |#1| (-573 (-507))))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
(((|#2|) |has| |#2| (-291 |#2|)))
-(((#0=(-530) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
+(((#0=(-531) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
(((|#1|) . T))
-(((|#1| (-1095 |#1|)) . T))
+(((|#1| (-1098 |#1|)) . T))
(|has| $ (-140))
(((|#2|) . T))
-(((#0=(-530) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-((($) . T) (((-530)) . T) (((-388 (-530))) . T))
+(((#0=(-531) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
+((($) . T) (((-531)) . T) (((-388 (-531))) . T))
(|has| |#2| (-349))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-((((-530)) . T) (((-388 (-530))) . T) (($) . T))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+((((-531)) . T) (((-388 (-531))) . T) (($) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
-((((-530)) . T) (((-388 (-530))) . T) (($) . T))
-((((-1097 |#1| |#2| |#3|) $) -12 (|has| (-1097 |#1| |#2| |#3|) (-268 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))) (($ $) . T))
-((((-804)) . T))
-((((-804)) . T))
-((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-531)) . T) (((-388 (-531))) . T) (($) . T))
+((((-1100 |#1| |#2| |#3|) $) -12 (|has| (-1100 |#1| |#2| |#3|) (-268 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))) (($ $) . T))
+((((-806)) . T))
+((((-806)) . T))
+((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
((($ $) . T))
((($ $) . T))
-((((-804)) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((#0=(-1173 |#1| |#2| |#3|) #0#) -12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))) (((-1099) #0#) -12 (|has| (-1173 |#1| |#2| |#3|) (-491 (-1099) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))))
-(-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))
+((((-806)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((#0=(-1176 |#1| |#2| |#3|) #0#) -12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))) (((-1102) #0#) -12 (|has| (-1176 |#1| |#2| |#3|) (-492 (-1102) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))))
+(-12 (|has| |#1| (-1030)) (|has| |#2| (-1030)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-388 (-530))) . T) (((-530)) . T))
-((((-530) (-137)) . T))
+((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-388 (-531))) . T) (((-531)) . T))
+((((-531) (-137)) . T))
((((-137)) . T))
(((|#1|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986)))
((((-110)) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
((((-110)) . T))
(((|#1|) . T))
-((((-506)) |has| |#1| (-572 (-506))) (((-208)) . #0=(|has| |#1| (-960))) (((-360)) . #0#))
-((((-804)) . T))
-(|has| |#1| (-768))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(|has| |#1| (-795))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
-(|has| |#1| (-522))
-(|has| |#1| (-850))
-(((|#1|) . T))
-(|has| |#1| (-1027))
-((((-804)) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-(((|#1| (-1181 |#1|) (-1181 |#1|)) . T))
-((((-530) (-137)) . T))
-((($) . T))
-(-1461 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984)))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-((((-804)) . T))
-(|has| |#1| (-1027))
-(((|#1| (-911)) . T))
+((((-507)) |has| |#1| (-573 (-507))) (((-208)) . #0=(|has| |#1| (-962))) (((-360)) . #0#))
+((((-806)) . T))
+(|has| |#1| (-770))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(|has| |#1| (-797))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(|has| |#1| (-523))
+(|has| |#1| (-852))
+(((|#1|) . T))
+(|has| |#1| (-1030))
+((((-806)) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-523)))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+(((|#1| (-1184 |#1|) (-1184 |#1|)) . T))
+((((-531) (-137)) . T))
+((($) . T))
+(-1435 (|has| |#4| (-162)) (|has| |#4| (-795)) (|has| |#4| (-986)))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+((((-806)) . T))
+(|has| |#1| (-1030))
+(((|#1| (-913)) . T))
(((|#1| |#1|) . T))
((($) . T))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
(-12 (|has| |#1| (-453)) (|has| |#2| (-453)))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677))))
(((|#1|) . T))
-(|has| |#2| (-741))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
+(|has| |#2| (-743))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(|has| |#2| (-793))
-(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
-(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(|has| |#2| (-795))
+(-12 (|has| |#1| (-743)) (|has| |#2| (-743)))
+(-12 (|has| |#1| (-743)) (|has| |#2| (-743)))
(((|#1| |#2|) . T))
(((|#2|) |has| |#2| (-162)))
(((|#1|) |has| |#1| (-162)))
-((((-804)) . T))
+((((-806)) . T))
(|has| |#1| (-330))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-388 (-530))) . T) (($) . T))
-((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) . T))
-(|has| |#1| (-776))
-((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
-(|has| |#1| (-1027))
+((((-388 (-531))) . T) (($) . T))
+((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) . T))
+(|has| |#1| (-778))
+((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T))
+(|has| |#1| (-1030))
(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
-((($) |has| |#1| (-522)))
-(((|#4|) |has| |#4| (-1027)))
-(((|#3|) |has| |#3| (-1027)))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+((($) |has| |#1| (-523)))
+(((|#4|) |has| |#4| (-1030)))
+(((|#3|) |has| |#3| (-1030)))
(|has| |#3| (-349))
-(((|#1|) . T) (((-804)) . T))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
-((((-804)) . T))
-((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+(((|#1|) . T) (((-806)) . T))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))))
+((((-806)) . T))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
(((|#2|) . T))
(((|#1| |#1|) |has| |#1| (-162)))
(((|#1| |#2|) . T))
(|has| |#2| (-344))
(((|#1|) . T))
(((|#1|) |has| |#1| (-162)))
-((((-388 (-530))) . T) (((-530)) . T))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+((((-388 (-531))) . T) (((-531)) . T))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
((((-137)) . T))
(((|#1|) . T))
((((-137)) . T))
-((($) -1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984))) ((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))))
+((($) -1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986))) ((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))))
((((-137)) . T))
(((|#1| |#2| |#3|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986)))
(|has| $ (-140))
(|has| $ (-140))
-(|has| |#1| (-1027))
-((((-804)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-522)) (|has| |#1| (-984)) (|has| |#1| (-1039)))
+(|has| |#1| (-1030))
+((((-806)) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-523)) (|has| |#1| (-986)) (|has| |#1| (-1042)))
((($ $) |has| |#1| (-268 $ $)) ((|#1| $) |has| |#1| (-268 |#1| |#1|)))
-(((|#1| (-388 (-530))) . T))
-(((|#1|) . T))
-((((-1099)) . T))
-(|has| |#1| (-522))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(|has| |#1| (-522))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-((((-804)) . T))
+(((|#1| (-388 (-531))) . T))
+(((|#1|) . T))
+((((-1102)) . T))
+(|has| |#1| (-523))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-523))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+((((-806)) . T))
(|has| |#2| (-138))
(|has| |#2| (-140))
(((|#2|) . T) (($) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-(|has| |#4| (-793))
-(((|#2| (-223 (-2267 |#1|) (-719)) (-806 |#1|)) . T))
-(|has| |#3| (-793))
-(((|#1| (-502 |#3|) |#3|) . T))
+(|has| |#4| (-795))
+(((|#2| (-223 (-2167 |#1|) (-721)) (-808 |#1|)) . T))
+(|has| |#3| (-795))
+(((|#1| (-503 |#3|) |#3|) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-344)) (($ $) . T))
-((((-811 |#1|)) . T))
+(((#0=(-388 (-531)) #0#) |has| |#2| (-344)) (($ $) . T))
+((((-813 |#1|)) . T))
(|has| |#1| (-140))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-138))
-((((-388 (-530))) |has| |#2| (-344)) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1461 (|has| |#1| (-330)) (|has| |#1| (-349)))
-((((-1066 |#2| |#1|)) . T) ((|#1|) . T))
+((((-388 (-531))) |has| |#2| (-344)) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+(-1435 (|has| |#1| (-330)) (|has| |#1| (-349)))
+((((-1069 |#2| |#1|)) . T) ((|#1|) . T))
(|has| |#2| (-162))
(((|#1| |#2|) . T))
-(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
-(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
-(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
-((((-804)) . T))
+(-12 (|has| |#2| (-216)) (|has| |#2| (-986)))
+(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(-1435 (|has| |#3| (-743)) (|has| |#3| (-795)))
+(-1435 (|has| |#3| (-743)) (|has| |#3| (-795)))
+((((-806)) . T))
(((|#1|) . T))
(((|#2|) . T) (($) . T))
(((|#1|) . T) (($) . T))
-((((-647)) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(|has| |#1| (-522))
+((((-649)) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(|has| |#1| (-523))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-1099) (-51)) . T))
-((((-804)) . T))
-((((-506)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
+((((-1102) (-51)) . T))
+((((-806)) . T))
+((((-507)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T))
(((|#1|) . T))
-((((-804)) . T))
-((((-506)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
-(((|#1| (-530)) . T))
-((((-804)) . T))
-((((-804)) . T))
+((((-806)) . T))
+((((-507)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T))
+(((|#1| (-531)) . T))
+((((-806)) . T))
+((((-806)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-388 (-530))) . T))
-(((|#3|) . T) (((-570 $)) . T))
+(((|#1| (-388 (-531))) . T))
+(((|#3|) . T) (((-571 $)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
((($ $) . T) ((|#2| $) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((#0=(-1097 |#1| |#2| |#3|) #0#) -12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))) (((-1099) #0#) -12 (|has| (-1097 |#1| |#2| |#3|) (-491 (-1099) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))
-((((-530)) . T) (($) . T) (((-388 (-530))) . T))
-((((-804)) . T))
-((((-804)) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((#0=(-1100 |#1| |#2| |#3|) #0#) -12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))) (((-1102) #0#) -12 (|has| (-1100 |#1| |#2| |#3|) (-492 (-1102) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))))
+((((-531)) . T) (($) . T) (((-388 (-531))) . T))
+((((-806)) . T))
+((((-806)) . T))
(((|#1| |#1|) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))))
-((((-804)) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))))
+((((-806)) . T))
(((|#1|) . T))
(((|#3| |#3|) . T))
(((|#1|) . T))
((($) . T) ((|#2|) . T))
-((((-1099) (-51)) . T))
+((((-1102) (-51)) . T))
(((|#3|) . T))
-((($ $) . T) ((#0=(-806 |#1|) $) . T) ((#0# |#2|) . T))
-(|has| |#1| (-776))
-(|has| |#1| (-1027))
-(((|#2| |#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
-(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344))))
-((((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((|#1| |#2|) . T))
-(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
-((((-719)) . T))
-((((-530)) . T))
-(|has| |#1| (-522))
-((((-804)) . T))
-(((|#1| (-388 (-530)) (-1012)) . T))
+((($ $) . T) ((#0=(-808 |#1|) $) . T) ((#0# |#2|) . T))
+(|has| |#1| (-778))
+(|has| |#1| (-1030))
+(((|#2| |#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($ $) |has| |#2| (-162)))
+(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344))))
+((((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((|#1| |#2|) . T))
+(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($) |has| |#2| (-162)))
+((((-721)) . T))
+((((-531)) . T))
+(|has| |#1| (-523))
+((((-806)) . T))
+(((|#1| (-388 (-531)) (-1014)) . T))
(|has| |#1| (-138))
(((|#1|) . T))
-(|has| |#1| (-522))
-((((-530)) . T))
+(|has| |#1| (-523))
+((((-531)) . T))
((((-114 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-140))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
-((((-833 (-530))) . T) (((-833 (-360))) . T) (((-506)) . T) (((-1099)) . T))
-((((-804)) . T))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-((($) . T))
-((((-804)) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-523)))
+((((-835 (-531))) . T) (((-835 (-360))) . T) (((-507)) . T) (((-1102)) . T))
+((((-806)) . T))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+((($) . T))
+((((-806)) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
(((|#2|) |has| |#2| (-162)))
-((($) -1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))) ((|#2|) |has| |#2| (-162)) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
-((((-811 |#1|)) . T))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
-(-12 (|has| |#3| (-216)) (|has| |#3| (-984)))
-(|has| |#2| (-1075))
-(((#0=(-51)) . T) (((-2 (|:| -3078 (-1099)) (|:| -1874 #0#))) . T))
+((($) -1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))) ((|#2|) |has| |#2| (-162)) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))))
+((((-813 |#1|)) . T))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030)))
+(-12 (|has| |#3| (-216)) (|has| |#3| (-986)))
+(|has| |#2| (-1078))
+(((#0=(-51)) . T) (((-2 (|:| -3033 (-1102)) (|:| -1798 #0#))) . T))
(((|#1| |#2|) . T))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-(((|#1| (-530) (-1012)) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| (-388 (-530)) (-1012)) . T))
-((($) -1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
-((((-530) |#2|) . T))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+(((|#1| (-531) (-1014)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| (-388 (-531)) (-1014)) . T))
+((($) -1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((((-531) |#2|) . T))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#2| (-349))
(-12 (|has| |#1| (-349)) (|has| |#2| (-349)))
-((((-804)) . T))
-((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(((|#1|) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
-((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) . T))
+((((-806)) . T))
+((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(((|#1|) . T))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-806)) . T))
(|has| |#1| (-330))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
-(|has| |#1| (-522))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-804)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
+(|has| |#1| (-523))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-806)) . T))
(((|#1| |#2|) . T))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-850)))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
-((((-388 (-530))) . T) (((-530)) . T))
-((((-530)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($) . T))
-((((-804)) . T))
-(((|#1|) . T))
-((((-811 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
-((((-804)) . T))
-(((|#3| |#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($ $) |has| |#3| (-162)))
-(|has| |#1| (-960))
-((((-804)) . T))
-(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))) (($) |has| |#3| (-162)))
-((((-530) (-110)) . T))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-852)))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-852)))
+((((-388 (-531))) . T) (((-531)) . T))
+((((-531)) . T))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((($) . T))
+((((-806)) . T))
+(((|#1|) . T))
+((((-813 |#1|)) . T) (($) . T) (((-388 (-531))) . T))
+((((-806)) . T))
+(((|#3| |#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))) (($ $) |has| |#3| (-162)))
+(|has| |#1| (-962))
+((((-806)) . T))
+(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))) (($) |has| |#3| (-162)))
+((((-531) (-110)) . T))
(((|#1|) |has| |#1| (-291 |#1|)))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
-((((-1099) $) |has| |#1| (-491 (-1099) $)) (($ $) |has| |#1| (-291 $)) ((|#1| |#1|) |has| |#1| (-291 |#1|)) (((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)))
-((((-1099)) |has| |#1| (-841 (-1099))))
-(-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))
-((((-369) (-1046)) . T))
+((((-1102) $) |has| |#1| (-492 (-1102) $)) (($ $) |has| |#1| (-291 $)) ((|#1| |#1|) |has| |#1| (-291 |#1|)) (((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)))
+((((-1102)) |has| |#1| (-843 (-1102))))
+(-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))
+((((-369) (-1049)) . T))
(((|#1| |#4|) . T))
(((|#1| |#3|) . T))
((((-369) |#1|) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-(|has| |#1| (-1027))
-((((-804)) . T))
-((((-804)) . T))
-((((-851 |#1|)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(|has| |#1| (-1030))
+((((-806)) . T))
+((((-806)) . T))
+((((-853 |#1|)) . T))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))))
(((|#1| |#2|) . T))
((($) . T))
(((|#1| |#1|) . T))
-(((#0=(-811 |#1|)) |has| #0# (-291 #0#)))
+(((#0=(-813 |#1|)) |has| #0# (-291 #0#)))
(((|#1| |#2|) . T))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
+(-12 (|has| |#1| (-743)) (|has| |#2| (-743)))
(((|#1|) . T))
-(-12 (|has| |#1| (-741)) (|has| |#2| (-741)))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-12 (|has| |#1| (-743)) (|has| |#2| (-743)))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986)))
(((|#2|) . T) (($) . T))
-(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(|has| |#1| (-1121))
-(((#0=(-530) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-((((-388 (-530))) . T) (($) . T))
-(((|#4|) |has| |#4| (-984)))
-(((|#3|) |has| |#3| (-984)))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
+(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(|has| |#1| (-1124))
+(((#0=(-531) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
+((((-388 (-531))) . T) (($) . T))
+(((|#4|) |has| |#4| (-986)))
+(((|#3|) |has| |#3| (-986)))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T))
(|has| |#1| (-344))
-((((-530)) . T) (((-388 (-530))) . T) (($) . T))
-((($ $) . T) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
-((((-804)) . T))
-((((-804)) . T))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-530) |#3|) . T))
-((((-804)) . T))
-((((-506)) |has| |#3| (-572 (-506))))
-((((-637 |#3|)) . T) (((-804)) . T))
+((((-531)) . T) (((-388 (-531))) . T) (($) . T))
+((($ $) . T) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1| |#1|) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
+((((-806)) . T))
+((((-806)) . T))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-531) |#3|) . T))
+((((-806)) . T))
+((((-507)) |has| |#3| (-573 (-507))))
+((((-639 |#3|)) . T) (((-806)) . T))
(((|#1| |#2|) . T))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
-(((#0=(-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) #0#) |has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))))
-((($) . T))
-(|has| |#2| (-795))
-((($) . T))
-(((|#2|) |has| |#2| (-1027)))
-((((-804)) -1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
(|has| |#1| (-795))
(|has| |#1| (-795))
-((((-1082) (-51)) . T))
-(|has| |#1| (-795))
-((((-804)) . T))
-((((-530)) |has| #0=(-388 |#2|) (-593 (-530))) ((#0#) . T))
-((((-530) (-137)) . T))
-((((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((|#1| |#2|) . T))
-((((-388 (-530))) . T) (($) . T))
-(((|#1|) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-804)) . T))
-((((-851 |#1|)) . T))
+((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(((#0=(-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) #0#) |has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))))
+((($) . T))
+(|has| |#2| (-797))
+((($) . T))
+(((|#2|) |has| |#2| (-1030)))
+((((-806)) -1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-572 (-806))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) (((-1184 |#2|)) . T))
+(|has| |#1| (-797))
+(|has| |#1| (-797))
+((((-1085) (-51)) . T))
+(|has| |#1| (-797))
+((((-806)) . T))
+((((-531)) |has| #0=(-388 |#2|) (-594 (-531))) ((#0#) . T))
+((((-531) (-137)) . T))
+((((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((|#1| |#2|) . T))
+((((-388 (-531))) . T) (($) . T))
+(((|#1|) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-806)) . T))
+((((-853 |#1|)) . T))
(|has| |#1| (-344))
(|has| |#1| (-344))
(|has| |#1| (-344))
-(|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))
-(|has| |#1| (-793))
+(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))
+(|has| |#1| (-795))
(|has| |#1| (-344))
-(|has| |#1| (-793))
+(|has| |#1| (-795))
(((|#1|) . T) (($) . T))
-(|has| |#1| (-793))
-((((-1099)) |has| |#1| (-841 (-1099))))
-(((|#1| (-1099)) . T))
-(((|#1| (-1181 |#1|) (-1181 |#1|)) . T))
+(|has| |#1| (-795))
+((((-1102)) |has| |#1| (-843 (-1102))))
+(((|#1| (-1102)) . T))
+(((|#1| (-1184 |#1|) (-1184 |#1|)) . T))
(((|#1| |#2|) . T))
((($ $) . T))
-(|has| |#1| (-1027))
-(((|#1| (-1099) (-766 (-1099)) (-502 (-766 (-1099)))) . T))
-((((-388 (-893 |#1|))) . T))
-((((-506)) . T))
-((((-804)) . T))
+(|has| |#1| (-1030))
+(((|#1| (-1102) (-768 (-1102)) (-503 (-768 (-1102)))) . T))
+((((-388 (-895 |#1|))) . T))
+((((-507)) . T))
+((((-806)) . T))
((($) . T))
(((|#2|) . T) (($) . T))
(((|#1|) |has| |#1| (-162)))
-((((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((|#1| |#2|) . T))
+((((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((|#1| |#2|) . T))
(((|#1|) . T))
-((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#3|) . T))
(((|#1|) |has| |#1| (-162)))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-506)) |has| |#1| (-572 (-506))) (((-833 (-360))) |has| |#1| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#1| (-572 (-833 (-530)))))
-((((-804)) . T))
-(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(|has| |#2| (-793))
-(-12 (|has| |#2| (-216)) (|has| |#2| (-984)))
-(|has| |#1| (-522))
-(|has| |#1| (-1075))
-((((-1082) |#1|) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1| |#1|) . T))
-((((-388 (-530))) |has| |#1| (-975 (-530))) (((-530)) |has| |#1| (-975 (-530))) (((-1099)) |has| |#1| (-975 (-1099))) ((|#1|) . T))
-((((-530) |#2|) . T))
-((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
-((((-530)) |has| |#1| (-827 (-530))) (((-360)) |has| |#1| (-827 (-360))))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1|) . T))
-(((|#1|) . T))
-((((-597 |#4|)) . T) (((-804)) . T))
-((((-506)) |has| |#4| (-572 (-506))))
-((((-506)) |has| |#4| (-572 (-506))))
-((((-804)) . T) (((-597 |#4|)) . T))
-((($) |has| |#1| (-793)))
-(((|#1|) . T))
-((((-597 |#4|)) . T) (((-804)) . T))
-((((-506)) |has| |#4| (-572 (-506))))
-(((|#1|) . T))
-(((|#2|) . T))
-((((-1099)) |has| (-388 |#2|) (-841 (-1099))))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
-((($) . T))
-((($) . T))
-(((|#2|) . T))
-((((-804)) -1461 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-571 (-804))) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027))) (((-1181 |#3|)) . T))
-((((-530) |#2|) . T))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(((|#2| |#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($ $) |has| |#2| (-162)))
-((((-804)) . T))
-((((-804)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((|#2|) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-1082) (-1099) (-530) (-208) (-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-((((-804)) . T))
-((((-530) (-110)) . T))
-(((|#1|) . T))
-((((-804)) . T))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-507)) |has| |#1| (-573 (-507))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#1| (-573 (-835 (-531)))))
+((((-806)) . T))
+(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(|has| |#2| (-795))
+(-12 (|has| |#2| (-216)) (|has| |#2| (-986)))
+(|has| |#1| (-523))
+(|has| |#1| (-1078))
+((((-1085) |#1|) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1| |#1|) . T))
+((((-388 (-531))) |has| |#1| (-977 (-531))) (((-531)) |has| |#1| (-977 (-531))) (((-1102)) |has| |#1| (-977 (-1102))) ((|#1|) . T))
+((((-531) |#2|) . T))
+((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T))
+((((-531)) |has| |#1| (-829 (-531))) (((-360)) |has| |#1| (-829 (-360))))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1|) . T))
+(((|#1|) . T))
+((((-598 |#4|)) . T) (((-806)) . T))
+((((-507)) |has| |#4| (-573 (-507))))
+((((-507)) |has| |#4| (-573 (-507))))
+((((-806)) . T) (((-598 |#4|)) . T))
+((($) |has| |#1| (-795)))
+(((|#1|) . T))
+((((-598 |#4|)) . T) (((-806)) . T))
+((((-507)) |has| |#4| (-573 (-507))))
+(((|#1|) . T))
+(((|#2|) . T))
+((((-1102)) |has| (-388 |#2|) (-843 (-1102))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
+((($) . T))
+((($) . T))
+(((|#2|) . T))
+((((-806)) -1435 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-572 (-806))) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-677)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)) (|has| |#3| (-1030))) (((-1184 |#3|)) . T))
+((((-531) |#2|) . T))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(((|#2| |#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($ $) |has| |#2| (-162)))
+((((-806)) . T))
+((((-806)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((|#2|) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-1085) (-1102) (-531) (-208) (-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+((((-806)) . T))
+((((-531) (-110)) . T))
+(((|#1|) . T))
+((((-806)) . T))
((((-110)) . T))
((((-110)) . T))
-((((-804)) . T))
-((((-804)) . T))
+((((-806)) . T))
+((((-806)) . T))
((((-110)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-((((-804)) . T))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-984))) (($) |has| |#2| (-162)))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+((((-806)) . T))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-986))) (($) |has| |#2| (-162)))
(|has| $ (-140))
((((-388 |#2|)) . T))
-((((-388 (-530))) |has| #0=(-388 |#2|) (-975 (-388 (-530)))) (((-530)) |has| #0# (-975 (-530))) ((#0#) . T))
+((((-388 (-531))) |has| #0=(-388 |#2|) (-977 (-388 (-531)))) (((-531)) |has| #0# (-977 (-531))) ((#0#) . T))
(((|#2| |#2|) . T))
(((|#4|) |has| |#4| (-162)))
(|has| |#2| (-138))
@@ -1209,171 +1209,171 @@
(((|#3|) |has| |#3| (-162)))
(|has| |#1| (-140))
(|has| |#1| (-138))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-216))
-((((-1099) (-51)) . T))
-((((-804)) . T))
+((((-1102) (-51)) . T))
+((((-806)) . T))
(((|#1| |#1|) . T))
-((((-1099)) |has| |#2| (-841 (-1099))))
-((((-530) (-110)) . T))
-(|has| |#1| (-522))
+((((-1102)) |has| |#2| (-843 (-1102))))
+((((-531) (-110)) . T))
+(|has| |#1| (-523))
(((|#2|) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
(((|#3|) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(((|#1|) . T))
-((((-804)) . T))
-((((-506)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-938 |#1|)) . T) ((|#1|) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-388 (-530))) . T) (((-388 |#1|)) . T) ((|#1|) . T) (($) . T))
-(((|#1| (-1095 |#1|)) . T))
-((((-530)) . T) (($) . T) (((-388 (-530))) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(((|#1|) . T))
+((((-806)) . T))
+((((-507)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-940 |#1|)) . T) ((|#1|) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-388 (-531))) . T) (((-388 |#1|)) . T) ((|#1|) . T) (($) . T))
+(((|#1| (-1098 |#1|)) . T))
+((((-531)) . T) (($) . T) (((-388 (-531))) . T))
(((|#3|) . T) (($) . T))
-(|has| |#1| (-795))
+(|has| |#1| (-797))
(((|#2|) . T))
-((((-530)) . T) (($) . T) (((-388 (-530))) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-((((-530) |#2|) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-531)) . T) (($) . T) (((-388 (-531))) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+((((-531) |#2|) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
(((|#2|) . T))
-((((-530) |#3|) . T))
+((((-531) |#3|) . T))
(((|#2|) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-((((-804)) . T))
-(|has| |#1| (-1027))
-(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+((((-806)) . T))
+(|has| |#1| (-1030))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))
(((|#2|) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
(((|#2| |#2|) . T))
(|has| |#2| (-344))
-(((|#2|) . T) (((-530)) |has| |#2| (-975 (-530))) (((-388 (-530))) |has| |#2| (-975 (-388 (-530)))))
+(((|#2|) . T) (((-531)) |has| |#2| (-977 (-531))) (((-388 (-531))) |has| |#2| (-977 (-388 (-531)))))
(((|#2|) . T))
-((((-1082) (-51)) . T))
+((((-1085) (-51)) . T))
(((|#2|) |has| |#2| (-162)))
-((((-530) |#3|) . T))
-((((-530) (-137)) . T))
+((((-531) |#3|) . T))
+((((-531) (-137)) . T))
((((-137)) . T))
-((((-804)) . T))
+((((-806)) . T))
((((-110)) . T))
(|has| |#1| (-140))
(((|#1|) . T))
(|has| |#1| (-138))
((($) . T))
-(|has| |#1| (-522))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(|has| |#1| (-523))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
((($) . T))
(((|#1|) . T))
-(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
-((((-804)) . T))
-((((-530)) |has| |#1| (-593 (-530))) ((|#1|) . T))
-((((-530)) |has| |#1| (-593 (-530))) ((|#1|) . T))
-((((-530)) |has| |#1| (-593 (-530))) ((|#1|) . T))
-((((-1082) (-51)) . T))
+(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531))))
+((((-806)) . T))
+((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T))
+((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T))
+((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T))
+((((-1085) (-51)) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#1| |#2|) . T))
-((((-530) (-137)) . T))
-(((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
-((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(|has| |#1| (-795))
-(((|#2| (-719) (-1012)) . T))
+((((-531) (-137)) . T))
+(((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
+((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(|has| |#1| (-797))
+(((|#2| (-721) (-1014)) . T))
(((|#1| |#2|) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
-(|has| |#1| (-739))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(|has| |#1| (-741))
(((|#1|) |has| |#1| (-162)))
(((|#4|) . T))
(((|#4|) . T))
(((|#1| |#2|) . T))
-(-1461 (|has| |#1| (-140)) (-12 (|has| |#1| (-344)) (|has| |#2| (-140))))
-(-1461 (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| |#2| (-138))))
+(-1435 (|has| |#1| (-140)) (-12 (|has| |#1| (-344)) (|has| |#2| (-140))))
+(-1435 (|has| |#1| (-138)) (-12 (|has| |#1| (-344)) (|has| |#2| (-138))))
(((|#4|) . T))
(|has| |#1| (-138))
-((((-1082) |#1|) . T))
+((((-1085) |#1|) . T))
(|has| |#1| (-140))
(((|#1|) . T))
-((((-530)) . T))
-((((-804)) . T))
+((((-531)) . T))
+((((-806)) . T))
(((|#1| |#2|) . T))
-((((-804)) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-806)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#3|) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(((|#1|) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))) (((-899 |#1|)) . T))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(((|#1|) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))) (((-901 |#1|)) . T))
+(|has| |#1| (-795))
+(|has| |#1| (-795))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(|has| |#2| (-344))
(((|#1|) |has| |#1| (-162)))
-(((|#2|) |has| |#2| (-984)))
-((((-1082) |#1|) . T))
-(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
-(((|#2| (-834 |#1|)) . T))
-((($) . T))
-((((-369) (-1082)) . T))
-((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) -1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-571 (-804))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027))) (((-1181 |#2|)) . T))
-(((#0=(-51)) . T) (((-2 (|:| -3078 (-1082)) (|:| -1874 #0#))) . T))
-(((|#1|) . T))
-((((-804)) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2|) |has| |#2| (-986)))
+((((-1085) |#1|) . T))
+(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))
+(((|#2| (-836 |#1|)) . T))
+((($) . T))
+((((-369) (-1085)) . T))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-806)) -1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-572 (-806))) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030))) (((-1184 |#2|)) . T))
+(((#0=(-51)) . T) (((-2 (|:| -3033 (-1085)) (|:| -1798 #0#))) . T))
+(((|#1|) . T))
+((((-806)) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
((((-137)) . T))
(|has| |#2| (-138))
(|has| |#2| (-140))
(|has| |#1| (-453))
-(-1461 (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
+(-1435 (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)))
(|has| |#1| (-344))
-((((-804)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
-((($) |has| |#1| (-522)))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-((((-804)) . T))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
-((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((((-806)) . T))
+(|has| |#1| (-37 (-388 (-531))))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+((($) |has| |#1| (-523)))
+(|has| |#1| (-795))
+(|has| |#1| (-795))
+((((-806)) . T))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
(((|#1| |#2|) . T))
-((((-1099)) |has| |#1| (-841 (-1099))))
-((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-((((-804)) . T))
-((((-804)) . T))
-(|has| |#1| (-1027))
-(((|#2| (-461 (-2267 |#1|) (-719)) (-806 |#1|)) . T))
-((((-388 (-530))) . #0=(|has| |#2| (-344))) (($) . #0#))
-(((|#1| (-502 (-1099)) (-1099)) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-804)) . T))
-((((-804)) . T))
+((((-1102)) |has| |#1| (-843 (-1102))))
+((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+((((-806)) . T))
+((((-806)) . T))
+(|has| |#1| (-1030))
+(((|#2| (-461 (-2167 |#1|) (-721)) (-808 |#1|)) . T))
+((((-388 (-531))) . #0=(|has| |#2| (-344))) (($) . #0#))
+(((|#1| (-503 (-1102)) (-1102)) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-806)) . T))
+((((-806)) . T))
(((|#3|) . T))
(((|#3|) . T))
(((|#1|) . T))
@@ -1387,62 +1387,62 @@
(|has| |#1| (-140))
(((|#1|) . T))
(((|#2|) . T))
-(((|#1|) . T) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
-((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-1099) (-51)) . T))
+(((|#1|) . T) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T))
+((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-1102) (-51)) . T))
((($ $) . T))
-(((|#1| (-530)) . T))
-((((-851 |#1|)) . T))
-(((|#1|) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))) (($) -1461 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984))))
-(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
+(((|#1| (-531)) . T))
+((((-853 |#1|)) . T))
+(((|#1|) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-986))) (($) -1435 (|has| |#1| (-843 (-1102))) (|has| |#1| (-986))))
+(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+(|has| |#1| (-797))
+(|has| |#1| (-797))
+((((-531) |#2|) . T))
+((((-531)) . T))
+((((-1176 |#1| |#2| |#3|)) -12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))))
+(|has| |#1| (-797))
+((((-639 |#2|)) . T) (((-806)) . T))
+(((|#1| |#2|) . T))
+((((-388 (-895 |#1|))) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+(((|#1|) |has| |#1| (-162)))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344))))
+(|has| |#2| (-797))
+(|has| |#1| (-797))
+(-1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-852)))
+((($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+((((-531) |#2|) . T))
+(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344))))
+(|has| |#1| (-330))
+(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))
+((($) . T) (((-388 (-531))) . T))
+((((-531) (-110)) . T))
+(|has| |#1| (-770))
+(|has| |#1| (-770))
+(((|#1|) . T))
+(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
(|has| |#1| (-795))
(|has| |#1| (-795))
-((((-530) |#2|) . T))
-((((-530)) . T))
-((((-1173 |#1| |#2| |#3|)) -12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))))
(|has| |#1| (-795))
-((((-637 |#2|)) . T) (((-804)) . T))
-(((|#1| |#2|) . T))
-((((-388 (-893 |#1|))) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#1|) |has| |#1| (-162)))
-(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344))))
-(|has| |#2| (-795))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(|has| |#1| (-37 (-388 (-531))))
+((((-531)) . T) (($) . T) (((-388 (-531))) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(|has| |#1| (-37 (-388 (-531))))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-1102)) |has| |#1| (-843 (-1102))) (((-1014)) . T))
+(((|#1|) . T))
(|has| |#1| (-795))
-(-1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-850)))
-((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-((((-530) |#2|) . T))
-(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344))))
-(|has| |#1| (-330))
-(((|#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
-((($) . T) (((-388 (-530))) . T))
-((((-530) (-110)) . T))
-(|has| |#1| (-768))
-(|has| |#1| (-768))
-(((|#1|) . T))
-(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(|has| |#1| (-37 (-388 (-530))))
-((((-530)) . T) (($) . T) (((-388 (-530))) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-(|has| |#1| (-37 (-388 (-530))))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-1099)) |has| |#1| (-841 (-1099))) (((-1012)) . T))
-(((|#1|) . T))
-(|has| |#1| (-793))
-(((#0=(-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) #0#) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(|has| |#1| (-1027))
+(((#0=(-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) #0#) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(|has| |#1| (-1030))
(((|#1|) . T))
(((|#2| |#2|) . T))
(((|#1|) . T))
@@ -1451,15 +1451,15 @@
(((|#3| |#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-(((|#1| (-502 |#2|) |#2|) . T))
-((((-804)) . T))
-((((-719)) . T) (((-804)) . T))
-(((|#1| (-719) (-1012)) . T))
+(((|#1| (-503 |#2|) |#2|) . T))
+((((-806)) . T))
+((((-721)) . T) (((-806)) . T))
+(((|#1| (-721) (-1014)) . T))
(((|#3|) . T))
(((|#1|) . T))
((((-137)) . T))
(((|#2|) |has| |#2| (-162)))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030)))
(((|#1|) . T))
(|has| |#1| (-138))
(|has| |#1| (-140))
@@ -1468,249 +1468,249 @@
(((|#3|) |has| |#3| (-344)))
(((|#1|) . T))
(((|#2|) |has| |#1| (-344)))
-((((-804)) . T))
+((((-806)) . T))
(((|#2|) . T))
-(((|#1| (-1095 |#1|)) . T))
-((((-1012)) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-((($) . T) ((|#1|) . T) (((-388 (-530))) . T))
+(((|#1| (-1098 |#1|)) . T))
+((((-1014)) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+((($) . T) ((|#1|) . T) (((-388 (-531))) . T))
(((|#2|) . T))
-((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-((($) |has| |#1| (-793)))
-(|has| |#1| (-850))
-((((-804)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((($) |has| |#1| (-795)))
+(|has| |#1| (-852))
+((((-806)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((#0=(-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) #0#) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-850)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((#0=(-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) #0#) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-852)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-852)))
(((|#1|) . T) (($) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
(((|#1| |#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344))))
-(|has| |#1| (-795))
-(|has| |#1| (-522))
-((((-543 |#1|)) . T))
+(((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344))))
+(|has| |#1| (-797))
+(|has| |#1| (-523))
+((((-544 |#1|)) . T))
((($) . T))
(((|#2|) . T))
-(-1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-768))) (-12 (|has| |#1| (-344)) (|has| |#2| (-795))))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-((((-851 |#1|)) . T))
+(-1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-770))) (-12 (|has| |#1| (-344)) (|has| |#2| (-797))))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+((((-853 |#1|)) . T))
(((|#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) . T))
(((|#1| |#4| |#5|) . T))
-(((|#1| (-719)) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))))
-((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
-((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
-((((-622 |#1|)) . T))
+(((|#1| (-721)) . T))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)) ((|#1|) |has| |#1| (-162)))
+(((|#1|) |has| |#1| (-162)) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T))
+((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T))
+((((-624 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-506)) . T))
-((((-804)) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-804)) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-(((|#2|) . T))
-(-1461 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027)))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
-(|has| |#1| (-1121))
-(|has| |#1| (-1121))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
-(|has| |#1| (-1121))
-(|has| |#1| (-1121))
+((((-507)) . T))
+((((-806)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-806)) . T))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+(((|#2|) . T))
+(-1435 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-677)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)) (|has| |#3| (-1030)))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T))
+(|has| |#1| (-1124))
+(|has| |#1| (-1124))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030)))
+(|has| |#1| (-1124))
+(|has| |#1| (-1124))
(((|#3| |#3|) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-((($ $) . T) ((#0=(-388 (-530)) #0#) . T) ((#1=(-388 |#1|) #1#) . T) ((|#1| |#1|) . T))
-((((-530)) . T) (($) . T) (((-388 (-530))) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+((($ $) . T) ((#0=(-388 (-531)) #0#) . T) ((#1=(-388 |#1|) #1#) . T) ((|#1| |#1|) . T))
+((((-531)) . T) (($) . T) (((-388 (-531))) . T))
(((|#3|) . T))
-((($) . T) (((-388 (-530))) . T) (((-388 |#1|)) . T) ((|#1|) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-((((-1082) (-51)) . T))
-(|has| |#1| (-1027))
-(-1461 (|has| |#2| (-768)) (|has| |#2| (-795)))
-(((|#1|) . T))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((($) . T) (((-388 (-531))) . T) (((-388 |#1|)) . T) ((|#1|) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+((((-1085) (-51)) . T))
+(|has| |#1| (-1030))
+(-1435 (|has| |#2| (-770)) (|has| |#2| (-797)))
+(((|#1|) . T))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
(((|#1|) |has| |#1| (-162)) (($) . T))
((($) . T))
-((((-1097 |#1| |#2| |#3|)) -12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))
-((((-804)) . T))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+((((-1100 |#1| |#2| |#3|)) -12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))))
+((((-806)) . T))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
((($) . T))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-804)) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
-(|has| |#2| (-850))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-806)) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-852)))
+(|has| |#2| (-852))
(|has| |#1| (-344))
-(((|#2|) |has| |#2| (-1027)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(((|#2|) |has| |#2| (-1030)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
((($) . T) ((|#2|) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
-(|has| |#1| (-850))
-((((-506)) . T) (((-388 (-1095 (-530)))) . T) (((-208)) . T) (((-360)) . T))
-((((-360)) . T) (((-208)) . T) (((-804)) . T))
-(|has| |#1| (-850))
-(|has| |#1| (-850))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-852)))
+(|has| |#1| (-852))
+((((-507)) . T) (((-388 (-1098 (-531)))) . T) (((-208)) . T) (((-360)) . T))
+((((-360)) . T) (((-208)) . T) (((-806)) . T))
+(|has| |#1| (-852))
+(|has| |#1| (-852))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+(((|#1|) . T))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
((($ $) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
((($ $) . T))
-((((-530) (-110)) . T))
+((((-531) (-110)) . T))
((($) . T))
(((|#1|) . T))
-((((-530)) . T))
+((((-531)) . T))
((((-110)) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522)))
-(|has| |#1| (-37 (-388 (-530))))
-(((|#1| (-530)) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523)))
+(|has| |#1| (-37 (-388 (-531))))
+(((|#1| (-531)) . T))
((($) . T))
-(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
-((((-530)) |has| |#1| (-593 (-530))) ((|#1|) . T))
+(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531))))
+((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T))
(((|#1|) . T))
-((((-530)) . T))
+((((-531)) . T))
(((|#1| |#2|) . T))
-((((-1099)) |has| |#1| (-984)))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
+((((-1102)) |has| |#1| (-986)))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
(((|#1|) . T))
-((((-804)) . T))
-(((|#1| (-530)) . T))
-(((|#1| (-1173 |#1| |#2| |#3|)) . T))
+((((-806)) . T))
+(((|#1| (-531)) . T))
+(((|#1| (-1176 |#1| |#2| |#3|)) . T))
(((|#1|) . T))
-(((|#1| (-388 (-530))) . T))
-(((|#1| (-1145 |#1| |#2| |#3|)) . T))
-(((|#1| (-719)) . T))
+(((|#1| (-388 (-531))) . T))
+(((|#1| (-1148 |#1| |#2| |#3|)) . T))
+(((|#1| (-721)) . T))
(((|#1|) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-804)) . T))
-(|has| |#1| (-1027))
-((((-1082) |#1|) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-806)) . T))
+(|has| |#1| (-1030))
+((((-1085) |#1|) . T))
((($) . T))
(|has| |#2| (-140))
(|has| |#2| (-138))
-(((|#1| (-502 (-766 (-1099))) (-766 (-1099))) . T))
-((((-804)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-(((|#1|) |has| |#1| (-984)))
-((((-530) (-110)) . T))
-((((-804)) |has| |#1| (-1027)))
+(((|#1| (-503 (-768 (-1102))) (-768 (-1102))) . T))
+((((-806)) . T))
+((((-1170 |#1| |#2| |#3| |#4|)) . T))
+((((-1170 |#1| |#2| |#3| |#4|)) . T))
+(((|#1|) |has| |#1| (-986)))
+((((-531) (-110)) . T))
+((((-806)) |has| |#1| (-1030)))
(|has| |#2| (-162))
-((((-530)) . T))
-(|has| |#2| (-793))
+((((-531)) . T))
+(|has| |#2| (-795))
(((|#1|) . T))
-((((-530)) . T))
-((((-804)) . T))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-330)))
+((((-531)) . T))
+((((-806)) . T))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-330)))
(|has| |#1| (-140))
-((((-804)) . T))
+((((-806)) . T))
(((|#3|) . T))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-((((-804)) . T))
-((((-1166 |#2| |#3| |#4|)) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-804)) . T))
-((((-47)) -12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (((-570 $)) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) -1461 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))) (((-388 (-893 |#1|))) |has| |#1| (-522)) (((-893 |#1|)) |has| |#1| (-984)) (((-1099)) . T))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+((((-806)) . T))
+((((-1169 |#2| |#3| |#4|)) . T) (((-1170 |#1| |#2| |#3| |#4|)) . T))
+((((-806)) . T))
+((((-47)) -12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531)))) (((-571 $)) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) -1435 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531)))) (|has| |#1| (-977 (-388 (-531))))) (((-388 (-895 |#1|))) |has| |#1| (-523)) (((-895 |#1|)) |has| |#1| (-986)) (((-1102)) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-719)) . T))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+(((|#1| (-721)) . T))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
(((|#1|) |has| |#1| (-291 |#1|)))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-530)) |has| |#1| (-827 (-530))) (((-360)) |has| |#1| (-827 (-360))))
+((((-1170 |#1| |#2| |#3| |#4|)) . T))
+((((-531)) |has| |#1| (-829 (-531))) (((-360)) |has| |#1| (-829 (-360))))
(((|#1|) . T))
-(|has| |#1| (-522))
+(|has| |#1| (-523))
(((|#1|) . T))
-((((-804)) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+((((-806)) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
(((|#1|) |has| |#1| (-162)))
-((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
(((|#1|) . T))
-(((|#3|) |has| |#3| (-1027)))
-(((|#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-344))))
-((((-1166 |#2| |#3| |#4|)) . T))
+(((|#3|) |has| |#3| (-1030)))
+(((|#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-344))))
+((((-1169 |#2| |#3| |#4|)) . T))
((((-110)) . T))
-(|has| |#1| (-768))
-(|has| |#1| (-768))
-(((|#1| (-530) (-1012)) . T))
+(|has| |#1| (-770))
+(|has| |#1| (-770))
+(((|#1| (-531) (-1014)) . T))
((($) |has| |#1| (-291 $)) ((|#1|) |has| |#1| (-291 |#1|)))
-(|has| |#1| (-793))
-(|has| |#1| (-793))
-(((|#1| (-530) (-1012)) . T))
-(-1461 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(((|#1| (-388 (-530)) (-1012)) . T))
-(((|#1| (-719) (-1012)) . T))
(|has| |#1| (-795))
-(((#0=(-851 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-530)) #1#) . T))
+(|has| |#1| (-795))
+(((|#1| (-531) (-1014)) . T))
+(-1435 (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(((|#1| (-388 (-531)) (-1014)) . T))
+(((|#1| (-721) (-1014)) . T))
+(|has| |#1| (-797))
+(((#0=(-853 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-531)) #1#) . T))
(|has| |#2| (-138))
(|has| |#2| (-140))
(((|#2|) . T))
(|has| |#1| (-138))
(|has| |#1| (-140))
-(|has| |#1| (-1027))
-((((-851 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
-(|has| |#1| (-1027))
+(|has| |#1| (-1030))
+((((-853 |#1|)) . T) (($) . T) (((-388 (-531))) . T))
+(|has| |#1| (-1030))
(((|#1|) . T))
-(|has| |#1| (-1027))
-((((-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-593 (-530)))) ((|#2|) |has| |#1| (-344)))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
+(|has| |#1| (-1030))
+((((-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-594 (-531)))) ((|#2|) |has| |#1| (-344)))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030)))
(((|#2|) |has| |#2| (-162)))
(((|#1|) |has| |#1| (-162)))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-((((-804)) . T))
-(|has| |#3| (-793))
-((((-804)) . T))
-((((-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T))
-((((-804)) . T))
-(((|#1| |#1|) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))))
-(((|#1|) . T))
-((((-530)) . T))
-((((-530)) . T))
-(((|#1|) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-984))))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+((((-806)) . T))
+(|has| |#3| (-795))
+((((-806)) . T))
+((((-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T))
+((((-806)) . T))
+(((|#1| |#1|) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-986))))
+(((|#1|) . T))
+((((-531)) . T))
+((((-531)) . T))
+(((|#1|) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-986))))
(((|#2|) |has| |#2| (-344)))
-((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-344)))
-(|has| |#1| (-795))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(((|#2|) . T))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) |has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-850)))
-(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-506)) . T) (((-530)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
-((((-804)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-((((-530)) . T) (($) . T) (((-388 (-530))) . T))
-((((-530)) . T) (($) . T) (((-388 (-530))) . T))
+((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-344)))
+(|has| |#1| (-797))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(((|#2|) . T))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) |has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-852)))
+(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531))))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-507)) . T) (((-531)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T))
+((((-806)) . T))
+(|has| |#1| (-37 (-388 (-531))))
+((((-531)) . T) (($) . T) (((-388 (-531))) . T))
+((((-531)) . T) (($) . T) (((-388 (-531))) . T))
(|has| |#1| (-216))
(((|#1|) . T))
-(((|#1| (-530)) . T))
-(|has| |#1| (-793))
-(((|#1| (-1097 |#1| |#2| |#3|)) . T))
+(((|#1| (-531)) . T))
+(|has| |#1| (-795))
+(((|#1| (-1100 |#1| |#2| |#3|)) . T))
(((|#1| |#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#1| (-388 (-530))) . T))
-(((|#1| (-1090 |#1| |#2| |#3|)) . T))
-(((|#1| (-719)) . T))
+(((|#1| (-388 (-531))) . T))
+(((|#1| (-1093 |#1| |#2| |#3|)) . T))
+(((|#1| (-721)) . T))
(((|#1|) . T))
(((|#1| |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) . T))
(((|#1|) . T))
@@ -1722,176 +1722,177 @@
(((|#1| |#2|) . T))
((((-127)) . T))
((((-137)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(((|#1|) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) . T) (($ $) . T))
-((((-804)) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(((|#1|) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) . T) (($ $) . T))
+((((-806)) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
(|has| |#1| (-344))
(|has| |#1| (-344))
(|has| (-388 |#2|) (-216))
-(|has| |#1| (-850))
-(((|#2|) |has| |#2| (-984)))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+(|has| |#1| (-852))
+(((|#2|) |has| |#2| (-986)))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
(|has| |#1| (-344))
(((|#1|) |has| |#1| (-162)))
(((|#1| |#1|) . T))
-((((-811 |#1|)) . T))
-((((-804)) . T))
+((((-813 |#1|)) . T))
+((((-806)) . T))
(((|#1|) . T))
-(((|#2|) |has| |#2| (-1027)))
-(|has| |#2| (-795))
+(((|#2|) |has| |#2| (-1030)))
+(|has| |#2| (-797))
(((|#1|) . T))
-((((-388 (-530))) . T) (((-530)) . T) (((-570 $)) . T))
+((((-388 (-531))) . T) (((-531)) . T) (((-571 $)) . T))
(((|#1|) . T))
-((((-804)) . T))
+((((-806)) . T))
((($) . T))
-(|has| |#1| (-795))
-((((-804)) . T))
-(((|#1| (-502 |#2|) |#2|) . T))
-(((|#1| (-530) (-1012)) . T))
-((((-851 |#1|)) . T))
-((((-804)) . T))
+(|has| |#1| (-797))
+((((-806)) . T))
+(((|#1| (-503 |#2|) |#2|) . T))
+(((|#1| (-531) (-1014)) . T))
+((((-853 |#1|)) . T))
+((((-806)) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(((|#1| (-388 (-530)) (-1012)) . T))
-(((|#1| (-719) (-1012)) . T))
-(((#0=(-388 |#2|) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-(((|#1|) . T) (((-530)) -1461 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))) (((-388 (-530))) . T))
-(((|#1| (-561 |#1| |#3|) (-561 |#1| |#2|)) . T))
+(((|#1| (-388 (-531)) (-1014)) . T))
+(((|#1| (-721) (-1014)) . T))
+(((#0=(-388 |#2|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
+(((|#1|) . T) (((-531)) -1435 (|has| (-388 (-531)) (-977 (-531))) (|has| |#1| (-977 (-531)))) (((-388 (-531))) . T))
+(((|#1| (-562 |#1| |#3|) (-562 |#1| |#2|)) . T))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
+((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T))
(|has| |#2| (-216))
-(((|#2| (-502 (-806 |#1|)) (-806 |#1|)) . T))
-((((-804)) . T))
-((($) |has| |#1| (-522)) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) . T))
+(((|#2| (-503 (-808 |#1|)) (-808 |#1|)) . T))
+((((-806)) . T))
+((($) |has| |#1| (-523)) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-806)) . T))
(((|#1| |#3|) . T))
-((((-804)) . T))
+((((-806)) . T))
(((|#1|) |has| |#1| (-162)))
-((((-647)) . T))
-((((-647)) . T))
+((((-649)) . T))
+((((-649)) . T))
(((|#2|) |has| |#2| (-162)))
-(|has| |#2| (-793))
-((((-110)) |has| |#1| (-1027)) (((-804)) -1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027))))
+(|has| |#2| (-795))
+((((-110)) |has| |#1| (-1030)) (((-806)) -1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)) (|has| |#1| (-1042)) (|has| |#1| (-1030))))
(((|#1|) . T) (($) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) . T))
-((((-804)) . T))
-((((-530) |#1|) . T))
-((((-647)) . T) (((-388 (-530))) . T) (((-530)) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) . T))
+((((-806)) . T))
+((((-531) |#1|) . T))
+((((-649)) . T) (((-388 (-531))) . T) (((-531)) . T))
(((|#1| |#1|) |has| |#1| (-162)))
(((|#2|) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
((((-360)) . T))
-((((-647)) . T))
-((((-388 (-530))) . #0=(|has| |#2| (-344))) (($) . #0#))
+((((-649)) . T))
+((((-388 (-531))) . #0=(|has| |#2| (-344))) (($) . #0#))
(((|#1|) |has| |#1| (-162)))
-((((-388 (-893 |#1|))) . T))
+((((-388 (-895 |#1|))) . T))
(((|#2| |#2|) . T))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
(((|#2|) . T))
-(|has| |#2| (-795))
-(((|#3|) |has| |#3| (-984)))
-(|has| |#2| (-850))
-(|has| |#1| (-850))
+(|has| |#2| (-797))
+(((|#3|) |has| |#3| (-986)))
+(|has| |#2| (-852))
+(|has| |#1| (-852))
(|has| |#1| (-344))
-(|has| |#1| (-795))
-((((-1099)) |has| |#2| (-841 (-1099))))
-((((-804)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-388 (-530))) . T) (($) . T))
+(|has| |#1| (-797))
+((((-1102)) |has| |#2| (-843 (-1102))))
+((((-806)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-388 (-531))) . T) (($) . T))
(|has| |#1| (-453))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-344))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-522)) (|has| |#1| (-984)) (|has| |#1| (-1039)))
-(|has| |#1| (-37 (-388 (-530))))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-453)) (|has| |#1| (-523)) (|has| |#1| (-986)) (|has| |#1| (-1042)))
+(|has| |#1| (-37 (-388 (-531))))
((((-114 |#1|)) . T))
((((-114 |#1|)) . T))
(|has| |#1| (-330))
((((-137)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-((($) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(((|#2|) . T) (((-804)) . T))
-(((|#2|) . T) (((-804)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-795))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
+(|has| |#1| (-37 (-388 (-531))))
+((($) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(((|#2|) . T) (((-806)) . T))
+(((|#2|) . T) (((-806)) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-797))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) ((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) ((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
(((|#2|) . T))
(((|#3|) . T))
((((-114 |#1|)) . T))
(|has| |#1| (-349))
-(|has| |#1| (-795))
-(((|#2|) . T) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
+(|has| |#1| (-797))
+(((|#2|) . T) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T))
((((-114 |#1|)) . T))
(((|#2|) |has| |#2| (-162)))
(((|#1|) . T))
-((((-530)) . T))
+((((-531)) . T))
(|has| |#1| (-344))
(|has| |#1| (-344))
-((((-804)) . T))
-((((-804)) . T))
-((((-506)) |has| |#1| (-572 (-506))) (((-833 (-530))) |has| |#1| (-572 (-833 (-530)))) (((-833 (-360))) |has| |#1| (-572 (-833 (-360)))) (((-360)) . #0=(|has| |#1| (-960))) (((-208)) . #0#))
+((((-806)) . T))
+((((-806)) . T))
+((((-507)) |has| |#1| (-573 (-507))) (((-835 (-531))) |has| |#1| (-573 (-835 (-531)))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360)))) (((-360)) . #0=(|has| |#1| (-962))) (((-208)) . #0#))
(((|#1|) |has| |#1| (-344)))
-((((-804)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((($ $) . T) (((-570 $) $) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-((($) . T) (((-1167 |#1| |#2| |#3| |#4|)) . T) (((-388 (-530))) . T))
-((($) -1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-522)))
+((((-806)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((($ $) . T) (((-571 $) $) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+((($) . T) (((-1170 |#1| |#2| |#3| |#4|)) . T) (((-388 (-531))) . T))
+((($) -1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-523)))
(|has| |#1| (-344))
(|has| |#1| (-344))
(|has| |#1| (-344))
-((((-360)) . T) (((-530)) . T) (((-388 (-530))) . T))
-((((-597 (-728 |#1| (-806 |#2|)))) . T) (((-804)) . T))
-((((-506)) |has| (-728 |#1| (-806 |#2|)) (-572 (-506))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-360)) . T) (((-531)) . T) (((-388 (-531))) . T))
+((((-598 (-730 |#1| (-808 |#2|)))) . T) (((-806)) . T))
+((((-507)) |has| (-730 |#1| (-808 |#2|)) (-573 (-507))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
((((-360)) . T))
-(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
-((((-804)) . T))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-850)))
-(((|#1|) . T))
-(|has| |#1| (-795))
-(|has| |#1| (-795))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
-(|has| |#1| (-1027))
-((((-804)) . T))
-((((-388 (-530))) . T) (((-530)) . T) (((-570 $)) . T))
+(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))
+((((-806)) . T))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-852)))
+(((|#1|) . T))
+(|has| |#1| (-797))
+(|has| |#1| (-797))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
+(|has| |#1| (-1030))
+((((-806)) . T))
+((((-1102)) . T) (((-806)) . T) (((-1107)) . T))
+((((-388 (-531))) . T) (((-531)) . T) (((-571 $)) . T))
(|has| |#1| (-138))
(|has| |#1| (-140))
-((((-530)) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(((#0=(-1166 |#2| |#3| |#4|)) . T) (((-388 (-530))) |has| #0# (-37 (-388 (-530)))) (($) . T))
-((((-530)) . T))
+((((-531)) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(((#0=(-1169 |#2| |#3| |#4|)) . T) (((-388 (-531))) |has| #0# (-37 (-388 (-531)))) (($) . T))
+((((-531)) . T))
(|has| |#1| (-344))
-(-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140)))
-(-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138)))
+(-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140)))
+(-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138)))
(|has| |#1| (-344))
(|has| |#1| (-138))
(|has| |#1| (-140))
@@ -1900,1329 +1901,1330 @@
(|has| |#1| (-216))
(|has| |#1| (-344))
(((|#3|) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-530)) |has| |#2| (-593 (-530))) ((|#2|) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-531)) |has| |#2| (-594 (-531))) ((|#2|) . T))
(((|#2|) . T))
-(|has| |#1| (-1027))
+(|has| |#1| (-1030))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
+(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531))))
(((|#3|) |has| |#3| (-162)))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
-((((-530)) . T))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030)))
+((((-531)) . T))
(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
-((((-388 (-530))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T))
-((((-804)) . T))
+((((-388 (-531))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T))
+((((-806)) . T))
(((|#3|) . T))
-(((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-272)) (|has| |#1| (-344))) ((#0=(-388 (-530)) #0#) |has| |#1| (-344)))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
-((($) . T))
-((((-530) |#1|) . T))
-((((-1099)) |has| (-388 |#2|) (-841 (-1099))))
-(((|#1|) . T) (($) -1461 (|has| |#1| (-272)) (|has| |#1| (-344))) (((-388 (-530))) |has| |#1| (-344)))
-((((-506)) |has| |#2| (-572 (-506))))
-((((-637 |#2|)) . T) (((-804)) . T))
-(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-((((-811 |#1|)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1461 (|has| |#4| (-741)) (|has| |#4| (-793)))
-(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
-((((-804)) . T))
-((((-804)) . T))
-(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#2|) |has| |#2| (-984)))
+(((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-272)) (|has| |#1| (-344))) ((#0=(-388 (-531)) #0#) |has| |#1| (-344)))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T))
+((($) . T))
+((((-531) |#1|) . T))
+((((-1102)) |has| (-388 |#2|) (-843 (-1102))))
+(((|#1|) . T) (($) -1435 (|has| |#1| (-272)) (|has| |#1| (-344))) (((-388 (-531))) |has| |#1| (-344)))
+((((-507)) |has| |#2| (-573 (-507))))
+((((-639 |#2|)) . T) (((-806)) . T))
+(((|#1|) . T))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+((((-813 |#1|)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(-1435 (|has| |#4| (-743)) (|has| |#4| (-795)))
+(-1435 (|has| |#3| (-743)) (|has| |#3| (-795)))
+((((-806)) . T))
+((((-806)) . T))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+(((|#2|) |has| |#2| (-986)))
(((|#1|) . T))
((((-388 |#2|)) . T))
(((|#1|) . T))
-(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))
-((((-530) |#1|) . T))
-(((|#1|) . T))
-((($) . T))
-((((-530)) . T) (($) . T) (((-388 (-530))) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-388 (-530))) . T) (($) . T))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-1139)))
-((($) . T))
-((((-388 (-530))) |has| #0=(-388 |#2|) (-975 (-388 (-530)))) (((-530)) |has| #0# (-975 (-530))) ((#0#) . T))
-(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
-(((|#1| (-719)) . T))
+(((|#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))
+((((-531) |#1|) . T))
+(((|#1|) . T))
+((($) . T))
+((((-531)) . T) (($) . T) (((-388 (-531))) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-388 (-531))) . T) (($) . T))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-1142)))
+((($) . T))
+((((-388 (-531))) |has| #0=(-388 |#2|) (-977 (-388 (-531)))) (((-531)) |has| #0# (-977 (-531))) ((#0#) . T))
+(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531))))
+(((|#1| (-721)) . T))
+(|has| |#1| (-797))
+(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531))))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((((-531)) . T))
+(|has| |#1| (-37 (-388 (-531))))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(|has| |#1| (-795))
-(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
-((((-530)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(|has| |#1| (-793))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
(|has| |#1| (-330))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
(((|#1| |#2|) . T))
((((-137)) . T))
-((((-728 |#1| (-806 |#2|))) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-(|has| |#1| (-1121))
-(((|#1|) . T))
-(-1461 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-675)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)) (|has| |#3| (-1027)))
-((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)))
-(((|#2|) . T))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-851 |#1|)) . T))
-((($) . T))
-((((-388 (-893 |#1|))) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-506)) |has| |#4| (-572 (-506))))
-((((-804)) . T) (((-597 |#4|)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(((|#1|) . T))
-(|has| |#1| (-793))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) |has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))))
-(|has| |#1| (-1027))
-(|has| |#1| (-344))
+((((-730 |#1| (-808 |#2|))) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+(|has| |#1| (-1124))
+(((|#1|) . T))
+(-1435 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-349)) (|has| |#3| (-677)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)) (|has| |#3| (-1030)))
+((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)))
+(((|#2|) . T))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-853 |#1|)) . T))
+((($) . T))
+((((-388 (-895 |#1|))) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-507)) |has| |#4| (-573 (-507))))
+((((-806)) . T) (((-598 |#4|)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(((|#1|) . T))
(|has| |#1| (-795))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) |has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))))
+(|has| |#1| (-1030))
+(|has| |#1| (-344))
+(|has| |#1| (-797))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((($) . T) (((-388 (-530))) . T))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
+((($) . T) (((-388 (-531))) . T))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) |has| |#1| (-162)))
(|has| |#1| (-138))
(|has| |#1| (-140))
-(-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140)))
-(-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138)))
+(-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-140)) (|has| |#1| (-344))) (|has| |#1| (-140)))
+(-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138)))
(|has| |#1| (-138))
(|has| |#1| (-140))
(|has| |#1| (-140))
(|has| |#1| (-138))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(|has| |#1| (-793))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(|has| |#1| (-795))
(((|#1| |#2|) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
-((((-530)) |has| |#1| (-593 (-530))) ((|#1|) . T))
-((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-(|has| |#1| (-1027))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T) (((-530)) . T))
+(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531))))
+((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T))
+((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+(|has| |#1| (-1030))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T) (((-531)) . T))
(|has| |#2| (-138))
(|has| |#2| (-140))
-((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-(|has| |#1| (-1027))
+((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+(|has| |#1| (-1030))
(((|#2|) |has| |#2| (-162)))
(((|#2|) . T))
(((|#1| |#1|) . T))
(((|#3|) |has| |#3| (-344)))
((((-388 |#2|)) . T))
-((((-804)) . T))
-(((|#1|) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
-(((|#1|) -1461 (|has| |#1| (-162)) (|has| |#1| (-344))))
+((((-806)) . T))
+(((|#1|) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
+(((|#1|) -1435 (|has| |#1| (-162)) (|has| |#1| (-344))))
((((-297 |#1|)) . T))
(((|#2|) |has| |#2| (-344)))
(((|#2|) . T))
-((((-388 (-530))) . T) (((-647)) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((#0=(-728 |#1| (-806 |#2|)) #0#) |has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))))
-((((-806 |#1|)) . T))
+((((-388 (-531))) . T) (((-649)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((#0=(-730 |#1| (-808 |#2|)) #0#) |has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))))
+((((-808 |#1|)) . T))
(((|#2|) |has| |#2| (-162)))
(((|#1|) |has| |#1| (-162)))
(((|#2|) . T))
-((((-1099)) |has| |#1| (-841 (-1099))) (((-1012)) . T))
-((((-1099)) |has| |#1| (-841 (-1099))) (((-1017 (-1099))) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(|has| |#1| (-37 (-388 (-530))))
-(((|#4|) |has| |#4| (-984)) (((-530)) -12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))))
-(((|#3|) |has| |#3| (-984)) (((-530)) -12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))))
+((((-1102)) |has| |#1| (-843 (-1102))) (((-1014)) . T))
+((((-1102)) |has| |#1| (-843 (-1102))) (((-1020 (-1102))) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(|has| |#1| (-37 (-388 (-531))))
+(((|#4|) |has| |#4| (-986)) (((-531)) -12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))))
+(((|#3|) |has| |#3| (-986)) (((-531)) -12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))))
(|has| |#1| (-138))
(|has| |#1| (-140))
((($ $) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027)))
-(|has| |#1| (-522))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)) (|has| |#1| (-1042)) (|has| |#1| (-1030)))
+(|has| |#1| (-523))
(((|#2|) . T))
-((((-530)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-531)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
(((|#1|) . T))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
-((((-543 |#1|)) . T))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986)))
+((((-544 |#1|)) . T))
((($) . T))
(((|#1| (-57 |#1|) (-57 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
((($) . T))
(((|#1|) . T))
-((((-804)) . T))
-(((|#2|) |has| |#2| (-6 (-4271 "*"))))
+((((-806)) . T))
+(((|#2|) |has| |#2| (-6 (-4275 "*"))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-388 (-530))) |has| |#2| (-975 (-388 (-530)))) (((-530)) |has| |#2| (-975 (-530))) ((|#2|) . T) (((-806 |#1|)) . T))
-((($) . T) (((-114 |#1|)) . T) (((-388 (-530))) . T))
-((((-1051 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-((((-1095 |#1|)) . T) (((-1012)) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-((((-1051 |#1| (-1099))) . T) (((-1017 (-1099))) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-1099)) . T))
-(|has| |#1| (-1027))
+((((-388 (-531))) |has| |#2| (-977 (-388 (-531)))) (((-531)) |has| |#2| (-977 (-531))) ((|#2|) . T) (((-808 |#1|)) . T))
+((($) . T) (((-114 |#1|)) . T) (((-388 (-531))) . T))
+((((-1054 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+((((-1098 |#1|)) . T) (((-1014)) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+((((-1054 |#1| (-1102))) . T) (((-1020 (-1102))) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-1102)) . T))
+(|has| |#1| (-1030))
((($) . T))
-(|has| |#1| (-1027))
-((((-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#2| (-827 (-530)))) (((-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#2| (-827 (-360)))))
+(|has| |#1| (-1030))
+((((-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#2| (-829 (-531)))) (((-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#2| (-829 (-360)))))
(((|#1| |#2|) . T))
-((((-1099) |#1|) . T))
+((((-1102) |#1|) . T))
(((|#4|) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-((((-1099) (-51)) . T))
-((((-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T))
-((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T))
-((((-804)) . T))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-675)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)) (|has| |#2| (-1027)))
-(((#0=(-1167 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-(((|#1| |#1|) |has| |#1| (-162)) ((#0=(-388 (-530)) #0#) |has| |#1| (-522)) (($ $) |has| |#1| (-522)))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+((((-1102) (-51)) . T))
+((((-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) . T))
+((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T))
+((((-806)) . T))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-349)) (|has| |#2| (-677)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)) (|has| |#2| (-1030)))
+(((#0=(-1170 |#1| |#2| |#3| |#4|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
+(((|#1| |#1|) |has| |#1| (-162)) ((#0=(-388 (-531)) #0#) |has| |#1| (-523)) (($ $) |has| |#1| (-523)))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
(((|#1| $) |has| |#1| (-268 |#1| |#1|)))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (((-388 (-530))) . T) (($) . T))
-(((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-522)) (($) |has| |#1| (-522)))
+((((-1170 |#1| |#2| |#3| |#4|)) . T) (((-388 (-531))) . T) (($) . T))
+(((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-523)) (($) |has| |#1| (-523)))
(|has| |#1| (-344))
(|has| |#1| (-138))
(|has| |#1| (-140))
(|has| |#1| (-140))
(|has| |#1| (-138))
-((((-388 (-530))) . T) (($) . T))
+((((-388 (-531))) . T) (($) . T))
(((|#3|) |has| |#3| (-344)))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
-((((-1099)) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
+((((-1102)) . T))
(((|#1|) . T))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
(((|#2| |#3|) . T))
-(-1461 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(((|#1| (-502 |#2|)) . T))
-(((|#1| (-719)) . T))
-(((|#1| (-502 (-1017 (-1099)))) . T))
+(-1435 (|has| |#2| (-344)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+(((|#1| (-503 |#2|)) . T))
+(((|#1| (-721)) . T))
+(((|#1| (-503 (-1020 (-1102)))) . T))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
-(|has| |#2| (-850))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
-((((-804)) . T))
-((($ $) . T) ((#0=(-1166 |#2| |#3| |#4|) #0#) . T) ((#1=(-388 (-530)) #1#) |has| #0# (-37 (-388 (-530)))))
-((((-851 |#1|)) . T))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
-((($) . T) (((-388 (-530))) . T))
+(|has| |#2| (-852))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
+((((-806)) . T))
+((($ $) . T) ((#0=(-1169 |#2| |#3| |#4|) #0#) . T) ((#1=(-388 (-531)) #1#) |has| #0# (-37 (-388 (-531)))))
+((((-853 |#1|)) . T))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-770)))
+((($) . T) (((-388 (-531))) . T))
((($) . T))
((($) . T))
(|has| |#1| (-344))
-(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-522)))
+(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)) (|has| |#1| (-523)))
(|has| |#1| (-344))
-((($) . T) ((#0=(-1166 |#2| |#3| |#4|)) . T) (((-388 (-530))) |has| #0# (-37 (-388 (-530)))))
+((($) . T) ((#0=(-1169 |#2| |#3| |#4|)) . T) (((-388 (-531))) |has| #0# (-37 (-388 (-531)))))
(((|#1| |#2|) . T))
-((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344)) (|has| |#1| (-330)))
-(-1461 (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)))
-((((-530)) |has| |#1| (-593 (-530))) ((|#1|) . T))
+((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1435 (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)))
+((((-531)) |has| |#1| (-594 (-531))) ((|#1|) . T))
(((|#1| |#2|) . T))
-((((-804)) . T))
-((((-804)) . T))
+((((-806)) . T))
+((((-806)) . T))
((((-110)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
+((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((|#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) . T))
+(((|#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) . T))
(|has| |#2| (-344))
-(|has| |#1| (-795))
+(|has| |#1| (-797))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-804)) . T))
-(|has| |#1| (-1027))
+((((-806)) . T))
+(|has| |#1| (-1030))
(((|#4|) . T))
(((|#4|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-388 $) (-388 $)) |has| |#1| (-522)) (($ $) . T) ((|#1| |#1|) . T))
-(|has| |#2| (-768))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T))
+(|has| |#2| (-770))
(((|#4|) . T))
((($) . T))
((($ $) . T))
((($) . T))
-((((-804)) . T))
-(((|#1| (-502 (-1099))) . T))
+((((-806)) . T))
+(((|#1| (-503 (-1102))) . T))
(((|#1|) |has| |#1| (-162)))
-((((-804)) . T))
-(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-(((|#2|) -1461 (|has| |#2| (-6 (-4271 "*"))) (|has| |#2| (-162))))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(|has| |#2| (-795))
-(|has| |#2| (-850))
-(|has| |#1| (-850))
+((((-806)) . T))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+(((|#2|) -1435 (|has| |#2| (-6 (-4275 "*"))) (|has| |#2| (-162))))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(|has| |#2| (-797))
+(|has| |#2| (-852))
+(|has| |#1| (-852))
(((|#2|) |has| |#2| (-162)))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
-((((-804)) . T))
-((((-804)) . T))
-((((-506)) . T) (((-530)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-806)) . T))
+((((-806)) . T))
+((((-507)) . T) (((-531)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T))
(((|#1| |#2|) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) . T))
(((|#1|) . T))
-((((-804)) . T))
+((((-806)) . T))
(((|#1| |#2|) . T))
-(((|#1| (-388 (-530))) . T))
+(((|#1| (-388 (-531))) . T))
(((|#1|) . T))
-(-1461 (|has| |#1| (-272)) (|has| |#1| (-344)))
+(-1435 (|has| |#1| (-272)) (|has| |#1| (-344)))
((((-137)) . T))
-((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
-(|has| |#1| (-793))
-((((-804)) . T))
-((((-804)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T))
+(|has| |#1| (-795))
+((((-806)) . T))
+((((-806)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#1| |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
(((|#2| |#2|) . T) ((|#1| |#1|) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-506)) |has| |#1| (-572 (-506))) (((-833 (-530))) |has| |#1| (-572 (-833 (-530)))) (((-833 (-360))) |has| |#1| (-572 (-833 (-360)))))
-((((-1099) (-51)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-507)) |has| |#1| (-573 (-507))) (((-835 (-531))) |has| |#1| (-573 (-835 (-531)))) (((-835 (-360))) |has| |#1| (-573 (-835 (-360)))))
+((((-1102) (-51)) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-597 (-137))) . T) (((-1082)) . T))
-((((-804)) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-((((-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
-(|has| |#1| (-795))
-((((-804)) . T))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) . T))
+((((-598 (-137))) . T) (((-1085)) . T))
+((((-806)) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+((((-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((|#1| |#1|) |has| |#1| (-291 |#1|)))
+(|has| |#1| (-797))
+((((-806)) . T))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) . T))
(((|#2|) |has| |#2| (-344)))
-((((-804)) . T))
-((((-506)) |has| |#4| (-572 (-506))))
-((((-804)) . T) (((-597 |#4|)) . T))
-(((|#2|) . T))
-((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-(-1461 (|has| |#4| (-162)) (|has| |#4| (-675)) (|has| |#4| (-793)) (|has| |#4| (-984)))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-((((-1099) (-51)) . T))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(|has| |#1| (-850))
-(|has| |#1| (-850))
-(((|#2|) . T))
-(((|#1|) . T))
-((((-804)) . T))
-((((-530)) . T))
-(((#0=(-388 (-530)) #0#) . T) (($ $) . T))
-((((-388 (-530))) . T) (($) . T))
-(((|#1| (-388 (-530)) (-1012)) . T))
-(|has| |#1| (-1027))
-(|has| |#1| (-522))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(|has| |#1| (-768))
-(((#0=(-851 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-530)) #1#) . T))
+((((-806)) . T))
+((((-507)) |has| |#4| (-573 (-507))))
+((((-806)) . T) (((-598 |#4|)) . T))
+(((|#2|) . T))
+((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+(-1435 (|has| |#4| (-162)) (|has| |#4| (-677)) (|has| |#4| (-795)) (|has| |#4| (-986)))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-677)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+((((-1102) (-51)) . T))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(|has| |#1| (-852))
+(|has| |#1| (-852))
+(((|#2|) . T))
+(((|#1|) . T))
+((((-806)) . T))
+((((-531)) . T))
+(((#0=(-388 (-531)) #0#) . T) (($ $) . T))
+((((-388 (-531))) . T) (($) . T))
+(((|#1| (-388 (-531)) (-1014)) . T))
+(|has| |#1| (-1030))
+(|has| |#1| (-523))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(|has| |#1| (-770))
+(((#0=(-853 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-531)) #1#) . T))
((((-388 |#2|)) . T))
-(|has| |#1| (-793))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-(((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) . T) ((#1=(-530) #1#) . T) (($ $) . T))
-((((-851 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
-(((|#2|) |has| |#2| (-984)) (((-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))))
-(((|#1|) . T) (((-388 (-530))) . T) (((-530)) . T) (($) . T))
+(|has| |#1| (-795))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+(((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) . T) ((#1=(-531) #1#) . T) (($ $) . T))
+((((-853 |#1|)) . T) (($) . T) (((-388 (-531))) . T))
+(((|#2|) |has| |#2| (-986)) (((-531)) -12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986))))
+(((|#1|) . T) (((-388 (-531))) . T) (((-531)) . T) (($) . T))
(((|#1| |#2| |#3| |#4|) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
(((|#2|) . T))
-((((-804)) . T))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
-(((#0=(-51)) . T) (((-2 (|:| -3078 (-1099)) (|:| -1874 #0#))) . T))
+((((-806)) . T))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T))
+(((#0=(-51)) . T) (((-2 (|:| -3033 (-1102)) (|:| -1798 #0#))) . T))
(|has| |#1| (-330))
-((((-530)) . T))
-((((-804)) . T))
-(((#0=(-1167 |#1| |#2| |#3| |#4|) $) |has| #0# (-268 #0# #0#)))
+((((-531)) . T))
+((((-806)) . T))
+(((#0=(-1170 |#1| |#2| |#3| |#4|) $) |has| #0# (-268 #0# #0#)))
(|has| |#1| (-344))
-(((#0=(-1012) |#1|) . T) ((#0# $) . T) (($ $) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-(((#0=(-388 (-530)) #0#) . T) ((#1=(-647) #1#) . T) (($ $) . T))
+(((#0=(-1014) |#1|) . T) ((#0# $) . T) (($ $) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(((#0=(-388 (-531)) #0#) . T) ((#1=(-649) #1#) . T) (($ $) . T))
((((-297 |#1|)) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) |has| |#1| (-344)))
-(|has| |#1| (-1027))
+(((|#1|) . T) (((-388 (-531))) |has| |#1| (-344)))
+(|has| |#1| (-1030))
(((|#1|) . T))
-(((|#1|) -1461 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|))))
-(((|#1|) -1461 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|))))
+(((|#1|) -1435 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|))))
+(((|#1|) -1435 (|has| |#2| (-348 |#1|)) (|has| |#2| (-398 |#1|))))
(((|#2|) . T))
-((((-388 (-530))) . T) (((-647)) . T) (($) . T))
+((((-388 (-531))) . T) (((-649)) . T) (($) . T))
(((|#3| |#3|) . T))
(|has| |#2| (-216))
-((((-806 |#1|)) . T))
-((((-1099)) |has| |#1| (-841 (-1099))) ((|#3|) . T))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-960)))
-((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-((((-804)) . T))
+((((-808 |#1|)) . T))
+((((-1102)) |has| |#1| (-843 (-1102))) ((|#3|) . T))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-962)))
+((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-806)) . T))
(|has| |#1| (-344))
(|has| |#1| (-344))
-((((-388 (-530))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T))
-((((-530)) . T))
-(|has| |#1| (-1027))
+((((-388 (-531))) . T) (($) . T) (((-388 |#1|)) . T) ((|#1|) . T))
+((((-531)) . T))
+(|has| |#1| (-1030))
(((|#3|) . T))
(((|#2|) . T))
(((|#1|) . T))
-((((-530)) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
+((((-531)) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531))))
(((|#1| |#2|) . T))
((($) . T))
-((((-543 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-((($) . T) (((-388 (-530))) . T))
+((((-544 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+((($) . T) (((-388 (-531))) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T) (($) . T))
-(((|#1| (-1181 |#1|) (-1181 |#1|)) . T))
+(((|#1| (-1184 |#1|) (-1184 |#1|)) . T))
(((|#1| |#2| |#3| |#4|) . T))
-((((-804)) . T))
-((((-804)) . T))
-(((#0=(-114 |#1|) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-((((-388 (-530))) |has| |#2| (-975 (-388 (-530)))) (((-530)) |has| |#2| (-975 (-530))) ((|#2|) . T) (((-806 |#1|)) . T))
-((((-1051 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((|#2|) . T))
+((((-806)) . T))
+((((-806)) . T))
+(((#0=(-114 |#1|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
+((((-388 (-531))) |has| |#2| (-977 (-388 (-531)))) (((-531)) |has| |#2| (-977 (-531))) ((|#2|) . T) (((-808 |#1|)) . T))
+((((-1054 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((($ $) . T))
-((((-622 |#1|)) . T))
-((($) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T))
-((((-114 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-((((-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) (((-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))))
+((((-624 |#1|)) . T))
+((($) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T))
+((((-114 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+((((-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))) (((-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360)))))
(((|#2|) . T) ((|#6|) . T))
-(((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) (($) . T))
+(((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) (($) . T))
((((-137)) . T))
((($) . T))
-((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
(((|#1|) . T))
-(|has| |#2| (-850))
-(|has| |#1| (-850))
-(|has| |#1| (-850))
+(|has| |#2| (-852))
+(|has| |#1| (-852))
+(|has| |#1| (-852))
(((|#4|) . T))
-(|has| |#2| (-960))
+(|has| |#2| (-962))
((($) . T))
-(|has| |#1| (-850))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+(|has| |#1| (-852))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
((($) . T))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
((($) . T))
(|has| |#1| (-344))
-((((-851 |#1|)) . T))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-(-1461 (|has| |#1| (-349)) (|has| |#1| (-795)))
+((((-853 |#1|)) . T))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+(-1435 (|has| |#1| (-349)) (|has| |#1| (-797)))
(((|#1|) . T))
-((((-804)) . T))
-((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
+((((-806)) . T))
+((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))))
((((-388 |#2|) |#3|) . T))
-((($) . T) (((-388 (-530))) . T))
-((((-719) |#1|) . T))
-(((|#2| (-223 (-2267 |#1|) (-719))) . T))
-(((|#1| (-502 |#3|)) . T))
-((((-388 (-530))) . T))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-((((-804)) . T))
-(((#0=(-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) #0#) |has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))))
-(|has| |#1| (-850))
+((($) . T) (((-388 (-531))) . T))
+((((-721) |#1|) . T))
+(((|#2| (-223 (-2167 |#1|) (-721))) . T))
+(((|#1| (-503 |#3|)) . T))
+((((-388 (-531))) . T))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+((((-806)) . T))
+(((#0=(-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) #0#) |has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))))
+(|has| |#1| (-852))
(|has| |#2| (-344))
-(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
((((-159 (-360))) . T) (((-208)) . T) (((-360)) . T))
-((((-804)) . T))
+((((-806)) . T))
(((|#1|) . T))
-((((-360)) . T) (((-530)) . T))
-(((#0=(-388 (-530)) #0#) . T) (($ $) . T))
+((((-360)) . T) (((-531)) . T))
+(((#0=(-388 (-531)) #0#) . T) (($ $) . T))
((($ $) . T))
((($ $) . T))
(((|#1| |#1|) . T))
-((((-804)) . T))
-(|has| |#1| (-522))
-((((-388 (-530))) . T) (($) . T))
-((($) . T))
-((($) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
-(|has| |#1| (-37 (-388 (-530))))
-(-12 (|has| |#1| (-515)) (|has| |#1| (-776)))
-((((-804)) . T))
-((((-1099)) -1461 (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1099))))))
+((((-806)) . T))
+(|has| |#1| (-523))
+((((-388 (-531))) . T) (($) . T))
+((($) . T))
+((($) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
+(|has| |#1| (-37 (-388 (-531))))
+(-12 (|has| |#1| (-516)) (|has| |#1| (-778)))
+((((-806)) . T))
+((((-1102)) -1435 (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))) (-12 (|has| |#1| (-344)) (|has| |#2| (-843 (-1102))))))
(|has| |#1| (-344))
-((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
+((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))))
(|has| |#1| (-344))
-((((-388 (-530))) . T) (($) . T))
-((($) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T))
-((((-530) |#1|) . T))
+((((-388 (-531))) . T) (($) . T))
+((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T))
+((((-531) |#1|) . T))
(((|#1|) . T))
(((|#2|) |has| |#1| (-344)))
(((|#2|) |has| |#1| (-344)))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
(((|#1|) . T))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
-(((|#2|) . T) (((-1099)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1099)))) (((-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-530)))) (((-388 (-530))) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-530)))))
+(((|#2|) . T) (((-1102)) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-1102)))) (((-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-531)))) (((-388 (-531))) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-531)))))
(((|#2|) . T))
-((((-1099) #0=(-1167 |#1| |#2| |#3| |#4|)) |has| #0# (-491 (-1099) #0#)) ((#0# #0#) |has| #0# (-291 #0#)))
-((((-570 $) $) . T) (($ $) . T))
-((((-159 (-208))) . T) (((-159 (-360))) . T) (((-1095 (-647))) . T) (((-833 (-360))) . T))
-((((-804)) . T))
-(|has| |#1| (-522))
-(|has| |#1| (-522))
+((((-1102) #0=(-1170 |#1| |#2| |#3| |#4|)) |has| #0# (-492 (-1102) #0#)) ((#0# #0#) |has| #0# (-291 #0#)))
+((((-571 $) $) . T) (($ $) . T))
+((((-159 (-208))) . T) (((-159 (-360))) . T) (((-1098 (-649))) . T) (((-835 (-360))) . T))
+((((-806)) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
(|has| (-388 |#2|) (-216))
-(((|#1| (-388 (-530))) . T))
+(((|#1| (-388 (-531))) . T))
((($ $) . T))
-((((-1099)) |has| |#2| (-841 (-1099))))
+((((-1102)) |has| |#2| (-843 (-1102))))
((($) . T))
-((((-804)) . T))
-((((-388 (-530))) . T) (($) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-804)) . T))
+((((-806)) . T))
+((((-388 (-531))) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-806)) . T))
(((|#2|) |has| |#1| (-344)))
-((((-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-360)))) (((-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-530)))))
+((((-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-829 (-360)))) (((-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-829 (-531)))))
(|has| |#1| (-344))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
(|has| |#1| (-344))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
(|has| |#1| (-344))
-(|has| |#1| (-522))
-(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(|has| |#1| (-523))
+(((|#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
(((|#3|) . T))
(((|#1|) . T))
-(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
(((|#2|) . T))
(((|#2|) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(|has| |#1| (-37 (-388 (-530))))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(|has| |#1| (-37 (-388 (-531))))
(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(|has| |#1| (-37 (-388 (-531))))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
-((((-1082) |#1|) . T))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+((((-1085) |#1|) . T))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))
(|has| |#1| (-140))
-((((-543 |#1|)) . T))
+((((-544 |#1|)) . T))
((($) . T))
((((-388 |#2|)) . T))
-(|has| |#1| (-522))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-330)))
+(|has| |#1| (-523))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-330)))
(|has| |#1| (-140))
-((((-804)) . T))
+((((-806)) . T))
((($) . T))
-((((-388 (-530))) |has| |#2| (-975 (-530))) (((-530)) |has| |#2| (-975 (-530))) (((-1099)) |has| |#2| (-975 (-1099))) ((|#2|) . T))
-(((#0=(-388 |#2|) #0#) . T) ((#1=(-388 (-530)) #1#) . T) (($ $) . T))
-((((-1064 |#1| |#2|)) . T))
-(((|#1| (-530)) . T))
-(((|#1| (-388 (-530))) . T))
-((((-530)) |has| |#2| (-827 (-530))) (((-360)) |has| |#2| (-827 (-360))))
+((((-388 (-531))) |has| |#2| (-977 (-531))) (((-531)) |has| |#2| (-977 (-531))) (((-1102)) |has| |#2| (-977 (-1102))) ((|#2|) . T))
+(((#0=(-388 |#2|) #0#) . T) ((#1=(-388 (-531)) #1#) . T) (($ $) . T))
+((((-1067 |#1| |#2|)) . T))
+(((|#1| (-531)) . T))
+(((|#1| (-388 (-531))) . T))
+((((-531)) |has| |#2| (-829 (-531))) (((-360)) |has| |#2| (-829 (-360))))
(((|#2|) . T))
-((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
+((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T))
((((-110)) . T))
(((|#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) . T))
(((|#2|) . T))
-((((-804)) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-1099) (-51)) . T))
+((((-806)) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-1102) (-51)) . T))
((((-388 |#2|)) . T))
-((((-804)) . T))
+((((-806)) . T))
(((|#1|) . T))
-(|has| |#1| (-1027))
-(|has| |#1| (-739))
-(|has| |#1| (-739))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
+(|has| |#1| (-1030))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
((((-112)) . T) ((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-208)) . T) (((-360)) . T) (((-833 (-360))) . T))
-((((-804)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-388 (-530))) . T))
-(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)) (((-388 (-530))) |has| |#1| (-522)))
-((((-804)) . T))
-((((-804)) . T))
+((((-208)) . T) (((-360)) . T) (((-835 (-360))) . T))
+((((-806)) . T))
+((((-1170 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-388 (-531))) . T))
+(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)) (((-388 (-531))) |has| |#1| (-523)))
+((((-806)) . T))
+((((-806)) . T))
(((|#2|) . T))
-((((-804)) . T))
-(((#0=(-851 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-530)) #1#) . T))
+((((-806)) . T))
+(((#0=(-853 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-531)) #1#) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-851 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
+((((-853 |#1|)) . T) (($) . T) (((-388 (-531))) . T))
(|has| |#1| (-344))
(((|#2|) . T))
-((((-530)) . T))
-((((-804)) . T))
-((((-530)) . T))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
+((((-531)) . T))
+((((-806)) . T))
+((((-531)) . T))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
((((-159 (-360))) . T) (((-208)) . T) (((-360)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-1082)) . T) (((-506)) . T) (((-530)) . T) (((-833 (-530))) . T) (((-360)) . T) (((-208)) . T))
-((((-804)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-1085)) . T) (((-507)) . T) (((-531)) . T) (((-835 (-531))) . T) (((-360)) . T) (((-208)) . T))
+((((-806)) . T))
(|has| |#1| (-140))
(|has| |#1| (-138))
-((($) . T) ((#0=(-1166 |#2| |#3| |#4|)) |has| #0# (-162)) (((-388 (-530))) |has| #0# (-37 (-388 (-530)))))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
+((($) . T) ((#0=(-1169 |#2| |#3| |#4|)) |has| #0# (-162)) (((-388 (-531))) |has| #0# (-37 (-388 (-531)))))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
(|has| |#1| (-344))
(|has| |#1| (-344))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-675)) (|has| |#1| (-841 (-1099))) (|has| |#1| (-984)) (|has| |#1| (-1039)) (|has| |#1| (-1027)))
-(|has| |#1| (-1075))
-((((-530) |#1|) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-453)) (|has| |#1| (-677)) (|has| |#1| (-843 (-1102))) (|has| |#1| (-986)) (|has| |#1| (-1042)) (|has| |#1| (-1030)))
+(|has| |#1| (-1078))
+((((-531) |#1|) . T))
(((|#1|) . T))
(((#0=(-114 |#1|) $) |has| #0# (-268 #0# #0#)))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
((((-112)) . T) ((|#1|) . T))
-((((-804)) . T))
+((((-806)) . T))
(((|#1| |#2|) . T))
-((((-1099) |#1|) . T))
+((((-1102) |#1|) . T))
(((|#1|) |has| |#1| (-291 |#1|)))
-((((-530) |#1|) . T))
+((((-531) |#1|) . T))
(((|#1|) . T))
-((((-530)) . T) (((-388 (-530))) . T))
+((((-531)) . T) (((-388 (-531))) . T))
(((|#1|) . T))
-(|has| |#1| (-522))
-((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
+(|has| |#1| (-523))
+((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
((((-360)) . T))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-344))
(|has| |#1| (-344))
-(|has| |#1| (-522))
-(|has| |#1| (-1027))
-((((-728 |#1| (-806 |#2|))) |has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(|has| |#1| (-523))
+(|has| |#1| (-1030))
+((((-730 |#1| (-808 |#2|))) |has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
(((|#1|) . T))
(((|#2| |#3|) . T))
-(|has| |#2| (-850))
+(|has| |#2| (-852))
(((|#1|) . T))
-(((|#1| (-502 |#2|)) . T))
-(((|#1| (-719)) . T))
+(((|#1| (-503 |#2|)) . T))
+(((|#1| (-721)) . T))
(|has| |#1| (-216))
-(((|#1| (-502 (-1017 (-1099)))) . T))
+(((|#1| (-503 (-1020 (-1102)))) . T))
(|has| |#2| (-344))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) . T))
(((|#1|) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-804)) . T))
-((((-804)) . T))
-(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
-((((-804)) . T))
-((((-1046)) . T) (((-804)) . T))
-((((-804)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-806)) . T))
+((((-806)) . T))
+(-1435 (|has| |#3| (-743)) (|has| |#3| (-795)))
+((((-806)) . T))
+((((-1049)) . T) (((-806)) . T))
+((((-806)) . T))
(((|#1|) . T))
-((($ $) . T) (((-570 $) $) . T))
+((($ $) . T) (((-571 $) $) . T))
(((|#1|) . T))
-((((-530)) . T))
+((((-531)) . T))
(((|#3|) . T))
-((((-804)) . T))
-(-1461 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
-(-1461 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-522)) (|has| |#1| (-984)))
-(((#0=(-543 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-530)) #1#) . T))
-((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
+((((-806)) . T))
+(-1435 (|has| |#1| (-289)) (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1435 (|has| |#1| (-138)) (|has| |#1| (-140)) (|has| |#1| (-162)) (|has| |#1| (-523)) (|has| |#1| (-986)))
+(((#0=(-544 |#1|) #0#) . T) (($ $) . T) ((#1=(-388 (-531)) #1#) . T))
+((($ $) . T) ((#0=(-388 (-531)) #0#) . T))
(((|#1|) |has| |#1| (-162)))
-(((|#1| (-1181 |#1|) (-1181 |#1|)) . T))
-((((-543 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
-((($) . T) (((-388 (-530))) . T))
-((($) . T) (((-388 (-530))) . T))
-(((|#2|) |has| |#2| (-6 (-4271 "*"))))
+(((|#1| (-1184 |#1|) (-1184 |#1|)) . T))
+((((-544 |#1|)) . T) (($) . T) (((-388 (-531))) . T))
+((($) . T) (((-388 (-531))) . T))
+((($) . T) (((-388 (-531))) . T))
+(((|#2|) |has| |#2| (-6 (-4275 "*"))))
(((|#1|) . T))
(((|#1|) . T))
-((((-804)) |has| |#1| (-571 (-804))))
+((((-806)) |has| |#1| (-572 (-806))))
((((-276 |#3|)) . T))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+(((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))) ((|#2| |#2|) . T) (($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
(((|#2| |#2|) . T) ((|#6| |#6|) . T))
(((|#1|) . T))
-((($) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T))
-((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (($) . T))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
+((($) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T))
+((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (($) . T))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
(((|#2|) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T) (($) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
(((|#2|) . T) ((|#6|) . T))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) . T))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(|has| |#2| (-850))
-(|has| |#1| (-850))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+((((-806)) . T))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(|has| |#2| (-852))
+(|has| |#1| (-852))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
(((|#1|) . T))
-((((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) . T))
+((((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#1| (-1027))
-(((|#1|) . T))
-((((-1099)) . T) ((|#1|) . T))
-((((-804)) . T))
-((((-804)) . T))
-(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))
-(((#0=(-388 (-530)) #0#) . T))
-((((-388 (-530))) . T))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(((|#1|) . T))
-(((|#1|) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-((((-506)) . T))
-((((-804)) . T))
-((((-1099)) |has| |#2| (-841 (-1099))) (((-1012)) . T))
-((((-1166 |#2| |#3| |#4|)) . T))
-((((-851 |#1|)) . T))
-((($) . T) (((-388 (-530))) . T))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
-((((-804)) . T))
-(|has| |#1| (-1139))
-(((|#2|) . T))
-((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-((((-1099)) |has| |#1| (-841 (-1099))))
-((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#1|) . T))
-(((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))) ((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
-((($) . T) (((-388 (-530))) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (((-530)) . T) (($) . T))
-(((|#2|) |has| |#2| (-984)) (((-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-522))))
-(|has| |#1| (-522))
+(|has| |#1| (-1030))
+(((|#1|) . T))
+((((-1102)) . T) ((|#1|) . T))
+((((-806)) . T))
+((((-806)) . T))
+(((|#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))
+(((#0=(-388 (-531)) #0#) . T))
+((((-388 (-531))) . T))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(((|#1|) . T))
+(((|#1|) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+((((-507)) . T))
+((((-806)) . T))
+((((-1102)) |has| |#2| (-843 (-1102))) (((-1014)) . T))
+((((-1169 |#2| |#3| |#4|)) . T))
+((((-853 |#1|)) . T))
+((($) . T) (((-388 (-531))) . T))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-770)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-770)))
+((((-806)) . T))
+(|has| |#1| (-1142))
+(((|#2|) . T))
+((($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+((((-1102)) |has| |#1| (-843 (-1102))))
+((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#1|) . T))
+(((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))) ((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))))
+((($) . T) (((-388 (-531))) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (((-531)) . T) (($) . T))
+(((|#2|) |has| |#2| (-986)) (((-531)) -12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986))))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-523))))
+(|has| |#1| (-523))
(((|#1|) |has| |#1| (-344)))
-((((-530)) . T))
-(|has| |#1| (-739))
-(|has| |#1| (-739))
-((((-1099) #0=(-114 |#1|)) |has| #0# (-491 (-1099) #0#)) ((#0# #0#) |has| #0# (-291 #0#)))
-(((|#2|) . T) (((-530)) |has| |#2| (-975 (-530))) (((-388 (-530))) |has| |#2| (-975 (-388 (-530)))))
-((((-1012)) . T) ((|#2|) . T) (((-530)) |has| |#2| (-975 (-530))) (((-388 (-530))) |has| |#2| (-975 (-388 (-530)))))
+((((-531)) . T))
+(|has| |#1| (-741))
+(|has| |#1| (-741))
+((((-1102) #0=(-114 |#1|)) |has| #0# (-492 (-1102) #0#)) ((#0# #0#) |has| #0# (-291 #0#)))
+(((|#2|) . T) (((-531)) |has| |#2| (-977 (-531))) (((-388 (-531))) |has| |#2| (-977 (-388 (-531)))))
+((((-1014)) . T) ((|#2|) . T) (((-531)) |has| |#2| (-977 (-531))) (((-388 (-531))) |has| |#2| (-977 (-388 (-531)))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-530) (-719)) . T) ((|#3| (-719)) . T))
+((((-531) (-721)) . T) ((|#3| (-721)) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-804)) . T))
-(|has| |#2| (-768))
-(|has| |#2| (-768))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
-(((|#1|) . T) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-((((-530)) |has| |#1| (-827 (-530))) (((-360)) |has| |#1| (-827 (-360))))
-(((|#1|) . T))
-((((-811 |#1|)) . T))
-((((-811 |#1|)) . T))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-850)))
-((((-388 (-530))) . T) (((-647)) . T) (($) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-806)) . T))
+(|has| |#2| (-770))
+(|has| |#2| (-770))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) (($) . T) ((|#1|) . T))
+(((|#1|) . T) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+((((-531)) |has| |#1| (-829 (-531))) (((-360)) |has| |#1| (-829 (-360))))
+(((|#1|) . T))
+((((-813 |#1|)) . T))
+((((-813 |#1|)) . T))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-852)))
+((((-388 (-531))) . T) (((-649)) . T) (($) . T))
(|has| |#1| (-344))
(|has| |#1| (-344))
(((|#1|) . T))
(((|#1|) . T))
-(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
(|has| |#1| (-344))
(((|#2|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-806 |#1|)) . T))
+((((-808 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(((|#2| (-719)) . T))
-((((-1099)) . T))
-((((-811 |#1|)) . T))
-(-1461 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-((((-804)) . T))
+(((|#2| (-721)) . T))
+((((-1102)) . T))
+((((-813 |#1|)) . T))
+(-1435 (|has| |#3| (-25)) (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+((((-806)) . T))
(((|#1|) . T))
-(-1461 (|has| |#2| (-741)) (|has| |#2| (-793)))
-(-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795))))
-((((-811 |#1|)) . T))
+(-1435 (|has| |#2| (-743)) (|has| |#2| (-795)))
+(-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797))))
+((((-813 |#1|)) . T))
(((|#1|) . T))
(|has| |#1| (-349))
(|has| |#1| (-349))
(|has| |#1| (-349))
-((($ $) . T) (((-570 $) $) . T))
-((($) . T))
-((((-804)) . T))
-((((-530)) . T))
-(((|#2|) . T))
-((((-804)) . T))
-(((|#1|) . T) (((-388 (-530))) |has| |#1| (-344)))
-((((-804)) . T))
-(((|#1|) . T))
-((((-804)) . T))
-((($) . T) ((|#2|) . T) (((-388 (-530))) . T))
-(|has| |#1| (-1027))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-804)) . T))
-(|has| |#2| (-850))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
-((((-506)) |has| |#2| (-572 (-506))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))))
-((((-804)) . T))
-((((-804)) . T))
-(((|#3|) |has| |#3| (-984)) (((-530)) -12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))))
-((((-1051 |#1| |#2|)) . T) (((-893 |#1|)) |has| |#2| (-572 (-1099))) (((-804)) . T))
-((((-893 |#1|)) |has| |#2| (-572 (-1099))) (((-1082)) -12 (|has| |#1| (-975 (-530))) (|has| |#2| (-572 (-1099)))) (((-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530))))) (((-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360))))) (((-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506)))))
-((((-1095 |#1|)) . T) (((-804)) . T))
-((((-804)) . T))
-((((-388 (-530))) |has| |#2| (-975 (-388 (-530)))) (((-530)) |has| |#2| (-975 (-530))) ((|#2|) . T) (((-806 |#1|)) . T))
-((((-114 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
-((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T) (((-1099)) . T))
-((((-804)) . T))
-((((-530)) . T))
-((($) . T))
-((((-360)) |has| |#1| (-827 (-360))) (((-530)) |has| |#1| (-827 (-530))))
-((((-530)) . T))
-(((|#1|) . T))
-((((-804)) . T))
-(((|#1|) . T))
-((((-804)) . T))
+((($ $) . T) (((-571 $) $) . T))
+((($) . T))
+((((-806)) . T))
+((((-531)) . T))
+(((|#2|) . T))
+((((-806)) . T))
+(((|#1|) . T) (((-388 (-531))) |has| |#1| (-344)))
+((((-806)) . T))
+(((|#1|) . T))
+((((-806)) . T))
+((($) . T) ((|#2|) . T) (((-388 (-531))) . T))
+(|has| |#1| (-1030))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-806)) . T))
+(|has| |#2| (-852))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T))
+((((-507)) |has| |#2| (-573 (-507))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531)))))
+((((-806)) . T))
+((((-806)) . T))
+(((|#3|) |has| |#3| (-986)) (((-531)) -12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))))
+((((-1054 |#1| |#2|)) . T) (((-895 |#1|)) |has| |#2| (-573 (-1102))) (((-806)) . T))
+((((-895 |#1|)) |has| |#2| (-573 (-1102))) (((-1085)) -12 (|has| |#1| (-977 (-531))) (|has| |#2| (-573 (-1102)))) (((-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531))))) (((-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360))))) (((-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#2| (-573 (-507)))))
+((((-1098 |#1|)) . T) (((-806)) . T))
+((((-806)) . T))
+((((-388 (-531))) |has| |#2| (-977 (-388 (-531)))) (((-531)) |has| |#2| (-977 (-531))) ((|#2|) . T) (((-808 |#1|)) . T))
+((((-114 |#1|)) . T) (($) . T) (((-388 (-531))) . T))
+((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T) (((-1102)) . T))
+((((-806)) . T))
+((((-531)) . T))
+((($) . T))
+((((-360)) |has| |#1| (-829 (-360))) (((-531)) |has| |#1| (-829 (-531))))
+((((-531)) . T))
+(((|#1|) . T))
+((((-806)) . T))
+(((|#1|) . T))
+((((-806)) . T))
(((|#1|) |has| |#1| (-162)) (($) . T))
-((((-530)) . T) (((-388 (-530))) . T))
+((((-531)) . T) (((-388 (-531))) . T))
(((|#1|) |has| |#1| (-291 |#1|)))
-((((-804)) . T))
+((((-806)) . T))
((((-360)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-804)) . T))
-((((-388 (-530))) . T) (($) . T))
+((((-806)) . T))
+((((-388 (-531))) . T) (($) . T))
((((-388 |#2|) |#3|) . T))
(((|#1|) . T))
-(|has| |#1| (-1027))
-(((|#2| (-461 (-2267 |#1|) (-719))) . T))
-((((-530) |#1|) . T))
-((((-1082)) . T) (((-804)) . T))
+(|has| |#1| (-1030))
+(((|#2| (-461 (-2167 |#1|) (-721))) . T))
+((((-531) |#1|) . T))
+((((-1085)) . T) (((-806)) . T))
(((|#2| |#2|) . T))
-(((|#1| (-502 (-1099))) . T))
-(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-((((-530)) . T))
+(((|#1| (-503 (-1102))) . T))
+(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+((((-531)) . T))
(((|#2|) . T))
(((|#2|) . T))
-((((-1099)) |has| |#1| (-841 (-1099))) (((-1012)) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-593 (-530))))
-(|has| |#1| (-522))
-((($) . T) (((-388 (-530))) . T))
+((((-1102)) |has| |#1| (-843 (-1102))) (((-1014)) . T))
+(((|#1|) . T) (((-531)) |has| |#1| (-594 (-531))))
+(|has| |#1| (-523))
+((($) . T) (((-388 (-531))) . T))
((($) . T))
((($) . T))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
(((|#1|) . T))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-804)) . T))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-806)) . T))
((((-137)) . T))
-(((|#1|) . T) (((-388 (-530))) . T))
+(((|#1|) . T) (((-388 (-531))) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-804)) . T))
+((((-806)) . T))
(((|#1|) . T))
-(|has| |#1| (-1075))
-(((|#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) . T))
+(|has| |#1| (-1078))
+(((|#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) . T))
(((|#1|) . T))
-((((-388 $) (-388 $)) |has| |#1| (-522)) (($ $) . T) ((|#1| |#1|) . T))
-(((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-((((-804)) . T))
-((((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-530)) |has| |#1| (-975 (-530))) ((|#1|) . T) ((|#2|) . T))
-((((-1012)) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))))
-((((-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#2| (-827 (-360)))) (((-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#2| (-827 (-530)))))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
-((((-530) |#1|) . T))
+((((-388 $) (-388 $)) |has| |#1| (-523)) (($ $) . T) ((|#1| |#1|) . T))
+(((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+((((-806)) . T))
+((((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-531)) |has| |#1| (-977 (-531))) ((|#1|) . T) ((|#2|) . T))
+((((-1014)) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))))
+((((-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#2| (-829 (-360)))) (((-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#2| (-829 (-531)))))
+((((-1170 |#1| |#2| |#3| |#4|)) . T))
+((((-531) |#1|) . T))
(((|#1| |#1|) . T))
((($) . T) ((|#2|) . T))
(((|#1|) |has| |#1| (-162)) (($) . T))
((($) . T))
-((((-647)) . T))
-((((-728 |#1| (-806 |#2|))) . T))
+((((-649)) . T))
+((((-730 |#1| (-808 |#2|))) . T))
((($) . T))
-((((-388 (-530))) . T) (($) . T))
-(|has| |#1| (-1027))
-(|has| |#1| (-1027))
+((((-388 (-531))) . T) (($) . T))
+(|has| |#1| (-1030))
+(|has| |#1| (-1030))
(|has| |#2| (-344))
(|has| |#1| (-344))
(|has| |#1| (-344))
-(|has| |#1| (-37 (-388 (-530))))
-((((-530)) . T))
-((((-1099)) -12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984))))
-((((-1099)) -12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984))))
+(|has| |#1| (-37 (-388 (-531))))
+((((-531)) . T))
+((((-1102)) -12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986))))
+((((-1102)) -12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986))))
(((|#1|) . T))
(|has| |#1| (-216))
-(((|#1| (-502 |#3|)) . T))
+(((|#1| (-503 |#3|)) . T))
(|has| |#1| (-349))
-(((|#2| (-223 (-2267 |#1|) (-719))) . T))
+(((|#2| (-223 (-2167 |#1|) (-721))) . T))
(|has| |#1| (-349))
(|has| |#1| (-349))
(((|#1|) . T) (($) . T))
-(((|#1| (-502 |#2|)) . T))
-(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(((|#1| (-719)) . T))
-(|has| |#1| (-522))
-(-1461 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+(((|#1| (-503 |#2|)) . T))
+(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(((|#1| (-721)) . T))
+(|has| |#1| (-523))
+(-1435 (|has| |#2| (-25)) (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-795)) (|has| |#2| (-986)))
(-12 (|has| |#1| (-21)) (|has| |#2| (-21)))
-((((-804)) . T))
-(-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
-(-1461 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
+((((-806)) . T))
+(-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))
+(-1435 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986)))
(((|#1|) |has| |#1| (-162)))
-(((|#4|) |has| |#4| (-984)))
-(((|#3|) |has| |#3| (-984)))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
-(-12 (|has| |#1| (-344)) (|has| |#2| (-768)))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-388 |#2|)) . T) (((-388 (-530))) . T) (($) . T))
-((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-((((-804)) . T))
-((($) . T) (((-388 (-530))) . T))
-(((|#1|) . T))
-(((|#4|) |has| |#4| (-1027)) (((-530)) -12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027))) (((-388 (-530))) -12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))
-(((|#3|) |has| |#3| (-1027)) (((-530)) -12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (((-388 (-530))) -12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))
+(((|#4|) |has| |#4| (-986)))
+(((|#3|) |has| |#3| (-986)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-770)))
+(-12 (|has| |#1| (-344)) (|has| |#2| (-770)))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-388 |#2|)) . T) (((-388 (-531))) . T) (($) . T))
+((($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+((((-806)) . T))
+((($) . T) (((-388 (-531))) . T))
+(((|#1|) . T))
+(((|#4|) |has| |#4| (-1030)) (((-531)) -12 (|has| |#4| (-977 (-531))) (|has| |#4| (-1030))) (((-388 (-531))) -12 (|has| |#4| (-977 (-388 (-531)))) (|has| |#4| (-1030))))
+(((|#3|) |has| |#3| (-1030)) (((-531)) -12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030))) (((-388 (-531))) -12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030))))
(|has| |#2| (-344))
-(((|#2|) |has| |#2| (-984)) (((-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))))
+(((|#2|) |has| |#2| (-986)) (((-531)) -12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986))))
(((|#1|) . T))
(|has| |#2| (-344))
-(((#0=(-388 (-530)) #0#) |has| |#2| (-37 (-388 (-530)))) ((|#2| |#2|) . T) (($ $) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1| |#1|) . T) ((#0=(-388 (-530)) #0#) |has| |#1| (-37 (-388 (-530)))))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
-(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-530)) #0#) . T))
+(((#0=(-388 (-531)) #0#) |has| |#2| (-37 (-388 (-531)))) ((|#2| |#2|) . T) (($ $) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1| |#1|) . T) ((#0=(-388 (-531)) #0#) |has| |#1| (-37 (-388 (-531)))))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T))
+(((|#1| |#1|) . T) (($ $) . T) ((#0=(-388 (-531)) #0#) . T))
(((|#2| |#2|) . T))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T) (($) -1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
-(((|#1|) . T) (($) . T) (((-388 (-530))) . T))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T) (($) -1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
+(((|#1|) . T) (($) . T) (((-388 (-531))) . T))
(((|#2|) . T))
-((((-804)) |has| |#1| (-1027)))
+((((-806)) |has| |#1| (-1030)))
((($) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T))
+((((-1170 |#1| |#2| |#3| |#4|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-(|has| |#2| (-768))
-(|has| |#2| (-768))
+(|has| |#2| (-770))
+(|has| |#2| (-770))
(|has| |#1| (-344))
(|has| |#1| (-344))
-(|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))
+(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))
(|has| |#1| (-344))
(((|#1|) |has| |#2| (-398 |#1|)))
(((|#1|) |has| |#2| (-398 |#1|)))
-((((-851 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) . T))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) |has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-((((-530) |#1|) . T))
-((((-530) |#1|) . T))
-((((-530) |#1|) . T))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-((((-530) |#1|) . T))
-(((|#1|) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-((((-1099)) |has| |#1| (-841 (-1099))) (((-766 (-1099))) . T))
-(-1461 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-741)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-((((-767 |#1|)) . T))
+((((-853 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) . T))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) |has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+((((-531) |#1|) . T))
+((((-531) |#1|) . T))
+((((-531) |#1|) . T))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+((((-531) |#1|) . T))
+(((|#1|) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+((((-1102)) |has| |#1| (-843 (-1102))) (((-768 (-1102))) . T))
+(-1435 (|has| |#3| (-128)) (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-743)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+((((-769 |#1|)) . T))
(((|#1| |#2|) . T))
-((((-804)) . T))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
+((((-806)) . T))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-677)) (|has| |#3| (-795)) (|has| |#3| (-986)))
(((|#1| |#2|) . T))
-(|has| |#1| (-37 (-388 (-530))))
-((((-804)) . T))
-((((-1167 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-388 (-530))) . T))
-(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)) (((-388 (-530))) |has| |#1| (-522)))
-(((|#2|) . T) (((-530)) |has| |#2| (-593 (-530))))
+(|has| |#1| (-37 (-388 (-531))))
+((((-806)) . T))
+((((-1170 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-388 (-531))) . T))
+(((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)) (((-388 (-531))) |has| |#1| (-523)))
+(((|#2|) . T) (((-531)) |has| |#2| (-594 (-531))))
(|has| |#1| (-344))
-(-1461 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (-12 (|has| |#1| (-344)) (|has| |#2| (-216))))
-(|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))
+(-1435 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (-12 (|has| |#1| (-344)) (|has| |#2| (-216))))
+(|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))
(|has| |#1| (-344))
(((|#1|) . T))
-(((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1| |#1|) . T))
-((((-530) |#1|) . T))
+(((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1| |#1|) . T))
+((((-531) |#1|) . T))
((((-297 |#1|)) . T))
-(((#0=(-647) (-1095 #0#)) . T))
-((((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((|#1|) . T))
+(((#0=(-649) (-1098 #0#)) . T))
+((((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(|has| |#1| (-793))
-((($ $) . T) ((#0=(-806 |#1|) $) . T) ((#0# |#2|) . T))
-((((-1051 |#1| (-1099))) . T) (((-766 (-1099))) . T) ((|#1|) . T) (((-530)) |has| |#1| (-975 (-530))) (((-388 (-530))) |has| |#1| (-975 (-388 (-530)))) (((-1099)) . T))
+(|has| |#1| (-795))
+((($ $) . T) ((#0=(-808 |#1|) $) . T) ((#0# |#2|) . T))
+((((-1054 |#1| (-1102))) . T) (((-768 (-1102))) . T) ((|#1|) . T) (((-531)) |has| |#1| (-977 (-531))) (((-388 (-531))) |has| |#1| (-977 (-388 (-531)))) (((-1102)) . T))
((($) . T))
(((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T))
-(((#0=(-1012) |#1|) . T) ((#0# $) . T) (($ $) . T))
-((($ $) . T) ((#0=(-1099) $) |has| |#1| (-216)) ((#0# |#1|) |has| |#1| (-216)) ((#1=(-1017 (-1099)) |#1|) . T) ((#1# $) . T))
+(((#0=(-1014) |#1|) . T) ((#0# $) . T) (($ $) . T))
+((($ $) . T) ((#0=(-1102) $) |has| |#1| (-216)) ((#0# |#1|) |has| |#1| (-216)) ((#1=(-1020 (-1102)) |#1|) . T) ((#1# $) . T))
((($) . T) ((|#2|) . T))
-((($) . T) ((|#2|) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))))
-(|has| |#2| (-850))
-((($) . T) ((#0=(-1166 |#2| |#3| |#4|)) |has| #0# (-162)) (((-388 (-530))) |has| #0# (-37 (-388 (-530)))))
-((((-530) |#1|) . T))
-(((#0=(-1167 |#1| |#2| |#3| |#4|)) |has| #0# (-291 #0#)))
+((($) . T) ((|#2|) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))))
+(|has| |#2| (-852))
+((($) . T) ((#0=(-1169 |#2| |#3| |#4|)) |has| #0# (-162)) (((-388 (-531))) |has| #0# (-37 (-388 (-531)))))
+((((-531) |#1|) . T))
+(((#0=(-1170 |#1| |#2| |#3| |#4|)) |has| #0# (-291 #0#)))
((($) . T))
(((|#1|) . T))
-((($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2| |#2|) |has| |#1| (-344)) ((|#1| |#1|) . T))
-(((|#1| |#1|) . T) (($ $) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) ((#0=(-388 (-530)) #0#) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
+((($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#2| |#2|) |has| |#1| (-344)) ((|#1| |#1|) . T))
+(((|#1| |#1|) . T) (($ $) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) ((#0=(-388 (-531)) #0#) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))))
(|has| |#2| (-216))
(|has| $ (-140))
-((((-804)) . T))
-((($) . T) (((-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
-((((-804)) . T))
-(|has| |#1| (-793))
-((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))
+((((-806)) . T))
+((($) . T) (((-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-330))) ((|#1|) . T))
+((((-806)) . T))
+(|has| |#1| (-795))
+((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))
((((-388 |#2|) |#3|) . T))
(((|#1|) . T))
-((((-804)) . T))
-(((|#2| (-622 |#1|)) . T))
-(-12 (|has| |#1| (-289)) (|has| |#1| (-850)))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+((((-806)) . T))
+(((|#2| (-624 |#1|)) . T))
+(-12 (|has| |#1| (-289)) (|has| |#1| (-852)))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#4|) . T))
-(|has| |#1| (-522))
-((($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) ((|#1|) . T))
-((((-1099)) -1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))
-(((|#1|) . T) (($) -1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-522))) (((-388 (-530))) -1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-344))))
-((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
-((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099)))))
-(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))
-((((-530) |#1|) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
+(|has| |#1| (-523))
+((($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))) ((|#2|) |has| |#1| (-344)) ((|#1|) . T))
+((((-1102)) -1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))
+(((|#1|) . T) (($) -1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-523))) (((-388 (-531))) -1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-344))))
+((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))))
+((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102)))))
+(((|#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))
+((((-531) |#1|) . T))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
(((|#1|) . T))
-(((|#1| (-502 (-766 (-1099)))) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(((|#1| (-503 (-768 (-1102)))) . T))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
(((|#1|) . T))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
(((|#1|) . T))
-(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
-((($) . T) (((-811 |#1|)) . T) (((-388 (-530))) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(|has| |#1| (-522))
+(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))
+((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((($) . T) (((-813 |#1|)) . T) (((-388 (-531))) . T))
+((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(|has| |#1| (-523))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
((((-388 |#2|)) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-(((|#1|) . T))
-(((|#2| |#2|) . T) ((#0=(-388 (-530)) #0#) . T) (($ $) . T))
-((((-530)) . T))
-((((-804)) . T))
-(((|#2|) . T) (((-388 (-530))) . T) (($) . T))
-((((-543 |#1|)) . T) (((-388 (-530))) . T) (($) . T))
-((((-804)) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-530) |#1|) . T))
-((((-804)) . T))
-((($ $) . T) (((-1099) $) . T))
-((((-1173 |#1| |#2| |#3|)) . T))
-((((-1173 |#1| |#2| |#3|)) . T) (((-1145 |#1| |#2| |#3|)) . T))
-(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) . T))
-((((-506)) |has| |#2| (-572 (-506))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))))
-((((-804)) . T))
-((((-804)) . T))
-((((-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) (((-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) (((-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+(((|#1|) . T))
+(((|#2| |#2|) . T) ((#0=(-388 (-531)) #0#) . T) (($ $) . T))
+((((-531)) . T))
+((((-806)) . T))
+(((|#2|) . T) (((-388 (-531))) . T) (($) . T))
+((((-544 |#1|)) . T) (((-388 (-531))) . T) (($) . T))
+((((-806)) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-531) |#1|) . T))
+((((-806)) . T))
+((($ $) . T) (((-1102) $) . T))
+((((-1176 |#1| |#2| |#3|)) . T))
+((((-1176 |#1| |#2| |#3|)) . T) (((-1148 |#1| |#2| |#3|)) . T))
+(((|#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) . T))
+((((-507)) |has| |#2| (-573 (-507))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531)))))
+((((-806)) . T))
+((((-806)) . T))
+((((-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531))))) (((-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360))))) (((-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+(((|#1|) . T) (((-806)) . T) (((-1107)) . T))
+((((-806)) . T))
(((|#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) . T))
-((((-804)) . T))
-((((-1173 |#1| |#2| |#3|)) |has| |#1| (-344)))
-((((-1099)) . T) (((-804)) . T))
+((((-806)) . T))
+((((-1176 |#1| |#2| |#3|)) |has| |#1| (-344)))
(|has| |#1| (-344))
-((((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) |has| |#2| (-162)) (($) -1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850))))
+((((-1102)) . T) (((-806)) . T))
+((((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) |has| |#2| (-162)) (($) -1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852))))
(((|#2|) . T) ((|#6|) . T))
-((($) . T) (((-388 (-530))) |has| |#2| (-37 (-388 (-530)))) ((|#2|) . T))
-((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((((-1031)) . T))
-((((-804)) . T))
-((($) -1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-((($) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T))
+((($) . T) (((-388 (-531))) |has| |#2| (-37 (-388 (-531)))) ((|#2|) . T))
+((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((((-1034)) . T))
+((((-806)) . T))
+((($) -1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T))
((($) . T))
-((($) -1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850))) ((|#1|) |has| |#1| (-162)) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(|has| |#2| (-850))
-(|has| |#1| (-850))
+((($) -1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852))) ((|#1|) |has| |#1| (-162)) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(|has| |#2| (-852))
+(|has| |#1| (-852))
(((|#1|) . T))
(((|#1|) . T))
(((|#1| |#1|) |has| |#1| (-162)))
-((((-647)) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+((((-649)) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
(((|#1|) |has| |#1| (-162)))
(((|#1|) |has| |#1| (-162)))
-((((-388 (-530))) . T) (($) . T))
-(((|#1| (-530)) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
+((((-388 (-531))) . T) (($) . T))
+(((|#1| (-531)) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
(|has| |#1| (-344))
(|has| |#1| (-344))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-(-1461 (|has| |#1| (-162)) (|has| |#1| (-522)))
-(((|#1| (-530)) . T))
-(((|#1| (-388 (-530))) . T))
-(((|#1| (-719)) . T))
-((((-388 (-530))) . T))
-(((|#1| (-502 |#2|) |#2|) . T))
-((((-530) |#1|) . T))
-((((-530) |#1|) . T))
-(|has| |#1| (-1027))
-((((-530) |#1|) . T))
-(((|#1|) . T))
-(((|#1|) . T))
-((((-833 (-360))) . T) (((-833 (-530))) . T) (((-1099)) . T) (((-506)) . T))
-(((|#1|) . T))
-((((-804)) . T))
-(-1461 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-741)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-(-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))
-((((-530)) . T))
-((((-530)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(-1435 (|has| |#1| (-162)) (|has| |#1| (-523)))
+(((|#1| (-531)) . T))
+(((|#1| (-388 (-531))) . T))
+(((|#1| (-721)) . T))
+((((-388 (-531))) . T))
+(((|#1| (-503 |#2|) |#2|) . T))
+((((-531) |#1|) . T))
+((((-531) |#1|) . T))
+(|has| |#1| (-1030))
+((((-531) |#1|) . T))
+(((|#1|) . T))
+(((|#1|) . T))
+((((-835 (-360))) . T) (((-835 (-531))) . T) (((-1102)) . T) (((-507)) . T))
+(((|#1|) . T))
+((((-806)) . T))
+(-1435 (|has| |#2| (-128)) (|has| |#2| (-162)) (|has| |#2| (-344)) (|has| |#2| (-743)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+(-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))
+((((-531)) . T))
+((((-531)) . T))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
(((|#1| |#2|) . T))
(((|#1|) . T))
-(-1461 (|has| |#2| (-162)) (|has| |#2| (-675)) (|has| |#2| (-793)) (|has| |#2| (-984)))
-((((-1099)) -12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984))))
-(-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))
+(-1435 (|has| |#2| (-162)) (|has| |#2| (-677)) (|has| |#2| (-795)) (|has| |#2| (-986)))
+((((-1102)) -12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986))))
+(-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677))))
(|has| |#1| (-138))
(|has| |#1| (-140))
(|has| |#1| (-344))
(((|#1| |#2|) . T))
(((|#1| |#2|) . T))
(|has| |#1| (-216))
-((((-804)) . T))
-(((|#1| (-719) (-1012)) . T))
-((((-530) |#1|) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-530) |#1|) . T))
-((((-530) |#1|) . T))
+((((-806)) . T))
+(((|#1| (-721) (-1014)) . T))
+((((-531) |#1|) . T))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-531) |#1|) . T))
+((((-531) |#1|) . T))
((((-114 |#1|)) . T))
-((((-388 (-530))) . T) (((-530)) . T))
-(((|#2|) |has| |#2| (-984)))
-((((-388 (-530))) . T) (($) . T))
-(((|#2|) . T))
-((((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-522)))
-((((-530)) . T))
-((((-530)) . T))
-((((-1082) (-1099) (-530) (-208) (-804)) . T))
+((((-388 (-531))) . T) (((-531)) . T))
+(((|#2|) |has| |#2| (-986)))
+((((-388 (-531))) . T) (($) . T))
+(((|#2|) . T))
+((((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) |has| |#1| (-162)) (($) |has| |#1| (-523)))
+((((-531)) . T))
+((((-531)) . T))
+((((-1085) (-1102) (-531) (-208) (-806)) . T))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1| |#2|) . T))
-(-1461 (|has| |#1| (-330)) (|has| |#1| (-349)))
+(-1435 (|has| |#1| (-330)) (|has| |#1| (-349)))
(((|#1| |#2|) . T))
((($) . T) ((|#1|) . T))
-((((-804)) . T))
-((($) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((|#1|) . T))
-((($) . T) ((|#1|) . T) (((-388 (-530))) |has| |#1| (-37 (-388 (-530)))))
-(((|#2|) |has| |#2| (-1027)) (((-530)) -12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (((-388 (-530))) -12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027))))
-((((-506)) |has| |#1| (-572 (-506))))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-795)) (|has| |#1| (-1027))))
-((($) . T) (((-388 (-530))) . T))
-(|has| |#1| (-850))
-(|has| |#1| (-850))
-((((-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) (((-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) (((-833 (-360))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-833 (-360))))) (((-833 (-530))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-833 (-530))))) (((-506)) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-506)))))
-((((-804)) . T))
-((((-804)) . T))
+((((-806)) . T))
+((($) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((|#1|) . T))
+((($) . T) ((|#1|) . T) (((-388 (-531))) |has| |#1| (-37 (-388 (-531)))))
+(((|#2|) |has| |#2| (-1030)) (((-531)) -12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (((-388 (-531))) -12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030))))
+((((-507)) |has| |#1| (-573 (-507))))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-797)) (|has| |#1| (-1030))))
+((($) . T) (((-388 (-531))) . T))
+(|has| |#1| (-852))
+(|has| |#1| (-852))
+((((-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) (((-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) (((-835 (-360))) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-835 (-360))))) (((-835 (-531))) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-835 (-531))))) (((-507)) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-507)))))
+((((-806)) . T))
+((((-806)) . T))
(((|#2| |#2|) . T))
(((|#1| |#1|) |has| |#1| (-162)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-522)))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-523)))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-795)))
(((|#2|) . T))
-(-1461 (|has| |#1| (-21)) (|has| |#1| (-793)))
+(-1435 (|has| |#1| (-21)) (|has| |#1| (-795)))
(((|#1|) |has| |#1| (-162)))
(((|#1|) . T))
(((|#1|) . T))
-((((-804)) -1461 (-12 (|has| |#1| (-571 (-804))) (|has| |#2| (-571 (-804)))) (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))))
+((((-806)) -1435 (-12 (|has| |#1| (-572 (-806))) (|has| |#2| (-572 (-806)))) (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030)))))
((((-388 |#2|) |#3|) . T))
-((((-388 (-530))) . T) (($) . T))
-(|has| |#1| (-37 (-388 (-530))))
+((((-388 (-531))) . T) (($) . T))
+(|has| |#1| (-37 (-388 (-531))))
(|has| |#1| (-344))
-((($ $) . T) ((#0=(-388 (-530)) #0#) . T))
+((($ $) . T) ((#0=(-388 (-531)) #0#) . T))
(|has| (-388 |#2|) (-140))
(|has| (-388 |#2|) (-138))
-((((-647)) . T))
-(((|#1|) . T) (((-388 (-530))) . T) (((-530)) . T) (($) . T))
-(((#0=(-530) #0#) . T))
-((($) . T) (((-388 (-530))) . T))
-(-1461 (|has| |#4| (-162)) (|has| |#4| (-675)) (|has| |#4| (-793)) (|has| |#4| (-984)))
-(-1461 (|has| |#3| (-162)) (|has| |#3| (-675)) (|has| |#3| (-793)) (|has| |#3| (-984)))
-(|has| |#4| (-741))
-(-1461 (|has| |#4| (-741)) (|has| |#4| (-793)))
-(|has| |#4| (-793))
-(|has| |#3| (-741))
-(-1461 (|has| |#3| (-741)) (|has| |#3| (-793)))
-(|has| |#3| (-793))
-((((-530)) . T))
-(((|#2|) . T))
-((((-1099)) -1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))
-((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))))
-((((-1099)) -12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099)))))
+((((-649)) . T))
+(((|#1|) . T) (((-388 (-531))) . T) (((-531)) . T) (($) . T))
+(((#0=(-531) #0#) . T))
+((($) . T) (((-388 (-531))) . T))
+(-1435 (|has| |#4| (-162)) (|has| |#4| (-677)) (|has| |#4| (-795)) (|has| |#4| (-986)))
+(-1435 (|has| |#3| (-162)) (|has| |#3| (-677)) (|has| |#3| (-795)) (|has| |#3| (-986)))
+(|has| |#4| (-743))
+(-1435 (|has| |#4| (-743)) (|has| |#4| (-795)))
+(|has| |#4| (-795))
+(|has| |#3| (-743))
+(-1435 (|has| |#3| (-743)) (|has| |#3| (-795)))
+(|has| |#3| (-795))
+((((-531)) . T))
+(((|#2|) . T))
+((((-1102)) -1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))
+((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))))
+((((-1102)) -12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102)))))
(((|#1| |#1|) . T) (($ $) . T))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T) (($) . T))
(((|#1|) . T))
-((((-806 |#1|)) . T))
-((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-((((-1064 |#1| |#2|)) . T))
-((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
-(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
-((($) . T))
-(|has| |#1| (-960))
-(((|#2|) . T) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-((((-804)) . T))
-((((-506)) |has| |#2| (-572 (-506))) (((-833 (-530))) |has| |#2| (-572 (-833 (-530)))) (((-833 (-360))) |has| |#2| (-572 (-833 (-360)))) (((-360)) . #0=(|has| |#2| (-960))) (((-208)) . #0#))
-((((-1099) (-51)) . T))
-(|has| |#1| (-37 (-388 (-530))))
-(|has| |#1| (-37 (-388 (-530))))
+((((-808 |#1|)) . T))
+((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-1067 |#1| |#2|)) . T))
+((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)))
+(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T))
+((($) . T))
+(|has| |#1| (-962))
+(((|#2|) . T) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+((((-806)) . T))
+((((-507)) |has| |#2| (-573 (-507))) (((-835 (-531))) |has| |#2| (-573 (-835 (-531)))) (((-835 (-360))) |has| |#2| (-573 (-835 (-360)))) (((-360)) . #0=(|has| |#2| (-962))) (((-208)) . #0#))
+((((-1102) (-51)) . T))
+(|has| |#1| (-37 (-388 (-531))))
+(|has| |#1| (-37 (-388 (-531))))
(((|#2|) . T))
((($ $) . T))
-((((-388 (-530))) . T) (((-647)) . T) (($) . T))
-((((-1097 |#1| |#2| |#3|)) . T))
-((((-1097 |#1| |#2| |#3|)) . T) (((-1090 |#1| |#2| |#3|)) . T))
-((((-804)) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-530) |#1|) . T))
-((((-1097 |#1| |#2| |#3|)) |has| |#1| (-344)))
+((((-388 (-531))) . T) (((-649)) . T) (($) . T))
+((((-1100 |#1| |#2| |#3|)) . T))
+((((-1100 |#1| |#2| |#3|)) . T) (((-1093 |#1| |#2| |#3|)) . T))
+((((-806)) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+((((-531) |#1|) . T))
+((((-1100 |#1| |#2| |#3|)) |has| |#1| (-344)))
(((|#1| |#2| |#3| |#4|) . T))
(((|#1|) . T))
(((|#2|) . T))
(|has| |#2| (-344))
-(((|#3|) . T) ((|#2|) . T) (($) -1461 (|has| |#4| (-162)) (|has| |#4| (-793)) (|has| |#4| (-984))) ((|#4|) -1461 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-984))))
-(((|#2|) . T) (($) -1461 (|has| |#3| (-162)) (|has| |#3| (-793)) (|has| |#3| (-984))) ((|#3|) -1461 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-984))))
+(((|#3|) . T) ((|#2|) . T) (($) -1435 (|has| |#4| (-162)) (|has| |#4| (-795)) (|has| |#4| (-986))) ((|#4|) -1435 (|has| |#4| (-162)) (|has| |#4| (-344)) (|has| |#4| (-986))))
+(((|#2|) . T) (($) -1435 (|has| |#3| (-162)) (|has| |#3| (-795)) (|has| |#3| (-986))) ((|#3|) -1435 (|has| |#3| (-162)) (|has| |#3| (-344)) (|has| |#3| (-986))))
(((|#1|) . T))
(((|#1|) . T))
(|has| |#1| (-344))
((((-114 |#1|)) . T))
(((|#1|) . T))
(((|#1|) . T))
-((((-388 (-530))) |has| |#2| (-975 (-388 (-530)))) (((-530)) |has| |#2| (-975 (-530))) ((|#2|) . T) (((-806 |#1|)) . T))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
+((((-388 (-531))) |has| |#2| (-977 (-388 (-531)))) (((-531)) |has| |#2| (-977 (-531))) ((|#2|) . T) (((-808 |#1|)) . T))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
(((|#1|) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
-((((-127)) . T) (((-804)) . T))
-((((-530) |#1|) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
+((((-127)) . T) (((-806)) . T))
+((((-531) |#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#1|) . T))
(((|#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) (($ $) . T))
((($ $) . T))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-850)))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
-((((-804)) . T))
-((((-804)) . T))
-((((-804)) . T))
-(((|#1| (-502 |#2|)) . T))
-((((-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) . T))
-(((|#1| (-530)) . T))
-(((|#1| (-388 (-530))) . T))
-(((|#1| (-719)) . T))
-((((-1104)) . T) (((-804)) . T))
-((((-114 |#1|)) . T) (($) . T) (((-388 (-530))) . T))
-(-1461 (|has| |#2| (-432)) (|has| |#2| (-522)) (|has| |#2| (-850)))
-(-1461 (|has| |#1| (-432)) (|has| |#1| (-522)) (|has| |#1| (-850)))
-((($) . T))
-(((|#2| (-502 (-806 |#1|))) . T))
-((((-530) |#1|) . T))
-(((|#2|) . T))
-(((|#2| (-719)) . T))
-((((-804)) -1461 (|has| |#1| (-571 (-804))) (|has| |#1| (-1027))))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-432)) (|has| |#1| (-852)))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
+((((-806)) . T))
+((((-806)) . T))
+((((-806)) . T))
+(((|#1| (-503 |#2|)) . T))
+((((-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) . T))
+(((|#1| (-531)) . T))
+(((|#1| (-388 (-531))) . T))
+(((|#1| (-721)) . T))
+((((-806)) . T) (((-1107)) . T))
+((((-114 |#1|)) . T) (($) . T) (((-388 (-531))) . T))
+(-1435 (|has| |#2| (-432)) (|has| |#2| (-523)) (|has| |#2| (-852)))
+(-1435 (|has| |#1| (-432)) (|has| |#1| (-523)) (|has| |#1| (-852)))
+((($) . T))
+(((|#2| (-503 (-808 |#1|))) . T))
+((((-531) |#1|) . T))
+(((|#2|) . T))
+(((|#2| (-721)) . T))
+((((-806)) -1435 (|has| |#1| (-572 (-806))) (|has| |#1| (-1030))))
(((|#1|) . T))
(((|#1| |#2|) . T))
-((((-1082) |#1|) . T))
+((((-1085) |#1|) . T))
((((-388 |#2|)) . T))
-((((-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T))
-(|has| |#1| (-522))
-(|has| |#1| (-522))
+((((-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T))
+(|has| |#1| (-523))
+(|has| |#1| (-523))
((($) . T) ((|#2|) . T))
(((|#1|) . T))
(((|#1| |#2|) . T))
(((|#2| $) |has| |#2| (-268 |#2| |#2|)))
-(((|#1| (-597 |#1|)) |has| |#1| (-793)))
-(-1461 (|has| |#1| (-216)) (|has| |#1| (-330)))
-(-1461 (|has| |#1| (-344)) (|has| |#1| (-330)))
-(|has| |#1| (-1027))
-(((|#1|) . T))
-((((-388 (-530))) . T) (($) . T))
-((((-938 |#1|)) . T) ((|#1|) . T) (((-530)) -1461 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530)))) (((-388 (-530))) -1461 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-((((-1099)) |has| |#1| (-841 (-1099))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))
-(((|#1| (-561 |#1| |#3|) (-561 |#1| |#2|)) . T))
+(((|#1| (-598 |#1|)) |has| |#1| (-795)))
+(-1435 (|has| |#1| (-216)) (|has| |#1| (-330)))
+(-1435 (|has| |#1| (-344)) (|has| |#1| (-330)))
+(|has| |#1| (-1030))
+(((|#1|) . T))
+((((-388 (-531))) . T) (($) . T))
+((((-940 |#1|)) . T) ((|#1|) . T) (((-531)) -1435 (|has| (-940 |#1|) (-977 (-531))) (|has| |#1| (-977 (-531)))) (((-388 (-531))) -1435 (|has| (-940 |#1|) (-977 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+((((-1102)) |has| |#1| (-843 (-1102))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))
+(((|#1| (-562 |#1| |#3|) (-562 |#1| |#2|)) . T))
(((|#1|) . T))
(((|#1| |#2| |#3| |#4|) . T))
-(((#0=(-1064 |#1| |#2|) #0#) |has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))))
-(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((#0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) #0#) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))))
+(((#0=(-1067 |#1| |#2|) #0#) |has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))))
+(((|#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((#0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) #0#) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))))
(((#0=(-114 |#1|)) |has| #0# (-291 #0#)))
-(-1461 (|has| |#1| (-795)) (|has| |#1| (-1027)))
+(-1435 (|has| |#1| (-797)) (|has| |#1| (-1030)))
((($ $) . T))
-((($ $) . T) ((#0=(-806 |#1|) $) . T) ((#0# |#2|) . T))
+((($ $) . T) ((#0=(-808 |#1|) $) . T) ((#0# |#2|) . T))
((($ $) . T) ((|#2| $) |has| |#1| (-216)) ((|#2| |#1|) |has| |#1| (-216)) ((|#3| |#1|) . T) ((|#3| $) . T))
-(((-613 . -1027) T) ((-246 . -491) 143324) ((-230 . -491) 143267) ((-537 . -109) 143252) ((-502 . -23) T) ((-228 . -1027) 143202) ((-115 . -291) 143159) ((-458 . -491) 142951) ((-642 . -99) T) ((-1065 . -491) 142870) ((-371 . -128) T) ((-1192 . -916) 142839) ((-561 . -468) 142823) ((-576 . -128) T) ((-767 . -791) T) ((-499 . -55) 142773) ((-57 . -491) 142706) ((-495 . -491) 142639) ((-399 . -841) 142598) ((-159 . -984) T) ((-493 . -491) 142531) ((-475 . -491) 142464) ((-474 . -491) 142397) ((-747 . -975) 142184) ((-647 . -37) 142149) ((-324 . -330) T) ((-1022 . -1021) 142133) ((-1022 . -1027) 142111) ((-159 . -226) 142062) ((-159 . -216) 142013) ((-1022 . -1023) 141971) ((-813 . -268) 141929) ((-208 . -743) T) ((-208 . -740) T) ((-642 . -266) NIL) ((-1074 . -1112) 141908) ((-388 . -932) 141892) ((-649 . -21) T) ((-649 . -25) T) ((-1194 . -599) 141866) ((-297 . -151) 141845) ((-297 . -136) 141824) ((-1074 . -104) 141774) ((-130 . -25) T) ((-39 . -214) 141751) ((-114 . -21) T) ((-114 . -25) T) ((-566 . -270) 141727) ((-455 . -270) 141706) ((-1154 . -984) T) ((-800 . -984) T) ((-747 . -319) 141690) ((-115 . -1075) NIL) ((-89 . -571) 141622) ((-457 . -128) T) ((-553 . -1135) T) ((-1154 . -307) 141599) ((-537 . -984) T) ((-1154 . -216) T) ((-613 . -666) 141583) ((-899 . -270) 141560) ((-58 . -33) T) ((-995 . -743) T) ((-995 . -740) T) ((-764 . -675) T) ((-680 . -46) 141525) ((-578 . -37) 141512) ((-336 . -272) T) ((-333 . -272) T) ((-325 . -272) T) ((-246 . -272) 141443) ((-230 . -272) 141374) ((-962 . -99) T) ((-394 . -675) T) ((-115 . -37) 141319) ((-394 . -453) T) ((-462 . -571) 141285) ((-335 . -99) T) ((-1130 . -991) T) ((-660 . -991) T) ((-1097 . -46) 141262) ((-1096 . -46) 141232) ((-1090 . -46) 141209) ((-973 . -144) 141155) ((-851 . -272) T) ((-1052 . -46) 141127) ((-642 . -291) NIL) ((-492 . -571) 141109) ((-487 . -571) 141091) ((-485 . -571) 141073) ((-308 . -1027) 141023) ((-661 . -432) 140954) ((-47 . -99) T) ((-1165 . -268) 140939) ((-1144 . -268) 140859) ((-597 . -617) 140843) ((-597 . -602) 140827) ((-320 . -21) T) ((-320 . -25) T) ((-39 . -330) NIL) ((-163 . -21) T) ((-163 . -25) T) ((-597 . -354) 140811) ((-561 . -268) 140788) ((-564 . -571) 140755) ((-369 . -99) T) ((-1046 . -136) T) ((-124 . -571) 140687) ((-815 . -1027) T) ((-609 . -392) 140671) ((-663 . -571) 140653) ((-152 . -571) 140635) ((-148 . -571) 140617) ((-1194 . -675) T) ((-1029 . -33) T) ((-812 . -743) NIL) ((-812 . -740) NIL) ((-803 . -795) T) ((-680 . -827) NIL) ((-1203 . -128) T) ((-362 . -128) T) ((-845 . -99) T) ((-680 . -975) 140495) ((-502 . -128) T) ((-1016 . -392) 140479) ((-939 . -468) 140463) ((-115 . -381) 140440) ((-1090 . -1135) 140419) ((-730 . -392) 140403) ((-728 . -392) 140387) ((-884 . -33) T) ((-642 . -1075) NIL) ((-233 . -599) 140224) ((-232 . -599) 140048) ((-765 . -861) 140027) ((-434 . -392) 140011) ((-561 . -19) 139995) ((-1070 . -1129) 139964) ((-1090 . -827) NIL) ((-1090 . -825) 139916) ((-561 . -563) 139893) ((-1122 . -571) 139825) ((-1098 . -571) 139807) ((-60 . -376) T) ((-1096 . -975) 139742) ((-1090 . -975) 139708) ((-642 . -37) 139658) ((-454 . -268) 139643) ((-680 . -358) 139627) ((-609 . -991) T) ((-1165 . -941) 139593) ((-1144 . -941) 139559) ((-996 . -1112) 139534) ((-813 . -572) 139342) ((-813 . -571) 139324) ((-1109 . -468) 139261) ((-399 . -960) 139240) ((-47 . -291) 139227) ((-996 . -104) 139173) ((-458 . -468) 139110) ((-496 . -1135) T) ((-1090 . -319) 139062) ((-1065 . -468) 139033) ((-1090 . -358) 138985) ((-1016 . -991) T) ((-418 . -99) T) ((-171 . -1027) T) ((-233 . -33) T) ((-232 . -33) T) ((-730 . -991) T) ((-728 . -991) T) ((-680 . -841) 138962) ((-434 . -991) T) ((-57 . -468) 138946) ((-972 . -990) 138920) ((-495 . -468) 138904) ((-493 . -468) 138888) ((-475 . -468) 138872) ((-474 . -468) 138856) ((-228 . -491) 138789) ((-972 . -109) 138756) ((-1097 . -841) 138669) ((-621 . -1039) T) ((-1096 . -841) 138575) ((-1090 . -841) 138408) ((-1052 . -841) 138392) ((-335 . -1075) T) ((-303 . -990) 138374) ((-233 . -739) 138353) ((-233 . -742) 138304) ((-233 . -741) 138283) ((-232 . -739) 138262) ((-232 . -742) 138213) ((-232 . -741) 138192) ((-49 . -991) T) ((-233 . -675) 138103) ((-232 . -675) 138014) ((-1130 . -1027) T) ((-621 . -23) T) ((-543 . -991) T) ((-494 . -991) T) ((-360 . -990) 137979) ((-303 . -109) 137954) ((-71 . -364) T) ((-71 . -376) T) ((-962 . -37) 137891) ((-642 . -381) 137873) ((-96 . -99) T) ((-660 . -1027) T) ((-942 . -138) 137845) ((-942 . -140) 137817) ((-360 . -109) 137773) ((-300 . -1139) 137752) ((-454 . -941) 137718) ((-335 . -37) 137683) ((-39 . -351) 137655) ((-814 . -571) 137527) ((-125 . -123) 137511) ((-119 . -123) 137495) ((-782 . -990) 137465) ((-781 . -21) 137417) ((-775 . -990) 137401) ((-781 . -25) 137353) ((-300 . -522) 137304) ((-530 . -776) T) ((-223 . -1135) T) ((-782 . -109) 137269) ((-775 . -109) 137248) ((-1165 . -571) 137230) ((-1144 . -571) 137212) ((-1144 . -572) 136885) ((-1095 . -850) 136864) ((-1051 . -850) 136843) ((-47 . -37) 136808) ((-1201 . -1039) T) ((-561 . -571) 136720) ((-561 . -572) 136681) ((-1199 . -1039) T) ((-223 . -975) 136510) ((-1095 . -599) 136435) ((-1051 . -599) 136360) ((-667 . -571) 136342) ((-799 . -599) 136316) ((-469 . -1027) T) ((-1201 . -23) T) ((-1199 . -23) T) ((-972 . -984) T) ((-1109 . -268) 136295) ((-159 . -349) 136246) ((-943 . -1135) T) ((-43 . -23) T) ((-458 . -268) 136225) ((-547 . -1027) T) ((-1070 . -1036) 136194) ((-1031 . -1030) 136146) ((-126 . -1135) T) ((-371 . -21) T) ((-371 . -25) T) ((-145 . -1039) T) ((-1207 . -99) T) ((-943 . -825) 136128) ((-943 . -827) 136110) ((-1130 . -666) 136007) ((-578 . -214) 135991) ((-576 . -21) T) ((-271 . -522) T) ((-576 . -25) T) ((-1116 . -1027) T) ((-660 . -666) 135956) ((-223 . -358) 135926) ((-943 . -975) 135886) ((-360 . -984) T) ((-206 . -991) T) ((-115 . -214) 135863) ((-57 . -268) 135840) ((-145 . -23) T) ((-493 . -268) 135817) ((-308 . -491) 135750) ((-474 . -268) 135727) ((-360 . -226) T) ((-360 . -216) T) ((-782 . -984) T) ((-775 . -984) T) ((-661 . -890) 135696) ((-649 . -795) T) ((-454 . -571) 135678) ((-775 . -216) 135657) ((-130 . -795) T) ((-609 . -1027) T) ((-1109 . -563) 135636) ((-516 . -1112) 135615) ((-317 . -1027) T) ((-300 . -344) 135594) ((-388 . -140) 135573) ((-388 . -138) 135552) ((-905 . -1039) 135451) ((-223 . -841) 135384) ((-763 . -1039) 135295) ((-605 . -797) 135279) ((-458 . -563) 135258) ((-516 . -104) 135208) ((-943 . -358) 135190) ((-943 . -319) 135172) ((-94 . -1027) T) ((-905 . -23) 134983) ((-457 . -21) T) ((-457 . -25) T) ((-763 . -23) 134854) ((-1099 . -571) 134836) ((-57 . -19) 134820) ((-1099 . -572) 134742) ((-1095 . -675) T) ((-1051 . -675) T) ((-493 . -19) 134726) ((-474 . -19) 134710) ((-57 . -563) 134687) ((-1016 . -1027) T) ((-842 . -99) 134665) ((-799 . -675) T) ((-730 . -1027) T) ((-493 . -563) 134642) ((-474 . -563) 134619) ((-728 . -1027) T) ((-728 . -998) 134586) ((-441 . -1027) T) ((-434 . -1027) T) ((-547 . -666) 134561) ((-600 . -1027) T) ((-943 . -841) NIL) ((-1173 . -46) 134538) ((-581 . -1039) T) ((-621 . -128) T) ((-1167 . -99) T) ((-1166 . -46) 134508) ((-1145 . -46) 134485) ((-1130 . -162) 134436) ((-1010 . -1139) 134387) ((-257 . -1027) T) ((-83 . -421) T) ((-83 . -376) T) ((-1096 . -289) 134366) ((-1090 . -289) 134345) ((-49 . -1027) T) ((-1010 . -522) 134296) ((-660 . -162) T) ((-555 . -46) 134273) ((-208 . -599) 134238) ((-543 . -1027) T) ((-494 . -1027) T) ((-340 . -1139) T) ((-334 . -1139) T) ((-326 . -1139) T) ((-466 . -768) T) ((-466 . -861) T) ((-300 . -1039) T) ((-105 . -1139) T) ((-320 . -795) T) ((-201 . -861) T) ((-201 . -768) T) ((-663 . -990) 134208) ((-340 . -522) T) ((-334 . -522) T) ((-326 . -522) T) ((-105 . -522) T) ((-609 . -666) 134178) ((-1090 . -960) NIL) ((-300 . -23) T) ((-65 . -1135) T) ((-939 . -571) 134110) ((-642 . -214) 134092) ((-663 . -109) 134057) ((-597 . -33) T) ((-228 . -468) 134041) ((-1029 . -1025) 134025) ((-161 . -1027) T) ((-893 . -850) 134004) ((-460 . -850) 133983) ((-1203 . -21) T) ((-1203 . -25) T) ((-1201 . -128) T) ((-1199 . -128) T) ((-1016 . -666) 133832) ((-995 . -599) 133819) ((-893 . -599) 133744) ((-730 . -666) 133573) ((-506 . -571) 133555) ((-506 . -572) 133536) ((-728 . -666) 133385) ((-1192 . -99) T) ((-1007 . -99) T) ((-362 . -25) T) ((-362 . -21) T) ((-460 . -599) 133310) ((-441 . -666) 133281) ((-434 . -666) 133130) ((-927 . -99) T) ((-686 . -99) T) ((-1207 . -1075) T) ((-502 . -25) T) ((-1145 . -1135) 133109) ((-1177 . -571) 133075) ((-1145 . -827) NIL) ((-1145 . -825) 133027) ((-134 . -99) T) ((-43 . -128) T) ((-1109 . -572) NIL) ((-1109 . -571) 133009) ((-1066 . -1049) 132954) ((-324 . -991) T) ((-615 . -571) 132936) ((-271 . -1039) T) ((-336 . -571) 132918) ((-333 . -571) 132900) ((-325 . -571) 132882) ((-246 . -572) 132630) ((-246 . -571) 132612) ((-230 . -571) 132594) ((-230 . -572) 132455) ((-981 . -1129) 132384) ((-842 . -291) 132322) ((-1166 . -975) 132257) ((-1145 . -975) 132223) ((-1130 . -491) 132190) ((-1065 . -571) 132172) ((-767 . -802) T) ((-767 . -675) T) ((-561 . -270) 132149) ((-543 . -666) 132114) ((-458 . -572) NIL) ((-458 . -571) 132096) ((-494 . -666) 132041) ((-297 . -99) T) ((-294 . -99) T) ((-271 . -23) T) ((-145 . -128) T) ((-367 . -675) T) ((-813 . -990) 131993) ((-851 . -571) 131975) ((-851 . -572) 131957) ((-813 . -109) 131895) ((-132 . -99) T) ((-112 . -99) T) ((-661 . -1157) 131879) ((-663 . -984) T) ((-642 . -330) NIL) ((-495 . -571) 131811) ((-360 . -743) T) ((-206 . -1027) T) ((-360 . -740) T) ((-208 . -742) T) ((-208 . -739) T) ((-57 . -572) 131772) ((-57 . -571) 131684) ((-208 . -675) T) ((-493 . -572) 131645) ((-493 . -571) 131557) ((-475 . -571) 131489) ((-474 . -572) 131450) ((-474 . -571) 131362) ((-1010 . -344) 131313) ((-39 . -392) 131290) ((-75 . -1135) T) ((-812 . -850) NIL) ((-340 . -310) 131274) ((-340 . -344) T) ((-334 . -310) 131258) ((-334 . -344) T) ((-326 . -310) 131242) ((-326 . -344) T) ((-297 . -266) 131221) ((-105 . -344) T) ((-68 . -1135) T) ((-1145 . -319) 131173) ((-812 . -599) 131118) ((-1145 . -358) 131070) ((-905 . -128) 130925) ((-763 . -128) 130796) ((-899 . -602) 130780) ((-1016 . -162) 130691) ((-899 . -354) 130675) ((-995 . -742) T) ((-995 . -739) T) ((-730 . -162) 130566) ((-728 . -162) 130477) ((-764 . -46) 130439) ((-995 . -675) T) ((-308 . -468) 130423) ((-893 . -675) T) ((-434 . -162) 130334) ((-228 . -268) 130311) ((-460 . -675) T) ((-1192 . -291) 130249) ((-1173 . -841) 130162) ((-1166 . -841) 130068) ((-1165 . -990) 129903) ((-1145 . -841) 129736) ((-1144 . -990) 129544) ((-1130 . -272) 129523) ((-1070 . -144) 129507) ((-1046 . -99) T) ((-1005 . -99) T) ((-868 . -896) T) ((-73 . -1135) T) ((-686 . -291) 129445) ((-159 . -850) 129398) ((-615 . -363) 129370) ((-30 . -896) T) ((-1 . -571) 129352) ((-1044 . -1027) T) ((-1010 . -23) T) ((-49 . -575) 129336) ((-1010 . -1039) T) ((-942 . -390) 129308) ((-555 . -841) 129221) ((-419 . -99) T) ((-134 . -291) NIL) ((-813 . -984) T) ((-781 . -795) 129200) ((-79 . -1135) T) ((-660 . -272) T) ((-39 . -991) T) ((-543 . -162) T) ((-494 . -162) T) ((-488 . -571) 129182) ((-159 . -599) 129092) ((-484 . -571) 129074) ((-332 . -140) 129056) ((-332 . -138) T) ((-340 . -1039) T) ((-334 . -1039) T) ((-326 . -1039) T) ((-943 . -289) T) ((-855 . -289) T) ((-813 . -226) T) ((-105 . -1039) T) ((-813 . -216) 129035) ((-1165 . -109) 128856) ((-1144 . -109) 128645) ((-228 . -1169) 128629) ((-530 . -793) T) ((-340 . -23) T) ((-335 . -330) T) ((-297 . -291) 128616) ((-294 . -291) 128557) ((-334 . -23) T) ((-300 . -128) T) ((-326 . -23) T) ((-943 . -960) T) ((-105 . -23) T) ((-228 . -563) 128534) ((-1167 . -37) 128426) ((-1154 . -850) 128405) ((-110 . -1027) T) ((-973 . -99) T) ((-1154 . -599) 128330) ((-812 . -742) NIL) ((-800 . -599) 128304) ((-812 . -739) NIL) ((-764 . -827) NIL) ((-812 . -675) T) ((-1016 . -491) 128177) ((-730 . -491) 128124) ((-728 . -491) 128076) ((-537 . -599) 128063) ((-764 . -975) 127893) ((-434 . -491) 127836) ((-369 . -370) T) ((-58 . -1135) T) ((-576 . -795) 127815) ((-478 . -612) T) ((-1070 . -916) 127784) ((-942 . -432) T) ((-647 . -793) T) ((-487 . -740) T) ((-454 . -990) 127619) ((-324 . -1027) T) ((-294 . -1075) NIL) ((-271 . -128) T) ((-375 . -1027) T) ((-642 . -351) 127586) ((-811 . -991) T) ((-206 . -575) 127563) ((-308 . -268) 127540) ((-454 . -109) 127361) ((-1165 . -984) T) ((-1144 . -984) T) ((-764 . -358) 127345) ((-159 . -675) T) ((-605 . -99) T) ((-1165 . -226) 127324) ((-1165 . -216) 127276) ((-1144 . -216) 127181) ((-1144 . -226) 127160) ((-942 . -383) NIL) ((-621 . -593) 127108) ((-297 . -37) 127018) ((-294 . -37) 126947) ((-67 . -571) 126929) ((-300 . -471) 126895) ((-1109 . -270) 126874) ((-1040 . -1039) 126785) ((-81 . -1135) T) ((-59 . -571) 126767) ((-458 . -270) 126746) ((-1194 . -975) 126723) ((-1088 . -1027) T) ((-1040 . -23) 126594) ((-764 . -841) 126530) ((-1154 . -675) T) ((-1029 . -1135) T) ((-1016 . -272) 126461) ((-834 . -99) T) ((-730 . -272) 126372) ((-308 . -19) 126356) ((-57 . -270) 126333) ((-728 . -272) 126264) ((-800 . -675) T) ((-115 . -793) NIL) ((-493 . -270) 126241) ((-308 . -563) 126218) ((-474 . -270) 126195) ((-434 . -272) 126126) ((-973 . -291) 125977) ((-537 . -675) T) ((-613 . -571) 125959) ((-228 . -572) 125920) ((-228 . -571) 125832) ((-1071 . -33) T) ((-884 . -1135) T) ((-324 . -666) 125777) ((-621 . -25) T) ((-621 . -21) T) ((-454 . -984) T) ((-589 . -398) 125742) ((-565 . -398) 125707) ((-1046 . -1075) T) ((-543 . -272) T) ((-494 . -272) T) ((-1166 . -289) 125686) ((-454 . -216) 125638) ((-454 . -226) 125617) ((-1145 . -289) 125596) ((-1145 . -960) NIL) ((-1010 . -128) T) ((-813 . -743) 125575) ((-137 . -99) T) ((-39 . -1027) T) ((-813 . -740) 125554) ((-597 . -949) 125538) ((-542 . -991) T) ((-530 . -991) T) ((-473 . -991) T) ((-388 . -432) T) ((-340 . -128) T) ((-297 . -381) 125522) ((-294 . -381) 125483) ((-334 . -128) T) ((-326 . -128) T) ((-1104 . -1027) T) ((-1046 . -37) 125470) ((-1022 . -571) 125437) ((-105 . -128) T) ((-895 . -1027) T) ((-862 . -1027) T) ((-719 . -1027) T) ((-622 . -1027) T) ((-649 . -140) T) ((-114 . -140) T) ((-1201 . -21) T) ((-1201 . -25) T) ((-1199 . -21) T) ((-1199 . -25) T) ((-615 . -990) 125421) ((-502 . -795) T) ((-478 . -795) T) ((-336 . -990) 125373) ((-333 . -990) 125325) ((-325 . -990) 125277) ((-233 . -1135) T) ((-232 . -1135) T) ((-246 . -990) 125120) ((-230 . -990) 124963) ((-615 . -109) 124942) ((-336 . -109) 124880) ((-333 . -109) 124818) ((-325 . -109) 124756) ((-246 . -109) 124585) ((-230 . -109) 124414) ((-765 . -1139) 124393) ((-578 . -392) 124377) ((-43 . -21) T) ((-43 . -25) T) ((-763 . -593) 124285) ((-765 . -522) 124264) ((-233 . -975) 124093) ((-232 . -975) 123922) ((-124 . -117) 123906) ((-851 . -990) 123871) ((-647 . -991) T) ((-661 . -99) T) ((-324 . -162) T) ((-145 . -21) T) ((-145 . -25) T) ((-86 . -571) 123853) ((-851 . -109) 123809) ((-39 . -666) 123754) ((-811 . -1027) T) ((-308 . -572) 123715) ((-308 . -571) 123627) ((-1144 . -740) 123580) ((-1144 . -743) 123533) ((-233 . -358) 123503) ((-232 . -358) 123473) ((-605 . -37) 123443) ((-566 . -33) T) ((-461 . -1039) 123354) ((-455 . -33) T) ((-1040 . -128) 123225) ((-905 . -25) 123036) ((-815 . -571) 123018) ((-905 . -21) 122973) ((-763 . -21) 122884) ((-763 . -25) 122736) ((-578 . -991) T) ((-1101 . -522) 122715) ((-1095 . -46) 122692) ((-336 . -984) T) ((-333 . -984) T) ((-461 . -23) 122563) ((-325 . -984) T) ((-230 . -984) T) ((-246 . -984) T) ((-1051 . -46) 122535) ((-115 . -991) T) ((-972 . -599) 122509) ((-899 . -33) T) ((-336 . -216) 122488) ((-336 . -226) T) ((-333 . -216) 122467) ((-333 . -226) T) ((-230 . -307) 122424) ((-325 . -216) 122403) ((-325 . -226) T) ((-246 . -307) 122375) ((-246 . -216) 122354) ((-1080 . -144) 122338) ((-233 . -841) 122271) ((-232 . -841) 122204) ((-1012 . -795) T) ((-1148 . -1135) T) ((-395 . -1039) T) ((-988 . -23) T) ((-851 . -984) T) ((-303 . -599) 122186) ((-962 . -793) T) ((-1130 . -941) 122152) ((-1096 . -861) 122131) ((-1090 . -861) 122110) ((-851 . -226) T) ((-765 . -344) 122089) ((-366 . -23) T) ((-125 . -1027) 122067) ((-119 . -1027) 122045) ((-851 . -216) T) ((-1090 . -768) NIL) ((-360 . -599) 122010) ((-811 . -666) 121997) ((-981 . -144) 121962) ((-39 . -162) T) ((-642 . -392) 121944) ((-661 . -291) 121931) ((-782 . -599) 121891) ((-775 . -599) 121865) ((-300 . -25) T) ((-300 . -21) T) ((-609 . -268) 121844) ((-542 . -1027) T) ((-530 . -1027) T) ((-473 . -1027) T) ((-228 . -270) 121821) ((-294 . -214) 121782) ((-1095 . -827) NIL) ((-1051 . -827) 121641) ((-127 . -795) T) ((-1095 . -975) 121523) ((-1051 . -975) 121408) ((-171 . -571) 121390) ((-799 . -975) 121288) ((-730 . -268) 121215) ((-765 . -1039) T) ((-972 . -675) T) ((-561 . -602) 121199) ((-981 . -916) 121128) ((-938 . -99) T) ((-765 . -23) T) ((-661 . -1075) 121106) ((-642 . -991) T) ((-561 . -354) 121090) ((-332 . -432) T) ((-324 . -272) T) ((-1182 . -1027) T) ((-231 . -1027) T) ((-380 . -99) T) ((-271 . -21) T) ((-271 . -25) T) ((-342 . -675) T) ((-659 . -1027) T) ((-647 . -1027) T) ((-342 . -453) T) ((-1130 . -571) 121072) ((-1095 . -358) 121056) ((-1051 . -358) 121040) ((-962 . -392) 121002) ((-134 . -212) 120984) ((-360 . -742) T) ((-360 . -739) T) ((-811 . -162) T) ((-360 . -675) T) ((-660 . -571) 120966) ((-661 . -37) 120795) ((-1181 . -1179) 120779) ((-332 . -383) T) ((-1181 . -1027) 120729) ((-542 . -666) 120716) ((-530 . -666) 120703) ((-473 . -666) 120668) ((-297 . -583) 120647) ((-782 . -675) T) ((-775 . -675) T) ((-597 . -1135) T) ((-1010 . -593) 120595) ((-1095 . -841) 120538) ((-1051 . -841) 120522) ((-613 . -990) 120506) ((-105 . -593) 120488) ((-461 . -128) 120359) ((-1101 . -1039) T) ((-893 . -46) 120328) ((-578 . -1027) T) ((-613 . -109) 120307) ((-469 . -571) 120273) ((-308 . -270) 120250) ((-460 . -46) 120207) ((-1101 . -23) T) ((-115 . -1027) T) ((-100 . -99) 120185) ((-1191 . -1039) T) ((-988 . -128) T) ((-962 . -991) T) ((-767 . -975) 120169) ((-942 . -673) 120141) ((-1191 . -23) T) ((-647 . -666) 120106) ((-547 . -571) 120088) ((-367 . -975) 120072) ((-335 . -991) T) ((-366 . -128) T) ((-305 . -975) 120056) ((-208 . -827) 120038) ((-943 . -861) T) ((-89 . -33) T) ((-943 . -768) T) ((-855 . -861) T) ((-466 . -1139) T) ((-1116 . -571) 120020) ((-1032 . -1027) T) ((-201 . -1139) T) ((-938 . -291) 119985) ((-208 . -975) 119945) ((-39 . -272) T) ((-1010 . -21) T) ((-1010 . -25) T) ((-1046 . -776) T) ((-466 . -522) T) ((-340 . -25) T) ((-201 . -522) T) ((-340 . -21) T) ((-334 . -25) T) ((-334 . -21) T) ((-663 . -599) 119905) ((-326 . -25) T) ((-326 . -21) T) ((-105 . -25) T) ((-105 . -21) T) ((-47 . -991) T) ((-542 . -162) T) ((-530 . -162) T) ((-473 . -162) T) ((-609 . -571) 119887) ((-686 . -685) 119871) ((-317 . -571) 119853) ((-66 . -364) T) ((-66 . -376) T) ((-1029 . -104) 119837) ((-995 . -827) 119819) ((-893 . -827) 119744) ((-604 . -1039) T) ((-578 . -666) 119731) ((-460 . -827) NIL) ((-1070 . -99) T) ((-995 . -975) 119713) ((-94 . -571) 119695) ((-457 . -140) T) ((-893 . -975) 119577) ((-115 . -666) 119522) ((-604 . -23) T) ((-460 . -975) 119400) ((-1016 . -572) NIL) ((-1016 . -571) 119382) ((-730 . -572) NIL) ((-730 . -571) 119343) ((-728 . -572) 118978) ((-728 . -571) 118892) ((-1040 . -593) 118800) ((-441 . -571) 118782) ((-434 . -571) 118764) ((-434 . -572) 118625) ((-973 . -212) 118571) ((-124 . -33) T) ((-765 . -128) T) ((-813 . -850) 118550) ((-600 . -571) 118532) ((-336 . -1198) 118516) ((-333 . -1198) 118500) ((-325 . -1198) 118484) ((-125 . -491) 118417) ((-119 . -491) 118350) ((-488 . -740) T) ((-488 . -743) T) ((-487 . -742) T) ((-100 . -291) 118288) ((-205 . -99) 118266) ((-642 . -1027) T) ((-647 . -162) T) ((-813 . -599) 118218) ((-63 . -365) T) ((-257 . -571) 118200) ((-63 . -376) T) ((-893 . -358) 118184) ((-811 . -272) T) ((-49 . -571) 118166) ((-938 . -37) 118114) ((-543 . -571) 118096) ((-460 . -358) 118080) ((-543 . -572) 118062) ((-494 . -571) 118044) ((-851 . -1198) 118031) ((-812 . -1135) T) ((-649 . -432) T) ((-473 . -491) 117997) ((-466 . -344) T) ((-336 . -349) 117976) ((-333 . -349) 117955) ((-325 . -349) 117934) ((-201 . -344) T) ((-663 . -675) T) ((-114 . -432) T) ((-1202 . -1193) 117918) ((-812 . -825) 117895) ((-812 . -827) NIL) ((-905 . -795) 117794) ((-763 . -795) 117745) ((-605 . -607) 117729) ((-1122 . -33) T) ((-161 . -571) 117711) ((-1040 . -21) 117622) ((-1040 . -25) 117474) ((-812 . -975) 117451) ((-893 . -841) 117432) ((-1154 . -46) 117409) ((-851 . -349) T) ((-57 . -602) 117393) ((-493 . -602) 117377) ((-460 . -841) 117354) ((-69 . -421) T) ((-69 . -376) T) ((-474 . -602) 117338) ((-57 . -354) 117322) ((-578 . -162) T) ((-493 . -354) 117306) ((-474 . -354) 117290) ((-775 . -657) 117274) ((-1095 . -289) 117253) ((-1101 . -128) T) ((-115 . -162) T) ((-1070 . -291) 117191) ((-159 . -1135) T) ((-589 . -693) 117175) ((-565 . -693) 117159) ((-1191 . -128) T) ((-1166 . -861) 117138) ((-1145 . -861) 117117) ((-1145 . -768) NIL) ((-642 . -666) 117067) ((-1144 . -850) 117020) ((-962 . -1027) T) ((-812 . -358) 116997) ((-812 . -319) 116974) ((-846 . -1039) T) ((-159 . -825) 116958) ((-159 . -827) 116883) ((-466 . -1039) T) ((-335 . -1027) T) ((-201 . -1039) T) ((-74 . -421) T) ((-74 . -376) T) ((-159 . -975) 116781) ((-300 . -795) T) ((-1181 . -491) 116714) ((-1165 . -599) 116611) ((-1144 . -599) 116481) ((-813 . -742) 116460) ((-813 . -739) 116439) ((-813 . -675) T) ((-466 . -23) T) ((-206 . -571) 116421) ((-163 . -432) T) ((-205 . -291) 116359) ((-84 . -421) T) ((-84 . -376) T) ((-201 . -23) T) ((-1203 . -1196) 116338) ((-542 . -272) T) ((-530 . -272) T) ((-626 . -975) 116322) ((-473 . -272) T) ((-132 . -450) 116277) ((-47 . -1027) T) ((-661 . -214) 116261) ((-812 . -841) NIL) ((-1154 . -827) NIL) ((-830 . -99) T) ((-826 . -99) T) ((-369 . -1027) T) ((-159 . -358) 116245) ((-159 . -319) 116229) ((-1154 . -975) 116111) ((-800 . -975) 116009) ((-1066 . -99) T) ((-604 . -128) T) ((-115 . -491) 115917) ((-613 . -740) 115896) ((-613 . -743) 115875) ((-537 . -975) 115857) ((-276 . -1188) 115827) ((-807 . -99) T) ((-904 . -522) 115806) ((-1130 . -990) 115689) ((-461 . -593) 115597) ((-845 . -1027) T) ((-962 . -666) 115534) ((-660 . -990) 115499) ((-561 . -33) T) ((-1071 . -1135) T) ((-1130 . -109) 115368) ((-454 . -599) 115265) ((-335 . -666) 115210) ((-159 . -841) 115169) ((-647 . -272) T) ((-642 . -162) T) ((-660 . -109) 115125) ((-1207 . -991) T) ((-1154 . -358) 115109) ((-399 . -1139) 115087) ((-1044 . -571) 115069) ((-294 . -793) NIL) ((-399 . -522) T) ((-208 . -289) T) ((-1144 . -739) 115022) ((-1144 . -742) 114975) ((-1165 . -675) T) ((-1144 . -675) T) ((-47 . -666) 114940) ((-208 . -960) T) ((-332 . -1188) 114917) ((-1167 . -392) 114883) ((-667 . -675) T) ((-1154 . -841) 114826) ((-110 . -571) 114808) ((-110 . -572) 114790) ((-667 . -453) T) ((-461 . -21) 114701) ((-125 . -468) 114685) ((-119 . -468) 114669) ((-461 . -25) 114521) ((-578 . -272) T) ((-547 . -990) 114496) ((-418 . -1027) T) ((-995 . -289) T) ((-115 . -272) T) ((-1031 . -99) T) ((-942 . -99) T) ((-547 . -109) 114464) ((-1066 . -291) 114402) ((-1130 . -984) T) ((-995 . -960) T) ((-64 . -1135) T) ((-988 . -25) T) ((-988 . -21) T) ((-660 . -984) T) ((-366 . -21) T) ((-366 . -25) T) ((-642 . -491) NIL) ((-962 . -162) T) ((-660 . -226) T) ((-995 . -515) T) ((-480 . -99) T) ((-335 . -162) T) ((-324 . -571) 114384) ((-375 . -571) 114366) ((-454 . -675) T) ((-1046 . -793) T) ((-833 . -975) 114334) ((-105 . -795) T) ((-609 . -990) 114318) ((-466 . -128) T) ((-1167 . -991) T) ((-201 . -128) T) ((-1080 . -99) 114296) ((-96 . -1027) T) ((-228 . -617) 114280) ((-228 . -602) 114264) ((-609 . -109) 114243) ((-297 . -392) 114227) ((-228 . -354) 114211) ((-1083 . -218) 114158) ((-938 . -214) 114142) ((-72 . -1135) T) ((-47 . -162) T) ((-649 . -368) T) ((-649 . -136) T) ((-1202 . -99) T) ((-1016 . -990) 113985) ((-246 . -850) 113964) ((-230 . -850) 113943) ((-730 . -990) 113766) ((-728 . -990) 113609) ((-566 . -1135) T) ((-1088 . -571) 113591) ((-1016 . -109) 113420) ((-981 . -99) T) ((-455 . -1135) T) ((-441 . -990) 113391) ((-434 . -990) 113234) ((-615 . -599) 113218) ((-812 . -289) T) ((-730 . -109) 113027) ((-728 . -109) 112856) ((-336 . -599) 112808) ((-333 . -599) 112760) ((-325 . -599) 112712) ((-246 . -599) 112637) ((-230 . -599) 112562) ((-1082 . -795) T) ((-1017 . -975) 112546) ((-441 . -109) 112507) ((-434 . -109) 112336) ((-1006 . -975) 112313) ((-939 . -33) T) ((-907 . -571) 112274) ((-899 . -1135) T) ((-124 . -949) 112258) ((-904 . -1039) T) ((-812 . -960) NIL) ((-684 . -1039) T) ((-664 . -1039) T) ((-1181 . -468) 112242) ((-1066 . -37) 112202) ((-904 . -23) T) ((-788 . -99) T) ((-765 . -21) T) ((-765 . -25) T) ((-684 . -23) T) ((-664 . -23) T) ((-108 . -612) T) ((-851 . -599) 112167) ((-543 . -990) 112132) ((-494 . -990) 112077) ((-210 . -55) 112035) ((-433 . -23) T) ((-388 . -99) T) ((-245 . -99) T) ((-642 . -272) T) ((-807 . -37) 112005) ((-543 . -109) 111961) ((-494 . -109) 111890) ((-399 . -1039) T) ((-297 . -991) 111781) ((-294 . -991) T) ((-609 . -984) T) ((-1207 . -1027) T) ((-159 . -289) 111712) ((-399 . -23) T) ((-39 . -571) 111694) ((-39 . -572) 111678) ((-105 . -932) 111660) ((-114 . -810) 111644) ((-47 . -491) 111610) ((-1122 . -949) 111594) ((-1104 . -571) 111576) ((-1109 . -33) T) ((-895 . -571) 111542) ((-862 . -571) 111524) ((-1040 . -795) 111475) ((-719 . -571) 111457) ((-622 . -571) 111439) ((-1080 . -291) 111377) ((-458 . -33) T) ((-1020 . -1135) T) ((-457 . -432) T) ((-1016 . -984) T) ((-1065 . -33) T) ((-730 . -984) T) ((-728 . -984) T) ((-598 . -218) 111361) ((-586 . -218) 111307) ((-1154 . -289) 111286) ((-1016 . -307) 111247) ((-434 . -984) T) ((-1101 . -21) T) ((-1016 . -216) 111226) ((-730 . -307) 111203) ((-730 . -216) T) ((-728 . -307) 111175) ((-308 . -602) 111159) ((-680 . -1139) 111138) ((-1101 . -25) T) ((-57 . -33) T) ((-495 . -33) T) ((-493 . -33) T) ((-434 . -307) 111117) ((-308 . -354) 111101) ((-475 . -33) T) ((-474 . -33) T) ((-942 . -1075) NIL) ((-589 . -99) T) ((-565 . -99) T) ((-680 . -522) 111032) ((-336 . -675) T) ((-333 . -675) T) ((-325 . -675) T) ((-246 . -675) T) ((-230 . -675) T) ((-981 . -291) 110940) ((-842 . -1027) 110918) ((-49 . -984) T) ((-1191 . -21) T) ((-1191 . -25) T) ((-1097 . -522) 110897) ((-1096 . -1139) 110876) ((-543 . -984) T) ((-494 . -984) T) ((-1090 . -1139) 110855) ((-342 . -975) 110839) ((-303 . -975) 110823) ((-962 . -272) T) ((-360 . -827) 110805) ((-1096 . -522) 110756) ((-1090 . -522) 110707) ((-942 . -37) 110652) ((-747 . -1039) T) ((-851 . -675) T) ((-543 . -226) T) ((-543 . -216) T) ((-494 . -216) T) ((-494 . -226) T) ((-1052 . -522) 110631) ((-335 . -272) T) ((-598 . -643) 110615) ((-360 . -975) 110575) ((-1046 . -991) T) ((-100 . -123) 110559) ((-747 . -23) T) ((-1181 . -268) 110536) ((-388 . -291) 110501) ((-1201 . -1196) 110477) ((-1199 . -1196) 110456) ((-1167 . -1027) T) ((-811 . -571) 110438) ((-782 . -975) 110407) ((-187 . -735) T) ((-186 . -735) T) ((-185 . -735) T) ((-184 . -735) T) ((-183 . -735) T) ((-182 . -735) T) ((-181 . -735) T) ((-180 . -735) T) ((-179 . -735) T) ((-178 . -735) T) ((-473 . -941) T) ((-256 . -784) T) ((-255 . -784) T) ((-254 . -784) T) ((-253 . -784) T) ((-47 . -272) T) ((-252 . -784) T) ((-251 . -784) T) ((-250 . -784) T) ((-177 . -735) T) ((-570 . -795) T) ((-605 . -392) 110391) ((-108 . -795) T) ((-604 . -21) T) ((-604 . -25) T) ((-1202 . -37) 110361) ((-115 . -268) 110312) ((-1181 . -19) 110296) ((-1181 . -563) 110273) ((-1192 . -1027) T) ((-1007 . -1027) T) ((-927 . -1027) T) ((-904 . -128) T) ((-686 . -1027) T) ((-684 . -128) T) ((-664 . -128) T) ((-488 . -741) T) ((-388 . -1075) 110251) ((-433 . -128) T) ((-488 . -742) T) ((-206 . -984) T) ((-276 . -99) 110034) ((-134 . -1027) T) ((-647 . -941) T) ((-89 . -1135) T) ((-125 . -571) 109966) ((-119 . -571) 109898) ((-1207 . -162) T) ((-1096 . -344) 109877) ((-1090 . -344) 109856) ((-297 . -1027) T) ((-399 . -128) T) ((-294 . -1027) T) ((-388 . -37) 109808) ((-1059 . -99) T) ((-1167 . -666) 109700) ((-605 . -991) T) ((-300 . -138) 109679) ((-300 . -140) 109658) ((-132 . -1027) T) ((-112 . -1027) T) ((-803 . -99) T) ((-542 . -571) 109640) ((-530 . -572) 109539) ((-530 . -571) 109521) ((-473 . -571) 109503) ((-473 . -572) 109448) ((-464 . -23) T) ((-461 . -795) 109399) ((-466 . -593) 109381) ((-906 . -571) 109363) ((-201 . -593) 109345) ((-208 . -385) T) ((-613 . -599) 109329) ((-1095 . -861) 109308) ((-680 . -1039) T) ((-332 . -99) T) ((-766 . -795) T) ((-680 . -23) T) ((-324 . -990) 109253) ((-1082 . -1081) T) ((-1071 . -104) 109237) ((-1097 . -1039) T) ((-1096 . -1039) T) ((-492 . -975) 109221) ((-1090 . -1039) T) ((-1052 . -1039) T) ((-324 . -109) 109150) ((-943 . -1139) T) ((-124 . -1135) T) ((-855 . -1139) T) ((-642 . -268) NIL) ((-1182 . -571) 109132) ((-1097 . -23) T) ((-1096 . -23) T) ((-1090 . -23) T) ((-943 . -522) T) ((-1066 . -214) 109116) ((-855 . -522) T) ((-1052 . -23) T) ((-231 . -571) 109098) ((-1005 . -1027) T) ((-747 . -128) T) ((-659 . -571) 109080) ((-297 . -666) 108990) ((-294 . -666) 108919) ((-647 . -571) 108901) ((-647 . -572) 108846) ((-388 . -381) 108830) ((-419 . -1027) T) ((-466 . -25) T) ((-466 . -21) T) ((-1046 . -1027) T) ((-201 . -25) T) ((-201 . -21) T) ((-661 . -392) 108814) ((-663 . -975) 108783) ((-1181 . -571) 108695) ((-1181 . -572) 108656) ((-1167 . -162) T) ((-228 . -33) T) ((-867 . -914) T) ((-1122 . -1135) T) ((-613 . -739) 108635) ((-613 . -742) 108614) ((-379 . -376) T) ((-499 . -99) 108592) ((-973 . -1027) T) ((-205 . -934) 108576) ((-482 . -99) T) ((-578 . -571) 108558) ((-44 . -795) NIL) ((-578 . -572) 108535) ((-973 . -568) 108510) ((-842 . -491) 108443) ((-324 . -984) T) ((-115 . -572) NIL) ((-115 . -571) 108425) ((-813 . -1135) T) ((-621 . -398) 108409) ((-621 . -1049) 108354) ((-478 . -144) 108336) ((-324 . -216) T) ((-324 . -226) T) ((-39 . -990) 108281) ((-813 . -825) 108265) ((-813 . -827) 108190) ((-661 . -991) T) ((-642 . -941) NIL) ((-3 . |UnionCategory|) T) ((-1165 . -46) 108160) ((-1144 . -46) 108137) ((-1065 . -949) 108108) ((-208 . -861) T) ((-39 . -109) 108037) ((-813 . -975) 107904) ((-1046 . -666) 107891) ((-1032 . -571) 107873) ((-1010 . -140) 107852) ((-1010 . -138) 107803) ((-943 . -344) T) ((-300 . -1124) 107769) ((-360 . -289) T) ((-300 . -1121) 107735) ((-297 . -162) 107714) ((-294 . -162) T) ((-942 . -214) 107691) ((-855 . -344) T) ((-543 . -1198) 107678) ((-494 . -1198) 107655) ((-340 . -140) 107634) ((-340 . -138) 107585) ((-334 . -140) 107564) ((-334 . -138) 107515) ((-566 . -1112) 107491) ((-326 . -140) 107470) ((-326 . -138) 107421) ((-300 . -34) 107387) ((-455 . -1112) 107366) ((0 . |EnumerationCategory|) T) ((-300 . -93) 107332) ((-360 . -960) T) ((-105 . -140) T) ((-105 . -138) NIL) ((-44 . -218) 107282) ((-605 . -1027) T) ((-566 . -104) 107229) ((-464 . -128) T) ((-455 . -104) 107179) ((-223 . -1039) 107090) ((-813 . -358) 107074) ((-813 . -319) 107058) ((-223 . -23) 106929) ((-995 . -861) T) ((-995 . -768) T) ((-543 . -349) T) ((-494 . -349) T) ((-332 . -1075) T) ((-308 . -33) T) ((-43 . -398) 106913) ((-814 . -1135) T) ((-371 . -693) 106897) ((-1192 . -491) 106830) ((-680 . -128) T) ((-1173 . -522) 106809) ((-1166 . -1139) 106788) ((-1166 . -522) 106739) ((-1145 . -1139) 106718) ((-1145 . -522) 106669) ((-686 . -491) 106602) ((-1144 . -1135) 106581) ((-1144 . -827) 106454) ((-834 . -1027) T) ((-137 . -789) T) ((-1144 . -825) 106424) ((-639 . -571) 106406) ((-1097 . -128) T) ((-499 . -291) 106344) ((-1096 . -128) T) ((-134 . -491) NIL) ((-1090 . -128) T) ((-1052 . -128) T) ((-962 . -941) T) ((-943 . -23) T) ((-332 . -37) 106309) ((-943 . -1039) T) ((-855 . -1039) T) ((-80 . -571) 106291) ((-39 . -984) T) ((-811 . -990) 106278) ((-942 . -330) NIL) ((-813 . -841) 106237) ((-649 . -99) T) ((-911 . -23) T) ((-561 . -1135) T) ((-855 . -23) T) ((-811 . -109) 106222) ((-408 . -1039) T) ((-454 . -46) 106192) ((-197 . -99) T) ((-130 . -99) T) ((-39 . -216) 106164) ((-39 . -226) T) ((-114 . -99) T) ((-556 . -522) 106143) ((-555 . -522) 106122) ((-642 . -571) 106104) ((-642 . -572) 106012) ((-297 . -491) 105978) ((-294 . -491) 105870) ((-1165 . -975) 105854) ((-1144 . -975) 105643) ((-938 . -392) 105627) ((-408 . -23) T) ((-1046 . -162) T) ((-1167 . -272) T) ((-605 . -666) 105597) ((-137 . -1027) T) ((-47 . -941) T) ((-388 . -214) 105581) ((-277 . -218) 105531) ((-812 . -861) T) ((-812 . -768) NIL) ((-806 . -795) T) ((-1144 . -319) 105501) ((-1144 . -358) 105471) ((-205 . -1047) 105455) ((-1181 . -270) 105432) ((-1130 . -599) 105357) ((-904 . -21) T) ((-904 . -25) T) ((-684 . -21) T) ((-684 . -25) T) ((-664 . -21) T) ((-664 . -25) T) ((-660 . -599) 105322) ((-433 . -21) T) ((-433 . -25) T) ((-320 . -99) T) ((-163 . -99) T) ((-938 . -991) T) ((-811 . -984) T) ((-722 . -99) T) ((-1166 . -344) 105301) ((-1165 . -841) 105207) ((-1145 . -344) 105186) ((-1144 . -841) 105037) ((-962 . -571) 105019) ((-388 . -776) 104972) ((-1097 . -471) 104938) ((-159 . -861) 104869) ((-1096 . -471) 104835) ((-1090 . -471) 104801) ((-661 . -1027) T) ((-1052 . -471) 104767) ((-542 . -990) 104754) ((-530 . -990) 104741) ((-473 . -990) 104706) ((-297 . -272) 104685) ((-294 . -272) T) ((-335 . -571) 104667) ((-399 . -25) T) ((-399 . -21) T) ((-96 . -268) 104646) ((-542 . -109) 104631) ((-530 . -109) 104616) ((-473 . -109) 104572) ((-1099 . -827) 104539) ((-842 . -468) 104523) ((-47 . -571) 104505) ((-47 . -572) 104450) ((-223 . -128) 104321) ((-1154 . -861) 104300) ((-764 . -1139) 104279) ((-973 . -491) 104123) ((-369 . -571) 104105) ((-764 . -522) 104036) ((-547 . -599) 104011) ((-246 . -46) 103983) ((-230 . -46) 103940) ((-502 . -486) 103917) ((-939 . -1135) T) ((-647 . -990) 103882) ((-1173 . -1039) T) ((-1166 . -1039) T) ((-1145 . -1039) T) ((-942 . -351) 103854) ((-110 . -349) T) ((-454 . -841) 103760) ((-1173 . -23) T) ((-1166 . -23) T) ((-845 . -571) 103742) ((-89 . -104) 103726) ((-1130 . -675) T) ((-846 . -795) 103677) ((-649 . -1075) T) ((-647 . -109) 103633) ((-1145 . -23) T) ((-556 . -1039) T) ((-555 . -1039) T) ((-661 . -666) 103462) ((-660 . -675) T) ((-1046 . -272) T) ((-943 . -128) T) ((-466 . -795) T) ((-911 . -128) T) ((-855 . -128) T) ((-747 . -25) T) ((-201 . -795) T) ((-747 . -21) T) ((-542 . -984) T) ((-530 . -984) T) ((-473 . -984) T) ((-556 . -23) T) ((-324 . -1198) 103439) ((-300 . -432) 103418) ((-320 . -291) 103405) ((-555 . -23) T) ((-408 . -128) T) ((-609 . -599) 103379) ((-228 . -949) 103363) ((-813 . -289) T) ((-1203 . -1193) 103347) ((-649 . -37) 103334) ((-530 . -216) T) ((-473 . -226) T) ((-473 . -216) T) ((-719 . -740) T) ((-719 . -743) T) ((-1074 . -218) 103284) ((-1016 . -850) 103263) ((-114 . -37) 103250) ((-193 . -748) T) ((-192 . -748) T) ((-191 . -748) T) ((-190 . -748) T) ((-813 . -960) 103229) ((-1192 . -468) 103213) ((-730 . -850) 103192) ((-728 . -850) 103171) ((-1109 . -1135) T) ((-434 . -850) 103150) ((-686 . -468) 103134) ((-1016 . -599) 103059) ((-730 . -599) 102984) ((-578 . -990) 102971) ((-458 . -1135) T) ((-324 . -349) T) ((-134 . -468) 102953) ((-728 . -599) 102878) ((-1065 . -1135) T) ((-441 . -599) 102849) ((-246 . -827) 102708) ((-230 . -827) NIL) ((-115 . -990) 102653) ((-434 . -599) 102578) ((-615 . -975) 102555) ((-578 . -109) 102540) ((-336 . -975) 102524) ((-333 . -975) 102508) ((-325 . -975) 102492) ((-246 . -975) 102338) ((-230 . -975) 102216) ((-115 . -109) 102145) ((-57 . -1135) T) ((-495 . -1135) T) ((-493 . -1135) T) ((-475 . -1135) T) ((-474 . -1135) T) ((-418 . -571) 102127) ((-415 . -571) 102109) ((-3 . -99) T) ((-965 . -1129) 102078) ((-781 . -99) T) ((-637 . -55) 102036) ((-647 . -984) T) ((-49 . -599) 102010) ((-271 . -432) T) ((-456 . -1129) 101979) ((0 . -99) T) ((-543 . -599) 101944) ((-494 . -599) 101889) ((-48 . -99) T) ((-851 . -975) 101876) ((-647 . -226) T) ((-1010 . -390) 101855) ((-680 . -593) 101803) ((-938 . -1027) T) ((-661 . -162) 101694) ((-466 . -932) 101676) ((-246 . -358) 101660) ((-230 . -358) 101644) ((-380 . -1027) T) ((-320 . -37) 101628) ((-964 . -99) 101606) ((-201 . -932) 101588) ((-163 . -37) 101520) ((-1165 . -289) 101499) ((-1144 . -289) 101478) ((-609 . -675) T) ((-96 . -571) 101460) ((-1090 . -593) 101412) ((-464 . -25) T) ((-464 . -21) T) ((-1144 . -960) 101365) ((-578 . -984) T) ((-360 . -385) T) ((-371 . -99) T) ((-246 . -841) 101311) ((-230 . -841) 101288) ((-115 . -984) T) ((-764 . -1039) T) ((-1016 . -675) T) ((-578 . -216) 101267) ((-576 . -99) T) ((-730 . -675) T) ((-728 . -675) T) ((-394 . -1039) T) ((-115 . -226) T) ((-39 . -349) NIL) ((-115 . -216) NIL) ((-434 . -675) T) ((-764 . -23) T) ((-680 . -25) T) ((-680 . -21) T) ((-651 . -795) T) ((-1007 . -268) 101246) ((-76 . -377) T) ((-76 . -376) T) ((-642 . -990) 101196) ((-1173 . -128) T) ((-1166 . -128) T) ((-1145 . -128) T) ((-1066 . -392) 101180) ((-589 . -348) 101112) ((-565 . -348) 101044) ((-1080 . -1073) 101028) ((-100 . -1027) 101006) ((-1097 . -25) T) ((-1097 . -21) T) ((-1096 . -21) T) ((-938 . -666) 100954) ((-206 . -599) 100921) ((-642 . -109) 100855) ((-49 . -675) T) ((-1096 . -25) T) ((-332 . -330) T) ((-1090 . -21) T) ((-1010 . -432) 100806) ((-1090 . -25) T) ((-661 . -491) 100753) ((-543 . -675) T) ((-494 . -675) T) ((-1052 . -21) T) ((-1052 . -25) T) ((-556 . -128) T) ((-555 . -128) T) ((-340 . -432) T) ((-334 . -432) T) ((-326 . -432) T) ((-454 . -289) 100732) ((-294 . -268) 100667) ((-105 . -432) T) ((-77 . -421) T) ((-77 . -376) T) ((-457 . -99) T) ((-1207 . -571) 100649) ((-1207 . -572) 100631) ((-1010 . -383) 100610) ((-973 . -468) 100541) ((-530 . -743) T) ((-530 . -740) T) ((-996 . -218) 100487) ((-340 . -383) 100438) ((-334 . -383) 100389) ((-326 . -383) 100340) ((-1194 . -1039) T) ((-1194 . -23) T) ((-1183 . -99) T) ((-164 . -571) 100322) ((-1066 . -991) T) ((-621 . -693) 100306) ((-1101 . -138) 100285) ((-1101 . -140) 100264) ((-1070 . -1027) T) ((-1070 . -1003) 100233) ((-67 . -1135) T) ((-962 . -990) 100170) ((-807 . -991) T) ((-223 . -593) 100078) ((-642 . -984) T) ((-335 . -990) 100023) ((-59 . -1135) T) ((-962 . -109) 99939) ((-842 . -571) 99871) ((-642 . -226) T) ((-642 . -216) NIL) ((-788 . -793) 99850) ((-647 . -743) T) ((-647 . -740) T) ((-942 . -392) 99827) ((-335 . -109) 99756) ((-360 . -861) T) ((-388 . -793) 99735) ((-661 . -272) 99646) ((-206 . -675) T) ((-1173 . -471) 99612) ((-1166 . -471) 99578) ((-1145 . -471) 99544) ((-297 . -941) 99523) ((-205 . -1027) 99501) ((-300 . -913) 99463) ((-102 . -99) T) ((-47 . -990) 99428) ((-1203 . -99) T) ((-362 . -99) T) ((-47 . -109) 99384) ((-943 . -593) 99366) ((-1167 . -571) 99348) ((-502 . -99) T) ((-478 . -99) T) ((-1059 . -1060) 99332) ((-145 . -1188) 99316) ((-228 . -1135) T) ((-1095 . -1139) 99295) ((-1051 . -1139) 99274) ((-223 . -21) 99185) ((-223 . -25) 99037) ((-125 . -117) 99021) ((-119 . -117) 99005) ((-43 . -693) 98989) ((-1095 . -522) 98900) ((-1051 . -522) 98831) ((-973 . -268) 98806) ((-764 . -128) T) ((-115 . -743) NIL) ((-115 . -740) NIL) ((-336 . -289) T) ((-333 . -289) T) ((-325 . -289) T) ((-1022 . -1135) T) ((-233 . -1039) 98717) ((-232 . -1039) 98628) ((-962 . -984) T) ((-942 . -991) T) ((-324 . -599) 98573) ((-576 . -37) 98557) ((-1192 . -571) 98519) ((-1192 . -572) 98480) ((-1007 . -571) 98462) ((-962 . -226) T) ((-335 . -984) T) ((-763 . -1188) 98432) ((-233 . -23) T) ((-232 . -23) T) ((-927 . -571) 98414) ((-686 . -572) 98375) ((-686 . -571) 98357) ((-747 . -795) 98336) ((-938 . -491) 98248) ((-335 . -216) T) ((-335 . -226) T) ((-1083 . -144) 98195) ((-943 . -25) T) ((-134 . -571) 98177) ((-134 . -572) 98136) ((-851 . -289) T) ((-943 . -21) T) ((-911 . -25) T) ((-855 . -21) T) ((-855 . -25) T) ((-408 . -21) T) ((-408 . -25) T) ((-788 . -392) 98120) ((-47 . -984) T) ((-1201 . -1193) 98104) ((-1199 . -1193) 98088) ((-973 . -563) 98063) ((-297 . -572) 97924) ((-297 . -571) 97906) ((-294 . -572) NIL) ((-294 . -571) 97888) ((-47 . -226) T) ((-47 . -216) T) ((-605 . -268) 97849) ((-516 . -218) 97799) ((-132 . -571) 97781) ((-112 . -571) 97763) ((-457 . -37) 97728) ((-1203 . -1200) 97707) ((-1194 . -128) T) ((-1202 . -991) T) ((-1012 . -99) T) ((-86 . -1135) T) ((-478 . -291) NIL) ((-939 . -104) 97691) ((-830 . -1027) T) ((-826 . -1027) T) ((-1181 . -602) 97675) ((-1181 . -354) 97659) ((-308 . -1135) T) ((-553 . -795) T) ((-1066 . -1027) T) ((-1066 . -987) 97599) ((-100 . -491) 97532) ((-868 . -571) 97514) ((-324 . -675) T) ((-30 . -571) 97496) ((-807 . -1027) T) ((-788 . -991) 97475) ((-39 . -599) 97420) ((-208 . -1139) T) ((-388 . -991) T) ((-1082 . -144) 97402) ((-938 . -272) 97353) ((-208 . -522) T) ((-300 . -1162) 97337) ((-300 . -1159) 97307) ((-1109 . -1112) 97286) ((-1005 . -571) 97268) ((-598 . -144) 97252) ((-586 . -144) 97198) ((-1109 . -104) 97148) ((-458 . -1112) 97127) ((-466 . -140) T) ((-466 . -138) NIL) ((-1046 . -572) 97042) ((-419 . -571) 97024) ((-201 . -140) T) ((-201 . -138) NIL) ((-1046 . -571) 97006) ((-127 . -99) T) ((-51 . -99) T) ((-1145 . -593) 96958) ((-458 . -104) 96908) ((-933 . -23) T) ((-1203 . -37) 96878) ((-1095 . -1039) T) ((-1051 . -1039) T) ((-995 . -1139) T) ((-799 . -1039) T) ((-893 . -1139) 96857) ((-460 . -1139) 96836) ((-680 . -795) 96815) ((-995 . -522) T) ((-893 . -522) 96746) ((-1095 . -23) T) ((-1051 . -23) T) ((-799 . -23) T) ((-460 . -522) 96677) ((-1066 . -666) 96609) ((-1070 . -491) 96542) ((-973 . -572) NIL) ((-973 . -571) 96524) ((-807 . -666) 96494) ((-1130 . -46) 96463) ((-232 . -128) T) ((-233 . -128) T) ((-1031 . -1027) T) ((-942 . -1027) T) ((-60 . -571) 96445) ((-1090 . -795) NIL) ((-962 . -740) T) ((-962 . -743) T) ((-1207 . -990) 96432) ((-1207 . -109) 96417) ((-811 . -599) 96404) ((-1173 . -25) T) ((-1173 . -21) T) ((-1166 . -21) T) ((-1166 . -25) T) ((-1145 . -21) T) ((-1145 . -25) T) ((-965 . -144) 96388) ((-813 . -768) 96367) ((-813 . -861) T) ((-661 . -268) 96294) ((-556 . -21) T) ((-556 . -25) T) ((-555 . -21) T) ((-39 . -675) T) ((-205 . -491) 96227) ((-555 . -25) T) ((-456 . -144) 96211) ((-443 . -144) 96195) ((-862 . -742) T) ((-862 . -675) T) ((-719 . -741) T) ((-719 . -742) T) ((-480 . -1027) T) ((-719 . -675) T) ((-208 . -344) T) ((-1080 . -1027) 96173) ((-812 . -1139) T) ((-605 . -571) 96155) ((-812 . -522) T) ((-642 . -349) NIL) ((-340 . -1188) 96139) ((-621 . -99) T) ((-334 . -1188) 96123) ((-326 . -1188) 96107) ((-1202 . -1027) T) ((-496 . -795) 96086) ((-765 . -432) 96065) ((-981 . -1027) T) ((-981 . -1003) 95994) ((-965 . -916) 95963) ((-767 . -1039) T) ((-942 . -666) 95908) ((-367 . -1039) T) ((-456 . -916) 95877) ((-443 . -916) 95846) ((-108 . -144) 95828) ((-71 . -571) 95810) ((-834 . -571) 95792) ((-1010 . -673) 95771) ((-1207 . -984) T) ((-764 . -593) 95719) ((-276 . -991) 95662) ((-159 . -1139) 95567) ((-208 . -1039) T) ((-305 . -23) T) ((-1090 . -932) 95519) ((-788 . -1027) T) ((-1052 . -689) 95498) ((-1167 . -990) 95403) ((-1165 . -861) 95382) ((-811 . -675) T) ((-159 . -522) 95293) ((-1144 . -861) 95272) ((-542 . -599) 95259) ((-388 . -1027) T) ((-530 . -599) 95246) ((-245 . -1027) T) ((-473 . -599) 95211) ((-208 . -23) T) ((-1144 . -768) 95164) ((-1201 . -99) T) ((-335 . -1198) 95141) ((-1199 . -99) T) ((-1167 . -109) 95033) ((-137 . -571) 95015) ((-933 . -128) T) ((-43 . -99) T) ((-223 . -795) 94966) ((-1154 . -1139) 94945) ((-100 . -468) 94929) ((-1202 . -666) 94899) ((-1016 . -46) 94860) ((-995 . -1039) T) ((-893 . -1039) T) ((-125 . -33) T) ((-119 . -33) T) ((-730 . -46) 94837) ((-728 . -46) 94809) ((-1154 . -522) 94720) ((-335 . -349) T) ((-460 . -1039) T) ((-1095 . -128) T) ((-1051 . -128) T) ((-434 . -46) 94699) ((-812 . -344) T) ((-799 . -128) T) ((-145 . -99) T) ((-995 . -23) T) ((-893 . -23) T) ((-537 . -522) T) ((-764 . -25) T) ((-764 . -21) T) ((-1066 . -491) 94632) ((-547 . -975) 94616) ((-460 . -23) T) ((-332 . -991) T) ((-1130 . -841) 94597) ((-621 . -291) 94535) ((-1040 . -1188) 94505) ((-647 . -599) 94470) ((-942 . -162) T) ((-904 . -138) 94449) ((-589 . -1027) T) ((-565 . -1027) T) ((-904 . -140) 94428) ((-943 . -795) T) ((-684 . -140) 94407) ((-684 . -138) 94386) ((-911 . -795) T) ((-454 . -861) 94365) ((-297 . -990) 94275) ((-294 . -990) 94204) ((-938 . -268) 94162) ((-388 . -666) 94114) ((-126 . -795) T) ((-649 . -793) T) ((-1167 . -984) T) ((-297 . -109) 94010) ((-294 . -109) 93923) ((-905 . -99) T) ((-763 . -99) 93714) ((-661 . -572) NIL) ((-661 . -571) 93696) ((-609 . -975) 93594) ((-1167 . -307) 93538) ((-973 . -270) 93513) ((-542 . -675) T) ((-530 . -742) T) ((-159 . -344) 93464) ((-530 . -739) T) ((-530 . -675) T) ((-473 . -675) T) ((-1070 . -468) 93448) ((-1016 . -827) NIL) ((-812 . -1039) T) ((-115 . -850) NIL) ((-1201 . -1200) 93424) ((-1199 . -1200) 93403) ((-730 . -827) NIL) ((-728 . -827) 93262) ((-1194 . -25) T) ((-1194 . -21) T) ((-1133 . -99) 93240) ((-1033 . -376) T) ((-578 . -599) 93227) ((-434 . -827) NIL) ((-625 . -99) 93205) ((-1016 . -975) 93034) ((-812 . -23) T) ((-730 . -975) 92895) ((-728 . -975) 92754) ((-115 . -599) 92699) ((-434 . -975) 92577) ((-600 . -975) 92561) ((-581 . -99) T) ((-205 . -468) 92545) ((-1181 . -33) T) ((-589 . -666) 92529) ((-565 . -666) 92513) ((-621 . -37) 92473) ((-300 . -99) T) ((-83 . -571) 92455) ((-49 . -975) 92439) ((-1046 . -990) 92426) ((-1016 . -358) 92410) ((-730 . -358) 92394) ((-58 . -55) 92356) ((-647 . -742) T) ((-647 . -739) T) ((-543 . -975) 92343) ((-494 . -975) 92320) ((-647 . -675) T) ((-305 . -128) T) ((-297 . -984) 92211) ((-294 . -984) T) ((-159 . -1039) T) ((-728 . -358) 92195) ((-44 . -144) 92145) ((-943 . -932) 92127) ((-434 . -358) 92111) ((-388 . -162) T) ((-297 . -226) 92090) ((-294 . -226) T) ((-294 . -216) NIL) ((-276 . -1027) 91873) ((-208 . -128) T) ((-1046 . -109) 91858) ((-159 . -23) T) ((-747 . -140) 91837) ((-747 . -138) 91816) ((-233 . -593) 91724) ((-232 . -593) 91632) ((-300 . -266) 91598) ((-1080 . -491) 91531) ((-1059 . -1027) T) ((-208 . -993) T) ((-763 . -291) 91469) ((-1016 . -841) 91404) ((-730 . -841) 91347) ((-728 . -841) 91331) ((-1201 . -37) 91301) ((-1199 . -37) 91271) ((-1154 . -1039) T) ((-800 . -1039) T) ((-434 . -841) 91248) ((-803 . -1027) T) ((-1154 . -23) T) ((-537 . -1039) T) ((-800 . -23) T) ((-578 . -675) T) ((-336 . -861) T) ((-333 . -861) T) ((-271 . -99) T) ((-325 . -861) T) ((-995 . -128) T) ((-893 . -128) T) ((-115 . -742) NIL) ((-115 . -739) NIL) ((-115 . -675) T) ((-642 . -850) NIL) ((-981 . -491) 91149) ((-460 . -128) T) ((-537 . -23) T) ((-625 . -291) 91087) ((-589 . -710) T) ((-565 . -710) T) ((-1145 . -795) NIL) ((-942 . -272) T) ((-233 . -21) T) ((-642 . -599) 91037) ((-332 . -1027) T) ((-233 . -25) T) ((-232 . -21) T) ((-232 . -25) T) ((-145 . -37) 91021) ((-2 . -99) T) ((-851 . -861) T) ((-461 . -1188) 90991) ((-206 . -975) 90968) ((-1046 . -984) T) ((-660 . -289) T) ((-276 . -666) 90910) ((-649 . -991) T) ((-466 . -432) T) ((-388 . -491) 90822) ((-201 . -432) T) ((-1046 . -216) T) ((-277 . -144) 90772) ((-938 . -572) 90733) ((-938 . -571) 90715) ((-929 . -571) 90697) ((-114 . -991) T) ((-605 . -990) 90681) ((-208 . -471) T) ((-380 . -571) 90663) ((-380 . -572) 90640) ((-988 . -1188) 90610) ((-605 . -109) 90589) ((-1066 . -468) 90573) ((-763 . -37) 90543) ((-61 . -421) T) ((-61 . -376) T) ((-1083 . -99) T) ((-812 . -128) T) ((-463 . -99) 90521) ((-1207 . -349) T) ((-1010 . -99) T) ((-994 . -99) T) ((-332 . -666) 90466) ((-680 . -140) 90445) ((-680 . -138) 90424) ((-962 . -599) 90361) ((-499 . -1027) 90339) ((-340 . -99) T) ((-334 . -99) T) ((-326 . -99) T) ((-105 . -99) T) ((-482 . -1027) T) ((-335 . -599) 90284) ((-1095 . -593) 90232) ((-1051 . -593) 90180) ((-366 . -486) 90159) ((-781 . -793) 90138) ((-360 . -1139) T) ((-642 . -675) T) ((-320 . -991) T) ((-1145 . -932) 90090) ((-163 . -991) T) ((-100 . -571) 90022) ((-1097 . -138) 90001) ((-1097 . -140) 89980) ((-360 . -522) T) ((-1096 . -140) 89959) ((-1096 . -138) 89938) ((-1090 . -138) 89845) ((-388 . -272) T) ((-1090 . -140) 89752) ((-1052 . -140) 89731) ((-1052 . -138) 89710) ((-300 . -37) 89551) ((-159 . -128) T) ((-294 . -743) NIL) ((-294 . -740) NIL) ((-605 . -984) T) ((-47 . -599) 89516) ((-933 . -21) T) ((-125 . -949) 89500) ((-119 . -949) 89484) ((-933 . -25) T) ((-842 . -117) 89468) ((-1082 . -99) T) ((-764 . -795) 89447) ((-1154 . -128) T) ((-1095 . -25) T) ((-1095 . -21) T) ((-800 . -128) T) ((-1051 . -25) T) ((-1051 . -21) T) ((-799 . -25) T) ((-799 . -21) T) ((-730 . -289) 89426) ((-598 . -99) 89404) ((-586 . -99) T) ((-1083 . -291) 89199) ((-537 . -128) T) ((-576 . -793) 89178) ((-1080 . -468) 89162) ((-1074 . -144) 89112) ((-1070 . -571) 89074) ((-1070 . -572) 89035) ((-962 . -739) T) ((-962 . -742) T) ((-962 . -675) T) ((-463 . -291) 88973) ((-433 . -398) 88943) ((-332 . -162) T) ((-271 . -37) 88930) ((-256 . -99) T) ((-255 . -99) T) ((-254 . -99) T) ((-253 . -99) T) ((-252 . -99) T) ((-251 . -99) T) ((-250 . -99) T) ((-324 . -975) 88907) ((-196 . -99) T) ((-195 . -99) T) ((-193 . -99) T) ((-192 . -99) T) ((-191 . -99) T) ((-190 . -99) T) ((-187 . -99) T) ((-186 . -99) T) ((-661 . -990) 88730) ((-185 . -99) T) ((-184 . -99) T) ((-183 . -99) T) ((-182 . -99) T) ((-181 . -99) T) ((-180 . -99) T) ((-179 . -99) T) ((-178 . -99) T) ((-177 . -99) T) ((-335 . -675) T) ((-661 . -109) 88539) ((-621 . -214) 88523) ((-543 . -289) T) ((-494 . -289) T) ((-276 . -491) 88472) ((-105 . -291) NIL) ((-70 . -376) T) ((-1040 . -99) 88263) ((-781 . -392) 88247) ((-1046 . -743) T) ((-1046 . -740) T) ((-649 . -1027) T) ((-360 . -344) T) ((-159 . -471) 88225) ((-197 . -1027) T) ((-205 . -571) 88157) ((-130 . -1027) T) ((-114 . -1027) T) ((-47 . -675) T) ((-981 . -468) 88122) ((-134 . -406) 88104) ((-134 . -349) T) ((-965 . -99) T) ((-489 . -486) 88083) ((-456 . -99) T) ((-443 . -99) T) ((-972 . -1039) T) ((-1097 . -34) 88049) ((-1097 . -93) 88015) ((-1097 . -1124) 87981) ((-1097 . -1121) 87947) ((-1082 . -291) NIL) ((-87 . -377) T) ((-87 . -376) T) ((-1010 . -1075) 87926) ((-1096 . -1121) 87892) ((-1096 . -1124) 87858) ((-972 . -23) T) ((-1096 . -93) 87824) ((-537 . -471) T) ((-1096 . -34) 87790) ((-1090 . -1121) 87756) ((-1090 . -1124) 87722) ((-1090 . -93) 87688) ((-342 . -1039) T) ((-340 . -1075) 87667) ((-334 . -1075) 87646) ((-326 . -1075) 87625) ((-1090 . -34) 87591) ((-1052 . -34) 87557) ((-1052 . -93) 87523) ((-105 . -1075) T) ((-1052 . -1124) 87489) ((-781 . -991) 87468) ((-598 . -291) 87406) ((-586 . -291) 87257) ((-1052 . -1121) 87223) ((-661 . -984) T) ((-995 . -593) 87205) ((-1010 . -37) 87073) ((-893 . -593) 87021) ((-943 . -140) T) ((-943 . -138) NIL) ((-360 . -1039) T) ((-305 . -25) T) ((-303 . -23) T) ((-884 . -795) 87000) ((-661 . -307) 86977) ((-460 . -593) 86925) ((-39 . -975) 86815) ((-649 . -666) 86802) ((-661 . -216) T) ((-320 . -1027) T) ((-163 . -1027) T) ((-312 . -795) T) ((-399 . -432) 86752) ((-360 . -23) T) ((-340 . -37) 86717) ((-334 . -37) 86682) ((-326 . -37) 86647) ((-78 . -421) T) ((-78 . -376) T) ((-208 . -25) T) ((-208 . -21) T) ((-782 . -1039) T) ((-105 . -37) 86597) ((-775 . -1039) T) ((-722 . -1027) T) ((-114 . -666) 86584) ((-622 . -975) 86568) ((-570 . -99) T) ((-782 . -23) T) ((-775 . -23) T) ((-1080 . -268) 86545) ((-1040 . -291) 86483) ((-1029 . -218) 86467) ((-62 . -377) T) ((-62 . -376) T) ((-108 . -99) T) ((-39 . -358) 86444) ((-604 . -797) 86428) ((-995 . -21) T) ((-995 . -25) T) ((-763 . -214) 86398) ((-893 . -25) T) ((-893 . -21) T) ((-576 . -991) T) ((-460 . -25) T) ((-460 . -21) T) ((-965 . -291) 86336) ((-830 . -571) 86318) ((-826 . -571) 86300) ((-233 . -795) 86251) ((-232 . -795) 86202) ((-499 . -491) 86135) ((-812 . -593) 86112) ((-456 . -291) 86050) ((-443 . -291) 85988) ((-332 . -272) T) ((-1080 . -1169) 85972) ((-1066 . -571) 85934) ((-1066 . -572) 85895) ((-1064 . -99) T) ((-938 . -990) 85791) ((-39 . -841) 85743) ((-1080 . -563) 85720) ((-1207 . -599) 85707) ((-996 . -144) 85653) ((-813 . -1139) T) ((-938 . -109) 85535) ((-320 . -666) 85519) ((-807 . -571) 85501) ((-163 . -666) 85433) ((-388 . -268) 85391) ((-813 . -522) T) ((-105 . -381) 85373) ((-82 . -365) T) ((-82 . -376) T) ((-649 . -162) T) ((-96 . -675) T) ((-461 . -99) 85164) ((-96 . -453) T) ((-114 . -162) T) ((-1040 . -37) 85134) ((-159 . -593) 85082) ((-988 . -99) T) ((-812 . -25) T) ((-763 . -221) 85061) ((-812 . -21) T) ((-766 . -99) T) ((-395 . -99) T) ((-366 . -99) T) ((-108 . -291) NIL) ((-210 . -99) 85039) ((-125 . -1135) T) ((-119 . -1135) T) ((-972 . -128) T) ((-621 . -348) 85023) ((-938 . -984) T) ((-1154 . -593) 84971) ((-1031 . -571) 84953) ((-942 . -571) 84935) ((-492 . -23) T) ((-487 . -23) T) ((-324 . -289) T) ((-485 . -23) T) ((-303 . -128) T) ((-3 . -1027) T) ((-942 . -572) 84919) ((-938 . -226) 84898) ((-938 . -216) 84877) ((-1207 . -675) T) ((-1173 . -138) 84856) ((-781 . -1027) T) ((-1173 . -140) 84835) ((-1166 . -140) 84814) ((-1166 . -138) 84793) ((-1165 . -1139) 84772) ((-1145 . -138) 84679) ((-1145 . -140) 84586) ((-1144 . -1139) 84565) ((-360 . -128) T) ((-530 . -827) 84547) ((0 . -1027) T) ((-163 . -162) T) ((-159 . -21) T) ((-159 . -25) T) ((-48 . -1027) T) ((-1167 . -599) 84452) ((-1165 . -522) 84403) ((-663 . -1039) T) ((-1144 . -522) 84354) ((-530 . -975) 84336) ((-555 . -140) 84315) ((-555 . -138) 84294) ((-473 . -975) 84237) ((-85 . -365) T) ((-85 . -376) T) ((-813 . -344) T) ((-782 . -128) T) ((-775 . -128) T) ((-663 . -23) T) ((-480 . -571) 84219) ((-1203 . -991) T) ((-360 . -993) T) ((-964 . -1027) 84197) ((-842 . -33) T) ((-461 . -291) 84135) ((-1080 . -572) 84096) ((-1080 . -571) 84028) ((-1095 . -795) 84007) ((-44 . -99) T) ((-1051 . -795) 83986) ((-765 . -99) T) ((-1154 . -25) T) ((-1154 . -21) T) ((-800 . -25) T) ((-43 . -348) 83970) ((-800 . -21) T) ((-680 . -432) 83921) ((-1202 . -571) 83903) ((-537 . -25) T) ((-537 . -21) T) ((-371 . -1027) T) ((-988 . -291) 83841) ((-576 . -1027) T) ((-647 . -827) 83823) ((-1181 . -1135) T) ((-210 . -291) 83761) ((-137 . -349) T) ((-981 . -572) 83703) ((-981 . -571) 83646) ((-294 . -850) NIL) ((-647 . -975) 83591) ((-660 . -861) T) ((-454 . -1139) 83570) ((-1096 . -432) 83549) ((-1090 . -432) 83528) ((-311 . -99) T) ((-813 . -1039) T) ((-297 . -599) 83350) ((-294 . -599) 83279) ((-454 . -522) 83230) ((-320 . -491) 83196) ((-516 . -144) 83146) ((-39 . -289) T) ((-788 . -571) 83128) ((-649 . -272) T) ((-813 . -23) T) ((-360 . -471) T) ((-1010 . -214) 83098) ((-489 . -99) T) ((-388 . -572) 82906) ((-388 . -571) 82888) ((-245 . -571) 82870) ((-114 . -272) T) ((-1167 . -675) T) ((-1165 . -344) 82849) ((-1144 . -344) 82828) ((-1192 . -33) T) ((-115 . -1135) T) ((-105 . -214) 82810) ((-1101 . -99) T) ((-457 . -1027) T) ((-499 . -468) 82794) ((-686 . -33) T) ((-461 . -37) 82764) ((-134 . -33) T) ((-115 . -825) 82741) ((-115 . -827) NIL) ((-578 . -975) 82626) ((-597 . -795) 82605) ((-1191 . -99) T) ((-277 . -99) T) ((-661 . -349) 82584) ((-115 . -975) 82561) ((-371 . -666) 82545) ((-576 . -666) 82529) ((-44 . -291) 82333) ((-764 . -138) 82312) ((-764 . -140) 82291) ((-1202 . -363) 82270) ((-767 . -795) T) ((-1183 . -1027) T) ((-1083 . -212) 82217) ((-367 . -795) 82196) ((-1173 . -1124) 82162) ((-1173 . -1121) 82128) ((-1166 . -1121) 82094) ((-492 . -128) T) ((-1166 . -1124) 82060) ((-1145 . -1121) 82026) ((-1145 . -1124) 81992) ((-1173 . -34) 81958) ((-1173 . -93) 81924) ((-589 . -571) 81893) ((-565 . -571) 81862) ((-208 . -795) T) ((-1166 . -93) 81828) ((-1166 . -34) 81794) ((-1165 . -1039) T) ((-1046 . -599) 81781) ((-1145 . -93) 81747) ((-1144 . -1039) T) ((-553 . -144) 81729) ((-1010 . -330) 81708) ((-115 . -358) 81685) ((-115 . -319) 81662) ((-163 . -272) T) ((-1145 . -34) 81628) ((-811 . -289) T) ((-294 . -742) NIL) ((-294 . -739) NIL) ((-297 . -675) 81478) ((-294 . -675) T) ((-454 . -344) 81457) ((-340 . -330) 81436) ((-334 . -330) 81415) ((-326 . -330) 81394) ((-297 . -453) 81373) ((-1165 . -23) T) ((-1144 . -23) T) ((-667 . -1039) T) ((-663 . -128) T) ((-604 . -99) T) ((-457 . -666) 81338) ((-44 . -264) 81288) ((-102 . -1027) T) ((-66 . -571) 81270) ((-806 . -99) T) ((-578 . -841) 81229) ((-1203 . -1027) T) ((-362 . -1027) T) ((-80 . -1135) T) ((-995 . -795) T) ((-893 . -795) 81208) ((-115 . -841) NIL) ((-730 . -861) 81187) ((-662 . -795) T) ((-502 . -1027) T) ((-478 . -1027) T) ((-336 . -1139) T) ((-333 . -1139) T) ((-325 . -1139) T) ((-246 . -1139) 81166) ((-230 . -1139) 81145) ((-1040 . -214) 81115) ((-460 . -795) 81094) ((-1066 . -990) 81078) ((-371 . -710) T) ((-1082 . -776) T) ((-642 . -1135) T) ((-336 . -522) T) ((-333 . -522) T) ((-325 . -522) T) ((-246 . -522) 81009) ((-230 . -522) 80940) ((-1066 . -109) 80919) ((-433 . -693) 80889) ((-807 . -990) 80859) ((-765 . -37) 80801) ((-642 . -825) 80783) ((-642 . -827) 80765) ((-277 . -291) 80569) ((-851 . -1139) T) ((-621 . -392) 80553) ((-807 . -109) 80518) ((-642 . -975) 80463) ((-943 . -432) T) ((-851 . -522) T) ((-543 . -861) T) ((-454 . -1039) T) ((-494 . -861) T) ((-1080 . -270) 80440) ((-855 . -432) T) ((-63 . -571) 80422) ((-586 . -212) 80368) ((-454 . -23) T) ((-1046 . -742) T) ((-813 . -128) T) ((-1046 . -739) T) ((-1194 . -1196) 80347) ((-1046 . -675) T) ((-605 . -599) 80321) ((-276 . -571) 80063) ((-973 . -33) T) ((-763 . -793) 80042) ((-542 . -289) T) ((-530 . -289) T) ((-473 . -289) T) ((-1203 . -666) 80012) ((-642 . -358) 79994) ((-642 . -319) 79976) ((-457 . -162) T) ((-362 . -666) 79946) ((-812 . -795) NIL) ((-530 . -960) T) ((-473 . -960) T) ((-1059 . -571) 79928) ((-1040 . -221) 79907) ((-198 . -99) T) ((-1074 . -99) T) ((-69 . -571) 79889) ((-1066 . -984) T) ((-1101 . -37) 79786) ((-803 . -571) 79768) ((-530 . -515) T) ((-621 . -991) T) ((-680 . -890) 79721) ((-1066 . -216) 79700) ((-1012 . -1027) T) ((-972 . -25) T) ((-972 . -21) T) ((-942 . -990) 79645) ((-846 . -99) T) ((-807 . -984) T) ((-642 . -841) NIL) ((-336 . -310) 79629) ((-336 . -344) T) ((-333 . -310) 79613) ((-333 . -344) T) ((-325 . -310) 79597) ((-325 . -344) T) ((-466 . -99) T) ((-1191 . -37) 79567) ((-499 . -635) 79517) ((-201 . -99) T) ((-962 . -975) 79399) ((-942 . -109) 79328) ((-1097 . -913) 79297) ((-1096 . -913) 79259) ((-496 . -144) 79243) ((-1010 . -351) 79222) ((-332 . -571) 79204) ((-303 . -21) T) ((-335 . -975) 79181) ((-303 . -25) T) ((-1090 . -913) 79150) ((-1052 . -913) 79117) ((-74 . -571) 79099) ((-647 . -289) T) ((-159 . -795) 79078) ((-851 . -344) T) ((-360 . -25) T) ((-360 . -21) T) ((-851 . -310) 79065) ((-84 . -571) 79047) ((-647 . -960) T) ((-626 . -795) T) ((-1165 . -128) T) ((-1144 . -128) T) ((-842 . -949) 79031) ((-782 . -21) T) ((-47 . -975) 78974) ((-782 . -25) T) ((-775 . -25) T) ((-775 . -21) T) ((-1201 . -991) T) ((-1199 . -991) T) ((-605 . -675) T) ((-1202 . -990) 78958) ((-1154 . -795) 78937) ((-763 . -392) 78906) ((-100 . -117) 78890) ((-127 . -1027) T) ((-51 . -1027) T) ((-867 . -571) 78872) ((-812 . -932) 78849) ((-771 . -99) T) ((-1202 . -109) 78828) ((-604 . -37) 78798) ((-537 . -795) T) ((-336 . -1039) T) ((-333 . -1039) T) ((-325 . -1039) T) ((-246 . -1039) T) ((-230 . -1039) T) ((-578 . -289) 78777) ((-1074 . -291) 78581) ((-615 . -23) T) ((-461 . -214) 78551) ((-145 . -991) T) ((-336 . -23) T) ((-333 . -23) T) ((-325 . -23) T) ((-115 . -289) T) ((-246 . -23) T) ((-230 . -23) T) ((-942 . -984) T) ((-661 . -850) 78530) ((-942 . -216) 78502) ((-942 . -226) T) ((-115 . -960) NIL) ((-851 . -1039) T) ((-1166 . -432) 78481) ((-1145 . -432) 78460) ((-499 . -571) 78392) ((-661 . -599) 78317) ((-388 . -990) 78269) ((-482 . -571) 78251) ((-851 . -23) T) ((-466 . -291) NIL) ((-454 . -128) T) ((-201 . -291) NIL) ((-388 . -109) 78189) ((-763 . -991) 78120) ((-686 . -1025) 78104) ((-1165 . -471) 78070) ((-1144 . -471) 78036) ((-457 . -272) T) ((-134 . -1025) 78018) ((-126 . -144) 78000) ((-1202 . -984) T) ((-996 . -99) T) ((-478 . -491) NIL) ((-651 . -99) T) ((-461 . -221) 77979) ((-1095 . -138) 77958) ((-1095 . -140) 77937) ((-1051 . -140) 77916) ((-1051 . -138) 77895) ((-589 . -990) 77879) ((-565 . -990) 77863) ((-621 . -1027) T) ((-621 . -987) 77803) ((-1097 . -1172) 77787) ((-1097 . -1159) 77764) ((-466 . -1075) T) ((-1096 . -1164) 77725) ((-1096 . -1159) 77695) ((-1096 . -1162) 77679) ((-201 . -1075) T) ((-324 . -861) T) ((-766 . -248) 77663) ((-589 . -109) 77642) ((-565 . -109) 77621) ((-1090 . -1143) 77582) ((-788 . -984) 77561) ((-1090 . -1159) 77538) ((-492 . -25) T) ((-473 . -284) T) ((-488 . -23) T) ((-487 . -25) T) ((-485 . -25) T) ((-484 . -23) T) ((-1090 . -1141) 77522) ((-388 . -984) T) ((-300 . -991) T) ((-642 . -289) T) ((-105 . -793) T) ((-388 . -226) T) ((-388 . -216) 77501) ((-661 . -675) T) ((-466 . -37) 77451) ((-201 . -37) 77401) ((-454 . -471) 77367) ((-1082 . -1068) T) ((-1028 . -99) T) ((-649 . -571) 77349) ((-649 . -572) 77264) ((-663 . -21) T) ((-663 . -25) T) ((-197 . -571) 77246) ((-130 . -571) 77228) ((-114 . -571) 77210) ((-148 . -25) T) ((-1201 . -1027) T) ((-813 . -593) 77158) ((-1199 . -1027) T) ((-904 . -99) T) ((-684 . -99) T) ((-664 . -99) T) ((-433 . -99) T) ((-764 . -432) 77109) ((-43 . -1027) T) ((-1017 . -795) T) ((-615 . -128) T) ((-996 . -291) 76960) ((-621 . -666) 76944) ((-271 . -991) T) ((-336 . -128) T) ((-333 . -128) T) ((-325 . -128) T) ((-246 . -128) T) ((-230 . -128) T) ((-399 . -99) T) ((-145 . -1027) T) ((-44 . -212) 76894) ((-899 . -795) 76873) ((-938 . -599) 76811) ((-223 . -1188) 76781) ((-962 . -289) T) ((-276 . -990) 76703) ((-851 . -128) T) ((-39 . -861) T) ((-466 . -381) 76685) ((-335 . -289) T) ((-201 . -381) 76667) ((-1010 . -392) 76651) ((-276 . -109) 76568) ((-813 . -25) T) ((-813 . -21) T) ((-320 . -571) 76550) ((-1167 . -46) 76494) ((-208 . -140) T) ((-163 . -571) 76476) ((-1040 . -793) 76455) ((-722 . -571) 76437) ((-566 . -218) 76384) ((-455 . -218) 76334) ((-1201 . -666) 76304) ((-47 . -289) T) ((-1199 . -666) 76274) ((-905 . -1027) T) ((-763 . -1027) 76065) ((-293 . -99) T) ((-842 . -1135) T) ((-47 . -960) T) ((-1144 . -593) 75973) ((-637 . -99) 75951) ((-43 . -666) 75935) ((-516 . -99) T) ((-65 . -364) T) ((-65 . -376) T) ((-613 . -23) T) ((-621 . -710) T) ((-1133 . -1027) 75913) ((-332 . -990) 75858) ((-625 . -1027) 75836) ((-995 . -140) T) ((-893 . -140) 75815) ((-893 . -138) 75794) ((-747 . -99) T) ((-145 . -666) 75778) ((-460 . -140) 75757) ((-460 . -138) 75736) ((-332 . -109) 75665) ((-1010 . -991) T) ((-303 . -795) 75644) ((-1173 . -913) 75613) ((-581 . -1027) T) ((-1166 . -913) 75575) ((-488 . -128) T) ((-484 . -128) T) ((-277 . -212) 75525) ((-340 . -991) T) ((-334 . -991) T) ((-326 . -991) T) ((-276 . -984) 75468) ((-1145 . -913) 75437) ((-360 . -795) T) ((-105 . -991) T) ((-938 . -675) T) ((-811 . -861) T) ((-788 . -743) 75416) ((-788 . -740) 75395) ((-399 . -291) 75334) ((-448 . -99) T) ((-555 . -913) 75303) ((-300 . -1027) T) ((-388 . -743) 75282) ((-388 . -740) 75261) ((-478 . -468) 75243) ((-1167 . -975) 75209) ((-1165 . -21) T) ((-1165 . -25) T) ((-1144 . -21) T) ((-1144 . -25) T) ((-763 . -666) 75151) ((-647 . -385) T) ((-1192 . -1135) T) ((-1040 . -392) 75120) ((-942 . -349) NIL) ((-100 . -33) T) ((-686 . -1135) T) ((-43 . -710) T) ((-553 . -99) T) ((-75 . -377) T) ((-75 . -376) T) ((-604 . -607) 75104) ((-134 . -1135) T) ((-812 . -140) T) ((-812 . -138) NIL) ((-332 . -984) T) ((-68 . -364) T) ((-68 . -376) T) ((-1089 . -99) T) ((-621 . -491) 75037) ((-637 . -291) 74975) ((-904 . -37) 74872) ((-684 . -37) 74842) ((-516 . -291) 74646) ((-297 . -1135) T) ((-332 . -216) T) ((-332 . -226) T) ((-294 . -1135) T) ((-271 . -1027) T) ((-1103 . -571) 74628) ((-660 . -1139) T) ((-1080 . -602) 74612) ((-1130 . -522) 74591) ((-660 . -522) T) ((-297 . -825) 74575) ((-297 . -827) 74500) ((-294 . -825) 74461) ((-294 . -827) NIL) ((-747 . -291) 74426) ((-300 . -666) 74267) ((-305 . -304) 74244) ((-464 . -99) T) ((-454 . -25) T) ((-454 . -21) T) ((-399 . -37) 74218) ((-297 . -975) 73886) ((-208 . -1121) T) ((-208 . -1124) T) ((-3 . -571) 73868) ((-294 . -975) 73798) ((-2 . -1027) T) ((-2 . |RecordCategory|) T) ((-781 . -571) 73780) ((-1040 . -991) 73711) ((-542 . -861) T) ((-530 . -768) T) ((-530 . -861) T) ((-473 . -861) T) ((-132 . -975) 73695) ((-208 . -93) T) ((-73 . -421) T) ((-73 . -376) T) ((0 . -571) 73677) ((-159 . -140) 73656) ((-159 . -138) 73607) ((-208 . -34) T) ((-48 . -571) 73589) ((-457 . -991) T) ((-466 . -214) 73571) ((-463 . -909) 73555) ((-461 . -793) 73534) ((-201 . -214) 73516) ((-79 . -421) T) ((-79 . -376) T) ((-1070 . -33) T) ((-763 . -162) 73495) ((-680 . -99) T) ((-964 . -571) 73462) ((-478 . -268) 73437) ((-297 . -358) 73407) ((-294 . -358) 73368) ((-294 . -319) 73329) ((-1014 . -571) 73311) ((-764 . -890) 73258) ((-613 . -128) T) ((-1154 . -138) 73237) ((-1154 . -140) 73216) ((-1097 . -99) T) ((-1096 . -99) T) ((-1090 . -99) T) ((-1083 . -1027) T) ((-1052 . -99) T) ((-205 . -33) T) ((-271 . -666) 73203) ((-1083 . -568) 73179) ((-553 . -291) NIL) ((-463 . -1027) 73157) ((-371 . -571) 73139) ((-487 . -795) T) ((-1074 . -212) 73089) ((-1173 . -1172) 73073) ((-1173 . -1159) 73050) ((-1166 . -1164) 73011) ((-1166 . -1159) 72981) ((-1166 . -1162) 72965) ((-1145 . -1143) 72926) ((-1145 . -1159) 72903) ((-576 . -571) 72885) ((-1145 . -1141) 72869) ((-647 . -861) T) ((-1097 . -266) 72835) ((-1096 . -266) 72801) ((-1090 . -266) 72767) ((-1010 . -1027) T) ((-994 . -1027) T) ((-47 . -284) T) ((-297 . -841) 72734) ((-294 . -841) NIL) ((-994 . -1000) 72713) ((-1046 . -827) 72695) ((-747 . -37) 72679) ((-246 . -593) 72627) ((-230 . -593) 72575) ((-649 . -990) 72562) ((-555 . -1159) 72539) ((-1052 . -266) 72505) ((-300 . -162) 72436) ((-340 . -1027) T) ((-334 . -1027) T) ((-326 . -1027) T) ((-478 . -19) 72418) ((-1046 . -975) 72400) ((-1029 . -144) 72384) ((-105 . -1027) T) ((-114 . -990) 72371) ((-660 . -344) T) ((-478 . -563) 72346) ((-649 . -109) 72331) ((-417 . -99) T) ((-44 . -1073) 72281) ((-114 . -109) 72266) ((-589 . -669) T) ((-565 . -669) T) ((-763 . -491) 72199) ((-973 . -1135) T) ((-884 . -144) 72183) ((-496 . -99) 72133) ((-1016 . -1139) 72112) ((-730 . -1139) 72091) ((-457 . -571) 72043) ((-60 . -1135) T) ((-457 . -572) 71965) ((-728 . -1139) 71944) ((-1095 . -432) 71875) ((-1082 . -1027) T) ((-1066 . -599) 71849) ((-1016 . -522) 71780) ((-461 . -392) 71749) ((-578 . -861) 71728) ((-434 . -1139) 71707) ((-1051 . -432) 71658) ((-730 . -522) 71569) ((-379 . -571) 71551) ((-625 . -491) 71484) ((-728 . -522) 71415) ((-680 . -291) 71402) ((-615 . -25) T) ((-615 . -21) T) ((-434 . -522) 71333) ((-115 . -861) T) ((-115 . -768) NIL) ((-336 . -25) T) ((-336 . -21) T) ((-333 . -25) T) ((-333 . -21) T) ((-325 . -25) T) ((-325 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-81 . -365) T) ((-81 . -376) T) ((-230 . -25) T) ((-230 . -21) T) ((-1183 . -571) 71315) ((-1130 . -1039) T) ((-1130 . -23) T) ((-1090 . -291) 71200) ((-1052 . -291) 71187) ((-807 . -599) 71147) ((-1010 . -666) 71015) ((-884 . -920) 70999) ((-271 . -162) T) ((-851 . -21) T) ((-851 . -25) T) ((-813 . -795) 70950) ((-660 . -1039) T) ((-660 . -23) T) ((-598 . -1027) 70928) ((-586 . -568) 70903) ((-586 . -1027) T) ((-543 . -1139) T) ((-494 . -1139) T) ((-543 . -522) T) ((-494 . -522) T) ((-340 . -666) 70855) ((-334 . -666) 70807) ((-163 . -990) 70739) ((-320 . -990) 70723) ((-105 . -666) 70673) ((-163 . -109) 70584) ((-326 . -666) 70536) ((-320 . -109) 70515) ((-256 . -1027) T) ((-255 . -1027) T) ((-254 . -1027) T) ((-253 . -1027) T) ((-649 . -984) T) ((-252 . -1027) T) ((-251 . -1027) T) ((-250 . -1027) T) ((-196 . -1027) T) ((-195 . -1027) T) ((-193 . -1027) T) ((-159 . -1124) 70493) ((-159 . -1121) 70471) ((-192 . -1027) T) ((-191 . -1027) T) ((-114 . -984) T) ((-190 . -1027) T) ((-187 . -1027) T) ((-649 . -216) T) ((-186 . -1027) T) ((-185 . -1027) T) ((-184 . -1027) T) ((-183 . -1027) T) ((-182 . -1027) T) ((-181 . -1027) T) ((-180 . -1027) T) ((-179 . -1027) T) ((-178 . -1027) T) ((-177 . -1027) T) ((-223 . -99) 70262) ((-159 . -34) 70240) ((-159 . -93) 70218) ((-605 . -975) 70116) ((-461 . -991) 70047) ((-1040 . -1027) 69838) ((-1066 . -33) T) ((-621 . -468) 69822) ((-71 . -1135) T) ((-102 . -571) 69804) ((-1203 . -571) 69786) ((-362 . -571) 69768) ((-537 . -1124) T) ((-537 . -1121) T) ((-680 . -37) 69617) ((-502 . -571) 69599) ((-496 . -291) 69537) ((-478 . -571) 69519) ((-478 . -572) 69501) ((-1090 . -1075) NIL) ((-965 . -1003) 69470) ((-965 . -1027) T) ((-943 . -99) T) ((-911 . -99) T) ((-855 . -99) T) ((-834 . -975) 69447) ((-1066 . -675) T) ((-942 . -599) 69392) ((-456 . -1027) T) ((-443 . -1027) T) ((-547 . -23) T) ((-537 . -34) T) ((-537 . -93) T) ((-408 . -99) T) ((-996 . -212) 69338) ((-126 . -99) T) ((-1097 . -37) 69235) ((-807 . -675) T) ((-642 . -861) T) ((-488 . -25) T) ((-484 . -21) T) ((-484 . -25) T) ((-1096 . -37) 69076) ((-320 . -984) T) ((-1090 . -37) 68872) ((-1010 . -162) T) ((-163 . -984) T) ((-1052 . -37) 68769) ((-661 . -46) 68746) ((-340 . -162) T) ((-334 . -162) T) ((-495 . -55) 68720) ((-475 . -55) 68670) ((-332 . -1198) 68647) ((-208 . -432) T) ((-300 . -272) 68598) ((-326 . -162) T) ((-163 . -226) T) ((-1144 . -795) 68497) ((-105 . -162) T) ((-813 . -932) 68481) ((-609 . -1039) T) ((-543 . -344) T) ((-543 . -310) 68468) ((-494 . -310) 68445) ((-494 . -344) T) ((-297 . -289) 68424) ((-294 . -289) T) ((-561 . -795) 68403) ((-1040 . -666) 68345) ((-496 . -264) 68329) ((-609 . -23) T) ((-399 . -214) 68313) ((-294 . -960) NIL) ((-317 . -23) T) ((-100 . -949) 68297) ((-44 . -35) 68276) ((-570 . -1027) T) ((-332 . -349) T) ((-473 . -27) T) ((-223 . -291) 68214) ((-1016 . -1039) T) ((-1202 . -599) 68188) ((-730 . -1039) T) ((-728 . -1039) T) ((-434 . -1039) T) ((-995 . -432) T) ((-893 . -432) 68139) ((-108 . -1027) T) ((-1016 . -23) T) ((-765 . -991) T) ((-730 . -23) T) ((-728 . -23) T) ((-460 . -432) 68090) ((-1083 . -491) 67873) ((-362 . -363) 67852) ((-1101 . -392) 67836) ((-441 . -23) T) ((-434 . -23) T) ((-463 . -491) 67769) ((-271 . -272) T) ((-1012 . -571) 67751) ((-388 . -850) 67730) ((-49 . -1039) T) ((-962 . -861) T) ((-942 . -675) T) ((-661 . -827) NIL) ((-543 . -1039) T) ((-494 . -1039) T) ((-788 . -599) 67703) ((-1130 . -128) T) ((-1090 . -381) 67655) ((-943 . -291) NIL) ((-763 . -468) 67639) ((-335 . -861) T) ((-1080 . -33) T) ((-388 . -599) 67591) ((-49 . -23) T) ((-660 . -128) T) ((-661 . -975) 67473) ((-543 . -23) T) ((-105 . -491) NIL) ((-494 . -23) T) ((-159 . -390) 67444) ((-126 . -291) NIL) ((-1064 . -1027) T) ((-1194 . -1193) 67428) ((-649 . -743) T) ((-649 . -740) T) ((-1046 . -289) T) ((-360 . -140) T) ((-262 . -571) 67410) ((-1144 . -932) 67380) ((-47 . -861) T) ((-625 . -468) 67364) ((-233 . -1188) 67334) ((-232 . -1188) 67304) ((-1099 . -795) T) ((-1040 . -162) 67283) ((-1046 . -960) T) ((-981 . -33) T) ((-782 . -140) 67262) ((-782 . -138) 67241) ((-686 . -104) 67225) ((-570 . -129) T) ((-461 . -1027) 67016) ((-1101 . -991) T) ((-812 . -432) T) ((-83 . -1135) T) ((-223 . -37) 66986) ((-134 . -104) 66968) ((-661 . -358) 66952) ((-1046 . -515) T) ((-371 . -990) 66936) ((-1202 . -675) T) ((-1095 . -890) 66905) ((-127 . -571) 66872) ((-51 . -571) 66854) ((-1051 . -890) 66821) ((-604 . -392) 66805) ((-1191 . -991) T) ((-576 . -990) 66789) ((-613 . -25) T) ((-613 . -21) T) ((-1082 . -491) NIL) ((-1173 . -99) T) ((-1166 . -99) T) ((-371 . -109) 66768) ((-205 . -236) 66752) ((-1145 . -99) T) ((-988 . -1027) T) ((-943 . -1075) T) ((-988 . -987) 66692) ((-766 . -1027) T) ((-324 . -1139) T) ((-589 . -599) 66676) ((-576 . -109) 66655) ((-565 . -599) 66639) ((-556 . -99) T) ((-547 . -128) T) ((-555 . -99) T) ((-395 . -1027) T) ((-366 . -1027) T) ((-210 . -1027) 66617) ((-598 . -491) 66550) ((-586 . -491) 66394) ((-781 . -984) 66373) ((-597 . -144) 66357) ((-324 . -522) T) ((-661 . -841) 66300) ((-516 . -212) 66250) ((-1173 . -266) 66216) ((-1010 . -272) 66167) ((-466 . -793) T) ((-206 . -1039) T) ((-1166 . -266) 66133) ((-1145 . -266) 66099) ((-943 . -37) 66049) ((-201 . -793) T) ((-1130 . -471) 66015) ((-855 . -37) 65967) ((-788 . -742) 65946) ((-788 . -739) 65925) ((-788 . -675) 65904) ((-340 . -272) T) ((-334 . -272) T) ((-326 . -272) T) ((-159 . -432) 65835) ((-408 . -37) 65819) ((-105 . -272) T) ((-206 . -23) T) ((-388 . -742) 65798) ((-388 . -739) 65777) ((-388 . -675) T) ((-478 . -270) 65752) ((-457 . -990) 65717) ((-609 . -128) T) ((-1040 . -491) 65650) ((-317 . -128) T) ((-159 . -383) 65629) ((-461 . -666) 65571) ((-763 . -268) 65548) ((-457 . -109) 65504) ((-604 . -991) T) ((-1154 . -432) 65435) ((-1016 . -128) T) ((-246 . -795) 65414) ((-230 . -795) 65393) ((-730 . -128) T) ((-728 . -128) T) ((-537 . -432) T) ((-988 . -666) 65335) ((-576 . -984) T) ((-965 . -491) 65268) ((-441 . -128) T) ((-434 . -128) T) ((-44 . -1027) T) ((-366 . -666) 65238) ((-765 . -1027) T) ((-456 . -491) 65171) ((-443 . -491) 65104) ((-433 . -348) 65074) ((-44 . -568) 65053) ((-297 . -284) T) ((-621 . -571) 65015) ((-57 . -795) 64994) ((-1145 . -291) 64879) ((-943 . -381) 64861) ((-763 . -563) 64838) ((-493 . -795) 64817) ((-474 . -795) 64796) ((-39 . -1139) T) ((-938 . -975) 64694) ((-49 . -128) T) ((-543 . -128) T) ((-494 . -128) T) ((-276 . -599) 64556) ((-324 . -310) 64533) ((-324 . -344) T) ((-303 . -304) 64510) ((-300 . -268) 64495) ((-39 . -522) T) ((-360 . -1121) T) ((-360 . -1124) T) ((-973 . -1112) 64470) ((-1109 . -218) 64420) ((-1090 . -214) 64372) ((-311 . -1027) T) ((-360 . -93) T) ((-360 . -34) T) ((-973 . -104) 64318) ((-457 . -984) T) ((-458 . -218) 64268) ((-1083 . -468) 64202) ((-1203 . -990) 64186) ((-362 . -990) 64170) ((-457 . -226) T) ((-764 . -99) T) ((-663 . -140) 64149) ((-663 . -138) 64128) ((-463 . -468) 64112) ((-464 . -316) 64081) ((-1203 . -109) 64060) ((-489 . -1027) T) ((-461 . -162) 64039) ((-938 . -358) 64023) ((-394 . -99) T) ((-362 . -109) 64002) ((-938 . -319) 63986) ((-261 . -923) 63970) ((-260 . -923) 63954) ((-1201 . -571) 63936) ((-1199 . -571) 63918) ((-108 . -491) NIL) ((-1095 . -1157) 63902) ((-799 . -797) 63886) ((-1101 . -1027) T) ((-100 . -1135) T) ((-893 . -890) 63847) ((-765 . -666) 63789) ((-1145 . -1075) NIL) ((-460 . -890) 63734) ((-995 . -136) T) ((-58 . -99) 63712) ((-43 . -571) 63694) ((-76 . -571) 63676) ((-332 . -599) 63621) ((-1191 . -1027) T) ((-488 . -795) T) ((-324 . -1039) T) ((-277 . -1027) T) ((-938 . -841) 63580) ((-277 . -568) 63559) ((-1173 . -37) 63456) ((-1166 . -37) 63297) ((-466 . -991) T) ((-1145 . -37) 63093) ((-201 . -991) T) ((-324 . -23) T) ((-145 . -571) 63075) ((-781 . -743) 63054) ((-781 . -740) 63033) ((-556 . -37) 63006) ((-555 . -37) 62903) ((-811 . -522) T) ((-206 . -128) T) ((-300 . -941) 62869) ((-77 . -571) 62851) ((-661 . -289) 62830) ((-276 . -675) 62733) ((-772 . -99) T) ((-806 . -789) T) ((-276 . -453) 62712) ((-1194 . -99) T) ((-39 . -344) T) ((-813 . -140) 62691) ((-813 . -138) 62670) ((-1082 . -468) 62652) ((-1203 . -984) T) ((-461 . -491) 62585) ((-1070 . -1135) T) ((-905 . -571) 62567) ((-598 . -468) 62551) ((-586 . -468) 62482) ((-763 . -571) 62214) ((-47 . -27) T) ((-1101 . -666) 62111) ((-604 . -1027) T) ((-417 . -345) 62085) ((-1029 . -99) T) ((-764 . -291) 62072) ((-806 . -1027) T) ((-1199 . -363) 62044) ((-988 . -491) 61977) ((-1083 . -268) 61953) ((-223 . -214) 61923) ((-1191 . -666) 61893) ((-765 . -162) 61872) ((-210 . -491) 61805) ((-576 . -743) 61784) ((-576 . -740) 61763) ((-1133 . -571) 61675) ((-205 . -1135) T) ((-625 . -571) 61607) ((-1080 . -949) 61591) ((-332 . -675) T) ((-884 . -99) 61541) ((-1145 . -381) 61493) ((-1040 . -468) 61477) ((-58 . -291) 61415) ((-312 . -99) T) ((-1130 . -21) T) ((-1130 . -25) T) ((-39 . -1039) T) ((-660 . -21) T) ((-581 . -571) 61397) ((-492 . -304) 61376) ((-660 . -25) T) ((-105 . -268) NIL) ((-862 . -1039) T) ((-39 . -23) T) ((-719 . -1039) T) ((-530 . -1139) T) ((-473 . -1139) T) ((-300 . -571) 61358) ((-943 . -214) 61340) ((-159 . -156) 61324) ((-542 . -522) T) ((-530 . -522) T) ((-473 . -522) T) ((-719 . -23) T) ((-1165 . -140) 61303) ((-1083 . -563) 61279) ((-1165 . -138) 61258) ((-965 . -468) 61242) ((-1144 . -138) 61167) ((-1144 . -140) 61092) ((-1194 . -1200) 61071) ((-456 . -468) 61055) ((-443 . -468) 61039) ((-499 . -33) T) ((-604 . -666) 61009) ((-110 . -908) T) ((-613 . -795) 60988) ((-1101 . -162) 60939) ((-346 . -99) T) ((-223 . -221) 60918) ((-233 . -99) T) ((-232 . -99) T) ((-1154 . -890) 60887) ((-107 . -99) T) ((-228 . -795) 60866) ((-764 . -37) 60715) ((-44 . -491) 60507) ((-1082 . -268) 60482) ((-198 . -1027) T) ((-1074 . -1027) T) ((-1074 . -568) 60461) ((-547 . -25) T) ((-547 . -21) T) ((-1029 . -291) 60399) ((-904 . -392) 60383) ((-647 . -1139) T) ((-586 . -268) 60358) ((-1016 . -593) 60306) ((-730 . -593) 60254) ((-728 . -593) 60202) ((-324 . -128) T) ((-271 . -571) 60184) ((-647 . -522) T) ((-846 . -1027) T) ((-811 . -1039) T) ((-434 . -593) 60132) ((-846 . -844) 60116) ((-360 . -432) T) ((-466 . -1027) T) ((-649 . -599) 60103) ((-884 . -291) 60041) ((-201 . -1027) T) ((-297 . -861) 60020) ((-294 . -861) T) ((-294 . -768) NIL) ((-371 . -669) T) ((-811 . -23) T) ((-114 . -599) 60007) ((-454 . -138) 59986) ((-399 . -392) 59970) ((-454 . -140) 59949) ((-108 . -468) 59931) ((-2 . -571) 59913) ((-1082 . -19) 59895) ((-1082 . -563) 59870) ((-609 . -21) T) ((-609 . -25) T) ((-553 . -1068) T) ((-1040 . -268) 59847) ((-317 . -25) T) ((-317 . -21) T) ((-473 . -344) T) ((-1194 . -37) 59817) ((-1066 . -1135) T) ((-586 . -563) 59792) ((-1016 . -25) T) ((-1016 . -21) T) ((-502 . -740) T) ((-502 . -743) T) ((-115 . -1139) T) ((-904 . -991) T) ((-578 . -522) T) ((-684 . -991) T) ((-664 . -991) T) ((-730 . -25) T) ((-730 . -21) T) ((-728 . -21) T) ((-728 . -25) T) ((-621 . -990) 59776) ((-441 . -25) T) ((-115 . -522) T) ((-441 . -21) T) ((-434 . -25) T) ((-434 . -21) T) ((-1066 . -975) 59674) ((-765 . -272) 59653) ((-771 . -1027) T) ((-907 . -908) T) ((-621 . -109) 59632) ((-277 . -491) 59424) ((-1201 . -990) 59408) ((-1199 . -990) 59392) ((-233 . -291) 59330) ((-232 . -291) 59268) ((-1148 . -99) 59246) ((-1083 . -572) NIL) ((-1083 . -571) 59228) ((-1165 . -1121) 59194) ((-1165 . -1124) 59160) ((-1145 . -214) 59112) ((-1144 . -1121) 59078) ((-1144 . -1124) 59044) ((-1066 . -358) 59028) ((-1046 . -768) T) ((-1046 . -861) T) ((-1040 . -563) 59005) ((-1010 . -572) 58989) ((-463 . -571) 58921) ((-763 . -270) 58898) ((-566 . -144) 58845) ((-399 . -991) T) ((-466 . -666) 58795) ((-461 . -468) 58779) ((-308 . -795) 58758) ((-320 . -599) 58732) ((-49 . -21) T) ((-49 . -25) T) ((-201 . -666) 58682) ((-159 . -673) 58653) ((-163 . -599) 58585) ((-543 . -21) T) ((-543 . -25) T) ((-494 . -25) T) ((-494 . -21) T) ((-455 . -144) 58535) ((-1010 . -571) 58517) ((-994 . -571) 58499) ((-933 . -99) T) ((-804 . -99) T) ((-747 . -392) 58463) ((-39 . -128) T) ((-647 . -344) T) ((-196 . -836) T) ((-649 . -742) T) ((-649 . -739) T) ((-542 . -1039) T) ((-530 . -1039) T) ((-473 . -1039) T) ((-649 . -675) T) ((-340 . -571) 58445) ((-334 . -571) 58427) ((-326 . -571) 58409) ((-64 . -377) T) ((-64 . -376) T) ((-105 . -572) 58339) ((-105 . -571) 58321) ((-195 . -836) T) ((-899 . -144) 58305) ((-1165 . -93) 58271) ((-719 . -128) T) ((-130 . -675) T) ((-114 . -675) T) ((-1165 . -34) 58237) ((-988 . -468) 58221) ((-542 . -23) T) ((-530 . -23) T) ((-473 . -23) T) ((-1144 . -93) 58187) ((-1144 . -34) 58153) ((-1095 . -99) T) ((-1051 . -99) T) ((-799 . -99) T) ((-210 . -468) 58137) ((-1201 . -109) 58116) ((-1199 . -109) 58095) ((-43 . -990) 58079) ((-1154 . -1157) 58063) ((-800 . -797) 58047) ((-1101 . -272) 58026) ((-108 . -268) 58001) ((-1066 . -841) 57960) ((-43 . -109) 57939) ((-621 . -984) T) ((-1104 . -1176) T) ((-1082 . -572) NIL) ((-1082 . -571) 57921) ((-996 . -568) 57896) ((-996 . -1027) T) ((-72 . -421) T) ((-72 . -376) T) ((-621 . -216) 57875) ((-145 . -990) 57859) ((-537 . -520) 57843) ((-336 . -140) 57822) ((-336 . -138) 57773) ((-333 . -140) 57752) ((-651 . -1027) T) ((-333 . -138) 57703) ((-325 . -140) 57682) ((-325 . -138) 57633) ((-246 . -138) 57612) ((-246 . -140) 57591) ((-233 . -37) 57561) ((-230 . -140) 57540) ((-115 . -344) T) ((-230 . -138) 57519) ((-232 . -37) 57489) ((-145 . -109) 57468) ((-942 . -975) 57358) ((-1090 . -793) NIL) ((-642 . -1139) T) ((-747 . -991) T) ((-647 . -1039) T) ((-1201 . -984) T) ((-1199 . -984) T) ((-1080 . -1135) T) ((-942 . -358) 57335) ((-851 . -138) T) ((-851 . -140) 57317) ((-811 . -128) T) ((-763 . -990) 57215) ((-642 . -522) T) ((-647 . -23) T) ((-598 . -571) 57147) ((-598 . -572) 57108) ((-586 . -572) NIL) ((-586 . -571) 57090) ((-466 . -162) T) ((-206 . -21) T) ((-201 . -162) T) ((-206 . -25) T) ((-454 . -1124) 57056) ((-454 . -1121) 57022) ((-256 . -571) 57004) ((-255 . -571) 56986) ((-254 . -571) 56968) ((-253 . -571) 56950) ((-252 . -571) 56932) ((-478 . -602) 56914) ((-251 . -571) 56896) ((-320 . -675) T) ((-250 . -571) 56878) ((-108 . -19) 56860) ((-163 . -675) T) ((-478 . -354) 56842) ((-196 . -571) 56824) ((-496 . -1073) 56808) ((-478 . -121) T) ((-108 . -563) 56783) ((-195 . -571) 56765) ((-454 . -34) 56731) ((-454 . -93) 56697) ((-193 . -571) 56679) ((-192 . -571) 56661) ((-191 . -571) 56643) ((-190 . -571) 56625) ((-187 . -571) 56607) ((-186 . -571) 56589) ((-185 . -571) 56571) ((-184 . -571) 56553) ((-183 . -571) 56535) ((-182 . -571) 56517) ((-181 . -571) 56499) ((-506 . -1030) 56451) ((-180 . -571) 56433) ((-179 . -571) 56415) ((-44 . -468) 56352) ((-178 . -571) 56334) ((-177 . -571) 56316) ((-763 . -109) 56207) ((-597 . -99) 56157) ((-461 . -268) 56134) ((-1040 . -571) 55866) ((-1028 . -1027) T) ((-981 . -1135) T) ((-578 . -1039) T) ((-1202 . -975) 55850) ((-1095 . -291) 55837) ((-1051 . -291) 55824) ((-115 . -1039) T) ((-767 . -99) T) ((-578 . -23) T) ((-1074 . -491) 55616) ((-367 . -99) T) ((-305 . -99) T) ((-942 . -841) 55568) ((-904 . -1027) T) ((-145 . -984) T) ((-115 . -23) T) ((-680 . -392) 55552) ((-684 . -1027) T) ((-664 . -1027) T) ((-651 . -129) T) ((-433 . -1027) T) ((-297 . -411) 55536) ((-388 . -1135) T) ((-965 . -572) 55497) ((-962 . -1139) T) ((-208 . -99) T) ((-965 . -571) 55459) ((-764 . -214) 55443) ((-962 . -522) T) ((-781 . -599) 55416) ((-335 . -1139) T) ((-456 . -571) 55378) ((-456 . -572) 55339) ((-443 . -572) 55300) ((-443 . -571) 55262) ((-388 . -825) 55246) ((-300 . -990) 55081) ((-388 . -827) 55006) ((-788 . -975) 54904) ((-466 . -491) NIL) ((-461 . -563) 54881) ((-335 . -522) T) ((-201 . -491) NIL) ((-813 . -432) T) ((-399 . -1027) T) ((-388 . -975) 54748) ((-300 . -109) 54569) ((-642 . -344) T) ((-208 . -266) T) ((-47 . -1139) T) ((-763 . -984) 54500) ((-542 . -128) T) ((-530 . -128) T) ((-473 . -128) T) ((-47 . -522) T) ((-1083 . -270) 54476) ((-1095 . -1075) 54454) ((-297 . -27) 54433) ((-995 . -99) T) ((-763 . -216) 54386) ((-223 . -793) 54365) ((-893 . -99) T) ((-662 . -99) T) ((-277 . -468) 54302) ((-460 . -99) T) ((-680 . -991) T) ((-570 . -571) 54284) ((-570 . -572) 54145) ((-388 . -358) 54129) ((-388 . -319) 54113) ((-1095 . -37) 53942) ((-1051 . -37) 53791) ((-799 . -37) 53761) ((-371 . -599) 53745) ((-597 . -291) 53683) ((-904 . -666) 53580) ((-205 . -104) 53564) ((-44 . -268) 53489) ((-684 . -666) 53459) ((-576 . -599) 53433) ((-293 . -1027) T) ((-271 . -990) 53420) ((-108 . -571) 53402) ((-108 . -572) 53384) ((-433 . -666) 53354) ((-764 . -235) 53293) ((-637 . -1027) 53271) ((-516 . -1027) T) ((-1097 . -991) T) ((-1096 . -991) T) ((-271 . -109) 53256) ((-1090 . -991) T) ((-1052 . -991) T) ((-516 . -568) 53235) ((-943 . -793) T) ((-210 . -635) 53193) ((-642 . -1039) T) ((-1130 . -689) 53169) ((-300 . -984) T) ((-324 . -25) T) ((-324 . -21) T) ((-388 . -841) 53128) ((-66 . -1135) T) ((-781 . -742) 53107) ((-399 . -666) 53081) ((-747 . -1027) T) ((-781 . -739) 53060) ((-647 . -128) T) ((-661 . -861) 53039) ((-642 . -23) T) ((-466 . -272) T) ((-781 . -675) 53018) ((-300 . -216) 52970) ((-300 . -226) 52949) ((-201 . -272) T) ((-962 . -344) T) ((-1165 . -432) 52928) ((-1144 . -432) 52907) ((-335 . -310) 52884) ((-335 . -344) T) ((-1064 . -571) 52866) ((-44 . -1169) 52816) ((-812 . -99) T) ((-597 . -264) 52800) ((-647 . -993) T) ((-457 . -599) 52765) ((-448 . -1027) T) ((-44 . -563) 52690) ((-1082 . -270) 52665) ((-39 . -593) 52604) ((-47 . -344) T) ((-1033 . -571) 52586) ((-1016 . -795) 52565) ((-586 . -270) 52540) ((-730 . -795) 52519) ((-728 . -795) 52498) ((-461 . -571) 52230) ((-223 . -392) 52199) ((-893 . -291) 52186) ((-434 . -795) 52165) ((-63 . -1135) T) ((-578 . -128) T) ((-460 . -291) 52152) ((-996 . -491) 51996) ((-271 . -984) T) ((-115 . -128) T) ((-433 . -710) T) ((-904 . -162) 51947) ((-1010 . -990) 51857) ((-576 . -742) 51836) ((-553 . -1027) T) ((-576 . -739) 51815) ((-576 . -675) T) ((-277 . -268) 51794) ((-276 . -1135) T) ((-988 . -571) 51756) ((-988 . -572) 51717) ((-962 . -1039) T) ((-159 . -99) T) ((-257 . -795) T) ((-1089 . -1027) T) ((-766 . -571) 51699) ((-1040 . -270) 51676) ((-1029 . -212) 51660) ((-942 . -289) T) ((-747 . -666) 51644) ((-340 . -990) 51596) ((-335 . -1039) T) ((-334 . -990) 51548) ((-395 . -571) 51530) ((-366 . -571) 51512) ((-326 . -990) 51464) ((-210 . -571) 51396) ((-1010 . -109) 51292) ((-962 . -23) T) ((-105 . -990) 51242) ((-839 . -99) T) ((-786 . -99) T) ((-756 . -99) T) ((-717 . -99) T) ((-626 . -99) T) ((-454 . -432) 51221) ((-399 . -162) T) ((-340 . -109) 51159) ((-334 . -109) 51097) ((-326 . -109) 51035) ((-233 . -214) 51005) ((-232 . -214) 50975) ((-335 . -23) T) ((-69 . -1135) T) ((-208 . -37) 50940) ((-105 . -109) 50874) ((-39 . -25) T) ((-39 . -21) T) ((-621 . -669) T) ((-159 . -266) 50852) ((-47 . -1039) T) ((-862 . -25) T) ((-719 . -25) T) ((-1074 . -468) 50789) ((-464 . -1027) T) ((-1203 . -599) 50763) ((-1154 . -99) T) ((-800 . -99) T) ((-223 . -991) 50694) ((-995 . -1075) T) ((-905 . -740) 50647) ((-362 . -599) 50631) ((-47 . -23) T) ((-905 . -743) 50584) ((-763 . -743) 50535) ((-763 . -740) 50486) ((-277 . -563) 50465) ((-457 . -675) T) ((-537 . -99) T) ((-812 . -291) 50422) ((-604 . -268) 50401) ((-110 . -612) T) ((-74 . -1135) T) ((-995 . -37) 50388) ((-615 . -355) 50367) ((-893 . -37) 50216) ((-680 . -1027) T) ((-460 . -37) 50065) ((-84 . -1135) T) ((-537 . -266) T) ((-1145 . -793) NIL) ((-1097 . -1027) T) ((-1096 . -1027) T) ((-1090 . -1027) T) ((-332 . -975) 50042) ((-1010 . -984) T) ((-943 . -991) T) ((-44 . -571) 50024) ((-44 . -572) NIL) ((-855 . -991) T) ((-765 . -571) 50006) ((-1071 . -99) 49984) ((-1010 . -226) 49935) ((-408 . -991) T) ((-340 . -984) T) ((-334 . -984) T) ((-346 . -345) 49912) ((-326 . -984) T) ((-233 . -221) 49891) ((-232 . -221) 49870) ((-107 . -345) 49844) ((-1010 . -216) 49769) ((-1052 . -1027) T) ((-276 . -841) 49728) ((-105 . -984) T) ((-642 . -128) T) ((-399 . -491) 49570) ((-340 . -216) 49549) ((-340 . -226) T) ((-43 . -669) T) ((-334 . -216) 49528) ((-334 . -226) T) ((-326 . -216) 49507) ((-326 . -226) T) ((-159 . -291) 49472) ((-105 . -226) T) ((-105 . -216) T) ((-300 . -740) T) ((-811 . -21) T) ((-811 . -25) T) ((-388 . -289) T) ((-478 . -33) T) ((-108 . -270) 49447) ((-1040 . -990) 49345) ((-812 . -1075) NIL) ((-311 . -571) 49327) ((-388 . -960) 49306) ((-1040 . -109) 49197) ((-639 . -1176) T) ((-417 . -1027) T) ((-1203 . -675) T) ((-61 . -571) 49179) ((-812 . -37) 49124) ((-499 . -1135) T) ((-561 . -144) 49108) ((-489 . -571) 49090) ((-1154 . -291) 49077) ((-680 . -666) 48926) ((-502 . -741) T) ((-502 . -742) T) ((-530 . -593) 48908) ((-473 . -593) 48868) ((-336 . -432) T) ((-333 . -432) T) ((-325 . -432) T) ((-246 . -432) 48819) ((-496 . -1027) 48769) ((-230 . -432) 48720) ((-1074 . -268) 48699) ((-1101 . -571) 48681) ((-637 . -491) 48614) ((-904 . -272) 48593) ((-516 . -491) 48385) ((-1095 . -214) 48369) ((-159 . -1075) 48348) ((-1191 . -571) 48330) ((-1097 . -666) 48227) ((-1096 . -666) 48068) ((-833 . -99) T) ((-1090 . -666) 47864) ((-1052 . -666) 47761) ((-1080 . -624) 47745) ((-336 . -383) 47696) ((-333 . -383) 47647) ((-325 . -383) 47598) ((-962 . -128) T) ((-747 . -491) 47510) ((-277 . -572) NIL) ((-277 . -571) 47492) ((-851 . -432) T) ((-905 . -349) 47445) ((-763 . -349) 47424) ((-487 . -486) 47403) ((-485 . -486) 47382) ((-466 . -268) NIL) ((-461 . -270) 47359) ((-399 . -272) T) ((-335 . -128) T) ((-201 . -268) NIL) ((-642 . -471) NIL) ((-96 . -1039) T) ((-159 . -37) 47187) ((-1165 . -913) 47149) ((-1071 . -291) 47087) ((-1144 . -913) 47056) ((-851 . -383) T) ((-1040 . -984) 46987) ((-1167 . -522) T) ((-1074 . -563) 46966) ((-110 . -795) T) ((-996 . -468) 46897) ((-542 . -21) T) ((-542 . -25) T) ((-530 . -21) T) ((-530 . -25) T) ((-473 . -25) T) ((-473 . -21) T) ((-1154 . -1075) 46875) ((-1040 . -216) 46828) ((-47 . -128) T) ((-1117 . -99) T) ((-223 . -1027) 46619) ((-812 . -381) 46596) ((-1017 . -99) T) ((-1006 . -99) T) ((-566 . -99) T) ((-455 . -99) T) ((-1154 . -37) 46425) ((-800 . -37) 46395) ((-680 . -162) 46306) ((-604 . -571) 46288) ((-537 . -37) 46275) ((-899 . -99) 46225) ((-806 . -571) 46207) ((-806 . -572) 46129) ((-553 . -491) NIL) ((-1173 . -991) T) ((-1166 . -991) T) ((-1145 . -991) T) ((-556 . -991) T) ((-555 . -991) T) ((-1207 . -1039) T) ((-1097 . -162) 46080) ((-1096 . -162) 46011) ((-1090 . -162) 45942) ((-1052 . -162) 45893) ((-943 . -1027) T) ((-911 . -1027) T) ((-855 . -1027) T) ((-1130 . -140) 45872) ((-747 . -745) 45856) ((-647 . -25) T) ((-647 . -21) T) ((-115 . -593) 45833) ((-649 . -827) 45815) ((-408 . -1027) T) ((-297 . -1139) 45794) ((-294 . -1139) T) ((-159 . -381) 45778) ((-1130 . -138) 45757) ((-454 . -913) 45719) ((-126 . -1027) T) ((-70 . -571) 45701) ((-105 . -743) T) ((-105 . -740) T) ((-297 . -522) 45680) ((-649 . -975) 45662) ((-294 . -522) T) ((-1207 . -23) T) ((-130 . -975) 45644) ((-461 . -990) 45542) ((-44 . -270) 45467) ((-223 . -666) 45409) ((-461 . -109) 45300) ((-1020 . -99) 45278) ((-972 . -99) T) ((-597 . -776) 45257) ((-680 . -491) 45200) ((-988 . -990) 45184) ((-578 . -21) T) ((-578 . -25) T) ((-996 . -268) 45159) ((-342 . -99) T) ((-303 . -99) T) ((-621 . -599) 45133) ((-366 . -990) 45117) ((-988 . -109) 45096) ((-764 . -392) 45080) ((-115 . -25) T) ((-87 . -571) 45062) ((-115 . -21) T) ((-566 . -291) 44857) ((-455 . -291) 44661) ((-1074 . -572) NIL) ((-366 . -109) 44640) ((-360 . -99) T) ((-198 . -571) 44622) ((-1074 . -571) 44604) ((-943 . -666) 44554) ((-1090 . -491) 44323) ((-855 . -666) 44275) ((-1052 . -491) 44245) ((-332 . -289) T) ((-1109 . -144) 44195) ((-899 . -291) 44133) ((-782 . -99) T) ((-408 . -666) 44117) ((-208 . -776) T) ((-775 . -99) T) ((-773 . -99) T) ((-458 . -144) 44067) ((-1165 . -1164) 44046) ((-1046 . -1139) T) ((-320 . -975) 44013) ((-1165 . -1159) 43983) ((-1165 . -1162) 43967) ((-1144 . -1143) 43946) ((-78 . -571) 43928) ((-846 . -571) 43910) ((-1144 . -1159) 43887) ((-1046 . -522) T) ((-862 . -795) T) ((-466 . -572) 43817) ((-466 . -571) 43799) ((-719 . -795) T) ((-360 . -266) T) ((-622 . -795) T) ((-1144 . -1141) 43783) ((-1167 . -1039) T) ((-201 . -572) 43713) ((-201 . -571) 43695) ((-996 . -563) 43670) ((-57 . -144) 43654) ((-493 . -144) 43638) ((-474 . -144) 43622) ((-340 . -1198) 43606) ((-334 . -1198) 43590) ((-326 . -1198) 43574) ((-297 . -344) 43553) ((-294 . -344) T) ((-461 . -984) 43484) ((-642 . -593) 43466) ((-1201 . -599) 43440) ((-1199 . -599) 43414) ((-1167 . -23) T) ((-637 . -468) 43398) ((-62 . -571) 43380) ((-1040 . -743) 43331) ((-1040 . -740) 43282) ((-516 . -468) 43219) ((-621 . -33) T) ((-461 . -216) 43172) ((-277 . -270) 43151) ((-223 . -162) 43130) ((-764 . -991) T) ((-43 . -599) 43088) ((-1010 . -349) 43039) ((-680 . -272) 42970) ((-496 . -491) 42903) ((-765 . -990) 42854) ((-1016 . -138) 42833) ((-340 . -349) 42812) ((-334 . -349) 42791) ((-326 . -349) 42770) ((-1016 . -140) 42749) ((-812 . -214) 42726) ((-765 . -109) 42668) ((-730 . -138) 42647) ((-730 . -140) 42626) ((-246 . -890) 42593) ((-233 . -793) 42572) ((-230 . -890) 42517) ((-232 . -793) 42496) ((-728 . -138) 42475) ((-728 . -140) 42454) ((-145 . -599) 42428) ((-434 . -140) 42407) ((-434 . -138) 42386) ((-621 . -675) T) ((-771 . -571) 42368) ((-1173 . -1027) T) ((-1166 . -1027) T) ((-1145 . -1027) T) ((-1130 . -1124) 42334) ((-1130 . -1121) 42300) ((-1097 . -272) 42279) ((-1096 . -272) 42230) ((-1090 . -272) 42181) ((-1052 . -272) 42160) ((-320 . -841) 42141) ((-943 . -162) T) ((-855 . -162) T) ((-556 . -1027) T) ((-555 . -1027) T) ((-642 . -21) T) ((-642 . -25) T) ((-454 . -1162) 42125) ((-454 . -1159) 42095) ((-399 . -268) 42023) ((-297 . -1039) 41873) ((-294 . -1039) T) ((-1130 . -34) 41839) ((-1130 . -93) 41805) ((-82 . -571) 41787) ((-89 . -99) 41765) ((-1207 . -128) T) ((-543 . -138) T) ((-543 . -140) 41747) ((-494 . -140) 41729) ((-494 . -138) T) ((-297 . -23) 41582) ((-39 . -323) 41556) ((-294 . -23) T) ((-1082 . -602) 41538) ((-763 . -599) 41388) ((-1194 . -991) T) ((-1082 . -354) 41370) ((-159 . -214) 41354) ((-553 . -468) 41336) ((-223 . -491) 41269) ((-462 . -99) T) ((-1201 . -675) T) ((-1199 . -675) T) ((-1101 . -990) 41152) ((-1101 . -109) 41021) ((-765 . -984) T) ((-492 . -99) T) ((-47 . -593) 40981) ((-487 . -99) T) ((-485 . -99) T) ((-1191 . -990) 40951) ((-972 . -37) 40935) ((-765 . -216) T) ((-765 . -226) 40914) ((-516 . -268) 40893) ((-1191 . -109) 40858) ((-1154 . -214) 40842) ((-1173 . -666) 40739) ((-996 . -572) NIL) ((-996 . -571) 40721) ((-1166 . -666) 40562) ((-1145 . -666) 40358) ((-942 . -861) T) ((-651 . -571) 40327) ((-145 . -675) T) ((-1040 . -349) 40306) ((-943 . -491) NIL) ((-233 . -392) 40275) ((-232 . -392) 40244) ((-962 . -25) T) ((-962 . -21) T) ((-556 . -666) 40217) ((-555 . -666) 40114) ((-747 . -268) 40072) ((-124 . -99) 40050) ((-781 . -975) 39948) ((-159 . -776) 39927) ((-300 . -599) 39824) ((-763 . -33) T) ((-663 . -99) T) ((-1046 . -1039) T) ((-126 . -491) NIL) ((-964 . -1135) T) ((-360 . -37) 39789) ((-335 . -25) T) ((-335 . -21) T) ((-152 . -99) T) ((-148 . -99) T) ((-336 . -1188) 39773) ((-333 . -1188) 39757) ((-325 . -1188) 39741) ((-159 . -330) 39720) ((-530 . -795) T) ((-473 . -795) T) ((-1046 . -23) T) ((-85 . -571) 39702) ((-649 . -289) T) ((-782 . -37) 39672) ((-775 . -37) 39642) ((-1167 . -128) T) ((-1074 . -270) 39621) ((-905 . -741) 39574) ((-905 . -742) 39527) ((-763 . -739) 39506) ((-114 . -289) T) ((-89 . -291) 39444) ((-625 . -33) T) ((-516 . -563) 39423) ((-47 . -25) T) ((-47 . -21) T) ((-763 . -742) 39374) ((-763 . -741) 39353) ((-649 . -960) T) ((-604 . -990) 39337) ((-905 . -675) 39236) ((-763 . -675) 39147) ((-905 . -453) 39100) ((-461 . -743) 39051) ((-461 . -740) 39002) ((-851 . -1188) 38989) ((-1101 . -984) T) ((-604 . -109) 38968) ((-1101 . -307) 38945) ((-1122 . -99) 38923) ((-1028 . -571) 38905) ((-649 . -515) T) ((-764 . -1027) T) ((-1191 . -984) T) ((-394 . -1027) T) ((-233 . -991) 38836) ((-232 . -991) 38767) ((-271 . -599) 38754) ((-553 . -268) 38729) ((-637 . -635) 38687) ((-904 . -571) 38669) ((-813 . -99) T) ((-684 . -571) 38651) ((-664 . -571) 38633) ((-1173 . -162) 38584) ((-1166 . -162) 38515) ((-1145 . -162) 38446) ((-647 . -795) T) ((-943 . -272) T) ((-433 . -571) 38428) ((-581 . -675) T) ((-58 . -1027) 38406) ((-228 . -144) 38390) ((-855 . -272) T) ((-962 . -951) T) ((-581 . -453) T) ((-661 . -1139) 38369) ((-556 . -162) 38348) ((-555 . -162) 38299) ((-1181 . -795) 38278) ((-661 . -522) 38189) ((-388 . -861) T) ((-388 . -768) 38168) ((-300 . -742) T) ((-300 . -675) T) ((-399 . -571) 38150) ((-399 . -572) 38058) ((-597 . -1073) 38042) ((-108 . -602) 38024) ((-124 . -291) 37962) ((-108 . -354) 37944) ((-163 . -289) T) ((-379 . -1135) T) ((-297 . -128) 37816) ((-294 . -128) T) ((-67 . -376) T) ((-108 . -121) T) ((-496 . -468) 37800) ((-605 . -1039) T) ((-553 . -19) 37782) ((-59 . -421) T) ((-59 . -376) T) ((-772 . -1027) T) ((-553 . -563) 37757) ((-457 . -975) 37717) ((-604 . -984) T) ((-605 . -23) T) ((-1194 . -1027) T) ((-764 . -666) 37566) ((-115 . -795) NIL) ((-1095 . -392) 37550) ((-1051 . -392) 37534) ((-799 . -392) 37518) ((-814 . -99) 37469) ((-1165 . -99) T) ((-1145 . -491) 37238) ((-1122 . -291) 37176) ((-293 . -571) 37158) ((-1144 . -99) T) ((-1029 . -1027) T) ((-1097 . -268) 37143) ((-1096 . -268) 37128) ((-271 . -675) T) ((-105 . -850) NIL) ((-637 . -571) 37060) ((-637 . -572) 37021) ((-1010 . -599) 36931) ((-560 . -571) 36913) ((-516 . -572) NIL) ((-516 . -571) 36895) ((-1090 . -268) 36743) ((-466 . -990) 36693) ((-660 . -432) T) ((-488 . -486) 36672) ((-484 . -486) 36651) ((-201 . -990) 36601) ((-340 . -599) 36553) ((-334 . -599) 36505) ((-208 . -793) T) ((-326 . -599) 36457) ((-561 . -99) 36407) ((-461 . -349) 36386) ((-105 . -599) 36336) ((-466 . -109) 36270) ((-223 . -468) 36254) ((-324 . -140) 36236) ((-324 . -138) T) ((-159 . -351) 36207) ((-884 . -1179) 36191) ((-201 . -109) 36125) ((-813 . -291) 36090) ((-884 . -1027) 36040) ((-747 . -572) 36001) ((-747 . -571) 35983) ((-667 . -99) T) ((-312 . -1027) T) ((-1046 . -128) T) ((-663 . -37) 35953) ((-297 . -471) 35932) ((-478 . -1135) T) ((-1165 . -266) 35898) ((-1144 . -266) 35864) ((-308 . -144) 35848) ((-996 . -270) 35823) ((-1194 . -666) 35793) ((-1083 . -33) T) ((-1203 . -975) 35770) ((-448 . -571) 35752) ((-463 . -33) T) ((-362 . -975) 35736) ((-1095 . -991) T) ((-1051 . -991) T) ((-799 . -991) T) ((-995 . -793) T) ((-764 . -162) 35647) ((-496 . -268) 35624) ((-126 . -468) 35606) ((-115 . -932) 35583) ((-1173 . -272) 35562) ((-1117 . -345) 35536) ((-1017 . -248) 35520) ((-454 . -99) T) ((-346 . -1027) T) ((-233 . -1027) T) ((-232 . -1027) T) ((-1166 . -272) 35471) ((-107 . -1027) T) ((-1145 . -272) 35422) ((-813 . -1075) 35400) ((-1097 . -941) 35366) ((-566 . -345) 35306) ((-1096 . -941) 35272) ((-566 . -212) 35219) ((-553 . -571) 35201) ((-553 . -572) NIL) ((-642 . -795) T) ((-455 . -212) 35151) ((-466 . -984) T) ((-1090 . -941) 35117) ((-86 . -420) T) ((-86 . -376) T) ((-201 . -984) T) ((-1052 . -941) 35083) ((-1010 . -675) T) ((-661 . -1039) T) ((-556 . -272) 35062) ((-555 . -272) 35041) ((-466 . -226) T) ((-466 . -216) T) ((-201 . -226) T) ((-201 . -216) T) ((-1089 . -571) 35023) ((-813 . -37) 34975) ((-340 . -675) T) ((-334 . -675) T) ((-326 . -675) T) ((-105 . -742) T) ((-105 . -739) T) ((-496 . -1169) 34959) ((-105 . -675) T) ((-661 . -23) T) ((-1207 . -25) T) ((-454 . -266) 34925) ((-1207 . -21) T) ((-1144 . -291) 34864) ((-1099 . -99) T) ((-39 . -138) 34836) ((-39 . -140) 34808) ((-496 . -563) 34785) ((-1040 . -599) 34635) ((-561 . -291) 34573) ((-44 . -602) 34523) ((-44 . -617) 34473) ((-44 . -354) 34423) ((-1082 . -33) T) ((-812 . -793) NIL) ((-605 . -128) T) ((-464 . -571) 34405) ((-223 . -268) 34382) ((-598 . -33) T) ((-586 . -33) T) ((-1016 . -432) 34333) ((-764 . -491) 34207) ((-730 . -432) 34138) ((-728 . -432) 34089) ((-434 . -432) 34040) ((-893 . -392) 34024) ((-680 . -571) 34006) ((-233 . -666) 33948) ((-232 . -666) 33890) ((-680 . -572) 33751) ((-460 . -392) 33735) ((-320 . -284) T) ((-332 . -861) T) ((-939 . -99) 33713) ((-962 . -795) T) ((-58 . -491) 33646) ((-1144 . -1075) 33598) ((-943 . -268) NIL) ((-208 . -991) T) ((-360 . -776) T) ((-1040 . -33) T) ((-1148 . -1021) 33582) ((-543 . -432) T) ((-494 . -432) T) ((-1148 . -1027) 33560) ((-1148 . -1023) 33517) ((-223 . -563) 33494) ((-1097 . -571) 33476) ((-1096 . -571) 33458) ((-1090 . -571) 33440) ((-1090 . -572) NIL) ((-1052 . -571) 33422) ((-126 . -268) 33397) ((-813 . -381) 33381) ((-506 . -99) T) ((-1165 . -37) 33222) ((-1144 . -37) 33036) ((-811 . -140) T) ((-543 . -383) T) ((-47 . -795) T) ((-494 . -383) T) ((-1167 . -21) T) ((-1167 . -25) T) ((-1040 . -739) 33015) ((-1040 . -742) 32966) ((-1040 . -741) 32945) ((-933 . -1027) T) ((-965 . -33) T) ((-804 . -1027) T) ((-1177 . -99) T) ((-1040 . -675) 32856) ((-615 . -99) T) ((-516 . -270) 32835) ((-1109 . -99) T) ((-456 . -33) T) ((-443 . -33) T) ((-336 . -99) T) ((-333 . -99) T) ((-325 . -99) T) ((-246 . -99) T) ((-230 . -99) T) ((-457 . -289) T) ((-995 . -991) T) ((-893 . -991) T) ((-297 . -593) 32743) ((-294 . -593) 32704) ((-460 . -991) T) ((-458 . -99) T) ((-417 . -571) 32686) ((-1095 . -1027) T) ((-1051 . -1027) T) ((-799 . -1027) T) ((-1065 . -99) T) ((-764 . -272) 32617) ((-904 . -990) 32500) ((-457 . -960) T) ((-126 . -19) 32482) ((-684 . -990) 32452) ((-126 . -563) 32427) ((-433 . -990) 32397) ((-1071 . -1047) 32381) ((-1029 . -491) 32314) ((-904 . -109) 32183) ((-851 . -99) T) ((-684 . -109) 32148) ((-57 . -99) 32098) ((-496 . -572) 32059) ((-496 . -571) 31971) ((-495 . -99) 31949) ((-493 . -99) 31899) ((-475 . -99) 31877) ((-474 . -99) 31827) ((-433 . -109) 31790) ((-233 . -162) 31769) ((-232 . -162) 31748) ((-399 . -990) 31722) ((-1130 . -913) 31684) ((-938 . -1039) T) ((-884 . -491) 31617) ((-466 . -743) T) ((-454 . -37) 31458) ((-399 . -109) 31425) ((-466 . -740) T) ((-939 . -291) 31363) ((-201 . -743) T) ((-201 . -740) T) ((-938 . -23) T) ((-661 . -128) T) ((-1144 . -381) 31333) ((-297 . -25) 31186) ((-159 . -392) 31170) ((-297 . -21) 31042) ((-294 . -25) T) ((-294 . -21) T) ((-806 . -349) T) ((-108 . -33) T) ((-461 . -599) 30892) ((-812 . -991) T) ((-553 . -270) 30867) ((-542 . -140) T) ((-530 . -140) T) ((-473 . -140) T) ((-1095 . -666) 30696) ((-1051 . -666) 30545) ((-1046 . -593) 30527) ((-799 . -666) 30497) ((-621 . -1135) T) ((-1 . -99) T) ((-223 . -571) 30229) ((-1154 . -392) 30213) ((-1109 . -291) 30017) ((-904 . -984) T) ((-684 . -984) T) ((-664 . -984) T) ((-597 . -1027) 29967) ((-988 . -599) 29951) ((-800 . -392) 29935) ((-488 . -99) T) ((-484 . -99) T) ((-230 . -291) 29922) ((-246 . -291) 29909) ((-904 . -307) 29888) ((-366 . -599) 29872) ((-458 . -291) 29676) ((-233 . -491) 29609) ((-621 . -975) 29507) ((-232 . -491) 29440) ((-1065 . -291) 29366) ((-767 . -1027) T) ((-747 . -990) 29350) ((-1173 . -268) 29335) ((-1166 . -268) 29320) ((-1145 . -268) 29168) ((-367 . -1027) T) ((-305 . -1027) T) ((-399 . -984) T) ((-159 . -991) T) ((-57 . -291) 29106) ((-747 . -109) 29085) ((-555 . -268) 29070) ((-495 . -291) 29008) ((-493 . -291) 28946) ((-475 . -291) 28884) ((-474 . -291) 28822) ((-399 . -216) 28801) ((-461 . -33) T) ((-943 . -572) 28731) ((-208 . -1027) T) ((-943 . -571) 28713) ((-911 . -571) 28695) ((-911 . -572) 28670) ((-855 . -571) 28652) ((-647 . -140) T) ((-649 . -861) T) ((-649 . -768) T) ((-408 . -571) 28634) ((-1046 . -21) T) ((-126 . -572) NIL) ((-126 . -571) 28616) ((-1046 . -25) T) ((-621 . -358) 28600) ((-114 . -861) T) ((-813 . -214) 28584) ((-76 . -1135) T) ((-124 . -123) 28568) ((-988 . -33) T) ((-1201 . -975) 28542) ((-1199 . -975) 28499) ((-1154 . -991) T) ((-800 . -991) T) ((-461 . -739) 28478) ((-336 . -1075) 28457) ((-333 . -1075) 28436) ((-325 . -1075) 28415) ((-461 . -742) 28366) ((-461 . -741) 28345) ((-210 . -33) T) ((-461 . -675) 28256) ((-58 . -468) 28240) ((-537 . -991) T) ((-1095 . -162) 28131) ((-1051 . -162) 28042) ((-995 . -1027) T) ((-1016 . -890) 27987) ((-893 . -1027) T) ((-765 . -599) 27938) ((-730 . -890) 27907) ((-662 . -1027) T) ((-728 . -890) 27874) ((-493 . -264) 27858) ((-621 . -841) 27817) ((-460 . -1027) T) ((-434 . -890) 27784) ((-77 . -1135) T) ((-336 . -37) 27749) ((-333 . -37) 27714) ((-325 . -37) 27679) ((-246 . -37) 27528) ((-230 . -37) 27377) ((-851 . -1075) T) ((-578 . -140) 27356) ((-578 . -138) 27335) ((-115 . -140) T) ((-115 . -138) NIL) ((-395 . -675) T) ((-747 . -984) T) ((-324 . -432) T) ((-1173 . -941) 27301) ((-1166 . -941) 27267) ((-1145 . -941) 27233) ((-851 . -37) 27198) ((-208 . -666) 27163) ((-300 . -46) 27133) ((-39 . -390) 27105) ((-133 . -571) 27087) ((-938 . -128) T) ((-763 . -1135) T) ((-163 . -861) T) ((-324 . -383) T) ((-496 . -270) 27064) ((-44 . -33) T) ((-763 . -975) 26893) ((-613 . -99) T) ((-605 . -21) T) ((-605 . -25) T) ((-1029 . -468) 26877) ((-1144 . -214) 26847) ((-625 . -1135) T) ((-228 . -99) 26797) ((-812 . -1027) T) ((-1101 . -599) 26722) ((-995 . -666) 26709) ((-680 . -990) 26552) ((-1095 . -491) 26499) ((-893 . -666) 26348) ((-1051 . -491) 26300) ((-460 . -666) 26149) ((-65 . -571) 26131) ((-680 . -109) 25960) ((-884 . -468) 25944) ((-1191 . -599) 25904) ((-765 . -675) T) ((-1097 . -990) 25787) ((-1096 . -990) 25622) ((-1090 . -990) 25412) ((-1052 . -990) 25295) ((-942 . -1139) T) ((-1022 . -99) 25273) ((-763 . -358) 25243) ((-942 . -522) T) ((-1097 . -109) 25112) ((-1096 . -109) 24933) ((-1090 . -109) 24702) ((-1052 . -109) 24571) ((-1032 . -1030) 24535) ((-360 . -793) T) ((-1173 . -571) 24517) ((-1166 . -571) 24499) ((-1145 . -571) 24481) ((-1145 . -572) NIL) ((-223 . -270) 24458) ((-39 . -432) T) ((-208 . -162) T) ((-159 . -1027) T) ((-642 . -140) T) ((-642 . -138) NIL) ((-556 . -571) 24440) ((-555 . -571) 24422) ((-839 . -1027) T) ((-786 . -1027) T) ((-756 . -1027) T) ((-717 . -1027) T) ((-609 . -797) 24406) ((-626 . -1027) T) ((-763 . -841) 24339) ((-39 . -383) NIL) ((-1046 . -612) T) ((-812 . -666) 24284) ((-233 . -468) 24268) ((-232 . -468) 24252) ((-661 . -593) 24200) ((-604 . -599) 24174) ((-277 . -33) T) ((-680 . -984) T) ((-543 . -1188) 24161) ((-494 . -1188) 24138) ((-1154 . -1027) T) ((-1095 . -272) 24049) ((-1051 . -272) 23980) ((-995 . -162) T) ((-800 . -1027) T) ((-893 . -162) 23891) ((-730 . -1157) 23875) ((-597 . -491) 23808) ((-75 . -571) 23790) ((-680 . -307) 23755) ((-1101 . -675) T) ((-537 . -1027) T) ((-460 . -162) 23666) ((-228 . -291) 23604) ((-126 . -270) 23579) ((-1066 . -1039) T) ((-68 . -571) 23561) ((-1191 . -675) T) ((-1097 . -984) T) ((-1096 . -984) T) ((-308 . -99) 23511) ((-1090 . -984) T) ((-1066 . -23) T) ((-1052 . -984) T) ((-89 . -1047) 23495) ((-807 . -1039) T) ((-1097 . -216) 23454) ((-1096 . -226) 23433) ((-1096 . -216) 23385) ((-1090 . -216) 23272) ((-1090 . -226) 23251) ((-300 . -841) 23157) ((-807 . -23) T) ((-159 . -666) 22985) ((-388 . -1139) T) ((-1028 . -349) T) ((-962 . -140) T) ((-942 . -344) T) ((-811 . -432) T) ((-884 . -268) 22962) ((-297 . -795) T) ((-294 . -795) NIL) ((-815 . -99) T) ((-661 . -25) T) ((-388 . -522) T) ((-661 . -21) T) ((-335 . -140) 22944) ((-335 . -138) T) ((-1071 . -1027) 22922) ((-433 . -669) T) ((-73 . -571) 22904) ((-112 . -795) T) ((-228 . -264) 22888) ((-223 . -990) 22786) ((-79 . -571) 22768) ((-684 . -349) 22721) ((-1099 . -776) T) ((-686 . -218) 22705) ((-1083 . -1135) T) ((-134 . -218) 22687) ((-223 . -109) 22578) ((-1154 . -666) 22407) ((-47 . -140) T) ((-812 . -162) T) ((-800 . -666) 22377) ((-463 . -1135) T) ((-893 . -491) 22324) ((-604 . -675) T) ((-537 . -666) 22311) ((-972 . -991) T) ((-460 . -491) 22254) ((-884 . -19) 22238) ((-884 . -563) 22215) ((-764 . -572) NIL) ((-764 . -571) 22197) ((-943 . -990) 22147) ((-394 . -571) 22129) ((-233 . -268) 22106) ((-232 . -268) 22083) ((-466 . -850) NIL) ((-297 . -29) 22053) ((-105 . -1135) T) ((-942 . -1039) T) ((-201 . -850) NIL) ((-855 . -990) 22005) ((-1010 . -975) 21903) ((-943 . -109) 21837) ((-246 . -214) 21821) ((-686 . -643) 21805) ((-408 . -990) 21789) ((-360 . -991) T) ((-942 . -23) T) ((-855 . -109) 21727) ((-642 . -1124) NIL) ((-466 . -599) 21677) ((-105 . -825) 21659) ((-105 . -827) 21641) ((-642 . -1121) NIL) ((-201 . -599) 21591) ((-340 . -975) 21575) ((-334 . -975) 21559) ((-308 . -291) 21497) ((-326 . -975) 21481) ((-208 . -272) T) ((-408 . -109) 21460) ((-58 . -571) 21392) ((-159 . -162) T) ((-1046 . -795) T) ((-105 . -975) 21352) ((-833 . -1027) T) ((-782 . -991) T) ((-775 . -991) T) ((-642 . -34) NIL) ((-642 . -93) NIL) ((-294 . -932) 21313) ((-171 . -99) T) ((-542 . -432) T) ((-530 . -432) T) ((-473 . -432) T) ((-388 . -344) T) ((-223 . -984) 21244) ((-1074 . -33) T) ((-457 . -861) T) ((-938 . -593) 21192) ((-233 . -563) 21169) ((-232 . -563) 21146) ((-1010 . -358) 21130) ((-812 . -491) 21038) ((-223 . -216) 20991) ((-1082 . -1135) T) ((-772 . -571) 20973) ((-1202 . -1039) T) ((-1194 . -571) 20955) ((-1154 . -162) 20846) ((-105 . -358) 20828) ((-105 . -319) 20810) ((-995 . -272) T) ((-893 . -272) 20741) ((-747 . -349) 20720) ((-598 . -1135) T) ((-586 . -1135) T) ((-460 . -272) 20651) ((-537 . -162) T) ((-308 . -264) 20635) ((-1202 . -23) T) ((-1130 . -99) T) ((-1117 . -1027) T) ((-1017 . -1027) T) ((-1006 . -1027) T) ((-81 . -571) 20617) ((-660 . -99) T) ((-336 . -330) 20596) ((-566 . -1027) T) ((-333 . -330) 20575) ((-325 . -330) 20554) ((-455 . -1027) T) ((-1109 . -212) 20504) ((-246 . -235) 20466) ((-1066 . -128) T) ((-566 . -568) 20442) ((-1010 . -841) 20375) ((-943 . -984) T) ((-855 . -984) T) ((-455 . -568) 20354) ((-1090 . -740) NIL) ((-1090 . -743) NIL) ((-1029 . -572) 20315) ((-458 . -212) 20265) ((-1029 . -571) 20247) ((-943 . -226) T) ((-943 . -216) T) ((-408 . -984) T) ((-899 . -1027) 20197) ((-855 . -226) T) ((-807 . -128) T) ((-647 . -432) T) ((-788 . -1039) 20176) ((-105 . -841) NIL) ((-1130 . -266) 20142) ((-813 . -793) 20121) ((-1040 . -1135) T) ((-846 . -675) T) ((-159 . -491) 20033) ((-938 . -25) T) ((-846 . -453) T) ((-388 . -1039) T) ((-466 . -742) T) ((-466 . -739) T) ((-851 . -330) T) ((-466 . -675) T) ((-201 . -742) T) ((-201 . -739) T) ((-938 . -21) T) ((-201 . -675) T) ((-788 . -23) 19985) ((-300 . -289) 19964) ((-973 . -218) 19910) ((-388 . -23) T) ((-884 . -572) 19871) ((-884 . -571) 19783) ((-597 . -468) 19767) ((-44 . -949) 19717) ((-469 . -99) T) ((-312 . -571) 19699) ((-1040 . -975) 19528) ((-553 . -602) 19510) ((-553 . -354) 19492) ((-324 . -1188) 19469) ((-965 . -1135) T) ((-812 . -272) T) ((-1154 . -491) 19416) ((-456 . -1135) T) ((-443 . -1135) T) ((-547 . -99) T) ((-1095 . -268) 19343) ((-578 . -432) 19322) ((-939 . -934) 19306) ((-1194 . -363) 19278) ((-115 . -432) T) ((-1116 . -99) T) ((-1020 . -1027) 19256) ((-972 . -1027) T) ((-834 . -795) T) ((-332 . -1139) T) ((-1173 . -990) 19139) ((-1040 . -358) 19109) ((-1166 . -990) 18944) ((-1145 . -990) 18734) ((-1173 . -109) 18603) ((-1166 . -109) 18424) ((-1145 . -109) 18193) ((-1130 . -291) 18180) ((-332 . -522) T) ((-346 . -571) 18162) ((-271 . -289) T) ((-556 . -990) 18135) ((-555 . -990) 18018) ((-342 . -1027) T) ((-303 . -1027) T) ((-233 . -571) 17979) ((-232 . -571) 17940) ((-942 . -128) T) ((-107 . -571) 17922) ((-589 . -23) T) ((-642 . -390) 17889) ((-565 . -23) T) ((-609 . -99) T) ((-556 . -109) 17860) ((-555 . -109) 17729) ((-360 . -1027) T) ((-317 . -99) T) ((-159 . -272) 17640) ((-1144 . -793) 17593) ((-663 . -991) T) ((-1071 . -491) 17526) ((-1040 . -841) 17459) ((-782 . -1027) T) ((-775 . -1027) T) ((-773 . -1027) T) ((-94 . -99) T) ((-137 . -795) T) ((-570 . -825) 17443) ((-108 . -1135) T) ((-1016 . -99) T) ((-996 . -33) T) ((-730 . -99) T) ((-728 . -99) T) ((-441 . -99) T) ((-434 . -99) T) ((-223 . -743) 17394) ((-223 . -740) 17345) ((-600 . -99) T) ((-1154 . -272) 17256) ((-615 . -588) 17240) ((-597 . -268) 17217) ((-972 . -666) 17201) ((-537 . -272) T) ((-904 . -599) 17126) ((-1202 . -128) T) ((-684 . -599) 17086) ((-664 . -599) 17073) ((-257 . -99) T) ((-433 . -599) 17003) ((-49 . -99) T) ((-543 . -99) T) ((-494 . -99) T) ((-1173 . -984) T) ((-1166 . -984) T) ((-1145 . -984) T) ((-1173 . -216) 16962) ((-303 . -666) 16944) ((-1166 . -226) 16923) ((-1166 . -216) 16875) ((-1145 . -216) 16762) ((-1145 . -226) 16741) ((-1130 . -37) 16638) ((-943 . -743) T) ((-556 . -984) T) ((-555 . -984) T) ((-943 . -740) T) ((-911 . -743) T) ((-911 . -740) T) ((-813 . -991) T) ((-811 . -810) 16622) ((-106 . -571) 16604) ((-642 . -432) T) ((-360 . -666) 16569) ((-399 . -599) 16543) ((-661 . -795) 16522) ((-660 . -37) 16487) ((-555 . -216) 16446) ((-39 . -673) 16418) ((-332 . -310) 16395) ((-332 . -344) T) ((-1010 . -289) 16346) ((-276 . -1039) 16228) ((-1033 . -1135) T) ((-161 . -99) T) ((-1148 . -571) 16195) ((-788 . -128) 16147) ((-597 . -1169) 16131) ((-782 . -666) 16101) ((-775 . -666) 16071) ((-461 . -1135) T) ((-340 . -289) T) ((-334 . -289) T) ((-326 . -289) T) ((-597 . -563) 16048) ((-388 . -128) T) ((-496 . -617) 16032) ((-105 . -289) T) ((-276 . -23) 15916) ((-496 . -602) 15900) ((-642 . -383) NIL) ((-496 . -354) 15884) ((-273 . -571) 15866) ((-89 . -1027) 15844) ((-105 . -960) T) ((-530 . -136) T) ((-1181 . -144) 15828) ((-461 . -975) 15657) ((-1167 . -138) 15618) ((-1167 . -140) 15579) ((-988 . -1135) T) ((-933 . -571) 15561) ((-804 . -571) 15543) ((-764 . -990) 15386) ((-1016 . -291) 15373) ((-210 . -1135) T) ((-730 . -291) 15360) ((-728 . -291) 15347) ((-764 . -109) 15176) ((-1095 . -572) NIL) ((-434 . -291) 15163) ((-462 . -1027) T) ((-1095 . -571) 15145) ((-1051 . -571) 15127) ((-1051 . -572) 14875) ((-972 . -162) T) ((-799 . -571) 14857) ((-884 . -270) 14834) ((-566 . -491) 14617) ((-766 . -975) 14601) ((-455 . -491) 14393) ((-904 . -675) T) ((-684 . -675) T) ((-664 . -675) T) ((-332 . -1039) T) ((-1102 . -571) 14375) ((-206 . -99) T) ((-461 . -358) 14345) ((-492 . -1027) T) ((-487 . -1027) T) ((-485 . -1027) T) ((-747 . -599) 14319) ((-962 . -432) T) ((-899 . -491) 14252) ((-332 . -23) T) ((-589 . -128) T) ((-565 . -128) T) ((-335 . -432) T) ((-223 . -349) 14231) ((-360 . -162) T) ((-1165 . -991) T) ((-1144 . -991) T) ((-208 . -941) T) ((-647 . -368) T) ((-399 . -675) T) ((-649 . -1139) T) ((-1066 . -593) 14179) ((-542 . -810) 14163) ((-1083 . -1112) 14139) ((-649 . -522) T) ((-124 . -1027) 14117) ((-1194 . -990) 14101) ((-663 . -1027) T) ((-461 . -841) 14034) ((-609 . -37) 14004) ((-335 . -383) T) ((-297 . -140) 13983) ((-297 . -138) 13962) ((-114 . -522) T) ((-294 . -140) 13918) ((-294 . -138) 13874) ((-47 . -432) T) ((-152 . -1027) T) ((-148 . -1027) T) ((-1083 . -104) 13821) ((-730 . -1075) 13799) ((-637 . -33) T) ((-1194 . -109) 13778) ((-516 . -33) T) ((-463 . -104) 13762) ((-233 . -270) 13739) ((-232 . -270) 13716) ((-812 . -268) 13667) ((-44 . -1135) T) ((-764 . -984) T) ((-1101 . -46) 13644) ((-764 . -307) 13606) ((-1016 . -37) 13455) ((-764 . -216) 13434) ((-730 . -37) 13263) ((-728 . -37) 13112) ((-126 . -602) 13094) ((-434 . -37) 12943) ((-126 . -354) 12925) ((-1044 . -99) T) ((-597 . -572) 12886) ((-597 . -571) 12798) ((-543 . -1075) T) ((-494 . -1075) T) ((-1071 . -468) 12782) ((-1122 . -1027) 12760) ((-1066 . -25) T) ((-1066 . -21) T) ((-454 . -991) T) ((-1145 . -740) NIL) ((-1145 . -743) NIL) ((-938 . -795) 12739) ((-767 . -571) 12721) ((-807 . -21) T) ((-807 . -25) T) ((-747 . -675) T) ((-163 . -1139) T) ((-543 . -37) 12686) ((-494 . -37) 12651) ((-367 . -571) 12633) ((-305 . -571) 12615) ((-159 . -268) 12573) ((-61 . -1135) T) ((-110 . -99) T) ((-813 . -1027) T) ((-163 . -522) T) ((-663 . -666) 12543) ((-276 . -128) 12427) ((-208 . -571) 12409) ((-208 . -572) 12339) ((-942 . -593) 12278) ((-1194 . -984) T) ((-1046 . -140) T) ((-586 . -1112) 12253) ((-680 . -850) 12232) ((-553 . -33) T) ((-598 . -104) 12216) ((-586 . -104) 12162) ((-1154 . -268) 12089) ((-680 . -599) 12014) ((-277 . -1135) T) ((-1101 . -975) 11912) ((-1090 . -850) NIL) ((-995 . -572) 11827) ((-995 . -571) 11809) ((-324 . -99) T) ((-232 . -990) 11707) ((-233 . -990) 11605) ((-375 . -99) T) ((-893 . -571) 11587) ((-893 . -572) 11448) ((-662 . -571) 11430) ((-1192 . -1129) 11399) ((-460 . -571) 11381) ((-460 . -572) 11242) ((-230 . -392) 11226) ((-246 . -392) 11210) ((-233 . -109) 11101) ((-232 . -109) 10992) ((-1097 . -599) 10917) ((-1096 . -599) 10814) ((-1090 . -599) 10666) ((-1052 . -599) 10591) ((-332 . -128) T) ((-80 . -421) T) ((-80 . -376) T) ((-942 . -25) T) ((-942 . -21) T) ((-814 . -1027) 10542) ((-813 . -666) 10494) ((-360 . -272) T) ((-159 . -941) 10446) ((-642 . -368) T) ((-938 . -936) 10430) ((-649 . -1039) T) ((-642 . -156) 10412) ((-1165 . -1027) T) ((-1144 . -1027) T) ((-297 . -1121) 10391) ((-297 . -1124) 10370) ((-1088 . -99) T) ((-297 . -900) 10349) ((-130 . -1039) T) ((-114 . -1039) T) ((-561 . -1179) 10333) ((-649 . -23) T) ((-561 . -1027) 10283) ((-89 . -491) 10216) ((-163 . -344) T) ((-297 . -93) 10195) ((-297 . -34) 10174) ((-566 . -468) 10108) ((-130 . -23) T) ((-114 . -23) T) ((-667 . -1027) T) ((-455 . -468) 10045) ((-388 . -593) 9993) ((-604 . -975) 9891) ((-899 . -468) 9875) ((-336 . -991) T) ((-333 . -991) T) ((-325 . -991) T) ((-246 . -991) T) ((-230 . -991) T) ((-812 . -572) NIL) ((-812 . -571) 9857) ((-1202 . -21) T) ((-537 . -941) T) ((-680 . -675) T) ((-1202 . -25) T) ((-233 . -984) 9788) ((-232 . -984) 9719) ((-70 . -1135) T) ((-233 . -216) 9672) ((-232 . -216) 9625) ((-39 . -99) T) ((-851 . -991) T) ((-1104 . -99) T) ((-1097 . -675) T) ((-1096 . -675) T) ((-1090 . -675) T) ((-1090 . -739) NIL) ((-1090 . -742) NIL) ((-895 . -99) T) ((-862 . -99) T) ((-1052 . -675) T) ((-719 . -99) T) ((-622 . -99) T) ((-454 . -1027) T) ((-320 . -1039) T) ((-163 . -1039) T) ((-300 . -861) 9604) ((-1165 . -666) 9445) ((-813 . -162) T) ((-1144 . -666) 9259) ((-788 . -21) 9211) ((-788 . -25) 9163) ((-228 . -1073) 9147) ((-124 . -491) 9080) ((-388 . -25) T) ((-388 . -21) T) ((-320 . -23) T) ((-159 . -571) 9062) ((-159 . -572) 8830) ((-163 . -23) T) ((-597 . -270) 8807) ((-496 . -33) T) ((-839 . -571) 8789) ((-87 . -1135) T) ((-786 . -571) 8771) ((-756 . -571) 8753) ((-717 . -571) 8735) ((-626 . -571) 8717) ((-223 . -599) 8567) ((-1099 . -1027) T) ((-1095 . -990) 8390) ((-1074 . -1135) T) ((-1051 . -990) 8233) ((-799 . -990) 8217) ((-1095 . -109) 8026) ((-1051 . -109) 7855) ((-799 . -109) 7834) ((-1154 . -572) NIL) ((-1154 . -571) 7816) ((-324 . -1075) T) ((-800 . -571) 7798) ((-1006 . -268) 7777) ((-78 . -1135) T) ((-943 . -850) NIL) ((-566 . -268) 7753) ((-1122 . -491) 7686) ((-466 . -1135) T) ((-537 . -571) 7668) ((-455 . -268) 7647) ((-201 . -1135) T) ((-1016 . -214) 7631) ((-271 . -861) T) ((-765 . -289) 7610) ((-811 . -99) T) ((-730 . -214) 7594) ((-943 . -599) 7544) ((-899 . -268) 7521) ((-855 . -599) 7473) ((-589 . -21) T) ((-589 . -25) T) ((-565 . -21) T) ((-324 . -37) 7438) ((-642 . -673) 7405) ((-466 . -825) 7387) ((-466 . -827) 7369) ((-454 . -666) 7210) ((-201 . -825) 7192) ((-62 . -1135) T) ((-201 . -827) 7174) ((-565 . -25) T) ((-408 . -599) 7148) ((-466 . -975) 7108) ((-813 . -491) 7020) ((-201 . -975) 6980) ((-223 . -33) T) ((-939 . -1027) 6958) ((-1165 . -162) 6889) ((-1144 . -162) 6820) ((-661 . -138) 6799) ((-661 . -140) 6778) ((-649 . -128) T) ((-132 . -445) 6755) ((-609 . -607) 6739) ((-1071 . -571) 6671) ((-114 . -128) T) ((-457 . -1139) T) ((-566 . -563) 6647) ((-455 . -563) 6626) ((-317 . -316) 6595) ((-506 . -1027) T) ((-457 . -522) T) ((-1095 . -984) T) ((-1051 . -984) T) ((-799 . -984) T) ((-223 . -739) 6574) ((-223 . -742) 6525) ((-223 . -741) 6504) ((-1095 . -307) 6481) ((-223 . -675) 6392) ((-899 . -19) 6376) ((-466 . -358) 6358) ((-466 . -319) 6340) ((-1051 . -307) 6312) ((-335 . -1188) 6289) ((-201 . -358) 6271) ((-201 . -319) 6253) ((-899 . -563) 6230) ((-1095 . -216) T) ((-615 . -1027) T) ((-1177 . -1027) T) ((-1109 . -1027) T) ((-1016 . -235) 6167) ((-336 . -1027) T) ((-333 . -1027) T) ((-325 . -1027) T) ((-246 . -1027) T) ((-230 . -1027) T) ((-82 . -1135) T) ((-125 . -99) 6145) ((-119 . -99) 6123) ((-126 . -33) T) ((-1109 . -568) 6102) ((-458 . -1027) T) ((-1065 . -1027) T) ((-458 . -568) 6081) ((-233 . -743) 6032) ((-233 . -740) 5983) ((-232 . -743) 5934) ((-39 . -1075) NIL) ((-232 . -740) 5885) ((-1010 . -861) 5836) ((-943 . -742) T) ((-943 . -739) T) ((-943 . -675) T) ((-911 . -742) T) ((-855 . -675) T) ((-89 . -468) 5820) ((-466 . -841) NIL) ((-851 . -1027) T) ((-208 . -990) 5785) ((-813 . -272) T) ((-201 . -841) NIL) ((-781 . -1039) 5764) ((-57 . -1027) 5714) ((-495 . -1027) 5692) ((-493 . -1027) 5642) ((-475 . -1027) 5620) ((-474 . -1027) 5570) ((-542 . -99) T) ((-530 . -99) T) ((-473 . -99) T) ((-454 . -162) 5501) ((-340 . -861) T) ((-334 . -861) T) ((-326 . -861) T) ((-208 . -109) 5457) ((-781 . -23) 5409) ((-408 . -675) T) ((-105 . -861) T) ((-39 . -37) 5354) ((-105 . -768) T) ((-543 . -330) T) ((-494 . -330) T) ((-1144 . -491) 5214) ((-297 . -432) 5193) ((-294 . -432) T) ((-782 . -268) 5172) ((-320 . -128) T) ((-163 . -128) T) ((-276 . -25) 5037) ((-276 . -21) 4921) ((-44 . -1112) 4900) ((-64 . -571) 4882) ((-833 . -571) 4864) ((-561 . -491) 4797) ((-44 . -104) 4747) ((-1029 . -406) 4731) ((-1029 . -349) 4710) ((-996 . -1135) T) ((-995 . -990) 4697) ((-893 . -990) 4540) ((-460 . -990) 4383) ((-615 . -666) 4367) ((-995 . -109) 4352) ((-893 . -109) 4181) ((-457 . -344) T) ((-336 . -666) 4133) ((-333 . -666) 4085) ((-325 . -666) 4037) ((-246 . -666) 3886) ((-230 . -666) 3735) ((-884 . -602) 3719) ((-460 . -109) 3548) ((-1182 . -99) T) ((-884 . -354) 3532) ((-231 . -99) T) ((-1145 . -850) NIL) ((-72 . -571) 3514) ((-904 . -46) 3493) ((-576 . -1039) T) ((-1 . -1027) T) ((-659 . -99) T) ((-647 . -99) T) ((-1181 . -99) 3443) ((-1173 . -599) 3368) ((-1166 . -599) 3265) ((-1117 . -571) 3247) ((-124 . -468) 3231) ((-462 . -91) T) ((-1017 . -571) 3213) ((-371 . -23) T) ((-1006 . -571) 3195) ((-85 . -1135) T) ((-1145 . -599) 3047) ((-851 . -666) 3012) ((-576 . -23) T) ((-566 . -571) 2994) ((-566 . -572) NIL) ((-455 . -572) NIL) ((-455 . -571) 2976) ((-488 . -1027) T) ((-484 . -1027) T) ((-332 . -25) T) ((-332 . -21) T) ((-125 . -291) 2914) ((-119 . -291) 2852) ((-556 . -599) 2839) ((-208 . -984) T) ((-555 . -599) 2764) ((-360 . -941) T) ((-208 . -226) T) ((-208 . -216) T) ((-899 . -572) 2725) ((-899 . -571) 2637) ((-811 . -37) 2624) ((-1165 . -272) 2575) ((-1144 . -272) 2526) ((-1046 . -432) T) ((-480 . -795) T) ((-297 . -1063) 2505) ((-938 . -140) 2484) ((-938 . -138) 2463) ((-473 . -291) 2450) ((-277 . -1112) 2429) ((-457 . -1039) T) ((-812 . -990) 2374) ((-578 . -99) T) ((-1122 . -468) 2358) ((-233 . -349) 2337) ((-232 . -349) 2316) ((-277 . -104) 2266) ((-995 . -984) T) ((-115 . -99) T) ((-893 . -984) T) ((-812 . -109) 2195) ((-457 . -23) T) ((-460 . -984) T) ((-995 . -216) T) ((-893 . -307) 2164) ((-460 . -307) 2121) ((-336 . -162) T) ((-333 . -162) T) ((-325 . -162) T) ((-246 . -162) 2032) ((-230 . -162) 1943) ((-904 . -975) 1841) ((-684 . -975) 1812) ((-1032 . -99) T) ((-1020 . -571) 1779) ((-972 . -571) 1761) ((-1173 . -675) T) ((-1166 . -675) T) ((-1145 . -739) NIL) ((-159 . -990) 1671) ((-1145 . -742) NIL) ((-851 . -162) T) ((-1145 . -675) T) ((-1192 . -144) 1655) ((-942 . -323) 1629) ((-939 . -491) 1562) ((-788 . -795) 1541) ((-530 . -1075) T) ((-454 . -272) 1492) ((-556 . -675) T) ((-342 . -571) 1474) ((-303 . -571) 1456) ((-399 . -975) 1354) ((-555 . -675) T) ((-388 . -795) 1305) ((-159 . -109) 1201) ((-781 . -128) 1153) ((-686 . -144) 1137) ((-1181 . -291) 1075) ((-466 . -289) T) ((-360 . -571) 1042) ((-496 . -949) 1026) ((-360 . -572) 940) ((-201 . -289) T) ((-134 . -144) 922) ((-663 . -268) 901) ((-466 . -960) T) ((-542 . -37) 888) ((-530 . -37) 875) ((-473 . -37) 840) ((-201 . -960) T) ((-812 . -984) T) ((-782 . -571) 822) ((-775 . -571) 804) ((-773 . -571) 786) ((-764 . -850) 765) ((-1203 . -1039) T) ((-1154 . -990) 588) ((-800 . -990) 572) ((-812 . -226) T) ((-812 . -216) NIL) ((-637 . -1135) T) ((-1203 . -23) T) ((-764 . -599) 497) ((-516 . -1135) T) ((-399 . -319) 481) ((-537 . -990) 468) ((-1154 . -109) 277) ((-649 . -593) 259) ((-800 . -109) 238) ((-362 . -23) T) ((-1109 . -491) 30)) \ No newline at end of file
+(((-615 . -1030) T) ((-246 . -492) 143421) ((-230 . -492) 143364) ((-538 . -109) 143349) ((-503 . -23) T) ((-228 . -1030) 143299) ((-115 . -291) 143256) ((-458 . -492) 143048) ((-644 . -99) T) ((-1068 . -492) 142967) ((-371 . -128) T) ((-1195 . -918) 142936) ((-562 . -468) 142920) ((-577 . -128) T) ((-769 . -793) T) ((-500 . -55) 142870) ((-57 . -492) 142803) ((-496 . -492) 142736) ((-399 . -843) 142695) ((-159 . -986) T) ((-494 . -492) 142628) ((-475 . -492) 142561) ((-474 . -492) 142494) ((-749 . -977) 142281) ((-649 . -37) 142246) ((-324 . -330) T) ((-1025 . -1024) 142230) ((-1025 . -1030) 142208) ((-159 . -226) 142159) ((-159 . -216) 142110) ((-1025 . -1026) 142068) ((-815 . -268) 142026) ((-208 . -745) T) ((-208 . -742) T) ((-644 . -266) NIL) ((-1077 . -1115) 142005) ((-388 . -934) 141989) ((-651 . -21) T) ((-651 . -25) T) ((-1197 . -601) 141963) ((-297 . -151) 141942) ((-297 . -136) 141921) ((-1077 . -104) 141871) ((-130 . -25) T) ((-39 . -214) 141848) ((-114 . -21) T) ((-114 . -25) T) ((-567 . -270) 141824) ((-455 . -270) 141803) ((-1157 . -986) T) ((-802 . -986) T) ((-749 . -319) 141787) ((-115 . -1078) NIL) ((-89 . -572) 141719) ((-457 . -128) T) ((-554 . -1138) T) ((-1157 . -307) 141696) ((-538 . -986) T) ((-1157 . -216) T) ((-615 . -668) 141680) ((-901 . -270) 141657) ((-58 . -33) T) ((-997 . -745) T) ((-997 . -742) T) ((-766 . -677) T) ((-682 . -46) 141622) ((-579 . -37) 141609) ((-336 . -272) T) ((-333 . -272) T) ((-325 . -272) T) ((-246 . -272) 141540) ((-230 . -272) 141471) ((-964 . -99) T) ((-394 . -677) T) ((-115 . -37) 141416) ((-394 . -453) T) ((-462 . -572) 141382) ((-335 . -99) T) ((-1133 . -993) T) ((-662 . -993) T) ((-1100 . -46) 141359) ((-1099 . -46) 141329) ((-1093 . -46) 141306) ((-975 . -144) 141252) ((-853 . -272) T) ((-1055 . -46) 141224) ((-644 . -291) NIL) ((-493 . -572) 141206) ((-488 . -572) 141188) ((-486 . -572) 141170) ((-308 . -1030) 141120) ((-663 . -432) 141051) ((-47 . -99) T) ((-1168 . -268) 141036) ((-1147 . -268) 140956) ((-598 . -619) 140940) ((-598 . -604) 140924) ((-320 . -21) T) ((-320 . -25) T) ((-39 . -330) NIL) ((-163 . -21) T) ((-163 . -25) T) ((-598 . -354) 140908) ((-562 . -268) 140885) ((-565 . -572) 140852) ((-369 . -99) T) ((-1049 . -136) T) ((-124 . -572) 140784) ((-817 . -1030) T) ((-611 . -392) 140768) ((-665 . -572) 140750) ((-152 . -572) 140732) ((-148 . -572) 140714) ((-1197 . -677) T) ((-1032 . -33) T) ((-814 . -745) NIL) ((-814 . -742) NIL) ((-805 . -797) T) ((-682 . -829) NIL) ((-1206 . -128) T) ((-362 . -128) T) ((-847 . -99) T) ((-682 . -977) 140592) ((-503 . -128) T) ((-1019 . -392) 140576) ((-941 . -468) 140560) ((-115 . -381) 140537) ((-1093 . -1138) 140516) ((-732 . -392) 140500) ((-730 . -392) 140484) ((-886 . -33) T) ((-644 . -1078) NIL) ((-233 . -601) 140321) ((-232 . -601) 140145) ((-767 . -863) 140124) ((-434 . -392) 140108) ((-562 . -19) 140092) ((-1073 . -1132) 140061) ((-1093 . -829) NIL) ((-1093 . -827) 140013) ((-562 . -564) 139990) ((-1125 . -572) 139922) ((-1101 . -572) 139904) ((-60 . -376) T) ((-1099 . -977) 139839) ((-1093 . -977) 139805) ((-644 . -37) 139755) ((-454 . -268) 139740) ((-682 . -358) 139724) ((-611 . -993) T) ((-1168 . -943) 139690) ((-1147 . -943) 139656) ((-998 . -1115) 139631) ((-815 . -573) 139439) ((-815 . -572) 139421) ((-1112 . -468) 139358) ((-399 . -962) 139337) ((-47 . -291) 139324) ((-998 . -104) 139270) ((-458 . -468) 139207) ((-497 . -1138) T) ((-1093 . -319) 139159) ((-1068 . -468) 139130) ((-1093 . -358) 139082) ((-1019 . -993) T) ((-418 . -99) T) ((-171 . -1030) T) ((-233 . -33) T) ((-232 . -33) T) ((-732 . -993) T) ((-730 . -993) T) ((-682 . -843) 139059) ((-434 . -993) T) ((-57 . -468) 139043) ((-974 . -992) 139017) ((-496 . -468) 139001) ((-494 . -468) 138985) ((-475 . -468) 138969) ((-474 . -468) 138953) ((-228 . -492) 138886) ((-974 . -109) 138853) ((-1100 . -843) 138766) ((-1099 . -843) 138672) ((-623 . -1042) T) ((-1093 . -843) 138505) ((-599 . -91) T) ((-1055 . -843) 138489) ((-335 . -1078) T) ((-303 . -992) 138471) ((-233 . -741) 138450) ((-233 . -744) 138401) ((-233 . -743) 138380) ((-232 . -741) 138359) ((-232 . -744) 138310) ((-232 . -743) 138289) ((-49 . -993) T) ((-233 . -677) 138200) ((-232 . -677) 138111) ((-1133 . -1030) T) ((-623 . -23) T) ((-544 . -993) T) ((-495 . -993) T) ((-360 . -992) 138076) ((-303 . -109) 138051) ((-71 . -364) T) ((-71 . -376) T) ((-964 . -37) 137988) ((-644 . -381) 137970) ((-96 . -99) T) ((-662 . -1030) T) ((-944 . -138) 137942) ((-944 . -140) 137914) ((-360 . -109) 137870) ((-300 . -1142) 137849) ((-454 . -943) 137815) ((-335 . -37) 137780) ((-39 . -351) 137752) ((-816 . -572) 137624) ((-125 . -123) 137608) ((-119 . -123) 137592) ((-784 . -992) 137562) ((-783 . -21) 137514) ((-777 . -992) 137498) ((-783 . -25) 137450) ((-300 . -523) 137401) ((-531 . -778) T) ((-223 . -1138) T) ((-784 . -109) 137366) ((-777 . -109) 137345) ((-1168 . -572) 137327) ((-1147 . -572) 137309) ((-1147 . -573) 136982) ((-1098 . -852) 136961) ((-1054 . -852) 136940) ((-47 . -37) 136905) ((-1204 . -1042) T) ((-562 . -572) 136817) ((-562 . -573) 136778) ((-1202 . -1042) T) ((-223 . -977) 136607) ((-1098 . -601) 136532) ((-1054 . -601) 136457) ((-669 . -572) 136439) ((-801 . -601) 136413) ((-469 . -1030) T) ((-1204 . -23) T) ((-1202 . -23) T) ((-974 . -986) T) ((-1112 . -268) 136392) ((-159 . -349) 136343) ((-945 . -1138) T) ((-43 . -23) T) ((-458 . -268) 136322) ((-548 . -1030) T) ((-1073 . -1039) 136291) ((-1034 . -1033) 136243) ((-126 . -1138) T) ((-371 . -21) T) ((-371 . -25) T) ((-145 . -1042) T) ((-1210 . -99) T) ((-945 . -827) 136225) ((-945 . -829) 136207) ((-1133 . -668) 136104) ((-579 . -214) 136088) ((-577 . -21) T) ((-271 . -523) T) ((-577 . -25) T) ((-1119 . -1030) T) ((-662 . -668) 136053) ((-223 . -358) 136023) ((-945 . -977) 135983) ((-360 . -986) T) ((-206 . -993) T) ((-115 . -214) 135960) ((-57 . -268) 135937) ((-145 . -23) T) ((-494 . -268) 135914) ((-308 . -492) 135847) ((-474 . -268) 135824) ((-360 . -226) T) ((-360 . -216) T) ((-784 . -986) T) ((-777 . -986) T) ((-663 . -892) 135793) ((-651 . -797) T) ((-454 . -572) 135775) ((-777 . -216) 135754) ((-130 . -797) T) ((-611 . -1030) T) ((-1112 . -564) 135733) ((-517 . -1115) 135712) ((-317 . -1030) T) ((-300 . -344) 135691) ((-388 . -140) 135670) ((-388 . -138) 135649) ((-907 . -1042) 135548) ((-223 . -843) 135481) ((-765 . -1042) 135392) ((-607 . -799) 135376) ((-458 . -564) 135355) ((-517 . -104) 135305) ((-945 . -358) 135287) ((-945 . -319) 135269) ((-94 . -1030) T) ((-907 . -23) 135080) ((-457 . -21) T) ((-457 . -25) T) ((-765 . -23) 134951) ((-1102 . -572) 134933) ((-57 . -19) 134917) ((-1102 . -573) 134839) ((-1098 . -677) T) ((-1054 . -677) T) ((-494 . -19) 134823) ((-474 . -19) 134807) ((-57 . -564) 134784) ((-1019 . -1030) T) ((-844 . -99) 134762) ((-801 . -677) T) ((-732 . -1030) T) ((-494 . -564) 134739) ((-474 . -564) 134716) ((-730 . -1030) T) ((-730 . -1000) 134683) ((-441 . -1030) T) ((-434 . -1030) T) ((-548 . -668) 134658) ((-602 . -1030) T) ((-945 . -843) NIL) ((-1176 . -46) 134635) ((-582 . -1042) T) ((-623 . -128) T) ((-1170 . -99) T) ((-1169 . -46) 134605) ((-1148 . -46) 134582) ((-1133 . -162) 134533) ((-1012 . -1142) 134484) ((-257 . -1030) T) ((-83 . -421) T) ((-83 . -376) T) ((-1099 . -289) 134463) ((-1093 . -289) 134442) ((-49 . -1030) T) ((-1012 . -523) 134393) ((-662 . -162) T) ((-556 . -46) 134370) ((-208 . -601) 134335) ((-544 . -1030) T) ((-495 . -1030) T) ((-340 . -1142) T) ((-334 . -1142) T) ((-326 . -1142) T) ((-466 . -770) T) ((-466 . -863) T) ((-300 . -1042) T) ((-105 . -1142) T) ((-320 . -797) T) ((-201 . -863) T) ((-201 . -770) T) ((-665 . -992) 134305) ((-340 . -523) T) ((-334 . -523) T) ((-326 . -523) T) ((-105 . -523) T) ((-611 . -668) 134275) ((-1093 . -962) NIL) ((-300 . -23) T) ((-65 . -1138) T) ((-941 . -572) 134207) ((-644 . -214) 134189) ((-665 . -109) 134154) ((-598 . -33) T) ((-228 . -468) 134138) ((-1032 . -1028) 134122) ((-161 . -1030) T) ((-895 . -852) 134101) ((-460 . -852) 134080) ((-1206 . -21) T) ((-1206 . -25) T) ((-1204 . -128) T) ((-1202 . -128) T) ((-1019 . -668) 133929) ((-997 . -601) 133916) ((-895 . -601) 133841) ((-732 . -668) 133670) ((-507 . -572) 133652) ((-507 . -573) 133633) ((-730 . -668) 133482) ((-1195 . -99) T) ((-1009 . -99) T) ((-362 . -25) T) ((-362 . -21) T) ((-460 . -601) 133407) ((-441 . -668) 133378) ((-434 . -668) 133227) ((-929 . -99) T) ((-688 . -99) T) ((-1210 . -1078) T) ((-1180 . -572) 133193) ((-503 . -25) T) ((-1148 . -1138) 133172) ((-1148 . -829) NIL) ((-1148 . -827) 133124) ((-1112 . -573) NIL) ((-134 . -99) T) ((-43 . -128) T) ((-1112 . -572) 133106) ((-1069 . -1052) 133051) ((-324 . -993) T) ((-617 . -572) 133033) ((-599 . -572) 132986) ((-271 . -1042) T) ((-336 . -572) 132968) ((-333 . -572) 132950) ((-325 . -572) 132932) ((-246 . -573) 132680) ((-246 . -572) 132662) ((-230 . -572) 132644) ((-230 . -573) 132505) ((-983 . -1132) 132434) ((-844 . -291) 132372) ((-1169 . -977) 132307) ((-1148 . -977) 132273) ((-1133 . -492) 132240) ((-1068 . -572) 132222) ((-769 . -804) T) ((-769 . -677) T) ((-562 . -270) 132199) ((-544 . -668) 132164) ((-458 . -573) NIL) ((-458 . -572) 132146) ((-495 . -668) 132091) ((-297 . -99) T) ((-294 . -99) T) ((-271 . -23) T) ((-145 . -128) T) ((-367 . -677) T) ((-815 . -992) 132043) ((-853 . -572) 132025) ((-853 . -573) 132007) ((-815 . -109) 131945) ((-132 . -99) T) ((-112 . -99) T) ((-663 . -1160) 131929) ((-665 . -986) T) ((-644 . -330) NIL) ((-496 . -572) 131861) ((-360 . -745) T) ((-206 . -1030) T) ((-360 . -742) T) ((-208 . -744) T) ((-208 . -741) T) ((-57 . -573) 131822) ((-57 . -572) 131734) ((-208 . -677) T) ((-494 . -573) 131695) ((-494 . -572) 131607) ((-475 . -572) 131539) ((-474 . -573) 131500) ((-474 . -572) 131412) ((-1012 . -344) 131363) ((-39 . -392) 131340) ((-75 . -1138) T) ((-814 . -852) NIL) ((-340 . -310) 131324) ((-340 . -344) T) ((-334 . -310) 131308) ((-334 . -344) T) ((-326 . -310) 131292) ((-326 . -344) T) ((-297 . -266) 131271) ((-105 . -344) T) ((-68 . -1138) T) ((-1148 . -319) 131223) ((-814 . -601) 131168) ((-1148 . -358) 131120) ((-907 . -128) 130975) ((-765 . -128) 130846) ((-901 . -604) 130830) ((-1019 . -162) 130741) ((-901 . -354) 130725) ((-997 . -744) T) ((-997 . -741) T) ((-732 . -162) 130616) ((-730 . -162) 130527) ((-766 . -46) 130489) ((-997 . -677) T) ((-308 . -468) 130473) ((-895 . -677) T) ((-434 . -162) 130384) ((-228 . -268) 130361) ((-460 . -677) T) ((-1195 . -291) 130299) ((-1176 . -843) 130212) ((-1169 . -843) 130118) ((-1168 . -992) 129953) ((-1148 . -843) 129786) ((-1147 . -992) 129594) ((-1133 . -272) 129573) ((-1073 . -144) 129557) ((-1049 . -99) T) ((-1007 . -99) T) ((-870 . -898) T) ((-73 . -1138) T) ((-688 . -291) 129495) ((-159 . -852) 129448) ((-617 . -363) 129420) ((-30 . -898) T) ((-1 . -572) 129402) ((-1047 . -1030) T) ((-1012 . -23) T) ((-49 . -576) 129386) ((-1012 . -1042) T) ((-944 . -390) 129358) ((-556 . -843) 129271) ((-419 . -99) T) ((-134 . -291) NIL) ((-815 . -986) T) ((-783 . -797) 129250) ((-79 . -1138) T) ((-662 . -272) T) ((-39 . -993) T) ((-544 . -162) T) ((-495 . -162) T) ((-489 . -572) 129232) ((-159 . -601) 129142) ((-485 . -572) 129124) ((-332 . -140) 129106) ((-332 . -138) T) ((-340 . -1042) T) ((-334 . -1042) T) ((-326 . -1042) T) ((-945 . -289) T) ((-857 . -289) T) ((-815 . -226) T) ((-105 . -1042) T) ((-815 . -216) 129085) ((-1168 . -109) 128906) ((-1147 . -109) 128695) ((-228 . -1172) 128679) ((-531 . -795) T) ((-340 . -23) T) ((-335 . -330) T) ((-297 . -291) 128666) ((-294 . -291) 128607) ((-334 . -23) T) ((-300 . -128) T) ((-326 . -23) T) ((-945 . -962) T) ((-105 . -23) T) ((-228 . -564) 128584) ((-1170 . -37) 128476) ((-1157 . -852) 128455) ((-110 . -1030) T) ((-975 . -99) T) ((-1157 . -601) 128380) ((-814 . -744) NIL) ((-802 . -601) 128354) ((-814 . -741) NIL) ((-766 . -829) NIL) ((-814 . -677) T) ((-1019 . -492) 128227) ((-732 . -492) 128174) ((-730 . -492) 128126) ((-538 . -601) 128113) ((-766 . -977) 127943) ((-434 . -492) 127886) ((-369 . -370) T) ((-58 . -1138) T) ((-577 . -797) 127865) ((-478 . -614) T) ((-1073 . -918) 127834) ((-944 . -432) T) ((-649 . -795) T) ((-488 . -742) T) ((-454 . -992) 127669) ((-324 . -1030) T) ((-294 . -1078) NIL) ((-271 . -128) T) ((-375 . -1030) T) ((-644 . -351) 127636) ((-813 . -993) T) ((-206 . -576) 127613) ((-308 . -268) 127590) ((-454 . -109) 127411) ((-1168 . -986) T) ((-1147 . -986) T) ((-766 . -358) 127395) ((-159 . -677) T) ((-607 . -99) T) ((-1168 . -226) 127374) ((-1168 . -216) 127326) ((-1147 . -216) 127231) ((-1147 . -226) 127210) ((-944 . -383) NIL) ((-623 . -594) 127158) ((-297 . -37) 127068) ((-294 . -37) 126997) ((-67 . -572) 126979) ((-300 . -471) 126945) ((-1112 . -270) 126924) ((-1043 . -1042) 126835) ((-81 . -1138) T) ((-59 . -572) 126817) ((-458 . -270) 126796) ((-1197 . -977) 126773) ((-1091 . -1030) T) ((-1043 . -23) 126644) ((-766 . -843) 126580) ((-1157 . -677) T) ((-1032 . -1138) T) ((-1019 . -272) 126511) ((-836 . -99) T) ((-732 . -272) 126422) ((-308 . -19) 126406) ((-57 . -270) 126383) ((-730 . -272) 126314) ((-802 . -677) T) ((-115 . -795) NIL) ((-494 . -270) 126291) ((-308 . -564) 126268) ((-474 . -270) 126245) ((-434 . -272) 126176) ((-975 . -291) 126027) ((-538 . -677) T) ((-615 . -572) 126009) ((-228 . -573) 125970) ((-228 . -572) 125882) ((-1074 . -33) T) ((-886 . -1138) T) ((-324 . -668) 125827) ((-623 . -25) T) ((-623 . -21) T) ((-454 . -986) T) ((-590 . -398) 125792) ((-566 . -398) 125757) ((-1049 . -1078) T) ((-544 . -272) T) ((-495 . -272) T) ((-1169 . -289) 125736) ((-454 . -216) 125688) ((-454 . -226) 125667) ((-1148 . -289) 125646) ((-1148 . -962) NIL) ((-1012 . -128) T) ((-815 . -745) 125625) ((-137 . -99) T) ((-39 . -1030) T) ((-815 . -742) 125604) ((-598 . -951) 125588) ((-543 . -993) T) ((-531 . -993) T) ((-473 . -993) T) ((-388 . -432) T) ((-340 . -128) T) ((-297 . -381) 125572) ((-294 . -381) 125533) ((-334 . -128) T) ((-326 . -128) T) ((-1107 . -1030) T) ((-1049 . -37) 125520) ((-1025 . -572) 125487) ((-105 . -128) T) ((-897 . -1030) T) ((-864 . -1030) T) ((-721 . -1030) T) ((-624 . -1030) T) ((-484 . -1015) T) ((-651 . -140) T) ((-114 . -140) T) ((-1204 . -21) T) ((-1204 . -25) T) ((-1202 . -21) T) ((-1202 . -25) T) ((-617 . -992) 125471) ((-503 . -797) T) ((-478 . -797) T) ((-336 . -992) 125423) ((-333 . -992) 125375) ((-325 . -992) 125327) ((-233 . -1138) T) ((-232 . -1138) T) ((-246 . -992) 125170) ((-230 . -992) 125013) ((-617 . -109) 124992) ((-336 . -109) 124930) ((-333 . -109) 124868) ((-325 . -109) 124806) ((-246 . -109) 124635) ((-230 . -109) 124464) ((-767 . -1142) 124443) ((-579 . -392) 124427) ((-43 . -21) T) ((-43 . -25) T) ((-765 . -594) 124335) ((-767 . -523) 124314) ((-233 . -977) 124143) ((-232 . -977) 123972) ((-124 . -117) 123956) ((-853 . -992) 123921) ((-649 . -993) T) ((-663 . -99) T) ((-324 . -162) T) ((-145 . -21) T) ((-145 . -25) T) ((-86 . -572) 123903) ((-853 . -109) 123859) ((-39 . -668) 123804) ((-813 . -1030) T) ((-308 . -573) 123765) ((-308 . -572) 123677) ((-1147 . -742) 123630) ((-1147 . -745) 123583) ((-233 . -358) 123553) ((-232 . -358) 123523) ((-607 . -37) 123493) ((-567 . -33) T) ((-461 . -1042) 123404) ((-455 . -33) T) ((-1043 . -128) 123275) ((-907 . -25) 123086) ((-817 . -572) 123068) ((-907 . -21) 123023) ((-765 . -21) 122934) ((-765 . -25) 122786) ((-579 . -993) T) ((-1104 . -523) 122765) ((-1098 . -46) 122742) ((-336 . -986) T) ((-333 . -986) T) ((-461 . -23) 122613) ((-325 . -986) T) ((-230 . -986) T) ((-246 . -986) T) ((-1054 . -46) 122585) ((-115 . -993) T) ((-974 . -601) 122559) ((-901 . -33) T) ((-336 . -216) 122538) ((-336 . -226) T) ((-333 . -216) 122517) ((-333 . -226) T) ((-230 . -307) 122474) ((-325 . -216) 122453) ((-325 . -226) T) ((-246 . -307) 122425) ((-246 . -216) 122404) ((-1083 . -144) 122388) ((-233 . -843) 122321) ((-232 . -843) 122254) ((-1014 . -797) T) ((-1151 . -1138) T) ((-395 . -1042) T) ((-990 . -23) T) ((-853 . -986) T) ((-303 . -601) 122236) ((-964 . -795) T) ((-1133 . -943) 122202) ((-1099 . -863) 122181) ((-1093 . -863) 122160) ((-853 . -226) T) ((-767 . -344) 122139) ((-366 . -23) T) ((-125 . -1030) 122117) ((-119 . -1030) 122095) ((-853 . -216) T) ((-1093 . -770) NIL) ((-360 . -601) 122060) ((-813 . -668) 122047) ((-983 . -144) 122012) ((-39 . -162) T) ((-644 . -392) 121994) ((-663 . -291) 121981) ((-784 . -601) 121941) ((-777 . -601) 121915) ((-300 . -25) T) ((-300 . -21) T) ((-611 . -268) 121894) ((-543 . -1030) T) ((-531 . -1030) T) ((-473 . -1030) T) ((-228 . -270) 121871) ((-294 . -214) 121832) ((-1098 . -829) NIL) ((-1054 . -829) 121691) ((-127 . -797) T) ((-1098 . -977) 121573) ((-1054 . -977) 121458) ((-171 . -572) 121440) ((-801 . -977) 121338) ((-732 . -268) 121265) ((-767 . -1042) T) ((-974 . -677) T) ((-562 . -604) 121249) ((-983 . -918) 121178) ((-940 . -99) T) ((-767 . -23) T) ((-663 . -1078) 121156) ((-644 . -993) T) ((-562 . -354) 121140) ((-332 . -432) T) ((-324 . -272) T) ((-1185 . -1030) T) ((-231 . -1030) T) ((-380 . -99) T) ((-271 . -21) T) ((-271 . -25) T) ((-342 . -677) T) ((-661 . -1030) T) ((-649 . -1030) T) ((-342 . -453) T) ((-1133 . -572) 121122) ((-1098 . -358) 121106) ((-1054 . -358) 121090) ((-964 . -392) 121052) ((-134 . -212) 121034) ((-360 . -744) T) ((-360 . -741) T) ((-813 . -162) T) ((-360 . -677) T) ((-662 . -572) 121016) ((-663 . -37) 120845) ((-1184 . -1182) 120829) ((-332 . -383) T) ((-1184 . -1030) 120779) ((-543 . -668) 120766) ((-531 . -668) 120753) ((-473 . -668) 120718) ((-297 . -584) 120697) ((-784 . -677) T) ((-777 . -677) T) ((-598 . -1138) T) ((-1012 . -594) 120645) ((-1098 . -843) 120588) ((-1054 . -843) 120572) ((-615 . -992) 120556) ((-105 . -594) 120538) ((-461 . -128) 120409) ((-1104 . -1042) T) ((-895 . -46) 120378) ((-579 . -1030) T) ((-615 . -109) 120357) ((-469 . -572) 120323) ((-308 . -270) 120300) ((-460 . -46) 120257) ((-1104 . -23) T) ((-115 . -1030) T) ((-100 . -99) 120235) ((-1194 . -1042) T) ((-990 . -128) T) ((-964 . -993) T) ((-769 . -977) 120219) ((-944 . -675) 120191) ((-1194 . -23) T) ((-649 . -668) 120156) ((-548 . -572) 120138) ((-367 . -977) 120122) ((-335 . -993) T) ((-366 . -128) T) ((-305 . -977) 120106) ((-208 . -829) 120088) ((-945 . -863) T) ((-89 . -33) T) ((-945 . -770) T) ((-857 . -863) T) ((-466 . -1142) T) ((-1119 . -572) 120070) ((-1035 . -1030) T) ((-201 . -1142) T) ((-940 . -291) 120035) ((-208 . -977) 119995) ((-39 . -272) T) ((-1012 . -21) T) ((-1012 . -25) T) ((-1049 . -778) T) ((-466 . -523) T) ((-340 . -25) T) ((-201 . -523) T) ((-340 . -21) T) ((-334 . -25) T) ((-334 . -21) T) ((-665 . -601) 119955) ((-326 . -25) T) ((-326 . -21) T) ((-105 . -25) T) ((-105 . -21) T) ((-47 . -993) T) ((-543 . -162) T) ((-531 . -162) T) ((-473 . -162) T) ((-611 . -572) 119937) ((-688 . -687) 119921) ((-317 . -572) 119903) ((-66 . -364) T) ((-66 . -376) T) ((-1032 . -104) 119887) ((-997 . -829) 119869) ((-895 . -829) 119794) ((-606 . -1042) T) ((-579 . -668) 119781) ((-460 . -829) NIL) ((-1073 . -99) T) ((-997 . -977) 119763) ((-94 . -572) 119745) ((-457 . -140) T) ((-895 . -977) 119627) ((-115 . -668) 119572) ((-606 . -23) T) ((-460 . -977) 119450) ((-1019 . -573) NIL) ((-1019 . -572) 119432) ((-732 . -573) NIL) ((-732 . -572) 119393) ((-730 . -573) 119028) ((-730 . -572) 118942) ((-1043 . -594) 118850) ((-441 . -572) 118832) ((-434 . -572) 118814) ((-434 . -573) 118675) ((-975 . -212) 118621) ((-124 . -33) T) ((-767 . -128) T) ((-815 . -852) 118600) ((-602 . -572) 118582) ((-336 . -1201) 118566) ((-333 . -1201) 118550) ((-325 . -1201) 118534) ((-125 . -492) 118467) ((-119 . -492) 118400) ((-489 . -742) T) ((-489 . -745) T) ((-488 . -744) T) ((-100 . -291) 118338) ((-205 . -99) 118316) ((-644 . -1030) T) ((-649 . -162) T) ((-815 . -601) 118268) ((-63 . -365) T) ((-257 . -572) 118250) ((-63 . -376) T) ((-895 . -358) 118234) ((-813 . -272) T) ((-49 . -572) 118216) ((-940 . -37) 118164) ((-544 . -572) 118146) ((-460 . -358) 118130) ((-544 . -573) 118112) ((-495 . -572) 118094) ((-853 . -1201) 118081) ((-814 . -1138) T) ((-651 . -432) T) ((-473 . -492) 118047) ((-466 . -344) T) ((-336 . -349) 118026) ((-333 . -349) 118005) ((-325 . -349) 117984) ((-201 . -344) T) ((-665 . -677) T) ((-114 . -432) T) ((-1205 . -1196) 117968) ((-814 . -827) 117945) ((-814 . -829) NIL) ((-907 . -797) 117844) ((-765 . -797) 117795) ((-607 . -609) 117779) ((-1125 . -33) T) ((-161 . -572) 117761) ((-1043 . -21) 117672) ((-1043 . -25) 117524) ((-814 . -977) 117501) ((-895 . -843) 117482) ((-1157 . -46) 117459) ((-853 . -349) T) ((-57 . -604) 117443) ((-494 . -604) 117427) ((-460 . -843) 117404) ((-69 . -421) T) ((-69 . -376) T) ((-474 . -604) 117388) ((-57 . -354) 117372) ((-579 . -162) T) ((-494 . -354) 117356) ((-474 . -354) 117340) ((-777 . -659) 117324) ((-1098 . -289) 117303) ((-1104 . -128) T) ((-115 . -162) T) ((-1073 . -291) 117241) ((-159 . -1138) T) ((-590 . -695) 117225) ((-566 . -695) 117209) ((-1194 . -128) T) ((-1169 . -863) 117188) ((-1148 . -863) 117167) ((-1148 . -770) NIL) ((-644 . -668) 117117) ((-1147 . -852) 117070) ((-964 . -1030) T) ((-814 . -358) 117047) ((-814 . -319) 117024) ((-848 . -1042) T) ((-159 . -827) 117008) ((-159 . -829) 116933) ((-466 . -1042) T) ((-335 . -1030) T) ((-201 . -1042) T) ((-74 . -421) T) ((-74 . -376) T) ((-159 . -977) 116831) ((-300 . -797) T) ((-1184 . -492) 116764) ((-1168 . -601) 116661) ((-1147 . -601) 116531) ((-815 . -744) 116510) ((-815 . -741) 116489) ((-815 . -677) T) ((-466 . -23) T) ((-206 . -572) 116471) ((-163 . -432) T) ((-205 . -291) 116409) ((-84 . -421) T) ((-84 . -376) T) ((-201 . -23) T) ((-1206 . -1199) 116388) ((-543 . -272) T) ((-531 . -272) T) ((-628 . -977) 116372) ((-473 . -272) T) ((-132 . -450) 116327) ((-47 . -1030) T) ((-663 . -214) 116311) ((-814 . -843) NIL) ((-1157 . -829) NIL) ((-832 . -99) T) ((-828 . -99) T) ((-369 . -1030) T) ((-159 . -358) 116295) ((-159 . -319) 116279) ((-1157 . -977) 116161) ((-802 . -977) 116059) ((-1069 . -99) T) ((-606 . -128) T) ((-115 . -492) 115967) ((-615 . -742) 115946) ((-615 . -745) 115925) ((-538 . -977) 115907) ((-276 . -1191) 115877) ((-809 . -99) T) ((-906 . -523) 115856) ((-1133 . -992) 115739) ((-461 . -594) 115647) ((-847 . -1030) T) ((-964 . -668) 115584) ((-662 . -992) 115549) ((-562 . -33) T) ((-1074 . -1138) T) ((-1133 . -109) 115418) ((-454 . -601) 115315) ((-335 . -668) 115260) ((-159 . -843) 115219) ((-649 . -272) T) ((-644 . -162) T) ((-662 . -109) 115175) ((-1210 . -993) T) ((-1157 . -358) 115159) ((-399 . -1142) 115137) ((-1047 . -572) 115119) ((-294 . -795) NIL) ((-399 . -523) T) ((-208 . -289) T) ((-1147 . -741) 115072) ((-1147 . -744) 115025) ((-1168 . -677) T) ((-1147 . -677) T) ((-47 . -668) 114990) ((-208 . -962) T) ((-332 . -1191) 114967) ((-1170 . -392) 114933) ((-669 . -677) T) ((-1157 . -843) 114876) ((-110 . -572) 114858) ((-110 . -573) 114840) ((-669 . -453) T) ((-461 . -21) 114751) ((-125 . -468) 114735) ((-119 . -468) 114719) ((-461 . -25) 114571) ((-579 . -272) T) ((-548 . -992) 114546) ((-418 . -1030) T) ((-997 . -289) T) ((-115 . -272) T) ((-1034 . -99) T) ((-944 . -99) T) ((-548 . -109) 114514) ((-1069 . -291) 114452) ((-1133 . -986) T) ((-997 . -962) T) ((-64 . -1138) T) ((-990 . -25) T) ((-990 . -21) T) ((-662 . -986) T) ((-366 . -21) T) ((-366 . -25) T) ((-644 . -492) NIL) ((-964 . -162) T) ((-662 . -226) T) ((-997 . -516) T) ((-484 . -99) T) ((-480 . -99) T) ((-335 . -162) T) ((-324 . -572) 114434) ((-375 . -572) 114416) ((-454 . -677) T) ((-1049 . -795) T) ((-835 . -977) 114384) ((-105 . -797) T) ((-611 . -992) 114368) ((-466 . -128) T) ((-1170 . -993) T) ((-201 . -128) T) ((-1083 . -99) 114346) ((-96 . -1030) T) ((-228 . -619) 114330) ((-228 . -604) 114314) ((-611 . -109) 114293) ((-297 . -392) 114277) ((-228 . -354) 114261) ((-1086 . -218) 114208) ((-940 . -214) 114192) ((-72 . -1138) T) ((-47 . -162) T) ((-651 . -368) T) ((-651 . -136) T) ((-1205 . -99) T) ((-1019 . -992) 114035) ((-246 . -852) 114014) ((-230 . -852) 113993) ((-732 . -992) 113816) ((-730 . -992) 113659) ((-567 . -1138) T) ((-1091 . -572) 113641) ((-1019 . -109) 113470) ((-983 . -99) T) ((-455 . -1138) T) ((-441 . -992) 113441) ((-434 . -992) 113284) ((-617 . -601) 113268) ((-814 . -289) T) ((-732 . -109) 113077) ((-730 . -109) 112906) ((-336 . -601) 112858) ((-333 . -601) 112810) ((-325 . -601) 112762) ((-246 . -601) 112687) ((-230 . -601) 112612) ((-1085 . -797) T) ((-1020 . -977) 112596) ((-441 . -109) 112557) ((-434 . -109) 112386) ((-1008 . -977) 112363) ((-941 . -33) T) ((-909 . -572) 112324) ((-901 . -1138) T) ((-124 . -951) 112308) ((-906 . -1042) T) ((-814 . -962) NIL) ((-686 . -1042) T) ((-666 . -1042) T) ((-1184 . -468) 112292) ((-1069 . -37) 112252) ((-906 . -23) T) ((-790 . -99) T) ((-767 . -21) T) ((-767 . -25) T) ((-686 . -23) T) ((-666 . -23) T) ((-108 . -614) T) ((-853 . -601) 112217) ((-544 . -992) 112182) ((-495 . -992) 112127) ((-210 . -55) 112085) ((-433 . -23) T) ((-388 . -99) T) ((-245 . -99) T) ((-644 . -272) T) ((-809 . -37) 112055) ((-544 . -109) 112011) ((-495 . -109) 111940) ((-399 . -1042) T) ((-297 . -993) 111831) ((-294 . -993) T) ((-611 . -986) T) ((-1210 . -1030) T) ((-159 . -289) 111762) ((-399 . -23) T) ((-39 . -572) 111744) ((-39 . -573) 111728) ((-105 . -934) 111710) ((-114 . -812) 111694) ((-47 . -492) 111660) ((-1125 . -951) 111644) ((-1107 . -572) 111626) ((-1112 . -33) T) ((-897 . -572) 111592) ((-864 . -572) 111574) ((-1043 . -797) 111525) ((-721 . -572) 111507) ((-624 . -572) 111489) ((-1083 . -291) 111427) ((-458 . -33) T) ((-1023 . -1138) T) ((-457 . -432) T) ((-1019 . -986) T) ((-1068 . -33) T) ((-732 . -986) T) ((-730 . -986) T) ((-600 . -218) 111411) ((-587 . -218) 111357) ((-1157 . -289) 111336) ((-1019 . -307) 111297) ((-434 . -986) T) ((-1104 . -21) T) ((-1019 . -216) 111276) ((-732 . -307) 111253) ((-732 . -216) T) ((-730 . -307) 111225) ((-308 . -604) 111209) ((-682 . -1142) 111188) ((-1104 . -25) T) ((-57 . -33) T) ((-496 . -33) T) ((-494 . -33) T) ((-434 . -307) 111167) ((-308 . -354) 111151) ((-475 . -33) T) ((-474 . -33) T) ((-944 . -1078) NIL) ((-590 . -99) T) ((-566 . -99) T) ((-682 . -523) 111082) ((-336 . -677) T) ((-333 . -677) T) ((-325 . -677) T) ((-246 . -677) T) ((-230 . -677) T) ((-983 . -291) 110990) ((-844 . -1030) 110968) ((-49 . -986) T) ((-1194 . -21) T) ((-1194 . -25) T) ((-1100 . -523) 110947) ((-1099 . -1142) 110926) ((-544 . -986) T) ((-495 . -986) T) ((-1093 . -1142) 110905) ((-342 . -977) 110889) ((-303 . -977) 110873) ((-964 . -272) T) ((-360 . -829) 110855) ((-1099 . -523) 110806) ((-1093 . -523) 110757) ((-944 . -37) 110702) ((-749 . -1042) T) ((-853 . -677) T) ((-544 . -226) T) ((-544 . -216) T) ((-495 . -216) T) ((-495 . -226) T) ((-1055 . -523) 110681) ((-335 . -272) T) ((-600 . -645) 110665) ((-360 . -977) 110625) ((-1049 . -993) T) ((-100 . -123) 110609) ((-749 . -23) T) ((-1184 . -268) 110586) ((-388 . -291) 110551) ((-1204 . -1199) 110527) ((-1202 . -1199) 110506) ((-1170 . -1030) T) ((-813 . -572) 110488) ((-784 . -977) 110457) ((-187 . -737) T) ((-186 . -737) T) ((-185 . -737) T) ((-184 . -737) T) ((-183 . -737) T) ((-182 . -737) T) ((-181 . -737) T) ((-180 . -737) T) ((-179 . -737) T) ((-178 . -737) T) ((-473 . -943) T) ((-256 . -786) T) ((-255 . -786) T) ((-254 . -786) T) ((-253 . -786) T) ((-47 . -272) T) ((-252 . -786) T) ((-251 . -786) T) ((-250 . -786) T) ((-177 . -737) T) ((-571 . -797) T) ((-607 . -392) 110441) ((-108 . -797) T) ((-606 . -21) T) ((-606 . -25) T) ((-1205 . -37) 110411) ((-115 . -268) 110362) ((-1184 . -19) 110346) ((-1184 . -564) 110323) ((-1195 . -1030) T) ((-1009 . -1030) T) ((-929 . -1030) T) ((-906 . -128) T) ((-688 . -1030) T) ((-686 . -128) T) ((-666 . -128) T) ((-489 . -743) T) ((-388 . -1078) 110301) ((-433 . -128) T) ((-489 . -744) T) ((-206 . -986) T) ((-276 . -99) 110084) ((-134 . -1030) T) ((-649 . -943) T) ((-89 . -1138) T) ((-125 . -572) 110016) ((-119 . -572) 109948) ((-1210 . -162) T) ((-1099 . -344) 109927) ((-1093 . -344) 109906) ((-297 . -1030) T) ((-399 . -128) T) ((-294 . -1030) T) ((-388 . -37) 109858) ((-1062 . -99) T) ((-1170 . -668) 109750) ((-607 . -993) T) ((-300 . -138) 109729) ((-300 . -140) 109708) ((-132 . -1030) T) ((-112 . -1030) T) ((-805 . -99) T) ((-543 . -572) 109690) ((-531 . -573) 109589) ((-531 . -572) 109571) ((-473 . -572) 109553) ((-473 . -573) 109498) ((-464 . -23) T) ((-461 . -797) 109449) ((-466 . -594) 109431) ((-908 . -572) 109413) ((-201 . -594) 109395) ((-208 . -385) T) ((-615 . -601) 109379) ((-1098 . -863) 109358) ((-682 . -1042) T) ((-332 . -99) T) ((-768 . -797) T) ((-682 . -23) T) ((-324 . -992) 109303) ((-1085 . -1084) T) ((-1074 . -104) 109287) ((-1100 . -1042) T) ((-1099 . -1042) T) ((-493 . -977) 109271) ((-1093 . -1042) T) ((-1055 . -1042) T) ((-324 . -109) 109200) ((-945 . -1142) T) ((-124 . -1138) T) ((-857 . -1142) T) ((-644 . -268) NIL) ((-1185 . -572) 109182) ((-1100 . -23) T) ((-1099 . -23) T) ((-1093 . -23) T) ((-945 . -523) T) ((-1069 . -214) 109166) ((-857 . -523) T) ((-1055 . -23) T) ((-231 . -572) 109148) ((-1007 . -1030) T) ((-749 . -128) T) ((-661 . -572) 109130) ((-297 . -668) 109040) ((-294 . -668) 108969) ((-649 . -572) 108951) ((-649 . -573) 108896) ((-388 . -381) 108880) ((-419 . -1030) T) ((-466 . -25) T) ((-466 . -21) T) ((-1049 . -1030) T) ((-201 . -25) T) ((-201 . -21) T) ((-663 . -392) 108864) ((-665 . -977) 108833) ((-1184 . -572) 108745) ((-1184 . -573) 108706) ((-1170 . -162) T) ((-228 . -33) T) ((-869 . -916) T) ((-1125 . -1138) T) ((-615 . -741) 108685) ((-615 . -744) 108664) ((-379 . -376) T) ((-500 . -99) 108642) ((-975 . -1030) T) ((-205 . -936) 108626) ((-482 . -99) T) ((-579 . -572) 108608) ((-44 . -797) NIL) ((-579 . -573) 108585) ((-975 . -569) 108560) ((-844 . -492) 108493) ((-324 . -986) T) ((-115 . -573) NIL) ((-115 . -572) 108475) ((-815 . -1138) T) ((-623 . -398) 108459) ((-623 . -1052) 108404) ((-478 . -144) 108386) ((-324 . -216) T) ((-324 . -226) T) ((-39 . -992) 108331) ((-815 . -827) 108315) ((-815 . -829) 108240) ((-663 . -993) T) ((-644 . -943) NIL) ((-3 . |UnionCategory|) T) ((-1168 . -46) 108210) ((-1147 . -46) 108187) ((-1068 . -951) 108158) ((-208 . -863) T) ((-39 . -109) 108087) ((-815 . -977) 107954) ((-1049 . -668) 107941) ((-1035 . -572) 107923) ((-1012 . -140) 107902) ((-1012 . -138) 107853) ((-945 . -344) T) ((-300 . -1127) 107819) ((-360 . -289) T) ((-300 . -1124) 107785) ((-297 . -162) 107764) ((-294 . -162) T) ((-944 . -214) 107741) ((-857 . -344) T) ((-544 . -1201) 107728) ((-495 . -1201) 107705) ((-340 . -140) 107684) ((-340 . -138) 107635) ((-334 . -140) 107614) ((-334 . -138) 107565) ((-567 . -1115) 107541) ((-326 . -140) 107520) ((-326 . -138) 107471) ((-300 . -34) 107437) ((-455 . -1115) 107416) ((0 . |EnumerationCategory|) T) ((-300 . -93) 107382) ((-360 . -962) T) ((-105 . -140) T) ((-105 . -138) NIL) ((-44 . -218) 107332) ((-607 . -1030) T) ((-567 . -104) 107279) ((-464 . -128) T) ((-455 . -104) 107229) ((-223 . -1042) 107140) ((-815 . -358) 107124) ((-815 . -319) 107108) ((-223 . -23) 106979) ((-997 . -863) T) ((-997 . -770) T) ((-544 . -349) T) ((-495 . -349) T) ((-332 . -1078) T) ((-308 . -33) T) ((-43 . -398) 106963) ((-816 . -1138) T) ((-371 . -695) 106947) ((-1195 . -492) 106880) ((-682 . -128) T) ((-1176 . -523) 106859) ((-1169 . -1142) 106838) ((-1169 . -523) 106789) ((-1148 . -1142) 106768) ((-1148 . -523) 106719) ((-688 . -492) 106652) ((-1147 . -1138) 106631) ((-1147 . -829) 106504) ((-836 . -1030) T) ((-137 . -791) T) ((-1147 . -827) 106474) ((-641 . -572) 106456) ((-1100 . -128) T) ((-500 . -291) 106394) ((-1099 . -128) T) ((-134 . -492) NIL) ((-1093 . -128) T) ((-1055 . -128) T) ((-964 . -943) T) ((-945 . -23) T) ((-332 . -37) 106359) ((-945 . -1042) T) ((-857 . -1042) T) ((-80 . -572) 106341) ((-39 . -986) T) ((-813 . -992) 106328) ((-944 . -330) NIL) ((-815 . -843) 106287) ((-651 . -99) T) ((-913 . -23) T) ((-562 . -1138) T) ((-857 . -23) T) ((-813 . -109) 106272) ((-408 . -1042) T) ((-454 . -46) 106242) ((-197 . -99) T) ((-130 . -99) T) ((-39 . -216) 106214) ((-39 . -226) T) ((-114 . -99) T) ((-557 . -523) 106193) ((-556 . -523) 106172) ((-644 . -572) 106154) ((-644 . -573) 106062) ((-297 . -492) 106028) ((-294 . -492) 105920) ((-1168 . -977) 105904) ((-1147 . -977) 105693) ((-940 . -392) 105677) ((-408 . -23) T) ((-1049 . -162) T) ((-1170 . -272) T) ((-607 . -668) 105647) ((-137 . -1030) T) ((-47 . -943) T) ((-388 . -214) 105631) ((-277 . -218) 105581) ((-814 . -863) T) ((-814 . -770) NIL) ((-808 . -797) T) ((-1147 . -319) 105551) ((-1147 . -358) 105521) ((-205 . -1050) 105505) ((-1184 . -270) 105482) ((-1133 . -601) 105407) ((-906 . -21) T) ((-906 . -25) T) ((-686 . -21) T) ((-686 . -25) T) ((-666 . -21) T) ((-666 . -25) T) ((-662 . -601) 105372) ((-433 . -21) T) ((-433 . -25) T) ((-320 . -99) T) ((-163 . -99) T) ((-940 . -993) T) ((-813 . -986) T) ((-724 . -99) T) ((-1169 . -344) 105351) ((-1168 . -843) 105257) ((-1148 . -344) 105236) ((-1147 . -843) 105087) ((-964 . -572) 105069) ((-388 . -778) 105022) ((-1100 . -471) 104988) ((-159 . -863) 104919) ((-1099 . -471) 104885) ((-1093 . -471) 104851) ((-663 . -1030) T) ((-1055 . -471) 104817) ((-543 . -992) 104804) ((-531 . -992) 104791) ((-473 . -992) 104756) ((-297 . -272) 104735) ((-294 . -272) T) ((-335 . -572) 104717) ((-399 . -25) T) ((-399 . -21) T) ((-96 . -268) 104696) ((-543 . -109) 104681) ((-531 . -109) 104666) ((-473 . -109) 104622) ((-1102 . -829) 104589) ((-844 . -468) 104573) ((-47 . -572) 104555) ((-47 . -573) 104500) ((-223 . -128) 104371) ((-1157 . -863) 104350) ((-766 . -1142) 104329) ((-975 . -492) 104173) ((-369 . -572) 104155) ((-766 . -523) 104086) ((-548 . -601) 104061) ((-246 . -46) 104033) ((-230 . -46) 103990) ((-503 . -487) 103967) ((-941 . -1138) T) ((-649 . -992) 103932) ((-1176 . -1042) T) ((-1169 . -1042) T) ((-1148 . -1042) T) ((-944 . -351) 103904) ((-110 . -349) T) ((-454 . -843) 103810) ((-1176 . -23) T) ((-1169 . -23) T) ((-847 . -572) 103792) ((-89 . -104) 103776) ((-1133 . -677) T) ((-848 . -797) 103727) ((-651 . -1078) T) ((-649 . -109) 103683) ((-1148 . -23) T) ((-557 . -1042) T) ((-556 . -1042) T) ((-663 . -668) 103512) ((-662 . -677) T) ((-1049 . -272) T) ((-945 . -128) T) ((-466 . -797) T) ((-913 . -128) T) ((-857 . -128) T) ((-749 . -25) T) ((-201 . -797) T) ((-749 . -21) T) ((-543 . -986) T) ((-531 . -986) T) ((-473 . -986) T) ((-557 . -23) T) ((-324 . -1201) 103489) ((-300 . -432) 103468) ((-320 . -291) 103455) ((-556 . -23) T) ((-408 . -128) T) ((-611 . -601) 103429) ((-228 . -951) 103413) ((-815 . -289) T) ((-1206 . -1196) 103397) ((-651 . -37) 103384) ((-531 . -216) T) ((-473 . -226) T) ((-473 . -216) T) ((-721 . -742) T) ((-721 . -745) T) ((-1077 . -218) 103334) ((-1019 . -852) 103313) ((-114 . -37) 103300) ((-193 . -750) T) ((-192 . -750) T) ((-191 . -750) T) ((-190 . -750) T) ((-815 . -962) 103279) ((-1195 . -468) 103263) ((-732 . -852) 103242) ((-730 . -852) 103221) ((-1112 . -1138) T) ((-434 . -852) 103200) ((-688 . -468) 103184) ((-1019 . -601) 103109) ((-732 . -601) 103034) ((-579 . -992) 103021) ((-458 . -1138) T) ((-324 . -349) T) ((-134 . -468) 103003) ((-730 . -601) 102928) ((-1068 . -1138) T) ((-441 . -601) 102899) ((-246 . -829) 102758) ((-230 . -829) NIL) ((-115 . -992) 102703) ((-434 . -601) 102628) ((-617 . -977) 102605) ((-579 . -109) 102590) ((-336 . -977) 102574) ((-333 . -977) 102558) ((-325 . -977) 102542) ((-246 . -977) 102388) ((-230 . -977) 102266) ((-115 . -109) 102195) ((-57 . -1138) T) ((-496 . -1138) T) ((-494 . -1138) T) ((-475 . -1138) T) ((-474 . -1138) T) ((-418 . -572) 102177) ((-415 . -572) 102159) ((-3 . -99) T) ((-967 . -1132) 102128) ((-783 . -99) T) ((-639 . -55) 102086) ((-649 . -986) T) ((-49 . -601) 102060) ((-271 . -432) T) ((-456 . -1132) 102029) ((0 . -99) T) ((-544 . -601) 101994) ((-495 . -601) 101939) ((-48 . -99) T) ((-853 . -977) 101926) ((-649 . -226) T) ((-1012 . -390) 101905) ((-682 . -594) 101853) ((-940 . -1030) T) ((-663 . -162) 101744) ((-466 . -934) 101726) ((-246 . -358) 101710) ((-230 . -358) 101694) ((-380 . -1030) T) ((-320 . -37) 101678) ((-966 . -99) 101656) ((-201 . -934) 101638) ((-163 . -37) 101570) ((-1168 . -289) 101549) ((-1147 . -289) 101528) ((-611 . -677) T) ((-96 . -572) 101510) ((-1093 . -594) 101462) ((-464 . -25) T) ((-464 . -21) T) ((-1147 . -962) 101415) ((-579 . -986) T) ((-360 . -385) T) ((-371 . -99) T) ((-246 . -843) 101361) ((-230 . -843) 101338) ((-115 . -986) T) ((-766 . -1042) T) ((-1019 . -677) T) ((-579 . -216) 101317) ((-577 . -99) T) ((-732 . -677) T) ((-730 . -677) T) ((-394 . -1042) T) ((-115 . -226) T) ((-39 . -349) NIL) ((-115 . -216) NIL) ((-434 . -677) T) ((-766 . -23) T) ((-682 . -25) T) ((-682 . -21) T) ((-653 . -797) T) ((-1009 . -268) 101296) ((-76 . -377) T) ((-76 . -376) T) ((-644 . -992) 101246) ((-1176 . -128) T) ((-1169 . -128) T) ((-1148 . -128) T) ((-1069 . -392) 101230) ((-590 . -348) 101162) ((-566 . -348) 101094) ((-1083 . -1076) 101078) ((-100 . -1030) 101056) ((-1100 . -25) T) ((-1100 . -21) T) ((-1099 . -21) T) ((-940 . -668) 101004) ((-206 . -601) 100971) ((-644 . -109) 100905) ((-49 . -677) T) ((-1099 . -25) T) ((-332 . -330) T) ((-1093 . -21) T) ((-1012 . -432) 100856) ((-1093 . -25) T) ((-663 . -492) 100803) ((-544 . -677) T) ((-495 . -677) T) ((-1055 . -21) T) ((-1055 . -25) T) ((-557 . -128) T) ((-556 . -128) T) ((-340 . -432) T) ((-334 . -432) T) ((-326 . -432) T) ((-454 . -289) 100782) ((-294 . -268) 100717) ((-105 . -432) T) ((-77 . -421) T) ((-77 . -376) T) ((-457 . -99) T) ((-1210 . -572) 100699) ((-1210 . -573) 100681) ((-1012 . -383) 100660) ((-975 . -468) 100591) ((-531 . -745) T) ((-531 . -742) T) ((-998 . -218) 100537) ((-340 . -383) 100488) ((-334 . -383) 100439) ((-326 . -383) 100390) ((-1197 . -1042) T) ((-1197 . -23) T) ((-1186 . -99) T) ((-164 . -572) 100372) ((-1069 . -993) T) ((-623 . -695) 100356) ((-1104 . -138) 100335) ((-1104 . -140) 100314) ((-1073 . -1030) T) ((-1073 . -1005) 100283) ((-67 . -1138) T) ((-964 . -992) 100220) ((-809 . -993) T) ((-223 . -594) 100128) ((-644 . -986) T) ((-335 . -992) 100073) ((-59 . -1138) T) ((-964 . -109) 99989) ((-844 . -572) 99921) ((-644 . -226) T) ((-644 . -216) NIL) ((-790 . -795) 99900) ((-649 . -745) T) ((-649 . -742) T) ((-944 . -392) 99877) ((-335 . -109) 99806) ((-360 . -863) T) ((-388 . -795) 99785) ((-663 . -272) 99696) ((-206 . -677) T) ((-1176 . -471) 99662) ((-1169 . -471) 99628) ((-1148 . -471) 99594) ((-297 . -943) 99573) ((-205 . -1030) 99551) ((-300 . -915) 99513) ((-102 . -99) T) ((-47 . -992) 99478) ((-1206 . -99) T) ((-362 . -99) T) ((-47 . -109) 99434) ((-945 . -594) 99416) ((-1170 . -572) 99398) ((-503 . -99) T) ((-478 . -99) T) ((-1062 . -1063) 99382) ((-145 . -1191) 99366) ((-228 . -1138) T) ((-1098 . -1142) 99345) ((-1054 . -1142) 99324) ((-223 . -21) 99235) ((-223 . -25) 99087) ((-125 . -117) 99071) ((-119 . -117) 99055) ((-43 . -695) 99039) ((-1098 . -523) 98950) ((-1054 . -523) 98881) ((-975 . -268) 98856) ((-766 . -128) T) ((-115 . -745) NIL) ((-115 . -742) NIL) ((-336 . -289) T) ((-333 . -289) T) ((-325 . -289) T) ((-1025 . -1138) T) ((-233 . -1042) 98767) ((-232 . -1042) 98678) ((-964 . -986) T) ((-944 . -993) T) ((-324 . -601) 98623) ((-577 . -37) 98607) ((-1195 . -572) 98569) ((-1195 . -573) 98530) ((-1009 . -572) 98512) ((-964 . -226) T) ((-335 . -986) T) ((-765 . -1191) 98482) ((-233 . -23) T) ((-232 . -23) T) ((-929 . -572) 98464) ((-688 . -573) 98425) ((-688 . -572) 98407) ((-749 . -797) 98386) ((-940 . -492) 98298) ((-335 . -216) T) ((-335 . -226) T) ((-1086 . -144) 98245) ((-945 . -25) T) ((-134 . -572) 98227) ((-134 . -573) 98186) ((-853 . -289) T) ((-945 . -21) T) ((-913 . -25) T) ((-857 . -21) T) ((-857 . -25) T) ((-408 . -21) T) ((-408 . -25) T) ((-790 . -392) 98170) ((-47 . -986) T) ((-1204 . -1196) 98154) ((-1202 . -1196) 98138) ((-975 . -564) 98113) ((-297 . -573) 97974) ((-297 . -572) 97956) ((-294 . -573) NIL) ((-294 . -572) 97938) ((-47 . -226) T) ((-47 . -216) T) ((-607 . -268) 97899) ((-517 . -218) 97849) ((-132 . -572) 97831) ((-112 . -572) 97813) ((-457 . -37) 97778) ((-1206 . -1203) 97757) ((-1197 . -128) T) ((-1205 . -993) T) ((-1014 . -99) T) ((-86 . -1138) T) ((-478 . -291) NIL) ((-941 . -104) 97741) ((-832 . -1030) T) ((-828 . -1030) T) ((-1184 . -604) 97725) ((-1184 . -354) 97709) ((-308 . -1138) T) ((-554 . -797) T) ((-1069 . -1030) T) ((-1069 . -989) 97649) ((-100 . -492) 97582) ((-870 . -572) 97564) ((-324 . -677) T) ((-30 . -572) 97546) ((-809 . -1030) T) ((-790 . -993) 97525) ((-39 . -601) 97470) ((-208 . -1142) T) ((-388 . -993) T) ((-1085 . -144) 97452) ((-940 . -272) 97403) ((-208 . -523) T) ((-300 . -1165) 97387) ((-300 . -1162) 97357) ((-1112 . -1115) 97336) ((-1007 . -572) 97318) ((-600 . -144) 97302) ((-587 . -144) 97248) ((-1112 . -104) 97198) ((-458 . -1115) 97177) ((-466 . -140) T) ((-466 . -138) NIL) ((-1049 . -573) 97092) ((-419 . -572) 97074) ((-201 . -140) T) ((-201 . -138) NIL) ((-1049 . -572) 97056) ((-127 . -99) T) ((-51 . -99) T) ((-1148 . -594) 97008) ((-458 . -104) 96958) ((-935 . -23) T) ((-1206 . -37) 96928) ((-1098 . -1042) T) ((-1054 . -1042) T) ((-997 . -1142) T) ((-801 . -1042) T) ((-895 . -1142) 96907) ((-460 . -1142) 96886) ((-682 . -797) 96865) ((-997 . -523) T) ((-895 . -523) 96796) ((-1098 . -23) T) ((-1054 . -23) T) ((-801 . -23) T) ((-460 . -523) 96727) ((-1069 . -668) 96659) ((-1073 . -492) 96592) ((-975 . -573) NIL) ((-975 . -572) 96574) ((-809 . -668) 96544) ((-1133 . -46) 96513) ((-232 . -128) T) ((-233 . -128) T) ((-1034 . -1030) T) ((-944 . -1030) T) ((-60 . -572) 96495) ((-1093 . -797) NIL) ((-964 . -742) T) ((-964 . -745) T) ((-1210 . -992) 96482) ((-1210 . -109) 96467) ((-813 . -601) 96454) ((-1176 . -25) T) ((-1176 . -21) T) ((-1169 . -21) T) ((-1169 . -25) T) ((-1148 . -21) T) ((-1148 . -25) T) ((-967 . -144) 96438) ((-815 . -770) 96417) ((-815 . -863) T) ((-663 . -268) 96344) ((-557 . -21) T) ((-557 . -25) T) ((-556 . -21) T) ((-39 . -677) T) ((-205 . -492) 96277) ((-556 . -25) T) ((-456 . -144) 96261) ((-443 . -144) 96245) ((-864 . -744) T) ((-864 . -677) T) ((-721 . -743) T) ((-721 . -744) T) ((-484 . -1030) T) ((-480 . -1030) T) ((-721 . -677) T) ((-208 . -344) T) ((-1083 . -1030) 96223) ((-814 . -1142) T) ((-607 . -572) 96205) ((-814 . -523) T) ((-644 . -349) NIL) ((-340 . -1191) 96189) ((-623 . -99) T) ((-334 . -1191) 96173) ((-326 . -1191) 96157) ((-1205 . -1030) T) ((-497 . -797) 96136) ((-767 . -432) 96115) ((-983 . -1030) T) ((-983 . -1005) 96044) ((-967 . -918) 96013) ((-769 . -1042) T) ((-944 . -668) 95958) ((-367 . -1042) T) ((-456 . -918) 95927) ((-443 . -918) 95896) ((-108 . -144) 95878) ((-71 . -572) 95860) ((-836 . -572) 95842) ((-1012 . -675) 95821) ((-1210 . -986) T) ((-766 . -594) 95769) ((-276 . -993) 95712) ((-159 . -1142) 95617) ((-208 . -1042) T) ((-305 . -23) T) ((-1093 . -934) 95569) ((-790 . -1030) T) ((-1055 . -691) 95548) ((-1170 . -992) 95453) ((-1168 . -863) 95432) ((-813 . -677) T) ((-159 . -523) 95343) ((-1147 . -863) 95322) ((-543 . -601) 95309) ((-388 . -1030) T) ((-531 . -601) 95296) ((-245 . -1030) T) ((-473 . -601) 95261) ((-208 . -23) T) ((-1147 . -770) 95214) ((-1204 . -99) T) ((-335 . -1201) 95191) ((-1202 . -99) T) ((-1170 . -109) 95083) ((-137 . -572) 95065) ((-935 . -128) T) ((-43 . -99) T) ((-223 . -797) 95016) ((-1157 . -1142) 94995) ((-100 . -468) 94979) ((-1205 . -668) 94949) ((-1019 . -46) 94910) ((-997 . -1042) T) ((-895 . -1042) T) ((-125 . -33) T) ((-119 . -33) T) ((-732 . -46) 94887) ((-730 . -46) 94859) ((-1157 . -523) 94770) ((-335 . -349) T) ((-460 . -1042) T) ((-1098 . -128) T) ((-1054 . -128) T) ((-434 . -46) 94749) ((-814 . -344) T) ((-801 . -128) T) ((-145 . -99) T) ((-997 . -23) T) ((-895 . -23) T) ((-538 . -523) T) ((-766 . -25) T) ((-766 . -21) T) ((-1069 . -492) 94682) ((-548 . -977) 94666) ((-460 . -23) T) ((-332 . -993) T) ((-1133 . -843) 94647) ((-623 . -291) 94585) ((-1043 . -1191) 94555) ((-649 . -601) 94520) ((-944 . -162) T) ((-906 . -138) 94499) ((-590 . -1030) T) ((-566 . -1030) T) ((-906 . -140) 94478) ((-945 . -797) T) ((-686 . -140) 94457) ((-686 . -138) 94436) ((-913 . -797) T) ((-454 . -863) 94415) ((-297 . -992) 94325) ((-294 . -992) 94254) ((-940 . -268) 94212) ((-388 . -668) 94164) ((-126 . -797) T) ((-651 . -795) T) ((-1170 . -986) T) ((-297 . -109) 94060) ((-294 . -109) 93973) ((-907 . -99) T) ((-765 . -99) 93764) ((-663 . -573) NIL) ((-663 . -572) 93746) ((-611 . -977) 93644) ((-1170 . -307) 93588) ((-975 . -270) 93563) ((-543 . -677) T) ((-531 . -744) T) ((-159 . -344) 93514) ((-531 . -741) T) ((-531 . -677) T) ((-473 . -677) T) ((-1073 . -468) 93498) ((-1019 . -829) NIL) ((-814 . -1042) T) ((-115 . -852) NIL) ((-1204 . -1203) 93474) ((-1202 . -1203) 93453) ((-732 . -829) NIL) ((-730 . -829) 93312) ((-1197 . -25) T) ((-1197 . -21) T) ((-1136 . -99) 93290) ((-1036 . -376) T) ((-579 . -601) 93277) ((-434 . -829) NIL) ((-627 . -99) 93255) ((-1019 . -977) 93084) ((-814 . -23) T) ((-732 . -977) 92945) ((-730 . -977) 92804) ((-115 . -601) 92749) ((-434 . -977) 92627) ((-602 . -977) 92611) ((-582 . -99) T) ((-205 . -468) 92595) ((-1184 . -33) T) ((-590 . -668) 92579) ((-566 . -668) 92563) ((-623 . -37) 92523) ((-300 . -99) T) ((-83 . -572) 92505) ((-49 . -977) 92489) ((-1049 . -992) 92476) ((-1019 . -358) 92460) ((-732 . -358) 92444) ((-58 . -55) 92406) ((-649 . -744) T) ((-649 . -741) T) ((-544 . -977) 92393) ((-495 . -977) 92370) ((-649 . -677) T) ((-305 . -128) T) ((-297 . -986) 92261) ((-294 . -986) T) ((-159 . -1042) T) ((-730 . -358) 92245) ((-44 . -144) 92195) ((-945 . -934) 92177) ((-434 . -358) 92161) ((-388 . -162) T) ((-297 . -226) 92140) ((-294 . -226) T) ((-294 . -216) NIL) ((-276 . -1030) 91923) ((-208 . -128) T) ((-1049 . -109) 91908) ((-159 . -23) T) ((-749 . -140) 91887) ((-749 . -138) 91866) ((-233 . -594) 91774) ((-232 . -594) 91682) ((-300 . -266) 91648) ((-1083 . -492) 91581) ((-1062 . -1030) T) ((-208 . -995) T) ((-765 . -291) 91519) ((-1019 . -843) 91454) ((-732 . -843) 91397) ((-730 . -843) 91381) ((-1204 . -37) 91351) ((-1202 . -37) 91321) ((-1157 . -1042) T) ((-802 . -1042) T) ((-434 . -843) 91298) ((-805 . -1030) T) ((-1157 . -23) T) ((-538 . -1042) T) ((-802 . -23) T) ((-579 . -677) T) ((-336 . -863) T) ((-333 . -863) T) ((-271 . -99) T) ((-325 . -863) T) ((-997 . -128) T) ((-895 . -128) T) ((-115 . -744) NIL) ((-115 . -741) NIL) ((-115 . -677) T) ((-644 . -852) NIL) ((-983 . -492) 91199) ((-460 . -128) T) ((-538 . -23) T) ((-627 . -291) 91137) ((-590 . -712) T) ((-566 . -712) T) ((-1148 . -797) NIL) ((-944 . -272) T) ((-233 . -21) T) ((-644 . -601) 91087) ((-332 . -1030) T) ((-233 . -25) T) ((-232 . -21) T) ((-232 . -25) T) ((-145 . -37) 91071) ((-2 . -99) T) ((-853 . -863) T) ((-461 . -1191) 91041) ((-206 . -977) 91018) ((-1049 . -986) T) ((-662 . -289) T) ((-276 . -668) 90960) ((-651 . -993) T) ((-466 . -432) T) ((-388 . -492) 90872) ((-201 . -432) T) ((-1049 . -216) T) ((-277 . -144) 90822) ((-940 . -573) 90783) ((-940 . -572) 90765) ((-931 . -572) 90747) ((-114 . -993) T) ((-607 . -992) 90731) ((-208 . -471) T) ((-380 . -572) 90713) ((-380 . -573) 90690) ((-990 . -1191) 90660) ((-607 . -109) 90639) ((-1069 . -468) 90623) ((-765 . -37) 90593) ((-61 . -421) T) ((-61 . -376) T) ((-1086 . -99) T) ((-814 . -128) T) ((-463 . -99) 90571) ((-1210 . -349) T) ((-1012 . -99) T) ((-996 . -99) T) ((-332 . -668) 90516) ((-682 . -140) 90495) ((-682 . -138) 90474) ((-964 . -601) 90411) ((-500 . -1030) 90389) ((-340 . -99) T) ((-334 . -99) T) ((-326 . -99) T) ((-105 . -99) T) ((-482 . -1030) T) ((-335 . -601) 90334) ((-1098 . -594) 90282) ((-1054 . -594) 90230) ((-366 . -487) 90209) ((-783 . -795) 90188) ((-360 . -1142) T) ((-644 . -677) T) ((-320 . -993) T) ((-1148 . -934) 90140) ((-163 . -993) T) ((-100 . -572) 90072) ((-1100 . -138) 90051) ((-1100 . -140) 90030) ((-360 . -523) T) ((-1099 . -140) 90009) ((-1099 . -138) 89988) ((-1093 . -138) 89895) ((-388 . -272) T) ((-1093 . -140) 89802) ((-1055 . -140) 89781) ((-1055 . -138) 89760) ((-300 . -37) 89601) ((-159 . -128) T) ((-294 . -745) NIL) ((-294 . -742) NIL) ((-607 . -986) T) ((-47 . -601) 89566) ((-935 . -21) T) ((-125 . -951) 89550) ((-119 . -951) 89534) ((-935 . -25) T) ((-844 . -117) 89518) ((-1085 . -99) T) ((-766 . -797) 89497) ((-1157 . -128) T) ((-1098 . -25) T) ((-1098 . -21) T) ((-802 . -128) T) ((-1054 . -25) T) ((-1054 . -21) T) ((-801 . -25) T) ((-801 . -21) T) ((-732 . -289) 89476) ((-600 . -99) 89454) ((-587 . -99) T) ((-1086 . -291) 89249) ((-538 . -128) T) ((-577 . -795) 89228) ((-1083 . -468) 89212) ((-1077 . -144) 89162) ((-1073 . -572) 89124) ((-1073 . -573) 89085) ((-964 . -741) T) ((-964 . -744) T) ((-964 . -677) T) ((-463 . -291) 89023) ((-433 . -398) 88993) ((-332 . -162) T) ((-271 . -37) 88980) ((-256 . -99) T) ((-255 . -99) T) ((-254 . -99) T) ((-253 . -99) T) ((-252 . -99) T) ((-251 . -99) T) ((-250 . -99) T) ((-324 . -977) 88957) ((-196 . -99) T) ((-195 . -99) T) ((-193 . -99) T) ((-192 . -99) T) ((-191 . -99) T) ((-190 . -99) T) ((-187 . -99) T) ((-186 . -99) T) ((-663 . -992) 88780) ((-185 . -99) T) ((-184 . -99) T) ((-183 . -99) T) ((-182 . -99) T) ((-181 . -99) T) ((-180 . -99) T) ((-179 . -99) T) ((-178 . -99) T) ((-177 . -99) T) ((-335 . -677) T) ((-663 . -109) 88589) ((-623 . -214) 88573) ((-544 . -289) T) ((-495 . -289) T) ((-276 . -492) 88522) ((-105 . -291) NIL) ((-70 . -376) T) ((-1043 . -99) 88313) ((-783 . -392) 88297) ((-1049 . -745) T) ((-1049 . -742) T) ((-651 . -1030) T) ((-360 . -344) T) ((-159 . -471) 88275) ((-197 . -1030) T) ((-205 . -572) 88207) ((-130 . -1030) T) ((-114 . -1030) T) ((-47 . -677) T) ((-983 . -468) 88172) ((-484 . -91) T) ((-134 . -406) 88154) ((-134 . -349) T) ((-967 . -99) T) ((-490 . -487) 88133) ((-456 . -99) T) ((-443 . -99) T) ((-974 . -1042) T) ((-1100 . -34) 88099) ((-1100 . -93) 88065) ((-1100 . -1127) 88031) ((-1100 . -1124) 87997) ((-1085 . -291) NIL) ((-87 . -377) T) ((-87 . -376) T) ((-1012 . -1078) 87976) ((-1099 . -1124) 87942) ((-1099 . -1127) 87908) ((-974 . -23) T) ((-1099 . -93) 87874) ((-538 . -471) T) ((-1099 . -34) 87840) ((-1093 . -1124) 87806) ((-1093 . -1127) 87772) ((-1093 . -93) 87738) ((-342 . -1042) T) ((-340 . -1078) 87717) ((-334 . -1078) 87696) ((-326 . -1078) 87675) ((-1093 . -34) 87641) ((-1055 . -34) 87607) ((-1055 . -93) 87573) ((-105 . -1078) T) ((-1055 . -1127) 87539) ((-783 . -993) 87518) ((-600 . -291) 87456) ((-587 . -291) 87307) ((-1055 . -1124) 87273) ((-663 . -986) T) ((-997 . -594) 87255) ((-1012 . -37) 87123) ((-895 . -594) 87071) ((-945 . -140) T) ((-945 . -138) NIL) ((-360 . -1042) T) ((-305 . -25) T) ((-303 . -23) T) ((-886 . -797) 87050) ((-663 . -307) 87027) ((-460 . -594) 86975) ((-39 . -977) 86865) ((-651 . -668) 86852) ((-663 . -216) T) ((-320 . -1030) T) ((-163 . -1030) T) ((-312 . -797) T) ((-399 . -432) 86802) ((-360 . -23) T) ((-340 . -37) 86767) ((-334 . -37) 86732) ((-326 . -37) 86697) ((-78 . -421) T) ((-78 . -376) T) ((-208 . -25) T) ((-208 . -21) T) ((-784 . -1042) T) ((-105 . -37) 86647) ((-777 . -1042) T) ((-724 . -1030) T) ((-114 . -668) 86634) ((-624 . -977) 86618) ((-571 . -99) T) ((-784 . -23) T) ((-777 . -23) T) ((-1083 . -268) 86595) ((-1043 . -291) 86533) ((-1032 . -218) 86517) ((-62 . -377) T) ((-62 . -376) T) ((-108 . -99) T) ((-39 . -358) 86494) ((-606 . -799) 86478) ((-997 . -21) T) ((-997 . -25) T) ((-765 . -214) 86448) ((-895 . -25) T) ((-895 . -21) T) ((-577 . -993) T) ((-460 . -25) T) ((-460 . -21) T) ((-967 . -291) 86386) ((-832 . -572) 86368) ((-828 . -572) 86350) ((-233 . -797) 86301) ((-232 . -797) 86252) ((-500 . -492) 86185) ((-814 . -594) 86162) ((-456 . -291) 86100) ((-443 . -291) 86038) ((-332 . -272) T) ((-1083 . -1172) 86022) ((-1069 . -572) 85984) ((-1069 . -573) 85945) ((-1067 . -99) T) ((-940 . -992) 85841) ((-39 . -843) 85793) ((-1083 . -564) 85770) ((-1210 . -601) 85757) ((-998 . -144) 85703) ((-815 . -1142) T) ((-940 . -109) 85585) ((-320 . -668) 85569) ((-809 . -572) 85551) ((-163 . -668) 85483) ((-388 . -268) 85441) ((-815 . -523) T) ((-105 . -381) 85423) ((-82 . -365) T) ((-82 . -376) T) ((-651 . -162) T) ((-96 . -677) T) ((-461 . -99) 85214) ((-96 . -453) T) ((-114 . -162) T) ((-1043 . -37) 85184) ((-159 . -594) 85132) ((-990 . -99) T) ((-814 . -25) T) ((-765 . -221) 85111) ((-814 . -21) T) ((-768 . -99) T) ((-395 . -99) T) ((-366 . -99) T) ((-108 . -291) NIL) ((-210 . -99) 85089) ((-125 . -1138) T) ((-119 . -1138) T) ((-974 . -128) T) ((-623 . -348) 85073) ((-940 . -986) T) ((-1157 . -594) 85021) ((-1034 . -572) 85003) ((-944 . -572) 84985) ((-493 . -23) T) ((-488 . -23) T) ((-324 . -289) T) ((-486 . -23) T) ((-303 . -128) T) ((-3 . -1030) T) ((-944 . -573) 84969) ((-940 . -226) 84948) ((-940 . -216) 84927) ((-1210 . -677) T) ((-1176 . -138) 84906) ((-783 . -1030) T) ((-1176 . -140) 84885) ((-1169 . -140) 84864) ((-1169 . -138) 84843) ((-1168 . -1142) 84822) ((-1148 . -138) 84729) ((-1148 . -140) 84636) ((-1147 . -1142) 84615) ((-360 . -128) T) ((-531 . -829) 84597) ((0 . -1030) T) ((-163 . -162) T) ((-159 . -21) T) ((-159 . -25) T) ((-48 . -1030) T) ((-1170 . -601) 84502) ((-1168 . -523) 84453) ((-665 . -1042) T) ((-1147 . -523) 84404) ((-531 . -977) 84386) ((-556 . -140) 84365) ((-556 . -138) 84344) ((-473 . -977) 84287) ((-85 . -365) T) ((-85 . -376) T) ((-815 . -344) T) ((-784 . -128) T) ((-777 . -128) T) ((-665 . -23) T) ((-484 . -572) 84237) ((-480 . -572) 84219) ((-1206 . -993) T) ((-360 . -995) T) ((-966 . -1030) 84197) ((-844 . -33) T) ((-461 . -291) 84135) ((-1083 . -573) 84096) ((-1083 . -572) 84028) ((-1098 . -797) 84007) ((-44 . -99) T) ((-1054 . -797) 83986) ((-767 . -99) T) ((-1157 . -25) T) ((-1157 . -21) T) ((-802 . -25) T) ((-43 . -348) 83970) ((-802 . -21) T) ((-682 . -432) 83921) ((-1205 . -572) 83903) ((-538 . -25) T) ((-538 . -21) T) ((-371 . -1030) T) ((-990 . -291) 83841) ((-577 . -1030) T) ((-649 . -829) 83823) ((-1184 . -1138) T) ((-210 . -291) 83761) ((-137 . -349) T) ((-983 . -573) 83703) ((-983 . -572) 83646) ((-294 . -852) NIL) ((-649 . -977) 83591) ((-662 . -863) T) ((-454 . -1142) 83570) ((-1099 . -432) 83549) ((-1093 . -432) 83528) ((-311 . -99) T) ((-815 . -1042) T) ((-297 . -601) 83350) ((-294 . -601) 83279) ((-454 . -523) 83230) ((-320 . -492) 83196) ((-517 . -144) 83146) ((-39 . -289) T) ((-790 . -572) 83128) ((-651 . -272) T) ((-815 . -23) T) ((-360 . -471) T) ((-1012 . -214) 83098) ((-490 . -99) T) ((-388 . -573) 82906) ((-388 . -572) 82888) ((-245 . -572) 82870) ((-114 . -272) T) ((-1170 . -677) T) ((-1168 . -344) 82849) ((-1147 . -344) 82828) ((-1195 . -33) T) ((-115 . -1138) T) ((-105 . -214) 82810) ((-1104 . -99) T) ((-457 . -1030) T) ((-500 . -468) 82794) ((-688 . -33) T) ((-461 . -37) 82764) ((-134 . -33) T) ((-115 . -827) 82741) ((-115 . -829) NIL) ((-579 . -977) 82626) ((-598 . -797) 82605) ((-1194 . -99) T) ((-277 . -99) T) ((-663 . -349) 82584) ((-115 . -977) 82561) ((-371 . -668) 82545) ((-577 . -668) 82529) ((-44 . -291) 82333) ((-766 . -138) 82312) ((-766 . -140) 82291) ((-1205 . -363) 82270) ((-769 . -797) T) ((-1186 . -1030) T) ((-1086 . -212) 82217) ((-367 . -797) 82196) ((-1176 . -1127) 82162) ((-1176 . -1124) 82128) ((-1169 . -1124) 82094) ((-493 . -128) T) ((-1169 . -1127) 82060) ((-1148 . -1124) 82026) ((-1148 . -1127) 81992) ((-1176 . -34) 81958) ((-1176 . -93) 81924) ((-590 . -572) 81893) ((-566 . -572) 81862) ((-208 . -797) T) ((-1169 . -93) 81828) ((-1169 . -34) 81794) ((-1168 . -1042) T) ((-1049 . -601) 81781) ((-1148 . -93) 81747) ((-1147 . -1042) T) ((-554 . -144) 81729) ((-1012 . -330) 81708) ((-115 . -358) 81685) ((-115 . -319) 81662) ((-163 . -272) T) ((-1148 . -34) 81628) ((-813 . -289) T) ((-294 . -744) NIL) ((-294 . -741) NIL) ((-297 . -677) 81478) ((-294 . -677) T) ((-454 . -344) 81457) ((-340 . -330) 81436) ((-334 . -330) 81415) ((-326 . -330) 81394) ((-297 . -453) 81373) ((-1168 . -23) T) ((-1147 . -23) T) ((-669 . -1042) T) ((-665 . -128) T) ((-606 . -99) T) ((-457 . -668) 81338) ((-44 . -264) 81288) ((-102 . -1030) T) ((-66 . -572) 81270) ((-808 . -99) T) ((-579 . -843) 81229) ((-1206 . -1030) T) ((-362 . -1030) T) ((-80 . -1138) T) ((-997 . -797) T) ((-895 . -797) 81208) ((-115 . -843) NIL) ((-732 . -863) 81187) ((-664 . -797) T) ((-503 . -1030) T) ((-478 . -1030) T) ((-336 . -1142) T) ((-333 . -1142) T) ((-325 . -1142) T) ((-246 . -1142) 81166) ((-230 . -1142) 81145) ((-1043 . -214) 81115) ((-460 . -797) 81094) ((-1069 . -992) 81078) ((-371 . -712) T) ((-1085 . -778) T) ((-644 . -1138) T) ((-336 . -523) T) ((-333 . -523) T) ((-325 . -523) T) ((-246 . -523) 81009) ((-230 . -523) 80940) ((-1069 . -109) 80919) ((-433 . -695) 80889) ((-809 . -992) 80859) ((-767 . -37) 80801) ((-644 . -827) 80783) ((-644 . -829) 80765) ((-277 . -291) 80569) ((-853 . -1142) T) ((-623 . -392) 80553) ((-809 . -109) 80518) ((-644 . -977) 80463) ((-945 . -432) T) ((-853 . -523) T) ((-544 . -863) T) ((-454 . -1042) T) ((-495 . -863) T) ((-1083 . -270) 80440) ((-857 . -432) T) ((-63 . -572) 80422) ((-587 . -212) 80368) ((-454 . -23) T) ((-1049 . -744) T) ((-815 . -128) T) ((-1049 . -741) T) ((-1197 . -1199) 80347) ((-1049 . -677) T) ((-607 . -601) 80321) ((-276 . -572) 80063) ((-975 . -33) T) ((-765 . -795) 80042) ((-543 . -289) T) ((-531 . -289) T) ((-473 . -289) T) ((-1206 . -668) 80012) ((-644 . -358) 79994) ((-644 . -319) 79976) ((-457 . -162) T) ((-362 . -668) 79946) ((-814 . -797) NIL) ((-531 . -962) T) ((-473 . -962) T) ((-1062 . -572) 79928) ((-1043 . -221) 79907) ((-198 . -99) T) ((-1077 . -99) T) ((-69 . -572) 79889) ((-1069 . -986) T) ((-1104 . -37) 79786) ((-805 . -572) 79768) ((-531 . -516) T) ((-623 . -993) T) ((-682 . -892) 79721) ((-1069 . -216) 79700) ((-1014 . -1030) T) ((-974 . -25) T) ((-974 . -21) T) ((-944 . -992) 79645) ((-848 . -99) T) ((-809 . -986) T) ((-644 . -843) NIL) ((-336 . -310) 79629) ((-336 . -344) T) ((-333 . -310) 79613) ((-333 . -344) T) ((-325 . -310) 79597) ((-325 . -344) T) ((-466 . -99) T) ((-1194 . -37) 79567) ((-500 . -637) 79517) ((-201 . -99) T) ((-964 . -977) 79399) ((-944 . -109) 79328) ((-1100 . -915) 79297) ((-1099 . -915) 79259) ((-497 . -144) 79243) ((-1012 . -351) 79222) ((-332 . -572) 79204) ((-303 . -21) T) ((-335 . -977) 79181) ((-303 . -25) T) ((-1093 . -915) 79150) ((-1055 . -915) 79117) ((-74 . -572) 79099) ((-649 . -289) T) ((-159 . -797) 79078) ((-853 . -344) T) ((-360 . -25) T) ((-360 . -21) T) ((-853 . -310) 79065) ((-84 . -572) 79047) ((-649 . -962) T) ((-628 . -797) T) ((-1168 . -128) T) ((-1147 . -128) T) ((-844 . -951) 79031) ((-784 . -21) T) ((-47 . -977) 78974) ((-784 . -25) T) ((-777 . -25) T) ((-777 . -21) T) ((-1204 . -993) T) ((-1202 . -993) T) ((-607 . -677) T) ((-1205 . -992) 78958) ((-1157 . -797) 78937) ((-765 . -392) 78906) ((-100 . -117) 78890) ((-127 . -1030) T) ((-51 . -1030) T) ((-869 . -572) 78872) ((-814 . -934) 78849) ((-773 . -99) T) ((-1205 . -109) 78828) ((-606 . -37) 78798) ((-538 . -797) T) ((-336 . -1042) T) ((-333 . -1042) T) ((-325 . -1042) T) ((-246 . -1042) T) ((-230 . -1042) T) ((-579 . -289) 78777) ((-1077 . -291) 78581) ((-617 . -23) T) ((-461 . -214) 78551) ((-145 . -993) T) ((-336 . -23) T) ((-333 . -23) T) ((-325 . -23) T) ((-115 . -289) T) ((-246 . -23) T) ((-230 . -23) T) ((-944 . -986) T) ((-663 . -852) 78530) ((-944 . -216) 78502) ((-944 . -226) T) ((-115 . -962) NIL) ((-853 . -1042) T) ((-1169 . -432) 78481) ((-1148 . -432) 78460) ((-500 . -572) 78392) ((-663 . -601) 78317) ((-388 . -992) 78269) ((-482 . -572) 78251) ((-853 . -23) T) ((-466 . -291) NIL) ((-454 . -128) T) ((-201 . -291) NIL) ((-388 . -109) 78189) ((-765 . -993) 78120) ((-688 . -1028) 78104) ((-1168 . -471) 78070) ((-1147 . -471) 78036) ((-457 . -272) T) ((-134 . -1028) 78018) ((-126 . -144) 78000) ((-1205 . -986) T) ((-998 . -99) T) ((-478 . -492) NIL) ((-653 . -99) T) ((-461 . -221) 77979) ((-1098 . -138) 77958) ((-1098 . -140) 77937) ((-1054 . -140) 77916) ((-1054 . -138) 77895) ((-590 . -992) 77879) ((-566 . -992) 77863) ((-623 . -1030) T) ((-623 . -989) 77803) ((-1100 . -1175) 77787) ((-1100 . -1162) 77764) ((-466 . -1078) T) ((-1099 . -1167) 77725) ((-1099 . -1162) 77695) ((-1099 . -1165) 77679) ((-201 . -1078) T) ((-324 . -863) T) ((-768 . -248) 77663) ((-590 . -109) 77642) ((-566 . -109) 77621) ((-1093 . -1146) 77582) ((-790 . -986) 77561) ((-1093 . -1162) 77538) ((-493 . -25) T) ((-473 . -284) T) ((-489 . -23) T) ((-488 . -25) T) ((-486 . -25) T) ((-485 . -23) T) ((-1093 . -1144) 77522) ((-388 . -986) T) ((-300 . -993) T) ((-644 . -289) T) ((-105 . -795) T) ((-388 . -226) T) ((-388 . -216) 77501) ((-663 . -677) T) ((-466 . -37) 77451) ((-201 . -37) 77401) ((-454 . -471) 77367) ((-1085 . -1071) T) ((-1031 . -99) T) ((-651 . -572) 77349) ((-651 . -573) 77264) ((-665 . -21) T) ((-665 . -25) T) ((-197 . -572) 77246) ((-130 . -572) 77228) ((-114 . -572) 77210) ((-148 . -25) T) ((-1204 . -1030) T) ((-815 . -594) 77158) ((-1202 . -1030) T) ((-906 . -99) T) ((-686 . -99) T) ((-666 . -99) T) ((-433 . -99) T) ((-766 . -432) 77109) ((-43 . -1030) T) ((-1020 . -797) T) ((-617 . -128) T) ((-998 . -291) 76960) ((-623 . -668) 76944) ((-271 . -993) T) ((-336 . -128) T) ((-333 . -128) T) ((-325 . -128) T) ((-246 . -128) T) ((-230 . -128) T) ((-399 . -99) T) ((-145 . -1030) T) ((-44 . -212) 76894) ((-901 . -797) 76873) ((-940 . -601) 76811) ((-223 . -1191) 76781) ((-964 . -289) T) ((-276 . -992) 76703) ((-853 . -128) T) ((-39 . -863) T) ((-466 . -381) 76685) ((-335 . -289) T) ((-201 . -381) 76667) ((-1012 . -392) 76651) ((-276 . -109) 76568) ((-815 . -25) T) ((-815 . -21) T) ((-320 . -572) 76550) ((-1170 . -46) 76494) ((-208 . -140) T) ((-163 . -572) 76476) ((-1043 . -795) 76455) ((-724 . -572) 76437) ((-567 . -218) 76384) ((-455 . -218) 76334) ((-1204 . -668) 76304) ((-47 . -289) T) ((-1202 . -668) 76274) ((-907 . -1030) T) ((-765 . -1030) 76065) ((-293 . -99) T) ((-844 . -1138) T) ((-47 . -962) T) ((-1147 . -594) 75973) ((-639 . -99) 75951) ((-43 . -668) 75935) ((-517 . -99) T) ((-65 . -364) T) ((-65 . -376) T) ((-615 . -23) T) ((-623 . -712) T) ((-1136 . -1030) 75913) ((-332 . -992) 75858) ((-627 . -1030) 75836) ((-997 . -140) T) ((-895 . -140) 75815) ((-895 . -138) 75794) ((-749 . -99) T) ((-145 . -668) 75778) ((-460 . -140) 75757) ((-460 . -138) 75736) ((-332 . -109) 75665) ((-1012 . -993) T) ((-303 . -797) 75644) ((-1176 . -915) 75613) ((-582 . -1030) T) ((-1169 . -915) 75575) ((-489 . -128) T) ((-485 . -128) T) ((-277 . -212) 75525) ((-340 . -993) T) ((-334 . -993) T) ((-326 . -993) T) ((-276 . -986) 75468) ((-1148 . -915) 75437) ((-360 . -797) T) ((-105 . -993) T) ((-940 . -677) T) ((-813 . -863) T) ((-790 . -745) 75416) ((-790 . -742) 75395) ((-399 . -291) 75334) ((-448 . -99) T) ((-556 . -915) 75303) ((-300 . -1030) T) ((-388 . -745) 75282) ((-388 . -742) 75261) ((-478 . -468) 75243) ((-1170 . -977) 75209) ((-1168 . -21) T) ((-1168 . -25) T) ((-1147 . -21) T) ((-1147 . -25) T) ((-765 . -668) 75151) ((-649 . -385) T) ((-1195 . -1138) T) ((-1043 . -392) 75120) ((-944 . -349) NIL) ((-100 . -33) T) ((-688 . -1138) T) ((-43 . -712) T) ((-554 . -99) T) ((-75 . -377) T) ((-75 . -376) T) ((-606 . -609) 75104) ((-134 . -1138) T) ((-814 . -140) T) ((-814 . -138) NIL) ((-332 . -986) T) ((-68 . -364) T) ((-68 . -376) T) ((-1092 . -99) T) ((-623 . -492) 75037) ((-639 . -291) 74975) ((-906 . -37) 74872) ((-686 . -37) 74842) ((-517 . -291) 74646) ((-297 . -1138) T) ((-332 . -216) T) ((-332 . -226) T) ((-294 . -1138) T) ((-271 . -1030) T) ((-1106 . -572) 74628) ((-662 . -1142) T) ((-1083 . -604) 74612) ((-1133 . -523) 74591) ((-662 . -523) T) ((-297 . -827) 74575) ((-297 . -829) 74500) ((-294 . -827) 74461) ((-294 . -829) NIL) ((-749 . -291) 74426) ((-300 . -668) 74267) ((-305 . -304) 74244) ((-464 . -99) T) ((-454 . -25) T) ((-454 . -21) T) ((-399 . -37) 74218) ((-297 . -977) 73886) ((-208 . -1124) T) ((-208 . -1127) T) ((-3 . -572) 73868) ((-294 . -977) 73798) ((-2 . -1030) T) ((-2 . |RecordCategory|) T) ((-783 . -572) 73780) ((-1043 . -993) 73711) ((-543 . -863) T) ((-531 . -770) T) ((-531 . -863) T) ((-473 . -863) T) ((-132 . -977) 73695) ((-208 . -93) T) ((-73 . -421) T) ((-73 . -376) T) ((0 . -572) 73677) ((-159 . -140) 73656) ((-159 . -138) 73607) ((-208 . -34) T) ((-48 . -572) 73589) ((-457 . -993) T) ((-466 . -214) 73571) ((-463 . -911) 73555) ((-461 . -795) 73534) ((-201 . -214) 73516) ((-79 . -421) T) ((-79 . -376) T) ((-1073 . -33) T) ((-765 . -162) 73495) ((-682 . -99) T) ((-966 . -572) 73462) ((-478 . -268) 73437) ((-297 . -358) 73407) ((-294 . -358) 73368) ((-294 . -319) 73329) ((-1017 . -572) 73311) ((-766 . -892) 73258) ((-615 . -128) T) ((-1157 . -138) 73237) ((-1157 . -140) 73216) ((-1100 . -99) T) ((-1099 . -99) T) ((-1093 . -99) T) ((-1086 . -1030) T) ((-1055 . -99) T) ((-205 . -33) T) ((-271 . -668) 73203) ((-1086 . -569) 73179) ((-554 . -291) NIL) ((-463 . -1030) 73157) ((-371 . -572) 73139) ((-488 . -797) T) ((-1077 . -212) 73089) ((-1176 . -1175) 73073) ((-1176 . -1162) 73050) ((-1169 . -1167) 73011) ((-1169 . -1162) 72981) ((-1169 . -1165) 72965) ((-1148 . -1146) 72926) ((-1148 . -1162) 72903) ((-577 . -572) 72885) ((-1148 . -1144) 72869) ((-649 . -863) T) ((-1100 . -266) 72835) ((-1099 . -266) 72801) ((-1093 . -266) 72767) ((-1012 . -1030) T) ((-996 . -1030) T) ((-47 . -284) T) ((-297 . -843) 72734) ((-294 . -843) NIL) ((-996 . -1002) 72713) ((-1049 . -829) 72695) ((-749 . -37) 72679) ((-246 . -594) 72627) ((-230 . -594) 72575) ((-651 . -992) 72562) ((-556 . -1162) 72539) ((-1055 . -266) 72505) ((-300 . -162) 72436) ((-340 . -1030) T) ((-334 . -1030) T) ((-326 . -1030) T) ((-478 . -19) 72418) ((-1049 . -977) 72400) ((-1032 . -144) 72384) ((-105 . -1030) T) ((-114 . -992) 72371) ((-662 . -344) T) ((-478 . -564) 72346) ((-651 . -109) 72331) ((-417 . -99) T) ((-44 . -1076) 72281) ((-114 . -109) 72266) ((-590 . -671) T) ((-566 . -671) T) ((-765 . -492) 72199) ((-975 . -1138) T) ((-886 . -144) 72183) ((-497 . -99) 72133) ((-1019 . -1142) 72112) ((-732 . -1142) 72091) ((-457 . -572) 72043) ((-60 . -1138) T) ((-457 . -573) 71965) ((-730 . -1142) 71944) ((-1098 . -432) 71875) ((-1085 . -1030) T) ((-1069 . -601) 71849) ((-1019 . -523) 71780) ((-461 . -392) 71749) ((-579 . -863) 71728) ((-434 . -1142) 71707) ((-1054 . -432) 71658) ((-732 . -523) 71569) ((-379 . -572) 71551) ((-627 . -492) 71484) ((-730 . -523) 71415) ((-682 . -291) 71402) ((-617 . -25) T) ((-617 . -21) T) ((-434 . -523) 71333) ((-115 . -863) T) ((-115 . -770) NIL) ((-336 . -25) T) ((-336 . -21) T) ((-333 . -25) T) ((-333 . -21) T) ((-325 . -25) T) ((-325 . -21) T) ((-246 . -25) T) ((-246 . -21) T) ((-81 . -365) T) ((-81 . -376) T) ((-230 . -25) T) ((-230 . -21) T) ((-1186 . -572) 71315) ((-1133 . -1042) T) ((-1133 . -23) T) ((-1093 . -291) 71200) ((-1055 . -291) 71187) ((-809 . -601) 71147) ((-1012 . -668) 71015) ((-886 . -922) 70999) ((-271 . -162) T) ((-853 . -21) T) ((-853 . -25) T) ((-815 . -797) 70950) ((-662 . -1042) T) ((-662 . -23) T) ((-600 . -1030) 70928) ((-587 . -569) 70903) ((-587 . -1030) T) ((-544 . -1142) T) ((-495 . -1142) T) ((-544 . -523) T) ((-495 . -523) T) ((-340 . -668) 70855) ((-334 . -668) 70807) ((-163 . -992) 70739) ((-320 . -992) 70723) ((-105 . -668) 70673) ((-163 . -109) 70584) ((-326 . -668) 70536) ((-320 . -109) 70515) ((-256 . -1030) T) ((-255 . -1030) T) ((-254 . -1030) T) ((-253 . -1030) T) ((-651 . -986) T) ((-252 . -1030) T) ((-251 . -1030) T) ((-250 . -1030) T) ((-196 . -1030) T) ((-195 . -1030) T) ((-193 . -1030) T) ((-159 . -1127) 70493) ((-159 . -1124) 70471) ((-192 . -1030) T) ((-191 . -1030) T) ((-114 . -986) T) ((-190 . -1030) T) ((-187 . -1030) T) ((-651 . -216) T) ((-186 . -1030) T) ((-185 . -1030) T) ((-184 . -1030) T) ((-183 . -1030) T) ((-182 . -1030) T) ((-181 . -1030) T) ((-180 . -1030) T) ((-179 . -1030) T) ((-178 . -1030) T) ((-177 . -1030) T) ((-223 . -99) 70262) ((-159 . -34) 70240) ((-159 . -93) 70218) ((-607 . -977) 70116) ((-461 . -993) 70047) ((-1043 . -1030) 69838) ((-1069 . -33) T) ((-623 . -468) 69822) ((-71 . -1138) T) ((-102 . -572) 69804) ((-1206 . -572) 69786) ((-362 . -572) 69768) ((-538 . -1127) T) ((-538 . -1124) T) ((-682 . -37) 69617) ((-503 . -572) 69599) ((-497 . -291) 69537) ((-478 . -572) 69519) ((-478 . -573) 69501) ((-1093 . -1078) NIL) ((-967 . -1005) 69470) ((-967 . -1030) T) ((-945 . -99) T) ((-913 . -99) T) ((-857 . -99) T) ((-836 . -977) 69447) ((-1069 . -677) T) ((-944 . -601) 69392) ((-456 . -1030) T) ((-443 . -1030) T) ((-548 . -23) T) ((-538 . -34) T) ((-538 . -93) T) ((-408 . -99) T) ((-998 . -212) 69338) ((-126 . -99) T) ((-1100 . -37) 69235) ((-809 . -677) T) ((-644 . -863) T) ((-489 . -25) T) ((-485 . -21) T) ((-485 . -25) T) ((-1099 . -37) 69076) ((-320 . -986) T) ((-1093 . -37) 68872) ((-1012 . -162) T) ((-163 . -986) T) ((-1055 . -37) 68769) ((-663 . -46) 68746) ((-340 . -162) T) ((-334 . -162) T) ((-496 . -55) 68720) ((-475 . -55) 68670) ((-332 . -1201) 68647) ((-208 . -432) T) ((-300 . -272) 68598) ((-326 . -162) T) ((-163 . -226) T) ((-1147 . -797) 68497) ((-105 . -162) T) ((-815 . -934) 68481) ((-611 . -1042) T) ((-544 . -344) T) ((-544 . -310) 68468) ((-495 . -310) 68445) ((-495 . -344) T) ((-297 . -289) 68424) ((-294 . -289) T) ((-562 . -797) 68403) ((-1043 . -668) 68345) ((-497 . -264) 68329) ((-611 . -23) T) ((-399 . -214) 68313) ((-294 . -962) NIL) ((-317 . -23) T) ((-100 . -951) 68297) ((-44 . -35) 68276) ((-571 . -1030) T) ((-332 . -349) T) ((-473 . -27) T) ((-223 . -291) 68214) ((-1019 . -1042) T) ((-1205 . -601) 68188) ((-732 . -1042) T) ((-730 . -1042) T) ((-434 . -1042) T) ((-997 . -432) T) ((-895 . -432) 68139) ((-108 . -1030) T) ((-1019 . -23) T) ((-767 . -993) T) ((-732 . -23) T) ((-730 . -23) T) ((-460 . -432) 68090) ((-1086 . -492) 67873) ((-362 . -363) 67852) ((-1104 . -392) 67836) ((-441 . -23) T) ((-434 . -23) T) ((-463 . -492) 67769) ((-271 . -272) T) ((-1014 . -572) 67751) ((-388 . -852) 67730) ((-49 . -1042) T) ((-964 . -863) T) ((-944 . -677) T) ((-663 . -829) NIL) ((-544 . -1042) T) ((-495 . -1042) T) ((-790 . -601) 67703) ((-1133 . -128) T) ((-1093 . -381) 67655) ((-945 . -291) NIL) ((-765 . -468) 67639) ((-335 . -863) T) ((-1083 . -33) T) ((-388 . -601) 67591) ((-49 . -23) T) ((-662 . -128) T) ((-663 . -977) 67473) ((-544 . -23) T) ((-105 . -492) NIL) ((-495 . -23) T) ((-159 . -390) 67444) ((-126 . -291) NIL) ((-1067 . -1030) T) ((-1197 . -1196) 67428) ((-651 . -745) T) ((-651 . -742) T) ((-1049 . -289) T) ((-360 . -140) T) ((-262 . -572) 67410) ((-1147 . -934) 67380) ((-47 . -863) T) ((-627 . -468) 67364) ((-233 . -1191) 67334) ((-232 . -1191) 67304) ((-1102 . -797) T) ((-1043 . -162) 67283) ((-1049 . -962) T) ((-983 . -33) T) ((-784 . -140) 67262) ((-784 . -138) 67241) ((-688 . -104) 67225) ((-571 . -129) T) ((-461 . -1030) 67016) ((-1104 . -993) T) ((-814 . -432) T) ((-83 . -1138) T) ((-223 . -37) 66986) ((-134 . -104) 66968) ((-663 . -358) 66952) ((-1049 . -516) T) ((-371 . -992) 66936) ((-1205 . -677) T) ((-1098 . -892) 66905) ((-127 . -572) 66872) ((-51 . -572) 66854) ((-1054 . -892) 66821) ((-606 . -392) 66805) ((-1194 . -993) T) ((-577 . -992) 66789) ((-615 . -25) T) ((-615 . -21) T) ((-1085 . -492) NIL) ((-1176 . -99) T) ((-1169 . -99) T) ((-371 . -109) 66768) ((-205 . -236) 66752) ((-1148 . -99) T) ((-990 . -1030) T) ((-945 . -1078) T) ((-990 . -989) 66692) ((-768 . -1030) T) ((-324 . -1142) T) ((-590 . -601) 66676) ((-577 . -109) 66655) ((-566 . -601) 66639) ((-557 . -99) T) ((-548 . -128) T) ((-556 . -99) T) ((-395 . -1030) T) ((-366 . -1030) T) ((-210 . -1030) 66617) ((-600 . -492) 66550) ((-587 . -492) 66394) ((-783 . -986) 66373) ((-598 . -144) 66357) ((-324 . -523) T) ((-663 . -843) 66300) ((-517 . -212) 66250) ((-1176 . -266) 66216) ((-1012 . -272) 66167) ((-466 . -795) T) ((-206 . -1042) T) ((-1169 . -266) 66133) ((-1148 . -266) 66099) ((-945 . -37) 66049) ((-201 . -795) T) ((-1133 . -471) 66015) ((-857 . -37) 65967) ((-790 . -744) 65946) ((-790 . -741) 65925) ((-790 . -677) 65904) ((-340 . -272) T) ((-334 . -272) T) ((-326 . -272) T) ((-159 . -432) 65835) ((-408 . -37) 65819) ((-105 . -272) T) ((-206 . -23) T) ((-388 . -744) 65798) ((-388 . -741) 65777) ((-388 . -677) T) ((-478 . -270) 65752) ((-457 . -992) 65717) ((-611 . -128) T) ((-1043 . -492) 65650) ((-317 . -128) T) ((-159 . -383) 65629) ((-461 . -668) 65571) ((-765 . -268) 65548) ((-457 . -109) 65504) ((-606 . -993) T) ((-1157 . -432) 65435) ((-1019 . -128) T) ((-246 . -797) 65414) ((-230 . -797) 65393) ((-732 . -128) T) ((-730 . -128) T) ((-538 . -432) T) ((-990 . -668) 65335) ((-577 . -986) T) ((-967 . -492) 65268) ((-441 . -128) T) ((-434 . -128) T) ((-44 . -1030) T) ((-366 . -668) 65238) ((-767 . -1030) T) ((-456 . -492) 65171) ((-443 . -492) 65104) ((-433 . -348) 65074) ((-44 . -569) 65053) ((-297 . -284) T) ((-623 . -572) 65015) ((-57 . -797) 64994) ((-1148 . -291) 64879) ((-945 . -381) 64861) ((-765 . -564) 64838) ((-494 . -797) 64817) ((-474 . -797) 64796) ((-39 . -1142) T) ((-940 . -977) 64694) ((-49 . -128) T) ((-544 . -128) T) ((-495 . -128) T) ((-276 . -601) 64556) ((-324 . -310) 64533) ((-324 . -344) T) ((-303 . -304) 64510) ((-300 . -268) 64495) ((-39 . -523) T) ((-360 . -1124) T) ((-360 . -1127) T) ((-975 . -1115) 64470) ((-1112 . -218) 64420) ((-1093 . -214) 64372) ((-311 . -1030) T) ((-360 . -93) T) ((-360 . -34) T) ((-975 . -104) 64318) ((-457 . -986) T) ((-458 . -218) 64268) ((-1086 . -468) 64202) ((-1206 . -992) 64186) ((-362 . -992) 64170) ((-457 . -226) T) ((-766 . -99) T) ((-665 . -140) 64149) ((-665 . -138) 64128) ((-463 . -468) 64112) ((-464 . -316) 64081) ((-1206 . -109) 64060) ((-490 . -1030) T) ((-461 . -162) 64039) ((-940 . -358) 64023) ((-394 . -99) T) ((-362 . -109) 64002) ((-940 . -319) 63986) ((-261 . -925) 63970) ((-260 . -925) 63954) ((-1204 . -572) 63936) ((-1202 . -572) 63918) ((-108 . -492) NIL) ((-1098 . -1160) 63902) ((-801 . -799) 63886) ((-1104 . -1030) T) ((-100 . -1138) T) ((-895 . -892) 63847) ((-767 . -668) 63789) ((-1148 . -1078) NIL) ((-460 . -892) 63734) ((-997 . -136) T) ((-58 . -99) 63712) ((-43 . -572) 63694) ((-76 . -572) 63676) ((-332 . -601) 63621) ((-1194 . -1030) T) ((-489 . -797) T) ((-324 . -1042) T) ((-277 . -1030) T) ((-940 . -843) 63580) ((-277 . -569) 63559) ((-1176 . -37) 63456) ((-1169 . -37) 63297) ((-466 . -993) T) ((-1148 . -37) 63093) ((-201 . -993) T) ((-324 . -23) T) ((-145 . -572) 63075) ((-783 . -745) 63054) ((-783 . -742) 63033) ((-557 . -37) 63006) ((-556 . -37) 62903) ((-813 . -523) T) ((-206 . -128) T) ((-300 . -943) 62869) ((-77 . -572) 62851) ((-663 . -289) 62830) ((-276 . -677) 62733) ((-774 . -99) T) ((-808 . -791) T) ((-276 . -453) 62712) ((-1197 . -99) T) ((-39 . -344) T) ((-815 . -140) 62691) ((-815 . -138) 62670) ((-1085 . -468) 62652) ((-1206 . -986) T) ((-461 . -492) 62585) ((-1073 . -1138) T) ((-907 . -572) 62567) ((-600 . -468) 62551) ((-587 . -468) 62482) ((-765 . -572) 62214) ((-47 . -27) T) ((-1104 . -668) 62111) ((-606 . -1030) T) ((-417 . -345) 62085) ((-1032 . -99) T) ((-766 . -291) 62072) ((-808 . -1030) T) ((-1202 . -363) 62044) ((-990 . -492) 61977) ((-1086 . -268) 61953) ((-223 . -214) 61923) ((-1194 . -668) 61893) ((-767 . -162) 61872) ((-210 . -492) 61805) ((-577 . -745) 61784) ((-577 . -742) 61763) ((-1136 . -572) 61675) ((-205 . -1138) T) ((-627 . -572) 61607) ((-1083 . -951) 61591) ((-332 . -677) T) ((-886 . -99) 61541) ((-1148 . -381) 61493) ((-1043 . -468) 61477) ((-58 . -291) 61415) ((-312 . -99) T) ((-1133 . -21) T) ((-1133 . -25) T) ((-39 . -1042) T) ((-662 . -21) T) ((-582 . -572) 61397) ((-493 . -304) 61376) ((-662 . -25) T) ((-105 . -268) NIL) ((-864 . -1042) T) ((-39 . -23) T) ((-721 . -1042) T) ((-531 . -1142) T) ((-473 . -1142) T) ((-300 . -572) 61358) ((-945 . -214) 61340) ((-159 . -156) 61324) ((-543 . -523) T) ((-531 . -523) T) ((-473 . -523) T) ((-721 . -23) T) ((-1168 . -140) 61303) ((-1086 . -564) 61279) ((-1168 . -138) 61258) ((-967 . -468) 61242) ((-1147 . -138) 61167) ((-1147 . -140) 61092) ((-1197 . -1203) 61071) ((-456 . -468) 61055) ((-443 . -468) 61039) ((-500 . -33) T) ((-606 . -668) 61009) ((-110 . -910) T) ((-615 . -797) 60988) ((-1104 . -162) 60939) ((-346 . -99) T) ((-223 . -221) 60918) ((-233 . -99) T) ((-232 . -99) T) ((-1157 . -892) 60887) ((-107 . -99) T) ((-228 . -797) 60866) ((-766 . -37) 60715) ((-44 . -492) 60507) ((-1085 . -268) 60482) ((-198 . -1030) T) ((-1077 . -1030) T) ((-1077 . -569) 60461) ((-548 . -25) T) ((-548 . -21) T) ((-1032 . -291) 60399) ((-906 . -392) 60383) ((-649 . -1142) T) ((-587 . -268) 60358) ((-1019 . -594) 60306) ((-732 . -594) 60254) ((-730 . -594) 60202) ((-324 . -128) T) ((-271 . -572) 60184) ((-649 . -523) T) ((-848 . -1030) T) ((-813 . -1042) T) ((-434 . -594) 60132) ((-848 . -846) 60116) ((-360 . -432) T) ((-466 . -1030) T) ((-651 . -601) 60103) ((-886 . -291) 60041) ((-201 . -1030) T) ((-297 . -863) 60020) ((-294 . -863) T) ((-294 . -770) NIL) ((-371 . -671) T) ((-813 . -23) T) ((-114 . -601) 60007) ((-454 . -138) 59986) ((-399 . -392) 59970) ((-454 . -140) 59949) ((-108 . -468) 59931) ((-2 . -572) 59913) ((-1085 . -19) 59895) ((-1085 . -564) 59870) ((-611 . -21) T) ((-611 . -25) T) ((-554 . -1071) T) ((-1043 . -268) 59847) ((-317 . -25) T) ((-317 . -21) T) ((-473 . -344) T) ((-1197 . -37) 59817) ((-1069 . -1138) T) ((-587 . -564) 59792) ((-1019 . -25) T) ((-1019 . -21) T) ((-503 . -742) T) ((-503 . -745) T) ((-115 . -1142) T) ((-906 . -993) T) ((-579 . -523) T) ((-732 . -25) T) ((-732 . -21) T) ((-686 . -993) T) ((-666 . -993) T) ((-730 . -21) T) ((-730 . -25) T) ((-623 . -992) 59776) ((-441 . -25) T) ((-115 . -523) T) ((-441 . -21) T) ((-434 . -25) T) ((-434 . -21) T) ((-1069 . -977) 59674) ((-767 . -272) 59653) ((-773 . -1030) T) ((-909 . -910) T) ((-623 . -109) 59632) ((-277 . -492) 59424) ((-1204 . -992) 59408) ((-1202 . -992) 59392) ((-233 . -291) 59330) ((-232 . -291) 59268) ((-1151 . -99) 59246) ((-1086 . -573) NIL) ((-1086 . -572) 59228) ((-1168 . -1124) 59194) ((-1168 . -1127) 59160) ((-1148 . -214) 59112) ((-1147 . -1124) 59078) ((-1147 . -1127) 59044) ((-1069 . -358) 59028) ((-1049 . -770) T) ((-1049 . -863) T) ((-1043 . -564) 59005) ((-1012 . -573) 58989) ((-463 . -572) 58921) ((-765 . -270) 58898) ((-567 . -144) 58845) ((-399 . -993) T) ((-466 . -668) 58795) ((-461 . -468) 58779) ((-308 . -797) 58758) ((-320 . -601) 58732) ((-49 . -21) T) ((-49 . -25) T) ((-201 . -668) 58682) ((-159 . -675) 58653) ((-163 . -601) 58585) ((-544 . -21) T) ((-544 . -25) T) ((-495 . -25) T) ((-495 . -21) T) ((-455 . -144) 58535) ((-1012 . -572) 58517) ((-996 . -572) 58499) ((-935 . -99) T) ((-806 . -99) T) ((-749 . -392) 58463) ((-39 . -128) T) ((-649 . -344) T) ((-196 . -838) T) ((-651 . -744) T) ((-651 . -741) T) ((-543 . -1042) T) ((-531 . -1042) T) ((-473 . -1042) T) ((-651 . -677) T) ((-340 . -572) 58445) ((-334 . -572) 58427) ((-326 . -572) 58409) ((-64 . -377) T) ((-64 . -376) T) ((-105 . -573) 58339) ((-105 . -572) 58321) ((-195 . -838) T) ((-901 . -144) 58305) ((-1168 . -93) 58271) ((-721 . -128) T) ((-130 . -677) T) ((-114 . -677) T) ((-1168 . -34) 58237) ((-990 . -468) 58221) ((-543 . -23) T) ((-531 . -23) T) ((-473 . -23) T) ((-1147 . -93) 58187) ((-1147 . -34) 58153) ((-1098 . -99) T) ((-1054 . -99) T) ((-801 . -99) T) ((-210 . -468) 58137) ((-1204 . -109) 58116) ((-1202 . -109) 58095) ((-43 . -992) 58079) ((-1157 . -1160) 58063) ((-802 . -799) 58047) ((-1104 . -272) 58026) ((-108 . -268) 58001) ((-1069 . -843) 57960) ((-43 . -109) 57939) ((-623 . -986) T) ((-1107 . -1179) T) ((-1085 . -573) NIL) ((-1085 . -572) 57921) ((-998 . -569) 57896) ((-998 . -1030) T) ((-72 . -421) T) ((-72 . -376) T) ((-623 . -216) 57875) ((-145 . -992) 57859) ((-538 . -521) 57843) ((-336 . -140) 57822) ((-336 . -138) 57773) ((-333 . -140) 57752) ((-653 . -1030) T) ((-333 . -138) 57703) ((-325 . -140) 57682) ((-325 . -138) 57633) ((-246 . -138) 57612) ((-246 . -140) 57591) ((-233 . -37) 57561) ((-230 . -140) 57540) ((-115 . -344) T) ((-230 . -138) 57519) ((-232 . -37) 57489) ((-145 . -109) 57468) ((-944 . -977) 57358) ((-1093 . -795) NIL) ((-644 . -1142) T) ((-749 . -993) T) ((-649 . -1042) T) ((-1204 . -986) T) ((-1202 . -986) T) ((-1083 . -1138) T) ((-944 . -358) 57335) ((-853 . -138) T) ((-853 . -140) 57317) ((-813 . -128) T) ((-765 . -992) 57215) ((-644 . -523) T) ((-649 . -23) T) ((-600 . -572) 57147) ((-600 . -573) 57108) ((-587 . -573) NIL) ((-587 . -572) 57090) ((-466 . -162) T) ((-206 . -21) T) ((-201 . -162) T) ((-206 . -25) T) ((-454 . -1127) 57056) ((-454 . -1124) 57022) ((-256 . -572) 57004) ((-255 . -572) 56986) ((-254 . -572) 56968) ((-253 . -572) 56950) ((-252 . -572) 56932) ((-478 . -604) 56914) ((-251 . -572) 56896) ((-320 . -677) T) ((-250 . -572) 56878) ((-108 . -19) 56860) ((-163 . -677) T) ((-478 . -354) 56842) ((-196 . -572) 56824) ((-497 . -1076) 56808) ((-478 . -121) T) ((-108 . -564) 56783) ((-195 . -572) 56765) ((-454 . -34) 56731) ((-454 . -93) 56697) ((-193 . -572) 56679) ((-192 . -572) 56661) ((-191 . -572) 56643) ((-190 . -572) 56625) ((-187 . -572) 56607) ((-186 . -572) 56589) ((-185 . -572) 56571) ((-184 . -572) 56553) ((-183 . -572) 56535) ((-182 . -572) 56517) ((-181 . -572) 56499) ((-507 . -1033) 56451) ((-180 . -572) 56433) ((-179 . -572) 56415) ((-44 . -468) 56352) ((-178 . -572) 56334) ((-177 . -572) 56316) ((-765 . -109) 56207) ((-598 . -99) 56157) ((-461 . -268) 56134) ((-1043 . -572) 55866) ((-1031 . -1030) T) ((-983 . -1138) T) ((-579 . -1042) T) ((-1205 . -977) 55850) ((-1098 . -291) 55837) ((-1054 . -291) 55824) ((-115 . -1042) T) ((-769 . -99) T) ((-579 . -23) T) ((-1077 . -492) 55616) ((-462 . -1015) T) ((-367 . -99) T) ((-305 . -99) T) ((-944 . -843) 55568) ((-906 . -1030) T) ((-145 . -986) T) ((-115 . -23) T) ((-682 . -392) 55552) ((-686 . -1030) T) ((-666 . -1030) T) ((-653 . -129) T) ((-433 . -1030) T) ((-297 . -411) 55536) ((-388 . -1138) T) ((-967 . -573) 55497) ((-964 . -1142) T) ((-208 . -99) T) ((-967 . -572) 55459) ((-766 . -214) 55443) ((-964 . -523) T) ((-783 . -601) 55416) ((-335 . -1142) T) ((-456 . -572) 55378) ((-456 . -573) 55339) ((-443 . -573) 55300) ((-443 . -572) 55262) ((-388 . -827) 55246) ((-300 . -992) 55081) ((-388 . -829) 55006) ((-790 . -977) 54904) ((-466 . -492) NIL) ((-461 . -564) 54881) ((-335 . -523) T) ((-201 . -492) NIL) ((-815 . -432) T) ((-399 . -1030) T) ((-388 . -977) 54748) ((-300 . -109) 54569) ((-644 . -344) T) ((-208 . -266) T) ((-47 . -1142) T) ((-765 . -986) 54500) ((-543 . -128) T) ((-531 . -128) T) ((-473 . -128) T) ((-47 . -523) T) ((-1086 . -270) 54476) ((-1098 . -1078) 54454) ((-297 . -27) 54433) ((-997 . -99) T) ((-765 . -216) 54386) ((-223 . -795) 54365) ((-895 . -99) T) ((-664 . -99) T) ((-277 . -468) 54302) ((-460 . -99) T) ((-682 . -993) T) ((-571 . -572) 54284) ((-571 . -573) 54145) ((-388 . -358) 54129) ((-388 . -319) 54113) ((-1098 . -37) 53942) ((-1054 . -37) 53791) ((-801 . -37) 53761) ((-371 . -601) 53745) ((-598 . -291) 53683) ((-906 . -668) 53580) ((-205 . -104) 53564) ((-44 . -268) 53489) ((-686 . -668) 53459) ((-577 . -601) 53433) ((-293 . -1030) T) ((-271 . -992) 53420) ((-108 . -572) 53402) ((-108 . -573) 53384) ((-433 . -668) 53354) ((-766 . -235) 53293) ((-639 . -1030) 53271) ((-517 . -1030) T) ((-1100 . -993) T) ((-1099 . -993) T) ((-271 . -109) 53256) ((-1093 . -993) T) ((-1055 . -993) T) ((-517 . -569) 53235) ((-945 . -795) T) ((-210 . -637) 53193) ((-644 . -1042) T) ((-1133 . -691) 53169) ((-300 . -986) T) ((-324 . -25) T) ((-324 . -21) T) ((-388 . -843) 53128) ((-66 . -1138) T) ((-783 . -744) 53107) ((-399 . -668) 53081) ((-749 . -1030) T) ((-783 . -741) 53060) ((-649 . -128) T) ((-663 . -863) 53039) ((-644 . -23) T) ((-466 . -272) T) ((-783 . -677) 53018) ((-300 . -216) 52970) ((-300 . -226) 52949) ((-201 . -272) T) ((-964 . -344) T) ((-1168 . -432) 52928) ((-1147 . -432) 52907) ((-335 . -310) 52884) ((-335 . -344) T) ((-1067 . -572) 52866) ((-44 . -1172) 52816) ((-814 . -99) T) ((-598 . -264) 52800) ((-649 . -995) T) ((-457 . -601) 52765) ((-448 . -1030) T) ((-44 . -564) 52690) ((-1085 . -270) 52665) ((-39 . -594) 52604) ((-47 . -344) T) ((-1036 . -572) 52586) ((-1019 . -797) 52565) ((-587 . -270) 52540) ((-732 . -797) 52519) ((-730 . -797) 52498) ((-461 . -572) 52230) ((-223 . -392) 52199) ((-895 . -291) 52186) ((-434 . -797) 52165) ((-63 . -1138) T) ((-579 . -128) T) ((-460 . -291) 52152) ((-998 . -492) 51996) ((-271 . -986) T) ((-115 . -128) T) ((-433 . -712) T) ((-906 . -162) 51947) ((-1012 . -992) 51857) ((-577 . -744) 51836) ((-554 . -1030) T) ((-577 . -741) 51815) ((-577 . -677) T) ((-277 . -268) 51794) ((-276 . -1138) T) ((-990 . -572) 51756) ((-990 . -573) 51717) ((-964 . -1042) T) ((-159 . -99) T) ((-257 . -797) T) ((-1092 . -1030) T) ((-768 . -572) 51699) ((-1043 . -270) 51676) ((-1032 . -212) 51660) ((-944 . -289) T) ((-749 . -668) 51644) ((-340 . -992) 51596) ((-335 . -1042) T) ((-334 . -992) 51548) ((-395 . -572) 51530) ((-366 . -572) 51512) ((-326 . -992) 51464) ((-210 . -572) 51396) ((-1012 . -109) 51292) ((-964 . -23) T) ((-105 . -992) 51242) ((-841 . -99) T) ((-788 . -99) T) ((-758 . -99) T) ((-719 . -99) T) ((-628 . -99) T) ((-454 . -432) 51221) ((-399 . -162) T) ((-340 . -109) 51159) ((-334 . -109) 51097) ((-326 . -109) 51035) ((-233 . -214) 51005) ((-232 . -214) 50975) ((-335 . -23) T) ((-69 . -1138) T) ((-208 . -37) 50940) ((-105 . -109) 50874) ((-39 . -25) T) ((-39 . -21) T) ((-623 . -671) T) ((-159 . -266) 50852) ((-47 . -1042) T) ((-864 . -25) T) ((-721 . -25) T) ((-1077 . -468) 50789) ((-464 . -1030) T) ((-1206 . -601) 50763) ((-1157 . -99) T) ((-802 . -99) T) ((-223 . -993) 50694) ((-997 . -1078) T) ((-907 . -742) 50647) ((-362 . -601) 50631) ((-47 . -23) T) ((-907 . -745) 50584) ((-765 . -745) 50535) ((-765 . -742) 50486) ((-277 . -564) 50465) ((-457 . -677) T) ((-538 . -99) T) ((-814 . -291) 50422) ((-606 . -268) 50401) ((-110 . -614) T) ((-74 . -1138) T) ((-997 . -37) 50388) ((-617 . -355) 50367) ((-895 . -37) 50216) ((-682 . -1030) T) ((-460 . -37) 50065) ((-84 . -1138) T) ((-538 . -266) T) ((-1148 . -795) NIL) ((-1100 . -1030) T) ((-1099 . -1030) T) ((-1093 . -1030) T) ((-332 . -977) 50042) ((-1012 . -986) T) ((-945 . -993) T) ((-44 . -572) 50024) ((-44 . -573) NIL) ((-857 . -993) T) ((-767 . -572) 50006) ((-1074 . -99) 49984) ((-1012 . -226) 49935) ((-408 . -993) T) ((-340 . -986) T) ((-334 . -986) T) ((-346 . -345) 49912) ((-326 . -986) T) ((-233 . -221) 49891) ((-232 . -221) 49870) ((-107 . -345) 49844) ((-1012 . -216) 49769) ((-1055 . -1030) T) ((-276 . -843) 49728) ((-105 . -986) T) ((-644 . -128) T) ((-399 . -492) 49570) ((-340 . -216) 49549) ((-340 . -226) T) ((-43 . -671) T) ((-334 . -216) 49528) ((-334 . -226) T) ((-326 . -216) 49507) ((-326 . -226) T) ((-159 . -291) 49472) ((-105 . -226) T) ((-105 . -216) T) ((-300 . -742) T) ((-813 . -21) T) ((-813 . -25) T) ((-388 . -289) T) ((-478 . -33) T) ((-108 . -270) 49447) ((-1043 . -992) 49345) ((-814 . -1078) NIL) ((-311 . -572) 49327) ((-388 . -962) 49306) ((-1043 . -109) 49197) ((-641 . -1179) T) ((-417 . -1030) T) ((-1206 . -677) T) ((-61 . -572) 49179) ((-814 . -37) 49124) ((-500 . -1138) T) ((-562 . -144) 49108) ((-490 . -572) 49090) ((-1157 . -291) 49077) ((-682 . -668) 48926) ((-503 . -743) T) ((-503 . -744) T) ((-531 . -594) 48908) ((-473 . -594) 48868) ((-336 . -432) T) ((-333 . -432) T) ((-325 . -432) T) ((-246 . -432) 48819) ((-497 . -1030) 48769) ((-230 . -432) 48720) ((-1077 . -268) 48699) ((-1104 . -572) 48681) ((-639 . -492) 48614) ((-906 . -272) 48593) ((-517 . -492) 48385) ((-1098 . -214) 48369) ((-159 . -1078) 48348) ((-1194 . -572) 48330) ((-1100 . -668) 48227) ((-1099 . -668) 48068) ((-835 . -99) T) ((-1093 . -668) 47864) ((-1055 . -668) 47761) ((-1083 . -626) 47745) ((-336 . -383) 47696) ((-333 . -383) 47647) ((-325 . -383) 47598) ((-964 . -128) T) ((-749 . -492) 47510) ((-277 . -573) NIL) ((-277 . -572) 47492) ((-853 . -432) T) ((-907 . -349) 47445) ((-765 . -349) 47424) ((-488 . -487) 47403) ((-486 . -487) 47382) ((-466 . -268) NIL) ((-461 . -270) 47359) ((-399 . -272) T) ((-335 . -128) T) ((-201 . -268) NIL) ((-644 . -471) NIL) ((-96 . -1042) T) ((-159 . -37) 47187) ((-1168 . -915) 47149) ((-1074 . -291) 47087) ((-1147 . -915) 47056) ((-853 . -383) T) ((-1043 . -986) 46987) ((-1170 . -523) T) ((-1077 . -564) 46966) ((-110 . -797) T) ((-998 . -468) 46897) ((-543 . -21) T) ((-543 . -25) T) ((-531 . -21) T) ((-531 . -25) T) ((-473 . -25) T) ((-473 . -21) T) ((-1157 . -1078) 46875) ((-1043 . -216) 46828) ((-47 . -128) T) ((-1120 . -99) T) ((-223 . -1030) 46619) ((-814 . -381) 46596) ((-1020 . -99) T) ((-1008 . -99) T) ((-567 . -99) T) ((-455 . -99) T) ((-1157 . -37) 46425) ((-802 . -37) 46395) ((-682 . -162) 46306) ((-606 . -572) 46288) ((-599 . -1015) T) ((-538 . -37) 46275) ((-901 . -99) 46225) ((-808 . -572) 46207) ((-808 . -573) 46129) ((-554 . -492) NIL) ((-1176 . -993) T) ((-1169 . -993) T) ((-1148 . -993) T) ((-557 . -993) T) ((-556 . -993) T) ((-1210 . -1042) T) ((-1100 . -162) 46080) ((-1099 . -162) 46011) ((-1093 . -162) 45942) ((-1055 . -162) 45893) ((-945 . -1030) T) ((-913 . -1030) T) ((-857 . -1030) T) ((-1133 . -140) 45872) ((-749 . -747) 45856) ((-649 . -25) T) ((-649 . -21) T) ((-115 . -594) 45833) ((-651 . -829) 45815) ((-408 . -1030) T) ((-297 . -1142) 45794) ((-294 . -1142) T) ((-159 . -381) 45778) ((-1133 . -138) 45757) ((-454 . -915) 45719) ((-126 . -1030) T) ((-70 . -572) 45701) ((-105 . -745) T) ((-105 . -742) T) ((-297 . -523) 45680) ((-651 . -977) 45662) ((-294 . -523) T) ((-1210 . -23) T) ((-130 . -977) 45644) ((-461 . -992) 45542) ((-44 . -270) 45467) ((-223 . -668) 45409) ((-461 . -109) 45300) ((-1023 . -99) 45278) ((-974 . -99) T) ((-598 . -778) 45257) ((-682 . -492) 45200) ((-990 . -992) 45184) ((-579 . -21) T) ((-579 . -25) T) ((-998 . -268) 45159) ((-342 . -99) T) ((-303 . -99) T) ((-623 . -601) 45133) ((-366 . -992) 45117) ((-990 . -109) 45096) ((-766 . -392) 45080) ((-115 . -25) T) ((-87 . -572) 45062) ((-115 . -21) T) ((-567 . -291) 44857) ((-455 . -291) 44661) ((-1077 . -573) NIL) ((-366 . -109) 44640) ((-360 . -99) T) ((-198 . -572) 44622) ((-1077 . -572) 44604) ((-945 . -668) 44554) ((-1093 . -492) 44323) ((-857 . -668) 44275) ((-1055 . -492) 44245) ((-332 . -289) T) ((-1112 . -144) 44195) ((-901 . -291) 44133) ((-784 . -99) T) ((-408 . -668) 44117) ((-208 . -778) T) ((-777 . -99) T) ((-775 . -99) T) ((-458 . -144) 44067) ((-1168 . -1167) 44046) ((-1049 . -1142) T) ((-320 . -977) 44013) ((-1168 . -1162) 43983) ((-1168 . -1165) 43967) ((-1147 . -1146) 43946) ((-78 . -572) 43928) ((-848 . -572) 43910) ((-1147 . -1162) 43887) ((-1049 . -523) T) ((-864 . -797) T) ((-466 . -573) 43817) ((-466 . -572) 43799) ((-721 . -797) T) ((-360 . -266) T) ((-624 . -797) T) ((-1147 . -1144) 43783) ((-1170 . -1042) T) ((-201 . -573) 43713) ((-201 . -572) 43695) ((-998 . -564) 43670) ((-57 . -144) 43654) ((-494 . -144) 43638) ((-474 . -144) 43622) ((-340 . -1201) 43606) ((-334 . -1201) 43590) ((-326 . -1201) 43574) ((-297 . -344) 43553) ((-294 . -344) T) ((-461 . -986) 43484) ((-644 . -594) 43466) ((-1204 . -601) 43440) ((-1202 . -601) 43414) ((-1170 . -23) T) ((-639 . -468) 43398) ((-62 . -572) 43380) ((-1043 . -745) 43331) ((-1043 . -742) 43282) ((-517 . -468) 43219) ((-623 . -33) T) ((-461 . -216) 43172) ((-277 . -270) 43151) ((-223 . -162) 43130) ((-766 . -993) T) ((-43 . -601) 43088) ((-1012 . -349) 43039) ((-682 . -272) 42970) ((-497 . -492) 42903) ((-767 . -992) 42854) ((-1019 . -138) 42833) ((-340 . -349) 42812) ((-334 . -349) 42791) ((-326 . -349) 42770) ((-1019 . -140) 42749) ((-814 . -214) 42726) ((-767 . -109) 42668) ((-732 . -138) 42647) ((-732 . -140) 42626) ((-246 . -892) 42593) ((-233 . -795) 42572) ((-230 . -892) 42517) ((-232 . -795) 42496) ((-730 . -138) 42475) ((-730 . -140) 42454) ((-145 . -601) 42428) ((-434 . -140) 42407) ((-434 . -138) 42386) ((-623 . -677) T) ((-773 . -572) 42368) ((-1176 . -1030) T) ((-1169 . -1030) T) ((-1148 . -1030) T) ((-1133 . -1127) 42334) ((-1133 . -1124) 42300) ((-1100 . -272) 42279) ((-1099 . -272) 42230) ((-1093 . -272) 42181) ((-1055 . -272) 42160) ((-320 . -843) 42141) ((-945 . -162) T) ((-857 . -162) T) ((-557 . -1030) T) ((-556 . -1030) T) ((-644 . -21) T) ((-644 . -25) T) ((-454 . -1165) 42125) ((-454 . -1162) 42095) ((-399 . -268) 42023) ((-297 . -1042) 41873) ((-294 . -1042) T) ((-1133 . -34) 41839) ((-1133 . -93) 41805) ((-82 . -572) 41787) ((-89 . -99) 41765) ((-1210 . -128) T) ((-544 . -138) T) ((-544 . -140) 41747) ((-495 . -140) 41729) ((-495 . -138) T) ((-297 . -23) 41582) ((-39 . -323) 41556) ((-294 . -23) T) ((-1085 . -604) 41538) ((-765 . -601) 41388) ((-1197 . -993) T) ((-1085 . -354) 41370) ((-159 . -214) 41354) ((-554 . -468) 41336) ((-223 . -492) 41269) ((-462 . -99) T) ((-1204 . -677) T) ((-1202 . -677) T) ((-1104 . -992) 41152) ((-1104 . -109) 41021) ((-767 . -986) T) ((-493 . -99) T) ((-47 . -594) 40981) ((-488 . -99) T) ((-486 . -99) T) ((-1194 . -992) 40951) ((-974 . -37) 40935) ((-767 . -216) T) ((-767 . -226) 40914) ((-517 . -268) 40893) ((-1194 . -109) 40858) ((-1157 . -214) 40842) ((-1176 . -668) 40739) ((-998 . -573) NIL) ((-998 . -572) 40721) ((-1169 . -668) 40562) ((-1148 . -668) 40358) ((-944 . -863) T) ((-653 . -572) 40327) ((-145 . -677) T) ((-1043 . -349) 40306) ((-945 . -492) NIL) ((-233 . -392) 40275) ((-232 . -392) 40244) ((-964 . -25) T) ((-964 . -21) T) ((-557 . -668) 40217) ((-556 . -668) 40114) ((-749 . -268) 40072) ((-124 . -99) 40050) ((-783 . -977) 39948) ((-159 . -778) 39927) ((-300 . -601) 39824) ((-765 . -33) T) ((-665 . -99) T) ((-1049 . -1042) T) ((-126 . -492) NIL) ((-966 . -1138) T) ((-360 . -37) 39789) ((-335 . -25) T) ((-335 . -21) T) ((-152 . -99) T) ((-148 . -99) T) ((-336 . -1191) 39773) ((-333 . -1191) 39757) ((-325 . -1191) 39741) ((-159 . -330) 39720) ((-531 . -797) T) ((-473 . -797) T) ((-1049 . -23) T) ((-85 . -572) 39702) ((-651 . -289) T) ((-784 . -37) 39672) ((-777 . -37) 39642) ((-1170 . -128) T) ((-1077 . -270) 39621) ((-907 . -743) 39574) ((-907 . -744) 39527) ((-765 . -741) 39506) ((-114 . -289) T) ((-89 . -291) 39444) ((-627 . -33) T) ((-517 . -564) 39423) ((-47 . -25) T) ((-47 . -21) T) ((-765 . -744) 39374) ((-765 . -743) 39353) ((-651 . -962) T) ((-606 . -992) 39337) ((-907 . -677) 39236) ((-765 . -677) 39147) ((-907 . -453) 39100) ((-461 . -745) 39051) ((-461 . -742) 39002) ((-853 . -1191) 38989) ((-1104 . -986) T) ((-606 . -109) 38968) ((-1104 . -307) 38945) ((-1125 . -99) 38923) ((-1031 . -572) 38905) ((-651 . -516) T) ((-766 . -1030) T) ((-1194 . -986) T) ((-394 . -1030) T) ((-233 . -993) 38836) ((-232 . -993) 38767) ((-271 . -601) 38754) ((-554 . -268) 38729) ((-639 . -637) 38687) ((-906 . -572) 38669) ((-815 . -99) T) ((-686 . -572) 38651) ((-666 . -572) 38633) ((-1176 . -162) 38584) ((-1169 . -162) 38515) ((-1148 . -162) 38446) ((-649 . -797) T) ((-945 . -272) T) ((-433 . -572) 38428) ((-582 . -677) T) ((-58 . -1030) 38406) ((-228 . -144) 38390) ((-857 . -272) T) ((-964 . -953) T) ((-582 . -453) T) ((-663 . -1142) 38369) ((-557 . -162) 38348) ((-556 . -162) 38299) ((-1184 . -797) 38278) ((-663 . -523) 38189) ((-388 . -863) T) ((-388 . -770) 38168) ((-300 . -744) T) ((-300 . -677) T) ((-399 . -572) 38150) ((-399 . -573) 38058) ((-598 . -1076) 38042) ((-108 . -604) 38024) ((-124 . -291) 37962) ((-108 . -354) 37944) ((-163 . -289) T) ((-379 . -1138) T) ((-297 . -128) 37816) ((-294 . -128) T) ((-67 . -376) T) ((-108 . -121) T) ((-497 . -468) 37800) ((-607 . -1042) T) ((-554 . -19) 37782) ((-59 . -421) T) ((-59 . -376) T) ((-774 . -1030) T) ((-554 . -564) 37757) ((-457 . -977) 37717) ((-606 . -986) T) ((-607 . -23) T) ((-1197 . -1030) T) ((-766 . -668) 37566) ((-115 . -797) NIL) ((-1098 . -392) 37550) ((-1054 . -392) 37534) ((-801 . -392) 37518) ((-816 . -99) 37469) ((-1168 . -99) T) ((-1148 . -492) 37238) ((-1125 . -291) 37176) ((-293 . -572) 37158) ((-1147 . -99) T) ((-1032 . -1030) T) ((-1100 . -268) 37143) ((-1099 . -268) 37128) ((-271 . -677) T) ((-105 . -852) NIL) ((-639 . -572) 37060) ((-639 . -573) 37021) ((-1012 . -601) 36931) ((-561 . -572) 36913) ((-517 . -573) NIL) ((-517 . -572) 36895) ((-1093 . -268) 36743) ((-466 . -992) 36693) ((-662 . -432) T) ((-489 . -487) 36672) ((-485 . -487) 36651) ((-201 . -992) 36601) ((-340 . -601) 36553) ((-334 . -601) 36505) ((-208 . -795) T) ((-326 . -601) 36457) ((-562 . -99) 36407) ((-461 . -349) 36386) ((-105 . -601) 36336) ((-466 . -109) 36270) ((-223 . -468) 36254) ((-324 . -140) 36236) ((-324 . -138) T) ((-159 . -351) 36207) ((-886 . -1182) 36191) ((-201 . -109) 36125) ((-815 . -291) 36090) ((-886 . -1030) 36040) ((-749 . -573) 36001) ((-749 . -572) 35983) ((-669 . -99) T) ((-312 . -1030) T) ((-1049 . -128) T) ((-665 . -37) 35953) ((-297 . -471) 35932) ((-478 . -1138) T) ((-1168 . -266) 35898) ((-1147 . -266) 35864) ((-308 . -144) 35848) ((-998 . -270) 35823) ((-1197 . -668) 35793) ((-1086 . -33) T) ((-1206 . -977) 35770) ((-448 . -572) 35752) ((-463 . -33) T) ((-362 . -977) 35736) ((-1098 . -993) T) ((-1054 . -993) T) ((-801 . -993) T) ((-997 . -795) T) ((-766 . -162) 35647) ((-497 . -268) 35624) ((-126 . -468) 35606) ((-115 . -934) 35583) ((-1176 . -272) 35562) ((-1120 . -345) 35536) ((-1020 . -248) 35520) ((-454 . -99) T) ((-346 . -1030) T) ((-233 . -1030) T) ((-232 . -1030) T) ((-1169 . -272) 35471) ((-107 . -1030) T) ((-1148 . -272) 35422) ((-815 . -1078) 35400) ((-1100 . -943) 35366) ((-567 . -345) 35306) ((-1099 . -943) 35272) ((-567 . -212) 35219) ((-554 . -572) 35201) ((-554 . -573) NIL) ((-644 . -797) T) ((-455 . -212) 35151) ((-466 . -986) T) ((-1093 . -943) 35117) ((-86 . -420) T) ((-86 . -376) T) ((-201 . -986) T) ((-1055 . -943) 35083) ((-1012 . -677) T) ((-663 . -1042) T) ((-557 . -272) 35062) ((-556 . -272) 35041) ((-466 . -226) T) ((-466 . -216) T) ((-201 . -226) T) ((-201 . -216) T) ((-1092 . -572) 35023) ((-815 . -37) 34975) ((-340 . -677) T) ((-334 . -677) T) ((-326 . -677) T) ((-105 . -744) T) ((-105 . -741) T) ((-497 . -1172) 34959) ((-105 . -677) T) ((-663 . -23) T) ((-1210 . -25) T) ((-454 . -266) 34925) ((-1210 . -21) T) ((-1147 . -291) 34864) ((-1102 . -99) T) ((-39 . -138) 34836) ((-39 . -140) 34808) ((-497 . -564) 34785) ((-1043 . -601) 34635) ((-562 . -291) 34573) ((-44 . -604) 34523) ((-44 . -619) 34473) ((-44 . -354) 34423) ((-1085 . -33) T) ((-814 . -795) NIL) ((-607 . -128) T) ((-464 . -572) 34405) ((-223 . -268) 34382) ((-600 . -33) T) ((-587 . -33) T) ((-1019 . -432) 34333) ((-766 . -492) 34207) ((-732 . -432) 34138) ((-730 . -432) 34089) ((-434 . -432) 34040) ((-895 . -392) 34024) ((-682 . -572) 34006) ((-233 . -668) 33948) ((-232 . -668) 33890) ((-682 . -573) 33751) ((-460 . -392) 33735) ((-320 . -284) T) ((-332 . -863) T) ((-941 . -99) 33713) ((-964 . -797) T) ((-58 . -492) 33646) ((-1147 . -1078) 33598) ((-945 . -268) NIL) ((-208 . -993) T) ((-360 . -778) T) ((-1043 . -33) T) ((-1151 . -1024) 33582) ((-544 . -432) T) ((-495 . -432) T) ((-1151 . -1030) 33560) ((-1151 . -1026) 33517) ((-223 . -564) 33494) ((-1100 . -572) 33476) ((-1099 . -572) 33458) ((-1093 . -572) 33440) ((-1093 . -573) NIL) ((-1055 . -572) 33422) ((-126 . -268) 33397) ((-815 . -381) 33381) ((-507 . -99) T) ((-1168 . -37) 33222) ((-1147 . -37) 33036) ((-813 . -140) T) ((-544 . -383) T) ((-47 . -797) T) ((-495 . -383) T) ((-1180 . -99) T) ((-1170 . -21) T) ((-1170 . -25) T) ((-1043 . -741) 33015) ((-1043 . -744) 32966) ((-1043 . -743) 32945) ((-935 . -1030) T) ((-967 . -33) T) ((-806 . -1030) T) ((-1043 . -677) 32856) ((-617 . -99) T) ((-599 . -99) T) ((-517 . -270) 32835) ((-1112 . -99) T) ((-456 . -33) T) ((-443 . -33) T) ((-336 . -99) T) ((-333 . -99) T) ((-325 . -99) T) ((-246 . -99) T) ((-230 . -99) T) ((-457 . -289) T) ((-997 . -993) T) ((-895 . -993) T) ((-297 . -594) 32743) ((-294 . -594) 32704) ((-460 . -993) T) ((-458 . -99) T) ((-417 . -572) 32686) ((-1098 . -1030) T) ((-1054 . -1030) T) ((-801 . -1030) T) ((-1068 . -99) T) ((-766 . -272) 32617) ((-906 . -992) 32500) ((-457 . -962) T) ((-126 . -19) 32482) ((-686 . -992) 32452) ((-126 . -564) 32427) ((-433 . -992) 32397) ((-1074 . -1050) 32381) ((-1032 . -492) 32314) ((-906 . -109) 32183) ((-853 . -99) T) ((-686 . -109) 32148) ((-57 . -99) 32098) ((-497 . -573) 32059) ((-497 . -572) 31971) ((-496 . -99) 31949) ((-494 . -99) 31899) ((-475 . -99) 31877) ((-474 . -99) 31827) ((-433 . -109) 31790) ((-233 . -162) 31769) ((-232 . -162) 31748) ((-399 . -992) 31722) ((-1133 . -915) 31684) ((-940 . -1042) T) ((-886 . -492) 31617) ((-466 . -745) T) ((-454 . -37) 31458) ((-399 . -109) 31425) ((-466 . -742) T) ((-941 . -291) 31363) ((-201 . -745) T) ((-201 . -742) T) ((-940 . -23) T) ((-663 . -128) T) ((-1147 . -381) 31333) ((-297 . -25) 31186) ((-159 . -392) 31170) ((-297 . -21) 31042) ((-294 . -25) T) ((-294 . -21) T) ((-808 . -349) T) ((-108 . -33) T) ((-461 . -601) 30892) ((-814 . -993) T) ((-554 . -270) 30867) ((-543 . -140) T) ((-531 . -140) T) ((-473 . -140) T) ((-1098 . -668) 30696) ((-1054 . -668) 30545) ((-1049 . -594) 30527) ((-801 . -668) 30497) ((-623 . -1138) T) ((-1 . -99) T) ((-223 . -572) 30229) ((-1157 . -392) 30213) ((-1112 . -291) 30017) ((-906 . -986) T) ((-686 . -986) T) ((-666 . -986) T) ((-598 . -1030) 29967) ((-990 . -601) 29951) ((-802 . -392) 29935) ((-489 . -99) T) ((-485 . -99) T) ((-230 . -291) 29922) ((-246 . -291) 29909) ((-906 . -307) 29888) ((-366 . -601) 29872) ((-458 . -291) 29676) ((-233 . -492) 29609) ((-623 . -977) 29507) ((-232 . -492) 29440) ((-1068 . -291) 29366) ((-769 . -1030) T) ((-749 . -992) 29350) ((-1176 . -268) 29335) ((-1169 . -268) 29320) ((-1148 . -268) 29168) ((-367 . -1030) T) ((-305 . -1030) T) ((-399 . -986) T) ((-159 . -993) T) ((-57 . -291) 29106) ((-749 . -109) 29085) ((-556 . -268) 29070) ((-496 . -291) 29008) ((-494 . -291) 28946) ((-475 . -291) 28884) ((-474 . -291) 28822) ((-399 . -216) 28801) ((-461 . -33) T) ((-945 . -573) 28731) ((-208 . -1030) T) ((-945 . -572) 28713) ((-913 . -572) 28695) ((-913 . -573) 28670) ((-857 . -572) 28652) ((-649 . -140) T) ((-651 . -863) T) ((-651 . -770) T) ((-408 . -572) 28634) ((-1049 . -21) T) ((-126 . -573) NIL) ((-126 . -572) 28616) ((-1049 . -25) T) ((-623 . -358) 28600) ((-114 . -863) T) ((-815 . -214) 28584) ((-76 . -1138) T) ((-124 . -123) 28568) ((-990 . -33) T) ((-1204 . -977) 28542) ((-1202 . -977) 28499) ((-1157 . -993) T) ((-802 . -993) T) ((-461 . -741) 28478) ((-336 . -1078) 28457) ((-333 . -1078) 28436) ((-325 . -1078) 28415) ((-461 . -744) 28366) ((-461 . -743) 28345) ((-210 . -33) T) ((-461 . -677) 28256) ((-58 . -468) 28240) ((-538 . -993) T) ((-1098 . -162) 28131) ((-1054 . -162) 28042) ((-997 . -1030) T) ((-1019 . -892) 27987) ((-895 . -1030) T) ((-767 . -601) 27938) ((-732 . -892) 27907) ((-664 . -1030) T) ((-730 . -892) 27874) ((-494 . -264) 27858) ((-623 . -843) 27817) ((-460 . -1030) T) ((-434 . -892) 27784) ((-77 . -1138) T) ((-336 . -37) 27749) ((-333 . -37) 27714) ((-325 . -37) 27679) ((-246 . -37) 27528) ((-230 . -37) 27377) ((-853 . -1078) T) ((-579 . -140) 27356) ((-579 . -138) 27335) ((-115 . -140) T) ((-115 . -138) NIL) ((-395 . -677) T) ((-749 . -986) T) ((-324 . -432) T) ((-1176 . -943) 27301) ((-1169 . -943) 27267) ((-1148 . -943) 27233) ((-853 . -37) 27198) ((-208 . -668) 27163) ((-300 . -46) 27133) ((-39 . -390) 27105) ((-133 . -572) 27087) ((-940 . -128) T) ((-765 . -1138) T) ((-163 . -863) T) ((-324 . -383) T) ((-497 . -270) 27064) ((-44 . -33) T) ((-765 . -977) 26893) ((-615 . -99) T) ((-607 . -21) T) ((-607 . -25) T) ((-1032 . -468) 26877) ((-1147 . -214) 26847) ((-627 . -1138) T) ((-228 . -99) 26797) ((-814 . -1030) T) ((-1104 . -601) 26722) ((-997 . -668) 26709) ((-682 . -992) 26552) ((-1098 . -492) 26499) ((-895 . -668) 26348) ((-1054 . -492) 26300) ((-460 . -668) 26149) ((-65 . -572) 26131) ((-682 . -109) 25960) ((-886 . -468) 25944) ((-1194 . -601) 25904) ((-767 . -677) T) ((-1100 . -992) 25787) ((-1099 . -992) 25622) ((-1093 . -992) 25412) ((-1055 . -992) 25295) ((-944 . -1142) T) ((-1025 . -99) 25273) ((-765 . -358) 25243) ((-944 . -523) T) ((-1100 . -109) 25112) ((-1099 . -109) 24933) ((-1093 . -109) 24702) ((-1055 . -109) 24571) ((-1035 . -1033) 24535) ((-360 . -795) T) ((-1176 . -572) 24517) ((-1169 . -572) 24499) ((-1148 . -572) 24481) ((-1148 . -573) NIL) ((-223 . -270) 24458) ((-39 . -432) T) ((-208 . -162) T) ((-159 . -1030) T) ((-644 . -140) T) ((-644 . -138) NIL) ((-557 . -572) 24440) ((-556 . -572) 24422) ((-841 . -1030) T) ((-788 . -1030) T) ((-758 . -1030) T) ((-719 . -1030) T) ((-611 . -799) 24406) ((-628 . -1030) T) ((-765 . -843) 24339) ((-39 . -383) NIL) ((-1049 . -614) T) ((-814 . -668) 24284) ((-233 . -468) 24268) ((-232 . -468) 24252) ((-663 . -594) 24200) ((-606 . -601) 24174) ((-277 . -33) T) ((-682 . -986) T) ((-544 . -1191) 24161) ((-495 . -1191) 24138) ((-1157 . -1030) T) ((-1098 . -272) 24049) ((-1054 . -272) 23980) ((-997 . -162) T) ((-802 . -1030) T) ((-895 . -162) 23891) ((-732 . -1160) 23875) ((-598 . -492) 23808) ((-75 . -572) 23790) ((-682 . -307) 23755) ((-1104 . -677) T) ((-538 . -1030) T) ((-460 . -162) 23666) ((-228 . -291) 23604) ((-126 . -270) 23579) ((-1069 . -1042) T) ((-68 . -572) 23561) ((-1194 . -677) T) ((-1100 . -986) T) ((-1099 . -986) T) ((-308 . -99) 23511) ((-1093 . -986) T) ((-1069 . -23) T) ((-1055 . -986) T) ((-89 . -1050) 23495) ((-809 . -1042) T) ((-1100 . -216) 23454) ((-1099 . -226) 23433) ((-1099 . -216) 23385) ((-1093 . -216) 23272) ((-1093 . -226) 23251) ((-300 . -843) 23157) ((-809 . -23) T) ((-159 . -668) 22985) ((-388 . -1142) T) ((-1031 . -349) T) ((-964 . -140) T) ((-944 . -344) T) ((-813 . -432) T) ((-886 . -268) 22962) ((-297 . -797) T) ((-294 . -797) NIL) ((-817 . -99) T) ((-663 . -25) T) ((-388 . -523) T) ((-663 . -21) T) ((-335 . -140) 22944) ((-335 . -138) T) ((-1074 . -1030) 22922) ((-433 . -671) T) ((-73 . -572) 22904) ((-112 . -797) T) ((-228 . -264) 22888) ((-223 . -992) 22786) ((-79 . -572) 22768) ((-686 . -349) 22721) ((-1102 . -778) T) ((-688 . -218) 22705) ((-1086 . -1138) T) ((-134 . -218) 22687) ((-223 . -109) 22578) ((-1157 . -668) 22407) ((-47 . -140) T) ((-814 . -162) T) ((-802 . -668) 22377) ((-463 . -1138) T) ((-895 . -492) 22324) ((-606 . -677) T) ((-538 . -668) 22311) ((-974 . -993) T) ((-460 . -492) 22254) ((-886 . -19) 22238) ((-886 . -564) 22215) ((-766 . -573) NIL) ((-766 . -572) 22197) ((-945 . -992) 22147) ((-394 . -572) 22129) ((-233 . -268) 22106) ((-232 . -268) 22083) ((-466 . -852) NIL) ((-297 . -29) 22053) ((-105 . -1138) T) ((-944 . -1042) T) ((-201 . -852) NIL) ((-857 . -992) 22005) ((-1012 . -977) 21903) ((-945 . -109) 21837) ((-246 . -214) 21821) ((-688 . -645) 21805) ((-408 . -992) 21789) ((-360 . -993) T) ((-944 . -23) T) ((-857 . -109) 21727) ((-644 . -1127) NIL) ((-466 . -601) 21677) ((-105 . -827) 21659) ((-105 . -829) 21641) ((-644 . -1124) NIL) ((-201 . -601) 21591) ((-340 . -977) 21575) ((-334 . -977) 21559) ((-308 . -291) 21497) ((-326 . -977) 21481) ((-208 . -272) T) ((-408 . -109) 21460) ((-58 . -572) 21392) ((-159 . -162) T) ((-1049 . -797) T) ((-105 . -977) 21352) ((-835 . -1030) T) ((-784 . -993) T) ((-777 . -993) T) ((-644 . -34) NIL) ((-644 . -93) NIL) ((-294 . -934) 21313) ((-171 . -99) T) ((-543 . -432) T) ((-531 . -432) T) ((-473 . -432) T) ((-388 . -344) T) ((-223 . -986) 21244) ((-1077 . -33) T) ((-457 . -863) T) ((-940 . -594) 21192) ((-233 . -564) 21169) ((-232 . -564) 21146) ((-1012 . -358) 21130) ((-814 . -492) 21038) ((-223 . -216) 20991) ((-1085 . -1138) T) ((-774 . -572) 20973) ((-1205 . -1042) T) ((-1197 . -572) 20955) ((-1157 . -162) 20846) ((-105 . -358) 20828) ((-105 . -319) 20810) ((-997 . -272) T) ((-895 . -272) 20741) ((-749 . -349) 20720) ((-600 . -1138) T) ((-587 . -1138) T) ((-460 . -272) 20651) ((-538 . -162) T) ((-308 . -264) 20635) ((-1205 . -23) T) ((-1133 . -99) T) ((-1120 . -1030) T) ((-1020 . -1030) T) ((-1008 . -1030) T) ((-81 . -572) 20617) ((-662 . -99) T) ((-336 . -330) 20596) ((-567 . -1030) T) ((-333 . -330) 20575) ((-325 . -330) 20554) ((-455 . -1030) T) ((-1112 . -212) 20504) ((-246 . -235) 20466) ((-1069 . -128) T) ((-567 . -569) 20442) ((-1012 . -843) 20375) ((-945 . -986) T) ((-857 . -986) T) ((-455 . -569) 20354) ((-1093 . -742) NIL) ((-1093 . -745) NIL) ((-1032 . -573) 20315) ((-458 . -212) 20265) ((-1032 . -572) 20247) ((-945 . -226) T) ((-945 . -216) T) ((-408 . -986) T) ((-901 . -1030) 20197) ((-857 . -226) T) ((-809 . -128) T) ((-649 . -432) T) ((-790 . -1042) 20176) ((-105 . -843) NIL) ((-1133 . -266) 20142) ((-815 . -795) 20121) ((-1043 . -1138) T) ((-848 . -677) T) ((-159 . -492) 20033) ((-940 . -25) T) ((-848 . -453) T) ((-388 . -1042) T) ((-466 . -744) T) ((-466 . -741) T) ((-853 . -330) T) ((-466 . -677) T) ((-201 . -744) T) ((-201 . -741) T) ((-940 . -21) T) ((-201 . -677) T) ((-790 . -23) 19985) ((-300 . -289) 19964) ((-975 . -218) 19910) ((-388 . -23) T) ((-886 . -573) 19871) ((-886 . -572) 19783) ((-598 . -468) 19767) ((-44 . -951) 19717) ((-469 . -99) T) ((-312 . -572) 19699) ((-1043 . -977) 19528) ((-554 . -604) 19510) ((-554 . -354) 19492) ((-324 . -1191) 19469) ((-967 . -1138) T) ((-814 . -272) T) ((-1157 . -492) 19416) ((-456 . -1138) T) ((-443 . -1138) T) ((-548 . -99) T) ((-1098 . -268) 19343) ((-579 . -432) 19322) ((-941 . -936) 19306) ((-1197 . -363) 19278) ((-115 . -432) T) ((-1119 . -99) T) ((-1023 . -1030) 19256) ((-974 . -1030) T) ((-836 . -797) T) ((-332 . -1142) T) ((-1176 . -992) 19139) ((-1043 . -358) 19109) ((-1169 . -992) 18944) ((-1148 . -992) 18734) ((-1176 . -109) 18603) ((-1169 . -109) 18424) ((-1148 . -109) 18193) ((-1133 . -291) 18180) ((-332 . -523) T) ((-346 . -572) 18162) ((-271 . -289) T) ((-557 . -992) 18135) ((-556 . -992) 18018) ((-342 . -1030) T) ((-303 . -1030) T) ((-233 . -572) 17979) ((-232 . -572) 17940) ((-944 . -128) T) ((-107 . -572) 17922) ((-590 . -23) T) ((-644 . -390) 17889) ((-566 . -23) T) ((-611 . -99) T) ((-557 . -109) 17860) ((-556 . -109) 17729) ((-360 . -1030) T) ((-317 . -99) T) ((-159 . -272) 17640) ((-1147 . -795) 17593) ((-665 . -993) T) ((-1074 . -492) 17526) ((-1043 . -843) 17459) ((-784 . -1030) T) ((-777 . -1030) T) ((-775 . -1030) T) ((-94 . -99) T) ((-137 . -797) T) ((-571 . -827) 17443) ((-108 . -1138) T) ((-1019 . -99) T) ((-998 . -33) T) ((-732 . -99) T) ((-730 . -99) T) ((-441 . -99) T) ((-434 . -99) T) ((-223 . -745) 17394) ((-223 . -742) 17345) ((-602 . -99) T) ((-1157 . -272) 17256) ((-617 . -589) 17240) ((-598 . -268) 17217) ((-974 . -668) 17201) ((-538 . -272) T) ((-906 . -601) 17126) ((-1205 . -128) T) ((-686 . -601) 17086) ((-666 . -601) 17073) ((-257 . -99) T) ((-433 . -601) 17003) ((-49 . -99) T) ((-544 . -99) T) ((-495 . -99) T) ((-1176 . -986) T) ((-1169 . -986) T) ((-1148 . -986) T) ((-1176 . -216) 16962) ((-303 . -668) 16944) ((-1169 . -226) 16923) ((-1169 . -216) 16875) ((-1148 . -216) 16762) ((-1148 . -226) 16741) ((-1133 . -37) 16638) ((-945 . -745) T) ((-557 . -986) T) ((-556 . -986) T) ((-945 . -742) T) ((-913 . -745) T) ((-913 . -742) T) ((-815 . -993) T) ((-813 . -812) 16622) ((-106 . -572) 16604) ((-644 . -432) T) ((-360 . -668) 16569) ((-399 . -601) 16543) ((-663 . -797) 16522) ((-662 . -37) 16487) ((-556 . -216) 16446) ((-39 . -675) 16418) ((-332 . -310) 16395) ((-332 . -344) T) ((-1012 . -289) 16346) ((-276 . -1042) 16228) ((-1036 . -1138) T) ((-161 . -99) T) ((-1151 . -572) 16195) ((-790 . -128) 16147) ((-598 . -1172) 16131) ((-784 . -668) 16101) ((-777 . -668) 16071) ((-461 . -1138) T) ((-340 . -289) T) ((-334 . -289) T) ((-326 . -289) T) ((-598 . -564) 16048) ((-388 . -128) T) ((-497 . -619) 16032) ((-105 . -289) T) ((-276 . -23) 15916) ((-497 . -604) 15900) ((-644 . -383) NIL) ((-497 . -354) 15884) ((-273 . -572) 15866) ((-89 . -1030) 15844) ((-105 . -962) T) ((-531 . -136) T) ((-1184 . -144) 15828) ((-461 . -977) 15657) ((-1170 . -138) 15618) ((-1170 . -140) 15579) ((-990 . -1138) T) ((-935 . -572) 15561) ((-806 . -572) 15543) ((-766 . -992) 15386) ((-1019 . -291) 15373) ((-210 . -1138) T) ((-732 . -291) 15360) ((-730 . -291) 15347) ((-766 . -109) 15176) ((-1098 . -573) NIL) ((-434 . -291) 15163) ((-462 . -1030) T) ((-1098 . -572) 15145) ((-1054 . -572) 15127) ((-1054 . -573) 14875) ((-974 . -162) T) ((-801 . -572) 14857) ((-886 . -270) 14834) ((-567 . -492) 14617) ((-768 . -977) 14601) ((-455 . -492) 14393) ((-906 . -677) T) ((-686 . -677) T) ((-666 . -677) T) ((-332 . -1042) T) ((-1105 . -572) 14375) ((-206 . -99) T) ((-461 . -358) 14345) ((-493 . -1030) T) ((-488 . -1030) T) ((-486 . -1030) T) ((-749 . -601) 14319) ((-964 . -432) T) ((-901 . -492) 14252) ((-332 . -23) T) ((-590 . -128) T) ((-566 . -128) T) ((-335 . -432) T) ((-223 . -349) 14231) ((-360 . -162) T) ((-1168 . -993) T) ((-1147 . -993) T) ((-208 . -943) T) ((-649 . -368) T) ((-399 . -677) T) ((-651 . -1142) T) ((-1069 . -594) 14179) ((-543 . -812) 14163) ((-1086 . -1115) 14139) ((-651 . -523) T) ((-124 . -1030) 14117) ((-1197 . -992) 14101) ((-665 . -1030) T) ((-461 . -843) 14034) ((-611 . -37) 14004) ((-335 . -383) T) ((-297 . -140) 13983) ((-297 . -138) 13962) ((-114 . -523) T) ((-294 . -140) 13918) ((-294 . -138) 13874) ((-47 . -432) T) ((-152 . -1030) T) ((-148 . -1030) T) ((-1086 . -104) 13821) ((-732 . -1078) 13799) ((-639 . -33) T) ((-1197 . -109) 13778) ((-517 . -33) T) ((-463 . -104) 13762) ((-233 . -270) 13739) ((-232 . -270) 13716) ((-814 . -268) 13667) ((-44 . -1138) T) ((-766 . -986) T) ((-1104 . -46) 13644) ((-766 . -307) 13606) ((-1019 . -37) 13455) ((-766 . -216) 13434) ((-732 . -37) 13263) ((-730 . -37) 13112) ((-126 . -604) 13094) ((-434 . -37) 12943) ((-126 . -354) 12925) ((-1047 . -99) T) ((-598 . -573) 12886) ((-598 . -572) 12798) ((-544 . -1078) T) ((-495 . -1078) T) ((-1074 . -468) 12782) ((-1125 . -1030) 12760) ((-1069 . -25) T) ((-1069 . -21) T) ((-454 . -993) T) ((-1148 . -742) NIL) ((-1148 . -745) NIL) ((-940 . -797) 12739) ((-769 . -572) 12721) ((-809 . -21) T) ((-809 . -25) T) ((-749 . -677) T) ((-163 . -1142) T) ((-544 . -37) 12686) ((-495 . -37) 12651) ((-367 . -572) 12633) ((-305 . -572) 12615) ((-159 . -268) 12573) ((-61 . -1138) T) ((-110 . -99) T) ((-815 . -1030) T) ((-163 . -523) T) ((-665 . -668) 12543) ((-276 . -128) 12427) ((-208 . -572) 12409) ((-208 . -573) 12339) ((-944 . -594) 12278) ((-1197 . -986) T) ((-1049 . -140) T) ((-587 . -1115) 12253) ((-682 . -852) 12232) ((-554 . -33) T) ((-600 . -104) 12216) ((-587 . -104) 12162) ((-1157 . -268) 12089) ((-682 . -601) 12014) ((-277 . -1138) T) ((-1104 . -977) 11912) ((-1093 . -852) NIL) ((-997 . -573) 11827) ((-997 . -572) 11809) ((-324 . -99) T) ((-232 . -992) 11707) ((-233 . -992) 11605) ((-375 . -99) T) ((-895 . -572) 11587) ((-895 . -573) 11448) ((-664 . -572) 11430) ((-1195 . -1132) 11399) ((-460 . -572) 11381) ((-460 . -573) 11242) ((-230 . -392) 11226) ((-246 . -392) 11210) ((-233 . -109) 11101) ((-232 . -109) 10992) ((-1100 . -601) 10917) ((-1099 . -601) 10814) ((-1093 . -601) 10666) ((-1055 . -601) 10591) ((-332 . -128) T) ((-80 . -421) T) ((-80 . -376) T) ((-944 . -25) T) ((-944 . -21) T) ((-816 . -1030) 10542) ((-815 . -668) 10494) ((-360 . -272) T) ((-159 . -943) 10446) ((-644 . -368) T) ((-940 . -938) 10430) ((-651 . -1042) T) ((-644 . -156) 10412) ((-1168 . -1030) T) ((-1147 . -1030) T) ((-297 . -1124) 10391) ((-297 . -1127) 10370) ((-1091 . -99) T) ((-297 . -902) 10349) ((-130 . -1042) T) ((-114 . -1042) T) ((-562 . -1182) 10333) ((-651 . -23) T) ((-562 . -1030) 10283) ((-89 . -492) 10216) ((-163 . -344) T) ((-297 . -93) 10195) ((-297 . -34) 10174) ((-567 . -468) 10108) ((-130 . -23) T) ((-114 . -23) T) ((-669 . -1030) T) ((-455 . -468) 10045) ((-388 . -594) 9993) ((-606 . -977) 9891) ((-901 . -468) 9875) ((-336 . -993) T) ((-333 . -993) T) ((-325 . -993) T) ((-246 . -993) T) ((-230 . -993) T) ((-814 . -573) NIL) ((-814 . -572) 9857) ((-1205 . -21) T) ((-538 . -943) T) ((-682 . -677) T) ((-1205 . -25) T) ((-233 . -986) 9788) ((-232 . -986) 9719) ((-70 . -1138) T) ((-233 . -216) 9672) ((-232 . -216) 9625) ((-39 . -99) T) ((-853 . -993) T) ((-1107 . -99) T) ((-1100 . -677) T) ((-1099 . -677) T) ((-1093 . -677) T) ((-1093 . -741) NIL) ((-1093 . -744) NIL) ((-897 . -99) T) ((-864 . -99) T) ((-1055 . -677) T) ((-721 . -99) T) ((-624 . -99) T) ((-454 . -1030) T) ((-320 . -1042) T) ((-163 . -1042) T) ((-300 . -863) 9604) ((-1168 . -668) 9445) ((-815 . -162) T) ((-1147 . -668) 9259) ((-790 . -21) 9211) ((-790 . -25) 9163) ((-228 . -1076) 9147) ((-124 . -492) 9080) ((-388 . -25) T) ((-388 . -21) T) ((-320 . -23) T) ((-159 . -572) 9062) ((-159 . -573) 8830) ((-163 . -23) T) ((-598 . -270) 8807) ((-497 . -33) T) ((-841 . -572) 8789) ((-87 . -1138) T) ((-788 . -572) 8771) ((-758 . -572) 8753) ((-719 . -572) 8735) ((-628 . -572) 8717) ((-223 . -601) 8567) ((-1102 . -1030) T) ((-1098 . -992) 8390) ((-1077 . -1138) T) ((-1054 . -992) 8233) ((-801 . -992) 8217) ((-1098 . -109) 8026) ((-1054 . -109) 7855) ((-801 . -109) 7834) ((-1157 . -573) NIL) ((-1157 . -572) 7816) ((-324 . -1078) T) ((-802 . -572) 7798) ((-1008 . -268) 7777) ((-78 . -1138) T) ((-945 . -852) NIL) ((-567 . -268) 7753) ((-1125 . -492) 7686) ((-466 . -1138) T) ((-538 . -572) 7668) ((-455 . -268) 7647) ((-201 . -1138) T) ((-1019 . -214) 7631) ((-271 . -863) T) ((-767 . -289) 7610) ((-813 . -99) T) ((-732 . -214) 7594) ((-945 . -601) 7544) ((-901 . -268) 7521) ((-857 . -601) 7473) ((-590 . -21) T) ((-590 . -25) T) ((-566 . -21) T) ((-324 . -37) 7438) ((-644 . -675) 7405) ((-466 . -827) 7387) ((-466 . -829) 7369) ((-454 . -668) 7210) ((-201 . -827) 7192) ((-62 . -1138) T) ((-201 . -829) 7174) ((-566 . -25) T) ((-408 . -601) 7148) ((-466 . -977) 7108) ((-815 . -492) 7020) ((-201 . -977) 6980) ((-223 . -33) T) ((-941 . -1030) 6958) ((-1168 . -162) 6889) ((-1147 . -162) 6820) ((-663 . -138) 6799) ((-663 . -140) 6778) ((-651 . -128) T) ((-132 . -445) 6755) ((-611 . -609) 6739) ((-1074 . -572) 6671) ((-114 . -128) T) ((-457 . -1142) T) ((-567 . -564) 6647) ((-455 . -564) 6626) ((-317 . -316) 6595) ((-507 . -1030) T) ((-457 . -523) T) ((-1098 . -986) T) ((-1054 . -986) T) ((-801 . -986) T) ((-223 . -741) 6574) ((-223 . -744) 6525) ((-223 . -743) 6504) ((-1098 . -307) 6481) ((-223 . -677) 6392) ((-901 . -19) 6376) ((-466 . -358) 6358) ((-466 . -319) 6340) ((-1054 . -307) 6312) ((-335 . -1191) 6289) ((-201 . -358) 6271) ((-201 . -319) 6253) ((-901 . -564) 6230) ((-1098 . -216) T) ((-617 . -1030) T) ((-599 . -1030) T) ((-1180 . -1030) T) ((-1112 . -1030) T) ((-1019 . -235) 6167) ((-336 . -1030) T) ((-333 . -1030) T) ((-325 . -1030) T) ((-246 . -1030) T) ((-230 . -1030) T) ((-82 . -1138) T) ((-125 . -99) 6145) ((-119 . -99) 6123) ((-126 . -33) T) ((-1112 . -569) 6102) ((-458 . -1030) T) ((-1068 . -1030) T) ((-458 . -569) 6081) ((-233 . -745) 6032) ((-233 . -742) 5983) ((-232 . -745) 5934) ((-39 . -1078) NIL) ((-232 . -742) 5885) ((-1012 . -863) 5836) ((-945 . -744) T) ((-945 . -741) T) ((-945 . -677) T) ((-913 . -744) T) ((-857 . -677) T) ((-89 . -468) 5820) ((-466 . -843) NIL) ((-853 . -1030) T) ((-208 . -992) 5785) ((-815 . -272) T) ((-201 . -843) NIL) ((-783 . -1042) 5764) ((-57 . -1030) 5714) ((-496 . -1030) 5692) ((-494 . -1030) 5642) ((-475 . -1030) 5620) ((-474 . -1030) 5570) ((-543 . -99) T) ((-531 . -99) T) ((-473 . -99) T) ((-454 . -162) 5501) ((-340 . -863) T) ((-334 . -863) T) ((-326 . -863) T) ((-208 . -109) 5457) ((-783 . -23) 5409) ((-408 . -677) T) ((-105 . -863) T) ((-39 . -37) 5354) ((-105 . -770) T) ((-544 . -330) T) ((-495 . -330) T) ((-1147 . -492) 5214) ((-297 . -432) 5193) ((-294 . -432) T) ((-784 . -268) 5172) ((-320 . -128) T) ((-163 . -128) T) ((-276 . -25) 5037) ((-276 . -21) 4921) ((-44 . -1115) 4900) ((-64 . -572) 4882) ((-835 . -572) 4864) ((-562 . -492) 4797) ((-44 . -104) 4747) ((-1032 . -406) 4731) ((-1032 . -349) 4710) ((-998 . -1138) T) ((-997 . -992) 4697) ((-895 . -992) 4540) ((-460 . -992) 4383) ((-617 . -668) 4367) ((-997 . -109) 4352) ((-895 . -109) 4181) ((-457 . -344) T) ((-336 . -668) 4133) ((-333 . -668) 4085) ((-325 . -668) 4037) ((-246 . -668) 3886) ((-230 . -668) 3735) ((-886 . -604) 3719) ((-460 . -109) 3548) ((-1185 . -99) T) ((-886 . -354) 3532) ((-231 . -99) T) ((-1148 . -852) NIL) ((-72 . -572) 3514) ((-906 . -46) 3493) ((-577 . -1042) T) ((-1 . -1030) T) ((-661 . -99) T) ((-649 . -99) T) ((-1184 . -99) 3443) ((-1176 . -601) 3368) ((-1169 . -601) 3265) ((-1120 . -572) 3247) ((-124 . -468) 3231) ((-462 . -91) T) ((-1020 . -572) 3213) ((-371 . -23) T) ((-1008 . -572) 3195) ((-85 . -1138) T) ((-1148 . -601) 3047) ((-853 . -668) 3012) ((-577 . -23) T) ((-567 . -572) 2994) ((-567 . -573) NIL) ((-455 . -573) NIL) ((-455 . -572) 2976) ((-489 . -1030) T) ((-485 . -1030) T) ((-332 . -25) T) ((-332 . -21) T) ((-125 . -291) 2914) ((-119 . -291) 2852) ((-557 . -601) 2839) ((-208 . -986) T) ((-556 . -601) 2764) ((-360 . -943) T) ((-208 . -226) T) ((-208 . -216) T) ((-901 . -573) 2725) ((-901 . -572) 2637) ((-813 . -37) 2624) ((-1168 . -272) 2575) ((-1147 . -272) 2526) ((-1049 . -432) T) ((-480 . -797) T) ((-297 . -1066) 2505) ((-940 . -140) 2484) ((-940 . -138) 2463) ((-473 . -291) 2450) ((-277 . -1115) 2429) ((-457 . -1042) T) ((-814 . -992) 2374) ((-579 . -99) T) ((-1125 . -468) 2358) ((-233 . -349) 2337) ((-232 . -349) 2316) ((-277 . -104) 2266) ((-997 . -986) T) ((-115 . -99) T) ((-895 . -986) T) ((-814 . -109) 2195) ((-457 . -23) T) ((-460 . -986) T) ((-997 . -216) T) ((-895 . -307) 2164) ((-460 . -307) 2121) ((-336 . -162) T) ((-333 . -162) T) ((-325 . -162) T) ((-246 . -162) 2032) ((-230 . -162) 1943) ((-906 . -977) 1841) ((-686 . -977) 1812) ((-1035 . -99) T) ((-1023 . -572) 1779) ((-974 . -572) 1761) ((-1176 . -677) T) ((-1169 . -677) T) ((-1148 . -741) NIL) ((-159 . -992) 1671) ((-1148 . -744) NIL) ((-853 . -162) T) ((-1148 . -677) T) ((-1195 . -144) 1655) ((-944 . -323) 1629) ((-941 . -492) 1562) ((-790 . -797) 1541) ((-531 . -1078) T) ((-454 . -272) 1492) ((-557 . -677) T) ((-342 . -572) 1474) ((-303 . -572) 1456) ((-399 . -977) 1354) ((-556 . -677) T) ((-388 . -797) 1305) ((-159 . -109) 1201) ((-783 . -128) 1153) ((-688 . -144) 1137) ((-1184 . -291) 1075) ((-466 . -289) T) ((-360 . -572) 1042) ((-497 . -951) 1026) ((-360 . -573) 940) ((-201 . -289) T) ((-134 . -144) 922) ((-665 . -268) 901) ((-466 . -962) T) ((-543 . -37) 888) ((-531 . -37) 875) ((-473 . -37) 840) ((-201 . -962) T) ((-814 . -986) T) ((-784 . -572) 822) ((-777 . -572) 804) ((-775 . -572) 786) ((-766 . -852) 765) ((-1206 . -1042) T) ((-1157 . -992) 588) ((-802 . -992) 572) ((-814 . -226) T) ((-814 . -216) NIL) ((-639 . -1138) T) ((-1206 . -23) T) ((-766 . -601) 497) ((-517 . -1138) T) ((-399 . -319) 481) ((-538 . -992) 468) ((-1157 . -109) 277) ((-651 . -594) 259) ((-802 . -109) 238) ((-362 . -23) T) ((-1112 . -492) 30)) \ No newline at end of file
diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase
index 05135bb3..6f24af82 100644
--- a/src/share/algebra/compress.daase
+++ b/src/share/algebra/compress.daase
@@ -1,6 +1,6 @@
-(30 . 3429259026)
-(4272 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
+(30 . 3429317347)
+(4276 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain|
ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join|
|ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&|
|OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup|
@@ -172,8 +172,9 @@
|IndexedTwoDimensionalArray| |ChineseRemainderToolsForIntegralBases|
|IntegralBasisTools| |IndexedBits| |IntegralBasisPolynomialTools|
|IndexCard| |InnerCommonDenominator| |PolynomialIdeals|
- |IdealDecompositionPackage| |IndexedDirectProductAbelianGroup|
- |IndexedDirectProductAbelianMonoid| |IndexedDirectProductCategory|
+ |IdealDecompositionPackage| |Identifier|
+ |IndexedDirectProductAbelianGroup| |IndexedDirectProductAbelianMonoid|
+ |IndexedDirectProductCategory|
|IndexedDirectProductOrderedAbelianMonoid|
|IndexedDirectProductOrderedAbelianMonoidSup|
|IndexedDirectProductObject| |InnerEvalable&| |InnerEvalable|
@@ -217,7 +218,7 @@
|AssociatedLieAlgebra| |PowerSeriesLimitPackage|
|RationalFunctionLimitPackage| |LinearDependence|
|LinearlyExplicitRingOver| |ListToMap| |ListFunctions2|
- |ListFunctions3| |List| |ListMultiDictionary| |LeftModule|
+ |ListFunctions3| |List| |Literal| |ListMultiDictionary| |LeftModule|
|ListMonoidOps| |LinearAggregate&| |LinearAggregate|
|ElementaryFunctionLODESolver| |LinearOrdinaryDifferentialOperator1|
|LinearOrdinaryDifferentialOperator2|
@@ -379,13 +380,14 @@
|RuleCalled| |RewriteRule| |Ruleset|
|RationalUnivariateRepresentationPackage|
|SimpleAlgebraicExtensionAlgFactor| |SimpleAlgebraicExtension|
- |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet| |SortedCache|
- |Scope| |StructuralConstantsPackage|
- |SequentialDifferentialPolynomial| |SequentialDifferentialVariable|
- |SegmentFunctions2| |SegmentBindingFunctions2| |SegmentBinding|
- |SegmentCategory| |Segment| |SegmentExpansionCategory| |SetAggregate&|
- |SetAggregate| |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN|
- |Set| |SExpressionCategory| |SExpression| |SExpressionOf|
+ |SAERationalFunctionAlgFactor| |SingletonAsOrderedSet|
+ |SpadSyntaxCategory| |SortedCache| |Scope|
+ |StructuralConstantsPackage| |SequentialDifferentialPolynomial|
+ |SequentialDifferentialVariable| |SegmentFunctions2|
+ |SegmentBindingFunctions2| |SegmentBinding| |SegmentCategory|
+ |Segment| |SegmentExpansionCategory| |SetAggregate&| |SetAggregate|
+ |SetCategory&| |SetCategory| |SetOfMIntegersInOneToN| |Set|
+ |SExpressionCategory| |SExpression| |SExpressionOf|
|SimpleFortranProgram| |SquareFreeQuasiComponentPackage|
|SquareFreeRegularTriangularSetGcdPackage|
|SquareFreeRegularTriangularSetCategory|
@@ -461,649 +463,647 @@
|XPolynomialRing| |XRecursivePolynomial|
|ParadoxicalCombinatorsForStreams| |ZeroDimensionalSolvePackage|
|IntegerLinearDependence| |IntegerMod| |Enumeration| |Mapping|
- |Record| |Union| |stronglyReduced?| |fortranTypeOf| |read!| |c06frf|
- |certainlySubVariety?| |e02ajf| |csc2sin| |meatAxe| |twoFactor|
- |oblateSpheroidal| |droot| |getDatabase| |removeSquaresIfCan|
- |compose| |cos2sec| |d02ejf| |lprop| |tanhIfCan| |possiblyInfinite?|
- |mapMatrixIfCan| |leftRecip| |idealiserMatrix| |OMgetEndBVar| |dom|
- |paraboloidal| |coerceL| |asimpson| |primitivePart|
- |singularAtInfinity?| |groebner| |Is| |set| |palgint| |subPolSet?|
- |palglimint0| |lyndon?| |bumptab| |exprHasLogarithmicWeights|
- |polCase| |compdegd| |difference| |/\\| |imaginary| |stop|
- |normalizeAtInfinity| |leftTraceMatrix| |complexRoots| |setprevious!|
- |insertTop!| |rightRemainder| |\\/| |polyRicDE| |topPredicate|
- |setref| |rspace| |getMatch| |c02aff| |denominator| |f01brf|
- |LazardQuotient2| |nil?| |oddlambert| |contours| |copies| |unit?|
- |orthonormalBasis| |component| |horizConcat| |ScanRoman| |iisec|
- |reorder| |title| |cAcos| |leftExtendedGcd| |expressIdealMember|
- |overbar| |d02bbf| |f02awf| |leviCivitaSymbol| |shufflein|
- |cyclicGroup| |exponentialOrder| |oddintegers| |decimal|
- |explicitEntries?| |removeConstantTerm| |integer?| |sin2csc| |range|
- |mesh?| |rangePascalTriangle| |factorial| |asinhIfCan| |s17adf|
- |conjug| |sort| |stopTableGcd!| |lifting| |realEigenvalues|
- |separateFactors| |routines| |e| |fortranReal| |balancedFactorisation|
- |extractClosed| |OMgetBind| |numFunEvals3D| |lSpaceBasis| |calcRanges|
- |algebraicCoefficients?| |shallowExpand| |critMTonD1| |quotient| |row|
- |rootOf| |weakBiRank| |concat!| |changeWeightLevel| |directSum|
- |composite| |in?| |ode2| F |GospersMethod| |mr| |reverse!| |c05nbf|
- |totolex| |moebius| |showSummary| |getZechTable| |signAround|
- |nthFractionalTerm| |show| |OMgetEndBind| |opeval| |OMputObject|
- |largest| |pseudoRemainder| |contractSolve| |LiePolyIfCan|
- |clipPointsDefault| |monomRDEsys| |completeHermite| |lex|
- |monicDivide| |ramified?| |minimalPolynomial| |prod| |relerror|
- |diagonal?| |musserTrials| |random| |showAttributes|
- |mainCharacterization| |trace| |fintegrate| |s19acf| |unmakeSUP|
- |back| |extendIfCan| |makeViewport3D| |besselI| |viewpoint|
- |pushNewContour| |unvectorise| |lazyGintegrate|
- |functionIsContinuousAtEndPoints| |endSubProgram| |rotate|
- |numberOfPrimitivePoly| |rightUnit| |getlo| |usingTable?| |solve1|
- |legendre| |selectNonFiniteRoutines| |HermiteIntegrate| |s21baf|
- |appendPoint| |basisOfRightNucloid| |infinite?| |outputFloating|
- |primaryDecomp| |leftRemainder|
- |generalizedContinuumHypothesisAssumed|
- |removeSuperfluousQuasiComponents| |normalDeriv| |noKaratsuba|
- |complexNumericIfCan| |lowerCase?| |even?| |invertibleElseSplit?|
- |sec2cos| |infRittWu?| |numFunEvals| |repeating?|
- |useEisensteinCriterion| |cSec| |d03eef| |integralMatrixAtInfinity|
- |iiGamma| |basisOfLeftNucleus| |extensionDegree| |subst| |port|
- |cardinality| |mdeg| |lazyPseudoDivide| |graphStates| |omError|
- |fracPart| |latex| |dihedral| |sizeLess?| |normalForm| |poisson|
- |degree| |iroot| |f02adf| |OMcloseConn| |recolor| |redpps| |iiacos|
- |changeThreshhold| |find| |leadingCoefficientRicDE| |moduloP|
- |leadingIdeal| |OMReadError?| |collectUnder| |fprindINFO| |partition|
- |cycles| |normalise| |width| |linearPart| |number?| |bombieriNorm| NOT
- |doublyTransitive?| |coth2trigh| |factor1| |getRef| |normal01| |byte|
- |extractTop!| |lyndonIfCan| |e01saf| OR |intensity| |bezoutResultant|
- |setPrologue!| |reindex| |mapCoef| |zeroSquareMatrix| |elColumn2!|
- |iiasech| |e04ucf| |f2st| |getSyntaxFormsFromFile| |factorPolynomial|
- AND |conical| |setPoly| |plusInfinity| |lhs| |reify| |clearTheFTable|
- |octon| |tan2cot| |cRationalPower| |compiledFunction|
- |screenResolution3D| |ord| |isExpt| |idealiser| |split|
- |minusInfinity| |rhs| |limit| |nor| |revert| |processTemplate|
- |sqfree| |objects| |showTheIFTable| |basisOfNucleus| |positiveSolve|
- |tablePow| |lowerCase| |showRegion| |monicRightDivide| |nullary|
- |s17akf| |rightZero| |numericalIntegration| |constantKernel| |base|
- |zero| |zeroSetSplit| |s17aff| |pr2dmp| |qroot| |univariate?| |f01mcf|
- |s18adf| |validExponential| |patternMatchTimes| |iisqrt2| |fill!|
- |optional| |logGamma| |redPol| |schema| |clikeUniv| |mathieu12|
- |list?| |lazyIntegrate| |submod| |commutativeEquality| |every?|
- |isPlus| |scopes| |And| |ListOfTerms| |symFunc| |e02ahf| |dequeue!|
- |stosePrepareSubResAlgo| |derivationCoordinates| |initials| |s17dcf|
- |integrate| |node| |Or| |OMencodingSGML| |maxIndex| |factorSquareFree|
- |stirling1| |aCubic| |cyclicParents| |wholeRagits| |viewPosDefault|
- |leftRank| |modularGcd| |palgint0| |Not| |dictionary|
- |stoseInvertible?| |fortranCarriageReturn| |bernoulliB| |type|
- |components| |getOperands| |useSingleFactorBound?| |quoted?| |module|
- |scalarMatrix| |maxrank| |e02bdf| |scale| |represents| |cyclicCopy|
- |sayLength| |tab1| |f02wef| |selectPDERoutines| |queue| |deepestTail|
- |stiffnessAndStabilityFactor| |rowEchelon| |getMultiplicationMatrix| *
- |arity| |logical?| |factorFraction| |cyclotomicDecomposition|
- |quadraticNorm| |e01bhf| |cfirst| |monicRightFactorIfCan| |iiacot|
- |cSin| |outputSpacing| |putColorInfo| |top| |laplace| |setEmpty!|
- |numberOfChildren| |innerint| |sinhcosh| |sortConstraints| |sh|
- |print| |airyAi| |normInvertible?| |lastSubResultantElseSplit|
- |continue| |binary| |wholePart| |constant?| |eulerPhi| |setvalue!|
- |mkcomm| |shiftRoots| |style| |sncndn| |s14baf| |interpolate|
- |removeZero| |iisinh| |readable?| |approxSqrt| |restorePrecision|
- |sort!| |birth| |OMgetApp| |axesColorDefault| |mainForm| |tableau|
- |bfKeys| |exprHasAlgebraicWeight| |quasiAlgebraicSet| |primintegrate|
- |cyclicSubmodule| |tree| |indicialEquationAtInfinity| |cons| |fmecg|
- |previous| |xn| |seriesToOutputForm| |f01qef| |node?| |setfirst!|
- |hermiteH| |janko2| |diophantineSystem| |ldf2vmf| |polar| |supersub|
- |minPol| |inGroundField?| |totalDifferential| |setProperty!|
- |linearAssociatedExp| |notelem| |genericLeftTraceForm| |nextColeman|
- |diagonals| |headReduced?| |setPosition| |e02adf| |showScalarValues|
- |plenaryPower| |setStatus!| |arrayStack| |neglist| |nonQsign|
- |normal?| |equiv?| |gethi| |createIrreduciblePoly| |mapDown!|
- |primitiveElement| |box| |level| |torsionIfCan| |prepareSubResAlgo|
- |indicialEquation| |over| |absolutelyIrreducible?| |equation|
- |getProperties| |collectUpper| |matrixConcat3D|
- |unrankImproperPartitions1| |nextNormalPrimitivePoly| |c06ebf|
- |sylvesterMatrix| |matrixGcd| |patternVariable| |contract|
- |semiDiscriminantEuclidean| |reducedForm| |createNormalElement|
- |specialTrigs| |viewWriteDefault| |e01bef| |imagJ| |gderiv| |pToHdmp|
- |addBadValue| |An| |laurentIfCan| |solveLinearPolynomialEquation|
- |coshIfCan| |iiexp| |bits| |fixedPoints| |palgLODE|
- |extendedIntegrate| |flagFactor| |d01aqf| |rootOfIrreduciblePoly|
- |monomRDE| |llprop| |printHeader| |mapUnivariateIfCan| |source|
- |inspect| |iisin| |dec| |inf| |expintfldpoly| |reduceBasisAtInfinity|
- |s18acf| |factorsOfDegree| |orbits| |closed?| |gramschmidt|
- |stoseInvertible?reg| |push| |genericLeftMinimalPolynomial|
- |minimumExponent| |binaryFunction| |linear| |generalInfiniteProduct|
- |rightFactorCandidate| |showIntensityFunctions| |pmintegrate|
- |inverseColeman| |removeRedundantFactors| |symmetricDifference|
- |integralAtInfinity?| |BasicMethod| |postfix| |LyndonBasis|
- |polygamma| |formula| |curryLeft| |xCoord| |getGraph| |upperCase?|
- |complexSolve| |OMencodingBinary| |alternating| |swap| |polynomial|
- |subHeight| |startStats!| |decreasePrecision| |setErrorBound|
- |normalizedAssociate| |preprocess| |dimensions| |OMputBind|
- |shrinkable| |f04mbf| |weights| |trapezoidal| |bright| |iisqrt3|
- |split!| |partitions| |hasPredicate?| |target| |generalSqFr|
- |definingPolynomial| |imagk| |rectangularMatrix| |notOperand|
- |stronglyReduce| |bitTruth| |completeHensel| |maxPoints3D|
- |rationalPoints| |rk4| |nullity| |doubleRank| |resultantEuclidean|
- |dfRange| F2FG |nrows| |createThreeSpace| |quickSort|
- |euclideanGroebner| |setScreenResolution| |internalZeroSetSplit|
- |clip| |adjoint| |jacobi| |factorSFBRlcUnit| |bivariatePolynomials|
- |twist| |setOfMinN| |principal?| |ncols| |completeEval| |f07aef|
- |zero?| |characteristicPolynomial| |scripted?| |dark| |max| |property|
- |semiResultantEuclideannaif| |removeRedundantFactorsInContents|
- |subTriSet?| |stoseLastSubResultant| |discreteLog| |critM| |vectorise|
- |is?| |graphCurves| |scaleRoots| |pushuconst| |nextsousResultant2|
- |algSplitSimple| |partialFraction| |computeInt| |checkRur| |swapRows!|
- |pointPlot| |comp| |child| |limitedIntegrate| |cPower| |monic?|
- |remove!| |delete| |factorGroebnerBasis| |OMputVariable|
- |atrapezoidal| |or?| |insertBottom!| |makeprod| |credPol| |result|
- |mapdiv| |representationType| |units| |inverseLaplace| |listOfMonoms|
- |leftFactorIfCan| |infiniteProduct| |stFuncN| |e04ycf| |elem?|
- |isTimes| |traceMatrix| |resetVariableOrder| |unparse| |sPol| |sign|
- |reducedContinuedFraction| |problemPoints| |Ei| |collectQuasiMonic|
- |whatInfinity| |shallowCopy| |entry| |subresultantVector| |factorset|
- |lfextlimint| |exp1| |defineProperty| |f01rdf| |branchIfCan| |Aleph|
- |zeroMatrix| |sech2cosh| |untab| |setrest!| |innerSolve| |curry|
- |subtractIfCan| |li| |writeLine!| |systemSizeIF| |stFunc1| |findCycle|
- |probablyZeroDim?| |hexDigit| |code| |clearCache| |makeSin| |integral|
- |monomialIntPoly| |elt| |pseudoQuotient| |coerceImages| |lookup|
- |lazyPseudoRemainder| |rotate!| |intcompBasis| |dequeue| |choosemon|
- |trunc| |splitDenominator| |e02bcf| |d01apf| |outlineRender|
- |cartesian| |totalfract| |numer| |quasiComponent| |reduction|
- |leftAlternative?| |df2st| |chebyshevT| |aQuadratic| |numeric|
- |computeCycleEntry| |index?| |denom| |qqq| |e02def| |dn| |radical|
- |rightMult| |e01baf| |schwerpunkt| |generic| |elRow2!| |rule|
- |modularGcdPrimitive| |polygon| |f01qdf|
- |removeRoughlyRedundantFactorsInContents| |quasiMonic?|
- |cyclicEntries| |log10| |tanNa| |rdHack1| |pi| |tanh2trigh|
- |singularitiesOf| |truncate| |createPrimitivePoly| |palginfieldint|
- |parametric?| |chiSquare1| |bitand| |alternative?| |factorOfDegree|
- |relationsIdeal| |infinity| |leftScalarTimes!| |loopPoints| |cotIfCan|
- |headRemainder| |mainDefiningPolynomial| |splitNodeOf!| |iFTable|
- |binarySearchTree| |semiResultantEuclidean1|
- |ScanFloatIgnoreSpacesIfCan| |univariatePolynomial| |mapUp!|
- |elementary| |generator| |functionIsFracPolynomial?|
- |oddInfiniteProduct| |cubic| |s17ajf| |fractionPart|
- |replaceKthElement| |stoseInvertibleSetsqfreg| |viewDefaults|
- |genericLeftDiscriminant| |regularRepresentation| |simpson| |index|
- |eigenvector| |writable?| |kmax| |kernel| |inverse|
- |complexElementary| |genericLeftTrace| |imagE| |s14abf|
- |moreAlgebraic?| |draw| |createPrimitiveNormalPoly| |mulmod|
- |tensorProduct| |weight| |explicitlyEmpty?| |isobaric?| |cycleEntry|
- |comment| |unrankImproperPartitions0| |option| |maxdeg|
- |symmetricTensors| |sinIfCan| |nodes| |adaptive3D?| |bsolve|
- |clearTable!| |OMputInteger| |cCos| |rightDivide| |deriv| |pair|
- |splitLinear| |toseInvertible?| BY |edf2fi| |modularFactor| |cAcosh|
- |separate| |position| |jacobian| |primintfldpoly| |mat| |order| |heap|
- |nthExpon| |selectODEIVPRoutines| |e04naf| |mainContent|
- |countRealRoots| |OMgetFloat| |nextNormalPoly| |mainVariable|
- |binaryTournament| |makeObject| |iiacsc| |genericPosition|
- |exprHasWeightCosWXorSinWX| |indicialEquations| |function| |iipow|
- |variationOfParameters| |psolve| |stoseIntegralLastSubResultant|
- |s13acf| |halfExtendedResultant1| |continuedFraction| |ratDenom|
- |divisorCascade| |particularSolution| |OMclose| |lo| |iibinom|
- |Lazard2| |basisOfLeftAnnihilator| |e02zaf| |infLex?| |coef| |hMonic|
- |euler| |c06gsf| |gcdcofactprim| |incr| |isList| |Hausdorff| |root?|
- |laplacian| |pow| |lfinfieldint| |selectfirst| |condition|
- |OMsupportsSymbol?| |f04maf| |hi| |createLowComplexityNormalBasis|
- |superHeight| |clipWithRanges| |ratDsolve| |wordInStrongGenerators|
- |sincos| |viewThetaDefault| |spherical| |merge!| |cAsech| |intChoose|
- |pdf2df| |numberOfHues| |e01sff| |setright!| |swap!|
- |fullPartialFraction| |nothing| |addPoint| |digamma| |traverse|
- |linearDependenceOverZ| |ratpart| |hconcat| |completeEchelonBasis|
- |binaryTree| |padicFraction| |wreath| |imagK| |radicalOfLeftTraceForm|
- |innerSolve1| |multiset| |d01alf| |OMlistCDs| |torsion?| |HenselLift|
- |pushdown| |f07fef| |nthRootIfCan| |callForm?| |headReduce| |lift|
- |setMinPoints| |ParCond| |irreducibleFactors| |mapUnivariate|
- |diagonalMatrix| |tanSum| |endOfFile?| |edf2efi| FG2F |tail| |reduce|
- |s21bcf| |alphanumeric?| |showTheFTable| |complex?| |subscript|
- |semiIndiceSubResultantEuclidean| |unitNormal| |printTypes|
- |constantLeft| |pattern| |position!| |integers| |externalList|
- |f02agf| |triangSolve| |exactQuotient!| |hostPlatform| |multiple?|
- |prevPrime| |outputAsTex| |pmComplexintegrate| |s19adf|
- |basisOfRightAnnihilator| |partialDenominators| |att2Result|
- |fortranLinkerArgs| |optAttributes| |viewDeltaXDefault| |df2fi|
- |antiCommutative?| |reducedQPowers| |negative?|
- |rewriteIdealWithHeadRemainder| |log| |cond| |lcm|
- |integralRepresents| |erf| |localUnquote| |elliptic| |s18aef| |pop!|
- |halfExtendedSubResultantGcd2| |returnTypeOf| |bfEntry|
- |rationalIfCan| |atom?| |repeatUntilLoop| |curve?| |message|
- |rationalPower| |ellipticCylindrical| |output| |green| |userOrdered?|
- |branchPointAtInfinity?| |rightExtendedGcd| |append| |simplifyLog|
- |ef2edf| |frst| |getVariableOrder| |outputList| |asinIfCan| |status|
- |coleman| |stFunc2| |minimize| |viewport2D| |gcd| |build| |dilog|
- |red| |generate| |leftMinimalPolynomial| |minPoints3D| |properties|
- |stopTable!| |zeroVector| |points| |s17acf| |listexp| |false|
- |splitSquarefree| |sin| |randomR| |e04gcf| |acothIfCan| |translate|
- |minset| |nextSublist| |tubeRadiusDefault| |iicsch| |rightTrace|
- |compile| |trueEqual| |cos| |derivative| |incrementBy| |setRealSteps|
- |diff| |numberOfIrreduciblePoly| |characteristicSet| |ODESolve|
- |OMgetSymbol| |d01fcf| |discriminantEuclidean| |bag| |iitanh| |tan|
- |OMread| |expand| |reseed| = |numberOfVariables| |realElementary|
- |simplify| |algintegrate| |radicalRoots| |cot| |numberOfComponents|
- |decrease| |filterWhile| |eigenvectors| |const| |block| |entries|
- |removeRoughlyRedundantFactorsInPol| |matrix| |leftOne| |OMopenFile|
- |nary?| |#| |expenseOfEvaluation| |sec| |primextendedint|
- |filterUntil| < |showTheRoutinesTable| |irreducibleFactor|
- |oneDimensionalArray| |roughSubIdeal?| |swapColumns!| |slash|
- |palgLODE0| |internalDecompose| |csc| |symmetricGroup| |select| >
- |double| |BumInSepFFE| |removeDuplicates!| |LiePoly| |upperCase!|
- |rotatey| |unit| |taylorQuoByVar| |asin| |charClass|
- |linearDependence| |OMconnOutDevice| <=
- |semiDegreeSubResultantEuclidean| |ignore?| |cCosh| |hasSolution?|
- |removeCoshSq| |fortranLogical| |acos| |lieAdmissible?| >=
- |maxRowIndex| |nodeOf?| |bivariateSLPEBR| |prindINFO|
- |compactFraction| |normDeriv2| |delay| |atan| |dmpToP| |cSech|
- |brillhartTrials| |Si| |nextSubsetGray| |orOperands| |subNodeOf?|
- |solveInField| |besselY| |acot| |hclf| |bipolarCylindrical|
- |critpOrder| |coordinates| |reducedSystem| |saturate|
- |intPatternMatch| |pointColor| |triangularSystems| |asec|
- |integralLastSubResultant| |copy!| |magnitude| |determinant| +
- |OMsend| |fortranCharacter| |OMgetEndApp| |meshFun2Var|
- |generalTwoFactor| |exprToGenUPS| |associator| |acsc| |makeRecord|
- |totalLex| |sample| - ~= |sturmSequence| |rowEchLocal|
- |var2StepsDefault| |euclideanSize| |tryFunctionalDecomposition|
- |rootRadius| |complexForm| |sinh| |close| |super| |declare!| /
- |datalist| |coerce| |quadratic?| |semiResultantReduitEuclidean|
- |readLine!| |expPot| |perfectSqrt| |primeFactor| |cosh| |whileLoop|
- |perfectNthRoot| |norm| |construct| |hexDigit?| |var1StepsDefault|
- |rootPoly| |operators| |changeMeasure| |remove| |initial|
- |genericLeftNorm| |tanh| |setFormula!| |display| |extendedint|
- |lazyVariations| |eq?| |palglimint| |f02fjf| |OMputAtp| |members|
- |checkPrecision| |indiceSubResultantEuclidean| |coth| |denominators|
- |mainVariables| |rCoord| |stirling2| |flexibleArray| |makeResult|
- |OMputEndBVar| |ridHack1| |last| |extendedSubResultantGcd| |sech|
- |pomopo!| |positiveRemainder| |areEquivalent?| |duplicates| |assoc|
- |approximants| |createMultiplicationTable| |rename|
- |resetAttributeButtons| |iiacoth| |csubst| |csch| |point| |power!|
- |coerceListOfPairs| |listBranches| |rank| |multisect|
- |genericRightMinimalPolynomial| |companionBlocks| |setStatus|
- |subset?| |clearTheSymbolTable| |simplifyExp| |asinh| |idealSimplify|
- |cycleElt| |radicalEigenvectors| |countRealRootsMultiple| |fibonacci|
- |composites| |insert!| |showClipRegion| |updatF| |blankSeparate|
- |solveLinearlyOverQ| |acosh| |f04arf| |lquo| |deleteProperty!|
- |setMaxPoints3D| |curveColorPalette| |semicolonSeparate| |pack!|
- |e02baf| |powern| |lazyPrem| |puiseux| |hcrf| |atanh| |series|
- |leftCharacteristicPolynomial| |mix| |fortranDoubleComplex|
- |outputAsScript| |leftTrace| |extendedResultant| |mainCoefficients|
- |trapezoidalo| |monomials| |screenResolution| |po| |acoth| |tower|
- |subResultantGcdEuclidean| |coth2tanh| |lazyIrreducibleFactors|
- |squareMatrix| |comparison| |irreducibleRepresentation|
- |factorsOfCyclicGroupSize| |sinhIfCan| |host| |inv| |epilogue| |asech|
- |testDim| |tube| |dimension| |B1solve| |linearPolynomials| |create|
- |squareFreePrim| |inrootof| |ground?| |separateDegrees|
- |wordsForStrongGenerators| |lists| |getStream| |changeVar|
- |upDateBranches| |topFortranOutputStack| |possiblyNewVariety?|
- |leftFactor| |pseudoDivide| |ground| |f07fdf| |multiple| |min|
- |resetBadValues| |acotIfCan| |declare| |OMreceive| |digits|
- |positive?| |nullSpace| |makeSketch| |rootKerSimp| |digit| |edf2df|
- |applyQuote| |leadingMonomial| ~ |OMputEndAtp| |crushedSet| |segment|
- |sylvesterSequence| |s18dcf| |definingEquations| |constructorName|
- |midpoints| |showFortranOutputStack| |plot| |leadingCoefficient|
- |gcdPrimitive| |transcendentalDecompose| |transcendent?|
- |complexNumeric| |parabolicCylindrical| |distance| |subResultantChain|
- |say| |infinityNorm| |f02ajf| |mathieu24| |f2df| |measure2Result|
- |cSinh| |primitiveMonomials| |iicot| |OMconnInDevice| |open| |setelt|
- |collect| |e01sef| |conjugate| |accuracyIF| |children|
- |numberOfImproperPartitions| |initiallyReduced?| |kernels|
- |jordanAdmissible?| |reductum| |ruleset| |goto| |inHallBasis?| |obj|
- |bipolar| |rootSimp| |gcdPolynomial| |fractRadix| |smith|
- |addPointLast| |fortranComplex| |vedf2vef| |e04fdf| |setVariableOrder|
- |univariate| |ipow| |copy| |mapGen| |cache| |precision|
- |readLineIfCan!| |iprint| |retract| |parametersOf| |exprToUPS|
- |invertIfCan| |outputForm| |skewSFunction| |sin?| |c06gqf|
- |halfExtendedResultant2| |low| |limitPlus| |localIntegralBasis|
- |real?| |suchThat| |randnum| |cot2tan| |printStatement| |leftNorm|
- |rightTraceMatrix| |bumprow| |polyPart| |kovacic| |commutator|
- |groebSolve| |makeSUP| |overset?| |factor| |autoCoerce| |convergents|
- |integralCoordinates| |leftLcm| |subNode?|
- |semiSubResultantGcdEuclidean1| |viewSizeDefault| |biRank|
- |currentScope| |reset| |perfectNthPower?| |recur| |hash| |sqrt|
- |setRow!| |mirror| |f02aff| |hasHi| |polyred| |measure| |count|
- |numberOfComposites| |tanintegrate| |rightRecip| |sturmVariationsOf|
- |real| |leastAffineMultiple| |degreeSubResultantEuclidean| |rightLcm|
- |argumentListOf| |addiag| |pastel| |cAcsc| |write| |bezoutMatrix|
- |solid?| |OMgetEndAttr| |imag| |iisech| |primPartElseUnitCanonical!|
- |firstDenom| |extractSplittingLeaf| |listOfLists| |acscIfCan| |save|
- |hitherPlane| |directProduct| |binomThmExpt| |symmetricRemainder|
- |hasTopPredicate?| |rightAlternative?| |fractRagits| |vconcat|
- |conditionP| |doubleComplex?| |debug3D| |iCompose| |cCsch|
- |rightCharacteristicPolynomial| |getOperator| |central?| |universe|
- |algint| |stoseSquareFreePart| |e02ddf| |lagrange| |domainOf| |times!|
- |s20adf| |destruct| |cyclePartition| |anfactor| |expandLog|
- |groebnerFactorize| |region| |s15aef| |solve| |d02gbf| |rootPower|
- |operation| |prinb| |sumOfKthPowerDivisors| |morphism|
- |leadingExponent| |inverseIntegralMatrixAtInfinity| |tanIfCan|
- |tRange| |rischDEsys| |linearMatrix| |factorSquareFreeByRecursion|
- |unravel| |Ci| |radPoly| |curveColor| |OMputError| |recip| |constant|
- |pair?| |removeSinSq| |identitySquareMatrix| |modTree|
- |selectIntegrationRoutines| |minordet| |cylindrical| |iicos|
- |rischNormalize| |genericRightTrace| |meshPar2Var| |makeViewport2D|
- |internalAugment| |nullary?| |c06fqf| |extension| |monomial| |any|
- |df2mf| |drawToScale| |c05adf| |coHeight| |one?| |radicalSolve|
- |setLabelValue| |corrPoly| |multivariate| |presub| |zCoord| |extract!|
- |arguments| |listConjugateBases| |sorted?| |clipSurface|
- |integerIfCan| |subMatrix| |setScreenResolution3D| |variables|
- |purelyAlgebraicLeadingMonomial?| |ceiling| |tubePointsDefault|
- |squareFreeLexTriangular| |d01bbf| |resultantReduitEuclidean| |scan|
- |cycleLength| |evaluate| |setnext!| |singular?| |distdfact|
- |stripCommentsAndBlanks| |setAttributeButtonStep| |duplicates?|
- |c06gbf| |less?| |algebraicVariables| |clearDenominator|
- |transcendenceDegree| |search| |radicalSimplify| |normalizeIfCan|
- |s19abf| |atanIfCan| |changeName| |leadingBasisTerm| |cAtan| |d02cjf|
- |eq| |bandedHessian| |triangulate| |d02gaf| |wholeRadix|
- |reducedDiscriminant| |singRicDE| |divideExponents|
- |setLegalFortranSourceExtensions| |iter| |abelianGroup| |implies?|
- |SturmHabicht| |padecf| |besselJ| |OMgetType| |vark|
- |nextsubResultant2| |lowerCase!| |evenlambert| |rotatez|
- |fortranDouble| |primitive?| |exprex| |f01qcf| |product|
- |startTableGcd!| |f04adf| RF2UTS |taylor| |quasiMonicPolynomials|
- |tryFunctionalDecomposition?| |quote| |mkPrim| |makeUnit| |cTan|
- |OMsupportsCD?| |or| |chvar| |ffactor| |useEisensteinCriterion?|
- |laurent| |ref| |generalPosition| |curryRight| |f04qaf| |part?|
- |hdmpToP| |lazyPquo| |fTable| |float?| |ddFact| |badNum|
- |kroneckerDelta| |OMmakeConn| |pointColorPalette| |extendedEuclidean|
- |multMonom| |rewriteIdealWithQuasiMonicGenerators| |genus|
- |inconsistent?| |leftDiscriminant| |semiLastSubResultantEuclidean|
- |newLine| |bat| |rowEch| |internalLastSubResultant| |getMeasure|
- |internalSubPolSet?| |fglmIfCan| |head| |permutationGroup| |setClosed|
- |cup| |euclideanNormalForm| |numberOfDivisors| |prinshINFO| |exp|
- |clearFortranOutputStack| |csch2sinh| |algebraic?| |symmetricPower|
- |integerBound| |Vectorise| |complexEigenvectors| |freeOf?|
- |rightPower| |exponents| |newSubProgram| |rightTrim| |charpol|
- |polyRDE| |makeop| |getBadValues| |s17dgf| |physicalLength| |string?|
- |iiasin| |rationalFunction| |leftTrim| |leftExactQuotient|
- |rightExactQuotient| |toroidal| |trim| |ReduceOrder| |identityMatrix|
- |removeSuperfluousCases| |moduleSum| |repSq| |overlabel|
- |numberOfFractionalTerms| |increasePrecision| |argumentList!|
- |quadraticForm| |patternMatch| |relativeApprox| |iiatanh| |e02akf|
- |nthr| |safeCeiling| |factorials| |rangeIsFinite| |zoom| |changeBase|
- |uniform01| |select!| |mathieu23| |delta|
- |removeIrreducibleRedundantFactors| |d01gbf| |e02agf| |OMputSymbol|
- |conditions| |listLoops| |interval| |enterPointData| |quatern|
- |middle| |frobenius| |laguerre| |shuffle| |lllip| |match| |d03edf|
- |ptree| |singleFactorBound| |mainMonomials| |alphabetic?|
- |OMgetEndError| |trivialIdeal?| |se2rfi| |option?| |graphs| |call|
- |OMencodingUnknown| |normalElement| |f02bjf| |rootsOf| |trigs2explogs|
- |LyndonWordsList1| |sts2stst| |permutation| |monicModulo| |list|
- |balancedBinaryTree| |dimensionOfIrreducibleRepresentation| |f01bsf|
- |exQuo| |minimumDegree| |iilog| |prolateSpheroidal| |binomial|
- |leader| |ode1| |car| |compound?| |aromberg| |hdmpToDmp|
- |alphanumeric| |divisors| |realZeros| |quotientByP| |critBonD|
- |c06eaf| |cdr| |reflect| |rroot| |round| |palgextint| |simpsono|
- |constDsolve| |loadNativeModule| |expandTrigProducts| |inRadical?|
- |karatsubaDivide| |setDifference| |nextItem| |addMatch| |ParCondList|
- |npcoef| |nextPartition| |char| |zeroSetSplitIntoTriangularSystems|
- |colorDef| |shellSort| |cot2trig| |setIntersection| |coordinate|
- |purelyAlgebraic?| |quasiRegular?| |explimitedint| |groebgen|
- |basicSet| |FormatRoman| |figureUnits| |lastSubResultant| |setUnion|
- |generic?| |selectOrPolynomials| |totalGroebner| |substring?|
- |legendreP| |setEpilogue!| |getProperty| |subQuasiComponent?|
- |integral?| |pushucoef| |apply| |monicLeftDivide|
- |linearAssociatedOrder| |powers| |outputFixed| |controlPanel|
- |realSolve| |doubleFloatFormat| |leastPower| |e02daf| |setValue!|
- |suffix?| |check| |rational?| |invertible?| |float| |finiteBound|
- |void| |raisePolynomial| |printInfo!| |size| |critT| |imagi|
- |cschIfCan| |irreducible?| |conditionsForIdempotents|
- |lineColorDefault| |makeYoungTableau| |divideIfCan| |setProperties!|
- |stopTableInvSet!| |prefix?| |extractProperty| |fortranLiteralLine|
- |term| |retractable?| |associatedEquations| |cCsc| |divisor|
- |wordInGenerators| |unprotectedRemoveRedundantFactors| |modifyPoint|
- |taylorRep| |ideal| |mathieu11| |first| |OMencodingXML|
- |basisOfLeftNucloid| |adaptive?| |linear?| |symmetric?| |identity|
- |newReduc| |firstSubsetGray| |rest| |startTableInvSet!| |null|
- |discriminant| |linearlyDependentOverZ?| |isMult| |showAllElements|
- |implies| |beauzamyBound| |f02abf| |enumerate| |substitute|
- |anticoord| |bracket| |case| |pointSizeDefault| |color| |eigenMatrix|
- |integralMatrix| |scalarTypeOf| |removeDuplicates| |key|
- |toseLastSubResultant| |Zero| |multiplyExponents| |subspace|
- |extractBottom!| |unaryFunction| |xor| |padicallyExpand| |maxint|
- |errorKind| |binding| |tubePlot| |LyndonCoordinates| |infix?| |One|
- |regime| |autoReduced?| GE |pushup| |makeTerm| |s17dlf| |filename|
- |createZechTable| |reopen!| |mask| |SturmHabichtSequence| |f04axf|
- |assign| GT |double?| |pol| |toseSquareFreePart| |not?|
- |innerEigenvectors| |basisOfMiddleNucleus| |zeroDimPrimary?| LE
- |constantRight| |argument| |outputArgs| |parse| |surface| |copyInto!|
- |mvar| |jordanAlgebra?| |e01bgf| LT |fixedDivisor| |setProperty|
- |and?| |complexLimit| |infix| |purelyTranscendental?| |OMputEndBind|
- |permanent| |space| |makeVariable| |compBound| |symbolTable| |label|
- |retractIfCan| |leftQuotient| |homogeneous?| |dioSolve|
- |tableForDiscreteLogarithm| |c06ekf| |ravel| |dmp2rfi| |graeffe| |dim|
- |impliesOperands| |geometric| |OMgetAttr| |OMParseError?| |reshape|
- |doubleResultant| |uniform| |pushFortranOutputStack| |putGraph|
- |gbasis| |getMultiplicationTable| |genericRightNorm| |atoms|
- |iteratedInitials| |uncouplingMatrices| |popFortranOutputStack| |root|
- |string| |cosh2sech| |extend| |countable?| |e02bef|
- |rationalApproximation| |crest| |s17dhf| |rightGcd| |floor|
- |outputAsFortran| |firstUncouplingMatrix| |imagI| |airyBi|
- |getPickedPoints| |nilFactor| |optpair| |direction| |qinterval|
- |dmpToHdmp| |size?| |Gamma| |d01gaf| |divideIfCan!| |bernoulli|
- |maxPoints| |maximumExponent| |isPower| |exponent| |mathieu22|
- |update| |recoverAfterFail| |inverseIntegralMatrix| |cAsin|
- |createGenericMatrix| |hasoln| |getOrder| |enqueue!| |KrullNumber|
- |univariateSolve| |heapSort| |conjugates| |mantissa| |nthExponent|
- |minPoly| |setAdaptive| |multiEuclidean| |rischDE| |lfintegrate|
- |checkForZero| |dihedralGroup| |map| |lyndon| |physicalLength!|
- |basis| |nextPrimitiveNormalPoly| |dAndcExp| |pointColorDefault|
- |critB| |exponential1| |s17def| |setelt!| |f04mcf| |fortranLiteral|
- |nextLatticePermutation| |badValues| |constantOpIfCan| |lllp|
- |clearTheIFTable| |basisOfCenter| |PDESolve| |dflist| |OMputEndAttr|
- |removeZeroes| |external?| |andOperands| |localReal?|
- |rightFactorIfCan| |subresultantSequence| |second| |getConstant|
- |normFactors| |rotatex| |var2Steps| |empty?| |charthRoot|
- |reduceByQuasiMonic| |pdct| |third| |iiacosh| |setTex!| |removeSinhSq|
- |normalize| |orbit| |convert| |categoryFrame| |createRandomElement|
- |outputGeneral| |RittWuCompare| |univariatePolynomials| |script|
- |iiasinh| |nsqfree| |shiftRight| |complexZeros| |lepol| |squareFree|
- |laguerreL| |invertibleSet| |interpret| |monicCompleteDecompose|
- |factorByRecursion| |mindeg| |vector| |complexIntegrate| |f01rcf|
- |keys| |unitsColorDefault| |polarCoordinates| |axes| |leftMult|
- |internalSubQuasiComponent?| |front| |differentiate| |eigenvalues|
- |explogs2trigs| |rk4f| |weierstrass| |tex| |prime?|
- |partialNumerators| |normalizedDivide| |drawStyle|
- |createNormalPrimitivePoly| |characteristic| |cycleSplit!|
- |setsubMatrix!| |rombergo| |remainder| |useNagFunctions| |inR?|
- |clipParametric| |iiasec| |point?| |e01bff| |variable?| |setlast!|
- |distribute| |f02aaf| |characteristicSerie| |imagj| |insertMatch|
- |diag| |slex| |alphabetic| |lowerPolynomial| |zeroDim?| |yellow|
- |paren| |semiResultantEuclidean2| |mergeFactors| |showAll?| |btwFact|
- |setFieldInfo| |d03faf| |debug| |degreePartition| |lexGroebner| |dot|
- |primlimitedint| |linGenPos| |basisOfCentroid| |qPot| |iifact| D
- |predicate| |leftRankPolynomial| |stiffnessAndStabilityOfODEIF|
- |f02bbf| |setButtonValue| |OMgetAtp| LODO2FUN |evenInfiniteProduct|
- |fixedPointExquo| |column| |monomialIntegrate| |sechIfCan|
- |differentialVariables| |makeFloatFunction| |sn| |bringDown|
- |leftUnits| |makeGraphImage| |bindings| |parent|
- |integralBasisAtInfinity| |rewriteSetWithReduction| |infieldIntegrate|
- |solveRetract| |structuralConstants| |univcase| |sumOfSquares|
- |movedPoints| |virtualDegree| |rational| |true| |palgintegrate|
- |separant| |Lazard| |setCondition!| |cyclic| |splitConstant|
- |basisOfRightNucleus| |getExplanations| |and| |brace| |OMopenString|
- |leftDivide| |mainMonomial| |basisOfCommutingElements| |internal?|
- |stoseInvertible?sqfreg| |resultant| |closeComponent| |leaves|
- |powerSum| |transform| |laurentRep| |quadratic| |lp|
- |linearAssociatedLog| |normalized?| |bezoutDiscriminant| |refine|
- |genericRightTraceForm| |symbolIfCan| |aLinear| |logpart| |deepCopy|
- |modifyPointData| |createPrimitiveElement| |c06ecf| |e02bbf| |cAcsch|
- |errorInfo| |parameters| |d01akf| |sumSquares| |insertionSort!|
- |phiCoord| |radicalEigenvalues| |value| |sup| |romberg|
- |stoseInternalLastSubResultant| |nonLinearPart| |close!| |varselect|
- |tubeRadius| |printStats!| |sum| |fillPascalTriangle| |iicosh|
- |hyperelliptic| |minrank| |goodnessOfFit| |logIfCan| |log2|
- |deepestInitial| |equality| |primlimintfrac| |groebnerIdeal|
- |OMputEndApp| |associative?| |bitCoef| |coefficients| |makeEq|
- |symmetricSquare| |univariatePolynomialsGcds|
- |createLowComplexityTable| |unitCanonical| |e02gaf| |makeCos|
- |PollardSmallFactor| |f04atf| |expt| |froot| |wronskianMatrix|
- |d01anf| |s14aaf| |bumptab1| |odd?| |hex|
- |removeRoughlyRedundantFactorsInPols| |zerosOf| |rarrow| |allRootsOf|
- |rootDirectory| |optional?| |setMinPoints3D| |LyndonWordsList|
- |s13aaf| |top!| |identification| |lieAlgebra?| |totalDegree|
- |gcdcofact| |packageCall| |LagrangeInterpolation| |findBinding|
- |socf2socdf| |leadingTerm| |generators| |selectsecond| |f04jgf|
- |brillhartIrreducible?| |initiallyReduce| |concat| |s18def|
- |powerAssociative?| |pointLists| |unitNormalize| |OMUnknownCD?|
- |subSet| |fi2df| |mainValue| |redmat| |sdf2lst|
- |constantToUnaryFunction| |randomLC| |elements| |addPoint2|
- |atanhIfCan| |permutationRepresentation| |pdf2ef| |elRow1!|
- |OMreadStr| |lflimitedint| |lazy?| |ScanArabic| |nextPrime|
- |extractPoint| |yCoordinates| |id| |removeRedundantFactorsInPols|
- |tan2trig| |e04mbf| |rdregime| |OMgetInteger| |infieldint|
- |cyclicEqual?| |cscIfCan| |sparsityIF| |nthFactor| |permutations|
- |chiSquare| |shade| |linearlyDependent?| |lazyPseudoQuotient|
- |insertRoot!| |startTable!| |table| |roughEqualIdeals?| |denomLODE|
- |polygon?| |getButtonValue| |qelt| |mainVariable?| |algebraicSort|
- |pquo| |palgextint0| |dimensionsOf| |new| |OMgetObject| |cAtanh|
- |setPredicates| |showTheSymbolTable| |pascalTriangle| |squareFreePart|
- |completeSmith| |viewWriteAvailable| |powmod| |weighted| |minus!|
- |cosSinInfo| |exquo| |rst| |fortranCompilerName| |xRange| |pole?|
- |currentEnv| |cTanh| |computePowers| |tracePowMod| |mpsode| |div|
- |yRange| |closedCurve| |Beta| |viewDeltaYDefault| |antiAssociative?|
- |indices| |divergence| |rightOne| |cyclotomic| |quo| |applyRules|
- |startPolynomial| |zRange| |rquo| |e02dff| |numberOfFactors| |cExp|
- |numberOfMonomials| |complexNormalize| |rightMinimalPolynomial|
- |equiv| |map!| |expint| |scanOneDimSubspaces| |OMgetString|
- |selectFiniteRoutines| |rewriteIdealWithRemainder| |antisymmetric?|
- |rem| |blue| |qsetelt!| |hspace| |mapSolve| |fullDisplay|
- |LowTriBddDenomInv| |myDegree| |viewPhiDefault| |pade|
- |generalizedEigenvectors| |pureLex| |createNormalPoly| |s17ahf|
- |OMputApp| |satisfy?| |karatsuba| |e04dgf| |reciprocalPolynomial|
- GF2FG |secIfCan| |typeLists| |extractIfCan| |highCommonTerms|
- |diagonal| |leaf?| |nextPrimitivePoly| |mapmult| |parabolic|
- |acschIfCan| |superscript| |roman| |tanQ| |fortran| |tab| |OMputBVar|
- |expIfCan| |supRittWu?| |left| |redPo| |mainPrimitivePart|
- |internalIntegrate| |acsch| |roughBasicSet|
- |standardBasisOfCyclicSubmodule| |invmultisect| |bitLength|
- |complexExpand| |right| |rootSplit| |zeroDimPrime?|
- |internalInfRittWu?| |drawComplexVectorField| |minColIndex|
- |moebiusMu| |roughUnitIdeal?| |setOrder| |perfectSquare?|
- |numericIfCan| |pushdterm| |goodPoint| |s01eaf| |lintgcd| |rk4qc|
- |rur| |unexpand| |coerceP| |init| |failed?| |monicDecomposeIfCan|
- |roughBase?| |bandedJacobian| |initializeGroupForWordProblem| |curve|
- |partialQuotients| |listRepresentation| |taylorIfCan| |interReduce|
- |monomial?| |zeroDimensional?| |SturmHabichtMultiple| |ocf2ocdf|
- |coord| |testModulus| |OMbindTCP| |commutative?| |not|
- |associatedSystem| |terms| |coerceS| |withPredicates| |OMputEndObject|
- |OMgetError| |merge| |push!| |rowEchelonLocal| |overlap| |sqfrFactor|
- |iflist2Result| |OMputAttr| |pile| |cross| |getIdentifier| |seed|
- |ranges| |f01ref| |integralBasis| |cycleTail| |d01ajf| |chebyshevU|
- |OMgetVariable| |youngGroup| |varList| |primes| |rules| |center|
- |solveLinearPolynomialEquationByRecursion| |mainKernel| |lfunc|
- |light| |OMunhandledSymbol| |minGbasis| |OMreadFile| |tubePoints|
- |deleteRoutine!| |delete!| |maxrow| |generalizedInverse| |key?|
- |flexible?| |leadingIndex| |factors| |cothIfCan| |iiperm| |wrregime|
- |rationalPoint?| |squareFreeFactors| |createMultiplicationMatrix|
- |acoshIfCan| |e02dcf| |hermite| |bat1| |OMsetEncoding| |pointData|
- |exponential| |quotedOperators| |f07adf| |toseInvertibleSet| |iitan|
- |extractIndex| |f02akf| |nthRoot| |SFunction| |makeCrit| |aspFilename|
- |quoByVar| |lazyEvaluate| |symbol| |expenseOfEvaluationIF| |gcdprim|
- |OMputEndError| |rightUnits| |groebner?| |write!| |match?|
- |selectPolynomials| |mapExponents| |antisymmetricTensors|
- |associatorDependence| |coefChoose| |genericRightDiscriminant|
- |meshPar1Var| |OMgetEndAtp| |divide| |makeFR| |cosIfCan|
- |jacobiIdentity?| |create3Space| |cAcoth| |makingStats?|
- |radicalEigenvector| |integer| |bitior| |escape| |linears|
- |resultantnaif| ** |leastMonomial| |shiftLeft| |parts| |enterInCache|
- |degreeSubResultant| |replace| |cCoth| |reduced?| |e04jaf|
- |mightHaveRoots| |lastSubResultantEuclidean| |pleskenSplit| |quartic|
- |cap| |iiatan| |exactQuotient| |safetyMargin| |move| |expextendedint|
- |algDsolve| |f01maf| |s18aff| |has?| |simpleBounds?| |complement|
- |mergeDifference| |iExquo| |f02axf| EQ |readIfCan!| |sub|
- |RemainderList| |c06gcf| UTS2UP |numberOfComputedEntries| |typeList|
- |denomRicDE| |midpoint| |null?| |iomode| |UpTriBddDenomInv|
- |factorAndSplit| |lfextendedint| |inc| |primextintfrac|
- |sumOfDivisors| |s20acf| |hessian| |chainSubResultants| |expandPower|
- |numericalOptimization| |newTypeLists| |content| |viewZoomDefault|
- |OMgetEndObject| |leftUnit| |s13adf| |decomposeFunc|
- |SturmHabichtCoefficients| |setleaves!| |combineFeatureCompatibility|
- |nativeModuleExtension| |integralDerivationMatrix| |isOp| |minPoints|
- |var1Steps| |rename!| |vertConcat| |factorSquareFreePolynomial|
- |leftRegularRepresentation| |lexico| SEGMENT |plus| |decompose|
- |f04asf| |plotPolar| |prefix| |s21bdf| |finite?| |principalIdeal|
- |objectOf| |e01daf| |factorList| |distFact| |addMatchRestricted|
- |plus!| |minRowIndex| |f04faf| |df2ef| |iiabs| |sizeMultiplication|
- |OMlistSymbols| |test| |printCode| |bottom!| |gradient| |sequences|
- |asechIfCan| |sizePascalTriangle| |generalizedEigenvector|
- |subResultantsChain| |palgRDE| |setAdaptive3D| |OMputFloat|
- |realRoots| |definingInequation| |strongGenerators| |high|
- |nextIrreduciblePoly| |hue| |stack| |interpretString| |any?| |s17aef|
- |numberOfOperations| |ScanFloatIgnoreSpaces| |times| |bubbleSort!|
- |showTypeInOutput| |diagonalProduct| |prologue| |iidsum| |graphImage|
- |clipBoolean| |currentCategoryFrame| |alternatingGroup| |rootProduct|
- |squareTop| |thetaCoord| |argscript| |name| |medialSet| |maxColIndex|
- |upperCase| |resetNew| |commonDenominator| |error| |prefixRagits|
- |constantOperator| |sinh2csch| |trace2PowMod| |bit?| |body|
- |algebraicDecompose| |vspace| |selectAndPolynomials| |simplifyPower|
- |indiceSubResultant| |assert| |fortranInteger| |increase|
- |mapBivariate| |OMconnectTCP| |unitVector| |optimize| |closedCurve?|
- |fractionFreeGauss!| |abs| |selectMultiDimensionalRoutines|
- |halfExtendedSubResultantGcd1| |unary?| |pToDmp| |c02agf| |monom|
- |approxNthRoot| |dominantTerm| |noncommutativeJordanAlgebra?|
- |associates?| |tanh2coth| |stoseInvertibleSetreg| |drawCurves|
- |primeFrobenius| |numerators| |subResultantGcd| |solveLinear| |mesh|
- |term?| |rootNormalize| |viewport3D| |ksec| |matrixDimensions| |empty|
- |setColumn!| |baseRDEsys| |reverseLex| |Frobenius| |makeSeries| |expr|
- |FormatArabic| |arg1| |int| |bivariate?| |htrigs| |common|
- |lexTriangular| |invmod| |rightQuotient| |coercePreimagesImages|
- |mainSquareFreePart| |exists?| |exprToXXP| |mkAnswer| |arg2|
- |antiCommutator| |besselK| |complexEigenvalues| |seriesSolve|
- |LazardQuotient| |tValues| |ode| |OMwrite| |rightDiscriminant|
- |d01amf| |someBasis| |rightRankPolynomial| |tanAn| |localAbs|
- |stopMusserTrials| |knownInfBasis| |karatsubaOnce| |changeNameToObjf|
- |addmod| |mapExpon| |contains?| |cAcot| |squareFreePolynomial| |power|
- |iicoth| |rightNorm| |solid| |variable| |s19aaf| |numberOfCycles|
- |minIndex| |perspective| |UP2ifCan| |realEigenvectors| |ricDsolve|
- |semiSubResultantGcdEuclidean2| |nthCoef| |summation| |returns|
- |exteriorDifferential| |prime| |internalIntegrate0| |predicates| |Nul|
- |triangular?| |polynomialZeros| |OMputString| |more?| |insert|
- |equivOperands| |subscriptedVariables| |failed| |forLoop| |intersect|
- |computeCycleLength| |critMonD1| |harmonic| |rightScalarTimes!|
- |drawComplex| |useSingleFactorBound| |square?|
- |generalizedContinuumHypothesisAssumed?| |d02raf| |ran|
- |linkToFortran| |element?| |t| |increment| |c06fpf| |getGoodPrime|
- |complete| |iiacsch| |next| |finiteBasis| |branchPoint?|
- |constantCoefficientRicDE| |doubleDisc| |asecIfCan| |nlde|
- |numberOfNormalPoly| |radix| |OMgetBVar| |digit?| |normalDenom|
- |entry?| |firstNumer| |isAbsolutelyIrreducible?| |removeCosSq|
- |flatten| |trigs| |expintegrate| |acosIfCan| |ptFunc| |nand| |cn|
- |e01sbf| |modulus| |backOldPos| |lambert| |palgRDE0| |UnVectorise|
- |supDimElseRittWu?| |resultantEuclideannaif| |explicitlyFinite?|
- |selectSumOfSquaresRoutines| |coefficient| |character?| |solveid|
- |ramifiedAtInfinity?| |c05pbf| |generalLambert| |setchildren!|
- |shanksDiscLogAlgorithm| |ldf2lst| |directory| |repeating|
- |limitedint| |mindegTerm| |eval| |cAsinh| |nil| |isQuotient|
- |reduceLODE| |showArrayValues| |leftZero| |noLinearFactor?| |reverse|
- |algebraicOf| |c06fuf| |length| |colorFunction| |currentSubProgram|
- |trailingCoefficient| |updateStatus!| |transpose| |leadingSupport|
- |nonSingularModel| |d02bhf| |fixPredicate| |scripts| |exptMod|
- |buildSyntax| |primitivePart!| |complementaryBasis| |operator|
- |rightRank| Y |numerator| |lifting1| |resultantReduit| |headAst|
- |f02aef| |leftGcd| |ratPoly| |prinpolINFO| |initTable!| |approximate|
- |cycle| |leftPower| |getCurve| |symbolTableOf| |printInfo|
- |eisensteinIrreducible?| |OMUnknownSymbol?| |outputMeasure| |op|
- |complex| |edf2ef| |e02aef| |presuper| |printingInfo?| |systemCommand|
- |solveLinearPolynomialEquationByFractions| |child?| |constantIfCan|
- |evaluateInverse| |height| |incrementKthElement| |OMserve|
- |selectOptimizationRoutines| |commaSeparate| |getCode|
- |stoseInvertibleSet| |henselFact| |chineseRemainder| |graphState|
- |lambda| |symmetricProduct| |multinomial| |boundOfCauchy| |prem|
- |nthFlag| |rootBound| |connect| |eulerE| |setTopPredicate|
- |outerProduct| |baseRDE| |adaptive| |fixedPoint| |zag| |cAsec|
- |normal| |mkIntegral| |lighting| |functionIsOscillatory| |d01asf|
- |iidprod| |yCoord| |generateIrredPoly| |eyeDistance| |toScale| |cLog|
- |iicsc| |rewriteSetByReducingWithParticularGenerators| |belong?|
- |cyclotomicFactorization| |member?| |rk4a| |multiEuclideanTree|
- |s17agf| |symbol?| |zeroOf| |s15adf| |union| |consnewpol|
- |setProperties| |shift| |augment| |rightRegularRepresentation|
- |cycleRagits| |subCase?| |quasiRegular| |deepExpand| |cCot|
- |setImagSteps| |deref| |returnType!| |depth| |multiplyCoefficients|
- |intermediateResultsIF| |prepareDecompose| |s21bbf|
- |lazyPremWithDefault| |primPartElseUnitCanonical| |setClipValue|
- |makeMulti| |computeBasis| |input| |d02kef| |safeFloor| |resize|
- |setleft!| |messagePrint| |aQuartic| UP2UTS |f02xef|
- |lazyResidueClass| |options| |rubiksGroup| |qfactor| |setMaxPoints|
- |updatD| |library| |linSolve| |hypergeometric0F1| |cyclic?|
- |elliptic?| |listYoungTableaus| |open?| |nil| |infinite|
- |arbitraryExponent| |approximate| |complex| |shallowMutable|
- |canonical| |noetherian| |central| |partiallyOrderedSet|
- |arbitraryPrecision| |canonicalsClosed| |noZeroDivisors|
- |rightUnitary| |leftUnitary| |additiveValuation| |unitsKnown|
- |canonicalUnitNormal| |multiplicativeValuation| |finiteAggregate|
- |shallowlyMutable| |commutative|) \ No newline at end of file
+ |Record| |Union| |externalList| |depth| |radicalOfLeftTraceForm|
+ |orbit| |property| |createPrimitivePoly| |LagrangeInterpolation|
+ |nextSubsetGray| |Not| |denomLODE| |shallowCopy| |getCurve| |cotIfCan|
+ |palgextint| |unexpand| |monomials| |point?| |lintgcd|
+ |minimalPolynomial| |laguerreL| |dom| |selectOptimizationRoutines|
+ |push| |paren| |sncndn| |in?| |max| |supDimElseRittWu?| |conjugates|
+ |makeprod| |set| |mainContent| |units| |c06fpf| |lllp| |sub|
+ |extractSplittingLeaf| |lowerPolynomial| |completeHensel|
+ |selectAndPolynomials| |tubeRadiusDefault| |byte| |d01asf|
+ |kroneckerDelta| |rangeIsFinite| |extractIndex| |weakBiRank|
+ |hdmpToDmp| |stop| |critM| |schwerpunkt| |zeroMatrix| |pointLists|
+ |s13adf| |rotate| |partialQuotients| |minRowIndex|
+ |normalizeAtInfinity| |overlap| |noKaratsuba| |smith| |getOrder|
+ |critMTonD1| |denominators| |initiallyReduce| |doubleDisc|
+ |firstNumer| |alternatingGroup| |infiniteProduct| |complexForm|
+ |title| UTS2UP |balancedFactorisation| |leftNorm| |code| |froot|
+ |copies| |factorList| |fortranInteger| |cyclicCopy| |constructorName|
+ |child| |s15aef| |float?| |irreducibleFactor| |maxint| |intersect|
+ |mainKernel| |primlimintfrac| |radicalEigenvectors|
+ |rewriteSetByReducingWithParticularGenerators| |intensity| |e|
+ |setMinPoints| |f02fjf| |unmakeSUP| |prefixRagits| |Beta| |rischDE|
+ |cTan| |LyndonWordsList| |bezoutMatrix| |wholePart| |rationalPower|
+ |realElementary| |rk4| |check| |edf2df| |getMatch| |iicos| |getlo|
+ |OMsupportsSymbol?| F |pdf2ef| |nextColeman| |iisech| |atom?| |sort|
+ |bumptab| |showSummary| |show| |iiatanh| |goto| |cot2trig|
+ |setProperties!| |prologue| |callForm?| |pascalTriangle|
+ |stoseInvertibleSetsqfreg| |cCos| |medialSet| |normFactors| |segment|
+ |lexTriangular| |clearDenominator| |torsionIfCan|
+ |shanksDiscLogAlgorithm| |evenlambert| |showAttributes| |trace|
+ |lepol| |nextPrimitivePoly| |midpoint| |bombieriNorm| |e02daf|
+ |computeCycleEntry| |dflist| |outputForm| |autoReduced?| |OMgetType|
+ |rewriteIdealWithQuasiMonicGenerators| |frst| |f01brf| |curryLeft|
+ |clipSurface| |write| |elements| |squareFreePrim| |f2st| |cubic|
+ |stoseInvertible?| |pseudoRemainder| |basisOfRightNucloid| |rotatey|
+ |save| |f07fdf| |random| |bubbleSort!| |squareFreePolynomial| |d01fcf|
+ |dihedralGroup| |generalizedContinuumHypothesisAssumed?| |rightRecip|
+ |extractBottom!| |updatF| |clipWithRanges| |selectPolynomials|
+ |charpol| |redmat| |selectSumOfSquaresRoutines| |zag|
+ |internalSubPolSet?| |useEisensteinCriterion|
+ |getMultiplicationMatrix| |LyndonWordsList1| |Ei| |distdfact|
+ |complexEigenvectors| |nonLinearPart| |flexibleArray| |nil?| |modulus|
+ |setAdaptive3D| |magnitude| |createPrimitiveNormalPoly| |moebiusMu|
+ |pack!| |tValues| |mapBivariate| |elem?| GF2FG |univariatePolynomials|
+ |makeCrit| |tRange| |dequeue| |f04mbf| |printCode| |doubleComplex?|
+ |setMaxPoints3D| |signature| NOT |normalized?|
+ |showFortranOutputStack| |purelyAlgebraicLeadingMonomial?|
+ |limitedint| |setAdaptive| |associative?| |quadraticForm|
+ |splitNodeOf!| |internalZeroSetSplit| OR |clearTheFTable|
+ |rightAlternative?| |positiveSolve| |diagonal?| |subscript|
+ |groebSolve| |selectIntegrationRoutines| |mkcomm| |cAcos| AND
+ |makeSeries| |plusInfinity| |monic?| |createThreeSpace|
+ |functionIsContinuousAtEndPoints| |Hausdorff| |approxSqrt|
+ |unprotectedRemoveRedundantFactors| |lineColorDefault|
+ |associatedEquations| |or?| |pdf2df| |minusInfinity| |primaryDecomp|
+ |slex| |yCoordinates| |pade| |width| |partialFraction| |OMgetString|
+ |movedPoints| |asinhIfCan| |lexGroebner| |ParCondList| |e02aef|
+ |c06gbf| |removeSinhSq| |nothing| |maxrow| |scanOneDimSubspaces|
+ |monicRightFactorIfCan| |leadingSupport| |node?| |quadraticNorm|
+ |leftMinimalPolynomial| |e02bdf| |closedCurve?| |expandPower| |lhs|
+ |representationType| |quatern| |jacobian| |maxdeg| |realSolve|
+ |cyclicGroup| |genericLeftTrace| |cosIfCan| |rhs| |c06gqf|
+ |idealSimplify| |symmetricPower| |acschIfCan| |tanh2trigh|
+ |signAround| |sequences| |KrullNumber| |zeroVector| |removeCoshSq|
+ |solveInField| |tracePowMod| |semiResultantEuclideannaif| |basicSet|
+ |setleft!| |type| |eigenvectors| |numFunEvals| |viewWriteAvailable|
+ |flexible?| |formula| |optional| |pointData| |quasiAlgebraicSet|
+ |e02dcf| |OMgetApp| |compdegd| |latex| |OMmakeConn| |node| |separant|
+ |rationalApproximation| |lprop| * |createNormalPoly|
+ |fortranCompilerName| |nextIrreduciblePoly| |f07fef| |cycleElt| |cond|
+ |s17dlf| |currentSubProgram| |makeSketch| |noLinearFactor?|
+ |changeName| |lfextendedint| |simpson| |bindings| |exponential1|
+ |mapSolve| |reify| |entry?| |mathieu11| |lazyPseudoDivide| |nrows|
+ |graphStates| |viewZoomDefault| |delete!| |schema| |buildSyntax|
+ |chebyshevT| |nodes| |alphabetic| |ncols| |setFieldInfo| |f02bbf|
+ |mapUnivariateIfCan| |jordanAdmissible?| |cPower| |symmetricGroup|
+ |startTable!| |rdHack1| |cons| |constantKernel| |invertibleElseSplit?|
+ |factorial| |pseudoQuotient| |moebius| |normal01| |top| |nullary?|
+ |curveColor| |pointPlot| |makeFR| |complexIntegrate| |transform|
+ |e04ucf| |continue| |sylvesterSequence| |factorFraction| |weights|
+ |localAbs| |aromberg| |forLoop| |OMconnInDevice| |empty?| |contours|
+ |polynomialZeros| |sizeMultiplication| |OMgetFloat| |tree|
+ |complement| |modularGcdPrimitive| |toScale| |Vectorise| |positive?|
+ |resize| |SturmHabichtSequence| |csch2sinh| |numberOfChildren| |red|
+ |antiCommutator| |problemPoints| |increment| |binary| |rationalIfCan|
+ |ScanFloatIgnoreSpaces| |makeop| |linearAssociatedLog| |gradient|
+ |imagK| |realRoots| |readIfCan!| |iitan| |level| |source| |abs|
+ |superHeight| |setOrder| |equation| |getConstant| |trivialIdeal?|
+ |directory| |palglimint| |tanintegrate| |checkRur| |lazyEvaluate|
+ |nthRootIfCan| |e01sbf| |laurentIfCan| |karatsuba| |constantLeft|
+ |e01baf| |logical?| |genericLeftTraceForm| |OMgetVariable| |nilFactor|
+ |e02bef| |fullPartialFraction| |explicitEntries?| |OMputInteger|
+ |mapdiv| |algebraicVariables| |pseudoDivide| |deleteProperty!|
+ |OMsetEncoding| |double?| |dec| |cAcsc| |intChoose| |selectfirst|
+ |completeSmith| |lambert| |roughEqualIdeals?| |prime| |lowerCase!|
+ |symbol?| |monomialIntegrate| |polCase| |bandedJacobian|
+ |intcompBasis| |minColIndex| |rightPower| |bright| |rightTrace|
+ |squareFreeLexTriangular| |totalfract| |target| |indicialEquations|
+ |localUnquote| |c05pbf| |sizePascalTriangle| |d03eef| |Si|
+ |divideIfCan| |genericRightTrace| |mainMonomials| |radicalSolve|
+ |splitDenominator| |ref| |sumOfSquares| |unitVector| |number?|
+ |surface| |expint| |algSplitSimple| |polygamma| |cyclicEqual?|
+ |standardBasisOfCyclicSubmodule| |f04adf| |round| |stirling2|
+ |degreePartition| |algebraic?| |stiffnessAndStabilityOfODEIF| |rspace|
+ |string?| |anfactor| |besselJ| |complexElementary| |sinIfCan|
+ |LazardQuotient| |f01qcf| |duplicates?| |setMinPoints3D| |trigs|
+ |OMputEndBind| |basisOfNucleus| |s17aef|
+ |solveLinearPolynomialEquationByRecursion| |possiblyNewVariety?|
+ |getOperator| |lazyPremWithDefault| |controlPanel| |df2mf|
+ |insertRoot!| |showTheRoutinesTable| |denomRicDE| |mainValue| |delete|
+ |subTriSet?| |result| |polyred| |key?| |aQuartic| |integralRepresents|
+ |singular?| |karatsubaOnce| |checkPrecision| |pureLex| |OMgetAtp|
+ |crushedSet| |viewPhiDefault| |conditionP| |showTheSymbolTable|
+ |boundOfCauchy| |minPol| |polyRicDE| |atanIfCan| |reopen!|
+ |infRittWu?| |edf2ef| |printStatement| |setScreenResolution|
+ |squareFreeFactors| |lift| |prepareDecompose| |mat| |tanIfCan|
+ |hasSolution?| |indiceSubResultant| |randomLC| |nthr| |redPol|
+ |changeVar| |comp| |reduce| |vertConcat| |leftZero| |cfirst|
+ |fracPart| |addMatch| |quartic| |content| |areEquivalent?|
+ |SturmHabichtMultiple| |selectsecond| |distribute| |csc2sin| |setelt!|
+ |lazyGintegrate| |linearPolynomials| |numerators| |homogeneous?|
+ |f02abf| |SFunction| |parametersOf| |pmintegrate| F2FG |isList|
+ |delta| |elt| |difference| |even?| |integrate|
+ |inverseIntegralMatrixAtInfinity| |exponent| |matrixConcat3D|
+ |oddInfiniteProduct| |prinb| |enterPointData| |getCode|
+ |OMlistSymbols| |modularGcd| |entry| |branchIfCan| |HermiteIntegrate|
+ |decrease| |OMgetSymbol| |normalDenom| |LowTriBddDenomInv| |li|
+ |primitiveElement| |leftTrace| |mainDefiningPolynomial| |objectOf|
+ |setScreenResolution3D| |OMputEndError| |hdmpToP| ~ |shrinkable|
+ |f01qef| |fmecg| |commutative?| |concat!| |GospersMethod| |escape|
+ |setOfMinN| |chainSubResultants| |acotIfCan| |complexNormalize|
+ |clearCache| |removeRedundantFactors| |gbasis| |reverse| |iitanh|
+ |binaryFunction| |e02adf| |linearAssociatedOrder| |open|
+ |showAllElements| |log10| |nativeModuleExtension| |stopTable!|
+ |typeLists| |chiSquare1| |numer| |subspace| |wordInGenerators|
+ |extractPoint| |printTypes| |bitand| |extend| |splitSquarefree|
+ |queue| |traceMatrix| |chineseRemainder| |obj| |uncouplingMatrices|
+ |denom| |/\\| |absolutelyIrreducible?| |hspace| |maxrank| |algDsolve|
+ |charClass| |singularAtInfinity?| |generator| |enterInCache|
+ |pushdown| |stoseInternalLastSubResultant| |cache| |rightLcm| |rule|
+ |\\/| |unparse| |f02awf| |solve| |limitPlus| |basisOfRightAnnihilator|
+ |triangulate| |leftCharacteristicPolynomial| |mathieu24|
+ |binaryTournament| |square?| |pquo| |pi| |OMputEndApp| |toroidal|
+ |member?| |leftGcd| |binding| |rightOne| |dAndcExp| |exists?| |index|
+ |df2st| |taylorIfCan| |expextendedint| |infinity|
+ |genericRightTraceForm| |splitLinear| |inR?| |drawComplexVectorField|
+ |e02bbf| |norm| |hasTopPredicate?| |stoseSquareFreePart|
+ |factorAndSplit| |permutationRepresentation| |quasiRegular| |makeTerm|
+ |calcRanges| |removeSuperfluousQuasiComponents| |option| |pushuconst|
+ |open?| |normInvertible?| |leftDivide| |logpart| |cycleRagits| |low|
+ |zeroSquareMatrix| |computePowers| |OMgetEndAttr| |wreath|
+ |nextLatticePermutation| |isobaric?| |retractable?| |birth| |pair|
+ |lazyVariations| |coefChoose| |simplifyExp| |measure2Result| BY
+ |kernel| |resultantnaif| |PDESolve| |nonQsign| |closed?| |axes|
+ |setImagSteps| |quoted?| |startStats!| |integer?| |modularFactor|
+ |legendreP| |draw| |points| |recolor| |indiceSubResultantEuclidean|
+ |cyclicParents| |biRank| |comparison| |minimize| |leftTraceMatrix|
+ |identityMatrix| |tube| |inverseIntegralMatrix| |subResultantChain|
+ |palgintegrate| |function| |nodeOf?| |cycleTail| |matrixDimensions|
+ |pToHdmp| |parabolicCylindrical| |makeMulti| |lo| |antiAssociative?|
+ |setProperties| |branchPointAtInfinity?| |badValues| |sumSquares|
+ |rst| |removeSinSq| |primitive?| |screenResolution3D| |incr| |cAcoth|
+ |subNodeOf?| |position| |semiDiscriminantEuclidean| |gramschmidt|
+ |initials| |paraboloidal| |wholeRagits| |regularRepresentation|
+ |triangular?| |hi| |makeObject| |comment| |swapColumns!| |preprocess|
+ |viewDeltaXDefault| |getRef| |cAtanh| |mathieu23| |supRittWu?|
+ |polyPart| |expressIdealMember| |partialNumerators|
+ |semiIndiceSubResultantEuclidean| |setrest!| |clearTable!| |ScanRoman|
+ |idealiserMatrix| |acoshIfCan| |ideal| |exactQuotient| |coef|
+ |spherical| |setProperty!| |numberOfDivisors| |initiallyReduced?|
+ |viewpoint| |curryRight| |degree| |specialTrigs| |uniform|
+ |quadratic?| |constantRight| |condition| |tan2cot| |eq?| |ldf2vmf|
+ |collectUnder| |someBasis| |wordsForStrongGenerators| |radPoly|
+ |d01bbf| |rootNormalize| |colorFunction| |dmpToP| |palgint|
+ |sparsityIF| |PollardSmallFactor| |palgextint0| |positiveRemainder|
+ |quoByVar| |lfextlimint| |OMUnknownSymbol?| |ran|
+ |halfExtendedResultant1| |setvalue!| |split| |finiteBound| |palgRDE|
+ |LiePoly| |qPot| |s18adf| |mesh| |tab| |OMputSymbol| |cycles|
+ |printStats!| |getIdentifier| |pattern| |atoms| |allRootsOf| |roman|
+ |internalDecompose| |fortranTypeOf| |btwFact| |shade| |any?| |nthFlag|
+ |partitions| |iiabs| |s17dhf| |rightNorm| |d01anf| |OMgetAttr|
+ |lastSubResultantElseSplit| |horizConcat| |bit?|
+ |numberOfFractionalTerms| |tail| |cCsch| |hconcat| |dioSolve| |log|
+ |isPlus| |lcm| |factorSquareFreeByRecursion| |lfinfieldint| |besselI|
+ |divideIfCan!| |plenaryPower| |withPredicates| |realZeros| |moduleSum|
+ |rowEch| |removeSquaresIfCan| |rightRemainder|
+ |basisOfLeftAnnihilator| |d01apf| |message| |over| |moreAlgebraic?|
+ |setRealSteps| |transpose| |append| |stopTableGcd!|
+ |unitsColorDefault| |divide| |mkPrim| |variationOfParameters|
+ |certainlySubVariety?| |OMputAttr| |commutativeEquality|
+ |internalAugment| |generate| |space| |gcd| |setTopPredicate|
+ |semiDegreeSubResultantEuclidean| |subscriptedVariables|
+ |cyclePartition| |baseRDEsys| |nextPrime| |antisymmetric?|
+ |upperCase?| |toseLastSubResultant| |validExponential| |false|
+ |logIfCan| |traverse| |fi2df| |isMult| |reduced?| |listBranches|
+ |lllip| |subtractIfCan| |getProperty| |incrementBy| |output| |leaves|
+ |userOrdered?| |setLabelValue| |euler| |setlast!| |twist| |bits|
+ |complexExpand| |expand| |possiblyInfinite?| |numberOfNormalPoly|
+ |besselK| |univcase| |att2Result| |ODESolve| |inverse| = |properties|
+ |alphanumeric?| |qinterval| |erf| |filterWhile| |hasHi| |rootSimp|
+ |OMsend| |padecf| |taylorQuoByVar| |subMatrix| |term| |translate|
+ |copyInto!| |numberOfCycles| |filterUntil| |putGraph| |compile| |#|
+ |qroot| |list?| |part?| |basisOfCentroid| |rectangularMatrix|
+ |OMopenString| < |reducedQPowers| |f07adf| |select| |OMconnOutDevice|
+ |setnext!| |putColorInfo| |cCot| |status| |hessian| >
+ |setLegalFortranSourceExtensions| |external?| |dilog| |digamma|
+ |optional?| |dimension| |expintegrate| |s19abf| |imagi| |gderiv| <=
+ |semiResultantEuclidean1| |particularSolution| |sin| |iisin| |matrix|
+ |optAttributes| |s18aef| |selectPDERoutines| |separateDegrees|
+ |strongGenerators| |flagFactor| >= |sortConstraints| |exactQuotient!|
+ |cos| |lookup| |multiset| |purelyAlgebraic?| |dfRange| |imaginary|
+ |functionIsFracPolynomial?| |ksec| |tan| |tanQ| |constDsolve|
+ |oddintegers| |permutationGroup| |useSingleFactorBound?| |HenselLift|
+ |f02ajf| |primitivePart| |parts| |romberg| |cot| |iicsc|
+ |iflist2Result| |minimumExponent| |scaleRoots| |leftRecip|
+ |subResultantsChain| |hcrf| + |iiatan| |leftAlternative?| |makeRecord|
+ |sec| |showTheFTable| |OMbindTCP| |tubePointsDefault| |select!|
+ |rroot| ~= |resultantReduit| |nthRoot| - |rCoord| |sinhcosh| |csc|
+ |outputFixed| |lastSubResultant| |consnewpol| |double| |linearPart|
+ |close| |showArrayValues| |cross| |numberOfComponents| /
+ |rightRegularRepresentation| |coerce| |asin| |option?| |lyndonIfCan|
+ |normalizedAssociate| |leastAffineMultiple| |bsolve|
+ |factorsOfCyclicGroupSize| |associatorDependence| |construct|
+ |totalLex| |typeList| |rank| |clearTheSymbolTable| |acos|
+ |leftRankPolynomial| |indicialEquationAtInfinity| |cCoth| |remove|
+ |characteristic| |internalInfRittWu?| |display| |rombergo| |subHeight|
+ |outputAsTex| |factorset| |ReduceOrder| |atan| |useNagFunctions|
+ |every?| |c06ebf| |argumentList!| |trace2PowMod| |lieAdmissible?|
+ |d01akf| |split!| |stFunc2| |palgLODE0| |radicalEigenvector| |nary?|
+ |acot| |addMatchRestricted| |phiCoord| |characteristicSerie| |last|
+ |setPosition| |finite?| |OMgetObject| |createMultiplicationMatrix|
+ |packageCall| |df2ef| |RittWuCompare| |assoc| |asec| |initial|
+ |wholeRadix| |leftLcm| |fractionPart| |extendedint| |padicFraction|
+ |bringDown| |fortranReal| |maxIndex| |overlabel| |dequeue!|
+ |transcendent?| |acsc| |brillhartIrreducible?|
+ |constantToUnaryFunction| |mainForm| |f04qaf| |airyAi| |Nul| |port|
+ |rewriteIdealWithRemainder| |expIfCan| |constantIfCan| |nextItem|
+ |sinh| |invertIfCan| |geometric| |cot2tan| |declare!|
+ |basisOfLeftNucloid| |bernoulli| |discreteLog| |ratpart| |c06frf|
+ |cosSinInfo| |coerceS| |lists| |cosh| |distance|
+ |createLowComplexityNormalBasis| |companionBlocks| |algintegrate|
+ |e01bef| |halfExtendedSubResultantGcd1| |OMgetEndBVar| |poisson|
+ |derivative| |atanhIfCan| |tanh| |range| |socf2socdf| |build|
+ |factor1| |tab1| |taylor| |pointColor| |sort!| |mainSquareFreePart|
+ |submod| |makeViewport2D| |coth| |nlde| |makeSin| |monicDivide|
+ |OMgetEndAtp| |light| |laurent| |matrixGcd| |d01amf|
+ |coerceListOfPairs| |createNormalElement| |scalarTypeOf| |sech|
+ |addmod| |lyndon?| |maxColIndex| |rootProduct|
+ |numberOfImproperPartitions| |puiseux| |setRow!| |iiasin|
+ |ListOfTerms| |rootRadius| |gcdcofactprim| |csch| |zeroDimPrimary?|
+ |roughSubIdeal?| |vconcat| |replace| |safeFloor| |implies?| |tower|
+ |viewSizeDefault| |getButtonValue| |rarrow| |bitLength| |curry|
+ |asinh| |hostPlatform| |nextsubResultant2| |delay| |tubeRadius|
+ |headReduced?| |inv| |summation| |zeroOf| |s19acf| |f01mcf|
+ |direction| |length| |acosh| |curve| |basisOfCenter| |powerSum|
+ |numberOfIrreduciblePoly| |principalIdeal| |ground?|
+ |semiLastSubResultantEuclidean| |findCycle| |leftFactorIfCan|
+ |fortranDouble| |aLinear| |scripts| |atanh| |var1StepsDefault|
+ |var2Steps| |members| |OMUnknownCD?| |interpretString| |ground|
+ |iiasec| |e04naf| |pol| |d01gaf| |genericLeftDiscriminant| |setelt|
+ |declare| |acoth| |definingInequation| |lowerCase?| |mathieu12| |pow|
+ |leadingCoefficientRicDE| |leadingMonomial| |solveLinearlyOverQ|
+ |symmetricRemainder| |indicialEquation| |divisors| |updateStatus!|
+ |asech| |rubiksGroup| |rightExactQuotient| |chiSquare| |insertTop!|
+ |exprToGenUPS| |iipow| |leadingCoefficient| |complexNumeric|
+ |nextSublist| |f04asf| |coth2tanh| |copy| |bumprow| |appendPoint|
+ |mapGen| |bat| |zerosOf| |numFunEvals3D| |say| |primitiveMonomials|
+ |rquo| |pomopo!| |e02bcf| |reduceBasisAtInfinity| |rk4f| |multiple|
+ |whatInfinity| |euclideanGroebner| |monomRDE| |createPrimitiveElement|
+ |graphCurves| |reductum| |kernels| |newSubProgram| |shuffle|
+ |cscIfCan| |integralBasisAtInfinity| |eisensteinIrreducible?|
+ |applyQuote| |completeEval| |genus| |vspace| |bat1| |routines|
+ |quasiRegular?| |iiexp| |makeCos| |univariate| |monicLeftDivide|
+ |drawStyle| |createMultiplicationTable| |autoCoerce| |doubleRank|
+ |refine| |retract| |bag| |harmonic| |factorSFBRlcUnit| |maxRowIndex|
+ |copy!| |hash| |fibonacci| |tanh2coth| |pushdterm| |e01sef| |prime?|
+ |divisor| |eulerE| |varselect| |SturmHabicht| |count|
+ |removeRoughlyRedundantFactorsInContents| |graeffe| |e04fdf|
+ |dictionary| |OMgetEndApp| |ruleset| |decomposeFunc| |OMopenFile|
+ |recoverAfterFail| |cAsinh| |structuralConstants| |reduceByQuasiMonic|
+ |factor| |midpoints| |readLine!| |permutation| |iCompose| |bipolar|
+ |critB| |lowerCase| |solveRetract| |subSet| |reset| |sqrt| |argscript|
+ |showScalarValues| |changeThreshhold| |fixedPoint| |s21bcf| |domainOf|
+ |conditionsForIdempotents| |linearMatrix| |front|
+ |ellipticCylindrical| |s20acf| |functionIsOscillatory| |OMserve|
+ |real| |antiCommutative?| |prem| |mantissa| |removeZeroes|
+ |nextNormalPrimitivePoly| |suchThat| |dark| |leftPower|
+ |realEigenvalues| |associates?| |primlimitedint| |binomial| |imag|
+ |ocf2ocdf| |hclf| |binarySearchTree| |taylorRep| |OMunhandledSymbol|
+ |stoseLastSubResultant| |neglist| |primeFactor|
+ |removeRoughlyRedundantFactorsInPols| |imagJ| |cylindrical|
+ |directProduct| |drawToScale| |ScanArabic| |divideExponents|
+ |triangSolve| |returnType!| |dmpToHdmp| |cTanh| |failed?| |inrootof|
+ |hermiteH| |relativeApprox| |ratPoly| |qqq| |factorials|
+ |setPrologue!| |write!| |eulerPhi| |e04ycf| |listOfMonoms| |mesh?|
+ |Aleph| |BasicMethod| |destruct| |multMonom| |qelt| |top!|
+ |powerAssociative?| |unrankImproperPartitions0| |c06fuf| |sqfree|
+ |reflect| |irreducibleRepresentation| |constantCoefficientRicDE|
+ |padicallyExpand| |monomRDEsys| |fractRadix| |getGraph| |iicoth|
+ |partition| |expandTrigProducts| |rightQuotient| |resultantEuclidean|
+ |fillPascalTriangle| |expt| |xRange| |invertible?|
+ |clearFortranOutputStack| |conjug| |constant| |ranges| |rightRank|
+ |deriv| |fortranLiteralLine| |extractProperty| |limit| |nullary|
+ |yRange| |rur| |adjoint| |bumptab1| |iidsum| |block| |untab|
+ |semiResultantEuclidean2| |characteristicSet| |yellow| |monomial|
+ |integralBasis| |zRange| |leaf?| |s19aaf| |quotedOperators|
+ |transcendenceDegree| |insertBottom!| |color| |evaluate| |asinIfCan|
+ |map!| |atrapezoidal| |multivariate| |leftMult| |rowEchelonLocal|
+ |divisorCascade| |monicCompleteDecompose| |arguments|
+ |numberOfFactors| |goodnessOfFit| |integers| |clipPointsDefault|
+ |removeCosSq| |qsetelt!| |regime| |variables| |fixedDivisor| |hue|
+ |style| |getMeasure| |basisOfLeftNucleus| |reorder| |outputAsScript|
+ |mindeg| |linGenPos| |removeDuplicates!| |loopPoints| |f01maf|
+ |coefficients| |rationalPoints| |badNum| |makeFloatFunction|
+ |parabolic| |setchildren!| |search| |OMcloseConn| |minus!| |remove!|
+ |mightHaveRoots| |symmetric?| |localIntegralBasis| |factors|
+ |wordInStrongGenerators| |eq| |increase| |plus!| |or| |rational|
+ |leadingBasisTerm| |definingEquations| |Frobenius|
+ |currentCategoryFrame| |enumerate| |minPoly| |changeMeasure| |iter|
+ |mapExponents| |hMonic| |rootOf| |realEigenvectors|
+ |selectFiniteRoutines| |normalDeriv| |printingInfo?| |relerror|
+ |htrigs| |region| |getDatabase| |startTableInvSet!| |normalize|
+ |equivOperands| |charthRoot| |stack| |checkForZero| |acsch|
+ |twoFactor| |diag| |tan2trig| |perfectNthPower?| |create3Space|
+ |internal?| |sizeLess?| |reduceLODE| |OMputVariable| |constantOpIfCan|
+ |call| |explicitlyFinite?| |gethi| |represents| |trigs2explogs|
+ |digit| |useEisensteinCriterion?| |coercePreimagesImages| |changeBase|
+ |LyndonCoordinates| |imagI| |curve?| |trapezoidalo| |largest| |fTable|
+ |e02agf| |swap| |freeOf?| |errorInfo| |rightUnit| |e01daf| |chvar|
+ |zCoord| |exteriorDifferential| |e01saf| |s13acf|
+ |noncommutativeJordanAlgebra?| |f02wef| |patternMatch| |shellSort|
+ |bivariateSLPEBR| |setCondition!| |truncate| |s17dcf| |exp| |c02agf|
+ |rowEchelon| |associator| |LiePolyIfCan| |minordet| |overset?|
+ |stoseInvertible?reg| |diagonalProduct| |commonDenominator|
+ |pushNewContour| |ramified?| |rightTrim| |var2StepsDefault|
+ |elementary| |UP2ifCan| |iicot| |upperCase!| |leftUnit|
+ |semicolonSeparate| |setPredicates| |alternative?| |heapSort|
+ |leftTrim| |gcdPrimitive| |diagonal| |UpTriBddDenomInv| |getZechTable|
+ |arg1| |lighting| |maxPoints| |leastPower| |firstDenom|
+ |pointColorDefault| |reciprocalPolynomial| |rangePascalTriangle|
+ |d01alf| |s17ahf| |dmp2rfi| |e02gaf| |arg2| |restorePrecision|
+ |complexLimit| |sin?| |denominator| |endOfFile?| |bitTruth|
+ |replaceKthElement| |isOp| |lazyPrem| |recur| |laguerre| |bernoulliB|
+ |repeating| |returnTypeOf| |infLex?| |normalForm| |zeroSetSplit|
+ |monicRightDivide| |extendedEuclidean| |conditions| |janko2|
+ |equality| |hasoln| |collectQuasiMonic| |rotatex| |c05nbf|
+ |exprHasWeightCosWXorSinWX| |uniform01| |satisfy?| |polygon?| |match|
+ |squareTop| |ef2edf| |closedCurve| |ptree| |cycleEntry| |distFact|
+ |imagE| |power!| |f01bsf| |trunc| |nthCoef| |rk4qc| |ricDsolve|
+ |outputFloating| |numberOfVariables| |bezoutDiscriminant| |leftOne|
+ |s17ajf| |fractionFreeGauss!| |pushucoef| |digits| |loadNativeModule|
+ |incrementKthElement| |resultantEuclideannaif| |factorPolynomial|
+ |currentScope| |virtualDegree| |internalSubQuasiComponent?|
+ |generalizedContinuumHypothesisAssumed| |char| |minGbasis| |coleman|
+ |solid| |ramifiedAtInfinity?| |repeatUntilLoop| |character?|
+ |viewDefaults| |list| |setEmpty!| |OMputAtp| |child?| |binomThmExpt|
+ |physicalLength| |generalSqFr| |numberOfPrimitivePoly|
+ |monomialIntPoly| |physicalLength!| |trailingCoefficient|
+ |invertibleSet| |car| |compound?| |unit?| |numericalOptimization|
+ |complexZeros| |firstUncouplingMatrix| |roughBasicSet| |OMputEndAttr|
+ |resetNew| |prepareSubResAlgo| |cdr| |cyclic?| |lquo| |rightDivide|
+ |findBinding| |tubePlot| |branchPoint?| |createLowComplexityTable|
+ |quotient| |setDifference| |iFTable| |B1solve| |leader|
+ |generalLambert| |floor| |messagePrint| |sech2cosh|
+ |subQuasiComponent?| |float| |cAcsch| |showTypeInOutput|
+ |purelyTranscendental?| |setIntersection| |lazy?| |maxPoints3D|
+ |yCoord| |substring?| |squareFree| |quickSort| |and?| |eigenvector|
+ |composite| |whileLoop| |bezoutResultant| |f01ref| |decimal|
+ |setUnion| |exQuo| |s18def| |id| |pToDmp| |algebraicDecompose|
+ |lagrange| |mapMatrixIfCan| |BumInSepFFE| |integral| |unaryFunction|
+ |removeRoughlyRedundantFactorsInPol| |s13aaf| |rotate!| |apply|
+ |cycleSplit!| |groebnerFactorize| |suffix?| |tablePow| |fractRagits|
+ |negative?| |endSubProgram| |internalIntegrate| |leftScalarTimes!|
+ |void| |compBound| |lfintegrate| |e01sff| |gcdPolynomial| |contract|
+ |table| |cCsc| |closeComponent| |fortranLogical| |OMencodingXML|
+ |generateIrredPoly| |nullSpace| |halfExtendedSubResultantGcd2|
+ |extractClosed| |rational?| |minimumDegree| |size| |rootsOf| |null|
+ |prefix?| |new| |numberOfOperations| |constant?| |powmod| |ode|
+ |components| |setPoly| |zeroDim?| |debug3D| |zero?| |orthonormalBasis|
+ |iiacosh| |case| |getSyntaxFormsFromFile| |stripCommentsAndBlanks|
+ |sumOfDivisors| |zoom| |numerator| |iprint| |mainCoefficients| |scale|
+ |besselY| |extendIfCan| |key| |swapRows!| |Zero| |jacobiIdentity?|
+ |lyndon| |multiEuclidean| |mindegTerm| |showRegion| |shiftRoots|
+ |printHeader| |sts2stst| |headReduce| |moduloP| |first| |inHallBasis?|
+ |generalPosition| |commaSeparate| |One| |implies| |back| |setValue!|
+ GE |iilog| |filename| |solve1| |isPower| |index?| |OMputFloat|
+ |modifyPoint| |rest| |leftRank| |headAst| |headRemainder| |aCubic|
+ |getPickedPoints| |root?| GT |credPol| |root| |groebgen|
+ |reducedSystem| |substitute| |extendedSubResultantGcd| |equiv| |not?|
+ |iicsch| |fortranDoubleComplex| |mapExpon| |predicate| |xor| |graphs|
+ |contractSolve| LE |removeDuplicates| |evaluateInverse|
+ |curveColorPalette| |eyeDistance| |limitedIntegrate| |ddFact| |c06ecf|
+ |parse| |iibinom| |infix?| |mdeg| |fortranCarriageReturn| |hermite|
+ |getVariableOrder| LT |llprop| |exprHasAlgebraicWeight| |leadingIndex|
+ |presuper| |coerceL| |ratDsolve| |mask| |polyRDE| |mkAnswer|
+ |usingTable?| |aQuadratic| |setfirst!| |readLineIfCan!|
+ |skewSFunction| |resultant| |cSec| |label| |factorOfDegree|
+ |backOldPos| |groebner?| |basisOfCommutingElements| |algebraicOf|
+ |critBonD| |cycleLength| |cSinh| |intermediateResultsIF| |ldf2lst|
+ |oddlambert| |cAtan| |c02aff| |wronskianMatrix| |setErrorBound|
+ |firstSubsetGray| |fglmIfCan| |LazardQuotient2| |saturate| |swap!|
+ |integerBound| |startPolynomial| |simplifyPower| |cSin| |bottom!|
+ |iiasinh| |left| |roughUnitIdeal?| |lazyPquo| |e02baf| |repeating?|
+ |string| |infix| |pastel| |symbolTable| |xCoord| |retractIfCan|
+ |exponential| |printInfo!| |right| |power| |numberOfHues| |rischDEsys|
+ |dihedral| |head| |entries| |perfectNthRoot| |green| |element?|
+ |belong?| |mpsode| |dim| |arrayStack| |myDegree| |ravel| |iiacot|
+ |choosemon| |c06eaf| |discriminant| |pushFortranOutputStack|
+ |roughBase?| |ratDenom| |exptMod| |iiacsch| |d03faf| |solid?| |subst|
+ |parameters| |reshape| |fortran| |coefficient| |stFuncN| |weighted|
+ |vectorise| |multiplyCoefficients| |reducedContinuedFraction|
+ |popFortranOutputStack| |singularitiesOf| |push!| |Lazard|
+ |tensorProduct| |pushup| |lSpaceBasis| |pole?| |sorted?| |scan|
+ |conical| |listYoungTableaus| |outputAsFortran| |computeInt|
+ |generalizedEigenvectors| |OMsupportsCD?| |inconsistent?|
+ |makeGraphImage| |f02adf| |f07aef| |commutator| |leftRemainder|
+ |semiSubResultantGcdEuclidean2| |cyclotomicFactorization| |iiasech|
+ |arity| |OMputEndAtp| |countRealRoots| |discriminantEuclidean|
+ |diagonalMatrix| |alternating| |dot| |leadingTerm|
+ |selectNonFiniteRoutines| |primintfldpoly| |OMgetEndObject|
+ |primPartElseUnitCanonical!| |rightZero| |nand| |mulmod|
+ |cyclotomicDecomposition| |modifyPointData| |monicDecomposeIfCan|
+ |knownInfBasis| |e01bhf| |prod| |squareFreePart|
+ |genericRightMinimalPolynomial| |LyndonBasis| |symmetricProduct|
+ |univariatePolynomialsGcds| |separate| |update| |elliptic?|
+ |primextendedint| |OMconnectTCP| |prinshINFO| |listRepresentation|
+ |symmetricDifference| |determinant| |operator| |univariateSolve|
+ |OMputString| |variable?| |unitCanonical| |bandedHessian|
+ |startTableGcd!| |map| |adaptive| |makeYoungTableau| |scalarMatrix|
+ |objects| |cAcot| |const| |genericPosition| |powern| |legendre|
+ |cosh2sech| |colorDef| |approximants| |equiv?| |tanNa| |base|
+ |basisOfMiddleNucleus| |nextsousResultant2| |halfExtendedResultant2|
+ |more?| |stoseInvertible?sqfreg| |deleteRoutine!| |linear?| |f02axf|
+ |infinite?| |leftFactor| |symbol| |differentialVariables| |plot|
+ |iiacoth| |s17agf| |polygon| |nextPrimitiveNormalPoly| |makeSUP|
+ |reseed| |simplifyLog| |second| |generalizedInverse| |iiGamma|
+ |normDeriv2| |morphism| |c06gcf| |setright!| |generators|
+ |resetBadValues| |topFortranOutputStack| |primes| |third| |octon|
+ |integer| |euclideanNormalForm| |d01gbf| |OMgetError| |defineProperty|
+ |partialDenominators| |gcdprim| |cAsech| |convert| |setButtonValue|
+ |removeRedundantFactorsInContents| |pleskenSplit| |script|
+ |normalElement| |stoseIntegralLastSubResultant| |infieldint|
+ |dimensionOfIrreducibleRepresentation| |tubePoints| |OMReadError?|
+ |listexp| |tableau| |createZechTable| |less?| |e02akf| |permutations|
+ |quasiMonicPolynomials| |OMputError| |iteratedInitials| |interpret|
+ |explicitlyEmpty?| |vector| |factorGroebnerBasis| |pair?| |secIfCan|
+ |sec2cos| |keys| |OMgetEndBind| |An| |coordinates| |f04axf|
+ |evenInfiniteProduct| |leftQuotient| |differentiate| |host| |notelem|
+ |f02xef| |tex| |showAll?| |singleFactorBound| |setref|
+ |rewriteIdealWithHeadRemainder| |univariatePolynomial| |OMgetEndError|
+ |updatD| |linear| |brillhartTrials| |s17def| |ParCond| |elRow2!|
+ |characteristicPolynomial| |mapUp!| |c06fqf| |quadratic| |algint|
+ |outputArgs| |omError| |chebyshevU| |setAttributeButtonStep| |mapmult|
+ |multinomial| |monomial?| |derivationCoordinates| |collectUpper|
+ |polynomial| |seriesSolve| |removeRedundantFactorsInPols| |subCase?|
+ |blue| |minrank| |polarCoordinates| |OMencodingBinary| |supersub|
+ |rightMult| |rootPower| |presub| |totalDifferential| |previous|
+ |modTree| |connect| |localReal?| |zeroDimPrime?| |rename!|
+ |subresultantSequence| |fullDisplay| |OMgetBVar|
+ |leftRegularRepresentation| |simpleBounds?| |e04gcf| |readable?|
+ |adaptive3D?| |genericRightNorm| |testDim| |OMputBind| |true|
+ |rischNormalize| |rightMinimalPolynomial| |shallowExpand| |csubst|
+ |perspective| |critT| |combineFeatureCompatibility| |edf2fi|
+ |numberOfComposites| |stiffnessAndStabilityFactor| |subNode?|
+ |FormatArabic| |totolex| |and| |rationalPoint?| |e02ahf| |component|
+ |column| |setClipValue| |minPoints3D| |OMputApp| |resetVariableOrder|
+ |cycle| |complete| |wrregime| |sinh2csch| |maximumExponent|
+ |shiftLeft| |cCosh| |isTimes| |rowEchLocal| |brace| |asechIfCan|
+ |assign| |isExpt| |weight| |createRandomElement| |deepestInitial|
+ |henselFact| |lastSubResultantEuclidean| |iomode| |processTemplate|
+ |logGamma| |fortranLiteral| |finiteBasis| |sign| |leftExtendedGcd|
+ |unvectorise| |times!| |scripted?| |critMonD1| |tanAn| |OMputEndBVar|
+ |move| |bfKeys| |divergence| |interval| |mainVariable| |rootKerSimp|
+ |cartesian| |getStream| |OMgetInteger| |interpolate| |alphabetic?|
+ |showIntensityFunctions| |createGenericMatrix| |postfix| |one?|
+ |value| |newTypeLists| |beauzamyBound| |meshPar1Var| |expr|
+ |stosePrepareSubResAlgo| |product| |doubleResultant| |totalGroebner|
+ |rightUnits| |setColumn!| |primeFrobenius| |leadingExponent|
+ |children| |var1Steps| |lflimitedint| |lazyPseudoQuotient|
+ |symmetricTensors| |nthFractionalTerm| |heap| |f01rdf|
+ |pointSizeDefault| |box| |parametric?| |relationsIdeal| |lp| |merge|
+ |seriesToOutputForm| |Ci| |tanhIfCan| |s19adf| |Is| |solveid|
+ |getMultiplicationTable| |solveLinear| |numberOfMonomials|
+ |cyclicEntries| |integralMatrixAtInfinity| |exprToXXP| |binaryTree|
+ |idealiser| |basis| |variable| |elColumn2!| |superscript| |crest|
+ |iisqrt2| |decreasePrecision| |randomR| |acscIfCan| |hitherPlane|
+ |leadingIdeal| |s17acf| |numeric| |concat| |useSingleFactorBound|
+ |compiledFunction| |sum| |inspect| |ptFunc| |inverseColeman|
+ |unitNormal| |d02bbf| |generalizedEigenvector| |leastMonomial|
+ |radical| |linearDependence| |e02ddf| |topPredicate|
+ |basisOfRightNucleus| |orbits| |explimitedint| |sPol| |duplicates|
+ |extendedResultant| |c06ekf| |airyBi| RF2UTS |setprevious!|
+ |OMreadStr| |expenseOfEvaluation| |getProperties| |cExp|
+ |transcendentalDecompose| |next| |addPoint| |complementaryBasis| |mix|
+ |integral?| |f02aef| |stopMusserTrials| |linkToFortran| |d02gbf|
+ |changeWeightLevel| |e02dff| |mainMonomial| |setStatus!|
+ |leftDiscriminant| |ridHack1| |OMread| |measure| |coerceImages|
+ |iroot| |OMreceive| |rightCharacteristicPolynomial| |interReduce|
+ |extension| |d02cjf| |rightFactorIfCan| |continuedFraction|
+ |primPartElseUnitCanonical| |collect| |integralDerivationMatrix|
+ |removeIrreducibleRedundantFactors| |kovacic|
+ |resultantReduitEuclidean| |zeroDimensional?| |addiag| |deepExpand|
+ |linearAssociatedExp| |upDateBranches| |genericRightDiscriminant|
+ |cLog| |sechIfCan| |create| |OMclose| |definingPolynomial| |exquo|
+ |sn| |merge!| |leviCivitaSymbol| |stoseInvertibleSet| |outputMeasure|
+ |expandLog| |nthFactor| |order| |argumentListOf| |setEpilogue!| |div|
+ |makeViewport3D| |recip| |innerint| |toseInvertible?|
+ |changeNameToObjf| |f2df| |addBadValue| |cAcosh| |deepCopy| |quo|
+ |exponents| |fixedPointExquo| |nextNormalPoly| |trim| |d01ajf|
+ |exponentialOrder| |deepestTail| |extractIfCan| LODO2FUN
+ |expenseOfEvaluationIF| |read!| |mapUnivariate| |optpair| |hexDigit?|
+ |currentEnv| |tableForDiscreteLogarithm| |critpOrder| |exprex|
+ |quotientByP| |rem| |quote| |infinityNorm| |normal?| |cAsin|
+ |OMreadFile| |f01rcf| |cup| |newReduc| |toseInvertibleSet|
+ |graphState| |bivariatePolynomials| |argument|
+ |zeroSetSplitIntoTriangularSystems| |minPoints| |rightExtendedGcd|
+ |d02gaf| |hyperelliptic| |rightRankPolynomial| |iiacsc|
+ |listConjugateBases| |laurentRep| |factorByRecursion| |iExquo|
+ |antisymmetricTensors| |e04dgf| |identitySquareMatrix| |rootBound|
+ |f04mcf| |OMputEndObject| |setsubMatrix!| |adaptive?|
+ |complexEigenvalues| |youngGroup| |patternMatchTimes| |psolve| |deref|
+ |resetAttributeButtons| |multiplyExponents| |polar| |getExplanations|
+ |OMParseError?| |epilogue| |inGroundField?| |complexRoots|
+ |algebraicCoefficients?| |exp1| |linears| |imagk| |scopes| |unravel|
+ |clipParametric| |exprToUPS| |multiEuclideanTree| |increasePrecision|
+ |sumOfKthPowerDivisors| |term?| |outputSpacing| |setleaves!| |shift|
+ |cap| |dimensions| |sinhIfCan| |meatAxe| |multisect|
+ |balancedBinaryTree| |groebner| |extensionDegree| |gcdcofact|
+ |ignore?| |subResultantGcd| |invmultisect| |iifact| |symmetricSquare|
+ |mapDown!| |ord| |selectMultiDimensionalRoutines| |repSq|
+ |cRationalPower| UP2UTS |operation| |module| |sturmSequence|
+ |unrankImproperPartitions1| |cAsec| |computeBasis| |sylvesterMatrix|
+ |ffactor| |log2| |trueEqual| |permanent| |generic| |fill!|
+ |ScanFloatIgnoreSpacesIfCan| |andOperands| |not| |s20adf| |OMputBVar|
+ |reducedForm| |baseRDE| |f02aff| |elliptic| |d03edf| |safetyMargin|
+ |RemainderList| |lifting1| |kmax| |corrPoly| |normalise| |se2rfi|
+ |innerEigenvectors| |hasPredicate?| |mapCoef| |overbar| |pile|
+ |indices| |listLoops| |shiftRight| |countable?| |lieAlgebra?|
+ |compactFraction| |degreeSubResultant| |complexSolve|
+ |mainPrimitivePart| |asimpson| |fixPredicate| |outputGeneral|
+ |augment| |rootSplit| |irreducible?| |has?| |empty| |applyRules|
+ |removeSuperfluousCases| |prolateSpheroidal| |removeZero|
+ |nthExponent| |selectOrPolynomials| |init| |complex?| |redPo|
+ |outlineRender| |hex| |inverseLaplace| |dimensionsOf|
+ |normalizedDivide| |xn| |linearlyDependent?| |varList|
+ |factorSquareFreePolynomial| |rules| |e02ajf| |bracket|
+ |groebnerIdeal| |minIndex| |minset| |normalizeIfCan| |OMencodingSGML|
+ |makingStats?| |insertionSort!| |coordinate| |rootDirectory|
+ |rightGcd| |setTex!| |selectODEIVPRoutines| |extendedIntegrate|
+ |match?| |exprHasLogarithmicWeights| |sup| |categoryFrame| |dn|
+ |viewport2D| |iiperm| |stronglyReduced?| |integralAtInfinity?|
+ |viewport3D| |rotatez| |linearDependenceOverZ| |bitior| |lambda|
+ |initializeGroupForWordProblem| |ceiling| |viewPosDefault| |iisinh|
+ |s21bdf| ** |f04atf| |setMaxPoints| |cSech| |meshPar2Var| |center|
+ |principal?| |computeCycleLength| |impliesOperands| |factorsOfDegree|
+ |splitConstant| |getOperands| |universe| |reduction| |parent|
+ |diophantineSystem| |mathieu22| |algebraicSort| |revert|
+ |viewThetaDefault| |sh| |semiSubResultantGcdEuclidean1|
+ |subResultantGcdEuclidean| |contains?| |rightFactorCandidate|
+ |showClipRegion| EQ |figureUnits| |hexDigit| |testModulus| |d02ejf|
+ |rdregime| |linearlyDependentOverZ?| |integerIfCan| |c06gsf|
+ |lazyIntegrate| |s21baf| |raisePolynomial| |coHeight| |accuracyIF|
+ |fixedPoints| |mr| |thetaCoord| |radicalRoots| |doubleFloatFormat|
+ |fortranCharacter| |highCommonTerms| |cyclicSubmodule|
+ |integralCoordinates| |initTable!| |s14abf| |viewWriteDefault| |unit|
+ |prevPrime| |radix| |subset?| |iisec| |palginfieldint|
+ |removeConstantTerm| |leftExactQuotient| |numericalIntegration|
+ |degreeSubResultantEuclidean| |blankSeparate| |iisqrt3| |innerSolve|
+ |symbolIfCan| |s21bbf| |getGoodPrime| |lex| |constantOperator|
+ |screenResolution| |inc| |e04jaf| |semiResultantReduitEuclidean|
+ |palgint0| |univariate?| |stronglyReduce| |palglimint0| |cyclotomic|
+ |orOperands| |completeEchelonBasis| |reverseLex| |stFunc1|
+ |drawComplex| |df2fi| |ode2| |innerSolve1| |null?| |elRow1!|
+ |listOfLists| |shufflein| |Gamma| |alphanumeric| |f04faf| |datalist|
+ |plus| |setFormula!| |f04jgf| |simpsono| |clikeUniv| |s14baf| |prefix|
+ |intPatternMatch| |e01bgf| |rightTraceMatrix| |singRicDE| SEGMENT
+ |pr2dmp| |genericLeftMinimalPolynomial| |insert!| |musserTrials|
+ |infieldIntegrate| |integralLastSubResultant| |test| |f02akf|
+ |safeCeiling| |mainVariables| |ipow| |fprindINFO| |randnum| |name|
+ |sayLength| |writeLine!| |f01qdf| |error| |rightDiscriminant|
+ |expintfldpoly| |explogs2trigs| |precision| |body| |asecIfCan|
+ |extractTop!| |rootOfIrreduciblePoly| |s18dcf| |enqueue!|
+ |integralMatrix| |numberOfComputedEntries| |s17dgf| |assert| |times|
+ |sin2csc| |hypergeometric0F1| |powers| |nsqfree|
+ |isAbsolutelyIrreducible?| |clipBoolean| |tryFunctionalDecomposition|
+ |OMencodingUnknown| |oneDimensionalArray| |sqfrFactor| |drawCurves|
+ |lfunc| |d02raf| |countRealRootsMultiple| |s14aaf| |compose| |seed|
+ |f02aaf| |aspFilename| |stirling1| |viewDeltaYDefault| |vedf2vef|
+ |lifting| |subresultantVector| |vark| |squareMatrix| |makeResult|
+ |abelianGroup| |fintegrate| FG2F |torsion?| |mergeFactors| |monom|
+ |debug| |quasiMonic?| |optimize| |row| |axesColorDefault| |simplify|
+ |diagonals| |iiacos| |slash| |karatsubaDivide|
+ |tryFunctionalDecomposition?| |returns| D |position!| |sdf2lst|
+ |unitNormalize| |coth2trigh| |bitCoef| |internalLastSubResultant|
+ |addPoint2| |fortranLinkerArgs| |clearTheIFTable| |errorKind| |s01eaf|
+ |diff| |predicates| |terms| |common| |laplace| |coerceP| |f04maf|
+ |doublyTransitive?| |super| |radicalSimplify| |point| |f02agf|
+ |decompose| |notOperand| |droot| |perfectSqrt| |d02kef| |OMgetBind|
+ |palgLODE| |operators| |symbolTableOf| |s17aff| |iidprod|
+ |complexNumericIfCan| |npcoef| |generalTwoFactor| |size?| |insert|
+ |numericIfCan| |bivariate?| |failed| |cschIfCan| |sturmVariationsOf|
+ |irreducibleFactors| |po| |series| |coshIfCan| |dominantTerm| |e02zaf|
+ |stoseInvertibleSetreg| |symFunc| |t| |close!| |mvar| |nextPartition|
+ |clip| |s17adf| |any| |makeUnit| |mainVariable?| |sample|
+ |nonSingularModel| |e01bff| |multiple?| |OMputObject| |insertMatch|
+ |triangularSystems| |iicosh| |expPot| |nullity| |middle|
+ |systemSizeIF| |print| |pdct| |coord| |probablyZeroDim?| |invmod|
+ |laplacian| |euclideanSize| |SturmHabichtCoefficients| |upperCase|
+ |min| |mirror| |bipolarCylindrical| |reverse!| |UnVectorise|
+ |stopTableInvSet!| |totalDegree| |rk4a| |setStatus| |cardinality|
+ |linSolve| |c05adf| |eval| |primextintfrac| |addPointLast| |flatten|
+ |mkIntegral| |nil| |imagj| |lexico| |cn| |remainder|
+ |lazyIrreducibleFactors| |toseSquareFreePart| |qfactor| |inRadical?|
+ |radicalEigenvalues| |reindex| |f04arf| |identity| |s15adf| |s18acf|
+ |outputList| |writable?| |inf| |showTheIFTable| Y |ode1| |prinpolINFO|
+ |e02def| |palgRDE0| |e04mbf| |digit?| |isQuotient| |frobenius|
+ |approximate| |mergeDifference| |int| |createNormalPrimitivePoly|
+ |leftUnits| |meshFun2Var| |acosIfCan| |op| |cos2sec| |complex|
+ |d02bhf| |approxNthRoot| |quasiComponent| |tanSum| |d01aqf|
+ |rationalFunction| |conjugate| |lazyResidueClass| |pointColorPalette|
+ |eigenvalues| |opeval| |unary?| |createIrreduciblePoly| |composites|
+ |setClosed| |nthExpon| |monicModulo| |trapezoidal| |perfectSquare?|
+ |generic?| |nor| |newLine| |printInfo| |jacobi| |setVariableOrder|
+ |acothIfCan| |factorSquareFree| |fortranComplex| |edf2efi|
+ |eigenMatrix| |systemCommand| |high| |find| |prindINFO| |extract!|
+ |plotPolar| |height| |mainCharacterization| |rootPoly|
+ |solveLinearPolynomialEquation| |primintegrate| |setProperty| |s18aff|
+ |cyclic| |cothIfCan| |central?| |internalIntegrate0| |pop!|
+ |genericLeftNorm| |FormatRoman| |makeEq| |real?| |union| |weierstrass|
+ |outerProduct| |redpps| |rightScalarTimes!| |separateFactors| |normal|
+ |convergents| |patternVariable| |anticoord| |sincos|
+ |rewriteSetWithReduction| |zero| |jordanAlgebra?| |OMlistCDs|
+ |reducedDiscriminant| |s17akf| |oblateSpheroidal| |primitivePart!|
+ |goodPoint| |rename| |OMwrite| |associatedSystem|
+ |lazyPseudoRemainder| |input| |pmComplexintegrate| |f02bjf|
+ |identification| |completeHermite| |directSum| |And| |Lazard2|
+ |options| |getBadValues| |generalInfiniteProduct| |library| |bfEntry|
+ |is?| |solveLinearPolynomialEquationByFractions| |subPolSet?| |odd?|
+ |Or| |makeVariable| |graphImage| |nil| |infinite| |arbitraryExponent|
+ |approximate| |complex| |shallowMutable| |canonical| |noetherian|
+ |central| |partiallyOrderedSet| |arbitraryPrecision|
+ |canonicalsClosed| |noZeroDivisors| |rightUnitary| |leftUnitary|
+ |additiveValuation| |unitsKnown| |canonicalUnitNormal|
+ |multiplicativeValuation| |finiteAggregate| |shallowlyMutable|
+ |commutative|) \ No newline at end of file
diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase
index 26d296df..dc907b4e 100644
--- a/src/share/algebra/interp.daase
+++ b/src/share/algebra/interp.daase
@@ -1,4962 +1,4975 @@
-(3138576 . 3429259048)
-((-2741 (((-110) (-1 (-110) |#2| |#2|) $) 63) (((-110) $) NIL)) (-1627 (($ (-1 (-110) |#2| |#2|) $) 18) (($ $) NIL)) (-2552 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-1148 (-530)) |#2|) 34)) (-1337 (($ $) 59)) (-2134 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-2027 (((-530) (-1 (-110) |#2|) $) 22) (((-530) |#2| $) NIL) (((-530) |#2| $ (-530)) 73)) (-3779 (((-597 |#2|) $) 13)) (-3683 (($ (-1 (-110) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-3583 (($ (-1 |#2| |#2|) $) 29)) (-3217 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4028 (($ |#2| $ (-530)) NIL) (($ $ $ (-530)) 50)) (-1437 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 24)) (-1533 (((-110) (-1 (-110) |#2|) $) 21)) (-1902 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL) (($ $ (-1148 (-530))) 49)) (-1843 (($ $ (-530)) 56) (($ $ (-1148 (-530))) 55)) (-2632 (((-719) (-1 (-110) |#2|) $) 26) (((-719) |#2| $) NIL)) (-3121 (($ $ $ (-530)) 52)) (-2579 (($ $) 51)) (-2377 (($ (-597 |#2|)) 53)) (-3483 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-597 $)) 62)) (-2366 (((-804) $) 69)) (-3889 (((-110) (-1 (-110) |#2|) $) 20)) (-2248 (((-110) $ $) 72)) (-2272 (((-110) $ $) 75)))
-(((-18 |#1| |#2|) (-10 -8 (-15 -2248 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1337 (|#1| |#1|)) (-15 -3121 (|#1| |#1| |#1| (-530))) (-15 -2741 ((-110) |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2552 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -2552 (|#2| |#1| (-530) |#2|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -3779 ((-597 |#2|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1|))) (-19 |#2|) (-1135)) (T -18))
+(3139916 . 3429317369)
+((-3202 (((-110) (-1 (-110) |#2| |#2|) $) 63) (((-110) $) NIL)) (-2375 (($ (-1 (-110) |#2| |#2|) $) 18) (($ $) NIL)) (-2454 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-1151 (-531)) |#2|) 34)) (-4106 (($ $) 59)) (-1760 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 40) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 38) ((|#2| (-1 |#2| |#2| |#2|) $) 37)) (-1976 (((-531) (-1 (-110) |#2|) $) 22) (((-531) |#2| $) NIL) (((-531) |#2| $ (-531)) 73)) (-2227 (((-598 |#2|) $) 13)) (-3508 (($ (-1 (-110) |#2| |#2|) $ $) 48) (($ $ $) NIL)) (-2680 (($ (-1 |#2| |#2|) $) 29)) (-3261 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 44)) (-4059 (($ |#2| $ (-531)) NIL) (($ $ $ (-531)) 50)) (-4190 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 24)) (-2294 (((-110) (-1 (-110) |#2|) $) 21)) (-1785 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-531)) NIL) (($ $ (-1151 (-531))) 49)) (-1723 (($ $ (-531)) 56) (($ $ (-1151 (-531))) 55)) (-2539 (((-721) (-1 (-110) |#2|) $) 26) (((-721) |#2| $) NIL)) (-2162 (($ $ $ (-531)) 52)) (-2480 (($ $) 51)) (-2274 (($ (-598 |#2|)) 53)) (-3536 (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ $ $) 64) (($ (-598 $)) 62)) (-2265 (((-806) $) 69)) (-2060 (((-110) (-1 (-110) |#2|) $) 20)) (-2148 (((-110) $ $) 72)) (-2174 (((-110) $ $) 75)))
+(((-18 |#1| |#2|) (-10 -8 (-15 -2148 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2162 (|#1| |#1| |#1| (-531))) (-15 -3202 ((-110) |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2454 (|#2| |#1| (-1151 (-531)) |#2|)) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -2454 (|#2| |#1| (-531) |#2|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2227 ((-598 |#2|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1|))) (-19 |#2|) (-1138)) (T -18))
NIL
-(-10 -8 (-15 -2248 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1337 (|#1| |#1|)) (-15 -3121 (|#1| |#1| |#1| (-530))) (-15 -2741 ((-110) |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2552 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -2552 (|#2| |#1| (-530) |#2|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -3779 ((-597 |#2|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-2027 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-19 |#1|) (-133) (-1135)) (T -19))
+(-10 -8 (-15 -2148 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -2162 (|#1| |#1| |#1| (-531))) (-15 -3202 ((-110) |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2454 (|#2| |#1| (-1151 (-531)) |#2|)) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -2454 (|#2| |#1| (-531) |#2|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2227 ((-598 |#2|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-1976 (((-531) (-1 (-110) |#1|) $) 97) (((-531) |#1| $) 96 (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) 95 (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 83 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 82 (|has| |#1| (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-19 |#1|) (-133) (-1138)) (T -19))
NIL
-(-13 (-354 |t#1|) (-10 -7 (-6 -4270)))
-(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
-((-1889 (((-3 $ "failed") $ $) 12)) (-2351 (($ $) NIL) (($ $ $) 9)) (* (($ (-862) $) NIL) (($ (-719) $) 16) (($ (-530) $) 21)))
-(((-20 |#1|) (-10 -8 (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1889 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-21)) (T -20))
+(-13 (-354 |t#1|) (-10 -7 (-6 -4274)))
+(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-797) |has| |#1| (-797)) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1138) . T))
+((-2128 (((-3 $ "failed") $ $) 12)) (-2250 (($ $) NIL) (($ $ $) 9)) (* (($ (-864) $) NIL) (($ (-721) $) 16) (($ (-531) $) 21)))
+(((-20 |#1|) (-10 -8 (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -2128 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-21)) (T -20))
NIL
-(-10 -8 (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1889 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20)))
+(-10 -8 (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -2128 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20)))
(((-21) (-133)) (T -21))
-((-2351 (*1 *1 *1) (-4 *1 (-21))) (-2351 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-530)))))
-(-13 (-128) (-10 -8 (-15 -2351 ($ $)) (-15 -2351 ($ $ $)) (-15 * ($ (-530) $))))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1813 (((-110) $) 10)) (-2350 (($) 15)) (* (($ (-862) $) 14) (($ (-719) $) 18)))
-(((-22 |#1|) (-10 -8 (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 -2350 (|#1|)) (-15 * (|#1| (-862) |#1|))) (-23)) (T -22))
-NIL
-(-10 -8 (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 -2350 (|#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15)))
+((-2250 (*1 *1 *1) (-4 *1 (-21))) (-2250 (*1 *1 *1 *1) (-4 *1 (-21))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-531)))))
+(-13 (-128) (-10 -8 (-15 -2250 ($ $)) (-15 -2250 ($ $ $)) (-15 * ($ (-531) $))))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-3019 (((-110) $) 10)) (-4082 (($) 15)) (* (($ (-864) $) 14) (($ (-721) $) 18)))
+(((-22 |#1|) (-10 -8 (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 -4082 (|#1|)) (-15 * (|#1| (-864) |#1|))) (-23)) (T -22))
+NIL
+(-10 -8 (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 -4082 (|#1|)) (-15 * (|#1| (-864) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15)))
(((-23) (-133)) (T -23))
-((-3080 (*1 *1) (-4 *1 (-23))) (-2350 (*1 *1) (-4 *1 (-23))) (-1813 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-719)))))
-(-13 (-25) (-10 -8 (-15 (-3080) ($) -2708) (-15 -2350 ($) -2708) (-15 -1813 ((-110) $)) (-15 * ($ (-719) $))))
-(((-25) . T) ((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((* (($ (-862) $) 10)))
-(((-24 |#1|) (-10 -8 (-15 * (|#1| (-862) |#1|))) (-25)) (T -24))
-NIL
-(-10 -8 (-15 * (|#1| (-862) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13)))
+((-3035 (*1 *1) (-4 *1 (-23))) (-4082 (*1 *1) (-4 *1 (-23))) (-3019 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-721)))))
+(-13 (-25) (-10 -8 (-15 (-3035) ($) -2651) (-15 -4082 ($) -2651) (-15 -3019 ((-110) $)) (-15 * ($ (-721) $))))
+(((-25) . T) ((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((* (($ (-864) $) 10)))
+(((-24 |#1|) (-10 -8 (-15 * (|#1| (-864) |#1|))) (-25)) (T -24))
+NIL
+(-10 -8 (-15 * (|#1| (-864) |#1|)))
+((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13)))
(((-25) (-133)) (T -25))
-((-2339 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-862)))))
-(-13 (-1027) (-10 -8 (-15 -2339 ($ $ $)) (-15 * ($ (-862) $))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3460 (((-597 $) (-893 $)) 29) (((-597 $) (-1095 $)) 16) (((-597 $) (-1095 $) (-1099)) 20)) (-4202 (($ (-893 $)) 27) (($ (-1095 $)) 11) (($ (-1095 $) (-1099)) 54)) (-2933 (((-597 $) (-893 $)) 30) (((-597 $) (-1095 $)) 18) (((-597 $) (-1095 $) (-1099)) 19)) (-1326 (($ (-893 $)) 28) (($ (-1095 $)) 13) (($ (-1095 $) (-1099)) NIL)))
-(((-26 |#1|) (-10 -8 (-15 -3460 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -3460 ((-597 |#1|) (-1095 |#1|))) (-15 -3460 ((-597 |#1|) (-893 |#1|))) (-15 -4202 (|#1| (-1095 |#1|) (-1099))) (-15 -4202 (|#1| (-1095 |#1|))) (-15 -4202 (|#1| (-893 |#1|))) (-15 -2933 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2933 ((-597 |#1|) (-1095 |#1|))) (-15 -2933 ((-597 |#1|) (-893 |#1|))) (-15 -1326 (|#1| (-1095 |#1|) (-1099))) (-15 -1326 (|#1| (-1095 |#1|))) (-15 -1326 (|#1| (-893 |#1|)))) (-27)) (T -26))
-NIL
-(-10 -8 (-15 -3460 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -3460 ((-597 |#1|) (-1095 |#1|))) (-15 -3460 ((-597 |#1|) (-893 |#1|))) (-15 -4202 (|#1| (-1095 |#1|) (-1099))) (-15 -4202 (|#1| (-1095 |#1|))) (-15 -4202 (|#1| (-893 |#1|))) (-15 -2933 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2933 ((-597 |#1|) (-1095 |#1|))) (-15 -2933 ((-597 |#1|) (-893 |#1|))) (-15 -1326 (|#1| (-1095 |#1|) (-1099))) (-15 -1326 (|#1| (-1095 |#1|))) (-15 -1326 (|#1| (-893 |#1|))))
-((-2352 (((-110) $ $) 7)) (-3460 (((-597 $) (-893 $)) 77) (((-597 $) (-1095 $)) 76) (((-597 $) (-1095 $) (-1099)) 75)) (-4202 (($ (-893 $)) 80) (($ (-1095 $)) 79) (($ (-1095 $) (-1099)) 78)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-2625 (($ $) 89)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-2933 (((-597 $) (-893 $)) 83) (((-597 $) (-1095 $)) 82) (((-597 $) (-1095 $) (-1099)) 81)) (-1326 (($ (-893 $)) 86) (($ (-1095 $)) 85) (($ (-1095 $) (-1099)) 84)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 88)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66) (($ $ (-388 (-530))) 87)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
+((-2237 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-864)))))
+(-13 (-1030) (-10 -8 (-15 -2237 ($ $ $)) (-15 * ($ (-864) $))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2485 (((-598 $) (-895 $)) 29) (((-598 $) (-1098 $)) 16) (((-598 $) (-1098 $) (-1102)) 20)) (-2424 (($ (-895 $)) 27) (($ (-1098 $)) 11) (($ (-1098 $) (-1102)) 54)) (-3007 (((-598 $) (-895 $)) 30) (((-598 $) (-1098 $)) 18) (((-598 $) (-1098 $) (-1102)) 19)) (-2738 (($ (-895 $)) 28) (($ (-1098 $)) 13) (($ (-1098 $) (-1102)) NIL)))
+(((-26 |#1|) (-10 -8 (-15 -2485 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -2485 ((-598 |#1|) (-1098 |#1|))) (-15 -2485 ((-598 |#1|) (-895 |#1|))) (-15 -2424 (|#1| (-1098 |#1|) (-1102))) (-15 -2424 (|#1| (-1098 |#1|))) (-15 -2424 (|#1| (-895 |#1|))) (-15 -3007 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -3007 ((-598 |#1|) (-1098 |#1|))) (-15 -3007 ((-598 |#1|) (-895 |#1|))) (-15 -2738 (|#1| (-1098 |#1|) (-1102))) (-15 -2738 (|#1| (-1098 |#1|))) (-15 -2738 (|#1| (-895 |#1|)))) (-27)) (T -26))
+NIL
+(-10 -8 (-15 -2485 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -2485 ((-598 |#1|) (-1098 |#1|))) (-15 -2485 ((-598 |#1|) (-895 |#1|))) (-15 -2424 (|#1| (-1098 |#1|) (-1102))) (-15 -2424 (|#1| (-1098 |#1|))) (-15 -2424 (|#1| (-895 |#1|))) (-15 -3007 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -3007 ((-598 |#1|) (-1098 |#1|))) (-15 -3007 ((-598 |#1|) (-895 |#1|))) (-15 -2738 (|#1| (-1098 |#1|) (-1102))) (-15 -2738 (|#1| (-1098 |#1|))) (-15 -2738 (|#1| (-895 |#1|))))
+((-2247 (((-110) $ $) 7)) (-2485 (((-598 $) (-895 $)) 77) (((-598 $) (-1098 $)) 76) (((-598 $) (-1098 $) (-1102)) 75)) (-2424 (($ (-895 $)) 80) (($ (-1098 $)) 79) (($ (-1098 $) (-1102)) 78)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2563 (($ $) 89)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3007 (((-598 $) (-895 $)) 83) (((-598 $) (-1098 $)) 82) (((-598 $) (-1098 $) (-1102)) 81)) (-2738 (($ (-895 $)) 86) (($ (-1098 $)) 85) (($ (-1098 $) (-1102)) 84)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 88)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66) (($ $ (-388 (-531))) 87)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64)))
(((-27) (-133)) (T -27))
-((-1326 (*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27)))) (-1326 (*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27)))) (-1326 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-2933 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-2933 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-4202 (*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27)))) (-4202 (*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27)))) (-4202 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1)))) (-3460 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27)) (-5 *2 (-597 *1)))))
-(-13 (-344) (-941) (-10 -8 (-15 -1326 ($ (-893 $))) (-15 -1326 ($ (-1095 $))) (-15 -1326 ($ (-1095 $) (-1099))) (-15 -2933 ((-597 $) (-893 $))) (-15 -2933 ((-597 $) (-1095 $))) (-15 -2933 ((-597 $) (-1095 $) (-1099))) (-15 -4202 ($ (-893 $))) (-15 -4202 ($ (-1095 $))) (-15 -4202 ($ (-1095 $) (-1099))) (-15 -3460 ((-597 $) (-893 $))) (-15 -3460 ((-597 $) (-1095 $))) (-15 -3460 ((-597 $) (-1095 $) (-1099)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-941) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-3460 (((-597 $) (-893 $)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 $) (-1099)) 50) (((-597 $) $) 19) (((-597 $) $ (-1099)) 41)) (-4202 (($ (-893 $)) NIL) (($ (-1095 $)) NIL) (($ (-1095 $) (-1099)) 52) (($ $) 17) (($ $ (-1099)) 37)) (-2933 (((-597 $) (-893 $)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 $) (-1099)) 48) (((-597 $) $) 15) (((-597 $) $ (-1099)) 43)) (-1326 (($ (-893 $)) NIL) (($ (-1095 $)) NIL) (($ (-1095 $) (-1099)) NIL) (($ $) 12) (($ $ (-1099)) 39)))
-(((-28 |#1| |#2|) (-10 -8 (-15 -3460 ((-597 |#1|) |#1| (-1099))) (-15 -4202 (|#1| |#1| (-1099))) (-15 -3460 ((-597 |#1|) |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -2933 ((-597 |#1|) |#1| (-1099))) (-15 -1326 (|#1| |#1| (-1099))) (-15 -2933 ((-597 |#1|) |#1|)) (-15 -1326 (|#1| |#1|)) (-15 -3460 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -3460 ((-597 |#1|) (-1095 |#1|))) (-15 -3460 ((-597 |#1|) (-893 |#1|))) (-15 -4202 (|#1| (-1095 |#1|) (-1099))) (-15 -4202 (|#1| (-1095 |#1|))) (-15 -4202 (|#1| (-893 |#1|))) (-15 -2933 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2933 ((-597 |#1|) (-1095 |#1|))) (-15 -2933 ((-597 |#1|) (-893 |#1|))) (-15 -1326 (|#1| (-1095 |#1|) (-1099))) (-15 -1326 (|#1| (-1095 |#1|))) (-15 -1326 (|#1| (-893 |#1|)))) (-29 |#2|) (-13 (-795) (-522))) (T -28))
-NIL
-(-10 -8 (-15 -3460 ((-597 |#1|) |#1| (-1099))) (-15 -4202 (|#1| |#1| (-1099))) (-15 -3460 ((-597 |#1|) |#1|)) (-15 -4202 (|#1| |#1|)) (-15 -2933 ((-597 |#1|) |#1| (-1099))) (-15 -1326 (|#1| |#1| (-1099))) (-15 -2933 ((-597 |#1|) |#1|)) (-15 -1326 (|#1| |#1|)) (-15 -3460 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -3460 ((-597 |#1|) (-1095 |#1|))) (-15 -3460 ((-597 |#1|) (-893 |#1|))) (-15 -4202 (|#1| (-1095 |#1|) (-1099))) (-15 -4202 (|#1| (-1095 |#1|))) (-15 -4202 (|#1| (-893 |#1|))) (-15 -2933 ((-597 |#1|) (-1095 |#1|) (-1099))) (-15 -2933 ((-597 |#1|) (-1095 |#1|))) (-15 -2933 ((-597 |#1|) (-893 |#1|))) (-15 -1326 (|#1| (-1095 |#1|) (-1099))) (-15 -1326 (|#1| (-1095 |#1|))) (-15 -1326 (|#1| (-893 |#1|))))
-((-2352 (((-110) $ $) 7)) (-3460 (((-597 $) (-893 $)) 77) (((-597 $) (-1095 $)) 76) (((-597 $) (-1095 $) (-1099)) 75) (((-597 $) $) 123) (((-597 $) $ (-1099)) 121)) (-4202 (($ (-893 $)) 80) (($ (-1095 $)) 79) (($ (-1095 $) (-1099)) 78) (($ $) 124) (($ $ (-1099)) 122)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1099)) $) 198)) (-2577 (((-388 (-1095 $)) $ (-570 $)) 230 (|has| |#1| (-522)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2473 (((-597 (-570 $)) $) 161)) (-1889 (((-3 $ "failed") $ $) 19)) (-1416 (($ $ (-597 (-570 $)) (-597 $)) 151) (($ $ (-597 (-276 $))) 150) (($ $ (-276 $)) 149)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-2625 (($ $) 89)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-2933 (((-597 $) (-893 $)) 83) (((-597 $) (-1095 $)) 82) (((-597 $) (-1095 $) (-1099)) 81) (((-597 $) $) 127) (((-597 $) $ (-1099)) 125)) (-1326 (($ (-893 $)) 86) (($ (-1095 $)) 85) (($ (-1095 $) (-1099)) 84) (($ $) 128) (($ $ (-1099)) 126)) (-3139 (((-3 (-893 |#1|) "failed") $) 248 (|has| |#1| (-984))) (((-3 (-388 (-893 |#1|)) "failed") $) 232 (|has| |#1| (-522))) (((-3 |#1| "failed") $) 194) (((-3 (-530) "failed") $) 192 (|has| |#1| (-975 (-530)))) (((-3 (-1099) "failed") $) 185) (((-3 (-570 $) "failed") $) 136) (((-3 (-388 (-530)) "failed") $) 120 (-1461 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-2585 (((-893 |#1|) $) 249 (|has| |#1| (-984))) (((-388 (-893 |#1|)) $) 233 (|has| |#1| (-522))) ((|#1| $) 195) (((-530) $) 191 (|has| |#1| (-975 (-530)))) (((-1099) $) 186) (((-570 $) $) 137) (((-388 (-530)) $) 119 (-1461 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-3590 (($ $ $) 53)) (-2329 (((-637 |#1|) (-637 $)) 238 (|has| |#1| (-984))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 237 (|has| |#1| (-984))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 118 (-1461 (-3380 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-3380 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (((-637 (-530)) (-637 $)) 117 (-1461 (-3380 (|has| |#1| (-984)) (|has| |#1| (-593 (-530)))) (-3380 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 190 (|has| |#1| (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 189 (|has| |#1| (-827 (-530))))) (-3324 (($ (-597 $)) 155) (($ $) 154)) (-2381 (((-597 (-112)) $) 162)) (-4124 (((-112) (-112)) 163)) (-2731 (((-110) $) 30)) (-3457 (((-110) $) 183 (|has| $ (-975 (-530))))) (-4127 (($ $) 215 (|has| |#1| (-984)))) (-1918 (((-1051 |#1| (-570 $)) $) 214 (|has| |#1| (-984)))) (-3741 (($ $ (-530)) 88)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-3210 (((-1095 $) (-570 $)) 180 (|has| $ (-984)))) (-2508 (($ $ $) 134)) (-1817 (($ $ $) 133)) (-3217 (($ (-1 $ $) (-570 $)) 169)) (-3707 (((-3 (-570 $) "failed") $) 159)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2560 (((-597 (-570 $)) $) 160)) (-1990 (($ (-112) (-597 $)) 168) (($ (-112) $) 167)) (-1862 (((-3 (-597 $) "failed") $) 209 (|has| |#1| (-1039)))) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $) 218 (|has| |#1| (-984)))) (-1534 (((-3 (-597 $) "failed") $) 211 (|has| |#1| (-25)))) (-3062 (((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $) 212 (|has| |#1| (-25)))) (-1487 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099)) 217 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112)) 216 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $) 210 (|has| |#1| (-1039)))) (-1826 (((-110) $ (-1099)) 166) (((-110) $ (-112)) 165)) (-2483 (($ $) 67)) (-4156 (((-719) $) 158)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 196)) (-2505 ((|#1| $) 197)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2861 (((-110) $ (-1099)) 171) (((-110) $ $) 170)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-1403 (((-110) $) 182 (|has| $ (-975 (-530))))) (-4098 (($ $ (-1099) (-719) (-1 $ $)) 222 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) 221 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 220 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 219 (|has| |#1| (-984))) (($ $ (-597 (-112)) (-597 $) (-1099)) 208 (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 207 (|has| |#1| (-572 (-506)))) (($ $) 206 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) 205 (|has| |#1| (-572 (-506)))) (($ $ (-1099)) 204 (|has| |#1| (-572 (-506)))) (($ $ (-112) (-1 $ $)) 179) (($ $ (-112) (-1 $ (-597 $))) 178) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 177) (($ $ (-597 (-112)) (-597 (-1 $ $))) 176) (($ $ (-1099) (-1 $ $)) 175) (($ $ (-1099) (-1 $ (-597 $))) 174) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 173) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 172) (($ $ (-597 $) (-597 $)) 143) (($ $ $ $) 142) (($ $ (-276 $)) 141) (($ $ (-597 (-276 $))) 140) (($ $ (-597 (-570 $)) (-597 $)) 139) (($ $ (-570 $) $) 138)) (-2356 (((-719) $) 56)) (-1902 (($ (-112) (-597 $)) 148) (($ (-112) $ $ $ $) 147) (($ (-112) $ $ $) 146) (($ (-112) $ $) 145) (($ (-112) $) 144)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-3313 (($ $ $) 157) (($ $) 156)) (-3289 (($ $ (-1099)) 246 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 245 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 244 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) 243 (|has| |#1| (-984)))) (-1269 (($ $) 225 (|has| |#1| (-522)))) (-1928 (((-1051 |#1| (-570 $)) $) 224 (|has| |#1| (-522)))) (-1781 (($ $) 181 (|has| $ (-984)))) (-3260 (((-506) $) 252 (|has| |#1| (-572 (-506)))) (($ (-399 $)) 223 (|has| |#1| (-522))) (((-833 (-360)) $) 188 (|has| |#1| (-572 (-833 (-360))))) (((-833 (-530)) $) 187 (|has| |#1| (-572 (-833 (-530)))))) (-2555 (($ $ $) 251 (|has| |#1| (-453)))) (-2607 (($ $ $) 250 (|has| |#1| (-453)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ (-893 |#1|)) 247 (|has| |#1| (-984))) (($ (-388 (-893 |#1|))) 231 (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) 229 (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) 228 (|has| |#1| (-522))) (($ (-388 |#1|)) 227 (|has| |#1| (-522))) (($ (-1051 |#1| (-570 $))) 213 (|has| |#1| (-984))) (($ |#1|) 193) (($ (-1099)) 184) (($ (-570 $)) 135)) (-3251 (((-3 $ "failed") $) 236 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-1678 (($ (-597 $)) 153) (($ $) 152)) (-4195 (((-110) (-112)) 164)) (-3944 (((-110) $ $) 37)) (-2520 (($ (-1099) (-597 $)) 203) (($ (-1099) $ $ $ $) 202) (($ (-1099) $ $ $) 201) (($ (-1099) $ $) 200) (($ (-1099) $) 199)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1099)) 242 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 241 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 240 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) 239 (|has| |#1| (-984)))) (-2306 (((-110) $ $) 131)) (-2284 (((-110) $ $) 130)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 132)) (-2272 (((-110) $ $) 129)) (-2364 (($ $ $) 62) (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 226 (|has| |#1| (-522)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66) (($ $ (-388 (-530))) 87)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-162))) (($ |#1| $) 234 (|has| |#1| (-162)))))
-(((-29 |#1|) (-133) (-13 (-795) (-522))) (T -29))
-((-1326 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))) (-2933 (*1 *2 *1) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))) (-1326 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522))))) (-2933 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *4)))) (-4202 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))) (-3460 (*1 *2 *1) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522))))) (-3460 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *4)))))
-(-13 (-27) (-411 |t#1|) (-10 -8 (-15 -1326 ($ $)) (-15 -2933 ((-597 $) $)) (-15 -1326 ($ $ (-1099))) (-15 -2933 ((-597 $) $ (-1099))) (-15 -4202 ($ $)) (-15 -3460 ((-597 $) $)) (-15 -4202 ($ $ (-1099))) (-15 -3460 ((-597 $) $ (-1099)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) . T) ((-27) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-226) . T) ((-272) . T) ((-289) . T) ((-291 $) . T) ((-284) . T) ((-344) . T) ((-358 |#1|) |has| |#1| (-984)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-411 |#1|) . T) ((-432) . T) ((-453) |has| |#1| (-453)) ((-491 (-570 $) $) . T) ((-491 $ $) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) |has| |#1| (-162)) ((-599 $) . T) ((-593 (-530)) -12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) ((-593 |#1|) |has| |#1| (-984)) ((-666 #0#) . T) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-841 (-1099)) |has| |#1| (-984)) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-861) . T) ((-941) . T) ((-975 (-388 (-530))) -1461 (|has| |#1| (-975 (-388 (-530)))) (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) ((-975 (-388 (-893 |#1|))) |has| |#1| (-522)) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-570 $)) . T) ((-975 (-893 |#1|)) |has| |#1| (-984)) ((-975 (-1099)) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) |has| |#1| (-162)) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1135) . T) ((-1139) . T))
-((-3562 (((-1022 (-208)) $) NIL)) (-3554 (((-1022 (-208)) $) NIL)) (-3399 (($ $ (-208)) 125)) (-2516 (($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530)))) 83)) (-2425 (((-597 (-597 (-884 (-208)))) $) 137)) (-2366 (((-804) $) 149)))
-(((-30) (-13 (-896) (-10 -8 (-15 -2516 ($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530))))) (-15 -3399 ($ $ (-208)))))) (T -30))
-((-2516 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-893 (-530))) (-5 *3 (-1099)) (-5 *4 (-1022 (-388 (-530)))) (-5 *1 (-30)))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30)))))
-(-13 (-896) (-10 -8 (-15 -2516 ($ (-893 (-530)) (-1099) (-1099) (-1022 (-388 (-530))) (-1022 (-388 (-530))))) (-15 -3399 ($ $ (-208)))))
-((-1326 ((|#2| (-1095 |#2|) (-1099)) 43)) (-4124 (((-112) (-112)) 56)) (-3210 (((-1095 |#2|) (-570 |#2|)) 133 (|has| |#1| (-975 (-530))))) (-1430 ((|#2| |#1| (-530)) 122 (|has| |#1| (-975 (-530))))) (-2493 ((|#2| (-1095 |#2|) |#2|) 30)) (-1222 (((-804) (-597 |#2|)) 85)) (-1781 ((|#2| |#2|) 129 (|has| |#1| (-975 (-530))))) (-4195 (((-110) (-112)) 18)) (** ((|#2| |#2| (-388 (-530))) 96 (|has| |#1| (-975 (-530))))))
-(((-31 |#1| |#2|) (-10 -7 (-15 -1326 (|#2| (-1095 |#2|) (-1099))) (-15 -4124 ((-112) (-112))) (-15 -4195 ((-110) (-112))) (-15 -2493 (|#2| (-1095 |#2|) |#2|)) (-15 -1222 ((-804) (-597 |#2|))) (IF (|has| |#1| (-975 (-530))) (PROGN (-15 ** (|#2| |#2| (-388 (-530)))) (-15 -3210 ((-1095 |#2|) (-570 |#2|))) (-15 -1781 (|#2| |#2|)) (-15 -1430 (|#2| |#1| (-530)))) |%noBranch|)) (-13 (-795) (-522)) (-411 |#1|)) (T -31))
-((-1430 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-975 *4)) (-4 *3 (-13 (-795) (-522))))) (-1781 (*1 *2 *2) (-12 (-4 *3 (-975 (-530))) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-570 *5)) (-4 *5 (-411 *4)) (-4 *4 (-975 (-530))) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-1095 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-975 (-530))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4)))) (-1222 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-804)) (-5 *1 (-31 *4 *5)))) (-2493 (*1 *2 *3 *2) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-31 *4 *2)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *4)) (-4 *4 (-411 *3)))) (-1326 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *2)) (-5 *4 (-1099)) (-4 *2 (-411 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-795) (-522))))))
-(-10 -7 (-15 -1326 (|#2| (-1095 |#2|) (-1099))) (-15 -4124 ((-112) (-112))) (-15 -4195 ((-110) (-112))) (-15 -2493 (|#2| (-1095 |#2|) |#2|)) (-15 -1222 ((-804) (-597 |#2|))) (IF (|has| |#1| (-975 (-530))) (PROGN (-15 ** (|#2| |#2| (-388 (-530)))) (-15 -3210 ((-1095 |#2|) (-570 |#2|))) (-15 -1781 (|#2| |#2|)) (-15 -1430 (|#2| |#1| (-530)))) |%noBranch|))
-((-3186 (((-110) $ (-719)) 16)) (-2350 (($) 10)) (-4027 (((-110) $ (-719)) 15)) (-2763 (((-110) $ (-719)) 14)) (-2391 (((-110) $ $) 8)) (-3250 (((-110) $) 13)))
-(((-32 |#1|) (-10 -8 (-15 -2350 (|#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))) (-15 -3250 ((-110) |#1|)) (-15 -2391 ((-110) |#1| |#1|))) (-33)) (T -32))
-NIL
-(-10 -8 (-15 -2350 (|#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))) (-15 -3250 ((-110) |#1|)) (-15 -2391 ((-110) |#1| |#1|)))
-((-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-4027 (((-110) $ (-719)) 9)) (-2763 (((-110) $ (-719)) 10)) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2579 (($ $) 13)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
+((-2738 (*1 *1 *2) (-12 (-5 *2 (-895 *1)) (-4 *1 (-27)))) (-2738 (*1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-27)))) (-2738 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-5 *3 (-1102)) (-4 *1 (-27)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-3007 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *1)) (-5 *4 (-1102)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-895 *1)) (-4 *1 (-27)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-27)))) (-2424 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-5 *3 (-1102)) (-4 *1 (-27)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-2485 (*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1)))) (-2485 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *1)) (-5 *4 (-1102)) (-4 *1 (-27)) (-5 *2 (-598 *1)))))
+(-13 (-344) (-943) (-10 -8 (-15 -2738 ($ (-895 $))) (-15 -2738 ($ (-1098 $))) (-15 -2738 ($ (-1098 $) (-1102))) (-15 -3007 ((-598 $) (-895 $))) (-15 -3007 ((-598 $) (-1098 $))) (-15 -3007 ((-598 $) (-1098 $) (-1102))) (-15 -2424 ($ (-895 $))) (-15 -2424 ($ (-1098 $))) (-15 -2424 ($ (-1098 $) (-1102))) (-15 -2485 ((-598 $) (-895 $))) (-15 -2485 ((-598 $) (-1098 $))) (-15 -2485 ((-598 $) (-1098 $) (-1102)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-943) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T))
+((-2485 (((-598 $) (-895 $)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-1098 $) (-1102)) 50) (((-598 $) $) 19) (((-598 $) $ (-1102)) 41)) (-2424 (($ (-895 $)) NIL) (($ (-1098 $)) NIL) (($ (-1098 $) (-1102)) 52) (($ $) 17) (($ $ (-1102)) 37)) (-3007 (((-598 $) (-895 $)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-1098 $) (-1102)) 48) (((-598 $) $) 15) (((-598 $) $ (-1102)) 43)) (-2738 (($ (-895 $)) NIL) (($ (-1098 $)) NIL) (($ (-1098 $) (-1102)) NIL) (($ $) 12) (($ $ (-1102)) 39)))
+(((-28 |#1| |#2|) (-10 -8 (-15 -2485 ((-598 |#1|) |#1| (-1102))) (-15 -2424 (|#1| |#1| (-1102))) (-15 -2485 ((-598 |#1|) |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3007 ((-598 |#1|) |#1| (-1102))) (-15 -2738 (|#1| |#1| (-1102))) (-15 -3007 ((-598 |#1|) |#1|)) (-15 -2738 (|#1| |#1|)) (-15 -2485 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -2485 ((-598 |#1|) (-1098 |#1|))) (-15 -2485 ((-598 |#1|) (-895 |#1|))) (-15 -2424 (|#1| (-1098 |#1|) (-1102))) (-15 -2424 (|#1| (-1098 |#1|))) (-15 -2424 (|#1| (-895 |#1|))) (-15 -3007 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -3007 ((-598 |#1|) (-1098 |#1|))) (-15 -3007 ((-598 |#1|) (-895 |#1|))) (-15 -2738 (|#1| (-1098 |#1|) (-1102))) (-15 -2738 (|#1| (-1098 |#1|))) (-15 -2738 (|#1| (-895 |#1|)))) (-29 |#2|) (-13 (-797) (-523))) (T -28))
+NIL
+(-10 -8 (-15 -2485 ((-598 |#1|) |#1| (-1102))) (-15 -2424 (|#1| |#1| (-1102))) (-15 -2485 ((-598 |#1|) |#1|)) (-15 -2424 (|#1| |#1|)) (-15 -3007 ((-598 |#1|) |#1| (-1102))) (-15 -2738 (|#1| |#1| (-1102))) (-15 -3007 ((-598 |#1|) |#1|)) (-15 -2738 (|#1| |#1|)) (-15 -2485 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -2485 ((-598 |#1|) (-1098 |#1|))) (-15 -2485 ((-598 |#1|) (-895 |#1|))) (-15 -2424 (|#1| (-1098 |#1|) (-1102))) (-15 -2424 (|#1| (-1098 |#1|))) (-15 -2424 (|#1| (-895 |#1|))) (-15 -3007 ((-598 |#1|) (-1098 |#1|) (-1102))) (-15 -3007 ((-598 |#1|) (-1098 |#1|))) (-15 -3007 ((-598 |#1|) (-895 |#1|))) (-15 -2738 (|#1| (-1098 |#1|) (-1102))) (-15 -2738 (|#1| (-1098 |#1|))) (-15 -2738 (|#1| (-895 |#1|))))
+((-2247 (((-110) $ $) 7)) (-2485 (((-598 $) (-895 $)) 77) (((-598 $) (-1098 $)) 76) (((-598 $) (-1098 $) (-1102)) 75) (((-598 $) $) 123) (((-598 $) $ (-1102)) 121)) (-2424 (($ (-895 $)) 80) (($ (-1098 $)) 79) (($ (-1098 $) (-1102)) 78) (($ $) 124) (($ $ (-1102)) 122)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1102)) $) 198)) (-2516 (((-388 (-1098 $)) $ (-571 $)) 230 (|has| |#1| (-523)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2410 (((-598 (-571 $)) $) 161)) (-2128 (((-3 $ "failed") $ $) 19)) (-3184 (($ $ (-598 (-571 $)) (-598 $)) 151) (($ $ (-598 (-276 $))) 150) (($ $ (-276 $)) 149)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2563 (($ $) 89)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3007 (((-598 $) (-895 $)) 83) (((-598 $) (-1098 $)) 82) (((-598 $) (-1098 $) (-1102)) 81) (((-598 $) $) 127) (((-598 $) $ (-1102)) 125)) (-2738 (($ (-895 $)) 86) (($ (-1098 $)) 85) (($ (-1098 $) (-1102)) 84) (($ $) 128) (($ $ (-1102)) 126)) (-3154 (((-3 (-895 |#1|) "failed") $) 248 (|has| |#1| (-986))) (((-3 (-388 (-895 |#1|)) "failed") $) 232 (|has| |#1| (-523))) (((-3 |#1| "failed") $) 194) (((-3 (-531) "failed") $) 192 (|has| |#1| (-977 (-531)))) (((-3 (-1102) "failed") $) 185) (((-3 (-571 $) "failed") $) 136) (((-3 (-388 (-531)) "failed") $) 120 (-1435 (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531))))))) (-2523 (((-895 |#1|) $) 249 (|has| |#1| (-986))) (((-388 (-895 |#1|)) $) 233 (|has| |#1| (-523))) ((|#1| $) 195) (((-531) $) 191 (|has| |#1| (-977 (-531)))) (((-1102) $) 186) (((-571 $) $) 137) (((-388 (-531)) $) 119 (-1435 (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531))))))) (-3650 (($ $ $) 53)) (-3073 (((-639 |#1|) (-639 $)) 238 (|has| |#1| (-986))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 237 (|has| |#1| (-986))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 118 (-1435 (-3427 (|has| |#1| (-986)) (|has| |#1| (-594 (-531)))) (-3427 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (((-639 (-531)) (-639 $)) 117 (-1435 (-3427 (|has| |#1| (-986)) (|has| |#1| (-594 (-531)))) (-3427 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 190 (|has| |#1| (-829 (-360)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 189 (|has| |#1| (-829 (-531))))) (-1238 (($ (-598 $)) 155) (($ $) 154)) (-4051 (((-598 (-112)) $) 162)) (-3254 (((-112) (-112)) 163)) (-3481 (((-110) $) 30)) (-4250 (((-110) $) 183 (|has| $ (-977 (-531))))) (-3027 (($ $) 215 (|has| |#1| (-986)))) (-1840 (((-1054 |#1| (-571 $)) $) 214 (|has| |#1| (-986)))) (-2249 (($ $ (-531)) 88)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2733 (((-1098 $) (-571 $)) 180 (|has| $ (-986)))) (-4103 (($ $ $) 134)) (-1241 (($ $ $) 133)) (-3261 (($ (-1 $ $) (-571 $)) 169)) (-1302 (((-3 (-571 $) "failed") $) 159)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2501 (((-598 (-571 $)) $) 160)) (-1930 (($ (-112) (-598 $)) 168) (($ (-112) $) 167)) (-3443 (((-3 (-598 $) "failed") $) 209 (|has| |#1| (-1042)))) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $) 218 (|has| |#1| (-986)))) (-2077 (((-3 (-598 $) "failed") $) 211 (|has| |#1| (-25)))) (-2124 (((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $) 212 (|has| |#1| (-25)))) (-3448 (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102)) 217 (|has| |#1| (-986))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112)) 216 (|has| |#1| (-986))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $) 210 (|has| |#1| (-1042)))) (-4247 (((-110) $ (-1102)) 166) (((-110) $ (-112)) 165)) (-2422 (($ $) 67)) (-4194 (((-721) $) 158)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 196)) (-2448 ((|#1| $) 197)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2781 (((-110) $ (-1102)) 171) (((-110) $ $) 170)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-1787 (((-110) $) 182 (|has| $ (-977 (-531))))) (-4115 (($ $ (-1102) (-721) (-1 $ $)) 222 (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ (-598 $))) 221 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $)))) 220 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $))) 219 (|has| |#1| (-986))) (($ $ (-598 (-112)) (-598 $) (-1102)) 208 (|has| |#1| (-573 (-507)))) (($ $ (-112) $ (-1102)) 207 (|has| |#1| (-573 (-507)))) (($ $) 206 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102))) 205 (|has| |#1| (-573 (-507)))) (($ $ (-1102)) 204 (|has| |#1| (-573 (-507)))) (($ $ (-112) (-1 $ $)) 179) (($ $ (-112) (-1 $ (-598 $))) 178) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) 177) (($ $ (-598 (-112)) (-598 (-1 $ $))) 176) (($ $ (-1102) (-1 $ $)) 175) (($ $ (-1102) (-1 $ (-598 $))) 174) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) 173) (($ $ (-598 (-1102)) (-598 (-1 $ $))) 172) (($ $ (-598 $) (-598 $)) 143) (($ $ $ $) 142) (($ $ (-276 $)) 141) (($ $ (-598 (-276 $))) 140) (($ $ (-598 (-571 $)) (-598 $)) 139) (($ $ (-571 $) $) 138)) (-4100 (((-721) $) 56)) (-1785 (($ (-112) (-598 $)) 148) (($ (-112) $ $ $ $) 147) (($ (-112) $ $ $) 146) (($ (-112) $ $) 145) (($ (-112) $) 144)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-1771 (($ $ $) 157) (($ $) 156)) (-3352 (($ $ (-1102)) 246 (|has| |#1| (-986))) (($ $ (-598 (-1102))) 245 (|has| |#1| (-986))) (($ $ (-1102) (-721)) 244 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) 243 (|has| |#1| (-986)))) (-2842 (($ $) 225 (|has| |#1| (-523)))) (-1853 (((-1054 |#1| (-571 $)) $) 224 (|has| |#1| (-523)))) (-3608 (($ $) 181 (|has| $ (-986)))) (-3318 (((-507) $) 252 (|has| |#1| (-573 (-507)))) (($ (-399 $)) 223 (|has| |#1| (-523))) (((-835 (-360)) $) 188 (|has| |#1| (-573 (-835 (-360))))) (((-835 (-531)) $) 187 (|has| |#1| (-573 (-835 (-531)))))) (-4164 (($ $ $) 251 (|has| |#1| (-453)))) (-3214 (($ $ $) 250 (|has| |#1| (-453)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ (-895 |#1|)) 247 (|has| |#1| (-986))) (($ (-388 (-895 |#1|))) 231 (|has| |#1| (-523))) (($ (-388 (-895 (-388 |#1|)))) 229 (|has| |#1| (-523))) (($ (-895 (-388 |#1|))) 228 (|has| |#1| (-523))) (($ (-388 |#1|)) 227 (|has| |#1| (-523))) (($ (-1054 |#1| (-571 $))) 213 (|has| |#1| (-986))) (($ |#1|) 193) (($ (-1102)) 184) (($ (-571 $)) 135)) (-2750 (((-3 $ "failed") $) 236 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3504 (($ (-598 $)) 153) (($ $) 152)) (-3167 (((-110) (-112)) 164)) (-2587 (((-110) $ $) 37)) (-2507 (($ (-1102) (-598 $)) 203) (($ (-1102) $ $ $ $) 202) (($ (-1102) $ $ $) 201) (($ (-1102) $ $) 200) (($ (-1102) $) 199)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1102)) 242 (|has| |#1| (-986))) (($ $ (-598 (-1102))) 241 (|has| |#1| (-986))) (($ $ (-1102) (-721)) 240 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) 239 (|has| |#1| (-986)))) (-2207 (((-110) $ $) 131)) (-2184 (((-110) $ $) 130)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 132)) (-2174 (((-110) $ $) 129)) (-2263 (($ $ $) 62) (($ (-1054 |#1| (-571 $)) (-1054 |#1| (-571 $))) 226 (|has| |#1| (-523)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66) (($ $ (-388 (-531))) 87)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64) (($ $ |#1|) 235 (|has| |#1| (-162))) (($ |#1| $) 234 (|has| |#1| (-162)))))
+(((-29 |#1|) (-133) (-13 (-797) (-523))) (T -29))
+((-2738 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-797) (-523))))) (-3007 (*1 *2 *1) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *3)))) (-2738 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-797) (-523))))) (-3007 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *4)))) (-2424 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-797) (-523))))) (-2485 (*1 *2 *1) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *3)))) (-2424 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-797) (-523))))) (-2485 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *4)))))
+(-13 (-27) (-411 |t#1|) (-10 -8 (-15 -2738 ($ $)) (-15 -3007 ((-598 $) $)) (-15 -2738 ($ $ (-1102))) (-15 -3007 ((-598 $) $ (-1102))) (-15 -2424 ($ $)) (-15 -2485 ((-598 $) $)) (-15 -2424 ($ $ (-1102))) (-15 -2485 ((-598 $) $ (-1102)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) . T) ((-27) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))) ((-226) . T) ((-272) . T) ((-289) . T) ((-291 $) . T) ((-284) . T) ((-344) . T) ((-358 |#1|) |has| |#1| (-986)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-411 |#1|) . T) ((-432) . T) ((-453) |has| |#1| (-453)) ((-492 (-571 $) $) . T) ((-492 $ $) . T) ((-523) . T) ((-601 #0#) . T) ((-601 |#1|) |has| |#1| (-162)) ((-601 $) . T) ((-594 (-531)) -12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) ((-594 |#1|) |has| |#1| (-986)) ((-668 #0#) . T) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) . T) ((-677) . T) ((-797) . T) ((-843 (-1102)) |has| |#1| (-986)) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-827 |#1|) . T) ((-863) . T) ((-943) . T) ((-977 (-388 (-531))) -1435 (|has| |#1| (-977 (-388 (-531)))) (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) ((-977 (-388 (-895 |#1|))) |has| |#1| (-523)) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 (-571 $)) . T) ((-977 (-895 |#1|)) |has| |#1| (-986)) ((-977 (-1102)) . T) ((-977 |#1|) . T) ((-992 #0#) . T) ((-992 |#1|) |has| |#1| (-162)) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1138) . T) ((-1142) . T))
+((-2659 (((-1025 (-208)) $) NIL)) (-2647 (((-1025 (-208)) $) NIL)) (-2522 (($ $ (-208)) 125)) (-1536 (($ (-895 (-531)) (-1102) (-1102) (-1025 (-388 (-531))) (-1025 (-388 (-531)))) 83)) (-2126 (((-598 (-598 (-886 (-208)))) $) 137)) (-2265 (((-806) $) 149)))
+(((-30) (-13 (-898) (-10 -8 (-15 -1536 ($ (-895 (-531)) (-1102) (-1102) (-1025 (-388 (-531))) (-1025 (-388 (-531))))) (-15 -2522 ($ $ (-208)))))) (T -30))
+((-1536 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-895 (-531))) (-5 *3 (-1102)) (-5 *4 (-1025 (-388 (-531)))) (-5 *1 (-30)))) (-2522 (*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30)))))
+(-13 (-898) (-10 -8 (-15 -1536 ($ (-895 (-531)) (-1102) (-1102) (-1025 (-388 (-531))) (-1025 (-388 (-531))))) (-15 -2522 ($ $ (-208)))))
+((-2738 ((|#2| (-1098 |#2|) (-1102)) 43)) (-3254 (((-112) (-112)) 56)) (-2733 (((-1098 |#2|) (-571 |#2|)) 133 (|has| |#1| (-977 (-531))))) (-3584 ((|#2| |#1| (-531)) 122 (|has| |#1| (-977 (-531))))) (-2611 ((|#2| (-1098 |#2|) |#2|) 30)) (-4046 (((-806) (-598 |#2|)) 85)) (-3608 ((|#2| |#2|) 129 (|has| |#1| (-977 (-531))))) (-3167 (((-110) (-112)) 18)) (** ((|#2| |#2| (-388 (-531))) 96 (|has| |#1| (-977 (-531))))))
+(((-31 |#1| |#2|) (-10 -7 (-15 -2738 (|#2| (-1098 |#2|) (-1102))) (-15 -3254 ((-112) (-112))) (-15 -3167 ((-110) (-112))) (-15 -2611 (|#2| (-1098 |#2|) |#2|)) (-15 -4046 ((-806) (-598 |#2|))) (IF (|has| |#1| (-977 (-531))) (PROGN (-15 ** (|#2| |#2| (-388 (-531)))) (-15 -2733 ((-1098 |#2|) (-571 |#2|))) (-15 -3608 (|#2| |#2|)) (-15 -3584 (|#2| |#1| (-531)))) |%noBranch|)) (-13 (-797) (-523)) (-411 |#1|)) (T -31))
+((-3584 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2)) (-4 *3 (-977 *4)) (-4 *3 (-13 (-797) (-523))))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-977 (-531))) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-571 *5)) (-4 *5 (-411 *4)) (-4 *4 (-977 (-531))) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-1098 *5)) (-5 *1 (-31 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-531))) (-4 *4 (-977 (-531))) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-806)) (-5 *1 (-31 *4 *5)))) (-2611 (*1 *2 *3 *2) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-31 *4 *2)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-31 *3 *4)) (-4 *4 (-411 *3)))) (-2738 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *2)) (-5 *4 (-1102)) (-4 *2 (-411 *5)) (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-797) (-523))))))
+(-10 -7 (-15 -2738 (|#2| (-1098 |#2|) (-1102))) (-15 -3254 ((-112) (-112))) (-15 -3167 ((-110) (-112))) (-15 -2611 (|#2| (-1098 |#2|) |#2|)) (-15 -4046 ((-806) (-598 |#2|))) (IF (|has| |#1| (-977 (-531))) (PROGN (-15 ** (|#2| |#2| (-388 (-531)))) (-15 -2733 ((-1098 |#2|) (-571 |#2|))) (-15 -3608 (|#2| |#2|)) (-15 -3584 (|#2| |#1| (-531)))) |%noBranch|))
+((-4058 (((-110) $ (-721)) 16)) (-4082 (($) 10)) (-3280 (((-110) $ (-721)) 15)) (-3332 (((-110) $ (-721)) 14)) (-2019 (((-110) $ $) 8)) (-1589 (((-110) $) 13)))
+(((-32 |#1|) (-10 -8 (-15 -4082 (|#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))) (-15 -1589 ((-110) |#1|)) (-15 -2019 ((-110) |#1| |#1|))) (-33)) (T -32))
+NIL
+(-10 -8 (-15 -4082 (|#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))) (-15 -1589 ((-110) |#1|)) (-15 -2019 ((-110) |#1| |#1|)))
+((-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-3280 (((-110) $ (-721)) 9)) (-3332 (((-110) $ (-721)) 10)) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2480 (($ $) 13)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
(((-33) (-133)) (T -33))
-((-2391 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-2579 (*1 *1 *1) (-4 *1 (-33))) (-3958 (*1 *1) (-4 *1 (-33))) (-3250 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-2763 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-4027 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-3186 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))) (-2350 (*1 *1) (-4 *1 (-33))) (-2267 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-33)) (-5 *2 (-719)))))
-(-13 (-1135) (-10 -8 (-15 -2391 ((-110) $ $)) (-15 -2579 ($ $)) (-15 -3958 ($)) (-15 -3250 ((-110) $)) (-15 -2763 ((-110) $ (-719))) (-15 -4027 ((-110) $ (-719))) (-15 -3186 ((-110) $ (-719))) (-15 -2350 ($) -2708) (IF (|has| $ (-6 -4269)) (-15 -2267 ((-719) $)) |%noBranch|)))
-(((-1135) . T))
-((-2459 (($ $) 11)) (-2434 (($ $) 10)) (-2485 (($ $) 9)) (-3632 (($ $) 8)) (-2472 (($ $) 7)) (-2446 (($ $) 6)))
+((-2019 (*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-2480 (*1 *1 *1) (-4 *1 (-33))) (-3781 (*1 *1) (-4 *1 (-33))) (-1589 (*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))) (-3332 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))) (-3280 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))) (-4058 (*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))) (-4082 (*1 *1) (-4 *1 (-33))) (-2167 (*1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-33)) (-5 *2 (-721)))))
+(-13 (-1138) (-10 -8 (-15 -2019 ((-110) $ $)) (-15 -2480 ($ $)) (-15 -3781 ($)) (-15 -1589 ((-110) $)) (-15 -3332 ((-110) $ (-721))) (-15 -3280 ((-110) $ (-721))) (-15 -4058 ((-110) $ (-721))) (-15 -4082 ($) -2651) (IF (|has| $ (-6 -4273)) (-15 -2167 ((-721) $)) |%noBranch|)))
+(((-1138) . T))
+((-2442 (($ $) 11)) (-2416 (($ $) 10)) (-2468 (($ $) 9)) (-2753 (($ $) 8)) (-2456 (($ $) 7)) (-2429 (($ $) 6)))
(((-34) (-133)) (T -34))
-((-2459 (*1 *1 *1) (-4 *1 (-34))) (-2434 (*1 *1 *1) (-4 *1 (-34))) (-2485 (*1 *1 *1) (-4 *1 (-34))) (-3632 (*1 *1 *1) (-4 *1 (-34))) (-2472 (*1 *1 *1) (-4 *1 (-34))) (-2446 (*1 *1 *1) (-4 *1 (-34))))
-(-13 (-10 -8 (-15 -2446 ($ $)) (-15 -2472 ($ $)) (-15 -3632 ($ $)) (-15 -2485 ($ $)) (-15 -2434 ($ $)) (-15 -2459 ($ $))))
-((-2352 (((-110) $ $) 19 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3417 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 125)) (-3254 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 148)) (-2133 (($ $) 146)) (-3527 (($) 72) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 71)) (-2097 (((-1186) $ |#1| |#1|) 99 (|has| $ (-6 -4270))) (((-1186) $ (-530) (-530)) 178 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 159 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 209) (((-110) $) 203 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-1627 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 200 (|has| $ (-6 -4270))) (($ $) 199 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3186 (((-110) $ (-719)) 8)) (-1615 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 134 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 155 (|has| $ (-6 -4270)))) (-3312 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 157 (|has| $ (-6 -4270)))) (-1647 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 153 (|has| $ (-6 -4270)))) (-2552 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 189 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-1148 (-530)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 160 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "last" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 158 (|has| $ (-6 -4270))) (($ $ "rest" $) 156 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "first" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 154 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "value" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 133 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 132 (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 45 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 216)) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 55 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 175 (|has| $ (-6 -4269)))) (-3245 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 147)) (-2767 (((-3 |#2| "failed") |#1| $) 61)) (-2350 (($) 7 T CONST)) (-1337 (($ $) 201 (|has| $ (-6 -4270)))) (-4106 (($ $) 211)) (-3057 (($ $ (-719)) 142) (($ $) 140)) (-2287 (($ $) 214 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3077 (($ $) 58 (-1461 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))) (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 220) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 215 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 54 (|has| $ (-6 -4269))) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 174 (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 56 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 52 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 176 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 173 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 172 (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 190 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) 88) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 188)) (-1230 (((-110) $) 192)) (-2027 (((-530) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 208) (((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 207 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) (((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 206 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 30 (|has| $ (-6 -4269))) (((-597 |#2|) $) 79 (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 114 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 123)) (-1646 (((-110) $ $) 131 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3538 (($ (-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 169)) (-4027 (((-110) $ (-719)) 9)) (-4010 ((|#1| $) 96 (|has| |#1| (-795))) (((-530) $) 180 (|has| (-530) (-795)))) (-2508 (($ $ $) 198 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2090 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3683 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 29 (|has| $ (-6 -4269))) (((-597 |#2|) $) 80 (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 115 (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-1549 ((|#1| $) 95 (|has| |#1| (-795))) (((-530) $) 181 (|has| (-530) (-795)))) (-1817 (($ $ $) 197 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 34 (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 110 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 109)) (-2939 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 225)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 128)) (-3615 (((-110) $) 124)) (-1424 (((-1082) $) 22 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2407 (($ $ (-719)) 145) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 143)) (-3282 (((-597 |#1|) $) 63)) (-3718 (((-110) |#1| $) 64)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 39)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 40) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 219) (($ $ $ (-530)) 218)) (-4028 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 162) (($ $ $ (-530)) 161)) (-3567 (((-597 |#1|) $) 93) (((-597 (-530)) $) 183)) (-1927 (((-110) |#1| $) 92) (((-110) (-530) $) 184)) (-2624 (((-1046) $) 21 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3048 ((|#2| $) 97 (|has| |#1| (-795))) (($ $ (-719)) 139) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 137)) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 51) (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 171)) (-1522 (($ $ |#2|) 98 (|has| $ (-6 -4270))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 179 (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 41)) (-4083 (((-110) $) 191)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 32 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 112 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) 26 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 25 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 24 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 23 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 121 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 120 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 119 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) 118 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 182 (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2261 (((-597 |#2|) $) 91) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 185)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 187) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) 186) (($ $ (-1148 (-530))) 165) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "first") 138) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "value") 126)) (-2539 (((-530) $ $) 129)) (-1560 (($) 49) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 48)) (-3715 (($ $ (-530)) 222) (($ $ (-1148 (-530))) 221)) (-1843 (($ $ (-530)) 164) (($ $ (-1148 (-530))) 163)) (-4246 (((-110) $) 127)) (-3697 (($ $) 151)) (-3301 (($ $) 152 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 150)) (-2004 (($ $) 149)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) |#2| $) 81 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 113 (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) 202 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506)))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 50) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 170)) (-1328 (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 224) (($ $ $) 223)) (-3483 (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 168) (($ (-597 $)) 167) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 136) (($ $ $) 135)) (-2366 (((-804) $) 18 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))))) (-2557 (((-597 $) $) 122)) (-4153 (((-110) $ $) 130 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 42)) (-2414 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") |#1| $) 108)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 33 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 111 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 195 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2284 (((-110) $ $) 194 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2248 (((-110) $ $) 20 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2297 (((-110) $ $) 196 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2272 (((-110) $ $) 193 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-35 |#1| |#2|) (-133) (-1027) (-1027)) (T -35))
-((-2414 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-2 (|:| -3078 *3) (|:| -1874 *4))))))
-(-13 (-1112 |t#1| |t#2|) (-617 (-2 (|:| -3078 |t#1|) (|:| -1874 |t#2|))) (-10 -8 (-15 -2414 ((-3 (-2 (|:| -3078 |t#1|) (|:| -1874 |t#2|)) "failed") |t#1| $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((-99) -1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795))) ((-571 (-804)) -1461 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))) ((-144 #1=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((-572 (-506)) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 #2=(-530) #1#) . T) ((-268 |#1| |#2|) . T) ((-270 #2# #1#) . T) ((-270 |#1| |#2|) . T) ((-291 #1#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-264 #1#) . T) ((-354 #1#) . T) ((-468 #1#) . T) ((-468 |#2|) . T) ((-563 #2# #1#) . T) ((-563 |#1| |#2|) . T) ((-491 #1# #1#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-568 |#1| |#2|) . T) ((-602 #1#) . T) ((-617 #1#) . T) ((-795) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)) ((-949 #1#) . T) ((-1027) -1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795))) ((-1073 #1#) . T) ((-1112 |#1| |#2|) . T) ((-1135) . T) ((-1169 #1#) . T))
-((-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10)))
-(((-36 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-37 |#2|) (-162)) (T -36))
-NIL
-(-10 -8 (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+((-2442 (*1 *1 *1) (-4 *1 (-34))) (-2416 (*1 *1 *1) (-4 *1 (-34))) (-2468 (*1 *1 *1) (-4 *1 (-34))) (-2753 (*1 *1 *1) (-4 *1 (-34))) (-2456 (*1 *1 *1) (-4 *1 (-34))) (-2429 (*1 *1 *1) (-4 *1 (-34))))
+(-13 (-10 -8 (-15 -2429 ($ $)) (-15 -2456 ($ $)) (-15 -2753 ($ $)) (-15 -2468 ($ $)) (-15 -2416 ($ $)) (-15 -2442 ($ $))))
+((-2247 (((-110) $ $) 19 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3482 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 125)) (-3308 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 148)) (-2072 (($ $) 146)) (-2995 (($) 72) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 71)) (-3137 (((-1189) $ |#1| |#1|) 99 (|has| $ (-6 -4274))) (((-1189) $ (-531) (-531)) 178 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 159 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 209) (((-110) $) 203 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2375 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 200 (|has| $ (-6 -4274))) (($ $) 199 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 210) (($ $) 204 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2039 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 134 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 155 (|has| $ (-6 -4274)))) (-2136 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 157 (|has| $ (-6 -4274)))) (-3112 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 153 (|has| $ (-6 -4274)))) (-2454 ((|#2| $ |#1| |#2|) 73) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 189 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-1151 (-531)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 160 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "last" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 158 (|has| $ (-6 -4274))) (($ $ "rest" $) 156 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "first" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 154 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "value" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 133 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 132 (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 45 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 216)) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 55 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 175 (|has| $ (-6 -4273)))) (-3297 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 147)) (-2714 (((-3 |#2| "failed") |#1| $) 61)) (-4082 (($) 7 T CONST)) (-4106 (($ $) 201 (|has| $ (-6 -4274)))) (-1828 (($ $) 211)) (-3062 (($ $ (-721)) 142) (($ $) 140)) (-2705 (($ $) 214 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3086 (($ $) 58 (-1435 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))) (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 46 (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 62) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 220) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 215 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 54 (|has| $ (-6 -4273))) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 177 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 174 (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 56 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 53 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 52 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 176 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 173 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 172 (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 190 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) 88) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 188)) (-2141 (((-110) $) 192)) (-1976 (((-531) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 208) (((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 207 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) (((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 206 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 30 (|has| $ (-6 -4273))) (((-598 |#2|) $) 79 (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 114 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 123)) (-1478 (((-110) $ $) 131 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3010 (($ (-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 169)) (-3280 (((-110) $ (-721)) 9)) (-3804 ((|#1| $) 96 (|has| |#1| (-797))) (((-531) $) 180 (|has| (-531) (-797)))) (-4103 (($ $ $) 198 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-3611 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) 217) (($ $ $) 213 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-3508 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) 212) (($ $ $) 205 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 29 (|has| $ (-6 -4273))) (((-598 |#2|) $) 80 (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 115 (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273)))) (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 117 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2327 ((|#1| $) 95 (|has| |#1| (-797))) (((-531) $) 181 (|has| (-531) (-797)))) (-1241 (($ $ $) 197 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 34 (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4274))) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 110 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) 166) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 109)) (-2907 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 225)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 128)) (-2672 (((-110) $) 124)) (-1521 (((-1085) $) 22 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2309 (($ $ (-721)) 145) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 143)) (-3345 (((-598 |#1|) $) 63)) (-1727 (((-110) |#1| $) 64)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 39)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 40) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 219) (($ $ $ (-531)) 218)) (-4059 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 162) (($ $ $ (-531)) 161)) (-3765 (((-598 |#1|) $) 93) (((-598 (-531)) $) 183)) (-3059 (((-110) |#1| $) 92) (((-110) (-531) $) 184)) (-2529 (((-1049) $) 21 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3046 ((|#2| $) 97 (|has| |#1| (-797))) (($ $ (-721)) 139) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 137)) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 51) (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 171)) (-3742 (($ $ |#2|) 98 (|has| $ (-6 -4274))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 179 (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 41)) (-2765 (((-110) $) 191)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 32 (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 112 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) 26 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 25 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 24 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 23 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 121 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 120 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 119 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) 118 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 182 (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3163 (((-598 |#2|) $) 91) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 185)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 187) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) 186) (($ $ (-1151 (-531))) 165) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "last") 144) (($ $ "rest") 141) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "first") 138) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "value") 126)) (-2357 (((-531) $ $) 129)) (-2543 (($) 49) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 48)) (-1551 (($ $ (-531)) 222) (($ $ (-1151 (-531))) 221)) (-1723 (($ $ (-531)) 164) (($ $ (-1151 (-531))) 163)) (-2930 (((-110) $) 127)) (-1958 (($ $) 151)) (-2980 (($ $) 152 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 150)) (-2874 (($ $) 149)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 31 (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-721) |#2| $) 81 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 116 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 113 (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) 202 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507)))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 50) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 170)) (-1818 (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 224) (($ $ $) 223)) (-3536 (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 168) (($ (-598 $)) 167) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 136) (($ $ $) 135)) (-2265 (((-806) $) 18 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))))) (-3495 (((-598 $) $) 122)) (-2910 (((-110) $ $) 130 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 42)) (-2317 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") |#1| $) 108)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 33 (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 111 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 195 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2184 (((-110) $ $) 194 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2148 (((-110) $ $) 20 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2195 (((-110) $ $) 196 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2174 (((-110) $ $) 193 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-35 |#1| |#2|) (-133) (-1030) (-1030)) (T -35))
+((-2317 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-5 *2 (-2 (|:| -3033 *3) (|:| -1798 *4))))))
+(-13 (-1115 |t#1| |t#2|) (-619 (-2 (|:| -3033 |t#1|) (|:| -1798 |t#2|))) (-10 -8 (-15 -2317 ((-3 (-2 (|:| -3033 |t#1|) (|:| -1798 |t#2|)) "failed") |t#1| $))))
+(((-33) . T) ((-104 #0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((-99) -1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797))) ((-572 (-806)) -1435 (|has| |#2| (-1030)) (|has| |#2| (-572 (-806))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))) ((-144 #1=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((-573 (-507)) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 #2=(-531) #1#) . T) ((-268 |#1| |#2|) . T) ((-270 #2# #1#) . T) ((-270 |#1| |#2|) . T) ((-291 #1#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-264 #1#) . T) ((-354 #1#) . T) ((-468 #1#) . T) ((-468 |#2|) . T) ((-564 #2# #1#) . T) ((-564 |#1| |#2|) . T) ((-492 #1# #1#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-569 |#1| |#2|) . T) ((-604 #1#) . T) ((-619 #1#) . T) ((-797) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)) ((-951 #1#) . T) ((-1030) -1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797))) ((-1076 #1#) . T) ((-1115 |#1| |#2|) . T) ((-1138) . T) ((-1172 #1#) . T))
+((-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) 10)))
+(((-36 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-37 |#2|) (-162)) (T -36))
+NIL
+(-10 -8 (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
(((-37 |#1|) (-133) (-162)) (T -37))
-((-2366 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162)))))
-(-13 (-984) (-666 |t#1|) (-10 -8 (-15 -2366 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1489 (((-399 |#1|) |#1|) 41)) (-2611 (((-399 |#1|) |#1|) 30) (((-399 |#1|) |#1| (-597 (-47))) 33)) (-1452 (((-110) |#1|) 56)))
-(((-38 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1| (-597 (-47)))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1489 ((-399 |#1|) |#1|)) (-15 -1452 ((-110) |#1|))) (-1157 (-47))) (T -38))
-((-1452 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-1489 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))))
-(-10 -7 (-15 -2611 ((-399 |#1|) |#1| (-597 (-47)))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1489 ((-399 |#1|) |#1|)) (-15 -1452 ((-110) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3508 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3446 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1276 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1863 (((-637 (-388 |#2|)) (-1181 $)) NIL) (((-637 (-388 |#2|))) NIL)) (-1367 (((-388 |#2|) $) NIL)) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-388 |#2|) (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3272 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1426 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3023 (((-719)) NIL (|has| (-388 |#2|) (-349)))) (-1240 (((-110)) NIL)) (-2757 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) NIL)) (-1574 (($ (-1181 (-388 |#2|)) (-1181 $)) NIL) (($ (-1181 (-388 |#2|))) 57) (($ (-1181 |#2|) |#2|) 125)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3590 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1984 (((-637 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) NIL) (((-637 (-388 |#2|)) (-637 $)) NIL)) (-1728 (((-1181 $) (-1181 $)) NIL)) (-2134 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-1789 (((-597 (-597 |#1|))) NIL (|has| |#1| (-349)))) (-3725 (((-110) |#1| |#1|) NIL)) (-2426 (((-862)) NIL)) (-1364 (($) NIL (|has| (-388 |#2|) (-349)))) (-4088 (((-110)) NIL)) (-1358 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-3571 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| (-388 |#2|) (-344)))) (-1239 (($ $) NIL)) (-1677 (($) NIL (|has| (-388 |#2|) (-330)))) (-2798 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3948 (($ $ (-719)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-3295 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-2031 (((-862) $) NIL (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) NIL (|has| (-388 |#2|) (-330)))) (-2731 (((-110) $) NIL)) (-2255 (((-719)) NIL)) (-1256 (((-1181 $) (-1181 $)) 102)) (-2376 (((-388 |#2|) $) NIL)) (-4116 (((-597 (-893 |#1|)) (-1099)) NIL (|has| |#1| (-344)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1359 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-1905 (((-862) $) NIL (|has| (-388 |#2|) (-349)))) (-2123 ((|#3| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1424 (((-1082) $) NIL)) (-3995 (((-1186) (-719)) 79)) (-2696 (((-637 (-388 |#2|))) 51)) (-3198 (((-637 (-388 |#2|))) 44)) (-2483 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2171 (($ (-1181 |#2|) |#2|) 126)) (-1412 (((-637 (-388 |#2|))) 45)) (-3075 (((-637 (-388 |#2|))) 43)) (-3839 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-2614 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 64)) (-3361 (((-1181 $)) 42)) (-3696 (((-1181 $)) 41)) (-1747 (((-110) $) NIL)) (-3001 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3657 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1986 (($ (-862)) NIL (|has| (-388 |#2|) (-349)))) (-3429 (((-3 |#2| "failed")) NIL)) (-2624 (((-1046) $) NIL)) (-2835 (((-719)) NIL)) (-1974 (($) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-388 |#2|) (-344)))) (-2204 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-388 |#2|) (-330)))) (-2611 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2356 (((-719) $) NIL (|has| (-388 |#2|) (-344)))) (-1902 ((|#1| $ |#1| |#1|) NIL)) (-2174 (((-3 |#2| "failed")) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3060 (((-388 |#2|) (-1181 $)) NIL) (((-388 |#2|)) 39)) (-1823 (((-719) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3289 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-1542 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-1781 ((|#3|) 50)) (-3406 (($) NIL (|has| (-388 |#2|) (-330)))) (-2328 (((-1181 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 |#2|)) $) 58) (((-637 (-388 |#2|)) (-1181 $)) 103)) (-3260 (((-1181 (-388 |#2|)) $) NIL) (($ (-1181 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-388 |#2|) (-330)))) (-4123 (((-1181 $) (-1181 $)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| (-388 |#2|) (-975 (-388 (-530)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3251 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-1814 ((|#3| $) NIL)) (-3300 (((-719)) NIL)) (-2190 (((-110)) 37)) (-4054 (((-110) |#1|) 49) (((-110) |#2|) 132)) (-3220 (((-1181 $)) 93)) (-3944 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1831 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1684 (((-110)) NIL)) (-3080 (($) 16 T CONST)) (-3093 (($) 26 T CONST)) (-3340 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) NIL (|has| (-388 |#2|) (-344)))))
-(((-39 |#1| |#2| |#3| |#4|) (-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -3995 ((-1186) (-719))))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) |#3|) (T -39))
-((-3995 (*1 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *2 (-1186)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1157 (-388 *5))) (-14 *7 *6))))
-(-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -3995 ((-1186) (-719)))))
-((-3639 ((|#2| |#2|) 48)) (-2568 ((|#2| |#2|) 120 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-3903 ((|#2| |#2|) 87 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-2690 ((|#2| |#2|) 88 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-2517 ((|#2| (-112) |#2| (-719)) 116 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-795)) (|has| |#1| (-975 (-530)))))) (-4133 (((-1095 |#2|) |#2|) 45)) (-2055 ((|#2| |#2| (-597 (-570 |#2|))) 18) ((|#2| |#2| (-597 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
-(((-40 |#1| |#2|) (-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -2055 (|#2| |#2| |#2|)) (-15 -2055 (|#2| |#2| (-597 |#2|))) (-15 -2055 (|#2| |#2| (-597 (-570 |#2|)))) (-15 -4133 ((-1095 |#2|) |#2|)) (IF (|has| |#1| (-795)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-975 (-530))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -2690 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -2517 (|#2| (-112) |#2| (-719)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-522) (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 |#1| (-570 $)) $)) (-15 -1928 ((-1051 |#1| (-570 $)) $)) (-15 -2366 ($ (-1051 |#1| (-570 $))))))) (T -40))
-((-2517 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-112)) (-5 *4 (-719)) (-4 *5 (-432)) (-4 *5 (-795)) (-4 *5 (-975 (-530))) (-4 *5 (-522)) (-5 *1 (-40 *5 *2)) (-4 *2 (-411 *5)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *5 (-570 $)) $)) (-15 -1928 ((-1051 *5 (-570 $)) $)) (-15 -2366 ($ (-1051 *5 (-570 $))))))))) (-2568 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-2690 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530))) (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-4133 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-1095 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $)) (-15 -1928 ((-1051 *4 (-570 $)) $)) (-15 -2366 ($ (-1051 *4 (-570 $))))))))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-570 *2))) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $)) (-15 -1928 ((-1051 *4 (-570 $)) $)) (-15 -2366 ($ (-1051 *4 (-570 $))))))) (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))) (-2055 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $)) (-15 -1928 ((-1051 *4 (-570 $)) $)) (-15 -2366 ($ (-1051 *4 (-570 $))))))) (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))) (-2055 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-2055 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))) (-3639 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $)) (-15 -1928 ((-1051 *3 (-570 $)) $)) (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
-(-10 -7 (-15 -3639 (|#2| |#2|)) (-15 -2055 (|#2| |#2|)) (-15 -2055 (|#2| |#2| |#2|)) (-15 -2055 (|#2| |#2| (-597 |#2|))) (-15 -2055 (|#2| |#2| (-597 (-570 |#2|)))) (-15 -4133 ((-1095 |#2|) |#2|)) (IF (|has| |#1| (-795)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-975 (-530))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -2690 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -2568 (|#2| |#2|)) (-15 -2517 (|#2| (-112) |#2| (-719)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-2611 (((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47))) 23) (((-399 |#3|) |#3| (-597 (-47))) 19)))
-(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-399 |#3|) |#3| (-597 (-47)))) (-15 -2611 ((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47))))) (-795) (-741) (-890 (-47) |#2| |#1|)) (T -41))
-((-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *7 (-890 (-47) *6 *5)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-47))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-399 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-890 (-47) *6 *5)))))
-(-10 -7 (-15 -2611 ((-399 |#3|) |#3| (-597 (-47)))) (-15 -2611 ((-399 (-1095 |#3|)) (-1095 |#3|) (-597 (-47)))))
-((-1327 (((-719) |#2|) 65)) (-4125 (((-719) |#2|) 68)) (-2111 (((-597 |#2|)) 33)) (-1556 (((-719) |#2|) 67)) (-1792 (((-719) |#2|) 64)) (-2619 (((-719) |#2|) 66)) (-1392 (((-597 (-637 |#1|))) 60)) (-3378 (((-597 |#2|)) 55)) (-2157 (((-597 |#2|) |#2|) 43)) (-1499 (((-597 |#2|)) 57)) (-3113 (((-597 |#2|)) 56)) (-3050 (((-597 (-637 |#1|))) 48)) (-1414 (((-597 |#2|)) 54)) (-2062 (((-597 |#2|) |#2|) 42)) (-3385 (((-597 |#2|)) 50)) (-3337 (((-597 (-637 |#1|))) 61)) (-3235 (((-597 |#2|)) 59)) (-3220 (((-1181 |#2|) (-1181 |#2|)) 84 (|has| |#1| (-289)))))
-(((-42 |#1| |#2|) (-10 -7 (-15 -1556 ((-719) |#2|)) (-15 -4125 ((-719) |#2|)) (-15 -1792 ((-719) |#2|)) (-15 -1327 ((-719) |#2|)) (-15 -2619 ((-719) |#2|)) (-15 -3385 ((-597 |#2|))) (-15 -2062 ((-597 |#2|) |#2|)) (-15 -2157 ((-597 |#2|) |#2|)) (-15 -1414 ((-597 |#2|))) (-15 -3378 ((-597 |#2|))) (-15 -3113 ((-597 |#2|))) (-15 -1499 ((-597 |#2|))) (-15 -3235 ((-597 |#2|))) (-15 -3050 ((-597 (-637 |#1|)))) (-15 -1392 ((-597 (-637 |#1|)))) (-15 -3337 ((-597 (-637 |#1|)))) (-15 -2111 ((-597 |#2|))) (IF (|has| |#1| (-289)) (-15 -3220 ((-1181 |#2|) (-1181 |#2|))) |%noBranch|)) (-522) (-398 |#1|)) (T -42))
-((-3220 (*1 *2 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-42 *3 *4)))) (-2111 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3337 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1392 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3050 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3235 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1499 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3113 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3378 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1414 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2157 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2062 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-3385 (*1 *2) (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2619 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-1327 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-1792 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-4125 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-1556 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))))
-(-10 -7 (-15 -1556 ((-719) |#2|)) (-15 -4125 ((-719) |#2|)) (-15 -1792 ((-719) |#2|)) (-15 -1327 ((-719) |#2|)) (-15 -2619 ((-719) |#2|)) (-15 -3385 ((-597 |#2|))) (-15 -2062 ((-597 |#2|) |#2|)) (-15 -2157 ((-597 |#2|) |#2|)) (-15 -1414 ((-597 |#2|))) (-15 -3378 ((-597 |#2|))) (-15 -3113 ((-597 |#2|))) (-15 -1499 ((-597 |#2|))) (-15 -3235 ((-597 |#2|))) (-15 -3050 ((-597 (-637 |#1|)))) (-15 -1392 ((-597 (-637 |#1|)))) (-15 -3337 ((-597 (-637 |#1|)))) (-15 -2111 ((-597 |#2|))) (IF (|has| |#1| (-289)) (-15 -3220 ((-1181 |#2|) (-1181 |#2|))) |%noBranch|))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 |#1|)) (-1181 $)) NIL) (((-1181 (-637 |#1|))) 24)) (-3990 (((-1181 $)) 51)) (-2350 (($) NIL T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (|has| |#1| (-522)))) (-1383 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-2603 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-2228 ((|#1| $) NIL)) (-4209 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-2635 (((-3 $ "failed") $) NIL (|has| |#1| (-522)))) (-3991 (((-1095 (-893 |#1|))) NIL (|has| |#1| (-344)))) (-2862 (($ $ (-862)) NIL)) (-4005 ((|#1| $) NIL)) (-3581 (((-1095 |#1|) $) NIL (|has| |#1| (-522)))) (-3988 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-2670 (((-1095 |#1|) $) NIL)) (-2662 (((-110)) 87)) (-1574 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) NIL)) (-2707 (((-3 $ "failed") $) 14 (|has| |#1| (-522)))) (-2426 (((-862)) 52)) (-3485 (((-110)) NIL)) (-1667 (($ $ (-862)) NIL)) (-3943 (((-110)) NIL)) (-3470 (((-110)) NIL)) (-2305 (((-110)) 89)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (|has| |#1| (-522)))) (-3832 (((-3 $ "failed")) NIL (|has| |#1| (-522)))) (-1257 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-2465 ((|#1| $) NIL)) (-3846 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-1232 (((-3 $ "failed") $) NIL (|has| |#1| (-522)))) (-3342 (((-1095 (-893 |#1|))) NIL (|has| |#1| (-344)))) (-4138 (($ $ (-862)) NIL)) (-2602 ((|#1| $) NIL)) (-2209 (((-1095 |#1|) $) NIL (|has| |#1| (-522)))) (-2837 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-2461 (((-1095 |#1|) $) NIL)) (-1921 (((-110)) 86)) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) 93)) (-2561 (((-110)) 92)) (-3766 (((-110)) 94)) (-2624 (((-1046) $) NIL)) (-3719 (((-110)) 88)) (-1902 ((|#1| $ (-530)) 54)) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) 28) (((-637 |#1|) (-1181 $)) NIL)) (-3260 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL)) (-3028 (((-597 (-893 |#1|)) (-1181 $)) NIL) (((-597 (-893 |#1|))) NIL)) (-2607 (($ $ $) NIL)) (-3675 (((-110)) 84)) (-2366 (((-804) $) 69) (($ (-1181 |#1|)) 22)) (-3220 (((-1181 $)) 45)) (-3758 (((-597 (-1181 |#1|))) NIL (|has| |#1| (-522)))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) 82)) (-3003 (($ (-637 |#1|) $) 18)) (-3980 (($ $ $) NIL)) (-2164 (((-110)) 85)) (-3566 (((-110)) 83)) (-1957 (((-110)) 81)) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1066 |#2| |#1|) $) 19)))
-(((-43 |#1| |#2| |#3| |#4|) (-13 (-398 |#1|) (-599 (-1066 |#2| |#1|)) (-10 -8 (-15 -2366 ($ (-1181 |#1|))))) (-344) (-862) (-597 (-1099)) (-1181 (-637 |#1|))) (T -43))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-14 *6 (-1181 (-637 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))))))
-(-13 (-398 |#1|) (-599 (-1066 |#2| |#1|)) (-10 -8 (-15 -2366 ($ (-1181 |#1|)))))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3417 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3254 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2133 (($ $) NIL)) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270))) (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (((-110) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-1627 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795))))) (-1307 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-1615 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) 27 (|has| $ (-6 -4270)))) (-3312 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-1647 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 29 (|has| $ (-6 -4270)))) (-2552 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-1148 (-530)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "last" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270))) (($ $ "rest" $) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "first" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "value" (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3245 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2767 (((-3 |#2| "failed") |#1| $) 37)) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3057 (($ $ (-719)) NIL) (($ $) 24)) (-2287 (($ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-2027 (((-530) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) (((-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 18 (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 18 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3538 (($ (-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795))) (((-530) $) 32 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2090 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3683 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795))) (((-530) $) 34 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-2939 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) 42 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2407 (($ $ (-719)) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3282 (((-597 |#1|) $) 20)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-4028 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 |#1|) $) NIL) (((-597 (-530)) $) NIL)) (-1927 (((-110) |#1| $) NIL) (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795))) (($ $ (-719)) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 23)) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-4083 (((-110) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2261 (((-597 |#2|) $) NIL) (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 17)) (-3250 (((-110) $) 16)) (-3958 (($) 13)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "first") NIL) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $ "value") NIL)) (-2539 (((-530) $ $) NIL)) (-1560 (($) 12) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3715 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-4246 (((-110) $) NIL)) (-3697 (($ $) NIL)) (-3301 (($ $) NIL (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-1328 (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL) (($ $ $) NIL)) (-3483 (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL) (($ (-597 $)) NIL) (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 25) (($ $ $) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2414 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") |#1| $) 44)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2297 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-795)))) (-2267 (((-719) $) 22 (|has| $ (-6 -4269)))))
-(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1027) (-1027)) (T -44))
+((-2265 (*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162)))))
+(-13 (-986) (-668 |t#1|) (-10 -8 (-15 -2265 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) . T) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2040 (((-399 |#1|) |#1|) 41)) (-2552 (((-399 |#1|) |#1|) 30) (((-399 |#1|) |#1| (-598 (-47))) 33)) (-4039 (((-110) |#1|) 56)))
+(((-38 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1| (-598 (-47)))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2040 ((-399 |#1|) |#1|)) (-15 -4039 ((-110) |#1|))) (-1160 (-47))) (T -38))
+((-4039 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))) (-2040 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-47))) (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))))
+(-10 -7 (-15 -2552 ((-399 |#1|) |#1| (-598 (-47)))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2040 ((-399 |#1|) |#1|)) (-15 -4039 ((-110) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1461 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3258 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2921 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1849 (((-639 (-388 |#2|)) (-1184 $)) NIL) (((-639 (-388 |#2|))) NIL)) (-1354 (((-388 |#2|) $) NIL)) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-388 |#2|) (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2956 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2760 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3006 (((-721)) NIL (|has| (-388 |#2|) (-349)))) (-1860 (((-110)) NIL)) (-1730 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| (-388 |#2|) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| (-388 |#2|) (-977 (-531)))) (((-388 (-531)) $) NIL (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-388 |#2|) $) NIL)) (-2767 (($ (-1184 (-388 |#2|)) (-1184 $)) NIL) (($ (-1184 (-388 |#2|))) 57) (($ (-1184 |#2|) |#2|) 125)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3650 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1982 (((-639 (-388 |#2|)) $ (-1184 $)) NIL) (((-639 (-388 |#2|)) $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-388 |#2|))) (|:| |vec| (-1184 (-388 |#2|)))) (-639 $) (-1184 $)) NIL) (((-639 (-388 |#2|)) (-639 $)) NIL)) (-2492 (((-1184 $) (-1184 $)) NIL)) (-1760 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-2709 (((-598 (-598 |#1|))) NIL (|has| |#1| (-349)))) (-3428 (((-110) |#1| |#1|) NIL)) (-2277 (((-864)) NIL)) (-1381 (($) NIL (|has| (-388 |#2|) (-349)))) (-2903 (((-110)) NIL)) (-2809 (((-110) |#1|) NIL) (((-110) |#2|) NIL)) (-3630 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| (-388 |#2|) (-344)))) (-2226 (($ $) NIL)) (-1806 (($) NIL (|has| (-388 |#2|) (-330)))) (-1971 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3493 (($ $ (-721)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-2534 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-3617 (((-864) $) NIL (|has| (-388 |#2|) (-330))) (((-783 (-864)) $) NIL (|has| (-388 |#2|) (-330)))) (-3481 (((-110) $) NIL)) (-2262 (((-721)) NIL)) (-1272 (((-1184 $) (-1184 $)) 102)) (-1899 (((-388 |#2|) $) NIL)) (-4083 (((-598 (-895 |#1|)) (-1102)) NIL (|has| |#1| (-344)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1233 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-2211 (((-864) $) NIL (|has| (-388 |#2|) (-349)))) (-1749 ((|#3| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1521 (((-1085) $) NIL)) (-3237 (((-1189) (-721)) 79)) (-1789 (((-639 (-388 |#2|))) 51)) (-1953 (((-639 (-388 |#2|))) 44)) (-2422 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1729 (($ (-1184 |#2|) |#2|) 126)) (-3519 (((-639 (-388 |#2|))) 45)) (-3970 (((-639 (-388 |#2|))) 43)) (-3594 (((-2 (|:| |num| (-639 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 124)) (-3883 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) 64)) (-2505 (((-1184 $)) 42)) (-2670 (((-1184 $)) 41)) (-3824 (((-110) $) NIL)) (-3570 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3788 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1889 (($ (-864)) NIL (|has| (-388 |#2|) (-349)))) (-3667 (((-3 |#2| "failed")) NIL)) (-2529 (((-1049) $) NIL)) (-2509 (((-721)) NIL)) (-1861 (($) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| (-388 |#2|) (-344)))) (-2109 (($ (-598 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-388 |#2|) (-330)))) (-2552 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-388 |#2|) (-344)))) (-4100 (((-721) $) NIL (|has| (-388 |#2|) (-344)))) (-1785 ((|#1| $ |#1| |#1|) NIL)) (-3751 (((-3 |#2| "failed")) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3176 (((-388 |#2|) (-1184 $)) NIL) (((-388 |#2|)) 39)) (-2350 (((-721) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-721) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3352 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 120) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3381 (((-639 (-388 |#2|)) (-1184 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-3608 ((|#3|) 50)) (-2498 (($) NIL (|has| (-388 |#2|) (-330)))) (-3348 (((-1184 (-388 |#2|)) $ (-1184 $)) NIL) (((-639 (-388 |#2|)) (-1184 $) (-1184 $)) NIL) (((-1184 (-388 |#2|)) $) 58) (((-639 (-388 |#2|)) (-1184 $)) 103)) (-3318 (((-1184 (-388 |#2|)) $) NIL) (($ (-1184 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-388 |#2|) (-330)))) (-3568 (((-1184 $) (-1184 $)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| (-388 |#2|) (-977 (-388 (-531)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2750 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-3369 ((|#3| $) NIL)) (-2284 (((-721)) NIL)) (-1966 (((-110)) 37)) (-2935 (((-110) |#1|) 49) (((-110) |#2|) 132)) (-3523 (((-1184 $)) 93)) (-2587 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1689 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1855 (((-110)) NIL)) (-3035 (($) 16 T CONST)) (-3050 (($) 26 T CONST)) (-4020 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-531)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-531))) NIL (|has| (-388 |#2|) (-344)))))
+(((-39 |#1| |#2| |#3| |#4|) (-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -3237 ((-1189) (-721))))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) |#3|) (T -39))
+((-3237 (*1 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-344)) (-4 *5 (-1160 *4)) (-5 *2 (-1189)) (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1160 (-388 *5))) (-14 *7 *6))))
+(-13 (-323 |#1| |#2| |#3|) (-10 -7 (-15 -3237 ((-1189) (-721)))))
+((-3778 ((|#2| |#2|) 48)) (-2155 ((|#2| |#2|) 120 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-797)) (|has| |#1| (-977 (-531)))))) (-2395 ((|#2| |#2|) 87 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-797)) (|has| |#1| (-977 (-531)))))) (-3393 ((|#2| |#2|) 88 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-797)) (|has| |#1| (-977 (-531)))))) (-3472 ((|#2| (-112) |#2| (-721)) 116 (-12 (|has| |#2| (-411 |#1|)) (|has| |#1| (-432)) (|has| |#1| (-797)) (|has| |#1| (-977 (-531)))))) (-2614 (((-1098 |#2|) |#2|) 45)) (-3179 ((|#2| |#2| (-598 (-571 |#2|))) 18) ((|#2| |#2| (-598 |#2|)) 20) ((|#2| |#2| |#2|) 21) ((|#2| |#2|) 16)))
+(((-40 |#1| |#2|) (-10 -7 (-15 -3778 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -3179 (|#2| |#2| |#2|)) (-15 -3179 (|#2| |#2| (-598 |#2|))) (-15 -3179 (|#2| |#2| (-598 (-571 |#2|)))) (-15 -2614 ((-1098 |#2|) |#2|)) (IF (|has| |#1| (-797)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-977 (-531))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -3393 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2155 (|#2| |#2|)) (-15 -3472 (|#2| (-112) |#2| (-721)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-523) (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 |#1| (-571 $)) $)) (-15 -1853 ((-1054 |#1| (-571 $)) $)) (-15 -2265 ($ (-1054 |#1| (-571 $))))))) (T -40))
+((-3472 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-112)) (-5 *4 (-721)) (-4 *5 (-432)) (-4 *5 (-797)) (-4 *5 (-977 (-531))) (-4 *5 (-523)) (-5 *1 (-40 *5 *2)) (-4 *2 (-411 *5)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *5 (-571 $)) $)) (-15 -1853 ((-1054 *5 (-571 $)) $)) (-15 -2265 ($ (-1054 *5 (-571 $))))))))) (-2155 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-2395 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-3393 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531))) (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-2614 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-1098 *3)) (-5 *1 (-40 *4 *3)) (-4 *3 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) (-15 -1853 ((-1054 *4 (-571 $)) $)) (-15 -2265 ($ (-1054 *4 (-571 $))))))))) (-3179 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-571 *2))) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) (-15 -1853 ((-1054 *4 (-571 $)) $)) (-15 -2265 ($ (-1054 *4 (-571 $))))))) (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))) (-3179 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $)) (-15 -1853 ((-1054 *4 (-571 $)) $)) (-15 -2265 ($ (-1054 *4 (-571 $))))))) (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))) (-3179 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))) (-3778 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-13 (-344) (-284) (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $)) (-15 -1853 ((-1054 *3 (-571 $)) $)) (-15 -2265 ($ (-1054 *3 (-571 $))))))))))
+(-10 -7 (-15 -3778 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -3179 (|#2| |#2| |#2|)) (-15 -3179 (|#2| |#2| (-598 |#2|))) (-15 -3179 (|#2| |#2| (-598 (-571 |#2|)))) (-15 -2614 ((-1098 |#2|) |#2|)) (IF (|has| |#1| (-797)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-977 (-531))) (IF (|has| |#2| (-411 |#1|)) (PROGN (-15 -3393 (|#2| |#2|)) (-15 -2395 (|#2| |#2|)) (-15 -2155 (|#2| |#2|)) (-15 -3472 (|#2| (-112) |#2| (-721)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-2552 (((-399 (-1098 |#3|)) (-1098 |#3|) (-598 (-47))) 23) (((-399 |#3|) |#3| (-598 (-47))) 19)))
+(((-41 |#1| |#2| |#3|) (-10 -7 (-15 -2552 ((-399 |#3|) |#3| (-598 (-47)))) (-15 -2552 ((-399 (-1098 |#3|)) (-1098 |#3|) (-598 (-47))))) (-797) (-743) (-892 (-47) |#2| |#1|)) (T -41))
+((-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-47))) (-4 *5 (-797)) (-4 *6 (-743)) (-4 *7 (-892 (-47) *6 *5)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-47))) (-4 *5 (-797)) (-4 *6 (-743)) (-5 *2 (-399 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-892 (-47) *6 *5)))))
+(-10 -7 (-15 -2552 ((-399 |#3|) |#3| (-598 (-47)))) (-15 -2552 ((-399 (-1098 |#3|)) (-1098 |#3|) (-598 (-47)))))
+((-1261 (((-721) |#2|) 65)) (-2653 (((-721) |#2|) 68)) (-1217 (((-598 |#2|)) 33)) (-3063 (((-721) |#2|) 67)) (-2521 (((-721) |#2|) 64)) (-1947 (((-721) |#2|) 66)) (-1377 (((-598 (-639 |#1|))) 60)) (-3551 (((-598 |#2|)) 55)) (-1873 (((-598 |#2|) |#2|) 43)) (-1711 (((-598 |#2|)) 57)) (-3277 (((-598 |#2|)) 56)) (-2348 (((-598 (-639 |#1|))) 48)) (-2700 (((-598 |#2|)) 54)) (-2090 (((-598 |#2|) |#2|) 42)) (-3121 (((-598 |#2|)) 50)) (-2171 (((-598 (-639 |#1|))) 61)) (-2431 (((-598 |#2|)) 59)) (-3523 (((-1184 |#2|) (-1184 |#2|)) 84 (|has| |#1| (-289)))))
+(((-42 |#1| |#2|) (-10 -7 (-15 -3063 ((-721) |#2|)) (-15 -2653 ((-721) |#2|)) (-15 -2521 ((-721) |#2|)) (-15 -1261 ((-721) |#2|)) (-15 -1947 ((-721) |#2|)) (-15 -3121 ((-598 |#2|))) (-15 -2090 ((-598 |#2|) |#2|)) (-15 -1873 ((-598 |#2|) |#2|)) (-15 -2700 ((-598 |#2|))) (-15 -3551 ((-598 |#2|))) (-15 -3277 ((-598 |#2|))) (-15 -1711 ((-598 |#2|))) (-15 -2431 ((-598 |#2|))) (-15 -2348 ((-598 (-639 |#1|)))) (-15 -1377 ((-598 (-639 |#1|)))) (-15 -2171 ((-598 (-639 |#1|)))) (-15 -1217 ((-598 |#2|))) (IF (|has| |#1| (-289)) (-15 -3523 ((-1184 |#2|) (-1184 |#2|))) |%noBranch|)) (-523) (-398 |#1|)) (T -42))
+((-3523 (*1 *2 *2) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-42 *3 *4)))) (-1217 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2171 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1377 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2348 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2431 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1711 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3277 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-3551 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-2700 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1873 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2090 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-3121 (*1 *2) (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4)) (-4 *4 (-398 *3)))) (-1947 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-1261 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2521 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))) (-3063 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3)) (-4 *3 (-398 *4)))))
+(-10 -7 (-15 -3063 ((-721) |#2|)) (-15 -2653 ((-721) |#2|)) (-15 -2521 ((-721) |#2|)) (-15 -1261 ((-721) |#2|)) (-15 -1947 ((-721) |#2|)) (-15 -3121 ((-598 |#2|))) (-15 -2090 ((-598 |#2|) |#2|)) (-15 -1873 ((-598 |#2|) |#2|)) (-15 -2700 ((-598 |#2|))) (-15 -3551 ((-598 |#2|))) (-15 -3277 ((-598 |#2|))) (-15 -1711 ((-598 |#2|))) (-15 -2431 ((-598 |#2|))) (-15 -2348 ((-598 (-639 |#1|)))) (-15 -1377 ((-598 (-639 |#1|)))) (-15 -2171 ((-598 (-639 |#1|)))) (-15 -1217 ((-598 |#2|))) (IF (|has| |#1| (-289)) (-15 -3523 ((-1184 |#2|) (-1184 |#2|))) |%noBranch|))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 |#1|)) (-1184 $)) NIL) (((-1184 (-639 |#1|))) 24)) (-2022 (((-1184 $)) 51)) (-4082 (($) NIL T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (|has| |#1| (-523)))) (-2783 (((-3 $ "failed")) NIL (|has| |#1| (-523)))) (-3939 (((-639 |#1|) (-1184 $)) NIL) (((-639 |#1|)) NIL)) (-1668 ((|#1| $) NIL)) (-2264 (((-639 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) $) NIL)) (-1387 (((-3 $ "failed") $) NIL (|has| |#1| (-523)))) (-3668 (((-1098 (-895 |#1|))) NIL (|has| |#1| (-344)))) (-1666 (($ $ (-864)) NIL)) (-2065 ((|#1| $) NIL)) (-3415 (((-1098 |#1|) $) NIL (|has| |#1| (-523)))) (-3960 ((|#1| (-1184 $)) NIL) ((|#1|) NIL)) (-3586 (((-1098 |#1|) $) NIL)) (-1437 (((-110)) 87)) (-2767 (($ (-1184 |#1|) (-1184 $)) NIL) (($ (-1184 |#1|)) NIL)) (-3622 (((-3 $ "failed") $) 14 (|has| |#1| (-523)))) (-2277 (((-864)) 52)) (-2629 (((-110)) NIL)) (-2083 (($ $ (-864)) NIL)) (-2790 (((-110)) NIL)) (-3769 (((-110)) NIL)) (-2298 (((-110)) 89)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (|has| |#1| (-523)))) (-2816 (((-3 $ "failed")) NIL (|has| |#1| (-523)))) (-1950 (((-639 |#1|) (-1184 $)) NIL) (((-639 |#1|)) NIL)) (-1807 ((|#1| $) NIL)) (-3405 (((-639 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) $) NIL)) (-2234 (((-3 $ "failed") $) NIL (|has| |#1| (-523)))) (-2280 (((-1098 (-895 |#1|))) NIL (|has| |#1| (-344)))) (-2585 (($ $ (-864)) NIL)) (-1288 ((|#1| $) NIL)) (-1480 (((-1098 |#1|) $) NIL (|has| |#1| (-523)))) (-3579 ((|#1| (-1184 $)) NIL) ((|#1|) NIL)) (-1875 (((-1098 |#1|) $) NIL)) (-2239 (((-110)) 86)) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) 93)) (-1561 (((-110)) 92)) (-3036 (((-110)) 94)) (-2529 (((-1049) $) NIL)) (-1513 (((-110)) 88)) (-1785 ((|#1| $ (-531)) 54)) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) NIL) (((-1184 |#1|) $) 28) (((-639 |#1|) (-1184 $)) NIL)) (-3318 (((-1184 |#1|) $) NIL) (($ (-1184 |#1|)) NIL)) (-2570 (((-598 (-895 |#1|)) (-1184 $)) NIL) (((-598 (-895 |#1|))) NIL)) (-3214 (($ $ $) NIL)) (-1817 (((-110)) 84)) (-2265 (((-806) $) 69) (($ (-1184 |#1|)) 22)) (-3523 (((-1184 $)) 45)) (-2273 (((-598 (-1184 |#1|))) NIL (|has| |#1| (-523)))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) 82)) (-2979 (($ (-639 |#1|) $) 18)) (-1605 (($ $ $) NIL)) (-2578 (((-110)) 85)) (-1964 (((-110)) 83)) (-2819 (((-110)) 81)) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 76) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-1069 |#2| |#1|) $) 19)))
+(((-43 |#1| |#2| |#3| |#4|) (-13 (-398 |#1|) (-601 (-1069 |#2| |#1|)) (-10 -8 (-15 -2265 ($ (-1184 |#1|))))) (-344) (-864) (-598 (-1102)) (-1184 (-639 |#1|))) (T -43))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-344)) (-14 *6 (-1184 (-639 *3))) (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))))))
+(-13 (-398 |#1|) (-601 (-1069 |#2| |#1|)) (-10 -8 (-15 -2265 ($ (-1184 |#1|)))))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3482 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3308 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2072 (($ $) NIL)) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274))) (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (((-110) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2375 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797))))) (-1332 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2039 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) 27 (|has| $ (-6 -4274)))) (-2136 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-3112 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 29 (|has| $ (-6 -4274)))) (-2454 ((|#2| $ |#1| |#2|) 46) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-1151 (-531)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "last" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274))) (($ $ "rest" $) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "first" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "value" (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-3297 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2714 (((-3 |#2| "failed") |#1| $) 37)) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3062 (($ $ (-721)) NIL) (($ $) 24)) (-2705 (($ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 48) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-1976 (((-531) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) (((-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 18 (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 18 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3010 (($ (-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797))) (((-531) $) 32 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-3611 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-3508 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) NIL) (($ $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797))) (((-531) $) 34 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ $) NIL) (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-2907 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) 42 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2309 (($ $ (-721)) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3345 (((-598 |#1|) $) 20)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-4059 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 |#1|) $) NIL) (((-598 (-531)) $) NIL)) (-3059 (((-110) |#1| $) NIL) (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797))) (($ $ (-721)) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 23)) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2765 (((-110) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3163 (((-598 |#2|) $) NIL) (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 17)) (-1589 (((-110) $) 16)) (-3781 (($) 13)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ (-531)) NIL) (($ $ (-1151 (-531))) NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "last") NIL) (($ $ "rest") NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "first") NIL) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $ "value") NIL)) (-2357 (((-531) $ $) NIL)) (-2543 (($) 12) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-1551 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2930 (((-110) $) NIL)) (-1958 (($ $) NIL)) (-2980 (($ $) NIL (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-1818 (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL) (($ $ $) NIL)) (-3536 (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL) (($ (-598 $)) NIL) (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 25) (($ $ $) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2317 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") |#1| $) 44)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2195 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-797)))) (-2167 (((-721) $) 22 (|has| $ (-6 -4273)))))
+(((-44 |#1| |#2|) (-35 |#1| |#2|) (-1030) (-1030)) (T -44))
NIL
(-35 |#1| |#2|)
-((-3668 (((-110) $) 12)) (-3217 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-388 (-530)) $) 25) (($ $ (-388 (-530))) NIL)))
-(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -3668 ((-110) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-46 |#2| |#3|) (-984) (-740)) (T -45))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -3668 ((-110) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| |#2|) 59)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1429 ((|#2| $) 62)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45 (|has| |#1| (-162)))) (-4085 ((|#1| $ |#2|) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-46 |#1| |#2|) (-133) (-984) (-740)) (T -46))
-((-2533 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110)))) (-2725 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-4085 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-344)))))
-(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (-15 -2533 (|t#1| $)) (-15 -2521 ($ $)) (-15 -1429 (|t#2| $)) (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (-15 -3668 ((-110) $)) (-15 -2725 ($ |t#1| |t#2|)) (-15 -2562 ($ $)) (-15 -4085 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-344)) (-15 -2364 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-6 (-162)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-522)) (-6 (-522)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (-6 (-37 (-388 (-530)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-3460 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-4202 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-1813 (((-110) $) 11)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2473 (((-597 (-570 $)) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2933 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-1326 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-3139 (((-3 (-570 $) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2585 (((-570 $) $) NIL) (((-530) $) NIL) (((-388 (-530)) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-388 (-530)))) (|:| |vec| (-1181 (-388 (-530))))) (-637 $) (-1181 $)) NIL) (((-637 (-388 (-530))) (-637 $)) NIL)) (-2134 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3324 (($ $) NIL) (($ (-597 $)) NIL)) (-2381 (((-597 (-112)) $) NIL)) (-4124 (((-112) (-112)) NIL)) (-2731 (((-110) $) 14)) (-3457 (((-110) $) NIL (|has| $ (-975 (-530))))) (-1918 (((-1051 (-530) (-570 $)) $) NIL)) (-3741 (($ $ (-530)) NIL)) (-2376 (((-1095 $) (-1095 $) (-570 $)) NIL) (((-1095 $) (-1095 $) (-597 (-570 $))) NIL) (($ $ (-570 $)) NIL) (($ $ (-597 (-570 $))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3210 (((-1095 $) (-570 $)) NIL (|has| $ (-984)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 $ $) (-570 $)) NIL)) (-3707 (((-3 (-570 $) "failed") $) NIL)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2560 (((-597 (-570 $)) $) NIL)) (-1990 (($ (-112) $) NIL) (($ (-112) (-597 $)) NIL)) (-1826 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-2483 (($ $) NIL)) (-4156 (((-719) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2861 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-2356 (((-719) $) NIL)) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3313 (($ $) NIL) (($ $ $) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1928 (((-1051 (-530) (-570 $)) $) NIL)) (-1781 (($ $) NIL (|has| $ (-984)))) (-3260 (((-360) $) NIL) (((-208) $) NIL) (((-159 (-360)) $) NIL)) (-2366 (((-804) $) NIL) (($ (-570 $)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-1051 (-530) (-570 $))) NIL)) (-3300 (((-719)) NIL)) (-1678 (($ $) NIL) (($ (-597 $)) NIL)) (-4195 (((-110) (-112)) NIL)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 7 T CONST)) (-3093 (($) 12 T CONST)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 16)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $ $) 15) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-388 (-530))) NIL) (($ $ (-530)) NIL) (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
-(((-47) (-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2366 ($ (-1051 (-530) (-570 $)))) (-15 -1918 ((-1051 (-530) (-570 $)) $)) (-15 -1928 ((-1051 (-530) (-570 $)) $)) (-15 -2134 ($ $)) (-15 -2376 ((-1095 $) (-1095 $) (-570 $))) (-15 -2376 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -2376 ($ $ (-570 $))) (-15 -2376 ($ $ (-597 (-570 $))))))) (T -47))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47)))) (-2134 (*1 *1 *1) (-5 *1 (-47))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-570 (-47))) (-5 *1 (-47)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-597 (-570 (-47)))) (-5 *1 (-47)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-570 (-47))) (-5 *1 (-47)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-47)))) (-5 *1 (-47)))))
-(-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2366 ($ (-1051 (-530) (-570 $)))) (-15 -1918 ((-1051 (-530) (-570 $)) $)) (-15 -1928 ((-1051 (-530) (-570 $)) $)) (-15 -2134 ($ $)) (-15 -2376 ((-1095 $) (-1095 $) (-570 $))) (-15 -2376 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -2376 ($ $ (-570 $))) (-15 -2376 ($ $ (-597 (-570 $))))))
-((-2352 (((-110) $ $) NIL)) (-3411 (((-597 (-1099)) $) 17)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 7)) (-3919 (((-1104) $) 18)) (-2248 (((-110) $ $) NIL)))
-(((-48) (-13 (-1027) (-10 -8 (-15 -3411 ((-597 (-1099)) $)) (-15 -3919 ((-1104) $))))) (T -48))
-((-3411 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-48)))) (-3919 (*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-48)))))
-(-13 (-1027) (-10 -8 (-15 -3411 ((-597 (-1099)) $)) (-15 -3919 ((-1104) $))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 61)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3038 (((-110) $) 20)) (-3139 (((-3 |#1| "failed") $) 23)) (-2585 ((|#1| $) 24)) (-2562 (($ $) 28)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2533 ((|#1| $) 21)) (-2773 (($ $) 50)) (-1424 (((-1082) $) NIL)) (-3141 (((-110) $) 30)) (-2624 (((-1046) $) NIL)) (-1974 (($ (-719)) 48)) (-2853 (($ (-597 (-530))) 49)) (-1429 (((-719) $) 31)) (-2366 (((-804) $) 64) (($ (-530)) 45) (($ |#1|) 43)) (-4085 ((|#1| $ $) 19)) (-3300 (((-719)) 47)) (-3080 (($) 32 T CONST)) (-3093 (($) 14 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 40)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
-(((-49 |#1| |#2|) (-13 (-575 |#1|) (-975 |#1|) (-10 -8 (-15 -2533 (|#1| $)) (-15 -2773 ($ $)) (-15 -2562 ($ $)) (-15 -4085 (|#1| $ $)) (-15 -1974 ($ (-719))) (-15 -2853 ($ (-597 (-530)))) (-15 -3141 ((-110) $)) (-15 -3038 ((-110) $)) (-15 -1429 ((-719) $)) (-15 -3217 ($ (-1 |#1| |#1|) $)))) (-984) (-597 (-1099))) (T -49))
-((-2533 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099))))) (-2773 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))))) (-4085 (*1 *2 *1 *1) (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099))))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-2853 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-49 *3 *4)) (-14 *4 (-597 (-1099))))))
-(-13 (-575 |#1|) (-975 |#1|) (-10 -8 (-15 -2533 (|#1| $)) (-15 -2773 ($ $)) (-15 -2562 ($ $)) (-15 -4085 (|#1| $ $)) (-15 -1974 ($ (-719))) (-15 -2853 ($ (-597 (-530)))) (-15 -3141 ((-110) $)) (-15 -3038 ((-110) $)) (-15 -1429 ((-719) $)) (-15 -3217 ($ (-1 |#1| |#1|) $))))
-((-3038 (((-110) (-51)) 13)) (-3139 (((-3 |#1| "failed") (-51)) 21)) (-2585 ((|#1| (-51)) 22)) (-2366 (((-51) |#1|) 18)))
-(((-50 |#1|) (-10 -7 (-15 -2366 ((-51) |#1|)) (-15 -3139 ((-3 |#1| "failed") (-51))) (-15 -3038 ((-110) (-51))) (-15 -2585 (|#1| (-51)))) (-1135)) (T -50))
-((-2585 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135)))) (-3038 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1135)))) (-3139 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1135)))))
-(-10 -7 (-15 -2366 ((-51) |#1|)) (-15 -3139 ((-3 |#1| "failed") (-51))) (-15 -3038 ((-110) (-51))) (-15 -2585 (|#1| (-51))))
-((-2352 (((-110) $ $) NIL)) (-3895 (((-1082) (-110)) 25)) (-3857 (((-804) $) 24)) (-2566 (((-722) $) 12)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2678 (((-804) $) 16)) (-1235 (((-1031) $) 14)) (-2366 (((-804) $) 32)) (-2726 (($ (-1031) (-722)) 33)) (-2248 (((-110) $ $) 18)))
-(((-51) (-13 (-1027) (-10 -8 (-15 -2726 ($ (-1031) (-722))) (-15 -2678 ((-804) $)) (-15 -3857 ((-804) $)) (-15 -1235 ((-1031) $)) (-15 -2566 ((-722) $)) (-15 -3895 ((-1082) (-110)))))) (T -51))
-((-2726 (*1 *1 *2 *3) (-12 (-5 *2 (-1031)) (-5 *3 (-722)) (-5 *1 (-51)))) (-2678 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))) (-3857 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))) (-1235 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-51)))) (-2566 (*1 *2 *1) (-12 (-5 *2 (-722)) (-5 *1 (-51)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1082)) (-5 *1 (-51)))))
-(-13 (-1027) (-10 -8 (-15 -2726 ($ (-1031) (-722))) (-15 -2678 ((-804) $)) (-15 -3857 ((-804) $)) (-15 -1235 ((-1031) $)) (-15 -2566 ((-722) $)) (-15 -3895 ((-1082) (-110)))))
-((-3003 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
-(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -3003 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-984) (-599 |#1|) (-797 |#1|)) (T -52))
-((-3003 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-599 *5)) (-4 *5 (-984)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-797 *5)))))
-(-10 -7 (-15 -3003 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
-((-2173 ((|#3| |#3| (-597 (-1099))) 35)) (-3572 ((|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862)) 22) ((|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|) 20)))
-(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3572 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|)) (-15 -3572 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862))) (-15 -2173 (|#3| |#3| (-597 (-1099))))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -53))
-((-2173 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-3572 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-597 (-1006 *5 *6 *2))) (-5 *4 (-862)) (-4 *5 (-1027)) (-4 *6 (-13 (-984) (-827 *5) (-795) (-572 (-833 *5)))) (-4 *2 (-13 (-411 *6) (-827 *5) (-572 (-833 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3572 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-1006 *4 *5 *2))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))) (-5 *1 (-53 *4 *5 *2)))))
-(-10 -7 (-15 -3572 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3|)) (-15 -3572 (|#3| (-597 (-1006 |#1| |#2| |#3|)) |#3| (-862))) (-15 -2173 (|#3| |#3| (-597 (-1099)))))
-((-3186 (((-110) $ (-719)) 23)) (-2626 (($ $ (-530) |#3|) 46)) (-3959 (($ $ (-530) |#4|) 50)) (-1325 ((|#3| $ (-530)) 59)) (-3779 (((-597 |#2|) $) 30)) (-4027 (((-110) $ (-719)) 25)) (-4197 (((-110) |#2| $) 54)) (-3583 (($ (-1 |#2| |#2|) $) 37)) (-3217 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-2763 (((-110) $ (-719)) 24)) (-1522 (($ $ |#2|) 34)) (-1533 (((-110) (-1 (-110) |#2|) $) 19)) (-1902 ((|#2| $ (-530) (-530)) NIL) ((|#2| $ (-530) (-530) |#2|) 27)) (-2632 (((-719) (-1 (-110) |#2|) $) 28) (((-719) |#2| $) 56)) (-2579 (($ $) 33)) (-3350 ((|#4| $ (-530)) 62)) (-2366 (((-804) $) 68)) (-3889 (((-110) (-1 (-110) |#2|) $) 18)) (-2248 (((-110) $ $) 53)) (-2267 (((-719) $) 26)))
-(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| |#1| (-530) |#4|)) (-15 -2626 (|#1| |#1| (-530) |#3|)) (-15 -3779 ((-597 |#2|) |#1|)) (-15 -3350 (|#4| |#1| (-530))) (-15 -1325 (|#3| |#1| (-530))) (-15 -1902 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530))) (-15 -1522 (|#1| |#1| |#2|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))) (-15 -2579 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1135) (-354 |#2|) (-354 |#2|)) (T -54))
-NIL
-(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3959 (|#1| |#1| (-530) |#4|)) (-15 -2626 (|#1| |#1| (-530) |#3|)) (-15 -3779 ((-597 |#2|) |#1|)) (-15 -3350 (|#4| |#1| (-530))) (-15 -1325 (|#3| |#1| (-530))) (-15 -1902 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530))) (-15 -1522 (|#1| |#1| |#2|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))) (-15 -2579 (|#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) (-530) |#1|) 44)) (-2626 (($ $ (-530) |#2|) 42)) (-3959 (($ $ (-530) |#3|) 41)) (-2350 (($) 7 T CONST)) (-1325 ((|#2| $ (-530)) 46)) (-3592 ((|#1| $ (-530) (-530) |#1|) 43)) (-3532 ((|#1| $ (-530) (-530)) 48)) (-3779 (((-597 |#1|) $) 30)) (-1796 (((-719) $) 51)) (-3538 (($ (-719) (-719) |#1|) 57)) (-1810 (((-719) $) 50)) (-4027 (((-110) $ (-719)) 9)) (-3863 (((-530) $) 55)) (-3643 (((-530) $) 53)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2307 (((-530) $) 54)) (-3909 (((-530) $) 52)) (-3583 (($ (-1 |#1| |#1|) $) 34)) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) 56)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) (-530)) 49) ((|#1| $ (-530) (-530) |#1|) 47)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3350 ((|#3| $ (-530)) 45)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-55 |#1| |#2| |#3|) (-133) (-1135) (-354 |t#1|) (-354 |t#1|)) (T -55))
-((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3538 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-719)) (-4 *3 (-1135)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1522 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-530)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-719)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-719)))) (-1902 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1135)))) (-3532 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-1325 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-597 *3)))) (-2552 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-3592 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-2626 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1135)) (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))) (-3959 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1135)) (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))) (-3583 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3217 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3217 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
-(-13 (-468 |t#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -3538 ($ (-719) (-719) |t#1|)) (-15 -1522 ($ $ |t#1|)) (-15 -3863 ((-530) $)) (-15 -2307 ((-530) $)) (-15 -3643 ((-530) $)) (-15 -3909 ((-530) $)) (-15 -1796 ((-719) $)) (-15 -1810 ((-719) $)) (-15 -1902 (|t#1| $ (-530) (-530))) (-15 -3532 (|t#1| $ (-530) (-530))) (-15 -1902 (|t#1| $ (-530) (-530) |t#1|)) (-15 -1325 (|t#2| $ (-530))) (-15 -3350 (|t#3| $ (-530))) (-15 -3779 ((-597 |t#1|) $)) (-15 -2552 (|t#1| $ (-530) (-530) |t#1|)) (-15 -3592 (|t#1| $ (-530) (-530) |t#1|)) (-15 -2626 ($ $ (-530) |t#2|)) (-15 -3959 ($ $ (-530) |t#3|)) (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (-15 -3583 ($ (-1 |t#1| |t#1|) $)) (-15 -3217 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3217 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2753 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-2134 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3217 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
-(((-56 |#1| |#2|) (-10 -7 (-15 -2753 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3217 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1135) (-1135)) (T -56))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-56 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
-(-10 -7 (-15 -2753 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3217 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) 11 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2275 (($ (-597 |#1|)) 13) (($ (-719) |#1|) 14)) (-3538 (($ (-719) |#1|) 9)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 7)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -2275 ($ (-597 |#1|))) (-15 -2275 ($ (-719) |#1|)))) (-1135)) (T -57))
-((-2275 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-57 *3)))) (-2275 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-57 *3)) (-4 *3 (-1135)))))
-(-13 (-19 |#1|) (-10 -8 (-15 -2275 ($ (-597 |#1|))) (-15 -2275 ($ (-719) |#1|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2626 (($ $ (-530) (-57 |#1|)) NIL)) (-3959 (($ $ (-530) (-57 |#1|)) NIL)) (-2350 (($) NIL T CONST)) (-1325 (((-57 |#1|) $ (-530)) NIL)) (-3592 ((|#1| $ (-530) (-530) |#1|) NIL)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1796 (((-719) $) NIL)) (-3538 (($ (-719) (-719) |#1|) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 (((-57 |#1|) $ (-530)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4270))) (-1135)) (T -58))
-NIL
-(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4270)))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 74) (((-3 $ "failed") (-1181 (-297 (-530)))) 63) (((-3 $ "failed") (-1181 (-893 (-360)))) 94) (((-3 $ "failed") (-1181 (-893 (-530)))) 84) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 52) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 39)) (-2585 (($ (-1181 (-297 (-360)))) 70) (($ (-1181 (-297 (-530)))) 59) (($ (-1181 (-893 (-360)))) 90) (($ (-1181 (-893 (-530)))) 80) (($ (-1181 (-388 (-893 (-360))))) 48) (($ (-1181 (-388 (-893 (-530))))) 32)) (-3176 (((-1186) $) 120)) (-2366 (((-804) $) 113) (($ (-597 (-311))) 103) (($ (-311)) 97) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 101) (($ (-1181 (-320 (-2377 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2377) (-647)))) 31)))
-(((-59 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2377) (-647))))))) (-1099)) (T -59))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2377) (-647)))) (-5 *1 (-59 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2377) (-647)))))))
-((-3176 (((-1186) $) 53) (((-1186)) 54)) (-2366 (((-804) $) 50)))
-(((-60 |#1|) (-13 (-376) (-10 -7 (-15 -3176 ((-1186))))) (-1099)) (T -60))
-((-3176 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-60 *3)) (-14 *3 (-1099)))))
-(-13 (-376) (-10 -7 (-15 -3176 ((-1186)))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 144) (((-3 $ "failed") (-1181 (-297 (-530)))) 134) (((-3 $ "failed") (-1181 (-893 (-360)))) 164) (((-3 $ "failed") (-1181 (-893 (-530)))) 154) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 123) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 111)) (-2585 (($ (-1181 (-297 (-360)))) 140) (($ (-1181 (-297 (-530)))) 130) (($ (-1181 (-893 (-360)))) 160) (($ (-1181 (-893 (-530)))) 150) (($ (-1181 (-388 (-893 (-360))))) 119) (($ (-1181 (-388 (-893 (-530))))) 104)) (-3176 (((-1186) $) 97)) (-2366 (((-804) $) 91) (($ (-597 (-311))) 29) (($ (-311)) 34) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 32) (($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))) 89)))
-(((-61 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647))))))) (-1099)) (T -61))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))) (-5 *1 (-61 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))))))
-((-3139 (((-3 $ "failed") (-297 (-360))) 41) (((-3 $ "failed") (-297 (-530))) 46) (((-3 $ "failed") (-893 (-360))) 50) (((-3 $ "failed") (-893 (-530))) 54) (((-3 $ "failed") (-388 (-893 (-360)))) 36) (((-3 $ "failed") (-388 (-893 (-530)))) 29)) (-2585 (($ (-297 (-360))) 39) (($ (-297 (-530))) 44) (($ (-893 (-360))) 48) (($ (-893 (-530))) 52) (($ (-388 (-893 (-360)))) 34) (($ (-388 (-893 (-530)))) 26)) (-3176 (((-1186) $) 76)) (-2366 (((-804) $) 69) (($ (-597 (-311))) 61) (($ (-311)) 66) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 64) (($ (-320 (-2377 (QUOTE X)) (-2377) (-647))) 25)))
-(((-62 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377 (QUOTE X)) (-2377) (-647)))))) (-1099)) (T -62))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377 (QUOTE X)) (-2377) (-647))) (-5 *1 (-62 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377 (QUOTE X)) (-2377) (-647))))))
-((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 109) (((-3 $ "failed") (-637 (-297 (-530)))) 97) (((-3 $ "failed") (-637 (-893 (-360)))) 131) (((-3 $ "failed") (-637 (-893 (-530)))) 120) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 85) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 71)) (-2585 (($ (-637 (-297 (-360)))) 105) (($ (-637 (-297 (-530)))) 93) (($ (-637 (-893 (-360)))) 127) (($ (-637 (-893 (-530)))) 116) (($ (-637 (-388 (-893 (-360))))) 81) (($ (-637 (-388 (-893 (-530))))) 64)) (-3176 (((-1186) $) 139)) (-2366 (((-804) $) 133) (($ (-597 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 31) (($ (-637 (-320 (-2377) (-2377 (QUOTE X) (QUOTE HESS)) (-647)))) 54)))
-(((-63 |#1|) (-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377) (-2377 (QUOTE X) (QUOTE HESS)) (-647))))))) (-1099)) (T -63))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2377) (-2377 (QUOTE X) (QUOTE HESS)) (-647)))) (-5 *1 (-63 *3)) (-14 *3 (-1099)))))
-(-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377) (-2377 (QUOTE X) (QUOTE HESS)) (-647)))))))
-((-3139 (((-3 $ "failed") (-297 (-360))) 59) (((-3 $ "failed") (-297 (-530))) 64) (((-3 $ "failed") (-893 (-360))) 68) (((-3 $ "failed") (-893 (-530))) 72) (((-3 $ "failed") (-388 (-893 (-360)))) 54) (((-3 $ "failed") (-388 (-893 (-530)))) 47)) (-2585 (($ (-297 (-360))) 57) (($ (-297 (-530))) 62) (($ (-893 (-360))) 66) (($ (-893 (-530))) 70) (($ (-388 (-893 (-360)))) 52) (($ (-388 (-893 (-530)))) 44)) (-3176 (((-1186) $) 81)) (-2366 (((-804) $) 75) (($ (-597 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 31) (($ (-320 (-2377) (-2377 (QUOTE XC)) (-647))) 39)))
-(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE XC)) (-647)))))) (-1099)) (T -64))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377) (-2377 (QUOTE XC)) (-647))) (-5 *1 (-64 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE XC)) (-647))))))
-((-3176 (((-1186) $) 63)) (-2366 (((-804) $) 57) (($ (-637 (-647))) 49) (($ (-597 (-311))) 48) (($ (-311)) 55) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 53)))
-(((-65 |#1|) (-364) (-1099)) (T -65))
+((-3380 (((-110) $) 12)) (-3261 (($ (-1 |#2| |#2|) $) 21)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (($ (-388 (-531)) $) 25) (($ $ (-388 (-531))) NIL)))
+(((-45 |#1| |#2| |#3|) (-10 -8 (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -3380 ((-110) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-46 |#2| |#3|) (-986) (-742)) (T -45))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -3380 ((-110) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| |#2|) 59)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-2012 ((|#2| $) 62)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45 (|has| |#1| (-162)))) (-3188 ((|#1| $ |#2|) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-46 |#1| |#2|) (-133) (-986) (-742)) (T -46))
+((-2475 (*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-2462 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-110)))) (-2669 (*1 *1 *2 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) (-3188 (*1 *2 *1 *3) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *2 (-344)))))
+(-13 (-986) (-109 |t#1| |t#1|) (-10 -8 (-15 -2475 (|t#1| $)) (-15 -2462 ($ $)) (-15 -2012 (|t#2| $)) (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (-15 -3380 ((-110) $)) (-15 -2669 ($ |t#1| |t#2|)) (-15 -2500 ($ $)) (-15 -3188 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-344)) (-15 -2263 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-6 (-162)) (-6 (-37 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-523)) (-6 (-523)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-531)))) (-6 (-37 (-388 (-531)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-2485 (((-598 $) (-1098 $) (-1102)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-895 $)) NIL)) (-2424 (($ (-1098 $) (-1102)) NIL) (($ (-1098 $)) NIL) (($ (-895 $)) NIL)) (-3019 (((-110) $) 11)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2410 (((-598 (-571 $)) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3007 (((-598 $) (-1098 $) (-1102)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-895 $)) NIL)) (-2738 (($ (-1098 $) (-1102)) NIL) (($ (-1098 $)) NIL) (($ (-895 $)) NIL)) (-3154 (((-3 (-571 $) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL)) (-2523 (((-571 $) $) NIL) (((-531) $) NIL) (((-388 (-531)) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-388 (-531)))) (|:| |vec| (-1184 (-388 (-531))))) (-639 $) (-1184 $)) NIL) (((-639 (-388 (-531))) (-639 $)) NIL)) (-1760 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1238 (($ $) NIL) (($ (-598 $)) NIL)) (-4051 (((-598 (-112)) $) NIL)) (-3254 (((-112) (-112)) NIL)) (-3481 (((-110) $) 14)) (-4250 (((-110) $) NIL (|has| $ (-977 (-531))))) (-1840 (((-1054 (-531) (-571 $)) $) NIL)) (-2249 (($ $ (-531)) NIL)) (-1899 (((-1098 $) (-1098 $) (-571 $)) NIL) (((-1098 $) (-1098 $) (-598 (-571 $))) NIL) (($ $ (-571 $)) NIL) (($ $ (-598 (-571 $))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2733 (((-1098 $) (-571 $)) NIL (|has| $ (-986)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 $ $) (-571 $)) NIL)) (-1302 (((-3 (-571 $) "failed") $) NIL)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2501 (((-598 (-571 $)) $) NIL)) (-1930 (($ (-112) $) NIL) (($ (-112) (-598 $)) NIL)) (-4247 (((-110) $ (-112)) NIL) (((-110) $ (-1102)) NIL)) (-2422 (($ $) NIL)) (-4194 (((-721) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-2781 (((-110) $ $) NIL) (((-110) $ (-1102)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-4100 (((-721) $) NIL)) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-1771 (($ $) NIL) (($ $ $) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-1853 (((-1054 (-531) (-571 $)) $) NIL)) (-3608 (($ $) NIL (|has| $ (-986)))) (-3318 (((-360) $) NIL) (((-208) $) NIL) (((-159 (-360)) $) NIL)) (-2265 (((-806) $) NIL) (($ (-571 $)) NIL) (($ (-388 (-531))) NIL) (($ $) NIL) (($ (-531)) NIL) (($ (-1054 (-531) (-571 $))) NIL)) (-2284 (((-721)) NIL)) (-3504 (($ $) NIL) (($ (-598 $)) NIL)) (-3167 (((-110) (-112)) NIL)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 7 T CONST)) (-3050 (($) 12 T CONST)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 16)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $ $) 15) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-388 (-531))) NIL) (($ $ (-531)) NIL) (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ $ $) NIL) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL)))
+(((-47) (-13 (-284) (-27) (-977 (-531)) (-977 (-388 (-531))) (-594 (-531)) (-962) (-594 (-388 (-531))) (-140) (-573 (-159 (-360))) (-216) (-10 -8 (-15 -2265 ($ (-1054 (-531) (-571 $)))) (-15 -1840 ((-1054 (-531) (-571 $)) $)) (-15 -1853 ((-1054 (-531) (-571 $)) $)) (-15 -1760 ($ $)) (-15 -1899 ((-1098 $) (-1098 $) (-571 $))) (-15 -1899 ((-1098 $) (-1098 $) (-598 (-571 $)))) (-15 -1899 ($ $ (-571 $))) (-15 -1899 ($ $ (-598 (-571 $))))))) (T -47))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47)))) (-1760 (*1 *1 *1) (-5 *1 (-47))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 (-47))) (-5 *3 (-571 (-47))) (-5 *1 (-47)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 (-47))) (-5 *3 (-598 (-571 (-47)))) (-5 *1 (-47)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-571 (-47))) (-5 *1 (-47)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-571 (-47)))) (-5 *1 (-47)))))
+(-13 (-284) (-27) (-977 (-531)) (-977 (-388 (-531))) (-594 (-531)) (-962) (-594 (-388 (-531))) (-140) (-573 (-159 (-360))) (-216) (-10 -8 (-15 -2265 ($ (-1054 (-531) (-571 $)))) (-15 -1840 ((-1054 (-531) (-571 $)) $)) (-15 -1853 ((-1054 (-531) (-571 $)) $)) (-15 -1760 ($ $)) (-15 -1899 ((-1098 $) (-1098 $) (-571 $))) (-15 -1899 ((-1098 $) (-1098 $) (-598 (-571 $)))) (-15 -1899 ($ $ (-571 $))) (-15 -1899 ($ $ (-598 (-571 $))))))
+((-2247 (((-110) $ $) NIL)) (-3185 (((-598 (-1102)) $) 17)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 7)) (-3964 (((-1107) $) 18)) (-2148 (((-110) $ $) NIL)))
+(((-48) (-13 (-1030) (-10 -8 (-15 -3185 ((-598 (-1102)) $)) (-15 -3964 ((-1107) $))))) (T -48))
+((-3185 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-48)))) (-3964 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-48)))))
+(-13 (-1030) (-10 -8 (-15 -3185 ((-598 (-1102)) $)) (-15 -3964 ((-1107) $))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 61)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1922 (((-110) $) 20)) (-3154 (((-3 |#1| "failed") $) 23)) (-2523 ((|#1| $) 24)) (-2500 (($ $) 28)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2475 ((|#1| $) 21)) (-2728 (($ $) 50)) (-1521 (((-1085) $) NIL)) (-1777 (((-110) $) 30)) (-2529 (((-1049) $) NIL)) (-1861 (($ (-721)) 48)) (-2798 (($ (-598 (-531))) 49)) (-2012 (((-721) $) 31)) (-2265 (((-806) $) 64) (($ (-531)) 45) (($ |#1|) 43)) (-3188 ((|#1| $ $) 19)) (-2284 (((-721)) 47)) (-3035 (($) 32 T CONST)) (-3050 (($) 14 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 40)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 41) (($ |#1| $) 35)))
+(((-49 |#1| |#2|) (-13 (-576 |#1|) (-977 |#1|) (-10 -8 (-15 -2475 (|#1| $)) (-15 -2728 ($ $)) (-15 -2500 ($ $)) (-15 -3188 (|#1| $ $)) (-15 -1861 ($ (-721))) (-15 -2798 ($ (-598 (-531)))) (-15 -1777 ((-110) $)) (-15 -1922 ((-110) $)) (-15 -2012 ((-721) $)) (-15 -3261 ($ (-1 |#1| |#1|) $)))) (-986) (-598 (-1102))) (T -49))
+((-2475 (*1 *2 *1) (-12 (-4 *2 (-986)) (-5 *1 (-49 *2 *3)) (-14 *3 (-598 (-1102))))) (-2728 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-986)) (-14 *3 (-598 (-1102))))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-986)) (-14 *3 (-598 (-1102))))) (-3188 (*1 *2 *1 *1) (-12 (-4 *2 (-986)) (-5 *1 (-49 *2 *3)) (-14 *3 (-598 (-1102))))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-2798 (*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-49 *3 *4)) (-14 *4 (-598 (-1102))))))
+(-13 (-576 |#1|) (-977 |#1|) (-10 -8 (-15 -2475 (|#1| $)) (-15 -2728 ($ $)) (-15 -2500 ($ $)) (-15 -3188 (|#1| $ $)) (-15 -1861 ($ (-721))) (-15 -2798 ($ (-598 (-531)))) (-15 -1777 ((-110) $)) (-15 -1922 ((-110) $)) (-15 -2012 ((-721) $)) (-15 -3261 ($ (-1 |#1| |#1|) $))))
+((-1922 (((-110) (-51)) 13)) (-3154 (((-3 |#1| "failed") (-51)) 21)) (-2523 ((|#1| (-51)) 22)) (-2265 (((-51) |#1|) 18)))
+(((-50 |#1|) (-10 -7 (-15 -2265 ((-51) |#1|)) (-15 -3154 ((-3 |#1| "failed") (-51))) (-15 -1922 ((-110) (-51))) (-15 -2523 (|#1| (-51)))) (-1138)) (T -50))
+((-2523 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1138)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1138)))) (-3154 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1138)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1138)))))
+(-10 -7 (-15 -2265 ((-51) |#1|)) (-15 -3154 ((-3 |#1| "failed") (-51))) (-15 -1922 ((-110) (-51))) (-15 -2523 (|#1| (-51))))
+((-2247 (((-110) $ $) NIL)) (-2949 (((-1085) (-110)) 25)) (-1809 (((-806) $) 24)) (-1851 (((-724) $) 12)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2569 (((-806) $) 16)) (-1235 (((-1034) $) 14)) (-2265 (((-806) $) 32)) (-4079 (($ (-1034) (-724)) 33)) (-2148 (((-110) $ $) 18)))
+(((-51) (-13 (-1030) (-10 -8 (-15 -4079 ($ (-1034) (-724))) (-15 -2569 ((-806) $)) (-15 -1809 ((-806) $)) (-15 -1235 ((-1034) $)) (-15 -1851 ((-724) $)) (-15 -2949 ((-1085) (-110)))))) (T -51))
+((-4079 (*1 *1 *2 *3) (-12 (-5 *2 (-1034)) (-5 *3 (-724)) (-5 *1 (-51)))) (-2569 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-51)))) (-1809 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-51)))) (-1235 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-51)))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-724)) (-5 *1 (-51)))) (-2949 (*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1085)) (-5 *1 (-51)))))
+(-13 (-1030) (-10 -8 (-15 -4079 ($ (-1034) (-724))) (-15 -2569 ((-806) $)) (-15 -1809 ((-806) $)) (-15 -1235 ((-1034) $)) (-15 -1851 ((-724) $)) (-15 -2949 ((-1085) (-110)))))
+((-2979 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16)))
+(((-52 |#1| |#2| |#3|) (-10 -7 (-15 -2979 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-986) (-601 |#1|) (-799 |#1|)) (T -52))
+((-2979 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-601 *5)) (-4 *5 (-986)) (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-799 *5)))))
+(-10 -7 (-15 -2979 (|#2| |#3| (-1 |#2| |#2|) |#2|)))
+((-1673 ((|#3| |#3| (-598 (-1102))) 35)) (-3782 ((|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3| (-864)) 22) ((|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3|) 20)))
+(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -3782 (|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3|)) (-15 -3782 (|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3| (-864))) (-15 -1673 (|#3| |#3| (-598 (-1102))))) (-1030) (-13 (-986) (-829 |#1|) (-797) (-573 (-835 |#1|))) (-13 (-411 |#2|) (-829 |#1|) (-573 (-835 |#1|)))) (T -53))
+((-1673 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-53 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) (-3782 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-598 (-1008 *5 *6 *2))) (-5 *4 (-864)) (-4 *5 (-1030)) (-4 *6 (-13 (-986) (-829 *5) (-797) (-573 (-835 *5)))) (-4 *2 (-13 (-411 *6) (-829 *5) (-573 (-835 *5)))) (-5 *1 (-53 *5 *6 *2)))) (-3782 (*1 *2 *3 *2) (-12 (-5 *3 (-598 (-1008 *4 *5 *2))) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))) (-5 *1 (-53 *4 *5 *2)))))
+(-10 -7 (-15 -3782 (|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3|)) (-15 -3782 (|#3| (-598 (-1008 |#1| |#2| |#3|)) |#3| (-864))) (-15 -1673 (|#3| |#3| (-598 (-1102)))))
+((-4058 (((-110) $ (-721)) 23)) (-2398 (($ $ (-531) |#3|) 46)) (-3492 (($ $ (-531) |#4|) 50)) (-4011 ((|#3| $ (-531)) 59)) (-2227 (((-598 |#2|) $) 30)) (-3280 (((-110) $ (-721)) 25)) (-1883 (((-110) |#2| $) 54)) (-2680 (($ (-1 |#2| |#2|) $) 37)) (-3261 (($ (-1 |#2| |#2|) $) 36) (($ (-1 |#2| |#2| |#2|) $ $) 40) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 42)) (-3332 (((-110) $ (-721)) 24)) (-3742 (($ $ |#2|) 34)) (-2294 (((-110) (-1 (-110) |#2|) $) 19)) (-1785 ((|#2| $ (-531) (-531)) NIL) ((|#2| $ (-531) (-531) |#2|) 27)) (-2539 (((-721) (-1 (-110) |#2|) $) 28) (((-721) |#2| $) 56)) (-2480 (($ $) 33)) (-3431 ((|#4| $ (-531)) 62)) (-2265 (((-806) $) 68)) (-2060 (((-110) (-1 (-110) |#2|) $) 18)) (-2148 (((-110) $ $) 53)) (-2167 (((-721) $) 26)))
+(((-54 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 (|#1| |#1| (-531) |#4|)) (-15 -2398 (|#1| |#1| (-531) |#3|)) (-15 -2227 ((-598 |#2|) |#1|)) (-15 -3431 (|#4| |#1| (-531))) (-15 -4011 (|#3| |#1| (-531))) (-15 -1785 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531))) (-15 -3742 (|#1| |#1| |#2|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))) (-15 -2480 (|#1| |#1|))) (-55 |#2| |#3| |#4|) (-1138) (-354 |#2|) (-354 |#2|)) (T -54))
+NIL
+(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3492 (|#1| |#1| (-531) |#4|)) (-15 -2398 (|#1| |#1| (-531) |#3|)) (-15 -2227 ((-598 |#2|) |#1|)) (-15 -3431 (|#4| |#1| (-531))) (-15 -4011 (|#3| |#1| (-531))) (-15 -1785 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531))) (-15 -3742 (|#1| |#1| |#2|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))) (-15 -2480 (|#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) (-531) |#1|) 44)) (-2398 (($ $ (-531) |#2|) 42)) (-3492 (($ $ (-531) |#3|) 41)) (-4082 (($) 7 T CONST)) (-4011 ((|#2| $ (-531)) 46)) (-2693 ((|#1| $ (-531) (-531) |#1|) 43)) (-2627 ((|#1| $ (-531) (-531)) 48)) (-2227 (((-598 |#1|) $) 30)) (-1548 (((-721) $) 51)) (-3010 (($ (-721) (-721) |#1|) 57)) (-1557 (((-721) $) 50)) (-3280 (((-110) $ (-721)) 9)) (-1271 (((-531) $) 55)) (-1665 (((-531) $) 53)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2527 (((-531) $) 54)) (-2394 (((-531) $) 52)) (-2680 (($ (-1 |#1| |#1|) $) 34)) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) 56)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) (-531)) 49) ((|#1| $ (-531) (-531) |#1|) 47)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3431 ((|#3| $ (-531)) 45)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-55 |#1| |#2| |#3|) (-133) (-1138) (-354 |t#1|) (-354 |t#1|)) (T -55))
+((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3010 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-721)) (-4 *3 (-1138)) (-4 *1 (-55 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3742 (*1 *1 *1 *2) (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-1271 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-531)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-531)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-531)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-531)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-721)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-721)))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1138)))) (-2627 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-4011 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1138)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1138)) (-4 *5 (-354 *4)) (-4 *2 (-354 *4)))) (-2227 (*1 *2 *1) (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-598 *3)))) (-2454 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-2693 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138)) (-4 *4 (-354 *2)) (-4 *5 (-354 *2)))) (-2398 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-531)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1138)) (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))) (-3492 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-531)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1138)) (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))) (-2680 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3261 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(-13 (-468 |t#1|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -3010 ($ (-721) (-721) |t#1|)) (-15 -3742 ($ $ |t#1|)) (-15 -1271 ((-531) $)) (-15 -2527 ((-531) $)) (-15 -1665 ((-531) $)) (-15 -2394 ((-531) $)) (-15 -1548 ((-721) $)) (-15 -1557 ((-721) $)) (-15 -1785 (|t#1| $ (-531) (-531))) (-15 -2627 (|t#1| $ (-531) (-531))) (-15 -1785 (|t#1| $ (-531) (-531) |t#1|)) (-15 -4011 (|t#2| $ (-531))) (-15 -3431 (|t#3| $ (-531))) (-15 -2227 ((-598 |t#1|) $)) (-15 -2454 (|t#1| $ (-531) (-531) |t#1|)) (-15 -2693 (|t#1| $ (-531) (-531) |t#1|)) (-15 -2398 ($ $ (-531) |t#2|)) (-15 -3492 ($ $ (-531) |t#3|)) (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (-15 -2680 ($ (-1 |t#1| |t#1|) $)) (-15 -3261 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -3261 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|))))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-3203 (((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 16)) (-1760 ((|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|) 18)) (-3261 (((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)) 13)))
+(((-56 |#1| |#2|) (-10 -7 (-15 -3203 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3261 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|)))) (-1138) (-1138)) (T -56))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-56 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5)))))
+(-10 -7 (-15 -3203 ((-57 |#2|) (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-57 |#1|) |#2|)) (-15 -3261 ((-57 |#2|) (-1 |#2| |#1|) (-57 |#1|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) 11 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3983 (($ (-598 |#1|)) 13) (($ (-721) |#1|) 14)) (-3010 (($ (-721) |#1|) 9)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 7)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-57 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -3983 ($ (-598 |#1|))) (-15 -3983 ($ (-721) |#1|)))) (-1138)) (T -57))
+((-3983 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-57 *3)))) (-3983 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-57 *3)) (-4 *3 (-1138)))))
+(-13 (-19 |#1|) (-10 -8 (-15 -3983 ($ (-598 |#1|))) (-15 -3983 ($ (-721) |#1|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2398 (($ $ (-531) (-57 |#1|)) NIL)) (-3492 (($ $ (-531) (-57 |#1|)) NIL)) (-4082 (($) NIL T CONST)) (-4011 (((-57 |#1|) $ (-531)) NIL)) (-2693 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-1548 (((-721) $) NIL)) (-3010 (($ (-721) (-721) |#1|) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 (((-57 |#1|) $ (-531)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-58 |#1|) (-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4274))) (-1138)) (T -58))
+NIL
+(-13 (-55 |#1| (-57 |#1|) (-57 |#1|)) (-10 -7 (-6 -4274)))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 74) (((-3 $ "failed") (-1184 (-297 (-531)))) 63) (((-3 $ "failed") (-1184 (-895 (-360)))) 94) (((-3 $ "failed") (-1184 (-895 (-531)))) 84) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 52) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 39)) (-2523 (($ (-1184 (-297 (-360)))) 70) (($ (-1184 (-297 (-531)))) 59) (($ (-1184 (-895 (-360)))) 90) (($ (-1184 (-895 (-531)))) 80) (($ (-1184 (-388 (-895 (-360))))) 48) (($ (-1184 (-388 (-895 (-531))))) 32)) (-3206 (((-1189) $) 120)) (-2265 (((-806) $) 113) (($ (-598 (-311))) 103) (($ (-311)) 97) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 101) (($ (-1184 (-320 (-2274 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2274) (-649)))) 31)))
+(((-59 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2274) (-649))))))) (-1102)) (T -59))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2274) (-649)))) (-5 *1 (-59 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-2274) (-649)))))))
+((-3206 (((-1189) $) 53) (((-1189)) 54)) (-2265 (((-806) $) 50)))
+(((-60 |#1|) (-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) (-1102)) (T -60))
+((-3206 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-60 *3)) (-14 *3 (-1102)))))
+(-13 (-376) (-10 -7 (-15 -3206 ((-1189)))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 144) (((-3 $ "failed") (-1184 (-297 (-531)))) 134) (((-3 $ "failed") (-1184 (-895 (-360)))) 164) (((-3 $ "failed") (-1184 (-895 (-531)))) 154) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 123) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 111)) (-2523 (($ (-1184 (-297 (-360)))) 140) (($ (-1184 (-297 (-531)))) 130) (($ (-1184 (-895 (-360)))) 160) (($ (-1184 (-895 (-531)))) 150) (($ (-1184 (-388 (-895 (-360))))) 119) (($ (-1184 (-388 (-895 (-531))))) 104)) (-3206 (((-1189) $) 97)) (-2265 (((-806) $) 91) (($ (-598 (-311))) 29) (($ (-311)) 34) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 32) (($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))) 89)))
+(((-61 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649))))))) (-1102)) (T -61))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))) (-5 *1 (-61 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))))))
+((-3154 (((-3 $ "failed") (-297 (-360))) 41) (((-3 $ "failed") (-297 (-531))) 46) (((-3 $ "failed") (-895 (-360))) 50) (((-3 $ "failed") (-895 (-531))) 54) (((-3 $ "failed") (-388 (-895 (-360)))) 36) (((-3 $ "failed") (-388 (-895 (-531)))) 29)) (-2523 (($ (-297 (-360))) 39) (($ (-297 (-531))) 44) (($ (-895 (-360))) 48) (($ (-895 (-531))) 52) (($ (-388 (-895 (-360)))) 34) (($ (-388 (-895 (-531)))) 26)) (-3206 (((-1189) $) 76)) (-2265 (((-806) $) 69) (($ (-598 (-311))) 61) (($ (-311)) 66) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 64) (($ (-320 (-2274 (QUOTE X)) (-2274) (-649))) 25)))
+(((-62 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274 (QUOTE X)) (-2274) (-649)))))) (-1102)) (T -62))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274 (QUOTE X)) (-2274) (-649))) (-5 *1 (-62 *3)) (-14 *3 (-1102)))))
+(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274 (QUOTE X)) (-2274) (-649))))))
+((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 109) (((-3 $ "failed") (-639 (-297 (-531)))) 97) (((-3 $ "failed") (-639 (-895 (-360)))) 131) (((-3 $ "failed") (-639 (-895 (-531)))) 120) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 85) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 71)) (-2523 (($ (-639 (-297 (-360)))) 105) (($ (-639 (-297 (-531)))) 93) (($ (-639 (-895 (-360)))) 127) (($ (-639 (-895 (-531)))) 116) (($ (-639 (-388 (-895 (-360))))) 81) (($ (-639 (-388 (-895 (-531))))) 64)) (-3206 (((-1189) $) 139)) (-2265 (((-806) $) 133) (($ (-598 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 31) (($ (-639 (-320 (-2274) (-2274 (QUOTE X) (QUOTE HESS)) (-649)))) 54)))
+(((-63 |#1|) (-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274) (-2274 (QUOTE X) (QUOTE HESS)) (-649))))))) (-1102)) (T -63))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-320 (-2274) (-2274 (QUOTE X) (QUOTE HESS)) (-649)))) (-5 *1 (-63 *3)) (-14 *3 (-1102)))))
+(-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274) (-2274 (QUOTE X) (QUOTE HESS)) (-649)))))))
+((-3154 (((-3 $ "failed") (-297 (-360))) 59) (((-3 $ "failed") (-297 (-531))) 64) (((-3 $ "failed") (-895 (-360))) 68) (((-3 $ "failed") (-895 (-531))) 72) (((-3 $ "failed") (-388 (-895 (-360)))) 54) (((-3 $ "failed") (-388 (-895 (-531)))) 47)) (-2523 (($ (-297 (-360))) 57) (($ (-297 (-531))) 62) (($ (-895 (-360))) 66) (($ (-895 (-531))) 70) (($ (-388 (-895 (-360)))) 52) (($ (-388 (-895 (-531)))) 44)) (-3206 (((-1189) $) 81)) (-2265 (((-806) $) 75) (($ (-598 (-311))) 28) (($ (-311)) 33) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 31) (($ (-320 (-2274) (-2274 (QUOTE XC)) (-649))) 39)))
+(((-64 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE XC)) (-649)))))) (-1102)) (T -64))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274) (-2274 (QUOTE XC)) (-649))) (-5 *1 (-64 *3)) (-14 *3 (-1102)))))
+(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE XC)) (-649))))))
+((-3206 (((-1189) $) 63)) (-2265 (((-806) $) 57) (($ (-639 (-649))) 49) (($ (-598 (-311))) 48) (($ (-311)) 55) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 53)))
+(((-65 |#1|) (-364) (-1102)) (T -65))
NIL
(-364)
-((-3176 (((-1186) $) 64)) (-2366 (((-804) $) 58) (($ (-637 (-647))) 50) (($ (-597 (-311))) 49) (($ (-311)) 52) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 55)))
-(((-66 |#1|) (-364) (-1099)) (T -66))
+((-3206 (((-1189) $) 64)) (-2265 (((-806) $) 58) (($ (-639 (-649))) 50) (($ (-598 (-311))) 49) (($ (-311)) 52) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 55)))
+(((-66 |#1|) (-364) (-1102)) (T -66))
NIL
(-364)
-((-3176 (((-1186) $) NIL) (((-1186)) 32)) (-2366 (((-804) $) NIL)))
-(((-67 |#1|) (-13 (-376) (-10 -7 (-15 -3176 ((-1186))))) (-1099)) (T -67))
-((-3176 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-67 *3)) (-14 *3 (-1099)))))
-(-13 (-376) (-10 -7 (-15 -3176 ((-1186)))))
-((-3176 (((-1186) $) 73)) (-2366 (((-804) $) 67) (($ (-637 (-647))) 59) (($ (-597 (-311))) 61) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 58)))
-(((-68 |#1|) (-364) (-1099)) (T -68))
+((-3206 (((-1189) $) NIL) (((-1189)) 32)) (-2265 (((-806) $) NIL)))
+(((-67 |#1|) (-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) (-1102)) (T -67))
+((-3206 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-67 *3)) (-14 *3 (-1102)))))
+(-13 (-376) (-10 -7 (-15 -3206 ((-1189)))))
+((-3206 (((-1189) $) 73)) (-2265 (((-806) $) 67) (($ (-639 (-649))) 59) (($ (-598 (-311))) 61) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 58)))
+(((-68 |#1|) (-364) (-1102)) (T -68))
NIL
(-364)
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 103) (((-3 $ "failed") (-1181 (-297 (-530)))) 92) (((-3 $ "failed") (-1181 (-893 (-360)))) 123) (((-3 $ "failed") (-1181 (-893 (-530)))) 113) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 81) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 68)) (-2585 (($ (-1181 (-297 (-360)))) 99) (($ (-1181 (-297 (-530)))) 88) (($ (-1181 (-893 (-360)))) 119) (($ (-1181 (-893 (-530)))) 109) (($ (-1181 (-388 (-893 (-360))))) 77) (($ (-1181 (-388 (-893 (-530))))) 61)) (-3176 (((-1186) $) 136)) (-2366 (((-804) $) 130) (($ (-597 (-311))) 125) (($ (-311)) 128) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 53) (($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))) 54)))
-(((-69 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))))))) (-1099)) (T -69))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))) (-5 *1 (-69 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))))))
-((-3176 (((-1186) $) 32) (((-1186)) 31)) (-2366 (((-804) $) 35)))
-(((-70 |#1|) (-13 (-376) (-10 -7 (-15 -3176 ((-1186))))) (-1099)) (T -70))
-((-3176 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-70 *3)) (-14 *3 (-1099)))))
-(-13 (-376) (-10 -7 (-15 -3176 ((-1186)))))
-((-3176 (((-1186) $) 63)) (-2366 (((-804) $) 57) (($ (-637 (-647))) 49) (($ (-597 (-311))) 51) (($ (-311)) 54) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 48)))
-(((-71 |#1|) (-364) (-1099)) (T -71))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 103) (((-3 $ "failed") (-1184 (-297 (-531)))) 92) (((-3 $ "failed") (-1184 (-895 (-360)))) 123) (((-3 $ "failed") (-1184 (-895 (-531)))) 113) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 81) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 68)) (-2523 (($ (-1184 (-297 (-360)))) 99) (($ (-1184 (-297 (-531)))) 88) (($ (-1184 (-895 (-360)))) 119) (($ (-1184 (-895 (-531)))) 109) (($ (-1184 (-388 (-895 (-360))))) 77) (($ (-1184 (-388 (-895 (-531))))) 61)) (-3206 (((-1189) $) 136)) (-2265 (((-806) $) 130) (($ (-598 (-311))) 125) (($ (-311)) 128) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 53) (($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))) 54)))
+(((-69 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))))))) (-1102)) (T -69))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))) (-5 *1 (-69 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))))))
+((-3206 (((-1189) $) 32) (((-1189)) 31)) (-2265 (((-806) $) 35)))
+(((-70 |#1|) (-13 (-376) (-10 -7 (-15 -3206 ((-1189))))) (-1102)) (T -70))
+((-3206 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-70 *3)) (-14 *3 (-1102)))))
+(-13 (-376) (-10 -7 (-15 -3206 ((-1189)))))
+((-3206 (((-1189) $) 63)) (-2265 (((-806) $) 57) (($ (-639 (-649))) 49) (($ (-598 (-311))) 51) (($ (-311)) 54) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 48)))
+(((-71 |#1|) (-364) (-1102)) (T -71))
NIL
(-364)
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 125) (((-3 $ "failed") (-1181 (-297 (-530)))) 115) (((-3 $ "failed") (-1181 (-893 (-360)))) 145) (((-3 $ "failed") (-1181 (-893 (-530)))) 135) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 105) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 93)) (-2585 (($ (-1181 (-297 (-360)))) 121) (($ (-1181 (-297 (-530)))) 111) (($ (-1181 (-893 (-360)))) 141) (($ (-1181 (-893 (-530)))) 131) (($ (-1181 (-388 (-893 (-360))))) 101) (($ (-1181 (-388 (-893 (-530))))) 86)) (-3176 (((-1186) $) 78)) (-2366 (((-804) $) 27) (($ (-597 (-311))) 68) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 71) (($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) 65)))
-(((-72 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647))))))) (-1099)) (T -72))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) (-5 *1 (-72 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 130) (((-3 $ "failed") (-1181 (-297 (-530)))) 119) (((-3 $ "failed") (-1181 (-893 (-360)))) 150) (((-3 $ "failed") (-1181 (-893 (-530)))) 140) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 108) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 95)) (-2585 (($ (-1181 (-297 (-360)))) 126) (($ (-1181 (-297 (-530)))) 115) (($ (-1181 (-893 (-360)))) 146) (($ (-1181 (-893 (-530)))) 136) (($ (-1181 (-388 (-893 (-360))))) 104) (($ (-1181 (-388 (-893 (-530))))) 88)) (-3176 (((-1186) $) 79)) (-2366 (((-804) $) 71) (($ (-597 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) NIL) (($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE EPS)) (-2377 (QUOTE -4126)) (-647)))) 66)))
-(((-73 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE EPS)) (-2377 (QUOTE -4126)) (-647))))))) (-1099) (-1099) (-1099)) (T -73))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X) (QUOTE EPS)) (-2377 (QUOTE -4126)) (-647)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099)) (-14 *5 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE EPS)) (-2377 (QUOTE -4126)) (-647)))))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 134) (((-3 $ "failed") (-1181 (-297 (-530)))) 123) (((-3 $ "failed") (-1181 (-893 (-360)))) 154) (((-3 $ "failed") (-1181 (-893 (-530)))) 144) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 112) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 99)) (-2585 (($ (-1181 (-297 (-360)))) 130) (($ (-1181 (-297 (-530)))) 119) (($ (-1181 (-893 (-360)))) 150) (($ (-1181 (-893 (-530)))) 140) (($ (-1181 (-388 (-893 (-360))))) 108) (($ (-1181 (-388 (-893 (-530))))) 92)) (-3176 (((-1186) $) 83)) (-2366 (((-804) $) 75) (($ (-597 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) NIL) (($ (-1181 (-320 (-2377 (QUOTE EPS)) (-2377 (QUOTE YA) (QUOTE YB)) (-647)))) 70)))
-(((-74 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE EPS)) (-2377 (QUOTE YA) (QUOTE YB)) (-647))))))) (-1099) (-1099) (-1099)) (T -74))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE EPS)) (-2377 (QUOTE YA) (QUOTE YB)) (-647)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099)) (-14 *5 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE EPS)) (-2377 (QUOTE YA) (QUOTE YB)) (-647)))))))
-((-3139 (((-3 $ "failed") (-297 (-360))) 82) (((-3 $ "failed") (-297 (-530))) 87) (((-3 $ "failed") (-893 (-360))) 91) (((-3 $ "failed") (-893 (-530))) 95) (((-3 $ "failed") (-388 (-893 (-360)))) 77) (((-3 $ "failed") (-388 (-893 (-530)))) 70)) (-2585 (($ (-297 (-360))) 80) (($ (-297 (-530))) 85) (($ (-893 (-360))) 89) (($ (-893 (-530))) 93) (($ (-388 (-893 (-360)))) 75) (($ (-388 (-893 (-530)))) 67)) (-3176 (((-1186) $) 62)) (-2366 (((-804) $) 50) (($ (-597 (-311))) 46) (($ (-311)) 56) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 54) (($ (-320 (-2377) (-2377 (QUOTE X)) (-647))) 47)))
-(((-75 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE X)) (-647)))))) (-1099)) (T -75))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377) (-2377 (QUOTE X)) (-647))) (-5 *1 (-75 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE X)) (-647))))))
-((-3139 (((-3 $ "failed") (-297 (-360))) 46) (((-3 $ "failed") (-297 (-530))) 51) (((-3 $ "failed") (-893 (-360))) 55) (((-3 $ "failed") (-893 (-530))) 59) (((-3 $ "failed") (-388 (-893 (-360)))) 41) (((-3 $ "failed") (-388 (-893 (-530)))) 34)) (-2585 (($ (-297 (-360))) 44) (($ (-297 (-530))) 49) (($ (-893 (-360))) 53) (($ (-893 (-530))) 57) (($ (-388 (-893 (-360)))) 39) (($ (-388 (-893 (-530)))) 31)) (-3176 (((-1186) $) 80)) (-2366 (((-804) $) 74) (($ (-597 (-311))) 66) (($ (-311)) 71) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 69) (($ (-320 (-2377) (-2377 (QUOTE X)) (-647))) 30)))
-(((-76 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE X)) (-647)))))) (-1099)) (T -76))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377) (-2377 (QUOTE X)) (-647))) (-5 *1 (-76 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377) (-2377 (QUOTE X)) (-647))))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 89) (((-3 $ "failed") (-1181 (-297 (-530)))) 78) (((-3 $ "failed") (-1181 (-893 (-360)))) 109) (((-3 $ "failed") (-1181 (-893 (-530)))) 99) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 67) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 54)) (-2585 (($ (-1181 (-297 (-360)))) 85) (($ (-1181 (-297 (-530)))) 74) (($ (-1181 (-893 (-360)))) 105) (($ (-1181 (-893 (-530)))) 95) (($ (-1181 (-388 (-893 (-360))))) 63) (($ (-1181 (-388 (-893 (-530))))) 47)) (-3176 (((-1186) $) 125)) (-2366 (((-804) $) 119) (($ (-597 (-311))) 112) (($ (-311)) 37) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 115) (($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))) 38)))
-(((-77 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647))))))) (-1099)) (T -77))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))) (-5 *1 (-77 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE XC)) (-647)))))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 142) (((-3 $ "failed") (-1181 (-297 (-530)))) 132) (((-3 $ "failed") (-1181 (-893 (-360)))) 162) (((-3 $ "failed") (-1181 (-893 (-530)))) 152) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 122) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 110)) (-2585 (($ (-1181 (-297 (-360)))) 138) (($ (-1181 (-297 (-530)))) 128) (($ (-1181 (-893 (-360)))) 158) (($ (-1181 (-893 (-530)))) 148) (($ (-1181 (-388 (-893 (-360))))) 118) (($ (-1181 (-388 (-893 (-530))))) 103)) (-3176 (((-1186) $) 96)) (-2366 (((-804) $) 90) (($ (-597 (-311))) 81) (($ (-311)) 88) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 86) (($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) 82)))
-(((-78 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647))))))) (-1099)) (T -78))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) (-5 *1 (-78 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 78) (((-3 $ "failed") (-1181 (-297 (-530)))) 67) (((-3 $ "failed") (-1181 (-893 (-360)))) 98) (((-3 $ "failed") (-1181 (-893 (-530)))) 88) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 56) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 43)) (-2585 (($ (-1181 (-297 (-360)))) 74) (($ (-1181 (-297 (-530)))) 63) (($ (-1181 (-893 (-360)))) 94) (($ (-1181 (-893 (-530)))) 84) (($ (-1181 (-388 (-893 (-360))))) 52) (($ (-1181 (-388 (-893 (-530))))) 36)) (-3176 (((-1186) $) 124)) (-2366 (((-804) $) 118) (($ (-597 (-311))) 109) (($ (-311)) 115) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 113) (($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) 35)))
-(((-79 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647))))))) (-1099)) (T -79))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))) (-5 *1 (-79 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377) (-2377 (QUOTE X)) (-647)))))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 95) (((-3 $ "failed") (-1181 (-297 (-530)))) 84) (((-3 $ "failed") (-1181 (-893 (-360)))) 115) (((-3 $ "failed") (-1181 (-893 (-530)))) 105) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 73) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 60)) (-2585 (($ (-1181 (-297 (-360)))) 91) (($ (-1181 (-297 (-530)))) 80) (($ (-1181 (-893 (-360)))) 111) (($ (-1181 (-893 (-530)))) 101) (($ (-1181 (-388 (-893 (-360))))) 69) (($ (-1181 (-388 (-893 (-530))))) 53)) (-3176 (((-1186) $) 45)) (-2366 (((-804) $) 39) (($ (-597 (-311))) 29) (($ (-311)) 32) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 35) (($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))) 30)))
-(((-80 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647))))))) (-1099)) (T -80))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))) (-5 *1 (-80 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))))))
-((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 115) (((-3 $ "failed") (-637 (-297 (-530)))) 104) (((-3 $ "failed") (-637 (-893 (-360)))) 137) (((-3 $ "failed") (-637 (-893 (-530)))) 126) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 93) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 80)) (-2585 (($ (-637 (-297 (-360)))) 111) (($ (-637 (-297 (-530)))) 100) (($ (-637 (-893 (-360)))) 133) (($ (-637 (-893 (-530)))) 122) (($ (-637 (-388 (-893 (-360))))) 89) (($ (-637 (-388 (-893 (-530))))) 73)) (-3176 (((-1186) $) 63)) (-2366 (((-804) $) 50) (($ (-597 (-311))) 57) (($ (-311)) 46) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 55) (($ (-637 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))) 47)))
-(((-81 |#1|) (-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647))))))) (-1099)) (T -81))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))) (-5 *1 (-81 *3)) (-14 *3 (-1099)))))
-(-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE X) (QUOTE -4126)) (-2377) (-647)))))))
-((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 112) (((-3 $ "failed") (-637 (-297 (-530)))) 100) (((-3 $ "failed") (-637 (-893 (-360)))) 134) (((-3 $ "failed") (-637 (-893 (-530)))) 123) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 88) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 74)) (-2585 (($ (-637 (-297 (-360)))) 108) (($ (-637 (-297 (-530)))) 96) (($ (-637 (-893 (-360)))) 130) (($ (-637 (-893 (-530)))) 119) (($ (-637 (-388 (-893 (-360))))) 84) (($ (-637 (-388 (-893 (-530))))) 67)) (-3176 (((-1186) $) 59)) (-2366 (((-804) $) 53) (($ (-597 (-311))) 47) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 44) (($ (-637 (-320 (-2377 (QUOTE X)) (-2377) (-647)))) 45)))
-(((-82 |#1|) (-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE X)) (-2377) (-647))))))) (-1099)) (T -82))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2377 (QUOTE X)) (-2377) (-647)))) (-5 *1 (-82 *3)) (-14 *3 (-1099)))))
-(-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE X)) (-2377) (-647)))))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 104) (((-3 $ "failed") (-1181 (-297 (-530)))) 93) (((-3 $ "failed") (-1181 (-893 (-360)))) 124) (((-3 $ "failed") (-1181 (-893 (-530)))) 114) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 82) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 69)) (-2585 (($ (-1181 (-297 (-360)))) 100) (($ (-1181 (-297 (-530)))) 89) (($ (-1181 (-893 (-360)))) 120) (($ (-1181 (-893 (-530)))) 110) (($ (-1181 (-388 (-893 (-360))))) 78) (($ (-1181 (-388 (-893 (-530))))) 62)) (-3176 (((-1186) $) 46)) (-2366 (((-804) $) 40) (($ (-597 (-311))) 49) (($ (-311)) 36) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 52) (($ (-1181 (-320 (-2377 (QUOTE X)) (-2377) (-647)))) 37)))
-(((-83 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377) (-647))))))) (-1099)) (T -83))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X)) (-2377) (-647)))) (-5 *1 (-83 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377) (-647)))))))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 79) (((-3 $ "failed") (-1181 (-297 (-530)))) 68) (((-3 $ "failed") (-1181 (-893 (-360)))) 99) (((-3 $ "failed") (-1181 (-893 (-530)))) 89) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 57) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 44)) (-2585 (($ (-1181 (-297 (-360)))) 75) (($ (-1181 (-297 (-530)))) 64) (($ (-1181 (-893 (-360)))) 95) (($ (-1181 (-893 (-530)))) 85) (($ (-1181 (-388 (-893 (-360))))) 53) (($ (-1181 (-388 (-893 (-530))))) 37)) (-3176 (((-1186) $) 125)) (-2366 (((-804) $) 119) (($ (-597 (-311))) 110) (($ (-311)) 116) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 114) (($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))) 36)))
-(((-84 |#1|) (-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))))))) (-1099)) (T -84))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))) (-5 *1 (-84 *3)) (-14 *3 (-1099)))))
-(-13 (-421) (-10 -8 (-15 -2366 ($ (-1181 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))))))
-((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 113) (((-3 $ "failed") (-637 (-297 (-530)))) 101) (((-3 $ "failed") (-637 (-893 (-360)))) 135) (((-3 $ "failed") (-637 (-893 (-530)))) 124) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 89) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 75)) (-2585 (($ (-637 (-297 (-360)))) 109) (($ (-637 (-297 (-530)))) 97) (($ (-637 (-893 (-360)))) 131) (($ (-637 (-893 (-530)))) 120) (($ (-637 (-388 (-893 (-360))))) 85) (($ (-637 (-388 (-893 (-530))))) 68)) (-3176 (((-1186) $) 59)) (-2366 (((-804) $) 53) (($ (-597 (-311))) 43) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 48) (($ (-637 (-320 (-2377 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2377) (-647)))) 44)))
-(((-85 |#1|) (-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2377) (-647))))))) (-1099)) (T -85))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-320 (-2377 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2377) (-647)))) (-5 *1 (-85 *3)) (-14 *3 (-1099)))))
-(-13 (-365) (-10 -8 (-15 -2366 ($ (-637 (-320 (-2377 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2377) (-647)))))))
-((-3176 (((-1186) $) 44)) (-2366 (((-804) $) 38) (($ (-1181 (-647))) 92) (($ (-597 (-311))) 30) (($ (-311)) 35) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 33)))
-(((-86 |#1|) (-420) (-1099)) (T -86))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 125) (((-3 $ "failed") (-1184 (-297 (-531)))) 115) (((-3 $ "failed") (-1184 (-895 (-360)))) 145) (((-3 $ "failed") (-1184 (-895 (-531)))) 135) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 105) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 93)) (-2523 (($ (-1184 (-297 (-360)))) 121) (($ (-1184 (-297 (-531)))) 111) (($ (-1184 (-895 (-360)))) 141) (($ (-1184 (-895 (-531)))) 131) (($ (-1184 (-388 (-895 (-360))))) 101) (($ (-1184 (-388 (-895 (-531))))) 86)) (-3206 (((-1189) $) 78)) (-2265 (((-806) $) 27) (($ (-598 (-311))) 68) (($ (-311)) 64) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 71) (($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) 65)))
+(((-72 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) (-1102)) (T -72))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) (-5 *1 (-72 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 130) (((-3 $ "failed") (-1184 (-297 (-531)))) 119) (((-3 $ "failed") (-1184 (-895 (-360)))) 150) (((-3 $ "failed") (-1184 (-895 (-531)))) 140) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 108) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 95)) (-2523 (($ (-1184 (-297 (-360)))) 126) (($ (-1184 (-297 (-531)))) 115) (($ (-1184 (-895 (-360)))) 146) (($ (-1184 (-895 (-531)))) 136) (($ (-1184 (-388 (-895 (-360))))) 104) (($ (-1184 (-388 (-895 (-531))))) 88)) (-3206 (((-1189) $) 79)) (-2265 (((-806) $) 71) (($ (-598 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) NIL) (($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE EPS)) (-2274 (QUOTE -4139)) (-649)))) 66)))
+(((-73 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE EPS)) (-2274 (QUOTE -4139)) (-649))))))) (-1102) (-1102) (-1102)) (T -73))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X) (QUOTE EPS)) (-2274 (QUOTE -4139)) (-649)))) (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1102)) (-14 *4 (-1102)) (-14 *5 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE EPS)) (-2274 (QUOTE -4139)) (-649)))))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 134) (((-3 $ "failed") (-1184 (-297 (-531)))) 123) (((-3 $ "failed") (-1184 (-895 (-360)))) 154) (((-3 $ "failed") (-1184 (-895 (-531)))) 144) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 112) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 99)) (-2523 (($ (-1184 (-297 (-360)))) 130) (($ (-1184 (-297 (-531)))) 119) (($ (-1184 (-895 (-360)))) 150) (($ (-1184 (-895 (-531)))) 140) (($ (-1184 (-388 (-895 (-360))))) 108) (($ (-1184 (-388 (-895 (-531))))) 92)) (-3206 (((-1189) $) 83)) (-2265 (((-806) $) 75) (($ (-598 (-311))) NIL) (($ (-311)) NIL) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) NIL) (($ (-1184 (-320 (-2274 (QUOTE EPS)) (-2274 (QUOTE YA) (QUOTE YB)) (-649)))) 70)))
+(((-74 |#1| |#2| |#3|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE EPS)) (-2274 (QUOTE YA) (QUOTE YB)) (-649))))))) (-1102) (-1102) (-1102)) (T -74))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE EPS)) (-2274 (QUOTE YA) (QUOTE YB)) (-649)))) (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1102)) (-14 *4 (-1102)) (-14 *5 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE EPS)) (-2274 (QUOTE YA) (QUOTE YB)) (-649)))))))
+((-3154 (((-3 $ "failed") (-297 (-360))) 82) (((-3 $ "failed") (-297 (-531))) 87) (((-3 $ "failed") (-895 (-360))) 91) (((-3 $ "failed") (-895 (-531))) 95) (((-3 $ "failed") (-388 (-895 (-360)))) 77) (((-3 $ "failed") (-388 (-895 (-531)))) 70)) (-2523 (($ (-297 (-360))) 80) (($ (-297 (-531))) 85) (($ (-895 (-360))) 89) (($ (-895 (-531))) 93) (($ (-388 (-895 (-360)))) 75) (($ (-388 (-895 (-531)))) 67)) (-3206 (((-1189) $) 62)) (-2265 (((-806) $) 50) (($ (-598 (-311))) 46) (($ (-311)) 56) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 54) (($ (-320 (-2274) (-2274 (QUOTE X)) (-649))) 47)))
+(((-75 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE X)) (-649)))))) (-1102)) (T -75))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274) (-2274 (QUOTE X)) (-649))) (-5 *1 (-75 *3)) (-14 *3 (-1102)))))
+(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE X)) (-649))))))
+((-3154 (((-3 $ "failed") (-297 (-360))) 46) (((-3 $ "failed") (-297 (-531))) 51) (((-3 $ "failed") (-895 (-360))) 55) (((-3 $ "failed") (-895 (-531))) 59) (((-3 $ "failed") (-388 (-895 (-360)))) 41) (((-3 $ "failed") (-388 (-895 (-531)))) 34)) (-2523 (($ (-297 (-360))) 44) (($ (-297 (-531))) 49) (($ (-895 (-360))) 53) (($ (-895 (-531))) 57) (($ (-388 (-895 (-360)))) 39) (($ (-388 (-895 (-531)))) 31)) (-3206 (((-1189) $) 80)) (-2265 (((-806) $) 74) (($ (-598 (-311))) 66) (($ (-311)) 71) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 69) (($ (-320 (-2274) (-2274 (QUOTE X)) (-649))) 30)))
+(((-76 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE X)) (-649)))))) (-1102)) (T -76))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274) (-2274 (QUOTE X)) (-649))) (-5 *1 (-76 *3)) (-14 *3 (-1102)))))
+(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274) (-2274 (QUOTE X)) (-649))))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 89) (((-3 $ "failed") (-1184 (-297 (-531)))) 78) (((-3 $ "failed") (-1184 (-895 (-360)))) 109) (((-3 $ "failed") (-1184 (-895 (-531)))) 99) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 67) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 54)) (-2523 (($ (-1184 (-297 (-360)))) 85) (($ (-1184 (-297 (-531)))) 74) (($ (-1184 (-895 (-360)))) 105) (($ (-1184 (-895 (-531)))) 95) (($ (-1184 (-388 (-895 (-360))))) 63) (($ (-1184 (-388 (-895 (-531))))) 47)) (-3206 (((-1189) $) 125)) (-2265 (((-806) $) 119) (($ (-598 (-311))) 112) (($ (-311)) 37) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 115) (($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))) 38)))
+(((-77 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649))))))) (-1102)) (T -77))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))) (-5 *1 (-77 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE XC)) (-649)))))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 142) (((-3 $ "failed") (-1184 (-297 (-531)))) 132) (((-3 $ "failed") (-1184 (-895 (-360)))) 162) (((-3 $ "failed") (-1184 (-895 (-531)))) 152) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 122) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 110)) (-2523 (($ (-1184 (-297 (-360)))) 138) (($ (-1184 (-297 (-531)))) 128) (($ (-1184 (-895 (-360)))) 158) (($ (-1184 (-895 (-531)))) 148) (($ (-1184 (-388 (-895 (-360))))) 118) (($ (-1184 (-388 (-895 (-531))))) 103)) (-3206 (((-1189) $) 96)) (-2265 (((-806) $) 90) (($ (-598 (-311))) 81) (($ (-311)) 88) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 86) (($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) 82)))
+(((-78 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) (-1102)) (T -78))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) (-5 *1 (-78 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 78) (((-3 $ "failed") (-1184 (-297 (-531)))) 67) (((-3 $ "failed") (-1184 (-895 (-360)))) 98) (((-3 $ "failed") (-1184 (-895 (-531)))) 88) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 56) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 43)) (-2523 (($ (-1184 (-297 (-360)))) 74) (($ (-1184 (-297 (-531)))) 63) (($ (-1184 (-895 (-360)))) 94) (($ (-1184 (-895 (-531)))) 84) (($ (-1184 (-388 (-895 (-360))))) 52) (($ (-1184 (-388 (-895 (-531))))) 36)) (-3206 (((-1189) $) 124)) (-2265 (((-806) $) 118) (($ (-598 (-311))) 109) (($ (-311)) 115) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 113) (($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) 35)))
+(((-79 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649))))))) (-1102)) (T -79))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))) (-5 *1 (-79 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274) (-2274 (QUOTE X)) (-649)))))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 95) (((-3 $ "failed") (-1184 (-297 (-531)))) 84) (((-3 $ "failed") (-1184 (-895 (-360)))) 115) (((-3 $ "failed") (-1184 (-895 (-531)))) 105) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 73) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 60)) (-2523 (($ (-1184 (-297 (-360)))) 91) (($ (-1184 (-297 (-531)))) 80) (($ (-1184 (-895 (-360)))) 111) (($ (-1184 (-895 (-531)))) 101) (($ (-1184 (-388 (-895 (-360))))) 69) (($ (-1184 (-388 (-895 (-531))))) 53)) (-3206 (((-1189) $) 45)) (-2265 (((-806) $) 39) (($ (-598 (-311))) 29) (($ (-311)) 32) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 35) (($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))) 30)))
+(((-80 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649))))))) (-1102)) (T -80))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))) (-5 *1 (-80 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))))))
+((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 115) (((-3 $ "failed") (-639 (-297 (-531)))) 104) (((-3 $ "failed") (-639 (-895 (-360)))) 137) (((-3 $ "failed") (-639 (-895 (-531)))) 126) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 93) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 80)) (-2523 (($ (-639 (-297 (-360)))) 111) (($ (-639 (-297 (-531)))) 100) (($ (-639 (-895 (-360)))) 133) (($ (-639 (-895 (-531)))) 122) (($ (-639 (-388 (-895 (-360))))) 89) (($ (-639 (-388 (-895 (-531))))) 73)) (-3206 (((-1189) $) 63)) (-2265 (((-806) $) 50) (($ (-598 (-311))) 57) (($ (-311)) 46) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 55) (($ (-639 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))) 47)))
+(((-81 |#1|) (-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649))))))) (-1102)) (T -81))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))) (-5 *1 (-81 *3)) (-14 *3 (-1102)))))
+(-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE X) (QUOTE -4139)) (-2274) (-649)))))))
+((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 112) (((-3 $ "failed") (-639 (-297 (-531)))) 100) (((-3 $ "failed") (-639 (-895 (-360)))) 134) (((-3 $ "failed") (-639 (-895 (-531)))) 123) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 88) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 74)) (-2523 (($ (-639 (-297 (-360)))) 108) (($ (-639 (-297 (-531)))) 96) (($ (-639 (-895 (-360)))) 130) (($ (-639 (-895 (-531)))) 119) (($ (-639 (-388 (-895 (-360))))) 84) (($ (-639 (-388 (-895 (-531))))) 67)) (-3206 (((-1189) $) 59)) (-2265 (((-806) $) 53) (($ (-598 (-311))) 47) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 44) (($ (-639 (-320 (-2274 (QUOTE X)) (-2274) (-649)))) 45)))
+(((-82 |#1|) (-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE X)) (-2274) (-649))))))) (-1102)) (T -82))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-320 (-2274 (QUOTE X)) (-2274) (-649)))) (-5 *1 (-82 *3)) (-14 *3 (-1102)))))
+(-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE X)) (-2274) (-649)))))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 104) (((-3 $ "failed") (-1184 (-297 (-531)))) 93) (((-3 $ "failed") (-1184 (-895 (-360)))) 124) (((-3 $ "failed") (-1184 (-895 (-531)))) 114) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 82) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 69)) (-2523 (($ (-1184 (-297 (-360)))) 100) (($ (-1184 (-297 (-531)))) 89) (($ (-1184 (-895 (-360)))) 120) (($ (-1184 (-895 (-531)))) 110) (($ (-1184 (-388 (-895 (-360))))) 78) (($ (-1184 (-388 (-895 (-531))))) 62)) (-3206 (((-1189) $) 46)) (-2265 (((-806) $) 40) (($ (-598 (-311))) 49) (($ (-311)) 36) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 52) (($ (-1184 (-320 (-2274 (QUOTE X)) (-2274) (-649)))) 37)))
+(((-83 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274) (-649))))))) (-1102)) (T -83))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X)) (-2274) (-649)))) (-5 *1 (-83 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274) (-649)))))))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 79) (((-3 $ "failed") (-1184 (-297 (-531)))) 68) (((-3 $ "failed") (-1184 (-895 (-360)))) 99) (((-3 $ "failed") (-1184 (-895 (-531)))) 89) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 57) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 44)) (-2523 (($ (-1184 (-297 (-360)))) 75) (($ (-1184 (-297 (-531)))) 64) (($ (-1184 (-895 (-360)))) 95) (($ (-1184 (-895 (-531)))) 85) (($ (-1184 (-388 (-895 (-360))))) 53) (($ (-1184 (-388 (-895 (-531))))) 37)) (-3206 (((-1189) $) 125)) (-2265 (((-806) $) 119) (($ (-598 (-311))) 110) (($ (-311)) 116) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 114) (($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))) 36)))
+(((-84 |#1|) (-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))))))) (-1102)) (T -84))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))) (-5 *1 (-84 *3)) (-14 *3 (-1102)))))
+(-13 (-421) (-10 -8 (-15 -2265 ($ (-1184 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))))))
+((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 113) (((-3 $ "failed") (-639 (-297 (-531)))) 101) (((-3 $ "failed") (-639 (-895 (-360)))) 135) (((-3 $ "failed") (-639 (-895 (-531)))) 124) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 89) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 75)) (-2523 (($ (-639 (-297 (-360)))) 109) (($ (-639 (-297 (-531)))) 97) (($ (-639 (-895 (-360)))) 131) (($ (-639 (-895 (-531)))) 120) (($ (-639 (-388 (-895 (-360))))) 85) (($ (-639 (-388 (-895 (-531))))) 68)) (-3206 (((-1189) $) 59)) (-2265 (((-806) $) 53) (($ (-598 (-311))) 43) (($ (-311)) 50) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 48) (($ (-639 (-320 (-2274 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2274) (-649)))) 44)))
+(((-85 |#1|) (-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2274) (-649))))))) (-1102)) (T -85))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-320 (-2274 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2274) (-649)))) (-5 *1 (-85 *3)) (-14 *3 (-1102)))))
+(-13 (-365) (-10 -8 (-15 -2265 ($ (-639 (-320 (-2274 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-2274) (-649)))))))
+((-3206 (((-1189) $) 44)) (-2265 (((-806) $) 38) (($ (-1184 (-649))) 92) (($ (-598 (-311))) 30) (($ (-311)) 35) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 33)))
+(((-86 |#1|) (-420) (-1102)) (T -86))
NIL
(-420)
-((-3139 (((-3 $ "failed") (-297 (-360))) 47) (((-3 $ "failed") (-297 (-530))) 52) (((-3 $ "failed") (-893 (-360))) 56) (((-3 $ "failed") (-893 (-530))) 60) (((-3 $ "failed") (-388 (-893 (-360)))) 42) (((-3 $ "failed") (-388 (-893 (-530)))) 35)) (-2585 (($ (-297 (-360))) 45) (($ (-297 (-530))) 50) (($ (-893 (-360))) 54) (($ (-893 (-530))) 58) (($ (-388 (-893 (-360)))) 40) (($ (-388 (-893 (-530)))) 32)) (-3176 (((-1186) $) 90)) (-2366 (((-804) $) 84) (($ (-597 (-311))) 78) (($ (-311)) 81) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 76) (($ (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))) 31)))
-(((-87 |#1|) (-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647)))))) (-1099)) (T -87))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))) (-5 *1 (-87 *3)) (-14 *3 (-1099)))))
-(-13 (-377) (-10 -8 (-15 -2366 ($ (-320 (-2377 (QUOTE X)) (-2377 (QUOTE -4126)) (-647))))))
-((-3163 (((-1181 (-637 |#1|)) (-637 |#1|)) 54)) (-3677 (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862)) 44)) (-3039 (((-2 (|:| |minor| (-597 (-862))) (|:| -2776 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862)) 65 (|has| |#1| (-344)))))
-(((-88 |#1| |#2|) (-10 -7 (-15 -3677 ((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862))) (-15 -3163 ((-1181 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-344)) (-15 -3039 ((-2 (|:| |minor| (-597 (-862))) (|:| -2776 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862))) |%noBranch|)) (-522) (-607 |#1|)) (T -88))
-((-3039 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |minor| (-597 (-862))) (|:| -2776 *3) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))) (-3163 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-637 *4)) (-4 *5 (-607 *4)))) (-3677 (*1 *2 *3 *4) (-12 (-4 *5 (-522)) (-5 *2 (-2 (|:| -2030 (-637 *5)) (|:| |vec| (-1181 (-597 (-862)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
-(-10 -7 (-15 -3677 ((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 (-597 (-862))))) |#2| (-862))) (-15 -3163 ((-1181 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-344)) (-15 -3039 ((-2 (|:| |minor| (-597 (-862))) (|:| -2776 |#2|) (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 |#2|))) |#2| (-862))) |%noBranch|))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1598 ((|#1| $) 35)) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-3684 ((|#1| |#1| $) 30)) (-2176 ((|#1| $) 28)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) NIL)) (-2441 (($ |#1| $) 31)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2738 ((|#1| $) 29)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 16)) (-3958 (($) 39)) (-4218 (((-719) $) 26)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 15)) (-2366 (((-804) $) 25 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) NIL)) (-1669 (($ (-597 |#1|)) 37)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 13 (|has| |#1| (-1027)))) (-2267 (((-719) $) 10 (|has| $ (-6 -4269)))))
-(((-89 |#1|) (-13 (-1047 |#1|) (-10 -8 (-15 -1669 ($ (-597 |#1|))))) (-1027)) (T -89))
-((-1669 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-89 *3)))))
-(-13 (-1047 |#1|) (-10 -8 (-15 -1669 ($ (-597 |#1|)))))
-((-2366 (((-804) $) 12) (((-1104) $) 8)))
-(((-90 |#1|) (-10 -8 (-15 -2366 ((-1104) |#1|)) (-15 -2366 ((-804) |#1|))) (-91)) (T -90))
-NIL
-(-10 -8 (-15 -2366 ((-1104) |#1|)) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (((-1104) $) 14)) (-2248 (((-110) $ $) 6)))
+((-3154 (((-3 $ "failed") (-297 (-360))) 47) (((-3 $ "failed") (-297 (-531))) 52) (((-3 $ "failed") (-895 (-360))) 56) (((-3 $ "failed") (-895 (-531))) 60) (((-3 $ "failed") (-388 (-895 (-360)))) 42) (((-3 $ "failed") (-388 (-895 (-531)))) 35)) (-2523 (($ (-297 (-360))) 45) (($ (-297 (-531))) 50) (($ (-895 (-360))) 54) (($ (-895 (-531))) 58) (($ (-388 (-895 (-360)))) 40) (($ (-388 (-895 (-531)))) 32)) (-3206 (((-1189) $) 90)) (-2265 (((-806) $) 84) (($ (-598 (-311))) 78) (($ (-311)) 81) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 76) (($ (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))) 31)))
+(((-87 |#1|) (-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649)))))) (-1102)) (T -87))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))) (-5 *1 (-87 *3)) (-14 *3 (-1102)))))
+(-13 (-377) (-10 -8 (-15 -2265 ($ (-320 (-2274 (QUOTE X)) (-2274 (QUOTE -4139)) (-649))))))
+((-1852 (((-1184 (-639 |#1|)) (-639 |#1|)) 54)) (-4232 (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 (-598 (-864))))) |#2| (-864)) 44)) (-1455 (((-2 (|:| |minor| (-598 (-864))) (|:| -2723 |#2|) (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 |#2|))) |#2| (-864)) 65 (|has| |#1| (-344)))))
+(((-88 |#1| |#2|) (-10 -7 (-15 -4232 ((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 (-598 (-864))))) |#2| (-864))) (-15 -1852 ((-1184 (-639 |#1|)) (-639 |#1|))) (IF (|has| |#1| (-344)) (-15 -1455 ((-2 (|:| |minor| (-598 (-864))) (|:| -2723 |#2|) (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 |#2|))) |#2| (-864))) |%noBranch|)) (-523) (-609 |#1|)) (T -88))
+((-1455 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |minor| (-598 (-864))) (|:| -2723 *3) (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 *3)))) (-5 *1 (-88 *5 *3)) (-5 *4 (-864)) (-4 *3 (-609 *5)))) (-1852 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-88 *4 *5)) (-5 *3 (-639 *4)) (-4 *5 (-609 *4)))) (-4232 (*1 *2 *3 *4) (-12 (-4 *5 (-523)) (-5 *2 (-2 (|:| -1751 (-639 *5)) (|:| |vec| (-1184 (-598 (-864)))))) (-5 *1 (-88 *5 *3)) (-5 *4 (-864)) (-4 *3 (-609 *5)))))
+(-10 -7 (-15 -4232 ((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 (-598 (-864))))) |#2| (-864))) (-15 -1852 ((-1184 (-639 |#1|)) (-639 |#1|))) (IF (|has| |#1| (-344)) (-15 -1455 ((-2 (|:| |minor| (-598 (-864))) (|:| -2723 |#2|) (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 |#2|))) |#2| (-864))) |%noBranch|))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1573 ((|#1| $) 35)) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-3196 ((|#1| |#1| $) 30)) (-4205 ((|#1| $) 28)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) NIL)) (-3944 (($ |#1| $) 31)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-4192 ((|#1| $) 29)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 16)) (-3781 (($) 39)) (-1216 (((-721) $) 26)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 15)) (-2265 (((-806) $) 25 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) NIL)) (-3170 (($ (-598 |#1|)) 37)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 13 (|has| |#1| (-1030)))) (-2167 (((-721) $) 10 (|has| $ (-6 -4273)))))
+(((-89 |#1|) (-13 (-1050 |#1|) (-10 -8 (-15 -3170 ($ (-598 |#1|))))) (-1030)) (T -89))
+((-3170 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-89 *3)))))
+(-13 (-1050 |#1|) (-10 -8 (-15 -3170 ($ (-598 |#1|)))))
+((-2265 (((-806) $) 12) (((-1107) $) 8)))
+(((-90 |#1|) (-10 -8 (-15 -2265 ((-1107) |#1|)) (-15 -2265 ((-806) |#1|))) (-91)) (T -90))
+NIL
+(-10 -8 (-15 -2265 ((-1107) |#1|)) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (((-1107) $) 14)) (-2148 (((-110) $ $) 6)))
(((-91) (-133)) (T -91))
NIL
-(-13 (-1027) (-571 (-1104)))
-(((-99) . T) ((-571 (-804)) . T) ((-571 (-1104)) . T) ((-1027) . T))
-((-2334 (($ $) 10)) (-2347 (($ $) 12)))
-(((-92 |#1|) (-10 -8 (-15 -2347 (|#1| |#1|)) (-15 -2334 (|#1| |#1|))) (-93)) (T -92))
+(-13 (-1030) (-572 (-1107)))
+(((-99) . T) ((-572 (-806)) . T) ((-572 (-1107)) . T) ((-1030) . T))
+((-2318 (($ $) 10)) (-2331 (($ $) 12)))
+(((-92 |#1|) (-10 -8 (-15 -2331 (|#1| |#1|)) (-15 -2318 (|#1| |#1|))) (-93)) (T -92))
NIL
-(-10 -8 (-15 -2347 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)))
-((-2314 (($ $) 11)) (-2293 (($ $) 10)) (-2334 (($ $) 9)) (-2347 (($ $) 8)) (-2324 (($ $) 7)) (-2304 (($ $) 6)))
+(-10 -8 (-15 -2331 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)))
+((-2292 (($ $) 11)) (-2266 (($ $) 10)) (-2318 (($ $) 9)) (-2331 (($ $) 8)) (-2305 (($ $) 7)) (-2279 (($ $) 6)))
(((-93) (-133)) (T -93))
-((-2314 (*1 *1 *1) (-4 *1 (-93))) (-2293 (*1 *1 *1) (-4 *1 (-93))) (-2334 (*1 *1 *1) (-4 *1 (-93))) (-2347 (*1 *1 *1) (-4 *1 (-93))) (-2324 (*1 *1 *1) (-4 *1 (-93))) (-2304 (*1 *1 *1) (-4 *1 (-93))))
-(-13 (-10 -8 (-15 -2304 ($ $)) (-15 -2324 ($ $)) (-15 -2347 ($ $)) (-15 -2334 ($ $)) (-15 -2293 ($ $)) (-15 -2314 ($ $))))
-((-2352 (((-110) $ $) NIL)) (-3345 (((-360) (-1082) (-360)) 42) (((-360) (-1082) (-1082) (-360)) 41)) (-2760 (((-360) (-360)) 33)) (-2418 (((-1186)) 36)) (-1424 (((-1082) $) NIL)) (-3927 (((-360) (-1082) (-1082)) 46) (((-360) (-1082)) 48)) (-2624 (((-1046) $) NIL)) (-3531 (((-360) (-1082) (-1082)) 47)) (-2256 (((-360) (-1082) (-1082)) 49) (((-360) (-1082)) 50)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-94) (-13 (-1027) (-10 -7 (-15 -3927 ((-360) (-1082) (-1082))) (-15 -3927 ((-360) (-1082))) (-15 -2256 ((-360) (-1082) (-1082))) (-15 -2256 ((-360) (-1082))) (-15 -3531 ((-360) (-1082) (-1082))) (-15 -2418 ((-1186))) (-15 -2760 ((-360) (-360))) (-15 -3345 ((-360) (-1082) (-360))) (-15 -3345 ((-360) (-1082) (-1082) (-360))) (-6 -4269)))) (T -94))
-((-3927 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3927 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2256 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2256 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3531 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2418 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-94)))) (-2760 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))) (-3345 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))) (-3345 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))))
-(-13 (-1027) (-10 -7 (-15 -3927 ((-360) (-1082) (-1082))) (-15 -3927 ((-360) (-1082))) (-15 -2256 ((-360) (-1082) (-1082))) (-15 -2256 ((-360) (-1082))) (-15 -3531 ((-360) (-1082) (-1082))) (-15 -2418 ((-1186))) (-15 -2760 ((-360) (-360))) (-15 -3345 ((-360) (-1082) (-360))) (-15 -3345 ((-360) (-1082) (-1082) (-360))) (-6 -4269)))
+((-2292 (*1 *1 *1) (-4 *1 (-93))) (-2266 (*1 *1 *1) (-4 *1 (-93))) (-2318 (*1 *1 *1) (-4 *1 (-93))) (-2331 (*1 *1 *1) (-4 *1 (-93))) (-2305 (*1 *1 *1) (-4 *1 (-93))) (-2279 (*1 *1 *1) (-4 *1 (-93))))
+(-13 (-10 -8 (-15 -2279 ($ $)) (-15 -2305 ($ $)) (-15 -2331 ($ $)) (-15 -2318 ($ $)) (-15 -2266 ($ $)) (-15 -2292 ($ $))))
+((-2247 (((-110) $ $) NIL)) (-3319 (((-360) (-1085) (-360)) 42) (((-360) (-1085) (-1085) (-360)) 41)) (-3377 (((-360) (-360)) 33)) (-3687 (((-1189)) 36)) (-1521 (((-1085) $) NIL)) (-2724 (((-360) (-1085) (-1085)) 46) (((-360) (-1085)) 48)) (-2529 (((-1049) $) NIL)) (-2412 (((-360) (-1085) (-1085)) 47)) (-1801 (((-360) (-1085) (-1085)) 49) (((-360) (-1085)) 50)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-94) (-13 (-1030) (-10 -7 (-15 -2724 ((-360) (-1085) (-1085))) (-15 -2724 ((-360) (-1085))) (-15 -1801 ((-360) (-1085) (-1085))) (-15 -1801 ((-360) (-1085))) (-15 -2412 ((-360) (-1085) (-1085))) (-15 -3687 ((-1189))) (-15 -3377 ((-360) (-360))) (-15 -3319 ((-360) (-1085) (-360))) (-15 -3319 ((-360) (-1085) (-1085) (-360))) (-6 -4273)))) (T -94))
+((-2724 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2724 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-1801 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-1801 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-2412 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))) (-3687 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-94)))) (-3377 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))) (-3319 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1085)) (-5 *1 (-94)))) (-3319 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1085)) (-5 *1 (-94)))))
+(-13 (-1030) (-10 -7 (-15 -2724 ((-360) (-1085) (-1085))) (-15 -2724 ((-360) (-1085))) (-15 -1801 ((-360) (-1085) (-1085))) (-15 -1801 ((-360) (-1085))) (-15 -2412 ((-360) (-1085) (-1085))) (-15 -3687 ((-1189))) (-15 -3377 ((-360) (-360))) (-15 -3319 ((-360) (-1085) (-360))) (-15 -3319 ((-360) (-1085) (-1085) (-360))) (-6 -4273)))
NIL
(((-95) (-133)) (T -95))
NIL
-(-13 (-10 -7 (-6 -4269) (-6 (-4271 "*")) (-6 -4270) (-6 -4266) (-6 -4264) (-6 -4263) (-6 -4262) (-6 -4267) (-6 -4261) (-6 -4260) (-6 -4259) (-6 -4258) (-6 -4257) (-6 -4265) (-6 -4268) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4256)))
-((-2352 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2694 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-530))) 22)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 14)) (-2624 (((-1046) $) NIL)) (-1902 ((|#1| $ |#1|) 11)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 20)) (-3093 (($) 8 T CONST)) (-2248 (((-110) $ $) 10)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) 28) (($ $ (-719)) NIL) (($ $ (-530)) 16)) (* (($ $ $) 29)))
-(((-96 |#1|) (-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -2694 ($ (-1 |#1| |#1|))) (-15 -2694 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2694 ($ (-1 |#1| |#1| (-530)))))) (-984)) (T -96))
-((-2694 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))) (-2694 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))) (-2694 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-96 *3)))))
-(-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -2694 ($ (-1 |#1| |#1|))) (-15 -2694 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -2694 ($ (-1 |#1| |#1| (-530))))))
-((-1315 (((-399 |#2|) |#2| (-597 |#2|)) 10) (((-399 |#2|) |#2| |#2|) 11)))
-(((-97 |#1| |#2|) (-10 -7 (-15 -1315 ((-399 |#2|) |#2| |#2|)) (-15 -1315 ((-399 |#2|) |#2| (-597 |#2|)))) (-13 (-432) (-140)) (-1157 |#1|)) (T -97))
-((-1315 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3)))) (-1315 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -1315 ((-399 |#2|) |#2| |#2|)) (-15 -1315 ((-399 |#2|) |#2| (-597 |#2|))))
-((-2352 (((-110) $ $) 10)))
-(((-98 |#1|) (-10 -8 (-15 -2352 ((-110) |#1| |#1|))) (-99)) (T -98))
-NIL
-(-10 -8 (-15 -2352 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-2248 (((-110) $ $) 6)))
+(-13 (-10 -7 (-6 -4273) (-6 (-4275 "*")) (-6 -4274) (-6 -4270) (-6 -4268) (-6 -4267) (-6 -4266) (-6 -4271) (-6 -4265) (-6 -4264) (-6 -4263) (-6 -4262) (-6 -4261) (-6 -4269) (-6 -4272) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4260)))
+((-2247 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-3301 (($ (-1 |#1| |#1|)) 25) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 24) (($ (-1 |#1| |#1| (-531))) 22)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 14)) (-2529 (((-1049) $) NIL)) (-1785 ((|#1| $ |#1|) 11)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 20)) (-3050 (($) 8 T CONST)) (-2148 (((-110) $ $) 10)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) 28) (($ $ (-721)) NIL) (($ $ (-531)) 16)) (* (($ $ $) 29)))
+(((-96 |#1|) (-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -3301 ($ (-1 |#1| |#1|))) (-15 -3301 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3301 ($ (-1 |#1| |#1| (-531)))))) (-986)) (T -96))
+((-3301 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-96 *3)))) (-3301 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-96 *3)))) (-3301 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-531))) (-4 *3 (-986)) (-5 *1 (-96 *3)))))
+(-13 (-453) (-268 |#1| |#1|) (-10 -8 (-15 -3301 ($ (-1 |#1| |#1|))) (-15 -3301 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -3301 ($ (-1 |#1| |#1| (-531))))))
+((-1287 (((-399 |#2|) |#2| (-598 |#2|)) 10) (((-399 |#2|) |#2| |#2|) 11)))
+(((-97 |#1| |#2|) (-10 -7 (-15 -1287 ((-399 |#2|) |#2| |#2|)) (-15 -1287 ((-399 |#2|) |#2| (-598 |#2|)))) (-13 (-432) (-140)) (-1160 |#1|)) (T -97))
+((-1287 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3)))) (-1287 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-97 *4 *3)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -1287 ((-399 |#2|) |#2| |#2|)) (-15 -1287 ((-399 |#2|) |#2| (-598 |#2|))))
+((-2247 (((-110) $ $) 10)))
+(((-98 |#1|) (-10 -8 (-15 -2247 ((-110) |#1| |#1|))) (-99)) (T -98))
+NIL
+(-10 -8 (-15 -2247 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-2148 (((-110) $ $) 6)))
(((-99) (-133)) (T -99))
-((-2352 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) (-2248 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))))
-(-13 (-10 -8 (-15 -2248 ((-110) $ $)) (-15 -2352 ((-110) $ $))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) 13 (|has| $ (-6 -4270)))) (-2096 (($ $ $) NIL (|has| $ (-6 -4270)))) (-4232 (($ $ $) NIL (|has| $ (-6 -4270)))) (-3836 (($ $ (-597 |#1|)) 15)) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 11)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) 17)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1972 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-1676 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|)) 35)) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) 10)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) 12)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 9)) (-3958 (($) 16)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2940 (($ (-719) |#1|) 19)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-100 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2940 ($ (-719) |#1|)) (-15 -3836 ($ $ (-597 |#1|))) (-15 -1972 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1972 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1676 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1676 ($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|))))) (-1027)) (T -100))
-((-2940 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-100 *3)) (-4 *3 (-1027)))) (-3836 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))) (-1972 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1027)))) (-1972 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))) (-1676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))) (-1676 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-597 *2) *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2940 ($ (-719) |#1|)) (-15 -3836 ($ $ (-597 |#1|))) (-15 -1972 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1972 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1676 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1676 ($ $ |#1| (-1 (-597 |#1|) |#1| |#1| |#1|)))))
-((-1692 ((|#3| |#2| |#2|) 29)) (-1463 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4271 "*"))))) (-2646 ((|#3| |#2| |#2|) 30)) (-3398 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4271 "*"))))))
-(((-101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1692 (|#3| |#2| |#2|)) (-15 -2646 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4271 "*"))) (PROGN (-15 -1463 (|#1| |#2| |#2|)) (-15 -3398 (|#1| |#2|))) |%noBranch|)) (-984) (-1157 |#1|) (-635 |#1| |#4| |#5|) (-354 |#1|) (-354 |#1|)) (T -101))
-((-3398 (*1 *2 *3) (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-635 *2 *5 *6)))) (-1463 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2)) (-4 *4 (-635 *2 *5 *6)))) (-2646 (*1 *2 *3 *3) (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))) (-1692 (*1 *2 *3 *3) (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))))
-(-10 -7 (-15 -1692 (|#3| |#2| |#2|)) (-15 -2646 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4271 "*"))) (PROGN (-15 -1463 (|#1| |#2| |#2|)) (-15 -3398 (|#1| |#2|))) |%noBranch|))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-1633 (((-597 (-1099))) 33)) (-2179 (((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099)) 35)) (-2248 (((-110) $ $) NIL)))
-(((-102) (-13 (-1027) (-10 -7 (-15 -1633 ((-597 (-1099)))) (-15 -2179 ((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099))) (-6 -4269)))) (T -102))
-((-1633 (*1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-102)))) (-2179 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208))))) (-5 *1 (-102)))))
-(-13 (-1027) (-10 -7 (-15 -1633 ((-597 (-1099)))) (-15 -2179 ((-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208))) (|:| |singularities| (-1080 (-208)))) (-1099))) (-6 -4269)))
-((-2242 (($ (-597 |#2|)) 11)))
-(((-103 |#1| |#2|) (-10 -8 (-15 -2242 (|#1| (-597 |#2|)))) (-104 |#2|) (-1135)) (T -103))
-NIL
-(-10 -8 (-15 -2242 (|#1| (-597 |#2|))))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-104 |#1|) (-133) (-1135)) (T -104))
-((-2242 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-104 *3)))) (-2738 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))) (-2441 (*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))) (-1723 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
-(-13 (-468 |t#1|) (-10 -8 (-6 -4270) (-15 -2242 ($ (-597 |t#1|))) (-15 -2738 (|t#1| $)) (-15 -2441 ($ |t#1| $)) (-15 -1723 (|t#1| $))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-530) $) NIL (|has| (-530) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-530) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2585 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-530) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-530) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-530) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-2166 (((-110) $) NIL (|has| (-530) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-530) (-795)))) (-3217 (($ (-1 (-530) (-530)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-530) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-3175 (((-530) $) NIL (|has| (-530) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-530) $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 2) $) 10)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-530) $) NIL (|has| (-530) (-515)))) (-1611 (($ (-388 (-530))) 9)) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-530) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2364 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
-(((-105) (-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 2) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1611 ($ (-388 (-530))))))) (T -105))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-943 2)) (-5 *1 (-105)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105)))))
-(-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 2) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1611 ($ (-388 (-530))))))
-((-2211 (((-597 (-906)) $) 14)) (-3907 (((-1099) $) 10)) (-2366 (((-804) $) 23)) (-3089 (($ (-1099) (-597 (-906))) 15)))
-(((-106) (-13 (-571 (-804)) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -2211 ((-597 (-906)) $)) (-15 -3089 ($ (-1099) (-597 (-906))))))) (T -106))
-((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-106)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-597 (-906))) (-5 *1 (-106)))) (-3089 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-106)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -2211 ((-597 (-906)) $)) (-15 -3089 ($ (-1099) (-597 (-906))))))
-((-2352 (((-110) $ $) NIL)) (-3753 (((-1046) $ (-1046)) 24)) (-3102 (($ $ (-1082)) 17)) (-3806 (((-3 (-1046) "failed") $) 23)) (-1214 (((-1046) $) 21)) (-2145 (((-1046) $ (-1046)) 26)) (-2027 (((-1046) $) 25)) (-2551 (($ (-369)) NIL) (($ (-369) (-1082)) 16)) (-3907 (((-369) $) NIL)) (-1424 (((-1082) $) NIL)) (-3816 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3422 (($ $) 18)) (-2248 (((-110) $ $) NIL)))
-(((-107) (-13 (-345 (-369) (-1046)) (-10 -8 (-15 -3806 ((-3 (-1046) "failed") $)) (-15 -2027 ((-1046) $)) (-15 -2145 ((-1046) $ (-1046)))))) (T -107))
-((-3806 (*1 *2 *1) (|partial| -12 (-5 *2 (-1046)) (-5 *1 (-107)))) (-2027 (*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))) (-2145 (*1 *2 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))))
-(-13 (-345 (-369) (-1046)) (-10 -8 (-15 -3806 ((-3 (-1046) "failed") $)) (-15 -2027 ((-1046) $)) (-15 -2145 ((-1046) $ (-1046)))))
-((-2352 (((-110) $ $) NIL)) (-2522 (($ $) NIL)) (-3085 (($ $ $) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-795)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-1307 (($ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-110) $ (-1148 (-530)) (-110)) NIL (|has| $ (-6 -4270))) (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2383 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2134 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-3592 (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4270)))) (-3532 (((-110) $ (-530)) NIL)) (-2027 (((-530) (-110) $ (-530)) NIL (|has| (-110) (-1027))) (((-530) (-110) $) NIL (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) NIL)) (-3779 (((-597 (-110)) $) NIL (|has| $ (-6 -4269)))) (-2813 (($ $ $) NIL)) (-3676 (($ $) NIL)) (-1493 (($ $ $) NIL)) (-3538 (($ (-719) (-110)) 8)) (-4073 (($ $ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL)) (-3683 (($ $ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2395 (((-597 (-110)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL)) (-3583 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-110) (-110) (-110)) $ $) NIL) (($ (-1 (-110) (-110)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ (-110) $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-110) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-1522 (($ $ (-110)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-110)) (-597 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2261 (((-597 (-110)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (($ $ (-1148 (-530))) NIL) (((-110) $ (-530)) NIL) (((-110) $ (-530) (-110)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2632 (((-719) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027)))) (((-719) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-110) (-572 (-506))))) (-2377 (($ (-597 (-110))) NIL)) (-3483 (($ (-597 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2366 (((-804) $) NIL)) (-1711 (($ (-719) (-110)) 9)) (-3889 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3380 (($ $ $) NIL)) (-1262 (($ $ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-1253 (($ $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-108) (-13 (-121) (-10 -8 (-15 -1711 ($ (-719) (-110)))))) (T -108))
-((-1711 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-110)) (-5 *1 (-108)))))
-(-13 (-121) (-10 -8 (-15 -1711 ($ (-719) (-110)))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
-(((-109 |#1| |#2|) (-133) (-984) (-984)) (T -109))
-NIL
-(-13 (-599 |t#1|) (-990 |t#2|) (-10 -7 (-6 -4264) (-6 -4263)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-990 |#2|) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-2522 (($ $) 10)) (-3085 (($ $ $) 15)) (-3371 (($) 7 T CONST)) (-3869 (($ $) 6)) (-3023 (((-719)) 24)) (-1364 (($) 30)) (-2813 (($ $ $) 13)) (-3676 (($ $) 9)) (-1493 (($ $ $) 16)) (-4073 (($ $ $) 17)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1905 (((-862) $) 29)) (-1424 (((-1082) $) NIL)) (-1986 (($ (-862)) 28)) (-3064 (($ $ $) 20)) (-2624 (((-1046) $) NIL)) (-2217 (($) 8 T CONST)) (-3582 (($ $ $) 21)) (-3260 (((-506) $) 36)) (-2366 (((-804) $) 39)) (-3380 (($ $ $) 11)) (-1262 (($ $ $) 14)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 19)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 22)) (-1253 (($ $ $) 12)))
-(((-110) (-13 (-795) (-349) (-612) (-908) (-572 (-506)) (-10 -8 (-15 -3371 ($) -2708) (-15 -2217 ($) -2708) (-15 -3085 ($ $ $)) (-15 -4073 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -3869 ($ $))))) (T -110))
-((-3371 (*1 *1) (-5 *1 (-110))) (-2217 (*1 *1) (-5 *1 (-110))) (-3085 (*1 *1 *1 *1) (-5 *1 (-110))) (-4073 (*1 *1 *1 *1) (-5 *1 (-110))) (-1493 (*1 *1 *1 *1) (-5 *1 (-110))) (-3869 (*1 *1 *1) (-5 *1 (-110))))
-(-13 (-795) (-349) (-612) (-908) (-572 (-506)) (-10 -8 (-15 -3371 ($) -2708) (-15 -2217 ($) -2708) (-15 -3085 ($ $ $)) (-15 -4073 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -3869 ($ $))))
-((-2755 (((-3 (-1 |#1| (-597 |#1|)) "failed") (-112)) 19) (((-112) (-112) (-1 |#1| |#1|)) 13) (((-112) (-112) (-1 |#1| (-597 |#1|))) 11) (((-3 |#1| "failed") (-112) (-597 |#1|)) 21)) (-2232 (((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112)) 25) (((-112) (-112) (-1 |#1| |#1|)) 30) (((-112) (-112) (-597 (-1 |#1| (-597 |#1|)))) 26)) (-3915 (((-112) |#1|) 56 (|has| |#1| (-795)))) (-3232 (((-3 |#1| "failed") (-112)) 50 (|has| |#1| (-795)))))
-(((-111 |#1|) (-10 -7 (-15 -2755 ((-3 |#1| "failed") (-112) (-597 |#1|))) (-15 -2755 ((-112) (-112) (-1 |#1| (-597 |#1|)))) (-15 -2755 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2755 ((-3 (-1 |#1| (-597 |#1|)) "failed") (-112))) (-15 -2232 ((-112) (-112) (-597 (-1 |#1| (-597 |#1|))))) (-15 -2232 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2232 ((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112))) (IF (|has| |#1| (-795)) (PROGN (-15 -3915 ((-112) |#1|)) (-15 -3232 ((-3 |#1| "failed") (-112)))) |%noBranch|)) (-1027)) (T -111))
-((-3232 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-111 *2)))) (-3915 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))) (-2232 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-1 *4 (-597 *4)))) (-5 *1 (-111 *4)) (-4 *4 (-1027)))) (-2232 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2232 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 (-1 *4 (-597 *4)))) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2755 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-597 *4))) (-5 *1 (-111 *4)) (-4 *4 (-1027)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2755 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-597 *4))) (-4 *4 (-1027)) (-5 *1 (-111 *4)))) (-2755 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-597 *2)) (-5 *1 (-111 *2)) (-4 *2 (-1027)))))
-(-10 -7 (-15 -2755 ((-3 |#1| "failed") (-112) (-597 |#1|))) (-15 -2755 ((-112) (-112) (-1 |#1| (-597 |#1|)))) (-15 -2755 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2755 ((-3 (-1 |#1| (-597 |#1|)) "failed") (-112))) (-15 -2232 ((-112) (-112) (-597 (-1 |#1| (-597 |#1|))))) (-15 -2232 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2232 ((-3 (-597 (-1 |#1| (-597 |#1|))) "failed") (-112))) (IF (|has| |#1| (-795)) (PROGN (-15 -3915 ((-112) |#1|)) (-15 -3232 ((-3 |#1| "failed") (-112)))) |%noBranch|))
-((-2352 (((-110) $ $) NIL)) (-2001 (((-719) $) 72) (($ $ (-719)) 30)) (-3937 (((-110) $) 32)) (-3127 (($ $ (-1082) (-722)) 26)) (-4206 (($ $ (-44 (-1082) (-722))) 15)) (-1818 (((-3 (-722) "failed") $ (-1082)) 25)) (-2211 (((-44 (-1082) (-722)) $) 14)) (-4124 (($ (-1099)) 17) (($ (-1099) (-719)) 22)) (-2722 (((-110) $) 31)) (-2266 (((-110) $) 33)) (-3907 (((-1099) $) 8)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-1826 (((-110) $ (-1099)) 10)) (-4228 (($ $ (-1 (-506) (-597 (-506)))) 52) (((-3 (-1 (-506) (-597 (-506))) "failed") $) 56)) (-2624 (((-1046) $) NIL)) (-3799 (((-110) $ (-1082)) 29)) (-3435 (($ $ (-1 (-110) $ $)) 35)) (-2388 (((-3 (-1 (-804) (-597 (-804))) "failed") $) 54) (($ $ (-1 (-804) (-597 (-804)))) 41) (($ $ (-1 (-804) (-804))) 43)) (-2449 (($ $ (-1082)) 45)) (-2579 (($ $) 63)) (-2478 (($ $ (-1 (-110) $ $)) 36)) (-2366 (((-804) $) 48)) (-3925 (($ $ (-1082)) 27)) (-1586 (((-3 (-719) "failed") $) 58)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 71)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 79)))
-(((-112) (-13 (-795) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -2211 ((-44 (-1082) (-722)) $)) (-15 -2579 ($ $)) (-15 -4124 ($ (-1099))) (-15 -4124 ($ (-1099) (-719))) (-15 -1586 ((-3 (-719) "failed") $)) (-15 -2722 ((-110) $)) (-15 -3937 ((-110) $)) (-15 -2266 ((-110) $)) (-15 -2001 ((-719) $)) (-15 -2001 ($ $ (-719))) (-15 -3435 ($ $ (-1 (-110) $ $))) (-15 -2478 ($ $ (-1 (-110) $ $))) (-15 -2388 ((-3 (-1 (-804) (-597 (-804))) "failed") $)) (-15 -2388 ($ $ (-1 (-804) (-597 (-804))))) (-15 -2388 ($ $ (-1 (-804) (-804)))) (-15 -4228 ($ $ (-1 (-506) (-597 (-506))))) (-15 -4228 ((-3 (-1 (-506) (-597 (-506))) "failed") $)) (-15 -1826 ((-110) $ (-1099))) (-15 -3799 ((-110) $ (-1082))) (-15 -3925 ($ $ (-1082))) (-15 -2449 ($ $ (-1082))) (-15 -1818 ((-3 (-722) "failed") $ (-1082))) (-15 -3127 ($ $ (-1082) (-722))) (-15 -4206 ($ $ (-44 (-1082) (-722))))))) (T -112))
-((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-112)))) (-2211 (*1 *2 *1) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))) (-2579 (*1 *1 *1) (-5 *1 (-112))) (-4124 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-112)))) (-4124 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *1 (-112)))) (-1586 (*1 *2 *1) (|partial| -12 (-5 *2 (-719)) (-5 *1 (-112)))) (-2722 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-3937 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-2266 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-2001 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-112)))) (-2001 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-112)))) (-3435 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-2478 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-2388 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112)))) (-2388 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-804))) (-5 *1 (-112)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112)))) (-4228 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112)))) (-1826 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3799 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3925 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))) (-2449 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))) (-1818 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-722)) (-5 *1 (-112)))) (-3127 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-722)) (-5 *1 (-112)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))))
-(-13 (-795) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -2211 ((-44 (-1082) (-722)) $)) (-15 -2579 ($ $)) (-15 -4124 ($ (-1099))) (-15 -4124 ($ (-1099) (-719))) (-15 -1586 ((-3 (-719) "failed") $)) (-15 -2722 ((-110) $)) (-15 -3937 ((-110) $)) (-15 -2266 ((-110) $)) (-15 -2001 ((-719) $)) (-15 -2001 ($ $ (-719))) (-15 -3435 ($ $ (-1 (-110) $ $))) (-15 -2478 ($ $ (-1 (-110) $ $))) (-15 -2388 ((-3 (-1 (-804) (-597 (-804))) "failed") $)) (-15 -2388 ($ $ (-1 (-804) (-597 (-804))))) (-15 -2388 ($ $ (-1 (-804) (-804)))) (-15 -4228 ($ $ (-1 (-506) (-597 (-506))))) (-15 -4228 ((-3 (-1 (-506) (-597 (-506))) "failed") $)) (-15 -1826 ((-110) $ (-1099))) (-15 -3799 ((-110) $ (-1082))) (-15 -3925 ($ $ (-1082))) (-15 -2449 ($ $ (-1082))) (-15 -1818 ((-3 (-722) "failed") $ (-1082))) (-15 -3127 ($ $ (-1082) (-722))) (-15 -4206 ($ $ (-44 (-1082) (-722))))))
-((-2858 (((-530) |#2|) 37)))
-(((-113 |#1| |#2|) (-10 -7 (-15 -2858 ((-530) |#2|))) (-13 (-344) (-975 (-388 (-530)))) (-1157 |#1|)) (T -113))
-((-2858 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-975 (-388 *2)))) (-5 *2 (-530)) (-5 *1 (-113 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -2858 ((-530) |#2|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $ (-530)) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3165 (($ (-1095 (-530)) (-530)) NIL)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2957 (($ $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-2031 (((-719) $) NIL)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 (((-530)) NIL)) (-1439 (((-530) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3168 (($ $ (-530)) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2513 (((-1080 (-530)) $) NIL)) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-4136 (((-530) $ (-530)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
-(((-114 |#1|) (-810 |#1|) (-530)) (T -114))
-NIL
-(-810 |#1|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-114 |#1|) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-114 |#1|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-114 |#1|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-114 |#1|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-114 |#1|) (-975 (-530))))) (-2585 (((-114 |#1|) $) NIL) (((-1099) $) NIL (|has| (-114 |#1|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-114 |#1|) (-975 (-530)))) (((-530) $) NIL (|has| (-114 |#1|) (-975 (-530))))) (-3239 (($ $) NIL) (($ (-530) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-114 |#1|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-114 |#1|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-114 |#1|))) (|:| |vec| (-1181 (-114 |#1|)))) (-637 $) (-1181 $)) NIL) (((-637 (-114 |#1|)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-114 |#1|) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-114 |#1|) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-114 |#1|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-114 |#1|) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-114 |#1|) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-114 |#1|) (-1075)))) (-2166 (((-110) $) NIL (|has| (-114 |#1|) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-114 |#1|) (-795)))) (-1817 (($ $ $) NIL (|has| (-114 |#1|) (-795)))) (-3217 (($ (-1 (-114 |#1|) (-114 |#1|)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-114 |#1|) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-114 |#1|) (-289)))) (-3175 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-114 |#1|) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-114 |#1|)) (-597 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-114 |#1|) (-114 |#1|)) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-276 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-597 (-276 (-114 |#1|)))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-597 (-1099)) (-597 (-114 |#1|))) NIL (|has| (-114 |#1|) (-491 (-1099) (-114 |#1|)))) (($ $ (-1099) (-114 |#1|)) NIL (|has| (-114 |#1|) (-491 (-1099) (-114 |#1|))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-114 |#1|)) NIL (|has| (-114 |#1|) (-268 (-114 |#1|) (-114 |#1|))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-719)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-114 |#1|) $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| (-114 |#1|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-114 |#1|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-114 |#1|) (-572 (-506)))) (((-360) $) NIL (|has| (-114 |#1|) (-960))) (((-208) $) NIL (|has| (-114 |#1|) (-960)))) (-2054 (((-163 (-388 (-530))) $) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-114 |#1|)) NIL) (($ (-1099)) NIL (|has| (-114 |#1|) (-975 (-1099))))) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-850))) (|has| (-114 |#1|) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-515)))) (-3944 (((-110) $ $) NIL)) (-4136 (((-388 (-530)) $ (-530)) NIL)) (-3934 (($ $) NIL (|has| (-114 |#1|) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-114 |#1|) (-841 (-1099)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-719)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-114 |#1|) (-795)))) (-2364 (($ $ $) NIL) (($ (-114 |#1|) (-114 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-114 |#1|) $) NIL) (($ $ (-114 |#1|)) NIL)))
-(((-115 |#1|) (-13 (-932 (-114 |#1|)) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $)))) (-530)) (T -115))
-((-4136 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-115 *4)) (-14 *4 *3) (-5 *3 (-530)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-115 *3)) (-14 *3 (-530)))) (-3239 (*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-530)))) (-3239 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-115 *3)) (-14 *3 *2))))
-(-13 (-932 (-114 |#1|)) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $))))
-((-2552 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-2011 (((-597 $) $) 27)) (-1646 (((-110) $ $) 32)) (-4197 (((-110) |#2| $) 36)) (-3390 (((-597 |#2|) $) 22)) (-3615 (((-110) $) 16)) (-1902 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-4246 (((-110) $) 45)) (-2366 (((-804) $) 41)) (-2557 (((-597 $) $) 28)) (-2248 (((-110) $ $) 34)) (-2267 (((-719) $) 43)))
-(((-116 |#1| |#2|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2552 (|#1| |#1| "right" |#1|)) (-15 -2552 (|#1| |#1| "left" |#1|)) (-15 -1902 (|#1| |#1| "right")) (-15 -1902 (|#1| |#1| "left")) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -1646 ((-110) |#1| |#1|)) (-15 -3390 ((-597 |#2|) |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2267 ((-719) |#1|))) (-117 |#2|) (-1135)) (T -116))
-NIL
-(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2552 (|#1| |#1| "right" |#1|)) (-15 -2552 (|#1| |#1| "left" |#1|)) (-15 -1902 (|#1| |#1| "right")) (-15 -1902 (|#1| |#1| "left")) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -1646 ((-110) |#1| |#1|)) (-15 -3390 ((-597 |#2|) |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2267 ((-719) |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-2096 (($ $ $) 52 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 54 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) (($ $ "left" $) 55 (|has| $ (-6 -4270))) (($ $ "right" $) 53 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3638 (($ $) 57)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3628 (($ $) 59)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-117 |#1|) (-133) (-1135)) (T -117))
-((-3628 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-3638 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-2552 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-4232 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))) (-2552 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3)) (-4 *3 (-1135)))) (-2096 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
-(-13 (-949 |t#1|) (-10 -8 (-15 -3628 ($ $)) (-15 -1902 ($ $ "left")) (-15 -3638 ($ $)) (-15 -1902 ($ $ "right")) (IF (|has| $ (-6 -4270)) (PROGN (-15 -2552 ($ $ "left" $)) (-15 -4232 ($ $ $)) (-15 -2552 ($ $ "right" $)) (-15 -2096 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-4105 (((-110) |#1|) 24)) (-2317 (((-719) (-719)) 23) (((-719)) 22)) (-3481 (((-110) |#1| (-110)) 25) (((-110) |#1|) 26)))
-(((-118 |#1|) (-10 -7 (-15 -3481 ((-110) |#1|)) (-15 -3481 ((-110) |#1| (-110))) (-15 -2317 ((-719))) (-15 -2317 ((-719) (-719))) (-15 -4105 ((-110) |#1|))) (-1157 (-530))) (T -118))
-((-4105 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-2317 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-2317 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-3481 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))) (-3481 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
-(-10 -7 (-15 -3481 ((-110) |#1|)) (-15 -3481 ((-110) |#1| (-110))) (-15 -2317 ((-719))) (-15 -2317 ((-719) (-719))) (-15 -4105 ((-110) |#1|)))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 15)) (-1489 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-2096 (($ $ $) 18 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 20 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 17)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) 23)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) 19)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-3525 (($ |#1| $) 24)) (-2441 (($ |#1| $) 10)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 14)) (-3958 (($) 8)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1968 (($ (-597 |#1|)) 12)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-119 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1968 ($ (-597 |#1|))) (-15 -2441 ($ |#1| $)) (-15 -3525 ($ |#1| $)) (-15 -1489 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-795)) (T -119))
-((-1968 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-119 *3)))) (-2441 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))) (-3525 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))) (-1489 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3)))) (-5 *1 (-119 *3)) (-4 *3 (-795)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1968 ($ (-597 |#1|))) (-15 -2441 ($ |#1| $)) (-15 -3525 ($ |#1| $)) (-15 -1489 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
-((-2522 (($ $) 13)) (-3676 (($ $) 11)) (-1493 (($ $ $) 23)) (-4073 (($ $ $) 21)) (-1262 (($ $ $) 19)) (-1253 (($ $ $) 17)))
-(((-120 |#1|) (-10 -8 (-15 -1493 (|#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -1253 (|#1| |#1| |#1|)) (-15 -1262 (|#1| |#1| |#1|))) (-121)) (T -120))
-NIL
-(-10 -8 (-15 -1493 (|#1| |#1| |#1|)) (-15 -4073 (|#1| |#1| |#1|)) (-15 -3676 (|#1| |#1|)) (-15 -2522 (|#1| |#1|)) (-15 -1253 (|#1| |#1| |#1|)) (-15 -1262 (|#1| |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-2522 (($ $) 103)) (-3085 (($ $ $) 25)) (-2097 (((-1186) $ (-530) (-530)) 66 (|has| $ (-6 -4270)))) (-2741 (((-110) $) 98 (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) 92)) (-1627 (($ $) 102 (-12 (|has| (-110) (-795)) (|has| $ (-6 -4270)))) (($ (-1 (-110) (-110) (-110)) $) 101 (|has| $ (-6 -4270)))) (-1307 (($ $) 97 (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) 91)) (-3186 (((-110) $ (-719)) 37)) (-2552 (((-110) $ (-1148 (-530)) (-110)) 88 (|has| $ (-6 -4270))) (((-110) $ (-530) (-110)) 54 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-110)) $) 71 (|has| $ (-6 -4269)))) (-2350 (($) 38 T CONST)) (-1337 (($ $) 100 (|has| $ (-6 -4270)))) (-4106 (($ $) 90)) (-3077 (($ $) 68 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-1 (-110) (-110)) $) 72 (|has| $ (-6 -4269))) (($ (-110) $) 69 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-2134 (((-110) (-1 (-110) (-110) (-110)) $) 74 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) 73 (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) 70 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-3592 (((-110) $ (-530) (-110)) 53 (|has| $ (-6 -4270)))) (-3532 (((-110) $ (-530)) 55)) (-2027 (((-530) (-110) $ (-530)) 95 (|has| (-110) (-1027))) (((-530) (-110) $) 94 (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) 93)) (-3779 (((-597 (-110)) $) 45 (|has| $ (-6 -4269)))) (-2813 (($ $ $) 26)) (-3676 (($ $) 30)) (-1493 (($ $ $) 28)) (-3538 (($ (-719) (-110)) 77)) (-4073 (($ $ $) 29)) (-4027 (((-110) $ (-719)) 36)) (-4010 (((-530) $) 63 (|has| (-530) (-795)))) (-2508 (($ $ $) 13)) (-3683 (($ $ $) 96 (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) 89)) (-2395 (((-597 (-110)) $) 46 (|has| $ (-6 -4269)))) (-4197 (((-110) (-110) $) 48 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 62 (|has| (-530) (-795)))) (-1817 (($ $ $) 14)) (-3583 (($ (-1 (-110) (-110)) $) 41 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-110) (-110) (-110)) $ $) 82) (($ (-1 (-110) (-110)) $) 40)) (-2763 (((-110) $ (-719)) 35)) (-1424 (((-1082) $) 9)) (-4028 (($ $ $ (-530)) 87) (($ (-110) $ (-530)) 86)) (-3567 (((-597 (-530)) $) 60)) (-1927 (((-110) (-530) $) 59)) (-2624 (((-1046) $) 10)) (-3048 (((-110) $) 64 (|has| (-530) (-795)))) (-1437 (((-3 (-110) "failed") (-1 (-110) (-110)) $) 75)) (-1522 (($ $ (-110)) 65 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-110)) $) 43 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-110)) (-597 (-110))) 52 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) 51 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) 50 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) 49 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-2391 (((-110) $ $) 31)) (-4064 (((-110) (-110) $) 61 (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2261 (((-597 (-110)) $) 58)) (-3250 (((-110) $) 34)) (-3958 (($) 33)) (-1902 (($ $ (-1148 (-530))) 83) (((-110) $ (-530)) 57) (((-110) $ (-530) (-110)) 56)) (-1843 (($ $ (-1148 (-530))) 85) (($ $ (-530)) 84)) (-2632 (((-719) (-110) $) 47 (-12 (|has| (-110) (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) (-110)) $) 44 (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) 99 (|has| $ (-6 -4270)))) (-2579 (($ $) 32)) (-3260 (((-506) $) 67 (|has| (-110) (-572 (-506))))) (-2377 (($ (-597 (-110))) 76)) (-3483 (($ (-597 $)) 81) (($ $ $) 80) (($ (-110) $) 79) (($ $ (-110)) 78)) (-2366 (((-804) $) 11)) (-3889 (((-110) (-1 (-110) (-110)) $) 42 (|has| $ (-6 -4269)))) (-3380 (($ $ $) 27)) (-1262 (($ $ $) 105)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-1253 (($ $ $) 104)) (-2267 (((-719) $) 39 (|has| $ (-6 -4269)))))
+((-2247 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))) (-2148 (*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110)))))
+(-13 (-10 -8 (-15 -2148 ((-110) $ $)) (-15 -2247 ((-110) $ $))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) 13 (|has| $ (-6 -4274)))) (-3303 (($ $ $) NIL (|has| $ (-6 -4274)))) (-1508 (($ $ $) NIL (|has| $ (-6 -4274)))) (-3708 (($ $ (-598 |#1|)) 15)) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 11)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) 17)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3370 ((|#1| $ (-1 |#1| |#1| |#1|)) 25) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 30)) (-3724 (($ $ |#1| (-1 |#1| |#1| |#1|)) 31) (($ $ |#1| (-1 (-598 |#1|) |#1| |#1| |#1|)) 35)) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) 10)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) 12)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 9)) (-3781 (($) 16)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3715 (($ (-721) |#1|) 19)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-100 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -3715 ($ (-721) |#1|)) (-15 -3708 ($ $ (-598 |#1|))) (-15 -3370 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3370 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3724 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3724 ($ $ |#1| (-1 (-598 |#1|) |#1| |#1| |#1|))))) (-1030)) (T -100))
+((-3715 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-100 *3)) (-4 *3 (-1030)))) (-3708 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-100 *3)))) (-3370 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1030)))) (-3370 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-100 *3)))) (-3724 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1030)) (-5 *1 (-100 *2)))) (-3724 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-598 *2) *2 *2 *2)) (-4 *2 (-1030)) (-5 *1 (-100 *2)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -3715 ($ (-721) |#1|)) (-15 -3708 ($ $ (-598 |#1|))) (-15 -3370 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -3370 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -3724 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -3724 ($ $ |#1| (-1 (-598 |#1|) |#1| |#1| |#1|)))))
+((-3736 ((|#3| |#2| |#2|) 29)) (-2962 ((|#1| |#2| |#2|) 39 (|has| |#1| (-6 (-4275 "*"))))) (-1316 ((|#3| |#2| |#2|) 30)) (-2885 ((|#1| |#2|) 42 (|has| |#1| (-6 (-4275 "*"))))))
+(((-101 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3736 (|#3| |#2| |#2|)) (-15 -1316 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4275 "*"))) (PROGN (-15 -2962 (|#1| |#2| |#2|)) (-15 -2885 (|#1| |#2|))) |%noBranch|)) (-986) (-1160 |#1|) (-637 |#1| |#4| |#5|) (-354 |#1|) (-354 |#1|)) (T -101))
+((-2885 (*1 *2 *3) (-12 (|has| *2 (-6 (-4275 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-986)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1160 *2)) (-4 *4 (-637 *2 *5 *6)))) (-2962 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4275 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2)) (-4 *2 (-986)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1160 *2)) (-4 *4 (-637 *2 *5 *6)))) (-1316 (*1 *2 *3 *3) (-12 (-4 *4 (-986)) (-4 *2 (-637 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1160 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))) (-3736 (*1 *2 *3 *3) (-12 (-4 *4 (-986)) (-4 *2 (-637 *4 *5 *6)) (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1160 *4)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)))))
+(-10 -7 (-15 -3736 (|#3| |#2| |#2|)) (-15 -1316 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4275 "*"))) (PROGN (-15 -2962 (|#1| |#2| |#2|)) (-15 -2885 (|#1| |#2|))) |%noBranch|))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3468 (((-598 (-1102))) 33)) (-4246 (((-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) (|:| |singularities| (-1083 (-208)))) (-1102)) 35)) (-2148 (((-110) $ $) NIL)))
+(((-102) (-13 (-1030) (-10 -7 (-15 -3468 ((-598 (-1102)))) (-15 -4246 ((-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) (|:| |singularities| (-1083 (-208)))) (-1102))) (-6 -4273)))) (T -102))
+((-3468 (*1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-102)))) (-4246 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) (|:| |singularities| (-1083 (-208))))) (-5 *1 (-102)))))
+(-13 (-1030) (-10 -7 (-15 -3468 ((-598 (-1102)))) (-15 -4246 ((-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208))) (|:| |singularities| (-1083 (-208)))) (-1102))) (-6 -4273)))
+((-2524 (($ (-598 |#2|)) 11)))
+(((-103 |#1| |#2|) (-10 -8 (-15 -2524 (|#1| (-598 |#2|)))) (-104 |#2|) (-1138)) (T -103))
+NIL
+(-10 -8 (-15 -2524 (|#1| (-598 |#2|))))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-104 |#1|) (-133) (-1138)) (T -104))
+((-2524 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-104 *3)))) (-4192 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138)))) (-3944 (*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138)))) (-3540 (*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138)))))
+(-13 (-468 |t#1|) (-10 -8 (-6 -4274) (-15 -2524 ($ (-598 |t#1|))) (-15 -4192 (|t#1| $)) (-15 -3944 ($ |t#1| $)) (-15 -3540 (|t#1| $))))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-531) $) NIL (|has| (-531) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-531) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-531) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-531) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-531) (-977 (-531))))) (-2523 (((-531) $) NIL) (((-1102) $) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-531) (-977 (-531)))) (((-531) $) NIL (|has| (-531) (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-531) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-531) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-531) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-531) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-531) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-531) (-1078)))) (-2985 (((-110) $) NIL (|has| (-531) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-531) (-797)))) (-3261 (($ (-1 (-531) (-531)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-531) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-531) (-289))) (((-388 (-531)) $) NIL)) (-2943 (((-531) $) NIL (|has| (-531) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-531)) (-598 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-531) (-531)) NIL (|has| (-531) (-291 (-531)))) (($ $ (-276 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-276 (-531)))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-1102)) (-598 (-531))) NIL (|has| (-531) (-492 (-1102) (-531)))) (($ $ (-1102) (-531)) NIL (|has| (-531) (-492 (-1102) (-531))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-531)) NIL (|has| (-531) (-268 (-531) (-531))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-531) $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| (-531) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-531) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-531) (-573 (-507)))) (((-360) $) NIL (|has| (-531) (-962))) (((-208) $) NIL (|has| (-531) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-531) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 8) (($ (-531)) NIL) (($ (-1102)) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL) (((-945 2) $) 10)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-531) (-852))) (|has| (-531) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-531) $) NIL (|has| (-531) (-516)))) (-1608 (($ (-388 (-531))) 9)) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-531) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2263 (($ $ $) NIL) (($ (-531) (-531)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-531) $) NIL) (($ $ (-531)) NIL)))
+(((-105) (-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 2) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -1608 ($ (-388 (-531))))))) (T -105))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-945 2)) (-5 *1 (-105)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105)))) (-1608 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105)))))
+(-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 2) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -1608 ($ (-388 (-531))))))
+((-2149 (((-598 (-908)) $) 14)) (-3955 (((-1102) $) 10)) (-2265 (((-806) $) 23)) (-1885 (($ (-1102) (-598 (-908))) 15)))
+(((-106) (-13 (-572 (-806)) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -2149 ((-598 (-908)) $)) (-15 -1885 ($ (-1102) (-598 (-908))))))) (T -106))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-106)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-598 (-908))) (-5 *1 (-106)))) (-1885 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-908))) (-5 *1 (-106)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -2149 ((-598 (-908)) $)) (-15 -1885 ($ (-1102) (-598 (-908))))))
+((-2247 (((-110) $ $) NIL)) (-2618 (((-1049) $ (-1049)) 24)) (-1743 (($ $ (-1085)) 17)) (-1616 (((-3 (-1049) "failed") $) 23)) (-3641 (((-1049) $) 21)) (-4021 (((-1049) $ (-1049)) 26)) (-1976 (((-1049) $) 25)) (-1833 (($ (-369)) NIL) (($ (-369) (-1085)) 16)) (-3955 (((-369) $) NIL)) (-1521 (((-1085) $) NIL)) (-3454 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-4074 (($ $) 18)) (-2148 (((-110) $ $) NIL)))
+(((-107) (-13 (-345 (-369) (-1049)) (-10 -8 (-15 -1616 ((-3 (-1049) "failed") $)) (-15 -1976 ((-1049) $)) (-15 -4021 ((-1049) $ (-1049)))))) (T -107))
+((-1616 (*1 *2 *1) (|partial| -12 (-5 *2 (-1049)) (-5 *1 (-107)))) (-1976 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-107)))) (-4021 (*1 *2 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-107)))))
+(-13 (-345 (-369) (-1049)) (-10 -8 (-15 -1616 ((-3 (-1049) "failed") $)) (-15 -1976 ((-1049) $)) (-15 -4021 ((-1049) $ (-1049)))))
+((-2247 (((-110) $ $) NIL)) (-1813 (($ $) NIL)) (-3082 (($ $ $) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| (-110) (-797))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-110) (-797)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4274)))) (-1332 (($ $) NIL (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-110) $ (-1151 (-531)) (-110)) NIL (|has| $ (-6 -4274))) (((-110) $ (-531) (-110)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2283 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-1760 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2693 (((-110) $ (-531) (-110)) NIL (|has| $ (-6 -4274)))) (-2627 (((-110) $ (-531)) NIL)) (-1976 (((-531) (-110) $ (-531)) NIL (|has| (-110) (-1030))) (((-531) (-110) $) NIL (|has| (-110) (-1030))) (((-531) (-1 (-110) (-110)) $) NIL)) (-2227 (((-598 (-110)) $) NIL (|has| $ (-6 -4273)))) (-2726 (($ $ $) NIL)) (-3745 (($ $) NIL)) (-4178 (($ $ $) NIL)) (-3010 (($ (-721) (-110)) 8)) (-3232 (($ $ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL)) (-3508 (($ $ $) NIL (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2445 (((-598 (-110)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL)) (-2680 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-110) (-110) (-110)) $ $) NIL) (($ (-1 (-110) (-110)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ (-110) $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-110) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-3742 (($ $ (-110)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-110)) (-598 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-598 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-3163 (((-598 (-110)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (($ $ (-1151 (-531))) NIL) (((-110) $ (-531)) NIL) (((-110) $ (-531) (-110)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2539 (((-721) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030)))) (((-721) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-110) (-573 (-507))))) (-2274 (($ (-598 (-110))) NIL)) (-3536 (($ (-598 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2265 (((-806) $) NIL)) (-2138 (($ (-721) (-110)) 9)) (-2060 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-3427 (($ $ $) NIL)) (-1868 (($ $ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-1854 (($ $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-108) (-13 (-121) (-10 -8 (-15 -2138 ($ (-721) (-110)))))) (T -108))
+((-2138 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-110)) (-5 *1 (-108)))))
+(-13 (-121) (-10 -8 (-15 -2138 ($ (-721) (-110)))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#2|) 26)))
+(((-109 |#1| |#2|) (-133) (-986) (-986)) (T -109))
+NIL
+(-13 (-601 |t#1|) (-992 |t#2|) (-10 -7 (-6 -4268) (-6 -4267)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-992 |#2|) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-1813 (($ $) 10)) (-3082 (($ $ $) 15)) (-3413 (($) 7 T CONST)) (-3948 (($ $) 6)) (-3006 (((-721)) 24)) (-1381 (($) 30)) (-2726 (($ $ $) 13)) (-3745 (($ $) 9)) (-4178 (($ $ $) 16)) (-3232 (($ $ $) 17)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2211 (((-864) $) 29)) (-1521 (((-1085) $) NIL)) (-1889 (($ (-864)) 28)) (-3051 (($ $ $) 20)) (-2529 (((-1049) $) NIL)) (-2120 (($) 8 T CONST)) (-3076 (($ $ $) 21)) (-3318 (((-507) $) 36)) (-2265 (((-806) $) 39)) (-3427 (($ $ $) 11)) (-1868 (($ $ $) 14)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 19)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 22)) (-1854 (($ $ $) 12)))
+(((-110) (-13 (-797) (-349) (-614) (-910) (-573 (-507)) (-10 -8 (-15 -3413 ($) -2651) (-15 -2120 ($) -2651) (-15 -3082 ($ $ $)) (-15 -3232 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -3948 ($ $))))) (T -110))
+((-3413 (*1 *1) (-5 *1 (-110))) (-2120 (*1 *1) (-5 *1 (-110))) (-3082 (*1 *1 *1 *1) (-5 *1 (-110))) (-3232 (*1 *1 *1 *1) (-5 *1 (-110))) (-4178 (*1 *1 *1 *1) (-5 *1 (-110))) (-3948 (*1 *1 *1) (-5 *1 (-110))))
+(-13 (-797) (-349) (-614) (-910) (-573 (-507)) (-10 -8 (-15 -3413 ($) -2651) (-15 -2120 ($) -2651) (-15 -3082 ($ $ $)) (-15 -3232 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -3948 ($ $))))
+((-2678 (((-3 (-1 |#1| (-598 |#1|)) "failed") (-112)) 19) (((-112) (-112) (-1 |#1| |#1|)) 13) (((-112) (-112) (-1 |#1| (-598 |#1|))) 11) (((-3 |#1| "failed") (-112) (-598 |#1|)) 21)) (-2365 (((-3 (-598 (-1 |#1| (-598 |#1|))) "failed") (-112)) 25) (((-112) (-112) (-1 |#1| |#1|)) 30) (((-112) (-112) (-598 (-1 |#1| (-598 |#1|)))) 26)) (-3904 (((-112) |#1|) 56 (|has| |#1| (-797)))) (-2763 (((-3 |#1| "failed") (-112)) 50 (|has| |#1| (-797)))))
+(((-111 |#1|) (-10 -7 (-15 -2678 ((-3 |#1| "failed") (-112) (-598 |#1|))) (-15 -2678 ((-112) (-112) (-1 |#1| (-598 |#1|)))) (-15 -2678 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2678 ((-3 (-1 |#1| (-598 |#1|)) "failed") (-112))) (-15 -2365 ((-112) (-112) (-598 (-1 |#1| (-598 |#1|))))) (-15 -2365 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2365 ((-3 (-598 (-1 |#1| (-598 |#1|))) "failed") (-112))) (IF (|has| |#1| (-797)) (PROGN (-15 -3904 ((-112) |#1|)) (-15 -2763 ((-3 |#1| "failed") (-112)))) |%noBranch|)) (-1030)) (T -111))
+((-2763 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1030)) (-4 *2 (-797)) (-5 *1 (-111 *2)))) (-3904 (*1 *2 *3) (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-797)) (-4 *3 (-1030)))) (-2365 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-598 (-1 *4 (-598 *4)))) (-5 *1 (-111 *4)) (-4 *4 (-1030)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1030)) (-5 *1 (-111 *4)))) (-2365 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 (-1 *4 (-598 *4)))) (-4 *4 (-1030)) (-5 *1 (-111 *4)))) (-2678 (*1 *2 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-598 *4))) (-5 *1 (-111 *4)) (-4 *4 (-1030)))) (-2678 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1030)) (-5 *1 (-111 *4)))) (-2678 (*1 *2 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-598 *4))) (-4 *4 (-1030)) (-5 *1 (-111 *4)))) (-2678 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-598 *2)) (-5 *1 (-111 *2)) (-4 *2 (-1030)))))
+(-10 -7 (-15 -2678 ((-3 |#1| "failed") (-112) (-598 |#1|))) (-15 -2678 ((-112) (-112) (-1 |#1| (-598 |#1|)))) (-15 -2678 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2678 ((-3 (-1 |#1| (-598 |#1|)) "failed") (-112))) (-15 -2365 ((-112) (-112) (-598 (-1 |#1| (-598 |#1|))))) (-15 -2365 ((-112) (-112) (-1 |#1| |#1|))) (-15 -2365 ((-3 (-598 (-1 |#1| (-598 |#1|))) "failed") (-112))) (IF (|has| |#1| (-797)) (PROGN (-15 -3904 ((-112) |#1|)) (-15 -2763 ((-3 |#1| "failed") (-112)))) |%noBranch|))
+((-2247 (((-110) $ $) NIL)) (-3449 (((-721) $) 72) (($ $ (-721)) 30)) (-4169 (((-110) $) 32)) (-4199 (($ $ (-1085) (-724)) 26)) (-1965 (($ $ (-44 (-1085) (-724))) 15)) (-1219 (((-3 (-724) "failed") $ (-1085)) 25)) (-2149 (((-44 (-1085) (-724)) $) 14)) (-3254 (($ (-1102)) 17) (($ (-1102) (-721)) 22)) (-1574 (((-110) $) 31)) (-2304 (((-110) $) 33)) (-3955 (((-1102) $) 8)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-4247 (((-110) $ (-1102)) 10)) (-4234 (($ $ (-1 (-507) (-598 (-507)))) 52) (((-3 (-1 (-507) (-598 (-507))) "failed") $) 56)) (-2529 (((-1049) $) NIL)) (-3780 (((-110) $ (-1085)) 29)) (-2860 (($ $ (-1 (-110) $ $)) 35)) (-2286 (((-3 (-1 (-806) (-598 (-806))) "failed") $) 54) (($ $ (-1 (-806) (-598 (-806)))) 41) (($ $ (-1 (-806) (-806))) 43)) (-1648 (($ $ (-1085)) 45)) (-2480 (($ $) 63)) (-1948 (($ $ (-1 (-110) $ $)) 36)) (-2265 (((-806) $) 48)) (-3973 (($ $ (-1085)) 27)) (-3219 (((-3 (-721) "failed") $) 58)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 71)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 79)))
+(((-112) (-13 (-797) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -2149 ((-44 (-1085) (-724)) $)) (-15 -2480 ($ $)) (-15 -3254 ($ (-1102))) (-15 -3254 ($ (-1102) (-721))) (-15 -3219 ((-3 (-721) "failed") $)) (-15 -1574 ((-110) $)) (-15 -4169 ((-110) $)) (-15 -2304 ((-110) $)) (-15 -3449 ((-721) $)) (-15 -3449 ($ $ (-721))) (-15 -2860 ($ $ (-1 (-110) $ $))) (-15 -1948 ($ $ (-1 (-110) $ $))) (-15 -2286 ((-3 (-1 (-806) (-598 (-806))) "failed") $)) (-15 -2286 ($ $ (-1 (-806) (-598 (-806))))) (-15 -2286 ($ $ (-1 (-806) (-806)))) (-15 -4234 ($ $ (-1 (-507) (-598 (-507))))) (-15 -4234 ((-3 (-1 (-507) (-598 (-507))) "failed") $)) (-15 -4247 ((-110) $ (-1102))) (-15 -3780 ((-110) $ (-1085))) (-15 -3973 ($ $ (-1085))) (-15 -1648 ($ $ (-1085))) (-15 -1219 ((-3 (-724) "failed") $ (-1085))) (-15 -4199 ($ $ (-1085) (-724))) (-15 -1965 ($ $ (-44 (-1085) (-724))))))) (T -112))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-112)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-44 (-1085) (-724))) (-5 *1 (-112)))) (-2480 (*1 *1 *1) (-5 *1 (-112))) (-3254 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-112)))) (-3254 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *1 (-112)))) (-3219 (*1 *2 *1) (|partial| -12 (-5 *2 (-721)) (-5 *1 (-112)))) (-1574 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-4169 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-2304 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))) (-3449 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-112)))) (-3449 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-112)))) (-2860 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-1948 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))) (-2286 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-806) (-598 (-806)))) (-5 *1 (-112)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-806) (-598 (-806)))) (-5 *1 (-112)))) (-2286 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-806) (-806))) (-5 *1 (-112)))) (-4234 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-507) (-598 (-507)))) (-5 *1 (-112)))) (-4234 (*1 *2 *1) (|partial| -12 (-5 *2 (-1 (-507) (-598 (-507)))) (-5 *1 (-112)))) (-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3780 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-112)))) (-3973 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-112)))) (-1648 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-112)))) (-1219 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-724)) (-5 *1 (-112)))) (-4199 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-724)) (-5 *1 (-112)))) (-1965 (*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1085) (-724))) (-5 *1 (-112)))))
+(-13 (-797) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -2149 ((-44 (-1085) (-724)) $)) (-15 -2480 ($ $)) (-15 -3254 ($ (-1102))) (-15 -3254 ($ (-1102) (-721))) (-15 -3219 ((-3 (-721) "failed") $)) (-15 -1574 ((-110) $)) (-15 -4169 ((-110) $)) (-15 -2304 ((-110) $)) (-15 -3449 ((-721) $)) (-15 -3449 ($ $ (-721))) (-15 -2860 ($ $ (-1 (-110) $ $))) (-15 -1948 ($ $ (-1 (-110) $ $))) (-15 -2286 ((-3 (-1 (-806) (-598 (-806))) "failed") $)) (-15 -2286 ($ $ (-1 (-806) (-598 (-806))))) (-15 -2286 ($ $ (-1 (-806) (-806)))) (-15 -4234 ($ $ (-1 (-507) (-598 (-507))))) (-15 -4234 ((-3 (-1 (-507) (-598 (-507))) "failed") $)) (-15 -4247 ((-110) $ (-1102))) (-15 -3780 ((-110) $ (-1085))) (-15 -3973 ($ $ (-1085))) (-15 -1648 ($ $ (-1085))) (-15 -1219 ((-3 (-724) "failed") $ (-1085))) (-15 -4199 ($ $ (-1085) (-724))) (-15 -1965 ($ $ (-44 (-1085) (-724))))))
+((-3138 (((-531) |#2|) 37)))
+(((-113 |#1| |#2|) (-10 -7 (-15 -3138 ((-531) |#2|))) (-13 (-344) (-977 (-388 (-531)))) (-1160 |#1|)) (T -113))
+((-3138 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-977 (-388 *2)))) (-5 *2 (-531)) (-5 *1 (-113 *4 *3)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -3138 ((-531) |#2|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $ (-531)) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3071 (($ (-1098 (-531)) (-531)) NIL)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3649 (($ $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-3617 (((-721) $) NIL)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 (((-531)) NIL)) (-3045 (((-531) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1846 (($ $ (-531)) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2890 (((-1083 (-531)) $) NIL)) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-4148 (((-531) $ (-531)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL)))
+(((-114 |#1|) (-812 |#1|) (-531)) (T -114))
+NIL
+(-812 |#1|)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-114 |#1|) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-114 |#1|) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-114 |#1|) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-114 |#1|) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-114 |#1|) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-114 |#1|) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-114 |#1|) (-977 (-531))))) (-2523 (((-114 |#1|) $) NIL) (((-1102) $) NIL (|has| (-114 |#1|) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-114 |#1|) (-977 (-531)))) (((-531) $) NIL (|has| (-114 |#1|) (-977 (-531))))) (-2581 (($ $) NIL) (($ (-531) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-114 |#1|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-114 |#1|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-114 |#1|))) (|:| |vec| (-1184 (-114 |#1|)))) (-639 $) (-1184 $)) NIL) (((-639 (-114 |#1|)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-114 |#1|) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-114 |#1|) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-114 |#1|) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-114 |#1|) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-114 |#1|) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-114 |#1|) (-1078)))) (-2985 (((-110) $) NIL (|has| (-114 |#1|) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-114 |#1|) (-797)))) (-1241 (($ $ $) NIL (|has| (-114 |#1|) (-797)))) (-3261 (($ (-1 (-114 |#1|) (-114 |#1|)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-114 |#1|) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-114 |#1|) (-289)))) (-2943 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-114 |#1|) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-114 |#1|) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-114 |#1|)) (-598 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-114 |#1|) (-114 |#1|)) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-276 (-114 |#1|))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-598 (-276 (-114 |#1|)))) NIL (|has| (-114 |#1|) (-291 (-114 |#1|)))) (($ $ (-598 (-1102)) (-598 (-114 |#1|))) NIL (|has| (-114 |#1|) (-492 (-1102) (-114 |#1|)))) (($ $ (-1102) (-114 |#1|)) NIL (|has| (-114 |#1|) (-492 (-1102) (-114 |#1|))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-114 |#1|)) NIL (|has| (-114 |#1|) (-268 (-114 |#1|) (-114 |#1|))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-721)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1102)) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-721)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-114 |#1|) $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| (-114 |#1|) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-114 |#1|) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-114 |#1|) (-573 (-507)))) (((-360) $) NIL (|has| (-114 |#1|) (-962))) (((-208) $) NIL (|has| (-114 |#1|) (-962)))) (-3591 (((-163 (-388 (-531))) $) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-114 |#1|)) NIL) (($ (-1102)) NIL (|has| (-114 |#1|) (-977 (-1102))))) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-114 |#1|) (-852))) (|has| (-114 |#1|) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-114 |#1|) $) NIL (|has| (-114 |#1|) (-516)))) (-2587 (((-110) $ $) NIL)) (-4148 (((-388 (-531)) $ (-531)) NIL)) (-1620 (($ $) NIL (|has| (-114 |#1|) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-114 |#1|) (-216))) (($ $ (-721)) NIL (|has| (-114 |#1|) (-216))) (($ $ (-1102)) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-114 |#1|) (-843 (-1102)))) (($ $ (-1 (-114 |#1|) (-114 |#1|)) (-721)) NIL) (($ $ (-1 (-114 |#1|) (-114 |#1|))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-114 |#1|) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-114 |#1|) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-114 |#1|) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-114 |#1|) (-797)))) (-2263 (($ $ $) NIL) (($ (-114 |#1|) (-114 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-114 |#1|) $) NIL) (($ $ (-114 |#1|)) NIL)))
+(((-115 |#1|) (-13 (-934 (-114 |#1|)) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) (-531)) (T -115))
+((-4148 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-115 *4)) (-14 *4 *3) (-5 *3 (-531)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-115 *3)) (-14 *3 (-531)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-531)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-115 *3)) (-14 *3 *2))))
+(-13 (-934 (-114 |#1|)) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $))))
+((-2454 ((|#2| $ "value" |#2|) NIL) (($ $ "left" $) 49) (($ $ "right" $) 51)) (-1555 (((-598 $) $) 27)) (-1478 (((-110) $ $) 32)) (-1883 (((-110) |#2| $) 36)) (-2132 (((-598 |#2|) $) 22)) (-2672 (((-110) $) 16)) (-1785 ((|#2| $ "value") NIL) (($ $ "left") 10) (($ $ "right") 13)) (-2930 (((-110) $) 45)) (-2265 (((-806) $) 41)) (-3495 (((-598 $) $) 28)) (-2148 (((-110) $ $) 34)) (-2167 (((-721) $) 43)))
+(((-116 |#1| |#2|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2454 (|#1| |#1| "right" |#1|)) (-15 -2454 (|#1| |#1| "left" |#1|)) (-15 -1785 (|#1| |#1| "right")) (-15 -1785 (|#1| |#1| "left")) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2132 ((-598 |#2|) |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2167 ((-721) |#1|))) (-117 |#2|) (-1138)) (T -116))
+NIL
+(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2454 (|#1| |#1| "right" |#1|)) (-15 -2454 (|#1| |#1| "left" |#1|)) (-15 -1785 (|#1| |#1| "right")) (-15 -1785 (|#1| |#1| "left")) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2132 ((-598 |#2|) |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2167 ((-721) |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-3303 (($ $ $) 52 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 54 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) (($ $ "left" $) 55 (|has| $ (-6 -4274))) (($ $ "right" $) 53 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-3157 (($ $) 57)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-3144 (($ $) 59)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-117 |#1|) (-133) (-1138)) (T -117))
+((-3144 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1138)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1138)))) (-3157 (*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1138)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1138)))) (-2454 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4274)) (-4 *1 (-117 *3)) (-4 *3 (-1138)))) (-1508 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-117 *2)) (-4 *2 (-1138)))) (-2454 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4274)) (-4 *1 (-117 *3)) (-4 *3 (-1138)))) (-3303 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-117 *2)) (-4 *2 (-1138)))))
+(-13 (-951 |t#1|) (-10 -8 (-15 -3144 ($ $)) (-15 -1785 ($ $ "left")) (-15 -3157 ($ $)) (-15 -1785 ($ $ "right")) (IF (|has| $ (-6 -4274)) (PROGN (-15 -2454 ($ $ "left" $)) (-15 -1508 ($ $ $)) (-15 -2454 ($ $ "right" $)) (-15 -3303 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-1537 (((-110) |#1|) 24)) (-3365 (((-721) (-721)) 23) (((-721)) 22)) (-2332 (((-110) |#1| (-110)) 25) (((-110) |#1|) 26)))
+(((-118 |#1|) (-10 -7 (-15 -2332 ((-110) |#1|)) (-15 -2332 ((-110) |#1| (-110))) (-15 -3365 ((-721))) (-15 -3365 ((-721) (-721))) (-15 -1537 ((-110) |#1|))) (-1160 (-531))) (T -118))
+((-1537 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) (-3365 (*1 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) (-3365 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) (-2332 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))) (-2332 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))))
+(-10 -7 (-15 -2332 ((-110) |#1|)) (-15 -2332 ((-110) |#1| (-110))) (-15 -3365 ((-721))) (-15 -3365 ((-721) (-721))) (-15 -1537 ((-110) |#1|)))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 15)) (-2040 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 22)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3303 (($ $ $) 18 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 20 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 17)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) 23)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) 19)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-1719 (($ |#1| $) 24)) (-3944 (($ |#1| $) 10)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 14)) (-3781 (($) 8)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2593 (($ (-598 |#1|)) 12)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-119 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -2593 ($ (-598 |#1|))) (-15 -3944 ($ |#1| $)) (-15 -1719 ($ |#1| $)) (-15 -2040 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-797)) (T -119))
+((-2593 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-119 *3)))) (-3944 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-797)))) (-1719 (*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-797)))) (-2040 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3)))) (-5 *1 (-119 *3)) (-4 *3 (-797)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -2593 ($ (-598 |#1|))) (-15 -3944 ($ |#1| $)) (-15 -1719 ($ |#1| $)) (-15 -2040 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $))))
+((-1813 (($ $) 13)) (-3745 (($ $) 11)) (-4178 (($ $ $) 23)) (-3232 (($ $ $) 21)) (-1868 (($ $ $) 19)) (-1854 (($ $ $) 17)))
+(((-120 |#1|) (-10 -8 (-15 -4178 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -1813 (|#1| |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|))) (-121)) (T -120))
+NIL
+(-10 -8 (-15 -4178 (|#1| |#1| |#1|)) (-15 -3232 (|#1| |#1| |#1|)) (-15 -3745 (|#1| |#1|)) (-15 -1813 (|#1| |#1|)) (-15 -1854 (|#1| |#1| |#1|)) (-15 -1868 (|#1| |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-1813 (($ $) 103)) (-3082 (($ $ $) 25)) (-3137 (((-1189) $ (-531) (-531)) 66 (|has| $ (-6 -4274)))) (-3202 (((-110) $) 98 (|has| (-110) (-797))) (((-110) (-1 (-110) (-110) (-110)) $) 92)) (-2375 (($ $) 102 (-12 (|has| (-110) (-797)) (|has| $ (-6 -4274)))) (($ (-1 (-110) (-110) (-110)) $) 101 (|has| $ (-6 -4274)))) (-1332 (($ $) 97 (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $) 91)) (-4058 (((-110) $ (-721)) 37)) (-2454 (((-110) $ (-1151 (-531)) (-110)) 88 (|has| $ (-6 -4274))) (((-110) $ (-531) (-110)) 54 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-110)) $) 71 (|has| $ (-6 -4273)))) (-4082 (($) 38 T CONST)) (-4106 (($ $) 100 (|has| $ (-6 -4274)))) (-1828 (($ $) 90)) (-3086 (($ $) 68 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-1 (-110) (-110)) $) 72 (|has| $ (-6 -4273))) (($ (-110) $) 69 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273))))) (-1760 (((-110) (-1 (-110) (-110) (-110)) $) 74 (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) 73 (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) 70 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273))))) (-2693 (((-110) $ (-531) (-110)) 53 (|has| $ (-6 -4274)))) (-2627 (((-110) $ (-531)) 55)) (-1976 (((-531) (-110) $ (-531)) 95 (|has| (-110) (-1030))) (((-531) (-110) $) 94 (|has| (-110) (-1030))) (((-531) (-1 (-110) (-110)) $) 93)) (-2227 (((-598 (-110)) $) 45 (|has| $ (-6 -4273)))) (-2726 (($ $ $) 26)) (-3745 (($ $) 30)) (-4178 (($ $ $) 28)) (-3010 (($ (-721) (-110)) 77)) (-3232 (($ $ $) 29)) (-3280 (((-110) $ (-721)) 36)) (-3804 (((-531) $) 63 (|has| (-531) (-797)))) (-4103 (($ $ $) 13)) (-3508 (($ $ $) 96 (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $ $) 89)) (-2445 (((-598 (-110)) $) 46 (|has| $ (-6 -4273)))) (-1883 (((-110) (-110) $) 48 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 62 (|has| (-531) (-797)))) (-1241 (($ $ $) 14)) (-2680 (($ (-1 (-110) (-110)) $) 41 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-110) (-110) (-110)) $ $) 82) (($ (-1 (-110) (-110)) $) 40)) (-3332 (((-110) $ (-721)) 35)) (-1521 (((-1085) $) 9)) (-4059 (($ $ $ (-531)) 87) (($ (-110) $ (-531)) 86)) (-3765 (((-598 (-531)) $) 60)) (-3059 (((-110) (-531) $) 59)) (-2529 (((-1049) $) 10)) (-3046 (((-110) $) 64 (|has| (-531) (-797)))) (-4190 (((-3 (-110) "failed") (-1 (-110) (-110)) $) 75)) (-3742 (($ $ (-110)) 65 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-110)) $) 43 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-110)) (-598 (-110))) 52 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-110) (-110)) 51 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-276 (-110))) 50 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-598 (-276 (-110)))) 49 (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))))) (-2019 (((-110) $ $) 31)) (-1545 (((-110) (-110) $) 61 (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-3163 (((-598 (-110)) $) 58)) (-1589 (((-110) $) 34)) (-3781 (($) 33)) (-1785 (($ $ (-1151 (-531))) 83) (((-110) $ (-531)) 57) (((-110) $ (-531) (-110)) 56)) (-1723 (($ $ (-1151 (-531))) 85) (($ $ (-531)) 84)) (-2539 (((-721) (-110) $) 47 (-12 (|has| (-110) (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) (-110)) $) 44 (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) 99 (|has| $ (-6 -4274)))) (-2480 (($ $) 32)) (-3318 (((-507) $) 67 (|has| (-110) (-573 (-507))))) (-2274 (($ (-598 (-110))) 76)) (-3536 (($ (-598 $)) 81) (($ $ $) 80) (($ (-110) $) 79) (($ $ (-110)) 78)) (-2265 (((-806) $) 11)) (-2060 (((-110) (-1 (-110) (-110)) $) 42 (|has| $ (-6 -4273)))) (-3427 (($ $ $) 27)) (-1868 (($ $ $) 105)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-1854 (($ $ $) 104)) (-2167 (((-721) $) 39 (|has| $ (-6 -4273)))))
(((-121) (-133)) (T -121))
-((-3676 (*1 *1 *1) (-4 *1 (-121))) (-4073 (*1 *1 *1 *1) (-4 *1 (-121))) (-1493 (*1 *1 *1 *1) (-4 *1 (-121))) (-3380 (*1 *1 *1 *1) (-4 *1 (-121))) (-2813 (*1 *1 *1 *1) (-4 *1 (-121))) (-3085 (*1 *1 *1 *1) (-4 *1 (-121))))
-(-13 (-795) (-612) (-19 (-110)) (-10 -8 (-15 -3676 ($ $)) (-15 -4073 ($ $ $)) (-15 -1493 ($ $ $)) (-15 -3380 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3085 ($ $ $))))
-(((-33) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 #0=(-110)) . T) ((-572 (-506)) |has| (-110) (-572 (-506))) ((-268 #1=(-530) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))) ((-354 #0#) . T) ((-468 #0#) . T) ((-563 #1# #0#) . T) ((-491 #0# #0#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))) ((-602 #0#) . T) ((-612) . T) ((-19 #0#) . T) ((-795) . T) ((-1027) . T) ((-1135) . T))
-((-3583 (($ (-1 |#2| |#2|) $) 22)) (-2579 (($ $) 16)) (-2267 (((-719) $) 24)))
-(((-122 |#1| |#2|) (-10 -8 (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -2579 (|#1| |#1|))) (-123 |#2|) (-1027)) (T -122))
-NIL
-(-10 -8 (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -2579 (|#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-2096 (($ $ $) 52 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 54 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) (($ $ "left" $) 55 (|has| $ (-6 -4270))) (($ $ "right" $) 53 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3638 (($ $) 57)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) 60)) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3628 (($ $) 59)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-123 |#1|) (-133) (-1027)) (T -123))
-((-1546 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1027)))))
-(-13 (-117 |t#1|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -1546 ($ $ |t#1| $))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-117 |#1|) . T) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 15)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) 19 (|has| $ (-6 -4270)))) (-2096 (($ $ $) 20 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 18 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 21)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2441 (($ |#1| $) 10)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 14)) (-3958 (($) 8)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 17)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2041 (($ (-597 |#1|)) 12)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-124 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4270) (-15 -2041 ($ (-597 |#1|))) (-15 -2441 ($ |#1| $)))) (-795)) (T -124))
-((-2041 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-124 *3)))) (-2441 (*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-795)))))
-(-13 (-123 |#1|) (-10 -8 (-6 -4270) (-15 -2041 ($ (-597 |#1|))) (-15 -2441 ($ |#1| $))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 24)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) 26 (|has| $ (-6 -4270)))) (-2096 (($ $ $) 30 (|has| $ (-6 -4270)))) (-4232 (($ $ $) 28 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 20)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1546 (($ $ |#1| $) 15)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) 19)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) 21)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 18)) (-3958 (($) 11)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2107 (($ |#1|) 17) (($ $ |#1| $) 16)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 10 (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-125 |#1|) (-13 (-123 |#1|) (-10 -8 (-15 -2107 ($ |#1|)) (-15 -2107 ($ $ |#1| $)))) (-1027)) (T -125))
-((-2107 (*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))) (-2107 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))))
-(-13 (-123 |#1|) (-10 -8 (-15 -2107 ($ |#1|)) (-15 -2107 ($ $ |#1| $))))
-((-2352 (((-110) $ $) NIL (|has| (-127) (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) (-127) (-127)) $) NIL) (((-110) $) NIL (|has| (-127) (-795)))) (-1627 (($ (-1 (-110) (-127) (-127)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-127) (-795))))) (-1307 (($ (-1 (-110) (-127) (-127)) $) NIL) (($ $) NIL (|has| (-127) (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-127) $ (-530) (-127)) NIL (|has| $ (-6 -4270))) (((-127) $ (-1148 (-530)) (-127)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027))))) (-2383 (($ (-127) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027)))) (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-127) (-1 (-127) (-127) (-127)) $ (-127) (-127)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027)))) (((-127) (-1 (-127) (-127) (-127)) $ (-127)) NIL (|has| $ (-6 -4269))) (((-127) (-1 (-127) (-127) (-127)) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-127) $ (-530) (-127)) NIL (|has| $ (-6 -4270)))) (-3532 (((-127) $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) (-127)) $) NIL) (((-530) (-127) $) NIL (|has| (-127) (-1027))) (((-530) (-127) $ (-530)) NIL (|has| (-127) (-1027)))) (-3779 (((-597 (-127)) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-127)) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| (-127) (-795)))) (-3683 (($ (-1 (-110) (-127) (-127)) $ $) NIL) (($ $ $) NIL (|has| (-127) (-795)))) (-2395 (((-597 (-127)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-127) (-795)))) (-3583 (($ (-1 (-127) (-127)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-127) (-127)) $) NIL) (($ (-1 (-127) (-127) (-127)) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| (-127) (-1027)))) (-4028 (($ (-127) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| (-127) (-1027)))) (-3048 (((-127) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-127) "failed") (-1 (-110) (-127)) $) NIL)) (-1522 (($ $ (-127)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-127)))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-276 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-127) (-127)) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027)))) (($ $ (-597 (-127)) (-597 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027))))) (-2261 (((-597 (-127)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-127) $ (-530) (-127)) NIL) (((-127) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269))) (((-719) (-127) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-127) (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-127) (-572 (-506))))) (-2377 (($ (-597 (-127))) NIL)) (-3483 (($ $ (-127)) NIL) (($ (-127) $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| (-127) (-571 (-804))))) (-3889 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2248 (((-110) $ $) NIL (|has| (-127) (-1027)))) (-2297 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-127) (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
+((-3745 (*1 *1 *1) (-4 *1 (-121))) (-3232 (*1 *1 *1 *1) (-4 *1 (-121))) (-4178 (*1 *1 *1 *1) (-4 *1 (-121))) (-3427 (*1 *1 *1 *1) (-4 *1 (-121))) (-2726 (*1 *1 *1 *1) (-4 *1 (-121))) (-3082 (*1 *1 *1 *1) (-4 *1 (-121))))
+(-13 (-797) (-614) (-19 (-110)) (-10 -8 (-15 -3745 ($ $)) (-15 -3232 ($ $ $)) (-15 -4178 ($ $ $)) (-15 -3427 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -3082 ($ $ $))))
+(((-33) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 #0=(-110)) . T) ((-573 (-507)) |has| (-110) (-573 (-507))) ((-268 #1=(-531) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))) ((-354 #0#) . T) ((-468 #0#) . T) ((-564 #1# #0#) . T) ((-492 #0# #0#) -12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))) ((-604 #0#) . T) ((-614) . T) ((-19 #0#) . T) ((-797) . T) ((-1030) . T) ((-1138) . T))
+((-2680 (($ (-1 |#2| |#2|) $) 22)) (-2480 (($ $) 16)) (-2167 (((-721) $) 24)))
+(((-122 |#1| |#2|) (-10 -8 (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -2480 (|#1| |#1|))) (-123 |#2|) (-1030)) (T -122))
+NIL
+(-10 -8 (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -2480 (|#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-3303 (($ $ $) 52 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 54 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) (($ $ "left" $) 55 (|has| $ (-6 -4274))) (($ $ "right" $) 53 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-3157 (($ $) 57)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) 60)) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-3144 (($ $) 59)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) (($ $ "left") 58) (($ $ "right") 56)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-123 |#1|) (-133) (-1030)) (T -123))
+((-1523 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1030)))))
+(-13 (-117 |t#1|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -1523 ($ $ |t#1| $))))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-117 |#1|) . T) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 15)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) 19 (|has| $ (-6 -4274)))) (-3303 (($ $ $) 20 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 18 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 21)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3944 (($ |#1| $) 10)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 14)) (-3781 (($) 8)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 17)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1877 (($ (-598 |#1|)) 12)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-124 |#1|) (-13 (-123 |#1|) (-10 -8 (-6 -4274) (-15 -1877 ($ (-598 |#1|))) (-15 -3944 ($ |#1| $)))) (-797)) (T -124))
+((-1877 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-124 *3)))) (-3944 (*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-797)))))
+(-13 (-123 |#1|) (-10 -8 (-6 -4274) (-15 -1877 ($ (-598 |#1|))) (-15 -3944 ($ |#1| $))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 24)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) 26 (|has| $ (-6 -4274)))) (-3303 (($ $ $) 30 (|has| $ (-6 -4274)))) (-1508 (($ $ $) 28 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 20)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1523 (($ $ |#1| $) 15)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) 19)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) 21)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 18)) (-3781 (($) 11)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3521 (($ |#1|) 17) (($ $ |#1| $) 16)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 10 (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-125 |#1|) (-13 (-123 |#1|) (-10 -8 (-15 -3521 ($ |#1|)) (-15 -3521 ($ $ |#1| $)))) (-1030)) (T -125))
+((-3521 (*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1030)))) (-3521 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1030)))))
+(-13 (-123 |#1|) (-10 -8 (-15 -3521 ($ |#1|)) (-15 -3521 ($ $ |#1| $))))
+((-2247 (((-110) $ $) NIL (|has| (-127) (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) (-127) (-127)) $) NIL) (((-110) $) NIL (|has| (-127) (-797)))) (-2375 (($ (-1 (-110) (-127) (-127)) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-127) (-797))))) (-1332 (($ (-1 (-110) (-127) (-127)) $) NIL) (($ $) NIL (|has| (-127) (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-127) $ (-531) (-127)) NIL (|has| $ (-6 -4274))) (((-127) $ (-1151 (-531)) (-127)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030))))) (-2283 (($ (-127) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030)))) (($ (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-127) (-1 (-127) (-127) (-127)) $ (-127) (-127)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030)))) (((-127) (-1 (-127) (-127) (-127)) $ (-127)) NIL (|has| $ (-6 -4273))) (((-127) (-1 (-127) (-127) (-127)) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-127) $ (-531) (-127)) NIL (|has| $ (-6 -4274)))) (-2627 (((-127) $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) (-127)) $) NIL) (((-531) (-127) $) NIL (|has| (-127) (-1030))) (((-531) (-127) $ (-531)) NIL (|has| (-127) (-1030)))) (-2227 (((-598 (-127)) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-127)) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| (-127) (-797)))) (-3508 (($ (-1 (-110) (-127) (-127)) $ $) NIL) (($ $ $) NIL (|has| (-127) (-797)))) (-2445 (((-598 (-127)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-127) (-797)))) (-2680 (($ (-1 (-127) (-127)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-127) (-127)) $) NIL) (($ (-1 (-127) (-127) (-127)) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| (-127) (-1030)))) (-4059 (($ (-127) $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| (-127) (-1030)))) (-3046 (((-127) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-127) "failed") (-1 (-110) (-127)) $) NIL)) (-3742 (($ $ (-127)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-127)))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1030)))) (($ $ (-276 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1030)))) (($ $ (-127) (-127)) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1030)))) (($ $ (-598 (-127)) (-598 (-127))) NIL (-12 (|has| (-127) (-291 (-127))) (|has| (-127) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-127) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030))))) (-3163 (((-598 (-127)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-127) $ (-531) (-127)) NIL) (((-127) $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273))) (((-721) (-127) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-127) (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-127) (-573 (-507))))) (-2274 (($ (-598 (-127))) NIL)) (-3536 (($ $ (-127)) NIL) (($ (-127) $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| (-127) (-572 (-806))))) (-2060 (((-110) (-1 (-110) (-127)) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| (-127) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-127) (-797)))) (-2148 (((-110) $ $) NIL (|has| (-127) (-1030)))) (-2195 (((-110) $ $) NIL (|has| (-127) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-127) (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
(((-126) (-19 (-127))) (T -126))
NIL
(-19 (-127))
-((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 12) (((-719) $) 9) (($ (-719)) 8)) (-1457 (($ (-719)) 7)) (-3772 (($ $ $) 16)) (-1956 (($ $ $) 15)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 14)))
-(((-127) (-13 (-795) (-571 (-719)) (-10 -8 (-15 -1457 ($ (-719))) (-15 -2366 ($ (-719))) (-15 -1956 ($ $ $)) (-15 -3772 ($ $ $))))) (T -127))
-((-1457 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))) (-1956 (*1 *1 *1 *1) (-5 *1 (-127))) (-3772 (*1 *1 *1 *1) (-5 *1 (-127))))
-(-13 (-795) (-571 (-719)) (-10 -8 (-15 -1457 ($ (-719))) (-15 -2366 ($ (-719))) (-15 -1956 ($ $ $)) (-15 -3772 ($ $ $))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15)))
+((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 12) (((-721) $) 9) (($ (-721)) 8)) (-1256 (($ (-721)) 7)) (-3828 (($ $ $) 16)) (-1845 (($ $ $) 15)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 14)))
+(((-127) (-13 (-797) (-572 (-721)) (-10 -8 (-15 -1256 ($ (-721))) (-15 -2265 ($ (-721))) (-15 -1845 ($ $ $)) (-15 -3828 ($ $ $))))) (T -127))
+((-1256 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-127)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-127)))) (-1845 (*1 *1 *1 *1) (-5 *1 (-127))) (-3828 (*1 *1 *1 *1) (-5 *1 (-127))))
+(-13 (-797) (-572 (-721)) (-10 -8 (-15 -1256 ($ (-721))) (-15 -2265 ($ (-721))) (-15 -1845 ($ $ $)) (-15 -3828 ($ $ $))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15)))
(((-128) (-133)) (T -128))
-((-1889 (*1 *1 *1 *1) (|partial| -4 *1 (-128))))
-(-13 (-23) (-10 -8 (-15 -1889 ((-3 $ "failed") $ $))))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 7)) (-1664 (((-1186) $ (-719)) 19)) (-2027 (((-719) $) 20)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
+((-2128 (*1 *1 *1 *1) (|partial| -4 *1 (-128))))
+(-13 (-23) (-10 -8 (-15 -2128 ((-3 $ "failed") $ $))))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 7)) (-2310 (((-1189) $ (-721)) 19)) (-1976 (((-721) $) 20)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)))
(((-129) (-133)) (T -129))
-((-2027 (*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-719)))) (-1664 (*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-719)) (-5 *2 (-1186)))))
-(-13 (-795) (-10 -8 (-15 -2027 ((-719) $)) (-15 -1664 ((-1186) $ (-719)))))
-(((-99) . T) ((-571 (-804)) . T) ((-795) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 34)) (-1813 (((-110) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-719) "failed") $) 40)) (-2585 (((-719) $) 38)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) 27)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-4041 (((-110)) 41)) (-1397 (((-110) (-110)) 43)) (-3855 (((-110) $) 24)) (-3169 (((-110) $) 37)) (-2366 (((-804) $) 22) (($ (-719)) 14)) (-3080 (($) 12 T CONST)) (-3093 (($) 11 T CONST)) (-1882 (($ (-719)) 15)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 25)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 26)) (-2351 (((-3 $ "failed") $ $) 30)) (-2339 (($ $ $) 28)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL) (($ $ $) 36)) (* (($ (-719) $) 33) (($ (-862) $) NIL) (($ $ $) 31)))
-(((-130) (-13 (-795) (-23) (-675) (-975 (-719)) (-10 -8 (-6 (-4271 "*")) (-15 -2351 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1882 ($ (-719))) (-15 -3855 ((-110) $)) (-15 -3169 ((-110) $)) (-15 -4041 ((-110))) (-15 -1397 ((-110) (-110)))))) (T -130))
-((-2351 (*1 *1 *1 *1) (|partial| -5 *1 (-130))) (** (*1 *1 *1 *1) (-5 *1 (-130))) (-1882 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-130)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-3169 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-4041 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(-13 (-795) (-23) (-675) (-975 (-719)) (-10 -8 (-6 (-4271 "*")) (-15 -2351 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1882 ($ (-719))) (-15 -3855 ((-110) $)) (-15 -3169 ((-110) $)) (-15 -4041 ((-110))) (-15 -1397 ((-110) (-110)))))
-((-3153 (((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|)) 14)) (-3217 (((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)) 18)))
-(((-131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3153 ((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3217 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) (-530) (-719) (-162) (-162)) (T -131))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530)) (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))) (-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530)) (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3153 ((-132 |#1| |#2| |#4|) (-597 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3217 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|))))
-((-2352 (((-110) $ $) NIL)) (-2702 (($ (-597 |#3|)) 40)) (-4114 (($ $) 99) (($ $ (-530) (-530)) 98)) (-2350 (($) 17)) (-3139 (((-3 |#3| "failed") $) 60)) (-2585 ((|#3| $) NIL)) (-1465 (($ $ (-597 (-530))) 100)) (-3145 (((-597 |#3|) $) 36)) (-2426 (((-719) $) 44)) (-2801 (($ $ $) 93)) (-1290 (($) 43)) (-1424 (((-1082) $) NIL)) (-2829 (($) 16)) (-2624 (((-1046) $) NIL)) (-1902 ((|#3| $) 46) ((|#3| $ (-530)) 47) ((|#3| $ (-530) (-530)) 48) ((|#3| $ (-530) (-530) (-530)) 49) ((|#3| $ (-530) (-530) (-530) (-530)) 50) ((|#3| $ (-597 (-530))) 52)) (-1429 (((-719) $) 45)) (-1695 (($ $ (-530) $ (-530)) 94) (($ $ (-530) (-530)) 96)) (-2366 (((-804) $) 67) (($ |#3|) 68) (($ (-223 |#2| |#3|)) 75) (($ (-1066 |#2| |#3|)) 78) (($ (-597 |#3|)) 53) (($ (-597 $)) 58)) (-3080 (($) 69 T CONST)) (-3093 (($) 70 T CONST)) (-2248 (((-110) $ $) 80)) (-2351 (($ $) 86) (($ $ $) 84)) (-2339 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-530)) 89) (($ (-530) $) 88) (($ $ $) 95)))
-(((-132 |#1| |#2| |#3|) (-13 (-445 |#3| (-719)) (-450 (-530) (-719)) (-10 -8 (-15 -2366 ($ (-223 |#2| |#3|))) (-15 -2366 ($ (-1066 |#2| |#3|))) (-15 -2366 ($ (-597 |#3|))) (-15 -2366 ($ (-597 $))) (-15 -2426 ((-719) $)) (-15 -1902 (|#3| $)) (-15 -1902 (|#3| $ (-530))) (-15 -1902 (|#3| $ (-530) (-530))) (-15 -1902 (|#3| $ (-530) (-530) (-530))) (-15 -1902 (|#3| $ (-530) (-530) (-530) (-530))) (-15 -1902 (|#3| $ (-597 (-530)))) (-15 -2801 ($ $ $)) (-15 * ($ $ $)) (-15 -1695 ($ $ (-530) $ (-530))) (-15 -1695 ($ $ (-530) (-530))) (-15 -4114 ($ $)) (-15 -4114 ($ $ (-530) (-530))) (-15 -1465 ($ $ (-597 (-530)))) (-15 -2829 ($)) (-15 -1290 ($)) (-15 -3145 ((-597 |#3|) $)) (-15 -2702 ($ (-597 |#3|))) (-15 -2350 ($)))) (-530) (-719) (-162)) (T -132))
-((-2801 (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-223 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1066 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2426 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 *2) (-4 *5 (-162)))) (-1902 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-530)) (-14 *4 (-719)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1902 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1902 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1902 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-719)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-530))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 (-530)) (-14 *5 (-719)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-1695 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-1695 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-4114 (*1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-4114 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-719)) (-4 *5 (-162)))) (-1465 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2829 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-1290 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))) (-3145 (*1 *2 *1) (-12 (-5 *2 (-597 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162)))) (-2702 (*1 *1 *2) (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530)) (-14 *4 (-719)))) (-2350 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719)) (-4 *4 (-162)))))
-(-13 (-445 |#3| (-719)) (-450 (-530) (-719)) (-10 -8 (-15 -2366 ($ (-223 |#2| |#3|))) (-15 -2366 ($ (-1066 |#2| |#3|))) (-15 -2366 ($ (-597 |#3|))) (-15 -2366 ($ (-597 $))) (-15 -2426 ((-719) $)) (-15 -1902 (|#3| $)) (-15 -1902 (|#3| $ (-530))) (-15 -1902 (|#3| $ (-530) (-530))) (-15 -1902 (|#3| $ (-530) (-530) (-530))) (-15 -1902 (|#3| $ (-530) (-530) (-530) (-530))) (-15 -1902 (|#3| $ (-597 (-530)))) (-15 -2801 ($ $ $)) (-15 * ($ $ $)) (-15 -1695 ($ $ (-530) $ (-530))) (-15 -1695 ($ $ (-530) (-530))) (-15 -4114 ($ $)) (-15 -4114 ($ $ (-530) (-530))) (-15 -1465 ($ $ (-597 (-530)))) (-15 -2829 ($)) (-15 -1290 ($)) (-15 -3145 ((-597 |#3|) $)) (-15 -2702 ($ (-597 |#3|))) (-15 -2350 ($))))
-((-2366 (((-804) $) 7)))
-(((-133) (-571 (-804))) (T -133))
-NIL
-(-571 (-804))
-((-2352 (((-110) $ $) NIL)) (-3910 (($) 15 T CONST)) (-2673 (($) NIL (|has| (-137) (-349)))) (-4204 (($ $ $) 17) (($ $ (-137)) NIL) (($ (-137) $) NIL)) (-1746 (($ $ $) NIL)) (-2431 (((-110) $ $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| (-137) (-349)))) (-1243 (($) NIL) (($ (-597 (-137))) NIL)) (-2901 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1842 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (($ (-137) $) 51 (|has| $ (-6 -4269)))) (-2383 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1364 (($) NIL (|has| (-137) (-349)))) (-3779 (((-597 (-137)) $) 60 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2508 (((-137) $) NIL (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) 26 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1817 (((-137) $) NIL (|has| (-137) (-795)))) (-3583 (($ (-1 (-137) (-137)) $) 59 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) 55)) (-1502 (($) 16 T CONST)) (-1905 (((-862) $) NIL (|has| (-137) (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4033 (($ $ $) 29)) (-1723 (((-137) $) 52)) (-2441 (($ (-137) $) 50)) (-1986 (($ (-862)) NIL (|has| (-137) (-349)))) (-1896 (($) 14 T CONST)) (-2624 (((-1046) $) NIL)) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-2738 (((-137) $) 53)) (-1533 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 48)) (-2518 (($) 13 T CONST)) (-1252 (($ $ $) 31) (($ $ (-137)) NIL)) (-1560 (($ (-597 (-137))) NIL) (($) NIL)) (-2632 (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-1082) $) 36) (((-506) $) NIL (|has| (-137) (-572 (-506)))) (((-597 (-137)) $) 34)) (-2377 (($ (-597 (-137))) NIL)) (-3801 (($ $) 32 (|has| (-137) (-349)))) (-2366 (((-804) $) 46)) (-2294 (($ (-1082)) 12) (($ (-597 (-137))) 43)) (-1418 (((-719) $) NIL)) (-3381 (($) 49) (($ (-597 (-137))) NIL)) (-2242 (($ (-597 (-137))) NIL)) (-3889 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2954 (($) 19 T CONST)) (-3320 (($) 18 T CONST)) (-2248 (((-110) $ $) 22)) (-2267 (((-719) $) 47 (|has| $ (-6 -4269)))))
-(((-134) (-13 (-1027) (-572 (-1082)) (-406 (-137)) (-572 (-597 (-137))) (-10 -8 (-15 -2294 ($ (-1082))) (-15 -2294 ($ (-597 (-137)))) (-15 -2518 ($) -2708) (-15 -1896 ($) -2708) (-15 -3910 ($) -2708) (-15 -1502 ($) -2708) (-15 -3320 ($) -2708) (-15 -2954 ($) -2708)))) (T -134))
-((-2294 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-134)))) (-2294 (*1 *1 *2) (-12 (-5 *2 (-597 (-137))) (-5 *1 (-134)))) (-2518 (*1 *1) (-5 *1 (-134))) (-1896 (*1 *1) (-5 *1 (-134))) (-3910 (*1 *1) (-5 *1 (-134))) (-1502 (*1 *1) (-5 *1 (-134))) (-3320 (*1 *1) (-5 *1 (-134))) (-2954 (*1 *1) (-5 *1 (-134))))
-(-13 (-1027) (-572 (-1082)) (-406 (-137)) (-572 (-597 (-137))) (-10 -8 (-15 -2294 ($ (-1082))) (-15 -2294 ($ (-597 (-137)))) (-15 -2518 ($) -2708) (-15 -1896 ($) -2708) (-15 -3910 ($) -2708) (-15 -1502 ($) -2708) (-15 -3320 ($) -2708) (-15 -2954 ($) -2708)))
-((-1912 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-3912 ((|#1| |#3|) 9)) (-2765 ((|#3| |#3|) 15)))
-(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -3912 (|#1| |#3|)) (-15 -2765 (|#3| |#3|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-522) (-932 |#1|) (-354 |#2|)) (T -135))
-((-1912 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-354 *5)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-354 *4)))) (-3912 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-354 *4)))))
-(-10 -7 (-15 -3912 (|#1| |#3|)) (-15 -2765 (|#3| |#3|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-2937 (($ $ $) 8)) (-1303 (($ $) 7)) (-2947 (($ $ $) 6)))
+((-1976 (*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-721)))) (-2310 (*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-721)) (-5 *2 (-1189)))))
+(-13 (-797) (-10 -8 (-15 -1976 ((-721) $)) (-15 -2310 ((-1189) $ (-721)))))
+(((-99) . T) ((-572 (-806)) . T) ((-797) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 34)) (-3019 (((-110) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-721) "failed") $) 40)) (-2523 (((-721) $) 38)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) 27)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1386 (((-110)) 41)) (-2898 (((-110) (-110)) 43)) (-2311 (((-110) $) 24)) (-3768 (((-110) $) 37)) (-2265 (((-806) $) 22) (($ (-721)) 14)) (-3035 (($) 12 T CONST)) (-3050 (($) 11 T CONST)) (-2623 (($ (-721)) 15)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 25)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 26)) (-2250 (((-3 $ "failed") $ $) 30)) (-2237 (($ $ $) 28)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL) (($ $ $) 36)) (* (($ (-721) $) 33) (($ (-864) $) NIL) (($ $ $) 31)))
+(((-130) (-13 (-797) (-23) (-677) (-977 (-721)) (-10 -8 (-6 (-4275 "*")) (-15 -2250 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2623 ($ (-721))) (-15 -2311 ((-110) $)) (-15 -3768 ((-110) $)) (-15 -1386 ((-110))) (-15 -2898 ((-110) (-110)))))) (T -130))
+((-2250 (*1 *1 *1 *1) (|partial| -5 *1 (-130))) (** (*1 *1 *1 *1) (-5 *1 (-130))) (-2623 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-130)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-3768 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-1386 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))) (-2898 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(-13 (-797) (-23) (-677) (-977 (-721)) (-10 -8 (-6 (-4275 "*")) (-15 -2250 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -2623 ($ (-721))) (-15 -2311 ((-110) $)) (-15 -3768 ((-110) $)) (-15 -1386 ((-110))) (-15 -2898 ((-110) (-110)))))
+((-3186 (((-132 |#1| |#2| |#4|) (-598 |#4|) (-132 |#1| |#2| |#3|)) 14)) (-3261 (((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)) 18)))
+(((-131 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3186 ((-132 |#1| |#2| |#4|) (-598 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3261 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|)))) (-531) (-721) (-162) (-162)) (T -131))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-531)) (-14 *6 (-721)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))) (-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-531)) (-14 *6 (-721)) (-4 *7 (-162)) (-4 *8 (-162)) (-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3186 ((-132 |#1| |#2| |#4|) (-598 |#4|) (-132 |#1| |#2| |#3|))) (-15 -3261 ((-132 |#1| |#2| |#4|) (-1 |#4| |#3|) (-132 |#1| |#2| |#3|))))
+((-2247 (((-110) $ $) NIL)) (-3700 (($ (-598 |#3|)) 40)) (-2096 (($ $) 99) (($ $ (-531) (-531)) 98)) (-4082 (($) 17)) (-3154 (((-3 |#3| "failed") $) 60)) (-2523 ((|#3| $) NIL)) (-4130 (($ $ (-598 (-531))) 100)) (-3172 (((-598 |#3|) $) 36)) (-2277 (((-721) $) 44)) (-3488 (($ $ $) 93)) (-3612 (($) 43)) (-1521 (((-1085) $) NIL)) (-1258 (($) 16)) (-2529 (((-1049) $) NIL)) (-1785 ((|#3| $) 46) ((|#3| $ (-531)) 47) ((|#3| $ (-531) (-531)) 48) ((|#3| $ (-531) (-531) (-531)) 49) ((|#3| $ (-531) (-531) (-531) (-531)) 50) ((|#3| $ (-598 (-531))) 52)) (-2012 (((-721) $) 45)) (-2994 (($ $ (-531) $ (-531)) 94) (($ $ (-531) (-531)) 96)) (-2265 (((-806) $) 67) (($ |#3|) 68) (($ (-223 |#2| |#3|)) 75) (($ (-1069 |#2| |#3|)) 78) (($ (-598 |#3|)) 53) (($ (-598 $)) 58)) (-3035 (($) 69 T CONST)) (-3050 (($) 70 T CONST)) (-2148 (((-110) $ $) 80)) (-2250 (($ $) 86) (($ $ $) 84)) (-2237 (($ $ $) 82)) (* (($ |#3| $) 91) (($ $ |#3|) 92) (($ $ (-531)) 89) (($ (-531) $) 88) (($ $ $) 95)))
+(((-132 |#1| |#2| |#3|) (-13 (-445 |#3| (-721)) (-450 (-531) (-721)) (-10 -8 (-15 -2265 ($ (-223 |#2| |#3|))) (-15 -2265 ($ (-1069 |#2| |#3|))) (-15 -2265 ($ (-598 |#3|))) (-15 -2265 ($ (-598 $))) (-15 -2277 ((-721) $)) (-15 -1785 (|#3| $)) (-15 -1785 (|#3| $ (-531))) (-15 -1785 (|#3| $ (-531) (-531))) (-15 -1785 (|#3| $ (-531) (-531) (-531))) (-15 -1785 (|#3| $ (-531) (-531) (-531) (-531))) (-15 -1785 (|#3| $ (-598 (-531)))) (-15 -3488 ($ $ $)) (-15 * ($ $ $)) (-15 -2994 ($ $ (-531) $ (-531))) (-15 -2994 ($ $ (-531) (-531))) (-15 -2096 ($ $)) (-15 -2096 ($ $ (-531) (-531))) (-15 -4130 ($ $ (-598 (-531)))) (-15 -1258 ($)) (-15 -3612 ($)) (-15 -3172 ((-598 |#3|) $)) (-15 -3700 ($ (-598 |#3|))) (-15 -4082 ($)))) (-531) (-721) (-162)) (T -132))
+((-3488 (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-223 *4 *5)) (-14 *4 (-721)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1069 *4 *5)) (-14 *4 (-721)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)) (-4 *5 (-162)))) (-2277 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 *2) (-4 *5 (-162)))) (-1785 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-531)) (-14 *4 (-721)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-721)))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-721)))) (-1785 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-721)))) (-1785 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-721)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-598 (-531))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2)) (-14 *4 (-531)) (-14 *5 (-721)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-2994 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-721)) (-4 *5 (-162)))) (-2994 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-721)) (-4 *5 (-162)))) (-2096 (*1 *1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-2096 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-721)) (-4 *5 (-162)))) (-4130 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)) (-4 *5 (-162)))) (-1258 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-3612 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))) (-3172 (*1 *2 *1) (-12 (-5 *2 (-598 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)) (-4 *5 (-162)))) (-3700 (*1 *1 *2) (-12 (-5 *2 (-598 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531)) (-14 *4 (-721)))) (-4082 (*1 *1) (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721)) (-4 *4 (-162)))))
+(-13 (-445 |#3| (-721)) (-450 (-531) (-721)) (-10 -8 (-15 -2265 ($ (-223 |#2| |#3|))) (-15 -2265 ($ (-1069 |#2| |#3|))) (-15 -2265 ($ (-598 |#3|))) (-15 -2265 ($ (-598 $))) (-15 -2277 ((-721) $)) (-15 -1785 (|#3| $)) (-15 -1785 (|#3| $ (-531))) (-15 -1785 (|#3| $ (-531) (-531))) (-15 -1785 (|#3| $ (-531) (-531) (-531))) (-15 -1785 (|#3| $ (-531) (-531) (-531) (-531))) (-15 -1785 (|#3| $ (-598 (-531)))) (-15 -3488 ($ $ $)) (-15 * ($ $ $)) (-15 -2994 ($ $ (-531) $ (-531))) (-15 -2994 ($ $ (-531) (-531))) (-15 -2096 ($ $)) (-15 -2096 ($ $ (-531) (-531))) (-15 -4130 ($ $ (-598 (-531)))) (-15 -1258 ($)) (-15 -3612 ($)) (-15 -3172 ((-598 |#3|) $)) (-15 -3700 ($ (-598 |#3|))) (-15 -4082 ($))))
+((-2265 (((-806) $) 7)))
+(((-133) (-572 (-806))) (T -133))
+NIL
+(-572 (-806))
+((-2247 (((-110) $ $) NIL)) (-4102 (($) 15 T CONST)) (-3847 (($) NIL (|has| (-137) (-349)))) (-4210 (($ $ $) 17) (($ $ (-137)) NIL) (($ (-137) $) NIL)) (-3252 (($ $ $) NIL)) (-3890 (((-110) $ $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| (-137) (-349)))) (-1245 (($) NIL) (($ (-598 (-137))) NIL)) (-2245 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2717 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273))) (($ (-137) $) 51 (|has| $ (-6 -4273)))) (-2283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273))) (($ (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-1381 (($) NIL (|has| (-137) (-349)))) (-2227 (((-598 (-137)) $) 60 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-4103 (((-137) $) NIL (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) 26 (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-1241 (((-137) $) NIL (|has| (-137) (-797)))) (-2680 (($ (-1 (-137) (-137)) $) 59 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) 55)) (-2559 (($) 16 T CONST)) (-2211 (((-864) $) NIL (|has| (-137) (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-1301 (($ $ $) 29)) (-3540 (((-137) $) 52)) (-3944 (($ (-137) $) 50)) (-1889 (($ (-864)) NIL (|has| (-137) (-349)))) (-3863 (($) 14 T CONST)) (-2529 (((-1049) $) NIL)) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-4192 (((-137) $) 53)) (-2294 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-137)) (-598 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 48)) (-2769 (($) 13 T CONST)) (-1786 (($ $ $) 31) (($ $ (-137)) NIL)) (-2543 (($ (-598 (-137))) NIL) (($) NIL)) (-2539 (((-721) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (((-721) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-1085) $) 36) (((-507) $) NIL (|has| (-137) (-573 (-507)))) (((-598 (-137)) $) 34)) (-2274 (($ (-598 (-137))) NIL)) (-1595 (($ $) 32 (|has| (-137) (-349)))) (-2265 (((-806) $) 46)) (-1859 (($ (-1085)) 12) (($ (-598 (-137))) 43)) (-4112 (((-721) $) NIL)) (-3445 (($) 49) (($ (-598 (-137))) NIL)) (-2524 (($ (-598 (-137))) NIL)) (-2060 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-3927 (($) 19 T CONST)) (-1556 (($) 18 T CONST)) (-2148 (((-110) $ $) 22)) (-2167 (((-721) $) 47 (|has| $ (-6 -4273)))))
+(((-134) (-13 (-1030) (-573 (-1085)) (-406 (-137)) (-573 (-598 (-137))) (-10 -8 (-15 -1859 ($ (-1085))) (-15 -1859 ($ (-598 (-137)))) (-15 -2769 ($) -2651) (-15 -3863 ($) -2651) (-15 -4102 ($) -2651) (-15 -2559 ($) -2651) (-15 -1556 ($) -2651) (-15 -3927 ($) -2651)))) (T -134))
+((-1859 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-134)))) (-1859 (*1 *1 *2) (-12 (-5 *2 (-598 (-137))) (-5 *1 (-134)))) (-2769 (*1 *1) (-5 *1 (-134))) (-3863 (*1 *1) (-5 *1 (-134))) (-4102 (*1 *1) (-5 *1 (-134))) (-2559 (*1 *1) (-5 *1 (-134))) (-1556 (*1 *1) (-5 *1 (-134))) (-3927 (*1 *1) (-5 *1 (-134))))
+(-13 (-1030) (-573 (-1085)) (-406 (-137)) (-573 (-598 (-137))) (-10 -8 (-15 -1859 ($ (-1085))) (-15 -1859 ($ (-598 (-137)))) (-15 -2769 ($) -2651) (-15 -3863 ($) -2651) (-15 -4102 ($) -2651) (-15 -2559 ($) -2651) (-15 -1556 ($) -2651) (-15 -3927 ($) -2651)))
+((-1682 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17)) (-2807 ((|#1| |#3|) 9)) (-1349 ((|#3| |#3|) 15)))
+(((-135 |#1| |#2| |#3|) (-10 -7 (-15 -2807 (|#1| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-523) (-934 |#1|) (-354 |#2|)) (T -135))
+((-1682 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3)) (-4 *3 (-354 *5)))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *4 (-934 *3)) (-5 *1 (-135 *3 *4 *2)) (-4 *2 (-354 *4)))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-135 *2 *4 *3)) (-4 *3 (-354 *4)))))
+(-10 -7 (-15 -2807 (|#1| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-2555 (($ $ $) 8)) (-1569 (($ $) 7)) (-2589 (($ $ $) 6)))
(((-136) (-133)) (T -136))
-((-2937 (*1 *1 *1 *1) (-4 *1 (-136))) (-1303 (*1 *1 *1) (-4 *1 (-136))) (-2947 (*1 *1 *1 *1) (-4 *1 (-136))))
-(-13 (-10 -8 (-15 -2947 ($ $ $)) (-15 -1303 ($ $)) (-15 -2937 ($ $ $))))
-((-2352 (((-110) $ $) NIL)) (-1756 (((-110) $) 30)) (-3910 (($ $) 43)) (-3134 (($) 17)) (-3023 (((-719)) 10)) (-1364 (($) 16)) (-2808 (($) 18)) (-1486 (((-719) $) 14)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1402 (((-110) $) 32)) (-1502 (($ $) 44)) (-1905 (((-862) $) 15)) (-1424 (((-1082) $) 38)) (-1986 (($ (-862)) 13)) (-2378 (((-110) $) 28)) (-2624 (((-1046) $) NIL)) (-3773 (($) 19)) (-4062 (((-110) $) 26)) (-2366 (((-804) $) 21)) (-2977 (($ (-719)) 11) (($ (-1082)) 42)) (-2136 (((-110) $) 36)) (-2923 (((-110) $) 34)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 7)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 8)))
-(((-137) (-13 (-789) (-10 -8 (-15 -1486 ((-719) $)) (-15 -2977 ($ (-719))) (-15 -2977 ($ (-1082))) (-15 -3134 ($)) (-15 -2808 ($)) (-15 -3773 ($)) (-15 -3910 ($ $)) (-15 -1502 ($ $)) (-15 -4062 ((-110) $)) (-15 -2378 ((-110) $)) (-15 -2923 ((-110) $)) (-15 -1756 ((-110) $)) (-15 -1402 ((-110) $)) (-15 -2136 ((-110) $))))) (T -137))
-((-1486 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-137)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-137)))) (-2977 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-137)))) (-3134 (*1 *1) (-5 *1 (-137))) (-2808 (*1 *1) (-5 *1 (-137))) (-3773 (*1 *1) (-5 *1 (-137))) (-3910 (*1 *1 *1) (-5 *1 (-137))) (-1502 (*1 *1 *1) (-5 *1 (-137))) (-4062 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2378 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1756 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2136 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(-13 (-789) (-10 -8 (-15 -1486 ((-719) $)) (-15 -2977 ($ (-719))) (-15 -2977 ($ (-1082))) (-15 -3134 ($)) (-15 -2808 ($)) (-15 -3773 ($)) (-15 -3910 ($ $)) (-15 -1502 ($ $)) (-15 -4062 ((-110) $)) (-15 -2378 ((-110) $)) (-15 -2923 ((-110) $)) (-15 -1756 ((-110) $)) (-15 -1402 ((-110) $)) (-15 -2136 ((-110) $))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3251 (((-3 $ "failed") $) 33)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2555 (*1 *1 *1 *1) (-4 *1 (-136))) (-1569 (*1 *1 *1) (-4 *1 (-136))) (-2589 (*1 *1 *1 *1) (-4 *1 (-136))))
+(-13 (-10 -8 (-15 -2589 ($ $ $)) (-15 -1569 ($ $)) (-15 -2555 ($ $ $))))
+((-2247 (((-110) $ $) NIL)) (-2117 (((-110) $) 30)) (-4102 (($ $) 43)) (-2108 (($) 17)) (-3006 (((-721)) 10)) (-1381 (($) 16)) (-3651 (($) 18)) (-3725 (((-721) $) 14)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2458 (((-110) $) 32)) (-2559 (($ $) 44)) (-2211 (((-864) $) 15)) (-1521 (((-1085) $) 38)) (-1889 (($ (-864)) 13)) (-3644 (((-110) $) 28)) (-2529 (((-1049) $) NIL)) (-1820 (($) 19)) (-4145 (((-110) $) 26)) (-2265 (((-806) $) 21)) (-2899 (($ (-721)) 11) (($ (-1085)) 42)) (-2150 (((-110) $) 36)) (-3477 (((-110) $) 34)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 7)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 8)))
+(((-137) (-13 (-791) (-10 -8 (-15 -3725 ((-721) $)) (-15 -2899 ($ (-721))) (-15 -2899 ($ (-1085))) (-15 -2108 ($)) (-15 -3651 ($)) (-15 -1820 ($)) (-15 -4102 ($ $)) (-15 -2559 ($ $)) (-15 -4145 ((-110) $)) (-15 -3644 ((-110) $)) (-15 -3477 ((-110) $)) (-15 -2117 ((-110) $)) (-15 -2458 ((-110) $)) (-15 -2150 ((-110) $))))) (T -137))
+((-3725 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-137)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-137)))) (-2899 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-137)))) (-2108 (*1 *1) (-5 *1 (-137))) (-3651 (*1 *1) (-5 *1 (-137))) (-1820 (*1 *1) (-5 *1 (-137))) (-4102 (*1 *1 *1) (-5 *1 (-137))) (-2559 (*1 *1 *1) (-5 *1 (-137))) (-4145 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-3644 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-3477 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2117 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2458 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))) (-2150 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(-13 (-791) (-10 -8 (-15 -3725 ((-721) $)) (-15 -2899 ($ (-721))) (-15 -2899 ($ (-1085))) (-15 -2108 ($)) (-15 -3651 ($)) (-15 -1820 ($)) (-15 -4102 ($ $)) (-15 -2559 ($ $)) (-15 -4145 ((-110) $)) (-15 -3644 ((-110) $)) (-15 -3477 ((-110) $)) (-15 -2117 ((-110) $)) (-15 -2458 ((-110) $)) (-15 -2150 ((-110) $))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2750 (((-3 $ "failed") $) 33)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-138) (-133)) (T -138))
-((-3251 (*1 *1 *1) (|partial| -4 *1 (-138))))
-(-13 (-984) (-10 -8 (-15 -3251 ((-3 $ "failed") $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1814 ((|#1| (-637 |#1|) |#1|) 19)))
-(((-139 |#1|) (-10 -7 (-15 -1814 (|#1| (-637 |#1|) |#1|))) (-162)) (T -139))
-((-1814 (*1 *2 *3 *2) (-12 (-5 *3 (-637 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2)))))
-(-10 -7 (-15 -1814 (|#1| (-637 |#1|) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2750 (*1 *1 *1) (|partial| -4 *1 (-138))))
+(-13 (-986) (-10 -8 (-15 -2750 ((-3 $ "failed") $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3369 ((|#1| (-639 |#1|) |#1|) 19)))
+(((-139 |#1|) (-10 -7 (-15 -3369 (|#1| (-639 |#1|) |#1|))) (-162)) (T -139))
+((-3369 (*1 *2 *3 *2) (-12 (-5 *3 (-639 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2)))))
+(-10 -7 (-15 -3369 (|#1| (-639 |#1|) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-140) (-133)) (T -140))
NIL
-(-13 (-984))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2380 (((-2 (|:| -3194 (-719)) (|:| -2065 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719)) 70)) (-2704 (((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|) 52)) (-4183 (((-2 (|:| -2065 (-388 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-3650 ((|#1| |#3| |#3|) 40)) (-4098 ((|#3| |#3| (-388 |#2|) (-388 |#2|)) 19)) (-2814 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|) 49)))
-(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -4183 ((-2 (|:| -2065 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2704 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|)) (-15 -2380 ((-2 (|:| -3194 (-719)) (|:| -2065 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719))) (-15 -3650 (|#1| |#3| |#3|)) (-15 -4098 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -2814 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|))) (-1139) (-1157 |#1|) (-1157 (-388 |#2|))) (T -141))
-((-2814 (*1 *2 *3 *3) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5)) (|:| |c2| (-388 *5)) (|:| |deg| (-719)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))) (-4098 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1157 *3)))) (-3650 (*1 *2 *3 *3) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1139)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-2380 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *6)) (-4 *5 (-1139)) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| *6))) (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-719)) (-4 *7 (-1157 *3)))) (-2704 (*1 *2 *3) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-719)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))) (-4183 (*1 *2 *3) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2065 (-388 *5)) (|:| |poly| *3))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
-(-10 -7 (-15 -4183 ((-2 (|:| -2065 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2704 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-719))) "failed") |#3|)) (-15 -2380 ((-2 (|:| -3194 (-719)) (|:| -2065 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-719))) (-15 -3650 (|#1| |#3| |#3|)) (-15 -4098 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -2814 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-719))) |#3| |#3|)))
-((-1708 (((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)) 32)))
-(((-142 |#1| |#2|) (-10 -7 (-15 -1708 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)))) (-515) (-156 |#1|)) (T -142))
-((-1708 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5)) (-4 *5 (-156 *4)) (-4 *4 (-515)) (-5 *1 (-142 *4 *5)))))
-(-10 -7 (-15 -1708 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))))
-((-2283 (($ (-1 (-110) |#2|) $) 29)) (-3077 (($ $) 36)) (-2383 (($ (-1 (-110) |#2|) $) 27) (($ |#2| $) 32)) (-2134 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-1437 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 19)) (-1533 (((-110) (-1 (-110) |#2|) $) 16)) (-2632 (((-719) (-1 (-110) |#2|) $) 14) (((-719) |#2| $) NIL)) (-3889 (((-110) (-1 (-110) |#2|) $) 15)) (-2267 (((-719) $) 11)))
-(((-143 |#1| |#2|) (-10 -8 (-15 -3077 (|#1| |#1|)) (-15 -2383 (|#1| |#2| |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2383 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|))) (-144 |#2|) (-1135)) (T -143))
-NIL
-(-10 -8 (-15 -3077 (|#1| |#1|)) (-15 -2383 (|#1| |#2| |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2383 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2283 (($ (-1 (-110) |#1|) $) 44 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 41 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269))) (($ |#1| $) 42 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 48)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 40 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 49)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-144 |#1|) (-133) (-1135)) (T -144))
-((-2377 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-144 *3)))) (-1437 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2134 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2134 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3)) (-4 *3 (-1135)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3)) (-4 *3 (-1135)))) (-2134 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)))) (-2383 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-3077 (*1 *1 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))))
-(-13 (-468 |t#1|) (-10 -8 (-15 -2377 ($ (-597 |t#1|))) (-15 -1437 ((-3 |t#1| "failed") (-1 (-110) |t#1|) $)) (IF (|has| $ (-6 -4269)) (PROGN (-15 -2134 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -2134 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2383 ($ (-1 (-110) |t#1|) $)) (-15 -2283 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -2134 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2383 ($ |t#1| $)) (-15 -3077 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) 86)) (-2731 (((-110) $) NIL)) (-2725 (($ |#2| (-597 (-862))) 56)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1313 (($ (-862)) 47)) (-2488 (((-130)) 23)) (-2366 (((-804) $) 69) (($ (-530)) 45) (($ |#2|) 46)) (-4085 ((|#2| $ (-597 (-862))) 59)) (-3300 (((-719)) 20)) (-3080 (($) 40 T CONST)) (-3093 (($) 43 T CONST)) (-2248 (((-110) $ $) 26)) (-2364 (($ $ |#2|) NIL)) (-2351 (($ $) 34) (($ $ $) 32)) (-2339 (($ $ $) 30)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
-(((-145 |#1| |#2| |#3|) (-13 (-984) (-37 |#2|) (-1188 |#2|) (-10 -8 (-15 -1313 ($ (-862))) (-15 -2725 ($ |#2| (-597 (-862)))) (-15 -4085 (|#2| $ (-597 (-862)))) (-15 -2707 ((-3 $ "failed") $)))) (-862) (-344) (-933 |#1| |#2|)) (T -145))
-((-2707 (*1 *1 *1) (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-862)) (-4 *3 (-344)) (-14 *4 (-933 *2 *3)))) (-1313 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-344)) (-14 *5 (-933 *3 *4)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-862))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-862)) (-4 *2 (-344)) (-14 *5 (-933 *4 *2)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-862))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-862)) (-14 *5 (-933 *4 *2)))))
-(-13 (-984) (-37 |#2|) (-1188 |#2|) (-10 -8 (-15 -1313 ($ (-862))) (-15 -2725 ($ |#2| (-597 (-862)))) (-15 -4085 (|#2| $ (-597 (-862)))) (-15 -2707 ((-3 $ "failed") $))))
-((-2084 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208)) 38)) (-3307 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530))) 63) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868)) 64)) (-1802 (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208))))) 67) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208)))) 66) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530))) 58) (((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868)) 59)))
-(((-146) (-10 -7 (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -3307 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -3307 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -2084 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208))))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))))))) (T -146))
-((-1802 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 (-208))))))) (-1802 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)) (-5 *3 (-597 (-884 (-208)))))) (-2084 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-208)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 *4)))) (|:| |xValues| (-1022 *4)) (|:| |yValues| (-1022 *4)))) (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 *4)))))) (-3307 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530))) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-3307 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-1802 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530))) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))) (-1802 (*1 *2 *3) (-12 (-5 *3 (-868)) (-5 *2 (-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208))))) (-5 *1 (-146)))))
-(-10 -7 (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -3307 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868))) (-15 -3307 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-868) (-388 (-530)) (-388 (-530)))) (-15 -2084 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))) (-208) (-208) (-208) (-208))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-884 (-208))))) (-15 -1802 ((-2 (|:| |brans| (-597 (-597 (-884 (-208))))) (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))) (-597 (-597 (-884 (-208)))))))
-((-3270 (((-597 (-159 |#2|)) |#1| |#2|) 45)))
-(((-147 |#1| |#2|) (-10 -7 (-15 -3270 ((-597 (-159 |#2|)) |#1| |#2|))) (-1157 (-159 (-530))) (-13 (-344) (-793))) (T -147))
-((-3270 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-159 *4))) (-5 *1 (-147 *3 *4)) (-4 *3 (-1157 (-159 (-530)))) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -3270 ((-597 (-159 |#2|)) |#1| |#2|)))
-((-2352 (((-110) $ $) NIL)) (-3323 (($) 15)) (-2207 (($) 14)) (-2094 (((-862)) 22)) (-1424 (((-1082) $) NIL)) (-3886 (((-530) $) 19)) (-2624 (((-1046) $) NIL)) (-2188 (($) 16)) (-3073 (($ (-530)) 23)) (-2366 (((-804) $) 29)) (-3591 (($) 17)) (-2248 (((-110) $ $) 13)) (-2339 (($ $ $) 11)) (* (($ (-862) $) 21) (($ (-208) $) 8)))
-(((-148) (-13 (-25) (-10 -8 (-15 * ($ (-862) $)) (-15 * ($ (-208) $)) (-15 -2339 ($ $ $)) (-15 -2207 ($)) (-15 -3323 ($)) (-15 -2188 ($)) (-15 -3591 ($)) (-15 -3886 ((-530) $)) (-15 -2094 ((-862))) (-15 -3073 ($ (-530)))))) (T -148))
-((-2339 (*1 *1 *1 *1) (-5 *1 (-148))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-148)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148)))) (-2207 (*1 *1) (-5 *1 (-148))) (-3323 (*1 *1) (-5 *1 (-148))) (-2188 (*1 *1) (-5 *1 (-148))) (-3591 (*1 *1) (-5 *1 (-148))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-148)))) (-2094 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-148)))) (-3073 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-148)))))
-(-13 (-25) (-10 -8 (-15 * ($ (-862) $)) (-15 * ($ (-208) $)) (-15 -2339 ($ $ $)) (-15 -2207 ($)) (-15 -3323 ($)) (-15 -2188 ($)) (-15 -3591 ($)) (-15 -3886 ((-530) $)) (-15 -2094 ((-862))) (-15 -3073 ($ (-530)))))
-((-4017 ((|#2| |#2| (-1020 |#2|)) 88) ((|#2| |#2| (-1099)) 68)) (-2801 ((|#2| |#2| (-1020 |#2|)) 87) ((|#2| |#2| (-1099)) 67)) (-2937 ((|#2| |#2| |#2|) 27)) (-4124 (((-112) (-112)) 99)) (-2578 ((|#2| (-597 |#2|)) 117)) (-2048 ((|#2| (-597 |#2|)) 135)) (-3723 ((|#2| (-597 |#2|)) 125)) (-3339 ((|#2| |#2|) 123)) (-3898 ((|#2| (-597 |#2|)) 111)) (-4187 ((|#2| (-597 |#2|)) 112)) (-2060 ((|#2| (-597 |#2|)) 133)) (-2896 ((|#2| |#2| (-1099)) 56) ((|#2| |#2|) 55)) (-1303 ((|#2| |#2|) 23)) (-2947 ((|#2| |#2| |#2|) 26)) (-4195 (((-110) (-112)) 49)) (** ((|#2| |#2| |#2|) 41)))
-(((-149 |#1| |#2|) (-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -2947 (|#2| |#2| |#2|)) (-15 -2937 (|#2| |#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -2896 (|#2| |#2|)) (-15 -2896 (|#2| |#2| (-1099))) (-15 -4017 (|#2| |#2| (-1099))) (-15 -4017 (|#2| |#2| (-1020 |#2|))) (-15 -2801 (|#2| |#2| (-1099))) (-15 -2801 (|#2| |#2| (-1020 |#2|))) (-15 -3339 (|#2| |#2|)) (-15 -2060 (|#2| (-597 |#2|))) (-15 -3723 (|#2| (-597 |#2|))) (-15 -2048 (|#2| (-597 |#2|))) (-15 -3898 (|#2| (-597 |#2|))) (-15 -4187 (|#2| (-597 |#2|))) (-15 -2578 (|#2| (-597 |#2|)))) (-13 (-795) (-522)) (-411 |#1|)) (T -149))
-((-2578 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-4187 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-3898 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-2048 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-3723 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-2060 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-795) (-522))))) (-3339 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)))) (-2801 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-4017 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)))) (-4017 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2896 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2896 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-1303 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2937 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2947 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *4)) (-4 *4 (-411 *3)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4)))))
-(-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -2947 (|#2| |#2| |#2|)) (-15 -2937 (|#2| |#2| |#2|)) (-15 -1303 (|#2| |#2|)) (-15 -2896 (|#2| |#2|)) (-15 -2896 (|#2| |#2| (-1099))) (-15 -4017 (|#2| |#2| (-1099))) (-15 -4017 (|#2| |#2| (-1020 |#2|))) (-15 -2801 (|#2| |#2| (-1099))) (-15 -2801 (|#2| |#2| (-1020 |#2|))) (-15 -3339 (|#2| |#2|)) (-15 -2060 (|#2| (-597 |#2|))) (-15 -3723 (|#2| (-597 |#2|))) (-15 -2048 (|#2| (-597 |#2|))) (-15 -3898 (|#2| (-597 |#2|))) (-15 -4187 (|#2| (-597 |#2|))) (-15 -2578 (|#2| (-597 |#2|))))
-((-2402 ((|#1| |#1| |#1|) 53)) (-1551 ((|#1| |#1| |#1|) 50)) (-2937 ((|#1| |#1| |#1|) 44)) (-1444 ((|#1| |#1|) 35)) (-4168 ((|#1| |#1| (-597 |#1|)) 43)) (-1303 ((|#1| |#1|) 37)) (-2947 ((|#1| |#1| |#1|) 40)))
-(((-150 |#1|) (-10 -7 (-15 -2947 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -4168 (|#1| |#1| (-597 |#1|))) (-15 -1444 (|#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -1551 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1| |#1|))) (-515)) (T -150))
-((-2402 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-2937 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-1444 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-4168 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-515)) (-5 *1 (-150 *2)))) (-1303 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))) (-2947 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(-10 -7 (-15 -2947 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -4168 (|#1| |#1| (-597 |#1|))) (-15 -1444 (|#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -1551 (|#1| |#1| |#1|)) (-15 -2402 (|#1| |#1| |#1|)))
-((-4017 (($ $ (-1099)) 12) (($ $ (-1020 $)) 11)) (-2801 (($ $ (-1099)) 10) (($ $ (-1020 $)) 9)) (-2937 (($ $ $) 8)) (-2896 (($ $) 14) (($ $ (-1099)) 13)) (-1303 (($ $) 7)) (-2947 (($ $ $) 6)))
+(-13 (-986))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-4196 (((-2 (|:| -1790 (-721)) (|:| -2005 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-721)) 70)) (-2024 (((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-721))) "failed") |#3|) 52)) (-4119 (((-2 (|:| -2005 (-388 |#2|)) (|:| |poly| |#3|)) |#3|) 37)) (-4229 ((|#1| |#3| |#3|) 40)) (-4115 ((|#3| |#3| (-388 |#2|) (-388 |#2|)) 19)) (-2785 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-721))) |#3| |#3|) 49)))
+(((-141 |#1| |#2| |#3|) (-10 -7 (-15 -4119 ((-2 (|:| -2005 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2024 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-721))) "failed") |#3|)) (-15 -4196 ((-2 (|:| -1790 (-721)) (|:| -2005 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-721))) (-15 -4229 (|#1| |#3| |#3|)) (-15 -4115 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -2785 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-721))) |#3| |#3|))) (-1142) (-1160 |#1|) (-1160 (-388 |#2|))) (T -141))
+((-2785 (*1 *2 *3 *3) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5)) (|:| |c2| (-388 *5)) (|:| |deg| (-721)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5))))) (-4115 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1160 *3)))) (-4229 (*1 *2 *3 *3) (-12 (-4 *4 (-1160 *2)) (-4 *2 (-1142)) (-5 *1 (-141 *2 *4 *3)) (-4 *3 (-1160 (-388 *4))))) (-4196 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *6)) (-4 *5 (-1142)) (-4 *6 (-1160 *5)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| *6))) (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-721)) (-4 *7 (-1160 *3)))) (-2024 (*1 *2 *3) (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-721)))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5))))) (-4119 (*1 *2 *3) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -2005 (-388 *5)) (|:| |poly| *3))) (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5))))))
+(-10 -7 (-15 -4119 ((-2 (|:| -2005 (-388 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -2024 ((-3 (-2 (|:| |radicand| (-388 |#2|)) (|:| |deg| (-721))) "failed") |#3|)) (-15 -4196 ((-2 (|:| -1790 (-721)) (|:| -2005 (-388 |#2|)) (|:| |radicand| |#2|)) (-388 |#2|) (-721))) (-15 -4229 (|#1| |#3| |#3|)) (-15 -4115 (|#3| |#3| (-388 |#2|) (-388 |#2|))) (-15 -2785 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| |deg| (-721))) |#3| |#3|)))
+((-4197 (((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|)) 32)))
+(((-142 |#1| |#2|) (-10 -7 (-15 -4197 ((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|)))) (-516) (-156 |#1|)) (T -142))
+((-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *5))) (-5 *3 (-1098 *5)) (-4 *5 (-156 *4)) (-4 *4 (-516)) (-5 *1 (-142 *4 *5)))))
+(-10 -7 (-15 -4197 ((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|))))
+((-2177 (($ (-1 (-110) |#2|) $) 29)) (-3086 (($ $) 36)) (-2283 (($ (-1 (-110) |#2|) $) 27) (($ |#2| $) 32)) (-1760 ((|#2| (-1 |#2| |#2| |#2|) $) 22) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 24) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 34)) (-4190 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 19)) (-2294 (((-110) (-1 (-110) |#2|) $) 16)) (-2539 (((-721) (-1 (-110) |#2|) $) 14) (((-721) |#2| $) NIL)) (-2060 (((-110) (-1 (-110) |#2|) $) 15)) (-2167 (((-721) $) 11)))
+(((-143 |#1| |#2|) (-10 -8 (-15 -3086 (|#1| |#1|)) (-15 -2283 (|#1| |#2| |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2177 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|))) (-144 |#2|) (-1138)) (T -143))
+NIL
+(-10 -8 (-15 -3086 (|#1| |#1|)) (-15 -2283 (|#1| |#2| |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2177 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2177 (($ (-1 (-110) |#1|) $) 44 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 41 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273))) (($ |#1| $) 42 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) 47 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 46 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 48)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 40 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 49)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-144 |#1|) (-133) (-1138)) (T -144))
+((-2274 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-144 *3)))) (-4190 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2)) (-4 *2 (-1138)))) (-1760 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)))) (-1760 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *3)) (-4 *3 (-1138)))) (-2177 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *3)) (-4 *3 (-1138)))) (-1760 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1030)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)))) (-2283 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))) (-3086 (*1 *1 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))))
+(-13 (-468 |t#1|) (-10 -8 (-15 -2274 ($ (-598 |t#1|))) (-15 -4190 ((-3 |t#1| "failed") (-1 (-110) |t#1|) $)) (IF (|has| $ (-6 -4273)) (PROGN (-15 -1760 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -1760 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -2283 ($ (-1 (-110) |t#1|) $)) (-15 -2177 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -1760 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -2283 ($ |t#1| $)) (-15 -3086 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) 86)) (-3481 (((-110) $) NIL)) (-2669 (($ |#2| (-598 (-864))) 56)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1307 (($ (-864)) 47)) (-2190 (((-130)) 23)) (-2265 (((-806) $) 69) (($ (-531)) 45) (($ |#2|) 46)) (-3188 ((|#2| $ (-598 (-864))) 59)) (-2284 (((-721)) 20)) (-3035 (($) 40 T CONST)) (-3050 (($) 43 T CONST)) (-2148 (((-110) $ $) 26)) (-2263 (($ $ |#2|) NIL)) (-2250 (($ $) 34) (($ $ $) 32)) (-2237 (($ $ $) 30)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 37) (($ $ $) 51) (($ |#2| $) 39) (($ $ |#2|) NIL)))
+(((-145 |#1| |#2| |#3|) (-13 (-986) (-37 |#2|) (-1191 |#2|) (-10 -8 (-15 -1307 ($ (-864))) (-15 -2669 ($ |#2| (-598 (-864)))) (-15 -3188 (|#2| $ (-598 (-864)))) (-15 -3622 ((-3 $ "failed") $)))) (-864) (-344) (-935 |#1| |#2|)) (T -145))
+((-3622 (*1 *1 *1) (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-864)) (-4 *3 (-344)) (-14 *4 (-935 *2 *3)))) (-1307 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-344)) (-14 *5 (-935 *3 *4)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-598 (-864))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-864)) (-4 *2 (-344)) (-14 *5 (-935 *4 *2)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-598 (-864))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-864)) (-14 *5 (-935 *4 *2)))))
+(-13 (-986) (-37 |#2|) (-1191 |#2|) (-10 -8 (-15 -1307 ($ (-864))) (-15 -2669 ($ |#2| (-598 (-864)))) (-15 -3188 (|#2| $ (-598 (-864)))) (-15 -3622 ((-3 $ "failed") $))))
+((-1390 (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))) (-208) (-208) (-208) (-208)) 38)) (-3701 (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531))) 63) (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870)) 64)) (-4077 (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208))))) 67) (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-886 (-208)))) 66) (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531))) 58) (((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870)) 59)))
+(((-146) (-10 -7 (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531)))) (-15 -3701 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870))) (-15 -3701 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531)))) (-15 -1390 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))) (-208) (-208) (-208) (-208))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-886 (-208))))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))))))) (T -146))
+((-4077 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)) (-5 *3 (-598 (-598 (-886 (-208))))))) (-4077 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)) (-5 *3 (-598 (-886 (-208)))))) (-1390 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-208)) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 *4)))) (|:| |xValues| (-1025 *4)) (|:| |yValues| (-1025 *4)))) (-5 *1 (-146)) (-5 *3 (-598 (-598 (-886 *4)))))) (-3701 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-870)) (-5 *4 (-388 (-531))) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)))) (-4077 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-870)) (-5 *4 (-388 (-531))) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)))) (-4077 (*1 *2 *3) (-12 (-5 *3 (-870)) (-5 *2 (-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208))))) (-5 *1 (-146)))))
+(-10 -7 (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531)))) (-15 -3701 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870))) (-15 -3701 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-870) (-388 (-531)) (-388 (-531)))) (-15 -1390 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))) (-208) (-208) (-208) (-208))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-886 (-208))))) (-15 -4077 ((-2 (|:| |brans| (-598 (-598 (-886 (-208))))) (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))) (-598 (-598 (-886 (-208)))))))
+((-2923 (((-598 (-159 |#2|)) |#1| |#2|) 45)))
+(((-147 |#1| |#2|) (-10 -7 (-15 -2923 ((-598 (-159 |#2|)) |#1| |#2|))) (-1160 (-159 (-531))) (-13 (-344) (-795))) (T -147))
+((-2923 (*1 *2 *3 *4) (-12 (-5 *2 (-598 (-159 *4))) (-5 *1 (-147 *3 *4)) (-4 *3 (-1160 (-159 (-531)))) (-4 *4 (-13 (-344) (-795))))))
+(-10 -7 (-15 -2923 ((-598 (-159 |#2|)) |#1| |#2|)))
+((-2247 (((-110) $ $) NIL)) (-2668 (($) 15)) (-1604 (($) 14)) (-3159 (((-864)) 22)) (-1521 (((-1085) $) NIL)) (-2697 (((-531) $) 19)) (-2529 (((-1049) $) NIL)) (-3165 (($) 16)) (-2677 (($ (-531)) 23)) (-2265 (((-806) $) 29)) (-3387 (($) 17)) (-2148 (((-110) $ $) 13)) (-2237 (($ $ $) 11)) (* (($ (-864) $) 21) (($ (-208) $) 8)))
+(((-148) (-13 (-25) (-10 -8 (-15 * ($ (-864) $)) (-15 * ($ (-208) $)) (-15 -2237 ($ $ $)) (-15 -1604 ($)) (-15 -2668 ($)) (-15 -3165 ($)) (-15 -3387 ($)) (-15 -2697 ((-531) $)) (-15 -3159 ((-864))) (-15 -2677 ($ (-531)))))) (T -148))
+((-2237 (*1 *1 *1 *1) (-5 *1 (-148))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-148)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148)))) (-1604 (*1 *1) (-5 *1 (-148))) (-2668 (*1 *1) (-5 *1 (-148))) (-3165 (*1 *1) (-5 *1 (-148))) (-3387 (*1 *1) (-5 *1 (-148))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-148)))) (-3159 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-148)))) (-2677 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-148)))))
+(-13 (-25) (-10 -8 (-15 * ($ (-864) $)) (-15 * ($ (-208) $)) (-15 -2237 ($ $ $)) (-15 -1604 ($)) (-15 -2668 ($)) (-15 -3165 ($)) (-15 -3387 ($)) (-15 -2697 ((-531) $)) (-15 -3159 ((-864))) (-15 -2677 ($ (-531)))))
+((-2423 ((|#2| |#2| (-1023 |#2|)) 88) ((|#2| |#2| (-1102)) 68)) (-3488 ((|#2| |#2| (-1023 |#2|)) 87) ((|#2| |#2| (-1102)) 67)) (-2555 ((|#2| |#2| |#2|) 27)) (-3254 (((-112) (-112)) 99)) (-3952 ((|#2| (-598 |#2|)) 117)) (-2474 ((|#2| (-598 |#2|)) 135)) (-3822 ((|#2| (-598 |#2|)) 125)) (-3722 ((|#2| |#2|) 123)) (-2663 ((|#2| (-598 |#2|)) 111)) (-4054 ((|#2| (-598 |#2|)) 112)) (-3094 ((|#2| (-598 |#2|)) 133)) (-2616 ((|#2| |#2| (-1102)) 56) ((|#2| |#2|) 55)) (-1569 ((|#2| |#2|) 23)) (-2589 ((|#2| |#2| |#2|) 26)) (-3167 (((-110) (-112)) 49)) (** ((|#2| |#2| |#2|) 41)))
+(((-149 |#1| |#2|) (-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -2589 (|#2| |#2| |#2|)) (-15 -2555 (|#2| |#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2616 (|#2| |#2| (-1102))) (-15 -2423 (|#2| |#2| (-1102))) (-15 -2423 (|#2| |#2| (-1023 |#2|))) (-15 -3488 (|#2| |#2| (-1102))) (-15 -3488 (|#2| |#2| (-1023 |#2|))) (-15 -3722 (|#2| |#2|)) (-15 -3094 (|#2| (-598 |#2|))) (-15 -3822 (|#2| (-598 |#2|))) (-15 -2474 (|#2| (-598 |#2|))) (-15 -2663 (|#2| (-598 |#2|))) (-15 -4054 (|#2| (-598 |#2|))) (-15 -3952 (|#2| (-598 |#2|)))) (-13 (-797) (-523)) (-411 |#1|)) (T -149))
+((-3952 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-4054 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-2663 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-3822 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-3094 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2)) (-4 *4 (-13 (-797) (-523))))) (-3722 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-3488 (*1 *2 *2 *3) (-12 (-5 *3 (-1023 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)))) (-3488 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2423 (*1 *2 *2 *3) (-12 (-5 *3 (-1023 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)))) (-2423 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2616 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2)) (-4 *2 (-411 *4)))) (-2616 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-1569 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2555 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-2589 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2)) (-4 *2 (-411 *3)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *4)) (-4 *4 (-411 *3)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4)))))
+(-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 ** (|#2| |#2| |#2|)) (-15 -2589 (|#2| |#2| |#2|)) (-15 -2555 (|#2| |#2| |#2|)) (-15 -1569 (|#2| |#2|)) (-15 -2616 (|#2| |#2|)) (-15 -2616 (|#2| |#2| (-1102))) (-15 -2423 (|#2| |#2| (-1102))) (-15 -2423 (|#2| |#2| (-1023 |#2|))) (-15 -3488 (|#2| |#2| (-1102))) (-15 -3488 (|#2| |#2| (-1023 |#2|))) (-15 -3722 (|#2| |#2|)) (-15 -3094 (|#2| (-598 |#2|))) (-15 -3822 (|#2| (-598 |#2|))) (-15 -2474 (|#2| (-598 |#2|))) (-15 -2663 (|#2| (-598 |#2|))) (-15 -4054 (|#2| (-598 |#2|))) (-15 -3952 (|#2| (-598 |#2|))))
+((-1695 ((|#1| |#1| |#1|) 53)) (-3994 ((|#1| |#1| |#1|) 50)) (-2555 ((|#1| |#1| |#1|) 44)) (-2641 ((|#1| |#1|) 35)) (-3379 ((|#1| |#1| (-598 |#1|)) 43)) (-1569 ((|#1| |#1|) 37)) (-2589 ((|#1| |#1| |#1|) 40)))
+(((-150 |#1|) (-10 -7 (-15 -2589 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3379 (|#1| |#1| (-598 |#1|))) (-15 -2641 (|#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -3994 (|#1| |#1| |#1|)) (-15 -1695 (|#1| |#1| |#1|))) (-516)) (T -150))
+((-1695 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-3994 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-2555 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-2641 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-3379 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-516)) (-5 *1 (-150 *2)))) (-1569 (*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))) (-2589 (*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))))
+(-10 -7 (-15 -2589 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -3379 (|#1| |#1| (-598 |#1|))) (-15 -2641 (|#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -3994 (|#1| |#1| |#1|)) (-15 -1695 (|#1| |#1| |#1|)))
+((-2423 (($ $ (-1102)) 12) (($ $ (-1023 $)) 11)) (-3488 (($ $ (-1102)) 10) (($ $ (-1023 $)) 9)) (-2555 (($ $ $) 8)) (-2616 (($ $) 14) (($ $ (-1102)) 13)) (-1569 (($ $) 7)) (-2589 (($ $ $) 6)))
(((-151) (-133)) (T -151))
-((-2896 (*1 *1 *1) (-4 *1 (-151))) (-2896 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-4017 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-4017 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151)))) (-2801 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))) (-2801 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151)))))
-(-13 (-136) (-10 -8 (-15 -2896 ($ $)) (-15 -2896 ($ $ (-1099))) (-15 -4017 ($ $ (-1099))) (-15 -4017 ($ $ (-1020 $))) (-15 -2801 ($ $ (-1099))) (-15 -2801 ($ $ (-1020 $)))))
+((-2616 (*1 *1 *1) (-4 *1 (-151))) (-2616 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))) (-2423 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))) (-2423 (*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-151)))) (-3488 (*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))) (-3488 (*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-151)))))
+(-13 (-136) (-10 -8 (-15 -2616 ($ $)) (-15 -2616 ($ $ (-1102))) (-15 -2423 ($ $ (-1102))) (-15 -2423 ($ $ (-1023 $))) (-15 -3488 ($ $ (-1102))) (-15 -3488 ($ $ (-1023 $)))))
(((-136) . T))
-((-2352 (((-110) $ $) NIL)) (-1616 (($ (-530)) 13) (($ $ $) 14)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 17)) (-2248 (((-110) $ $) 9)))
-(((-152) (-13 (-1027) (-10 -8 (-15 -1616 ($ (-530))) (-15 -1616 ($ $ $))))) (T -152))
-((-1616 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-152)))) (-1616 (*1 *1 *1 *1) (-5 *1 (-152))))
-(-13 (-1027) (-10 -8 (-15 -1616 ($ (-530))) (-15 -1616 ($ $ $))))
-((-4124 (((-112) (-1099)) 97)))
-(((-153) (-10 -7 (-15 -4124 ((-112) (-1099))))) (T -153))
-((-4124 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-153)))))
-(-10 -7 (-15 -4124 ((-112) (-1099))))
-((-1760 ((|#3| |#3|) 19)))
-(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -1760 (|#3| |#3|))) (-984) (-1157 |#1|) (-1157 |#2|)) (T -154))
-((-1760 (*1 *2 *2) (-12 (-4 *3 (-984)) (-4 *4 (-1157 *3)) (-5 *1 (-154 *3 *4 *2)) (-4 *2 (-1157 *4)))))
-(-10 -7 (-15 -1760 (|#3| |#3|)))
-((-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 217)) (-1367 ((|#2| $) 96)) (-2386 (($ $) 247)) (-2244 (($ $) 241)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 40)) (-2360 (($ $) 245)) (-2219 (($ $) 239)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 139)) (-3590 (($ $ $) 222)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 155) (((-637 |#2|) (-637 $)) 149)) (-2134 (($ (-1095 |#2|)) 119) (((-3 $ "failed") (-388 (-1095 |#2|))) NIL)) (-2707 (((-3 $ "failed") $) 209)) (-2180 (((-3 (-388 (-530)) "failed") $) 199)) (-3016 (((-110) $) 194)) (-3370 (((-388 (-530)) $) 197)) (-2426 (((-862)) 89)) (-3571 (($ $ $) 224)) (-3284 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1948 (($) 236)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 186) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 191)) (-2376 ((|#2| $) 94)) (-1359 (((-1095 |#2|) $) 121)) (-3217 (($ (-1 |#2| |#2|) $) 102)) (-2168 (($ $) 238)) (-2123 (((-1095 |#2|) $) 120)) (-2483 (($ $) 202)) (-1254 (($) 97)) (-3845 (((-399 (-1095 $)) (-1095 $)) 88)) (-1473 (((-399 (-1095 $)) (-1095 $)) 57)) (-3551 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2853 (($ $) 237)) (-2356 (((-719) $) 219)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 229)) (-3060 ((|#2| (-1181 $)) NIL) ((|#2|) 91)) (-3289 (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-1781 (((-1095 |#2|)) 114)) (-2373 (($ $) 246)) (-2231 (($ $) 240)) (-2328 (((-1181 |#2|) $ (-1181 $)) 128) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 110) (((-637 |#2|) (-1181 $)) NIL)) (-3260 (((-1181 |#2|) $) NIL) (($ (-1181 |#2|)) NIL) (((-1095 |#2|) $) NIL) (($ (-1095 |#2|)) NIL) (((-833 (-530)) $) 177) (((-833 (-360)) $) 181) (((-159 (-360)) $) 167) (((-159 (-208)) $) 162) (((-506) $) 173)) (-2555 (($ $) 98)) (-2366 (((-804) $) 138) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-388 (-530))) NIL) (($ $) NIL)) (-1814 (((-1095 |#2|) $) 23)) (-3300 (((-719)) 100)) (-2459 (($ $) 250)) (-2314 (($ $) 244)) (-2434 (($ $) 248)) (-2293 (($ $) 242)) (-3117 ((|#2| $) 233)) (-2446 (($ $) 249)) (-2304 (($ $) 243)) (-3934 (($ $) 157)) (-2248 (((-110) $ $) 104)) (-2272 (((-110) $ $) 193)) (-2351 (($ $) 106) (($ $ $) NIL)) (-2339 (($ $ $) 105)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-388 (-530))) 267) (($ $ $) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL)))
-(((-155 |#1| |#2|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -2366 (|#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -2356 ((-719) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-159 (-208)) |#1|)) (-15 -3260 ((-159 (-360)) |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2168 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1948 (|#1|)) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3284 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2555 (|#1| |#1|)) (-15 -1254 (|#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -2134 ((-3 |#1| "failed") (-388 (-1095 |#2|)))) (-15 -2123 ((-1095 |#2|) |#1|)) (-15 -3260 (|#1| (-1095 |#2|))) (-15 -2134 (|#1| (-1095 |#2|))) (-15 -1781 ((-1095 |#2|))) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 ((-1095 |#2|) |#1|)) (-15 -3060 (|#2|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -1359 ((-1095 |#2|) |#1|)) (-15 -1814 ((-1095 |#2|) |#1|)) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -2376 (|#2| |#1|)) (-15 -1367 (|#2| |#1|)) (-15 -2426 ((-862))) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-156 |#2|) (-162)) (T -155))
-((-3300 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-2426 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-862)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-3060 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2)))) (-1781 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 *4)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))))
-(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -2366 (|#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -2356 ((-719) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-159 (-208)) |#1|)) (-15 -3260 ((-159 (-360)) |#1|)) (-15 -2244 (|#1| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2168 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1948 (|#1|)) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3284 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3117 (|#2| |#1|)) (-15 -3934 (|#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2555 (|#1| |#1|)) (-15 -1254 (|#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -2134 ((-3 |#1| "failed") (-388 (-1095 |#2|)))) (-15 -2123 ((-1095 |#2|) |#1|)) (-15 -3260 (|#1| (-1095 |#2|))) (-15 -2134 (|#1| (-1095 |#2|))) (-15 -1781 ((-1095 |#2|))) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 ((-1095 |#2|) |#1|)) (-15 -3060 (|#2|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -1359 ((-1095 |#2|) |#1|)) (-15 -1814 ((-1095 |#2|) |#1|)) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -2376 (|#2| |#1|)) (-15 -1367 (|#2| |#1|)) (-15 -2426 ((-862))) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 91 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-3446 (($ $) 92 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1276 (((-110) $) 94 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1863 (((-637 |#1|) (-1181 $)) 44) (((-637 |#1|)) 59)) (-1367 ((|#1| $) 50)) (-2386 (($ $) 225 (|has| |#1| (-1121)))) (-2244 (($ $) 208 (|has| |#1| (-1121)))) (-3143 (((-1109 (-862) (-719)) (-530)) 144 (|has| |#1| (-330)))) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 239 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-3544 (($ $) 111 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3272 (((-399 $) $) 112 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2625 (($ $) 238 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 242 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1426 (((-110) $ $) 102 (|has| |#1| (-289)))) (-3023 (((-719)) 85 (|has| |#1| (-349)))) (-2360 (($ $) 224 (|has| |#1| (-1121)))) (-2219 (($ $) 209 (|has| |#1| (-1121)))) (-2409 (($ $) 223 (|has| |#1| (-1121)))) (-2269 (($ $) 210 (|has| |#1| (-1121)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 166 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 164 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 163)) (-2585 (((-530) $) 167 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 165 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 162)) (-1574 (($ (-1181 |#1|) (-1181 $)) 46) (($ (-1181 |#1|)) 62)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-330)))) (-3590 (($ $ $) 106 (|has| |#1| (-289)))) (-1984 (((-637 |#1|) $ (-1181 $)) 51) (((-637 |#1|) $) 57)) (-2329 (((-637 (-530)) (-637 $)) 161 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 160 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 159) (((-637 |#1|) (-637 $)) 158)) (-2134 (($ (-1095 |#1|)) 155) (((-3 $ "failed") (-388 (-1095 |#1|))) 152 (|has| |#1| (-344)))) (-2707 (((-3 $ "failed") $) 32)) (-2637 ((|#1| $) 250)) (-2180 (((-3 (-388 (-530)) "failed") $) 243 (|has| |#1| (-515)))) (-3016 (((-110) $) 245 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 244 (|has| |#1| (-515)))) (-2426 (((-862)) 52)) (-1364 (($) 88 (|has| |#1| (-349)))) (-3571 (($ $ $) 105 (|has| |#1| (-289)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 100 (|has| |#1| (-289)))) (-1677 (($) 146 (|has| |#1| (-330)))) (-2798 (((-110) $) 147 (|has| |#1| (-330)))) (-3948 (($ $ (-719)) 138 (|has| |#1| (-330))) (($ $) 137 (|has| |#1| (-330)))) (-3295 (((-110) $) 113 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3284 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-993)) (|has| |#1| (-1121))))) (-1948 (($) 235 (|has| |#1| (-1121)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 258 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 257 (|has| |#1| (-827 (-360))))) (-2031 (((-862) $) 149 (|has| |#1| (-330))) (((-781 (-862)) $) 135 (|has| |#1| (-330)))) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 237 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-2376 ((|#1| $) 49)) (-2972 (((-3 $ "failed") $) 139 (|has| |#1| (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 109 (|has| |#1| (-289)))) (-1359 (((-1095 |#1|) $) 42 (|has| |#1| (-344)))) (-2508 (($ $ $) 204 (|has| |#1| (-795)))) (-1817 (($ $ $) 203 (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) 259)) (-1905 (((-862) $) 87 (|has| |#1| (-349)))) (-2168 (($ $) 232 (|has| |#1| (-1121)))) (-2123 (((-1095 |#1|) $) 153)) (-2170 (($ (-597 $)) 98 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (($ $ $) 97 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 114 (|has| |#1| (-344)))) (-3657 (($) 140 (|has| |#1| (-330)) CONST)) (-1986 (($ (-862)) 86 (|has| |#1| (-349)))) (-1254 (($) 254)) (-2649 ((|#1| $) 251)) (-2624 (((-1046) $) 10)) (-1974 (($) 157)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 99 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-2204 (($ (-597 $)) 96 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (($ $ $) 95 (-1461 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 143 (|has| |#1| (-330)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 241 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1473 (((-399 (-1095 $)) (-1095 $)) 240 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-2611 (((-399 $) $) 110 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 107 (|has| |#1| (-289)))) (-3551 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 90 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 101 (|has| |#1| (-289)))) (-2853 (($ $) 233 (|has| |#1| (-1121)))) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 265 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 263 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 262 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 261 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 260 (|has| |#1| (-491 (-1099) |#1|)))) (-2356 (((-719) $) 103 (|has| |#1| (-289)))) (-1902 (($ $ |#1|) 266 (|has| |#1| (-268 |#1| |#1|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 104 (|has| |#1| (-289)))) (-3060 ((|#1| (-1181 $)) 45) ((|#1|) 58)) (-1823 (((-719) $) 148 (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) 136 (|has| |#1| (-330)))) (-3289 (($ $ (-1 |#1| |#1|) (-719)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-597 (-1099)) (-597 (-719))) 127 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 128 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 129 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 130 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 132 (-1461 (-3380 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 134 (-1461 (-3380 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3380 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-1542 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-344)))) (-1781 (((-1095 |#1|)) 156)) (-2421 (($ $) 222 (|has| |#1| (-1121)))) (-2281 (($ $) 211 (|has| |#1| (-1121)))) (-3406 (($) 145 (|has| |#1| (-330)))) (-2398 (($ $) 221 (|has| |#1| (-1121)))) (-2254 (($ $) 212 (|has| |#1| (-1121)))) (-2373 (($ $) 220 (|has| |#1| (-1121)))) (-2231 (($ $) 213 (|has| |#1| (-1121)))) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) 47) (((-1181 |#1|) $) 64) (((-637 |#1|) (-1181 $)) 63)) (-3260 (((-1181 |#1|) $) 61) (($ (-1181 |#1|)) 60) (((-1095 |#1|) $) 168) (($ (-1095 |#1|)) 154) (((-833 (-530)) $) 256 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 255 (|has| |#1| (-572 (-833 (-360))))) (((-159 (-360)) $) 207 (|has| |#1| (-960))) (((-159 (-208)) $) 206 (|has| |#1| (-960))) (((-506) $) 205 (|has| |#1| (-572 (-506))))) (-2555 (($ $) 253)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 142 (-1461 (-3380 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (|has| |#1| (-330))))) (-4146 (($ |#1| |#1|) 252)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35) (($ (-388 (-530))) 84 (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530)))))) (($ $) 89 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-3251 (($ $) 141 (|has| |#1| (-330))) (((-3 $ "failed") $) 41 (-1461 (-3380 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))) (|has| |#1| (-138))))) (-1814 (((-1095 |#1|) $) 43)) (-3300 (((-719)) 28)) (-3220 (((-1181 $)) 65)) (-2459 (($ $) 231 (|has| |#1| (-1121)))) (-2314 (($ $) 219 (|has| |#1| (-1121)))) (-3944 (((-110) $ $) 93 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))) (-2434 (($ $) 230 (|has| |#1| (-1121)))) (-2293 (($ $) 218 (|has| |#1| (-1121)))) (-2485 (($ $) 229 (|has| |#1| (-1121)))) (-2334 (($ $) 217 (|has| |#1| (-1121)))) (-3117 ((|#1| $) 247 (|has| |#1| (-1121)))) (-3632 (($ $) 228 (|has| |#1| (-1121)))) (-2347 (($ $) 216 (|has| |#1| (-1121)))) (-2472 (($ $) 227 (|has| |#1| (-1121)))) (-2324 (($ $) 215 (|has| |#1| (-1121)))) (-2446 (($ $) 226 (|has| |#1| (-1121)))) (-2304 (($ $) 214 (|has| |#1| (-1121)))) (-3934 (($ $) 248 (|has| |#1| (-993)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 |#1| |#1|) (-719)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-597 (-1099)) (-597 (-719))) 123 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 124 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 125 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 126 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 131 (-1461 (-3380 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 133 (-1461 (-3380 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3380 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-2306 (((-110) $ $) 201 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 200 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 202 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 199 (|has| |#1| (-795)))) (-2364 (($ $ $) 118 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-388 (-530))) 236 (-12 (|has| |#1| (-941)) (|has| |#1| (-1121)))) (($ $ $) 234 (|has| |#1| (-1121))) (($ $ (-530)) 115 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-388 (-530)) $) 117 (|has| |#1| (-344))) (($ $ (-388 (-530))) 116 (|has| |#1| (-344)))))
+((-2247 (((-110) $ $) NIL)) (-1443 (($ (-531)) 13) (($ $ $) 14)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 17)) (-2148 (((-110) $ $) 9)))
+(((-152) (-13 (-1030) (-10 -8 (-15 -1443 ($ (-531))) (-15 -1443 ($ $ $))))) (T -152))
+((-1443 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-152)))) (-1443 (*1 *1 *1 *1) (-5 *1 (-152))))
+(-13 (-1030) (-10 -8 (-15 -1443 ($ (-531))) (-15 -1443 ($ $ $))))
+((-3254 (((-112) (-1102)) 97)))
+(((-153) (-10 -7 (-15 -3254 ((-112) (-1102))))) (T -153))
+((-3254 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-153)))))
+(-10 -7 (-15 -3254 ((-112) (-1102))))
+((-2780 ((|#3| |#3|) 19)))
+(((-154 |#1| |#2| |#3|) (-10 -7 (-15 -2780 (|#3| |#3|))) (-986) (-1160 |#1|) (-1160 |#2|)) (T -154))
+((-2780 (*1 *2 *2) (-12 (-4 *3 (-986)) (-4 *4 (-1160 *3)) (-5 *1 (-154 *3 *4 *2)) (-4 *2 (-1160 *4)))))
+(-10 -7 (-15 -2780 (|#3| |#3|)))
+((-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 217)) (-1354 ((|#2| $) 96)) (-2367 (($ $) 247)) (-2218 (($ $) 241)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 40)) (-2343 (($ $) 245)) (-2198 (($ $) 239)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 141)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#2| $) 139)) (-3650 (($ $ $) 222)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 155) (((-639 |#2|) (-639 $)) 149)) (-1760 (($ (-1098 |#2|)) 119) (((-3 $ "failed") (-388 (-1098 |#2|))) NIL)) (-3622 (((-3 $ "failed") $) 209)) (-1609 (((-3 (-388 (-531)) "failed") $) 199)) (-3004 (((-110) $) 194)) (-2727 (((-388 (-531)) $) 197)) (-2277 (((-864)) 89)) (-3630 (($ $ $) 224)) (-3389 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 261)) (-1880 (($) 236)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 186) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 191)) (-1899 ((|#2| $) 94)) (-1233 (((-1098 |#2|) $) 121)) (-3261 (($ (-1 |#2| |#2|) $) 102)) (-2076 (($ $) 238)) (-1749 (((-1098 |#2|) $) 120)) (-2422 (($ $) 202)) (-2215 (($) 97)) (-3799 (((-399 (-1098 $)) (-1098 $)) 88)) (-2894 (((-399 (-1098 $)) (-1098 $)) 57)) (-3609 (((-3 $ "failed") $ |#2|) 204) (((-3 $ "failed") $ $) 207)) (-2798 (($ $) 237)) (-4100 (((-721) $) 219)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 229)) (-3176 ((|#2| (-1184 $)) NIL) ((|#2|) 91)) (-3352 (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 113) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-3608 (((-1098 |#2|)) 114)) (-2356 (($ $) 246)) (-2210 (($ $) 240)) (-3348 (((-1184 |#2|) $ (-1184 $)) 128) (((-639 |#2|) (-1184 $) (-1184 $)) NIL) (((-1184 |#2|) $) 110) (((-639 |#2|) (-1184 $)) NIL)) (-3318 (((-1184 |#2|) $) NIL) (($ (-1184 |#2|)) NIL) (((-1098 |#2|) $) NIL) (($ (-1098 |#2|)) NIL) (((-835 (-531)) $) 177) (((-835 (-360)) $) 181) (((-159 (-360)) $) 167) (((-159 (-208)) $) 162) (((-507) $) 173)) (-4164 (($ $) 98)) (-2265 (((-806) $) 138) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-388 (-531))) NIL) (($ $) NIL)) (-3369 (((-1098 |#2|) $) 23)) (-2284 (((-721)) 100)) (-2442 (($ $) 250)) (-2292 (($ $) 244)) (-2416 (($ $) 248)) (-2266 (($ $) 242)) (-3662 ((|#2| $) 233)) (-2429 (($ $) 249)) (-2279 (($ $) 243)) (-1620 (($ $) 157)) (-2148 (((-110) $ $) 104)) (-2174 (((-110) $ $) 193)) (-2250 (($ $) 106) (($ $ $) NIL)) (-2237 (($ $ $) 105)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-388 (-531))) 267) (($ $ $) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 112) (($ $ $) 142) (($ $ |#2|) NIL) (($ |#2| $) 108) (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL)))
+(((-155 |#1| |#2|) (-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -2265 (|#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4100 ((-721) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-159 (-208)) |#1|)) (-15 -3318 ((-159 (-360)) |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -2198 (|#1| |#1|)) (-15 -2210 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1880 (|#1|)) (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -3389 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3662 (|#2| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4164 (|#1| |#1|)) (-15 -2215 (|#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -1760 ((-3 |#1| "failed") (-388 (-1098 |#2|)))) (-15 -1749 ((-1098 |#2|) |#1|)) (-15 -3318 (|#1| (-1098 |#2|))) (-15 -1760 (|#1| (-1098 |#2|))) (-15 -3608 ((-1098 |#2|))) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 ((-1098 |#2|) |#1|)) (-15 -3176 (|#2|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -1233 ((-1098 |#2|) |#1|)) (-15 -3369 ((-1098 |#2|) |#1|)) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1899 (|#2| |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -2277 ((-864))) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 ** (|#1| |#1| (-721))) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-156 |#2|) (-162)) (T -155))
+((-2284 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-2277 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-864)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))) (-3176 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2)))) (-3608 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1098 *4)) (-5 *1 (-155 *3 *4)) (-4 *3 (-156 *4)))))
+(-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -2265 (|#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4100 ((-721) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-159 (-208)) |#1|)) (-15 -3318 ((-159 (-360)) |#1|)) (-15 -2218 (|#1| |#1|)) (-15 -2198 (|#1| |#1|)) (-15 -2210 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -1880 (|#1|)) (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -3389 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -3662 (|#2| |#1|)) (-15 -1620 (|#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -4164 (|#1| |#1|)) (-15 -2215 (|#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -1760 ((-3 |#1| "failed") (-388 (-1098 |#2|)))) (-15 -1749 ((-1098 |#2|) |#1|)) (-15 -3318 (|#1| (-1098 |#2|))) (-15 -1760 (|#1| (-1098 |#2|))) (-15 -3608 ((-1098 |#2|))) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 ((-1098 |#2|) |#1|)) (-15 -3176 (|#2|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -1233 ((-1098 |#2|) |#1|)) (-15 -3369 ((-1098 |#2|) |#1|)) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1899 (|#2| |#1|)) (-15 -1354 (|#2| |#1|)) (-15 -2277 ((-864))) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 ** (|#1| |#1| (-721))) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 91 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-3258 (($ $) 92 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2921 (((-110) $) 94 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-1849 (((-639 |#1|) (-1184 $)) 44) (((-639 |#1|)) 59)) (-1354 ((|#1| $) 50)) (-2367 (($ $) 225 (|has| |#1| (-1124)))) (-2218 (($ $) 208 (|has| |#1| (-1124)))) (-3646 (((-1112 (-864) (-721)) (-531)) 144 (|has| |#1| (-330)))) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 239 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-3240 (($ $) 111 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2956 (((-399 $) $) 112 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2563 (($ $) 238 (-12 (|has| |#1| (-943)) (|has| |#1| (-1124))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 242 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2760 (((-110) $ $) 102 (|has| |#1| (-289)))) (-3006 (((-721)) 85 (|has| |#1| (-349)))) (-2343 (($ $) 224 (|has| |#1| (-1124)))) (-2198 (($ $) 209 (|has| |#1| (-1124)))) (-2391 (($ $) 223 (|has| |#1| (-1124)))) (-2241 (($ $) 210 (|has| |#1| (-1124)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 166 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 164 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 163)) (-2523 (((-531) $) 167 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 165 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 162)) (-2767 (($ (-1184 |#1|) (-1184 $)) 46) (($ (-1184 |#1|)) 62)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-330)))) (-3650 (($ $ $) 106 (|has| |#1| (-289)))) (-1982 (((-639 |#1|) $ (-1184 $)) 51) (((-639 |#1|) $) 57)) (-3073 (((-639 (-531)) (-639 $)) 161 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 160 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 159) (((-639 |#1|) (-639 $)) 158)) (-1760 (($ (-1098 |#1|)) 155) (((-3 $ "failed") (-388 (-1098 |#1|))) 152 (|has| |#1| (-344)))) (-3622 (((-3 $ "failed") $) 32)) (-2577 ((|#1| $) 250)) (-1609 (((-3 (-388 (-531)) "failed") $) 243 (|has| |#1| (-516)))) (-3004 (((-110) $) 245 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 244 (|has| |#1| (-516)))) (-2277 (((-864)) 52)) (-1381 (($) 88 (|has| |#1| (-349)))) (-3630 (($ $ $) 105 (|has| |#1| (-289)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 100 (|has| |#1| (-289)))) (-1806 (($) 146 (|has| |#1| (-330)))) (-1971 (((-110) $) 147 (|has| |#1| (-330)))) (-3493 (($ $ (-721)) 138 (|has| |#1| (-330))) (($ $) 137 (|has| |#1| (-330)))) (-2534 (((-110) $) 113 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-3389 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 246 (-12 (|has| |#1| (-995)) (|has| |#1| (-1124))))) (-1880 (($) 235 (|has| |#1| (-1124)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 258 (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 257 (|has| |#1| (-829 (-360))))) (-3617 (((-864) $) 149 (|has| |#1| (-330))) (((-783 (-864)) $) 135 (|has| |#1| (-330)))) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 237 (-12 (|has| |#1| (-943)) (|has| |#1| (-1124))))) (-1899 ((|#1| $) 49)) (-2342 (((-3 $ "failed") $) 139 (|has| |#1| (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 109 (|has| |#1| (-289)))) (-1233 (((-1098 |#1|) $) 42 (|has| |#1| (-344)))) (-4103 (($ $ $) 204 (|has| |#1| (-797)))) (-1241 (($ $ $) 203 (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) 259)) (-2211 (((-864) $) 87 (|has| |#1| (-349)))) (-2076 (($ $) 232 (|has| |#1| (-1124)))) (-1749 (((-1098 |#1|) $) 153)) (-2078 (($ (-598 $)) 98 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (($ $ $) 97 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 114 (|has| |#1| (-344)))) (-3788 (($) 140 (|has| |#1| (-330)) CONST)) (-1889 (($ (-864)) 86 (|has| |#1| (-349)))) (-2215 (($) 254)) (-2590 ((|#1| $) 251)) (-2529 (((-1049) $) 10)) (-1861 (($) 157)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 99 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2109 (($ (-598 $)) 96 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (($ $ $) 95 (-1435 (|has| |#1| (-289)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 143 (|has| |#1| (-330)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 241 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2894 (((-399 (-1098 $)) (-1098 $)) 240 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2552 (((-399 $) $) 110 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 107 (|has| |#1| (-289)))) (-3609 (((-3 $ "failed") $ |#1|) 249 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 90 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 101 (|has| |#1| (-289)))) (-2798 (($ $) 233 (|has| |#1| (-1124)))) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 265 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 264 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 263 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 262 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 261 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) 260 (|has| |#1| (-492 (-1102) |#1|)))) (-4100 (((-721) $) 103 (|has| |#1| (-289)))) (-1785 (($ $ |#1|) 266 (|has| |#1| (-268 |#1| |#1|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 104 (|has| |#1| (-289)))) (-3176 ((|#1| (-1184 $)) 45) ((|#1|) 58)) (-2350 (((-721) $) 148 (|has| |#1| (-330))) (((-3 (-721) "failed") $ $) 136 (|has| |#1| (-330)))) (-3352 (($ $ (-1 |#1| |#1|) (-721)) 120) (($ $ (-1 |#1| |#1|)) 119) (($ $ (-598 (-1102)) (-598 (-721))) 127 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 128 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 129 (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 130 (|has| |#1| (-843 (-1102)))) (($ $ (-721)) 132 (-1435 (-3427 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 134 (-1435 (-3427 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3427 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-3381 (((-639 |#1|) (-1184 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-344)))) (-3608 (((-1098 |#1|)) 156)) (-2403 (($ $) 222 (|has| |#1| (-1124)))) (-2253 (($ $) 211 (|has| |#1| (-1124)))) (-2498 (($) 145 (|has| |#1| (-330)))) (-2379 (($ $) 221 (|has| |#1| (-1124)))) (-2229 (($ $) 212 (|has| |#1| (-1124)))) (-2356 (($ $) 220 (|has| |#1| (-1124)))) (-2210 (($ $) 213 (|has| |#1| (-1124)))) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) 47) (((-1184 |#1|) $) 64) (((-639 |#1|) (-1184 $)) 63)) (-3318 (((-1184 |#1|) $) 61) (($ (-1184 |#1|)) 60) (((-1098 |#1|) $) 168) (($ (-1098 |#1|)) 154) (((-835 (-531)) $) 256 (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) 255 (|has| |#1| (-573 (-835 (-360))))) (((-159 (-360)) $) 207 (|has| |#1| (-962))) (((-159 (-208)) $) 206 (|has| |#1| (-962))) (((-507) $) 205 (|has| |#1| (-573 (-507))))) (-4164 (($ $) 253)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 142 (-1435 (-3427 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))) (|has| |#1| (-330))))) (-4157 (($ |#1| |#1|) 252)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35) (($ (-388 (-531))) 84 (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531)))))) (($ $) 89 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2750 (($ $) 141 (|has| |#1| (-330))) (((-3 $ "failed") $) 41 (-1435 (-3427 (|has| $ (-138)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))) (|has| |#1| (-138))))) (-3369 (((-1098 |#1|) $) 43)) (-2284 (((-721)) 28)) (-3523 (((-1184 $)) 65)) (-2442 (($ $) 231 (|has| |#1| (-1124)))) (-2292 (($ $) 219 (|has| |#1| (-1124)))) (-2587 (((-110) $ $) 93 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))) (-2416 (($ $) 230 (|has| |#1| (-1124)))) (-2266 (($ $) 218 (|has| |#1| (-1124)))) (-2468 (($ $) 229 (|has| |#1| (-1124)))) (-2318 (($ $) 217 (|has| |#1| (-1124)))) (-3662 ((|#1| $) 247 (|has| |#1| (-1124)))) (-2753 (($ $) 228 (|has| |#1| (-1124)))) (-2331 (($ $) 216 (|has| |#1| (-1124)))) (-2456 (($ $) 227 (|has| |#1| (-1124)))) (-2305 (($ $) 215 (|has| |#1| (-1124)))) (-2429 (($ $) 226 (|has| |#1| (-1124)))) (-2279 (($ $) 214 (|has| |#1| (-1124)))) (-1620 (($ $) 248 (|has| |#1| (-995)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 |#1| |#1|) (-721)) 122) (($ $ (-1 |#1| |#1|)) 121) (($ $ (-598 (-1102)) (-598 (-721))) 123 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 124 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 125 (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 126 (|has| |#1| (-843 (-1102)))) (($ $ (-721)) 131 (-1435 (-3427 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))))) (($ $) 133 (-1435 (-3427 (|has| |#1| (-344)) (|has| |#1| (-216))) (|has| |#1| (-216)) (-3427 (|has| |#1| (-216)) (|has| |#1| (-344)))))) (-2207 (((-110) $ $) 201 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 200 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 202 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 199 (|has| |#1| (-797)))) (-2263 (($ $ $) 118 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-388 (-531))) 236 (-12 (|has| |#1| (-943)) (|has| |#1| (-1124)))) (($ $ $) 234 (|has| |#1| (-1124))) (($ $ (-531)) 115 (|has| |#1| (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-388 (-531)) $) 117 (|has| |#1| (-344))) (($ $ (-388 (-531))) 116 (|has| |#1| (-344)))))
(((-156 |#1|) (-133) (-162)) (T -156))
-((-2376 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-1254 (*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2555 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4146 (*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-3934 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-3117 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1121)))) (-3284 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-993)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))))
-(-13 (-673 |t#1| (-1095 |t#1|)) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-381 |t#1|) (-825 |t#1|) (-358 |t#1|) (-162) (-10 -8 (-6 -4146) (-15 -1254 ($)) (-15 -2555 ($ $)) (-15 -4146 ($ |t#1| |t#1|)) (-15 -2649 (|t#1| $)) (-15 -2637 (|t#1| $)) (-15 -2376 (|t#1| $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-522)) (-15 -3551 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-6 -4268)) (-6 -4268) |%noBranch|) (IF (|has| |t#1| (-6 -4265)) (-6 -4265) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-960)) (PROGN (-6 (-572 (-159 (-208)))) (-6 (-572 (-159 (-360))))) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -3934 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1121)) (PROGN (-6 (-1121)) (-15 -3117 (|t#1| $)) (IF (|has| |t#1| (-941)) (-6 (-941)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -3284 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-850)) (IF (|has| |t#1| (-289)) (-6 (-850)) |%noBranch|) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-34) |has| |#1| (-1121)) ((-93) |has| |#1| (-1121)) ((-99) . T) ((-109 #0# #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-159 (-208))) |has| |#1| (-960)) ((-572 (-159 (-360))) |has| |#1| (-960)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-572 #1=(-1095 |#1|)) . T) ((-214 |#1|) . T) ((-216) -1461 (|has| |#1| (-330)) (|has| |#1| (-216))) ((-226) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-266) |has| |#1| (-1121)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-289) -1461 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1461 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| #1#) . T) ((-390 |#1| #1#) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-471) |has| |#1| (-1121)) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-599 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-666 |#1|) . T) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-673 |#1| #1#) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-850) -12 (|has| |#1| (-289)) (|has| |#1| (-850))) ((-861) -1461 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-941) -12 (|has| |#1| (-941)) (|has| |#1| (-1121))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-330)) ((-1121) |has| |#1| (-1121)) ((-1124) |has| |#1| (-1121)) ((-1135) . T) ((-1139) -1461 (|has| |#1| (-330)) (|has| |#1| (-344)) (-12 (|has| |#1| (-289)) (|has| |#1| (-850)))))
-((-2611 (((-399 |#2|) |#2|) 63)))
-(((-157 |#1| |#2|) (-10 -7 (-15 -2611 ((-399 |#2|) |#2|))) (-289) (-1157 (-159 |#1|))) (T -157))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(-10 -7 (-15 -2611 ((-399 |#2|) |#2|)))
-((-3217 (((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)) 14)))
-(((-158 |#1| |#2|) (-10 -7 (-15 -3217 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) (-162) (-162)) (T -158))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6)))))
-(-10 -7 (-15 -3217 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 33)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-3446 (($ $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-1276 (((-110) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-1863 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) NIL)) (-1367 ((|#1| $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-1121)))) (-2244 (($ $) NIL (|has| |#1| (-1121)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-3544 (($ $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3272 (((-399 $) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2625 (($ $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-289)))) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2360 (($ $) NIL (|has| |#1| (-1121)))) (-2219 (($ $) NIL (|has| |#1| (-1121)))) (-2409 (($ $) NIL (|has| |#1| (-1121)))) (-2269 (($ $) NIL (|has| |#1| (-1121)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3590 (($ $ $) NIL (|has| |#1| (-289)))) (-1984 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2134 (($ (-1095 |#1|)) NIL) (((-3 $ "failed") (-388 (-1095 |#1|))) NIL (|has| |#1| (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-2637 ((|#1| $) 13)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-3016 (((-110) $) NIL (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-2426 (((-862)) NIL)) (-1364 (($) NIL (|has| |#1| (-349)))) (-3571 (($ $ $) NIL (|has| |#1| (-289)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-289)))) (-1677 (($) NIL (|has| |#1| (-330)))) (-2798 (((-110) $) NIL (|has| |#1| (-330)))) (-3948 (($ $ (-719)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-3295 (((-110) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-3284 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-993)) (|has| |#1| (-1121))))) (-1948 (($) NIL (|has| |#1| (-1121)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#1| (-827 (-360))))) (-2031 (((-862) $) NIL (|has| |#1| (-330))) (((-781 (-862)) $) NIL (|has| |#1| (-330)))) (-2731 (((-110) $) 35)) (-3741 (($ $ (-530)) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121))))) (-2376 ((|#1| $) 46)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-289)))) (-1359 (((-1095 |#1|) $) NIL (|has| |#1| (-344)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-2168 (($ $) NIL (|has| |#1| (-1121)))) (-2123 (((-1095 |#1|) $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-3657 (($) NIL (|has| |#1| (-330)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1254 (($) NIL)) (-2649 ((|#1| $) 15)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-289)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-330)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-850))))) (-2611 (((-399 $) $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-344))))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-289)))) (-3551 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 47 (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-289)))) (-2853 (($ $) NIL (|has| |#1| (-1121)))) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-2356 (((-719) $) NIL (|has| |#1| (-289)))) (-1902 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-289)))) (-3060 ((|#1| (-1181 $)) NIL) ((|#1|) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) NIL (|has| |#1| (-330)))) (-3289 (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-1542 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-1781 (((-1095 |#1|)) NIL)) (-2421 (($ $) NIL (|has| |#1| (-1121)))) (-2281 (($ $) NIL (|has| |#1| (-1121)))) (-3406 (($) NIL (|has| |#1| (-330)))) (-2398 (($ $) NIL (|has| |#1| (-1121)))) (-2254 (($ $) NIL (|has| |#1| (-1121)))) (-2373 (($ $) NIL (|has| |#1| (-1121)))) (-2231 (($ $) NIL (|has| |#1| (-1121)))) (-2328 (((-1181 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-3260 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL) (((-1095 |#1|) $) NIL) (($ (-1095 |#1|)) NIL) (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (((-159 (-360)) $) NIL (|has| |#1| (-960))) (((-159 (-208)) $) NIL (|has| |#1| (-960))) (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2555 (($ $) 45)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-330))))) (-4146 (($ |#1| |#1|) 37)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) 36) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-3251 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-1814 (((-1095 |#1|) $) NIL)) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL)) (-2459 (($ $) NIL (|has| |#1| (-1121)))) (-2314 (($ $) NIL (|has| |#1| (-1121)))) (-3944 (((-110) $ $) NIL (-1461 (-12 (|has| |#1| (-289)) (|has| |#1| (-850))) (|has| |#1| (-522))))) (-2434 (($ $) NIL (|has| |#1| (-1121)))) (-2293 (($ $) NIL (|has| |#1| (-1121)))) (-2485 (($ $) NIL (|has| |#1| (-1121)))) (-2334 (($ $) NIL (|has| |#1| (-1121)))) (-3117 ((|#1| $) NIL (|has| |#1| (-1121)))) (-3632 (($ $) NIL (|has| |#1| (-1121)))) (-2347 (($ $) NIL (|has| |#1| (-1121)))) (-2472 (($ $) NIL (|has| |#1| (-1121)))) (-2324 (($ $) NIL (|has| |#1| (-1121)))) (-2446 (($ $) NIL (|has| |#1| (-1121)))) (-2304 (($ $) NIL (|has| |#1| (-1121)))) (-3934 (($ $) NIL (|has| |#1| (-993)))) (-3080 (($) 28 T CONST)) (-3093 (($) 30 T CONST)) (-3987 (((-1082) $) 23 (|has| |#1| (-776))) (((-1082) $ (-110)) 25 (|has| |#1| (-776))) (((-1186) (-770) $) 26 (|has| |#1| (-776))) (((-1186) (-770) $ (-110)) 27 (|has| |#1| (-776)))) (-3340 (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 39)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-388 (-530))) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-1121)))) (($ $ $) NIL (|has| |#1| (-1121))) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-530))) NIL (|has| |#1| (-344)))))
-(((-159 |#1|) (-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|))) (-162)) (T -159))
-NIL
-(-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|)))
-((-3260 (((-833 |#1|) |#3|) 22)))
-(((-160 |#1| |#2| |#3|) (-10 -7 (-15 -3260 ((-833 |#1|) |#3|))) (-1027) (-13 (-572 (-833 |#1|)) (-162)) (-156 |#2|)) (T -160))
-((-3260 (*1 *2 *3) (-12 (-4 *5 (-13 (-572 *2) (-162))) (-5 *2 (-833 *4)) (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1027)) (-4 *3 (-156 *5)))))
-(-10 -7 (-15 -3260 ((-833 |#1|) |#3|)))
-((-2352 (((-110) $ $) NIL)) (-2647 (((-110) $) 9)) (-4006 (((-110) $ (-110)) 11)) (-3538 (($) 12)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2579 (($ $) 13)) (-2366 (((-804) $) 17)) (-1732 (((-110) $) 8)) (-2361 (((-110) $ (-110)) 10)) (-2248 (((-110) $ $) NIL)))
-(((-161) (-13 (-1027) (-10 -8 (-15 -3538 ($)) (-15 -1732 ((-110) $)) (-15 -2647 ((-110) $)) (-15 -2361 ((-110) $ (-110))) (-15 -4006 ((-110) $ (-110))) (-15 -2579 ($ $))))) (T -161))
-((-3538 (*1 *1) (-5 *1 (-161))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2647 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2361 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-4006 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2579 (*1 *1 *1) (-5 *1 (-161))))
-(-13 (-1027) (-10 -8 (-15 -3538 ($)) (-15 -1732 ((-110) $)) (-15 -2647 ((-110) $)) (-15 -2361 ((-110) $ (-110))) (-15 -4006 ((-110) $ (-110))) (-15 -2579 ($ $))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-1899 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2215 (*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4164 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-4157 (*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2590 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-1620 (*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) (-3662 (*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1124)))) (-3389 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-995)) (-4 *3 (-1124)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))) (-1609 (*1 *2 *1) (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))))
+(-13 (-675 |t#1| (-1098 |t#1|)) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-381 |t#1|) (-827 |t#1|) (-358 |t#1|) (-162) (-10 -8 (-6 -4157) (-15 -2215 ($)) (-15 -4164 ($ $)) (-15 -4157 ($ |t#1| |t#1|)) (-15 -2590 (|t#1| $)) (-15 -2577 (|t#1| $)) (-15 -1899 (|t#1| $)) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-523)) (-15 -3609 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-289)) (-6 (-289)) |%noBranch|) (IF (|has| |t#1| (-6 -4272)) (-6 -4272) |%noBranch|) (IF (|has| |t#1| (-6 -4269)) (-6 -4269) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-962)) (PROGN (-6 (-573 (-159 (-208)))) (-6 (-573 (-159 (-360))))) |%noBranch|) (IF (|has| |t#1| (-995)) (-15 -1620 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1124)) (PROGN (-6 (-1124)) (-15 -3662 (|t#1| $)) (IF (|has| |t#1| (-943)) (-6 (-943)) |%noBranch|) (IF (|has| |t#1| (-995)) (-15 -3389 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-852)) (IF (|has| |t#1| (-289)) (-6 (-852)) |%noBranch|) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-34) |has| |#1| (-1124)) ((-93) |has| |#1| (-1124)) ((-99) . T) ((-109 #0# #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 (-159 (-208))) |has| |#1| (-962)) ((-573 (-159 (-360))) |has| |#1| (-962)) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))) ((-573 #1=(-1098 |#1|)) . T) ((-214 |#1|) . T) ((-216) -1435 (|has| |#1| (-330)) (|has| |#1| (-216))) ((-226) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-266) |has| |#1| (-1124)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-289) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1435 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| #1#) . T) ((-390 |#1| #1#) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-471) |has| |#1| (-1124)) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-601 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-668 |#1|) . T) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-675 |#1| #1#) . T) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-827 |#1|) . T) ((-852) -12 (|has| |#1| (-289)) (|has| |#1| (-852))) ((-863) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)) (|has| |#1| (-289))) ((-943) -12 (|has| |#1| (-943)) (|has| |#1| (-1124))) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-330)) ((-1124) |has| |#1| (-1124)) ((-1127) |has| |#1| (-1124)) ((-1138) . T) ((-1142) -1435 (|has| |#1| (-330)) (|has| |#1| (-344)) (-12 (|has| |#1| (-289)) (|has| |#1| (-852)))))
+((-2552 (((-399 |#2|) |#2|) 63)))
+(((-157 |#1| |#2|) (-10 -7 (-15 -2552 ((-399 |#2|) |#2|))) (-289) (-1160 (-159 |#1|))) (T -157))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-157 *4 *3)) (-4 *3 (-1160 (-159 *4))))))
+(-10 -7 (-15 -2552 ((-399 |#2|) |#2|)))
+((-3261 (((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)) 14)))
+(((-158 |#1| |#2|) (-10 -7 (-15 -3261 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|)))) (-162) (-162)) (T -158))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6)))))
+(-10 -7 (-15 -3261 ((-159 |#2|) (-1 |#2| |#1|) (-159 |#1|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 33)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-3258 (($ $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-2921 (((-110) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-1849 (((-639 |#1|) (-1184 $)) NIL) (((-639 |#1|)) NIL)) (-1354 ((|#1| $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-1124)))) (-2218 (($ $) NIL (|has| |#1| (-1124)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-3240 (($ $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2956 (((-399 $) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2563 (($ $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-1124))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-289)))) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-2343 (($ $) NIL (|has| |#1| (-1124)))) (-2198 (($ $) NIL (|has| |#1| (-1124)))) (-2391 (($ $) NIL (|has| |#1| (-1124)))) (-2241 (($ $) NIL (|has| |#1| (-1124)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|) (-1184 $)) NIL) (($ (-1184 |#1|)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3650 (($ $ $) NIL (|has| |#1| (-289)))) (-1982 (((-639 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-1760 (($ (-1098 |#1|)) NIL) (((-3 $ "failed") (-388 (-1098 |#1|))) NIL (|has| |#1| (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-2577 ((|#1| $) 13)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-516)))) (-3004 (((-110) $) NIL (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) NIL (|has| |#1| (-516)))) (-2277 (((-864)) NIL)) (-1381 (($) NIL (|has| |#1| (-349)))) (-3630 (($ $ $) NIL (|has| |#1| (-289)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-289)))) (-1806 (($) NIL (|has| |#1| (-330)))) (-1971 (((-110) $) NIL (|has| |#1| (-330)))) (-3493 (($ $ (-721)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-2534 (((-110) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-3389 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-995)) (|has| |#1| (-1124))))) (-1880 (($) NIL (|has| |#1| (-1124)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| |#1| (-829 (-360))))) (-3617 (((-864) $) NIL (|has| |#1| (-330))) (((-783 (-864)) $) NIL (|has| |#1| (-330)))) (-3481 (((-110) $) 35)) (-2249 (($ $ (-531)) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-1124))))) (-1899 ((|#1| $) 46)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-289)))) (-1233 (((-1098 |#1|) $) NIL (|has| |#1| (-344)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-2076 (($ $) NIL (|has| |#1| (-1124)))) (-1749 (((-1098 |#1|) $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-3788 (($) NIL (|has| |#1| (-330)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-2215 (($) NIL)) (-2590 ((|#1| $) 15)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-289)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-289))) (($ $ $) NIL (|has| |#1| (-289)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-330)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#1| (-289)) (|has| |#1| (-852))))) (-2552 (((-399 $) $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-344))))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-289)))) (-3609 (((-3 $ "failed") $ |#1|) 44 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 47 (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-289)))) (-2798 (($ $) NIL (|has| |#1| (-1124)))) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|)))) (-4100 (((-721) $) NIL (|has| |#1| (-289)))) (-1785 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-289)))) (-3176 ((|#1| (-1184 $)) NIL) ((|#1|) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-330))) (((-3 (-721) "failed") $ $) NIL (|has| |#1| (-330)))) (-3352 (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-3381 (((-639 |#1|) (-1184 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3608 (((-1098 |#1|)) NIL)) (-2403 (($ $) NIL (|has| |#1| (-1124)))) (-2253 (($ $) NIL (|has| |#1| (-1124)))) (-2498 (($) NIL (|has| |#1| (-330)))) (-2379 (($ $) NIL (|has| |#1| (-1124)))) (-2229 (($ $) NIL (|has| |#1| (-1124)))) (-2356 (($ $) NIL (|has| |#1| (-1124)))) (-2210 (($ $) NIL (|has| |#1| (-1124)))) (-3348 (((-1184 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) (-1184 $) (-1184 $)) NIL) (((-1184 |#1|) $) NIL) (((-639 |#1|) (-1184 $)) NIL)) (-3318 (((-1184 |#1|) $) NIL) (($ (-1184 |#1|)) NIL) (((-1098 |#1|) $) NIL) (($ (-1098 |#1|)) NIL) (((-835 (-531)) $) NIL (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| |#1| (-573 (-835 (-360))))) (((-159 (-360)) $) NIL (|has| |#1| (-962))) (((-159 (-208)) $) NIL (|has| |#1| (-962))) (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-4164 (($ $) 45)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-330))))) (-4157 (($ |#1| |#1|) 37)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) 36) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-2750 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-3369 (((-1098 |#1|) $) NIL)) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL)) (-2442 (($ $) NIL (|has| |#1| (-1124)))) (-2292 (($ $) NIL (|has| |#1| (-1124)))) (-2587 (((-110) $ $) NIL (-1435 (-12 (|has| |#1| (-289)) (|has| |#1| (-852))) (|has| |#1| (-523))))) (-2416 (($ $) NIL (|has| |#1| (-1124)))) (-2266 (($ $) NIL (|has| |#1| (-1124)))) (-2468 (($ $) NIL (|has| |#1| (-1124)))) (-2318 (($ $) NIL (|has| |#1| (-1124)))) (-3662 ((|#1| $) NIL (|has| |#1| (-1124)))) (-2753 (($ $) NIL (|has| |#1| (-1124)))) (-2331 (($ $) NIL (|has| |#1| (-1124)))) (-2456 (($ $) NIL (|has| |#1| (-1124)))) (-2305 (($ $) NIL (|has| |#1| (-1124)))) (-2429 (($ $) NIL (|has| |#1| (-1124)))) (-2279 (($ $) NIL (|has| |#1| (-1124)))) (-1620 (($ $) NIL (|has| |#1| (-995)))) (-3035 (($) 28 T CONST)) (-3050 (($) 30 T CONST)) (-4231 (((-1085) $) 23 (|has| |#1| (-778))) (((-1085) $ (-110)) 25 (|has| |#1| (-778))) (((-1189) (-772) $) 26 (|has| |#1| (-778))) (((-1189) (-772) $ (-110)) 27 (|has| |#1| (-778)))) (-4020 (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 39)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-388 (-531))) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-1124)))) (($ $ $) NIL (|has| |#1| (-1124))) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 42) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-531))) NIL (|has| |#1| (-344)))))
+(((-159 |#1|) (-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|))) (-162)) (T -159))
+NIL
+(-13 (-156 |#1|) (-10 -7 (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|)))
+((-3318 (((-835 |#1|) |#3|) 22)))
+(((-160 |#1| |#2| |#3|) (-10 -7 (-15 -3318 ((-835 |#1|) |#3|))) (-1030) (-13 (-573 (-835 |#1|)) (-162)) (-156 |#2|)) (T -160))
+((-3318 (*1 *2 *3) (-12 (-4 *5 (-13 (-573 *2) (-162))) (-5 *2 (-835 *4)) (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1030)) (-4 *3 (-156 *5)))))
+(-10 -7 (-15 -3318 ((-835 |#1|) |#3|)))
+((-2247 (((-110) $ $) NIL)) (-3183 (((-110) $) 9)) (-2902 (((-110) $ (-110)) 11)) (-3010 (($) 12)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2480 (($ $) 13)) (-2265 (((-806) $) 17)) (-1934 (((-110) $) 8)) (-2259 (((-110) $ (-110)) 10)) (-2148 (((-110) $ $) NIL)))
+(((-161) (-13 (-1030) (-10 -8 (-15 -3010 ($)) (-15 -1934 ((-110) $)) (-15 -3183 ((-110) $)) (-15 -2259 ((-110) $ (-110))) (-15 -2902 ((-110) $ (-110))) (-15 -2480 ($ $))))) (T -161))
+((-3010 (*1 *1) (-5 *1 (-161))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-3183 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2259 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2902 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))) (-2480 (*1 *1 *1) (-5 *1 (-161))))
+(-13 (-1030) (-10 -8 (-15 -3010 ($)) (-15 -1934 ((-110) $)) (-15 -3183 ((-110) $)) (-15 -2259 ((-110) $ (-110))) (-15 -2902 ((-110) $ (-110))) (-15 -2480 ($ $))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-162) (-133)) (T -162))
NIL
-(-13 (-984) (-109 $ $) (-10 -7 (-6 (-4271 "*"))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 ((|#1| $) 75)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL)) (-1697 (($ $) 19)) (-1868 (($ |#1| (-1080 |#1|)) 48)) (-2707 (((-3 $ "failed") $) 117)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3664 (((-1080 |#1|) $) 82)) (-3296 (((-1080 |#1|) $) 79)) (-2158 (((-1080 |#1|) $) 80)) (-2731 (((-110) $) NIL)) (-3949 (((-1080 |#1|) $) 88)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3168 (($ $ (-530)) 91)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2399 (((-1080 |#1|) $) 89)) (-2613 (((-1080 (-388 |#1|)) $) 14)) (-2054 (($ (-388 |#1|)) 17) (($ |#1| (-1080 |#1|) (-1080 |#1|)) 38)) (-4050 (($ $) 93)) (-2366 (((-804) $) 127) (($ (-530)) 51) (($ |#1|) 52) (($ (-388 |#1|)) 36) (($ (-388 (-530))) NIL) (($ $) NIL)) (-3300 (((-719)) 64)) (-3944 (((-110) $ $) NIL)) (-2415 (((-1080 (-388 |#1|)) $) 18)) (-3080 (($) 25 T CONST)) (-3093 (($) 28 T CONST)) (-2248 (((-110) $ $) 35)) (-2364 (($ $ $) 115)) (-2351 (($ $) 106) (($ $ $) 103)) (-2339 (($ $ $) 101)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-388 |#1|) $) 111) (($ $ (-388 |#1|)) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL)))
-(((-163 |#1|) (-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -2054 ($ (-388 |#1|))) (-15 -2054 ($ |#1| (-1080 |#1|) (-1080 |#1|))) (-15 -1868 ($ |#1| (-1080 |#1|))) (-15 -3296 ((-1080 |#1|) $)) (-15 -2158 ((-1080 |#1|) $)) (-15 -3664 ((-1080 |#1|) $)) (-15 -1612 (|#1| $)) (-15 -1697 ($ $)) (-15 -2415 ((-1080 (-388 |#1|)) $)) (-15 -2613 ((-1080 (-388 |#1|)) $)) (-15 -3949 ((-1080 |#1|) $)) (-15 -2399 ((-1080 |#1|) $)) (-15 -3168 ($ $ (-530))) (-15 -4050 ($ $)))) (-289)) (T -163))
-((-2054 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3)))) (-2054 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-1868 (*1 *1 *2 *3) (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-3296 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-2158 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3664 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1612 (*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-1697 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-2415 (*1 *2 *1) (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-2613 (*1 *2 *1) (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-4050 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
-(-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -2054 ($ (-388 |#1|))) (-15 -2054 ($ |#1| (-1080 |#1|) (-1080 |#1|))) (-15 -1868 ($ |#1| (-1080 |#1|))) (-15 -3296 ((-1080 |#1|) $)) (-15 -2158 ((-1080 |#1|) $)) (-15 -3664 ((-1080 |#1|) $)) (-15 -1612 (|#1| $)) (-15 -1697 ($ $)) (-15 -2415 ((-1080 (-388 |#1|)) $)) (-15 -2613 ((-1080 (-388 |#1|)) $)) (-15 -3949 ((-1080 |#1|) $)) (-15 -2399 ((-1080 |#1|) $)) (-15 -3168 ($ $ (-530))) (-15 -4050 ($ $))))
-((-1735 (($ (-106) $) 13)) (-3475 (((-3 (-106) "failed") (-1099) $) 12)) (-2366 (((-804) $) 16)) (-3359 (((-597 (-106)) $) 8)))
-(((-164) (-13 (-571 (-804)) (-10 -8 (-15 -3359 ((-597 (-106)) $)) (-15 -1735 ($ (-106) $)) (-15 -3475 ((-3 (-106) "failed") (-1099) $))))) (T -164))
-((-3359 (*1 *2 *1) (-12 (-5 *2 (-597 (-106))) (-5 *1 (-164)))) (-1735 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))) (-3475 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-164)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3359 ((-597 (-106)) $)) (-15 -1735 ($ (-106) $)) (-15 -3475 ((-3 (-106) "failed") (-1099) $))))
-((-2878 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 40)) (-2089 (((-884 |#1|) (-884 |#1|)) 19)) (-2946 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 36)) (-1652 (((-884 |#1|) (-884 |#1|)) 17)) (-1236 (((-884 |#1|) (-884 |#1|)) 25)) (-2538 (((-884 |#1|) (-884 |#1|)) 24)) (-3618 (((-884 |#1|) (-884 |#1|)) 23)) (-1221 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 37)) (-2186 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 35)) (-2174 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 34)) (-2715 (((-884 |#1|) (-884 |#1|)) 18)) (-1475 (((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|) 43)) (-1916 (((-884 |#1|) (-884 |#1|)) 8)) (-2326 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 39)) (-2567 (((-1 (-884 |#1|) (-884 |#1|)) |#1|) 38)))
-(((-165 |#1|) (-10 -7 (-15 -1916 ((-884 |#1|) (-884 |#1|))) (-15 -1652 ((-884 |#1|) (-884 |#1|))) (-15 -2715 ((-884 |#1|) (-884 |#1|))) (-15 -2089 ((-884 |#1|) (-884 |#1|))) (-15 -3618 ((-884 |#1|) (-884 |#1|))) (-15 -2538 ((-884 |#1|) (-884 |#1|))) (-15 -1236 ((-884 |#1|) (-884 |#1|))) (-15 -2174 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2186 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2946 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1221 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2567 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2326 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2878 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1475 ((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|))) (-13 (-344) (-1121) (-941))) (T -165))
-((-1475 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2878 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2326 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2567 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1221 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2946 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2186 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-2174 (*1 *2 *3) (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1121) (-941))))) (-1236 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-2538 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-3618 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-2089 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-2715 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-1652 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))) (-1916 (*1 *2 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941))) (-5 *1 (-165 *3)))))
-(-10 -7 (-15 -1916 ((-884 |#1|) (-884 |#1|))) (-15 -1652 ((-884 |#1|) (-884 |#1|))) (-15 -2715 ((-884 |#1|) (-884 |#1|))) (-15 -2089 ((-884 |#1|) (-884 |#1|))) (-15 -3618 ((-884 |#1|) (-884 |#1|))) (-15 -2538 ((-884 |#1|) (-884 |#1|))) (-15 -1236 ((-884 |#1|) (-884 |#1|))) (-15 -2174 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2186 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2946 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1221 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2567 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2326 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -2878 ((-1 (-884 |#1|) (-884 |#1|)) |#1|)) (-15 -1475 ((-1 (-884 |#1|) (-884 |#1|)) |#1| |#1|)))
-((-1814 ((|#2| |#3|) 27)))
-(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1814 (|#2| |#3|))) (-162) (-1157 |#1|) (-673 |#1| |#2|)) (T -166))
-((-1814 (*1 *2 *3) (-12 (-4 *4 (-162)) (-4 *2 (-1157 *4)) (-5 *1 (-166 *4 *2 *3)) (-4 *3 (-673 *4 *2)))))
-(-10 -7 (-15 -1814 (|#2| |#3|)))
-((-2890 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 47 (|has| (-893 |#2|) (-827 |#1|)))))
-(((-167 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-893 |#2|) (-827 |#1|)) (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) |%noBranch|)) (-1027) (-13 (-827 |#1|) (-162)) (-156 |#2|)) (T -167))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *3 (-156 *6)) (-4 (-893 *6) (-827 *5)) (-4 *6 (-13 (-827 *5) (-162))) (-5 *1 (-167 *5 *6 *3)))))
-(-10 -7 (IF (|has| (-893 |#2|) (-827 |#1|)) (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) |%noBranch|))
-((-4199 (((-597 |#1|) (-597 |#1|) |#1|) 38)) (-2712 (((-597 |#1|) |#1| (-597 |#1|)) 19)) (-4164 (((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|)) 33) ((|#1| (-597 |#1|) (-597 |#1|)) 31)))
-(((-168 |#1|) (-10 -7 (-15 -2712 ((-597 |#1|) |#1| (-597 |#1|))) (-15 -4164 (|#1| (-597 |#1|) (-597 |#1|))) (-15 -4164 ((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|))) (-15 -4199 ((-597 |#1|) (-597 |#1|) |#1|))) (-289)) (T -168))
-((-4199 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))) (-4164 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-597 *4))) (-5 *2 (-597 *4)) (-4 *4 (-289)) (-5 *1 (-168 *4)))) (-4164 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289)))) (-2712 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
-(-10 -7 (-15 -2712 ((-597 |#1|) |#1| (-597 |#1|))) (-15 -4164 (|#1| (-597 |#1|) (-597 |#1|))) (-15 -4164 ((-597 |#1|) (-597 (-597 |#1|)) (-597 |#1|))) (-15 -4199 ((-597 |#1|) (-597 |#1|) |#1|)))
-((-3573 (((-2 (|:| |start| |#2|) (|:| -3721 (-399 |#2|))) |#2|) 61)) (-1765 ((|#1| |#1|) 54)) (-1935 (((-159 |#1|) |#2|) 84)) (-2358 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-3608 ((|#2| |#2|) 83)) (-3788 (((-399 |#2|) |#2| |#1|) 113) (((-399 |#2|) |#2| |#1| (-110)) 81)) (-2376 ((|#1| |#2|) 112)) (-3147 ((|#2| |#2|) 119)) (-2611 (((-399 |#2|) |#2|) 134) (((-399 |#2|) |#2| |#1|) 32) (((-399 |#2|) |#2| |#1| (-110)) 133)) (-2056 (((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2|) 132) (((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2| (-110)) 76)) (-3270 (((-597 (-159 |#1|)) |#2| |#1|) 40) (((-597 (-159 |#1|)) |#2|) 41)))
-(((-169 |#1| |#2|) (-10 -7 (-15 -3270 ((-597 (-159 |#1|)) |#2|)) (-15 -3270 ((-597 (-159 |#1|)) |#2| |#1|)) (-15 -2056 ((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2| (-110))) (-15 -2056 ((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2|)) (-15 -2611 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2611 ((-399 |#2|) |#2| |#1|)) (-15 -2611 ((-399 |#2|) |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -2376 (|#1| |#2|)) (-15 -3788 ((-399 |#2|) |#2| |#1| (-110))) (-15 -3788 ((-399 |#2|) |#2| |#1|)) (-15 -3608 (|#2| |#2|)) (-15 -2358 (|#1| |#2| |#1|)) (-15 -2358 (|#1| |#2|)) (-15 -1935 ((-159 |#1|) |#2|)) (-15 -1765 (|#1| |#1|)) (-15 -3573 ((-2 (|:| |start| |#2|) (|:| -3721 (-399 |#2|))) |#2|))) (-13 (-344) (-793)) (-1157 (-159 |#1|))) (T -169))
-((-3573 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-2 (|:| |start| *3) (|:| -3721 (-399 *3)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-1765 (*1 *2 *2) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-1935 (*1 *2 *3) (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3)) (-4 *4 (-13 (-344) (-793))) (-4 *3 (-1157 *2)))) (-2358 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-2358 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-3608 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1157 (-159 *3))))) (-3788 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-3788 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2376 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1157 (-159 *2))))) (-3147 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1157 (-159 *3))))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2611 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2056 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-2 (|:| -3721 (-597 *3)) (|:| -3913 *4)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-2056 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-793))) (-5 *2 (-597 (-2 (|:| -3721 (-597 *3)) (|:| -3913 *5)))) (-5 *1 (-169 *5 *3)) (-4 *3 (-1157 (-159 *5))))) (-3270 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))) (-3270 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(-10 -7 (-15 -3270 ((-597 (-159 |#1|)) |#2|)) (-15 -3270 ((-597 (-159 |#1|)) |#2| |#1|)) (-15 -2056 ((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2| (-110))) (-15 -2056 ((-597 (-2 (|:| -3721 (-597 |#2|)) (|:| -3913 |#1|))) |#2| |#2|)) (-15 -2611 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2611 ((-399 |#2|) |#2| |#1|)) (-15 -2611 ((-399 |#2|) |#2|)) (-15 -3147 (|#2| |#2|)) (-15 -2376 (|#1| |#2|)) (-15 -3788 ((-399 |#2|) |#2| |#1| (-110))) (-15 -3788 ((-399 |#2|) |#2| |#1|)) (-15 -3608 (|#2| |#2|)) (-15 -2358 (|#1| |#2| |#1|)) (-15 -2358 (|#1| |#2|)) (-15 -1935 ((-159 |#1|) |#2|)) (-15 -1765 (|#1| |#1|)) (-15 -3573 ((-2 (|:| |start| |#2|) (|:| -3721 (-399 |#2|))) |#2|)))
-((-2436 (((-3 |#2| "failed") |#2|) 14)) (-4034 (((-719) |#2|) 16)) (-1926 ((|#2| |#2| |#2|) 18)))
-(((-170 |#1| |#2|) (-10 -7 (-15 -2436 ((-3 |#2| "failed") |#2|)) (-15 -4034 ((-719) |#2|)) (-15 -1926 (|#2| |#2| |#2|))) (-1135) (-624 |#1|)) (T -170))
-((-1926 (*1 *2 *2 *2) (-12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))) (-4034 (*1 *2 *3) (-12 (-4 *4 (-1135)) (-5 *2 (-719)) (-5 *1 (-170 *4 *3)) (-4 *3 (-624 *4)))) (-2436 (*1 *2 *2) (|partial| -12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
-(-10 -7 (-15 -2436 ((-3 |#2| "failed") |#2|)) (-15 -4034 ((-719) |#2|)) (-15 -1926 (|#2| |#2| |#2|)))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2529 (((-1099) $) 10)) (-2366 (((-804) $) 17)) (-2739 (((-597 (-1104)) $) 12)) (-2248 (((-110) $ $) 15)))
-(((-171) (-13 (-1027) (-10 -8 (-15 -2529 ((-1099) $)) (-15 -2739 ((-597 (-1104)) $))))) (T -171))
-((-2529 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-171)))) (-2739 (*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-171)))))
-(-13 (-1027) (-10 -8 (-15 -2529 ((-1099) $)) (-15 -2739 ((-597 (-1104)) $))))
-((-4069 ((|#2| |#2|) 28)) (-2597 (((-110) |#2|) 19)) (-2637 (((-297 |#1|) |#2|) 12)) (-2649 (((-297 |#1|) |#2|) 14)) (-3580 ((|#2| |#2| (-1099)) 68) ((|#2| |#2|) 69)) (-2359 (((-159 (-297 |#1|)) |#2|) 10)) (-1992 ((|#2| |#2| (-1099)) 65) ((|#2| |#2|) 59)))
-(((-172 |#1| |#2|) (-10 -7 (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| (-1099))) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1099))) (-15 -2637 ((-297 |#1|) |#2|)) (-15 -2649 ((-297 |#1|) |#2|)) (-15 -2597 ((-110) |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -2359 ((-159 (-297 |#1|)) |#2|))) (-13 (-522) (-795) (-975 (-530))) (-13 (-27) (-1121) (-411 (-159 |#1|)))) (T -172))
-((-2359 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))) (-2597 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-110)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2649 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-2637 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-1992 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4)))))) (-3580 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3)))))))
-(-10 -7 (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| (-1099))) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1099))) (-15 -2637 ((-297 |#1|) |#2|)) (-15 -2649 ((-297 |#1|) |#2|)) (-15 -2597 ((-110) |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -2359 ((-159 (-297 |#1|)) |#2|)))
-((-3656 (((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|))) 24)) (-2366 (((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|))) 33)))
-(((-173 |#1|) (-10 -7 (-15 -3656 ((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|)))) (-15 -2366 ((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|))))) (-162)) (T -173))
-((-2366 (*1 *2 *3) (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162)) (-5 *2 (-1181 (-637 (-388 (-893 *4))))) (-5 *1 (-173 *4)))) (-3656 (*1 *2 *3) (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162)) (-5 *2 (-1181 (-637 (-893 *4)))) (-5 *1 (-173 *4)))))
-(-10 -7 (-15 -3656 ((-1181 (-637 (-893 |#1|))) (-1181 (-637 |#1|)))) (-15 -2366 ((-1181 (-637 (-388 (-893 |#1|)))) (-1181 (-637 |#1|)))))
-((-2109 (((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 66)) (-2590 (((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530))) 75)) (-3391 (((-1101 (-388 (-530))) (-530)) 40)) (-2928 (((-1101 (-388 (-530))) (-530)) 52)) (-4098 (((-388 (-530)) (-1101 (-388 (-530)))) 62)) (-1973 (((-1101 (-388 (-530))) (-530)) 32)) (-1425 (((-1101 (-388 (-530))) (-530)) 48)) (-3376 (((-1101 (-388 (-530))) (-530)) 46)) (-2849 (((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 60)) (-4050 (((-1101 (-388 (-530))) (-530)) 25)) (-3790 (((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530)))) 64)) (-1759 (((-1101 (-388 (-530))) (-530)) 30)) (-3742 (((-1101 (-388 (-530))) (-597 (-530))) 72)))
-(((-174) (-10 -7 (-15 -4050 ((-1101 (-388 (-530))) (-530))) (-15 -3391 ((-1101 (-388 (-530))) (-530))) (-15 -1973 ((-1101 (-388 (-530))) (-530))) (-15 -1759 ((-1101 (-388 (-530))) (-530))) (-15 -3376 ((-1101 (-388 (-530))) (-530))) (-15 -1425 ((-1101 (-388 (-530))) (-530))) (-15 -2928 ((-1101 (-388 (-530))) (-530))) (-15 -3790 ((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -2849 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -4098 ((-388 (-530)) (-1101 (-388 (-530))))) (-15 -2109 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -3742 ((-1101 (-388 (-530))) (-597 (-530)))) (-15 -2590 ((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530)))))) (T -174))
-((-2590 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-3742 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-2109 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-4098 (*1 *2 *3) (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-174)))) (-2849 (*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))) (-3790 (*1 *2 *3 *3) (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-174)))) (-2928 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1425 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-3376 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1759 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-1973 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-3391 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))) (-4050 (*1 *2 *3) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(-10 -7 (-15 -4050 ((-1101 (-388 (-530))) (-530))) (-15 -3391 ((-1101 (-388 (-530))) (-530))) (-15 -1973 ((-1101 (-388 (-530))) (-530))) (-15 -1759 ((-1101 (-388 (-530))) (-530))) (-15 -3376 ((-1101 (-388 (-530))) (-530))) (-15 -1425 ((-1101 (-388 (-530))) (-530))) (-15 -2928 ((-1101 (-388 (-530))) (-530))) (-15 -3790 ((-388 (-530)) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -2849 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -4098 ((-388 (-530)) (-1101 (-388 (-530))))) (-15 -2109 ((-1101 (-388 (-530))) (-1101 (-388 (-530))) (-1101 (-388 (-530))))) (-15 -3742 ((-1101 (-388 (-530))) (-597 (-530)))) (-15 -2590 ((-1101 (-388 (-530))) (-597 (-530)) (-597 (-530)))))
-((-4196 (((-399 (-1095 (-530))) (-530)) 28)) (-1589 (((-597 (-1095 (-530))) (-530)) 23)) (-3570 (((-1095 (-530)) (-530)) 21)))
-(((-175) (-10 -7 (-15 -1589 ((-597 (-1095 (-530))) (-530))) (-15 -3570 ((-1095 (-530)) (-530))) (-15 -4196 ((-399 (-1095 (-530))) (-530))))) (T -175))
-((-4196 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-175)) (-5 *3 (-530)))) (-1589 (*1 *2 *3) (-12 (-5 *2 (-597 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
-(-10 -7 (-15 -1589 ((-597 (-1095 (-530))) (-530))) (-15 -3570 ((-1095 (-530)) (-530))) (-15 -4196 ((-399 (-1095 (-530))) (-530))))
-((-1950 (((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 105)) (-3493 (((-597 (-1082)) (-1080 (-208))) NIL)) (-2897 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 81)) (-1869 (((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208)))) NIL)) (-4093 (((-597 (-1082)) (-597 (-208))) NIL)) (-1384 (((-208) (-1022 (-788 (-208)))) 24)) (-1674 (((-208) (-1022 (-788 (-208)))) 25)) (-4185 (((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 98)) (-1379 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1922 (((-1082) (-208)) NIL)) (-4160 (((-1082) (-597 (-1082))) 20)) (-2772 (((-973) (-1099) (-1099) (-973)) 13)))
-(((-176) (-10 -7 (-15 -2897 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1379 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -4185 ((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1869 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))) (-15 -4160 ((-1082) (-597 (-1082)))) (-15 -2772 ((-973) (-1099) (-1099) (-973))))) (T -176))
-((-2772 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-176)))) (-4160 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-176)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-176)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-176)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-176)))) (-4185 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-176)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1379 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-176)))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-176)))))
-(-10 -7 (-15 -2897 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1379 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -4185 ((-360) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1869 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))) (-15 -4160 ((-1082) (-597 (-1082)))) (-15 -2772 ((-973) (-1099) (-1099) (-973))))
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 55) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-177) (-735)) (T -177))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 60) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-178) (-735)) (T -178))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 69) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-179) (-735)) (T -179))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 56) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-180) (-735)) (T -180))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 67) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 38) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-181) (-735)) (T -181))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 73) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-182) (-735)) (T -182))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 80) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 44) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-183) (-735)) (T -183))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 70) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-184) (-735)) (T -184))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 66)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-185) (-735)) (T -185))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 63)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-186) (-735)) (T -186))
-NIL
-(-735)
-((-2352 (((-110) $ $) NIL)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 90) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 78) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-187) (-735)) (T -187))
-NIL
-(-735)
-((-2045 (((-3 (-2 (|:| -4145 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 85)) (-1249 (((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1634 (((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 73)))
-(((-188) (-10 -7 (-15 -2045 ((-3 (-2 (|:| -4145 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1634 ((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1249 ((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -188))
-((-1249 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-530)) (-5 *1 (-188)))) (-1634 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-188)))) (-2045 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -4145 (-112)) (|:| |w| (-208)))) (-5 *1 (-188)))))
-(-10 -7 (-15 -2045 ((-3 (-2 (|:| -4145 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1634 ((-3 (-597 (-208)) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1249 ((-530) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
-((-1892 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-3343 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 130)) (-1582 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208)))) 89)) (-3518 (((-360) (-637 (-297 (-208)))) 113)) (-2028 (((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099))) 110)) (-4220 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 30)) (-3748 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 43)) (-4098 (((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208)))) 102)) (-3837 (((-360) (-360) (-597 (-360))) 107) (((-360) (-360) (-360)) 105)) (-2556 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36)))
-(((-189) (-10 -7 (-15 -3837 ((-360) (-360) (-360))) (-15 -3837 ((-360) (-360) (-597 (-360)))) (-15 -3518 ((-360) (-637 (-297 (-208))))) (-15 -2028 ((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099)))) (-15 -4098 ((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208))))) (-15 -1582 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208))))) (-15 -3343 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1892 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3748 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2556 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4220 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -189))
-((-4220 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-2556 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-1892 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3343 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-1582 (*1 *2 *3) (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-4098 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-637 (-297 (-208)))) (-5 *3 (-597 (-1099))) (-5 *4 (-1181 (-297 (-208)))) (-5 *1 (-189)))) (-2028 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099))) (-5 *2 (-637 (-297 (-208)))) (-5 *1 (-189)))) (-3518 (*1 *2 *3) (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3837 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3837 (*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189)))))
-(-10 -7 (-15 -3837 ((-360) (-360) (-360))) (-15 -3837 ((-360) (-360) (-597 (-360)))) (-15 -3518 ((-360) (-637 (-297 (-208))))) (-15 -2028 ((-637 (-297 (-208))) (-1181 (-297 (-208))) (-597 (-1099)))) (-15 -4098 ((-637 (-297 (-208))) (-637 (-297 (-208))) (-597 (-1099)) (-1181 (-297 (-208))))) (-15 -1582 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-637 (-297 (-208))))) (-15 -3343 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1892 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3748 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2556 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4220 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
-((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 64)) (-2248 (((-110) $ $) NIL)))
-(((-190) (-748)) (T -190))
-NIL
-(-748)
-((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 62)) (-2248 (((-110) $ $) NIL)))
-(((-191) (-748)) (T -191))
-NIL
-(-748)
-((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 66)) (-2248 (((-110) $ $) NIL)))
-(((-192) (-748)) (T -192))
-NIL
-(-748)
-((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 46)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 75)) (-2248 (((-110) $ $) NIL)))
-(((-193) (-748)) (T -193))
-NIL
-(-748)
-((-3702 (((-597 (-1099)) (-1099) (-719)) 23)) (-4030 (((-297 (-208)) (-297 (-208))) 31)) (-4247 (((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 74)) (-2672 (((-110) (-208) (-208) (-597 (-297 (-208)))) 45)))
-(((-194) (-10 -7 (-15 -3702 ((-597 (-1099)) (-1099) (-719))) (-15 -4030 ((-297 (-208)) (-297 (-208)))) (-15 -2672 ((-110) (-208) (-208) (-597 (-297 (-208))))) (-15 -4247 ((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))))) (T -194))
-((-4247 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-110)) (-5 *1 (-194)))) (-2672 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-597 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-194)))) (-4030 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-597 (-1099))) (-5 *1 (-194)) (-5 *3 (-1099)))))
-(-10 -7 (-15 -3702 ((-597 (-1099)) (-1099) (-719))) (-15 -4030 ((-297 (-208)) (-297 (-208)))) (-15 -2672 ((-110) (-208) (-208) (-597 (-297 (-208))))) (-15 -4247 ((-110) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))))
-((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 26)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3236 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 57)) (-2248 (((-110) $ $) NIL)))
-(((-195) (-836)) (T -195))
-NIL
-(-836)
-((-2352 (((-110) $ $) NIL)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 21)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3236 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-196) (-836)) (T -196))
-NIL
-(-836)
-((-2352 (((-110) $ $) NIL)) (-2552 ((|#2| $ (-719) |#2|) 11)) (-3538 (($) 8)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1902 ((|#2| $ (-719)) 10)) (-2366 (((-804) $) 18)) (-2248 (((-110) $ $) 13)))
-(((-197 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3538 ($)) (-15 -1902 (|#2| $ (-719))) (-15 -2552 (|#2| $ (-719) |#2|)))) (-862) (-1027)) (T -197))
-((-3538 (*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-862)) (-4 *3 (-1027)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *2 (-1027)) (-5 *1 (-197 *4 *2)) (-14 *4 (-862)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-197 *4 *2)) (-14 *4 (-862)) (-4 *2 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -3538 ($)) (-15 -1902 (|#2| $ (-719))) (-15 -2552 (|#2| $ (-719) |#2|))))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3595 (((-1186) $) 36) (((-1186) $ (-862) (-862)) 38)) (-1902 (($ $ (-929)) 19) (((-228 (-1082)) $ (-1099)) 15)) (-2388 (((-1186) $) 34)) (-2366 (((-804) $) 31) (($ (-597 |#1|)) 8)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $ $) 27)) (-2339 (($ $ $) 22)))
-(((-198 |#1|) (-13 (-1027) (-10 -8 (-15 -1902 ($ $ (-929))) (-15 -1902 ((-228 (-1082)) $ (-1099))) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2366 ($ (-597 |#1|))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $)) (-15 -3595 ((-1186) $ (-862) (-862))))) (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))) (T -198))
-((-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-929)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-228 (-1082))) (-5 *1 (-198 *4)) (-4 *4 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ *3)) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))))) (-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))))) (-2351 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $))))) (-5 *1 (-198 *3)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $)) (-15 -3595 (*2 $))))))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $)) (-15 -3595 (*2 $))))))) (-3595 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-198 *4)) (-4 *4 (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $)) (-15 -3595 (*2 $))))))))
-(-13 (-1027) (-10 -8 (-15 -1902 ($ $ (-929))) (-15 -1902 ((-228 (-1082)) $ (-1099))) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2366 ($ (-597 |#1|))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $)) (-15 -3595 ((-1186) $ (-862) (-862)))))
-((-3154 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
-(((-199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3154 (|#2| |#4| (-1 |#2| |#2|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -199))
-((-3154 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1157 (-388 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-199 *5 *2 *6 *3)) (-4 *3 (-323 *5 *2 *6)))))
-(-10 -7 (-15 -3154 (|#2| |#4| (-1 |#2| |#2|))))
-((-3559 ((|#2| |#2| (-719) |#2|) 42)) (-3917 ((|#2| |#2| (-719) |#2|) 38)) (-1311 (((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|)))) 57)) (-2495 (((-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))) |#2|) 53)) (-3027 (((-110) |#2|) 50)) (-1550 (((-399 |#2|) |#2|) 77)) (-2611 (((-399 |#2|) |#2|) 76)) (-4120 ((|#2| |#2| (-719) |#2|) 36)) (-2758 (((-2 (|:| |cont| |#1|) (|:| -3721 (-597 (-2 (|:| |irr| |#2|) (|:| -2075 (-530)))))) |#2| (-110)) 69)))
-(((-200 |#1| |#2|) (-10 -7 (-15 -2611 ((-399 |#2|) |#2|)) (-15 -1550 ((-399 |#2|) |#2|)) (-15 -2758 ((-2 (|:| |cont| |#1|) (|:| -3721 (-597 (-2 (|:| |irr| |#2|) (|:| -2075 (-530)))))) |#2| (-110))) (-15 -2495 ((-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))) |#2|)) (-15 -1311 ((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))))) (-15 -4120 (|#2| |#2| (-719) |#2|)) (-15 -3917 (|#2| |#2| (-719) |#2|)) (-15 -3559 (|#2| |#2| (-719) |#2|)) (-15 -3027 ((-110) |#2|))) (-330) (-1157 |#1|)) (T -200))
-((-3027 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-3559 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-3917 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-4120 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1157 *4)))) (-1311 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |deg| (-719)) (|:| -1360 *5)))) (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *2 (-597 *5)) (-5 *1 (-200 *4 *5)))) (-2495 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -1360 *3)))) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-2758 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-330)) (-5 *2 (-2 (|:| |cont| *5) (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530))))))) (-5 *1 (-200 *5 *3)) (-4 *3 (-1157 *5)))) (-1550 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -2611 ((-399 |#2|) |#2|)) (-15 -1550 ((-399 |#2|) |#2|)) (-15 -2758 ((-2 (|:| |cont| |#1|) (|:| -3721 (-597 (-2 (|:| |irr| |#2|) (|:| -2075 (-530)))))) |#2| (-110))) (-15 -2495 ((-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))) |#2|)) (-15 -1311 ((-597 |#2|) (-597 (-2 (|:| |deg| (-719)) (|:| -1360 |#2|))))) (-15 -4120 (|#2| |#2| (-719) |#2|)) (-15 -3917 (|#2| |#2| (-719) |#2|)) (-15 -3559 (|#2| |#2| (-719) |#2|)) (-15 -3027 ((-110) |#2|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-530) $) NIL (|has| (-530) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-530) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2585 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-530) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-530) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-530) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-2166 (((-110) $) NIL (|has| (-530) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-530) (-795)))) (-3217 (($ (-1 (-530) (-530)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-530) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-3175 (((-530) $) NIL (|has| (-530) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-530) $) NIL)) (-1295 (($ (-388 (-530))) 9)) (-3260 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 10) $) 10)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-530) $) NIL (|has| (-530) (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-530) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2364 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
-(((-201) (-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 10) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1295 ($ (-388 (-530))))))) (T -201))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-943 10)) (-5 *1 (-201)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))) (-1295 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))))
-(-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 10) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1295 ($ (-388 (-530))))))
-((-1545 (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082)) 28) (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|))) 24)) (-1602 (((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110)) 17)))
-(((-202 |#1| |#2|) (-10 -7 (-15 -1545 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)))) (-15 -1545 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082))) (-15 -1602 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -202))
-((-1602 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1099)) (-5 *6 (-110)) (-4 *7 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-1121) (-900) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *7 *3)) (-5 *5 (-788 *3)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-788 *3))) (-5 *5 (-1082)) (-4 *3 (-13 (-1121) (-900) (-29 *6))) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *6 *3)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-788 *3))) (-4 *3 (-13 (-1121) (-900) (-29 *5))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *5 *3)))))
-(-10 -7 (-15 -1545 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)))) (-15 -1545 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1020 (-788 |#2|)) (-1082))) (-15 -1602 ((-3 (|:| |f1| (-788 |#2|)) (|:| |f2| (-597 (-788 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1099) (-788 |#2|) (-788 |#2|) (-110))))
-((-1545 (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082)) 46) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|))))) 43) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082)) 47) (((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|)))) 20)))
-(((-203 |#1|) (-10 -7 (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (T -203))
-((-1545 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-788 (-388 (-893 *6))))) (-5 *5 (-1082)) (-5 *3 (-388 (-893 *6))) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *6))) (|:| |f2| (-597 (-788 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-788 (-388 (-893 *5))))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *5))) (|:| |f2| (-597 (-788 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1020 (-788 (-297 *6)))) (-5 *5 (-1082)) (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *6))) (|:| |f2| (-597 (-788 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1020 (-788 (-297 *5)))) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |f1| (-788 (-297 *5))) (|:| |f2| (-597 (-788 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))))
-(-10 -7 (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-297 |#1|))) (-1082))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))))) (-15 -1545 ((-3 (|:| |f1| (-788 (-297 |#1|))) (|:| |f2| (-597 (-788 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-893 |#1|)) (-1020 (-788 (-388 (-893 |#1|)))) (-1082))))
-((-2134 (((-2 (|:| -3109 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|)) 21)) (-2246 (((-597 (-297 |#2|)) (-297 |#2|) (-862)) 42)))
-(((-204 |#1| |#2|) (-10 -7 (-15 -2134 ((-2 (|:| -3109 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|))) (-15 -2246 ((-597 (-297 |#2|)) (-297 |#2|) (-862)))) (-984) (-13 (-522) (-795))) (T -204))
-((-2246 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *6 (-13 (-522) (-795))) (-5 *2 (-597 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6)) (-4 *5 (-984)))) (-2134 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-2 (|:| -3109 (-1095 *4)) (|:| |deg| (-862)))) (-5 *1 (-204 *4 *5)) (-5 *3 (-1095 *4)) (-4 *5 (-13 (-522) (-795))))))
-(-10 -7 (-15 -2134 ((-2 (|:| -3109 (-1095 |#1|)) (|:| |deg| (-862))) (-1095 |#1|))) (-15 -2246 ((-597 (-297 |#2|)) (-297 |#2|) (-862))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3468 ((|#1| $) NIL)) (-1598 ((|#1| $) 25)) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-1907 (($ $) NIL)) (-1337 (($ $) 31)) (-3684 ((|#1| |#1| $) NIL)) (-2176 ((|#1| $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-4109 (((-719) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) NIL)) (-1260 ((|#1| |#1| $) 28)) (-1848 ((|#1| |#1| $) 30)) (-2441 (($ |#1| $) NIL)) (-4156 (((-719) $) 27)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3288 ((|#1| $) NIL)) (-1458 ((|#1| $) 26)) (-3083 ((|#1| $) 24)) (-2738 ((|#1| $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3203 ((|#1| |#1| $) NIL)) (-3250 (((-110) $) 9)) (-3958 (($) NIL)) (-1540 ((|#1| $) NIL)) (-1909 (($) NIL) (($ (-597 |#1|)) 16)) (-4218 (((-719) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3871 ((|#1| $) 13)) (-2242 (($ (-597 |#1|)) NIL)) (-1371 ((|#1| $) NIL)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-205 |#1|) (-13 (-236 |#1|) (-10 -8 (-15 -1909 ($ (-597 |#1|))))) (-1027)) (T -205))
-((-1909 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-205 *3)))))
-(-13 (-236 |#1|) (-10 -8 (-15 -1909 ($ (-597 |#1|)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1656 (($ (-297 |#1|)) 23)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3038 (((-110) $) NIL)) (-3139 (((-3 (-297 |#1|) "failed") $) NIL)) (-2585 (((-297 |#1|) $) NIL)) (-2562 (($ $) 31)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-3217 (($ (-1 (-297 |#1|) (-297 |#1|)) $) NIL)) (-2533 (((-297 |#1|) $) NIL)) (-2773 (($ $) 30)) (-1424 (((-1082) $) NIL)) (-3141 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($ (-719)) NIL)) (-4019 (($ $) 32)) (-1429 (((-530) $) NIL)) (-2366 (((-804) $) 57) (($ (-530)) NIL) (($ (-297 |#1|)) NIL)) (-4085 (((-297 |#1|) $ $) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) 25 T CONST)) (-3093 (($) 50 T CONST)) (-2248 (((-110) $ $) 28)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 19)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 24) (($ (-297 |#1|) $) 18)))
-(((-206 |#1| |#2|) (-13 (-575 (-297 |#1|)) (-975 (-297 |#1|)) (-10 -8 (-15 -2533 ((-297 |#1|) $)) (-15 -2773 ($ $)) (-15 -2562 ($ $)) (-15 -4085 ((-297 |#1|) $ $)) (-15 -1974 ($ (-719))) (-15 -3141 ((-110) $)) (-15 -3038 ((-110) $)) (-15 -1429 ((-530) $)) (-15 -3217 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -1656 ($ (-297 |#1|))) (-15 -4019 ($ $)))) (-13 (-984) (-795)) (-597 (-1099))) (T -206))
-((-2533 (*1 *2 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-2773 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))) (-4085 (*1 *2 *1 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3141 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099))))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-297 *3) (-297 *3))) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))) (-1656 (*1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-984) (-795))) (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))) (-4019 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795))) (-14 *3 (-597 (-1099))))))
-(-13 (-575 (-297 |#1|)) (-975 (-297 |#1|)) (-10 -8 (-15 -2533 ((-297 |#1|) $)) (-15 -2773 ($ $)) (-15 -2562 ($ $)) (-15 -4085 ((-297 |#1|) $ $)) (-15 -1974 ($ (-719))) (-15 -3141 ((-110) $)) (-15 -3038 ((-110) $)) (-15 -1429 ((-530) $)) (-15 -3217 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -1656 ($ (-297 |#1|))) (-15 -4019 ($ $))))
-((-2299 (((-110) (-1082)) 22)) (-1833 (((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110)) 32)) (-3215 (((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110)) 73) (((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110)) 74)))
-(((-207 |#1| |#2|) (-10 -7 (-15 -2299 ((-110) (-1082))) (-15 -1833 ((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110))) (-15 -3215 ((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110))) (-15 -3215 ((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110)))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-29 |#1|))) (T -207))
-((-3215 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1095 *6)) (-5 *4 (-788 *6)) (-4 *6 (-13 (-1121) (-29 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-207 *5 *6)))) (-3215 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-893 *6)) (-5 *4 (-1099)) (-5 *5 (-788 *7)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *7 (-13 (-1121) (-29 *6))) (-5 *1 (-207 *6 *7)))) (-1833 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-788 *4)) (-5 *3 (-570 *4)) (-5 *5 (-110)) (-4 *4 (-13 (-1121) (-29 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-207 *6 *4)))) (-2299 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1121) (-29 *4))))))
-(-10 -7 (-15 -2299 ((-110) (-1082))) (-15 -1833 ((-3 (-788 |#2|) "failed") (-570 |#2|) |#2| (-788 |#2|) (-788 |#2|) (-110))) (-15 -3215 ((-3 (-110) "failed") (-893 |#1|) (-1099) (-788 |#2|) (-788 |#2|) (-110))) (-15 -3215 ((-3 (-110) "failed") (-1095 |#2|) (-788 |#2|) (-788 |#2|) (-110))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 89)) (-1612 (((-530) $) 99)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1951 (($ $) NIL)) (-2386 (($ $) 77)) (-2244 (($ $) 65)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) 56)) (-1426 (((-110) $ $) NIL)) (-2360 (($ $) 75)) (-2219 (($ $) 63)) (-1867 (((-530) $) 116)) (-2409 (($ $) 80)) (-2269 (($ $) 67)) (-2350 (($) NIL T CONST)) (-2963 (($ $) NIL)) (-3139 (((-3 (-530) "failed") $) 115) (((-3 (-388 (-530)) "failed") $) 112)) (-2585 (((-530) $) 113) (((-388 (-530)) $) 110)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) 92)) (-3171 (((-388 (-530)) $ (-719)) 108) (((-388 (-530)) $ (-719) (-719)) 107)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2582 (((-862)) 29) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-2514 (((-110) $) NIL)) (-1948 (($) 39)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-2031 (((-530) $) 35)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL)) (-2376 (($ $) NIL)) (-2166 (((-110) $) 88)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) 53) (($) 34 (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-1817 (($ $ $) 52) (($) 33 (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-3208 (((-530) $) 27)) (-3433 (($ $) 30)) (-1945 (($ $) 57)) (-2168 (($ $) 62)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2887 (((-862) (-530)) NIL (|has| $ (-6 -4260)))) (-2624 (((-1046) $) NIL) (((-530) $) 90)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL)) (-3175 (($ $) NIL)) (-3018 (($ (-530) (-530)) NIL) (($ (-530) (-530) (-862)) 100)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3194 (((-530) $) 28)) (-1878 (($) 38)) (-2853 (($ $) 61)) (-2356 (((-719) $) NIL)) (-3010 (((-1082) (-1082)) 8)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2513 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-3289 (($ $ (-719)) NIL) (($ $) 93)) (-1764 (((-862) (-530)) NIL (|has| $ (-6 -4260)))) (-2421 (($ $) 78)) (-2281 (($ $) 68)) (-2398 (($ $) 79)) (-2254 (($ $) 66)) (-2373 (($ $) 76)) (-2231 (($ $) 64)) (-3260 (((-360) $) 104) (((-208) $) 101) (((-833 (-360)) $) NIL) (((-506) $) 45)) (-2366 (((-804) $) 42) (($ (-530)) 60) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-530)) 60) (($ (-388 (-530))) NIL)) (-3300 (((-719)) NIL)) (-2748 (($ $) NIL)) (-1711 (((-862)) 32) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-1510 (((-862)) 25)) (-2459 (($ $) 83)) (-2314 (($ $) 71) (($ $ $) 109)) (-3944 (((-110) $ $) NIL)) (-2434 (($ $) 81)) (-2293 (($ $) 69)) (-2485 (($ $) 86)) (-2334 (($ $) 74)) (-3632 (($ $) 84)) (-2347 (($ $) 72)) (-2472 (($ $) 85)) (-2324 (($ $) 73)) (-2446 (($ $) 82)) (-2304 (($ $) 70)) (-3934 (($ $) 117)) (-3080 (($) 36 T CONST)) (-3093 (($) 37 T CONST)) (-3987 (((-1082) $) 19) (((-1082) $ (-110)) 21) (((-1186) (-770) $) 22) (((-1186) (-770) $ (-110)) 23)) (-3187 (($ $) 96)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-3564 (($ $ $) 98)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 54)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 46)) (-2364 (($ $ $) 87) (($ $ (-530)) 55)) (-2351 (($ $) 47) (($ $ $) 49)) (-2339 (($ $ $) 48)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 58) (($ $ (-388 (-530))) 129) (($ $ $) 59)) (* (($ (-862) $) 31) (($ (-719) $) NIL) (($ (-530) $) 51) (($ $ $) 50) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-208) (-13 (-385) (-216) (-776) (-1121) (-572 (-506)) (-10 -8 (-15 -2364 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -1878 ($)) (-15 -2624 ((-530) $)) (-15 -3433 ($ $)) (-15 -1945 ($ $)) (-15 -2314 ($ $ $)) (-15 -3187 ($ $)) (-15 -3564 ($ $ $)) (-15 -3010 ((-1082) (-1082))) (-15 -3171 ((-388 (-530)) $ (-719))) (-15 -3171 ((-388 (-530)) $ (-719) (-719)))))) (T -208))
-((** (*1 *1 *1 *1) (-5 *1 (-208))) (-2364 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-208)))) (-1878 (*1 *1) (-5 *1 (-208))) (-2624 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-208)))) (-3433 (*1 *1 *1) (-5 *1 (-208))) (-1945 (*1 *1 *1) (-5 *1 (-208))) (-2314 (*1 *1 *1 *1) (-5 *1 (-208))) (-3187 (*1 *1 *1) (-5 *1 (-208))) (-3564 (*1 *1 *1 *1) (-5 *1 (-208))) (-3010 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-208)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208)))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208)))))
-(-13 (-385) (-216) (-776) (-1121) (-572 (-506)) (-10 -8 (-15 -2364 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -1878 ($)) (-15 -2624 ((-530) $)) (-15 -3433 ($ $)) (-15 -1945 ($ $)) (-15 -2314 ($ $ $)) (-15 -3187 ($ $)) (-15 -3564 ($ $ $)) (-15 -3010 ((-1082) (-1082))) (-15 -3171 ((-388 (-530)) $ (-719))) (-15 -3171 ((-388 (-530)) $ (-719) (-719)))))
-((-1751 (((-159 (-208)) (-719) (-159 (-208))) 11) (((-208) (-719) (-208)) 12)) (-1524 (((-159 (-208)) (-159 (-208))) 13) (((-208) (-208)) 14)) (-4245 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 19) (((-208) (-208) (-208)) 22)) (-2101 (((-159 (-208)) (-159 (-208))) 25) (((-208) (-208)) 24)) (-2323 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 43) (((-208) (-208) (-208)) 35)) (-3981 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 48) (((-208) (-208) (-208)) 45)) (-2790 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 15) (((-208) (-208) (-208)) 16)) (-1374 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 17) (((-208) (-208) (-208)) 18)) (-3179 (((-159 (-208)) (-159 (-208))) 60) (((-208) (-208)) 59)) (-1607 (((-208) (-208)) 54) (((-159 (-208)) (-159 (-208))) 58)) (-3187 (((-159 (-208)) (-159 (-208))) 8) (((-208) (-208)) 9)) (-3564 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 30) (((-208) (-208) (-208)) 26)))
-(((-209) (-10 -7 (-15 -3187 ((-208) (-208))) (-15 -3187 ((-159 (-208)) (-159 (-208)))) (-15 -3564 ((-208) (-208) (-208))) (-15 -3564 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1524 ((-208) (-208))) (-15 -1524 ((-159 (-208)) (-159 (-208)))) (-15 -2101 ((-208) (-208))) (-15 -2101 ((-159 (-208)) (-159 (-208)))) (-15 -1751 ((-208) (-719) (-208))) (-15 -1751 ((-159 (-208)) (-719) (-159 (-208)))) (-15 -2790 ((-208) (-208) (-208))) (-15 -2790 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2323 ((-208) (-208) (-208))) (-15 -2323 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1374 ((-208) (-208) (-208))) (-15 -1374 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3981 ((-208) (-208) (-208))) (-15 -3981 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1607 ((-159 (-208)) (-159 (-208)))) (-15 -1607 ((-208) (-208))) (-15 -3179 ((-208) (-208))) (-15 -3179 ((-159 (-208)) (-159 (-208)))) (-15 -4245 ((-208) (-208) (-208))) (-15 -4245 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))) (T -209))
-((-4245 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-4245 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1607 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3981 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3981 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1374 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-1374 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2323 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2323 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2790 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2790 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1751 (*1 *2 *3 *2) (-12 (-5 *2 (-159 (-208))) (-5 *3 (-719)) (-5 *1 (-209)))) (-1751 (*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-719)) (-5 *1 (-209)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2101 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-1524 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3564 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3564 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3187 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))))
-(-10 -7 (-15 -3187 ((-208) (-208))) (-15 -3187 ((-159 (-208)) (-159 (-208)))) (-15 -3564 ((-208) (-208) (-208))) (-15 -3564 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1524 ((-208) (-208))) (-15 -1524 ((-159 (-208)) (-159 (-208)))) (-15 -2101 ((-208) (-208))) (-15 -2101 ((-159 (-208)) (-159 (-208)))) (-15 -1751 ((-208) (-719) (-208))) (-15 -1751 ((-159 (-208)) (-719) (-159 (-208)))) (-15 -2790 ((-208) (-208) (-208))) (-15 -2790 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2323 ((-208) (-208) (-208))) (-15 -2323 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1374 ((-208) (-208) (-208))) (-15 -1374 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3981 ((-208) (-208) (-208))) (-15 -3981 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -1607 ((-159 (-208)) (-159 (-208)))) (-15 -1607 ((-208) (-208))) (-15 -3179 ((-208) (-208))) (-15 -3179 ((-159 (-208)) (-159 (-208)))) (-15 -4245 ((-208) (-208) (-208))) (-15 -4245 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719) (-719)) NIL)) (-3844 (($ $ $) NIL)) (-4114 (($ (-1181 |#1|)) NIL) (($ $) NIL)) (-2223 (($ |#1| |#1| |#1|) 32)) (-3053 (((-110) $) NIL)) (-1835 (($ $ (-530) (-530)) NIL)) (-2277 (($ $ (-530) (-530)) NIL)) (-2744 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3904 (($ $) NIL)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3302 (($ $ (-530) (-530) $) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2626 (($ $ (-530) (-1181 |#1|)) NIL)) (-3959 (($ $ (-530) (-1181 |#1|)) NIL)) (-1573 (($ |#1| |#1| |#1|) 31)) (-1570 (($ (-719) |#1|) NIL)) (-2350 (($) NIL T CONST)) (-1583 (($ $) NIL (|has| |#1| (-289)))) (-1325 (((-1181 |#1|) $ (-530)) NIL)) (-2796 (($ |#1|) 30)) (-2290 (($ |#1|) 29)) (-3248 (($ |#1|) 28)) (-2426 (((-719) $) NIL (|has| |#1| (-522)))) (-3592 ((|#1| $ (-530) (-530) |#1|) NIL)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1791 (((-719) $) NIL (|has| |#1| (-522)))) (-2515 (((-597 (-1181 |#1|)) $) NIL (|has| |#1| (-522)))) (-1796 (((-719) $) NIL)) (-3538 (($ (-719) (-719) |#1|) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#1| $) NIL (|has| |#1| (-6 (-4271 "*"))))) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#1|))) 11)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2654 (((-597 (-597 |#1|)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1991 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-3054 (($) 12)) (-1279 (($ $ $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2128 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL)) (-1362 (((-110) $) NIL)) (-2338 ((|#1| $) NIL (|has| |#1| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 (((-1181 |#1|) $ (-530)) NIL)) (-2366 (($ (-1181 |#1|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-1181 |#1|) $ (-1181 |#1|)) 15) (((-1181 |#1|) (-1181 |#1|) $) NIL) (((-884 |#1|) $ (-884 |#1|)) 20)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-210 |#1|) (-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 * ((-884 |#1|) $ (-884 |#1|))) (-15 -3054 ($)) (-15 -3248 ($ |#1|)) (-15 -2290 ($ |#1|)) (-15 -2796 ($ |#1|)) (-15 -1573 ($ |#1| |#1| |#1|)) (-15 -2223 ($ |#1| |#1| |#1|)))) (-13 (-344) (-1121))) (T -210))
-((* (*1 *2 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121))) (-5 *1 (-210 *3)))) (-3054 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-3248 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-2290 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-2796 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-1573 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))) (-2223 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 * ((-884 |#1|) $ (-884 |#1|))) (-15 -3054 ($)) (-15 -3248 ($ |#1|)) (-15 -2290 ($ |#1|)) (-15 -2796 ($ |#1|)) (-15 -1573 ($ |#1| |#1| |#1|)) (-15 -2223 ($ |#1| |#1| |#1|))))
-((-2901 (($ (-1 (-110) |#2|) $) 16)) (-1842 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 25)) (-1560 (($) NIL) (($ (-597 |#2|)) 11)) (-2248 (((-110) $ $) 23)))
-(((-211 |#1| |#2|) (-10 -8 (-15 -2901 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -1560 (|#1| (-597 |#2|))) (-15 -1560 (|#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-212 |#2|) (-1027)) (T -211))
-NIL
-(-10 -8 (-15 -2901 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -1560 (|#1| (-597 |#2|))) (-15 -1560 (|#1|)) (-15 -2248 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-212 |#1|) (-133) (-1027)) (T -212))
+(-13 (-986) (-109 $ $) (-10 -7 (-6 (-4275 "*"))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 ((|#1| $) 75)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL)) (-3748 (($ $) 19)) (-3193 (($ |#1| (-1083 |#1|)) 48)) (-3622 (((-3 $ "failed") $) 117)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1270 (((-1083 |#1|) $) 82)) (-1996 (((-1083 |#1|) $) 79)) (-3315 (((-1083 |#1|) $) 80)) (-3481 (((-110) $) NIL)) (-1776 (((-1083 |#1|) $) 88)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-1846 (($ $ (-531)) 91)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-1278 (((-1083 |#1|) $) 89)) (-4217 (((-1083 (-388 |#1|)) $) 14)) (-3591 (($ (-388 |#1|)) 17) (($ |#1| (-1083 |#1|) (-1083 |#1|)) 38)) (-3437 (($ $) 93)) (-2265 (((-806) $) 127) (($ (-531)) 51) (($ |#1|) 52) (($ (-388 |#1|)) 36) (($ (-388 (-531))) NIL) (($ $) NIL)) (-2284 (((-721)) 64)) (-2587 (((-110) $ $) NIL)) (-3273 (((-1083 (-388 |#1|)) $) 18)) (-3035 (($) 25 T CONST)) (-3050 (($) 28 T CONST)) (-2148 (((-110) $ $) 35)) (-2263 (($ $ $) 115)) (-2250 (($ $) 106) (($ $ $) 103)) (-2237 (($ $ $) 101)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 113) (($ $ $) 108) (($ $ |#1|) NIL) (($ |#1| $) 110) (($ (-388 |#1|) $) 111) (($ $ (-388 |#1|)) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL)))
+(((-163 |#1|) (-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -3591 ($ (-388 |#1|))) (-15 -3591 ($ |#1| (-1083 |#1|) (-1083 |#1|))) (-15 -3193 ($ |#1| (-1083 |#1|))) (-15 -1996 ((-1083 |#1|) $)) (-15 -3315 ((-1083 |#1|) $)) (-15 -1270 ((-1083 |#1|) $)) (-15 -1317 (|#1| $)) (-15 -3748 ($ $)) (-15 -3273 ((-1083 (-388 |#1|)) $)) (-15 -4217 ((-1083 (-388 |#1|)) $)) (-15 -1776 ((-1083 |#1|) $)) (-15 -1278 ((-1083 |#1|) $)) (-15 -1846 ($ $ (-531))) (-15 -3437 ($ $)))) (-289)) (T -163))
+((-3591 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3)))) (-3591 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-3193 (*1 *1 *2 *3) (-12 (-5 *3 (-1083 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))) (-1996 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3315 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1270 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1317 (*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-3748 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))) (-3273 (*1 *2 *1) (-12 (-5 *2 (-1083 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-4217 (*1 *2 *1) (-12 (-5 *2 (-1083 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1776 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1278 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-163 *3)) (-4 *3 (-289)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
+(-13 (-37 |#1|) (-37 (-388 |#1|)) (-344) (-10 -8 (-15 -3591 ($ (-388 |#1|))) (-15 -3591 ($ |#1| (-1083 |#1|) (-1083 |#1|))) (-15 -3193 ($ |#1| (-1083 |#1|))) (-15 -1996 ((-1083 |#1|) $)) (-15 -3315 ((-1083 |#1|) $)) (-15 -1270 ((-1083 |#1|) $)) (-15 -1317 (|#1| $)) (-15 -3748 ($ $)) (-15 -3273 ((-1083 (-388 |#1|)) $)) (-15 -4217 ((-1083 (-388 |#1|)) $)) (-15 -1776 ((-1083 |#1|) $)) (-15 -1278 ((-1083 |#1|) $)) (-15 -1846 ($ $ (-531))) (-15 -3437 ($ $))))
+((-1237 (($ (-106) $) 13)) (-2933 (((-3 (-106) "failed") (-1102) $) 12)) (-2265 (((-806) $) 16)) (-1541 (((-598 (-106)) $) 8)))
+(((-164) (-13 (-572 (-806)) (-10 -8 (-15 -1541 ((-598 (-106)) $)) (-15 -1237 ($ (-106) $)) (-15 -2933 ((-3 (-106) "failed") (-1102) $))))) (T -164))
+((-1541 (*1 *2 *1) (-12 (-5 *2 (-598 (-106))) (-5 *1 (-164)))) (-1237 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))) (-2933 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-106)) (-5 *1 (-164)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -1541 ((-598 (-106)) $)) (-15 -1237 ($ (-106) $)) (-15 -2933 ((-3 (-106) "failed") (-1102) $))))
+((-1882 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 40)) (-2006 (((-886 |#1|) (-886 |#1|)) 19)) (-3784 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 36)) (-3689 (((-886 |#1|) (-886 |#1|)) 17)) (-1980 (((-886 |#1|) (-886 |#1|)) 25)) (-1961 (((-886 |#1|) (-886 |#1|)) 24)) (-2712 (((-886 |#1|) (-886 |#1|)) 23)) (-4227 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 37)) (-2573 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 35)) (-3751 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 34)) (-2601 (((-886 |#1|) (-886 |#1|)) 18)) (-3204 (((-1 (-886 |#1|) (-886 |#1|)) |#1| |#1|) 43)) (-3473 (((-886 |#1|) (-886 |#1|)) 8)) (-4105 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 39)) (-2557 (((-1 (-886 |#1|) (-886 |#1|)) |#1|) 38)))
+(((-165 |#1|) (-10 -7 (-15 -3473 ((-886 |#1|) (-886 |#1|))) (-15 -3689 ((-886 |#1|) (-886 |#1|))) (-15 -2601 ((-886 |#1|) (-886 |#1|))) (-15 -2006 ((-886 |#1|) (-886 |#1|))) (-15 -2712 ((-886 |#1|) (-886 |#1|))) (-15 -1961 ((-886 |#1|) (-886 |#1|))) (-15 -1980 ((-886 |#1|) (-886 |#1|))) (-15 -3751 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -2573 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -3784 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -4227 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -2557 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -4105 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -1882 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -3204 ((-1 (-886 |#1|) (-886 |#1|)) |#1| |#1|))) (-13 (-344) (-1124) (-943))) (T -165))
+((-3204 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-1882 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-4105 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-2557 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-4227 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-3784 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-2573 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-3751 (*1 *2 *3) (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3)) (-4 *3 (-13 (-344) (-1124) (-943))))) (-1980 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-1961 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-2712 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-2006 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-2601 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))) (-3473 (*1 *2 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943))) (-5 *1 (-165 *3)))))
+(-10 -7 (-15 -3473 ((-886 |#1|) (-886 |#1|))) (-15 -3689 ((-886 |#1|) (-886 |#1|))) (-15 -2601 ((-886 |#1|) (-886 |#1|))) (-15 -2006 ((-886 |#1|) (-886 |#1|))) (-15 -2712 ((-886 |#1|) (-886 |#1|))) (-15 -1961 ((-886 |#1|) (-886 |#1|))) (-15 -1980 ((-886 |#1|) (-886 |#1|))) (-15 -3751 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -2573 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -3784 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -4227 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -2557 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -4105 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -1882 ((-1 (-886 |#1|) (-886 |#1|)) |#1|)) (-15 -3204 ((-1 (-886 |#1|) (-886 |#1|)) |#1| |#1|)))
+((-3369 ((|#2| |#3|) 27)))
+(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -3369 (|#2| |#3|))) (-162) (-1160 |#1|) (-675 |#1| |#2|)) (T -166))
+((-3369 (*1 *2 *3) (-12 (-4 *4 (-162)) (-4 *2 (-1160 *4)) (-5 *1 (-166 *4 *2 *3)) (-4 *3 (-675 *4 *2)))))
+(-10 -7 (-15 -3369 (|#2| |#3|)))
+((-2792 (((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)) 47 (|has| (-895 |#2|) (-829 |#1|)))))
+(((-167 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-895 |#2|) (-829 |#1|)) (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))) |%noBranch|)) (-1030) (-13 (-829 |#1|) (-162)) (-156 |#2|)) (T -167))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *3)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *3 (-156 *6)) (-4 (-895 *6) (-829 *5)) (-4 *6 (-13 (-829 *5) (-162))) (-5 *1 (-167 *5 *6 *3)))))
+(-10 -7 (IF (|has| (-895 |#2|) (-829 |#1|)) (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))) |%noBranch|))
+((-3703 (((-598 |#1|) (-598 |#1|) |#1|) 38)) (-3397 (((-598 |#1|) |#1| (-598 |#1|)) 19)) (-1850 (((-598 |#1|) (-598 (-598 |#1|)) (-598 |#1|)) 33) ((|#1| (-598 |#1|) (-598 |#1|)) 31)))
+(((-168 |#1|) (-10 -7 (-15 -3397 ((-598 |#1|) |#1| (-598 |#1|))) (-15 -1850 (|#1| (-598 |#1|) (-598 |#1|))) (-15 -1850 ((-598 |#1|) (-598 (-598 |#1|)) (-598 |#1|))) (-15 -3703 ((-598 |#1|) (-598 |#1|) |#1|))) (-289)) (T -168))
+((-3703 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))) (-1850 (*1 *2 *3 *2) (-12 (-5 *3 (-598 (-598 *4))) (-5 *2 (-598 *4)) (-4 *4 (-289)) (-5 *1 (-168 *4)))) (-1850 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289)))) (-3397 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(-10 -7 (-15 -3397 ((-598 |#1|) |#1| (-598 |#1|))) (-15 -1850 (|#1| (-598 |#1|) (-598 |#1|))) (-15 -1850 ((-598 |#1|) (-598 (-598 |#1|)) (-598 |#1|))) (-15 -3703 ((-598 |#1|) (-598 |#1|) |#1|)))
+((-3139 (((-2 (|:| |start| |#2|) (|:| -2721 (-399 |#2|))) |#2|) 61)) (-3132 ((|#1| |#1|) 54)) (-1265 (((-159 |#1|) |#2|) 84)) (-2401 ((|#1| |#2|) 123) ((|#1| |#2| |#1|) 82)) (-2832 ((|#2| |#2|) 83)) (-3321 (((-399 |#2|) |#2| |#1|) 113) (((-399 |#2|) |#2| |#1| (-110)) 81)) (-1899 ((|#1| |#2|) 112)) (-2541 ((|#2| |#2|) 119)) (-2552 (((-399 |#2|) |#2|) 134) (((-399 |#2|) |#2| |#1|) 32) (((-399 |#2|) |#2| |#1| (-110)) 133)) (-2685 (((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2|) 132) (((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2| (-110)) 76)) (-2923 (((-598 (-159 |#1|)) |#2| |#1|) 40) (((-598 (-159 |#1|)) |#2|) 41)))
+(((-169 |#1| |#2|) (-10 -7 (-15 -2923 ((-598 (-159 |#1|)) |#2|)) (-15 -2923 ((-598 (-159 |#1|)) |#2| |#1|)) (-15 -2685 ((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2| (-110))) (-15 -2685 ((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2|)) (-15 -2552 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2552 ((-399 |#2|) |#2| |#1|)) (-15 -2552 ((-399 |#2|) |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -1899 (|#1| |#2|)) (-15 -3321 ((-399 |#2|) |#2| |#1| (-110))) (-15 -3321 ((-399 |#2|) |#2| |#1|)) (-15 -2832 (|#2| |#2|)) (-15 -2401 (|#1| |#2| |#1|)) (-15 -2401 (|#1| |#2|)) (-15 -1265 ((-159 |#1|) |#2|)) (-15 -3132 (|#1| |#1|)) (-15 -3139 ((-2 (|:| |start| |#2|) (|:| -2721 (-399 |#2|))) |#2|))) (-13 (-344) (-795)) (-1160 (-159 |#1|))) (T -169))
+((-3139 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-2 (|:| |start| *3) (|:| -2721 (-399 *3)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-3132 (*1 *2 *2) (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1160 (-159 *2))))) (-1265 (*1 *2 *3) (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3)) (-4 *4 (-13 (-344) (-795))) (-4 *3 (-1160 *2)))) (-2401 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1160 (-159 *2))))) (-2401 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1160 (-159 *2))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-795))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1160 (-159 *3))))) (-3321 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-3321 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-1899 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3)) (-4 *3 (-1160 (-159 *2))))) (-2541 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-795))) (-5 *1 (-169 *3 *2)) (-4 *2 (-1160 (-159 *3))))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2552 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2552 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2685 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-2 (|:| -2721 (-598 *3)) (|:| -3959 *4)))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2685 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-795))) (-5 *2 (-598 (-2 (|:| -2721 (-598 *3)) (|:| -3959 *5)))) (-5 *1 (-169 *5 *3)) (-4 *3 (-1160 (-159 *5))))) (-2923 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))) (-2923 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-159 *4))) (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))))
+(-10 -7 (-15 -2923 ((-598 (-159 |#1|)) |#2|)) (-15 -2923 ((-598 (-159 |#1|)) |#2| |#1|)) (-15 -2685 ((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2| (-110))) (-15 -2685 ((-598 (-2 (|:| -2721 (-598 |#2|)) (|:| -3959 |#1|))) |#2| |#2|)) (-15 -2552 ((-399 |#2|) |#2| |#1| (-110))) (-15 -2552 ((-399 |#2|) |#2| |#1|)) (-15 -2552 ((-399 |#2|) |#2|)) (-15 -2541 (|#2| |#2|)) (-15 -1899 (|#1| |#2|)) (-15 -3321 ((-399 |#2|) |#2| |#1| (-110))) (-15 -3321 ((-399 |#2|) |#2| |#1|)) (-15 -2832 (|#2| |#2|)) (-15 -2401 (|#1| |#2| |#1|)) (-15 -2401 (|#1| |#2|)) (-15 -1265 ((-159 |#1|) |#2|)) (-15 -3132 (|#1| |#1|)) (-15 -3139 ((-2 (|:| |start| |#2|) (|:| -2721 (-399 |#2|))) |#2|)))
+((-1532 (((-3 |#2| "failed") |#2|) 14)) (-3842 (((-721) |#2|) 16)) (-1360 ((|#2| |#2| |#2|) 18)))
+(((-170 |#1| |#2|) (-10 -7 (-15 -1532 ((-3 |#2| "failed") |#2|)) (-15 -3842 ((-721) |#2|)) (-15 -1360 (|#2| |#2| |#2|))) (-1138) (-626 |#1|)) (T -170))
+((-1360 (*1 *2 *2 *2) (-12 (-4 *3 (-1138)) (-5 *1 (-170 *3 *2)) (-4 *2 (-626 *3)))) (-3842 (*1 *2 *3) (-12 (-4 *4 (-1138)) (-5 *2 (-721)) (-5 *1 (-170 *4 *3)) (-4 *3 (-626 *4)))) (-1532 (*1 *2 *2) (|partial| -12 (-4 *3 (-1138)) (-5 *1 (-170 *3 *2)) (-4 *2 (-626 *3)))))
+(-10 -7 (-15 -1532 ((-3 |#2| "failed") |#2|)) (-15 -3842 ((-721) |#2|)) (-15 -1360 (|#2| |#2| |#2|)))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1295 (((-1102) $) 10)) (-2265 (((-806) $) 17)) (-2687 (((-598 (-1107)) $) 12)) (-2148 (((-110) $ $) 15)))
+(((-171) (-13 (-1030) (-10 -8 (-15 -1295 ((-1102) $)) (-15 -2687 ((-598 (-1107)) $))))) (T -171))
+((-1295 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-171)))) (-2687 (*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-171)))))
+(-13 (-1030) (-10 -8 (-15 -1295 ((-1102) $)) (-15 -2687 ((-598 (-1107)) $))))
+((-1709 ((|#2| |#2|) 28)) (-4209 (((-110) |#2|) 19)) (-2577 (((-297 |#1|) |#2|) 12)) (-2590 (((-297 |#1|) |#2|) 14)) (-1824 ((|#2| |#2| (-1102)) 68) ((|#2| |#2|) 69)) (-1284 (((-159 (-297 |#1|)) |#2|) 10)) (-1703 ((|#2| |#2| (-1102)) 65) ((|#2| |#2|) 59)))
+(((-172 |#1| |#2|) (-10 -7 (-15 -1824 (|#2| |#2|)) (-15 -1824 (|#2| |#2| (-1102))) (-15 -1703 (|#2| |#2|)) (-15 -1703 (|#2| |#2| (-1102))) (-15 -2577 ((-297 |#1|) |#2|)) (-15 -2590 ((-297 |#1|) |#2|)) (-15 -4209 ((-110) |#2|)) (-15 -1709 (|#2| |#2|)) (-15 -1284 ((-159 (-297 |#1|)) |#2|))) (-13 (-523) (-797) (-977 (-531))) (-13 (-27) (-1124) (-411 (-159 |#1|)))) (T -172))
+((-1284 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3)))))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-110)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-2590 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-2577 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-297 *4)) (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-1703 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3)))))) (-1824 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *4)))))) (-1824 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3)))))))
+(-10 -7 (-15 -1824 (|#2| |#2|)) (-15 -1824 (|#2| |#2| (-1102))) (-15 -1703 (|#2| |#2|)) (-15 -1703 (|#2| |#2| (-1102))) (-15 -2577 ((-297 |#1|) |#2|)) (-15 -2590 ((-297 |#1|) |#2|)) (-15 -4209 ((-110) |#2|)) (-15 -1709 (|#2| |#2|)) (-15 -1284 ((-159 (-297 |#1|)) |#2|)))
+((-4037 (((-1184 (-639 (-895 |#1|))) (-1184 (-639 |#1|))) 24)) (-2265 (((-1184 (-639 (-388 (-895 |#1|)))) (-1184 (-639 |#1|))) 33)))
+(((-173 |#1|) (-10 -7 (-15 -4037 ((-1184 (-639 (-895 |#1|))) (-1184 (-639 |#1|)))) (-15 -2265 ((-1184 (-639 (-388 (-895 |#1|)))) (-1184 (-639 |#1|))))) (-162)) (T -173))
+((-2265 (*1 *2 *3) (-12 (-5 *3 (-1184 (-639 *4))) (-4 *4 (-162)) (-5 *2 (-1184 (-639 (-388 (-895 *4))))) (-5 *1 (-173 *4)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1184 (-639 *4))) (-4 *4 (-162)) (-5 *2 (-1184 (-639 (-895 *4)))) (-5 *1 (-173 *4)))))
+(-10 -7 (-15 -4037 ((-1184 (-639 (-895 |#1|))) (-1184 (-639 |#1|)))) (-15 -2265 ((-1184 (-639 (-388 (-895 |#1|)))) (-1184 (-639 |#1|)))))
+((-1919 (((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531)))) 66)) (-3114 (((-1104 (-388 (-531))) (-598 (-531)) (-598 (-531))) 75)) (-2432 (((-1104 (-388 (-531))) (-531)) 40)) (-3083 (((-1104 (-388 (-531))) (-531)) 52)) (-4115 (((-388 (-531)) (-1104 (-388 (-531)))) 62)) (-2812 (((-1104 (-388 (-531))) (-531)) 32)) (-3161 (((-1104 (-388 (-531))) (-531)) 48)) (-4201 (((-1104 (-388 (-531))) (-531)) 46)) (-3657 (((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531)))) 60)) (-3437 (((-1104 (-388 (-531))) (-531)) 25)) (-3710 (((-388 (-531)) (-1104 (-388 (-531))) (-1104 (-388 (-531)))) 64)) (-3224 (((-1104 (-388 (-531))) (-531)) 30)) (-1779 (((-1104 (-388 (-531))) (-598 (-531))) 72)))
+(((-174) (-10 -7 (-15 -3437 ((-1104 (-388 (-531))) (-531))) (-15 -2432 ((-1104 (-388 (-531))) (-531))) (-15 -2812 ((-1104 (-388 (-531))) (-531))) (-15 -3224 ((-1104 (-388 (-531))) (-531))) (-15 -4201 ((-1104 (-388 (-531))) (-531))) (-15 -3161 ((-1104 (-388 (-531))) (-531))) (-15 -3083 ((-1104 (-388 (-531))) (-531))) (-15 -3710 ((-388 (-531)) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -3657 ((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -4115 ((-388 (-531)) (-1104 (-388 (-531))))) (-15 -1919 ((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -1779 ((-1104 (-388 (-531))) (-598 (-531)))) (-15 -3114 ((-1104 (-388 (-531))) (-598 (-531)) (-598 (-531)))))) (T -174))
+((-3114 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))) (-1919 (*1 *2 *2 *2) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))) (-4115 (*1 *2 *3) (-12 (-5 *3 (-1104 (-388 (-531)))) (-5 *2 (-388 (-531))) (-5 *1 (-174)))) (-3657 (*1 *2 *2 *2) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))) (-3710 (*1 *2 *3 *3) (-12 (-5 *3 (-1104 (-388 (-531)))) (-5 *2 (-388 (-531))) (-5 *1 (-174)))) (-3083 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-3161 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-4201 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-3224 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-2812 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-2432 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))) (-3437 (*1 *2 *3) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))))
+(-10 -7 (-15 -3437 ((-1104 (-388 (-531))) (-531))) (-15 -2432 ((-1104 (-388 (-531))) (-531))) (-15 -2812 ((-1104 (-388 (-531))) (-531))) (-15 -3224 ((-1104 (-388 (-531))) (-531))) (-15 -4201 ((-1104 (-388 (-531))) (-531))) (-15 -3161 ((-1104 (-388 (-531))) (-531))) (-15 -3083 ((-1104 (-388 (-531))) (-531))) (-15 -3710 ((-388 (-531)) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -3657 ((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -4115 ((-388 (-531)) (-1104 (-388 (-531))))) (-15 -1919 ((-1104 (-388 (-531))) (-1104 (-388 (-531))) (-1104 (-388 (-531))))) (-15 -1779 ((-1104 (-388 (-531))) (-598 (-531)))) (-15 -3114 ((-1104 (-388 (-531))) (-598 (-531)) (-598 (-531)))))
+((-3217 (((-399 (-1098 (-531))) (-531)) 28)) (-3234 (((-598 (-1098 (-531))) (-531)) 23)) (-3913 (((-1098 (-531)) (-531)) 21)))
+(((-175) (-10 -7 (-15 -3234 ((-598 (-1098 (-531))) (-531))) (-15 -3913 ((-1098 (-531)) (-531))) (-15 -3217 ((-399 (-1098 (-531))) (-531))))) (T -175))
+((-3217 (*1 *2 *3) (-12 (-5 *2 (-399 (-1098 (-531)))) (-5 *1 (-175)) (-5 *3 (-531)))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-175)) (-5 *3 (-531)))) (-3234 (*1 *2 *3) (-12 (-5 *2 (-598 (-1098 (-531)))) (-5 *1 (-175)) (-5 *3 (-531)))))
+(-10 -7 (-15 -3234 ((-598 (-1098 (-531))) (-531))) (-15 -3913 ((-1098 (-531)) (-531))) (-15 -3217 ((-399 (-1098 (-531))) (-531))))
+((-3195 (((-1083 (-208)) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 105)) (-4022 (((-598 (-1085)) (-1083 (-208))) NIL)) (-1259 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 81)) (-1606 (((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208)))) NIL)) (-3127 (((-598 (-1085)) (-598 (-208))) NIL)) (-1325 (((-208) (-1025 (-790 (-208)))) 24)) (-2766 (((-208) (-1025 (-790 (-208)))) 25)) (-2575 (((-360) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 98)) (-1450 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-1890 (((-1085) (-208)) NIL)) (-3049 (((-1085) (-598 (-1085))) 20)) (-1538 (((-975) (-1102) (-1102) (-975)) 13)))
+(((-176) (-10 -7 (-15 -1259 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1450 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -2575 ((-360) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1606 ((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))) (-15 -3049 ((-1085) (-598 (-1085)))) (-15 -1538 ((-975) (-1102) (-1102) (-975))))) (T -176))
+((-1538 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-975)) (-5 *3 (-1102)) (-5 *1 (-176)))) (-3049 (*1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-176)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-176)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-176)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-176)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-176)))) (-1606 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1102)) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-176)))) (-2575 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-176)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-176)))) (-1450 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-176)))) (-1259 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-176)))))
+(-10 -7 (-15 -1259 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1450 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -2575 ((-360) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1606 ((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))) (-15 -3049 ((-1085) (-598 (-1085)))) (-15 -1538 ((-975) (-1102) (-1102) (-975))))
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 55) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-177) (-737)) (T -177))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 60) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-178) (-737)) (T -178))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 69) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-179) (-737)) (T -179))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 56) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-180) (-737)) (T -180))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 67) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 38) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-181) (-737)) (T -181))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 73) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-182) (-737)) (T -182))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 80) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 44) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-183) (-737)) (T -183))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 70) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-184) (-737)) (T -184))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 66)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 32)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-185) (-737)) (T -185))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 63)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 34)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-186) (-737)) (T -186))
+NIL
+(-737)
+((-2247 (((-110) $ $) NIL)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 90) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 78) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-187) (-737)) (T -187))
+NIL
+(-737)
+((-2865 (((-3 (-2 (|:| -4155 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 85)) (-3817 (((-531) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 42)) (-3102 (((-3 (-598 (-208)) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 73)))
+(((-188) (-10 -7 (-15 -2865 ((-3 (-2 (|:| -4155 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3102 ((-3 (-598 (-208)) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3817 ((-531) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -188))
+((-3817 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-531)) (-5 *1 (-188)))) (-3102 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-188)))) (-2865 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -4155 (-112)) (|:| |w| (-208)))) (-5 *1 (-188)))))
+(-10 -7 (-15 -2865 ((-3 (-2 (|:| -4155 (-112)) (|:| |w| (-208))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3102 ((-3 (-598 (-208)) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3817 ((-531) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-4093 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-1698 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 130)) (-3423 (((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-639 (-297 (-208)))) 89)) (-2030 (((-360) (-639 (-297 (-208)))) 113)) (-1487 (((-639 (-297 (-208))) (-1184 (-297 (-208))) (-598 (-1102))) 110)) (-3126 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 30)) (-3640 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 43)) (-4115 (((-639 (-297 (-208))) (-639 (-297 (-208))) (-598 (-1102)) (-1184 (-297 (-208)))) 102)) (-3420 (((-360) (-360) (-598 (-360))) 107) (((-360) (-360) (-360)) 105)) (-3874 (((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 36)))
+(((-189) (-10 -7 (-15 -3420 ((-360) (-360) (-360))) (-15 -3420 ((-360) (-360) (-598 (-360)))) (-15 -2030 ((-360) (-639 (-297 (-208))))) (-15 -1487 ((-639 (-297 (-208))) (-1184 (-297 (-208))) (-598 (-1102)))) (-15 -4115 ((-639 (-297 (-208))) (-639 (-297 (-208))) (-598 (-1102)) (-1184 (-297 (-208))))) (-15 -3423 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-639 (-297 (-208))))) (-15 -1698 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4093 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3640 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3874 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3126 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -189))
+((-3126 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-1698 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-3423 (*1 *2 *3) (-12 (-5 *3 (-639 (-297 (-208)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360)))) (-5 *1 (-189)))) (-4115 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-639 (-297 (-208)))) (-5 *3 (-598 (-1102))) (-5 *4 (-1184 (-297 (-208)))) (-5 *1 (-189)))) (-1487 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *4 (-598 (-1102))) (-5 *2 (-639 (-297 (-208)))) (-5 *1 (-189)))) (-2030 (*1 *2 *3) (-12 (-5 *3 (-639 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3420 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))) (-3420 (*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189)))))
+(-10 -7 (-15 -3420 ((-360) (-360) (-360))) (-15 -3420 ((-360) (-360) (-598 (-360)))) (-15 -2030 ((-360) (-639 (-297 (-208))))) (-15 -1487 ((-639 (-297 (-208))) (-1184 (-297 (-208))) (-598 (-1102)))) (-15 -4115 ((-639 (-297 (-208))) (-639 (-297 (-208))) (-598 (-1102)) (-1184 (-297 (-208))))) (-15 -3423 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-639 (-297 (-208))))) (-15 -1698 ((-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -4093 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3640 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3874 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3126 ((-360) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 64)) (-2148 (((-110) $ $) NIL)))
+(((-190) (-750)) (T -190))
+NIL
+(-750)
+((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 41)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 62)) (-2148 (((-110) $ $) NIL)))
+(((-191) (-750)) (T -191))
+NIL
+(-750)
+((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 40)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 66)) (-2148 (((-110) $ $) NIL)))
+(((-192) (-750)) (T -192))
+NIL
+(-750)
+((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 46)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 75)) (-2148 (((-110) $ $) NIL)))
+(((-193) (-750)) (T -193))
+NIL
+(-750)
+((-3798 (((-598 (-1102)) (-1102) (-721)) 23)) (-2112 (((-297 (-208)) (-297 (-208))) 31)) (-3247 (((-110) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 74)) (-4203 (((-110) (-208) (-208) (-598 (-297 (-208)))) 45)))
+(((-194) (-10 -7 (-15 -3798 ((-598 (-1102)) (-1102) (-721))) (-15 -2112 ((-297 (-208)) (-297 (-208)))) (-15 -4203 ((-110) (-208) (-208) (-598 (-297 (-208))))) (-15 -3247 ((-110) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))))) (T -194))
+((-3247 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *2 (-110)) (-5 *1 (-194)))) (-4203 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-598 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-194)))) (-2112 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-5 *2 (-598 (-1102))) (-5 *1 (-194)) (-5 *3 (-1102)))))
+(-10 -7 (-15 -3798 ((-598 (-1102)) (-1102) (-721))) (-15 -2112 ((-297 (-208)) (-297 (-208)))) (-15 -4203 ((-110) (-208) (-208) (-598 (-297 (-208))))) (-15 -3247 ((-110) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))))
+((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 26)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-1932 (((-975) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 57)) (-2148 (((-110) $ $) NIL)))
+(((-195) (-838)) (T -195))
+NIL
+(-838)
+((-2247 (((-110) $ $) NIL)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 21)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-1932 (((-975) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-196) (-838)) (T -196))
+NIL
+(-838)
+((-2247 (((-110) $ $) NIL)) (-2454 ((|#2| $ (-721) |#2|) 11)) (-3010 (($) 8)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1785 ((|#2| $ (-721)) 10)) (-2265 (((-806) $) 18)) (-2148 (((-110) $ $) 13)))
+(((-197 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -3010 ($)) (-15 -1785 (|#2| $ (-721))) (-15 -2454 (|#2| $ (-721) |#2|)))) (-864) (-1030)) (T -197))
+((-3010 (*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-864)) (-4 *3 (-1030)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *2 (-1030)) (-5 *1 (-197 *4 *2)) (-14 *4 (-864)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-197 *4 *2)) (-14 *4 (-864)) (-4 *2 (-1030)))))
+(-13 (-1030) (-10 -8 (-15 -3010 ($)) (-15 -1785 (|#2| $ (-721))) (-15 -2454 (|#2| $ (-721) |#2|))))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3403 (((-1189) $) 36) (((-1189) $ (-864) (-864)) 38)) (-1785 (($ $ (-931)) 19) (((-228 (-1085)) $ (-1102)) 15)) (-2286 (((-1189) $) 34)) (-2265 (((-806) $) 31) (($ (-598 |#1|)) 8)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $ $) 27)) (-2237 (($ $ $) 22)))
+(((-198 |#1|) (-13 (-1030) (-10 -8 (-15 -1785 ($ $ (-931))) (-15 -1785 ((-228 (-1085)) $ (-1102))) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2265 ($ (-598 |#1|))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $)) (-15 -3403 ((-1189) $ (-864) (-864))))) (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))) (T -198))
+((-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-931)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-228 (-1085))) (-5 *1 (-198 *4)) (-4 *4 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ *3)) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))))) (-2237 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))))) (-2250 (*1 *1 *1 *1) (-12 (-5 *1 (-198 *2)) (-4 *2 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $))))) (-5 *1 (-198 *3)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) (-15 -3403 (*2 $))))))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-198 *3)) (-4 *3 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) (-15 -3403 (*2 $))))))) (-3403 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-198 *4)) (-4 *4 (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $)) (-15 -3403 (*2 $))))))))
+(-13 (-1030) (-10 -8 (-15 -1785 ($ $ (-931))) (-15 -1785 ((-228 (-1085)) $ (-1102))) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2265 ($ (-598 |#1|))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $)) (-15 -3403 ((-1189) $ (-864) (-864)))))
+((-3489 ((|#2| |#4| (-1 |#2| |#2|)) 46)))
+(((-199 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3489 (|#2| |#4| (-1 |#2| |#2|)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -199))
+((-3489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1160 (-388 *2))) (-4 *2 (-1160 *5)) (-5 *1 (-199 *5 *2 *6 *3)) (-4 *3 (-323 *5 *2 *6)))))
+(-10 -7 (-15 -3489 (|#2| |#4| (-1 |#2| |#2|))))
+((-1505 ((|#2| |#2| (-721) |#2|) 42)) (-2297 ((|#2| |#2| (-721) |#2|) 38)) (-4215 (((-598 |#2|) (-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|)))) 57)) (-2204 (((-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))) |#2|) 53)) (-3779 (((-110) |#2|) 50)) (-4184 (((-399 |#2|) |#2|) 77)) (-2552 (((-399 |#2|) |#2|) 76)) (-3180 ((|#2| |#2| (-721) |#2|) 36)) (-1401 (((-2 (|:| |cont| |#1|) (|:| -2721 (-598 (-2 (|:| |irr| |#2|) (|:| -2460 (-531)))))) |#2| (-110)) 69)))
+(((-200 |#1| |#2|) (-10 -7 (-15 -2552 ((-399 |#2|) |#2|)) (-15 -4184 ((-399 |#2|) |#2|)) (-15 -1401 ((-2 (|:| |cont| |#1|) (|:| -2721 (-598 (-2 (|:| |irr| |#2|) (|:| -2460 (-531)))))) |#2| (-110))) (-15 -2204 ((-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))) |#2|)) (-15 -4215 ((-598 |#2|) (-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))))) (-15 -3180 (|#2| |#2| (-721) |#2|)) (-15 -2297 (|#2| |#2| (-721) |#2|)) (-15 -1505 (|#2| |#2| (-721) |#2|)) (-15 -3779 ((-110) |#2|))) (-330) (-1160 |#1|)) (T -200))
+((-3779 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4)))) (-1505 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1160 *4)))) (-2297 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1160 *4)))) (-3180 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2)) (-4 *2 (-1160 *4)))) (-4215 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| |deg| (-721)) (|:| -3239 *5)))) (-4 *5 (-1160 *4)) (-4 *4 (-330)) (-5 *2 (-598 *5)) (-5 *1 (-200 *4 *5)))) (-2204 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-598 (-2 (|:| |deg| (-721)) (|:| -3239 *3)))) (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4)))) (-1401 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-330)) (-5 *2 (-2 (|:| |cont| *5) (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) (-5 *1 (-200 *5 *3)) (-4 *3 (-1160 *5)))) (-4184 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -2552 ((-399 |#2|) |#2|)) (-15 -4184 ((-399 |#2|) |#2|)) (-15 -1401 ((-2 (|:| |cont| |#1|) (|:| -2721 (-598 (-2 (|:| |irr| |#2|) (|:| -2460 (-531)))))) |#2| (-110))) (-15 -2204 ((-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))) |#2|)) (-15 -4215 ((-598 |#2|) (-598 (-2 (|:| |deg| (-721)) (|:| -3239 |#2|))))) (-15 -3180 (|#2| |#2| (-721) |#2|)) (-15 -2297 (|#2| |#2| (-721) |#2|)) (-15 -1505 (|#2| |#2| (-721) |#2|)) (-15 -3779 ((-110) |#2|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-531) $) NIL (|has| (-531) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-531) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-531) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-531) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-531) (-977 (-531))))) (-2523 (((-531) $) NIL) (((-1102) $) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-531) (-977 (-531)))) (((-531) $) NIL (|has| (-531) (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-531) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-531) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-531) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-531) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-531) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-531) (-1078)))) (-2985 (((-110) $) NIL (|has| (-531) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-531) (-797)))) (-3261 (($ (-1 (-531) (-531)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-531) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-531) (-289))) (((-388 (-531)) $) NIL)) (-2943 (((-531) $) NIL (|has| (-531) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-531)) (-598 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-531) (-531)) NIL (|has| (-531) (-291 (-531)))) (($ $ (-276 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-276 (-531)))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-1102)) (-598 (-531))) NIL (|has| (-531) (-492 (-1102) (-531)))) (($ $ (-1102) (-531)) NIL (|has| (-531) (-492 (-1102) (-531))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-531)) NIL (|has| (-531) (-268 (-531) (-531))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-531) $) NIL)) (-2964 (($ (-388 (-531))) 9)) (-3318 (((-835 (-531)) $) NIL (|has| (-531) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-531) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-531) (-573 (-507)))) (((-360) $) NIL (|has| (-531) (-962))) (((-208) $) NIL (|has| (-531) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-531) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 8) (($ (-531)) NIL) (($ (-1102)) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL) (((-945 10) $) 10)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-531) (-852))) (|has| (-531) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-531) $) NIL (|has| (-531) (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-531) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2263 (($ $ $) NIL) (($ (-531) (-531)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-531) $) NIL) (($ $ (-531)) NIL)))
+(((-201) (-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 10) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -2964 ($ (-388 (-531))))))) (T -201))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-945 10)) (-5 *1 (-201)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201)))) (-2964 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201)))))
+(-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 10) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -2964 ($ (-388 (-531))))))
+((-1788 (((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)) (-1085)) 28) (((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|))) 24)) (-3623 (((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1102) (-790 |#2|) (-790 |#2|) (-110)) 17)))
+(((-202 |#1| |#2|) (-10 -7 (-15 -1788 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)))) (-15 -1788 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)) (-1085))) (-15 -3623 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1102) (-790 |#2|) (-790 |#2|) (-110)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-902) (-29 |#1|))) (T -202))
+((-3623 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1102)) (-5 *6 (-110)) (-4 *7 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-4 *3 (-13 (-1124) (-902) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *7 *3)) (-5 *5 (-790 *3)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1023 (-790 *3))) (-5 *5 (-1085)) (-4 *3 (-13 (-1124) (-902) (-29 *6))) (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *6 *3)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-790 *3))) (-4 *3 (-13 (-1124) (-902) (-29 *5))) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-202 *5 *3)))))
+(-10 -7 (-15 -1788 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)))) (-15 -1788 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1023 (-790 |#2|)) (-1085))) (-15 -3623 ((-3 (|:| |f1| (-790 |#2|)) (|:| |f2| (-598 (-790 |#2|))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) |#2| (-1102) (-790 |#2|) (-790 |#2|) (-110))))
+((-1788 (((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))) (-1085)) 46) (((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|))))) 43) (((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))) (-1085)) 47) (((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|)))) 20)))
+(((-203 |#1|) (-10 -7 (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))) (-1085))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))) (-1085)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (T -203))
+((-1788 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1023 (-790 (-388 (-895 *6))))) (-5 *5 (-1085)) (-5 *3 (-388 (-895 *6))) (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 (-297 *6))) (|:| |f2| (-598 (-790 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-790 (-388 (-895 *5))))) (-5 *3 (-388 (-895 *5))) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 (-297 *5))) (|:| |f2| (-598 (-790 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-388 (-895 *6))) (-5 *4 (-1023 (-790 (-297 *6)))) (-5 *5 (-1085)) (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 (-297 *6))) (|:| |f2| (-598 (-790 (-297 *6)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *6)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1023 (-790 (-297 *5)))) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |f1| (-790 (-297 *5))) (|:| |f2| (-598 (-790 (-297 *5)))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) (-5 *1 (-203 *5)))))
+(-10 -7 (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-297 |#1|))) (-1085))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))))) (-15 -1788 ((-3 (|:| |f1| (-790 (-297 |#1|))) (|:| |f2| (-598 (-790 (-297 |#1|)))) (|:| |fail| "failed") (|:| |pole| "potentialPole")) (-388 (-895 |#1|)) (-1023 (-790 (-388 (-895 |#1|)))) (-1085))))
+((-1760 (((-2 (|:| -2451 (-1098 |#1|)) (|:| |deg| (-864))) (-1098 |#1|)) 21)) (-2140 (((-598 (-297 |#2|)) (-297 |#2|) (-864)) 42)))
+(((-204 |#1| |#2|) (-10 -7 (-15 -1760 ((-2 (|:| -2451 (-1098 |#1|)) (|:| |deg| (-864))) (-1098 |#1|))) (-15 -2140 ((-598 (-297 |#2|)) (-297 |#2|) (-864)))) (-986) (-13 (-523) (-797))) (T -204))
+((-2140 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *6 (-13 (-523) (-797))) (-5 *2 (-598 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6)) (-4 *5 (-986)))) (-1760 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-2 (|:| -2451 (-1098 *4)) (|:| |deg| (-864)))) (-5 *1 (-204 *4 *5)) (-5 *3 (-1098 *4)) (-4 *5 (-13 (-523) (-797))))))
+(-10 -7 (-15 -1760 ((-2 (|:| -2451 (-1098 |#1|)) (|:| |deg| (-864))) (-1098 |#1|))) (-15 -2140 ((-598 (-297 |#2|)) (-297 |#2|) (-864))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2628 ((|#1| $) NIL)) (-1573 ((|#1| $) 25)) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-2978 (($ $) NIL)) (-4106 (($ $) 31)) (-3196 ((|#1| |#1| $) NIL)) (-4205 ((|#1| $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2428 (((-721) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) NIL)) (-2472 ((|#1| |#1| $) 28)) (-2676 ((|#1| |#1| $) 30)) (-3944 (($ |#1| $) NIL)) (-4194 (((-721) $) 27)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2572 ((|#1| $) NIL)) (-3966 ((|#1| $) 26)) (-1388 ((|#1| $) 24)) (-4192 ((|#1| $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-3969 ((|#1| |#1| $) NIL)) (-1589 (((-110) $) 9)) (-3781 (($) NIL)) (-2329 ((|#1| $) NIL)) (-1419 (($) NIL) (($ (-598 |#1|)) 16)) (-1216 (((-721) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3142 ((|#1| $) 13)) (-2524 (($ (-598 |#1|)) NIL)) (-3052 ((|#1| $) NIL)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-205 |#1|) (-13 (-236 |#1|) (-10 -8 (-15 -1419 ($ (-598 |#1|))))) (-1030)) (T -205))
+((-1419 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-205 *3)))))
+(-13 (-236 |#1|) (-10 -8 (-15 -1419 ($ (-598 |#1|)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3395 (($ (-297 |#1|)) 23)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1922 (((-110) $) NIL)) (-3154 (((-3 (-297 |#1|) "failed") $) NIL)) (-2523 (((-297 |#1|) $) NIL)) (-2500 (($ $) 31)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-3261 (($ (-1 (-297 |#1|) (-297 |#1|)) $) NIL)) (-2475 (((-297 |#1|) $) NIL)) (-2728 (($ $) 30)) (-1521 (((-1085) $) NIL)) (-1777 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($ (-721)) NIL)) (-2787 (($ $) 32)) (-2012 (((-531) $) NIL)) (-2265 (((-806) $) 57) (($ (-531)) NIL) (($ (-297 |#1|)) NIL)) (-3188 (((-297 |#1|) $ $) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) 25 T CONST)) (-3050 (($) 50 T CONST)) (-2148 (((-110) $ $) 28)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 19)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 24) (($ (-297 |#1|) $) 18)))
+(((-206 |#1| |#2|) (-13 (-576 (-297 |#1|)) (-977 (-297 |#1|)) (-10 -8 (-15 -2475 ((-297 |#1|) $)) (-15 -2728 ($ $)) (-15 -2500 ($ $)) (-15 -3188 ((-297 |#1|) $ $)) (-15 -1861 ($ (-721))) (-15 -1777 ((-110) $)) (-15 -1922 ((-110) $)) (-15 -2012 ((-531) $)) (-15 -3261 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -3395 ($ (-297 |#1|))) (-15 -2787 ($ $)))) (-13 (-986) (-797)) (-598 (-1102))) (T -206))
+((-2475 (*1 *2 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-2728 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) (-14 *3 (-598 (-1102))))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) (-14 *3 (-598 (-1102))))) (-3188 (*1 *2 *1 *1) (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-1777 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102))))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-297 *3) (-297 *3))) (-4 *3 (-13 (-986) (-797))) (-5 *1 (-206 *3 *4)) (-14 *4 (-598 (-1102))))) (-3395 (*1 *1 *2) (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-986) (-797))) (-5 *1 (-206 *3 *4)) (-14 *4 (-598 (-1102))))) (-2787 (*1 *1 *1) (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797))) (-14 *3 (-598 (-1102))))))
+(-13 (-576 (-297 |#1|)) (-977 (-297 |#1|)) (-10 -8 (-15 -2475 ((-297 |#1|) $)) (-15 -2728 ($ $)) (-15 -2500 ($ $)) (-15 -3188 ((-297 |#1|) $ $)) (-15 -1861 ($ (-721))) (-15 -1777 ((-110) $)) (-15 -1922 ((-110) $)) (-15 -2012 ((-531) $)) (-15 -3261 ($ (-1 (-297 |#1|) (-297 |#1|)) $)) (-15 -3395 ($ (-297 |#1|))) (-15 -2787 ($ $))))
+((-3719 (((-110) (-1085)) 22)) (-3207 (((-3 (-790 |#2|) "failed") (-571 |#2|) |#2| (-790 |#2|) (-790 |#2|) (-110)) 32)) (-2752 (((-3 (-110) "failed") (-1098 |#2|) (-790 |#2|) (-790 |#2|) (-110)) 73) (((-3 (-110) "failed") (-895 |#1|) (-1102) (-790 |#2|) (-790 |#2|) (-110)) 74)))
+(((-207 |#1| |#2|) (-10 -7 (-15 -3719 ((-110) (-1085))) (-15 -3207 ((-3 (-790 |#2|) "failed") (-571 |#2|) |#2| (-790 |#2|) (-790 |#2|) (-110))) (-15 -2752 ((-3 (-110) "failed") (-895 |#1|) (-1102) (-790 |#2|) (-790 |#2|) (-110))) (-15 -2752 ((-3 (-110) "failed") (-1098 |#2|) (-790 |#2|) (-790 |#2|) (-110)))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-29 |#1|))) (T -207))
+((-2752 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1098 *6)) (-5 *4 (-790 *6)) (-4 *6 (-13 (-1124) (-29 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-207 *5 *6)))) (-2752 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-110)) (-5 *3 (-895 *6)) (-5 *4 (-1102)) (-5 *5 (-790 *7)) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-4 *7 (-13 (-1124) (-29 *6))) (-5 *1 (-207 *6 *7)))) (-3207 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-790 *4)) (-5 *3 (-571 *4)) (-5 *5 (-110)) (-4 *4 (-13 (-1124) (-29 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-207 *6 *4)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1124) (-29 *4))))))
+(-10 -7 (-15 -3719 ((-110) (-1085))) (-15 -3207 ((-3 (-790 |#2|) "failed") (-571 |#2|) |#2| (-790 |#2|) (-790 |#2|) (-110))) (-15 -2752 ((-3 (-110) "failed") (-895 |#1|) (-1102) (-790 |#2|) (-790 |#2|) (-110))) (-15 -2752 ((-3 (-110) "failed") (-1098 |#2|) (-790 |#2|) (-790 |#2|) (-110))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 89)) (-1317 (((-531) $) 99)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2796 (($ $) NIL)) (-2367 (($ $) 77)) (-2218 (($ $) 65)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) 56)) (-2760 (((-110) $ $) NIL)) (-2343 (($ $) 75)) (-2198 (($ $) 63)) (-3459 (((-531) $) 116)) (-2391 (($ $) 80)) (-2241 (($ $) 67)) (-4082 (($) NIL T CONST)) (-1694 (($ $) NIL)) (-3154 (((-3 (-531) "failed") $) 115) (((-3 (-388 (-531)) "failed") $) 112)) (-2523 (((-531) $) 113) (((-388 (-531)) $) 110)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) 92)) (-1525 (((-388 (-531)) $ (-721)) 108) (((-388 (-531)) $ (-721) (-721)) 107)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3963 (((-864)) 29) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-1599 (((-110) $) NIL)) (-1880 (($) 39)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL)) (-3617 (((-531) $) 35)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL)) (-1899 (($ $) NIL)) (-2985 (((-110) $) 88)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) 53) (($) 34 (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-1241 (($ $ $) 52) (($) 33 (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-2580 (((-531) $) 27)) (-3738 (($ $) 30)) (-1835 (($ $) 57)) (-2076 (($ $) 62)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3704 (((-864) (-531)) NIL (|has| $ (-6 -4264)))) (-2529 (((-1049) $) NIL) (((-531) $) 90)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL)) (-2943 (($ $) NIL)) (-2947 (($ (-531) (-531)) NIL) (($ (-531) (-531) (-864)) 100)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1790 (((-531) $) 28)) (-3696 (($) 38)) (-2798 (($ $) 61)) (-4100 (((-721) $) NIL)) (-3879 (((-1085) (-1085)) 8)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2890 (((-864)) NIL) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-3352 (($ $ (-721)) NIL) (($ $) 93)) (-3529 (((-864) (-531)) NIL (|has| $ (-6 -4264)))) (-2403 (($ $) 78)) (-2253 (($ $) 68)) (-2379 (($ $) 79)) (-2229 (($ $) 66)) (-2356 (($ $) 76)) (-2210 (($ $) 64)) (-3318 (((-360) $) 104) (((-208) $) 101) (((-835 (-360)) $) NIL) (((-507) $) 45)) (-2265 (((-806) $) 42) (($ (-531)) 60) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-531)) 60) (($ (-388 (-531))) NIL)) (-2284 (((-721)) NIL)) (-3831 (($ $) NIL)) (-2138 (((-864)) 32) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-3276 (((-864)) 25)) (-2442 (($ $) 83)) (-2292 (($ $) 71) (($ $ $) 109)) (-2587 (((-110) $ $) NIL)) (-2416 (($ $) 81)) (-2266 (($ $) 69)) (-2468 (($ $) 86)) (-2318 (($ $) 74)) (-2753 (($ $) 84)) (-2331 (($ $) 72)) (-2456 (($ $) 85)) (-2305 (($ $) 73)) (-2429 (($ $) 82)) (-2279 (($ $) 70)) (-1620 (($ $) 117)) (-3035 (($) 36 T CONST)) (-3050 (($) 37 T CONST)) (-4231 (((-1085) $) 19) (((-1085) $ (-110)) 21) (((-1189) (-772) $) 22) (((-1189) (-772) $ (-110)) 23)) (-3926 (($ $) 96)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-1312 (($ $ $) 98)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 54)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 46)) (-2263 (($ $ $) 87) (($ $ (-531)) 55)) (-2250 (($ $) 47) (($ $ $) 49)) (-2237 (($ $ $) 48)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 58) (($ $ (-388 (-531))) 129) (($ $ $) 59)) (* (($ (-864) $) 31) (($ (-721) $) NIL) (($ (-531) $) 51) (($ $ $) 50) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL)))
+(((-208) (-13 (-385) (-216) (-778) (-1124) (-573 (-507)) (-10 -8 (-15 -2263 ($ $ (-531))) (-15 ** ($ $ $)) (-15 -3696 ($)) (-15 -2529 ((-531) $)) (-15 -3738 ($ $)) (-15 -1835 ($ $)) (-15 -2292 ($ $ $)) (-15 -3926 ($ $)) (-15 -1312 ($ $ $)) (-15 -3879 ((-1085) (-1085))) (-15 -1525 ((-388 (-531)) $ (-721))) (-15 -1525 ((-388 (-531)) $ (-721) (-721)))))) (T -208))
+((** (*1 *1 *1 *1) (-5 *1 (-208))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-208)))) (-3696 (*1 *1) (-5 *1 (-208))) (-2529 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-208)))) (-3738 (*1 *1 *1) (-5 *1 (-208))) (-1835 (*1 *1 *1) (-5 *1 (-208))) (-2292 (*1 *1 *1 *1) (-5 *1 (-208))) (-3926 (*1 *1 *1) (-5 *1 (-208))) (-1312 (*1 *1 *1 *1) (-5 *1 (-208))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-208)))) (-1525 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-208)))) (-1525 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-208)))))
+(-13 (-385) (-216) (-778) (-1124) (-573 (-507)) (-10 -8 (-15 -2263 ($ $ (-531))) (-15 ** ($ $ $)) (-15 -3696 ($)) (-15 -2529 ((-531) $)) (-15 -3738 ($ $)) (-15 -1835 ($ $)) (-15 -2292 ($ $ $)) (-15 -3926 ($ $)) (-15 -1312 ($ $ $)) (-15 -3879 ((-1085) (-1085))) (-15 -1525 ((-388 (-531)) $ (-721))) (-15 -1525 ((-388 (-531)) $ (-721) (-721)))))
+((-1690 (((-159 (-208)) (-721) (-159 (-208))) 11) (((-208) (-721) (-208)) 12)) (-3456 (((-159 (-208)) (-159 (-208))) 13) (((-208) (-208)) 14)) (-3976 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 19) (((-208) (-208) (-208)) 22)) (-2188 (((-159 (-208)) (-159 (-208))) 25) (((-208) (-208)) 24)) (-3031 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 43) (((-208) (-208) (-208)) 35)) (-2143 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 48) (((-208) (-208) (-208)) 45)) (-1702 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 15) (((-208) (-208) (-208)) 16)) (-2081 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 17) (((-208) (-208) (-208)) 18)) (-3558 (((-159 (-208)) (-159 (-208))) 60) (((-208) (-208)) 59)) (-2336 (((-208) (-208)) 54) (((-159 (-208)) (-159 (-208))) 58)) (-3926 (((-159 (-208)) (-159 (-208))) 8) (((-208) (-208)) 9)) (-1312 (((-159 (-208)) (-159 (-208)) (-159 (-208))) 30) (((-208) (-208) (-208)) 26)))
+(((-209) (-10 -7 (-15 -3926 ((-208) (-208))) (-15 -3926 ((-159 (-208)) (-159 (-208)))) (-15 -1312 ((-208) (-208) (-208))) (-15 -1312 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3456 ((-208) (-208))) (-15 -3456 ((-159 (-208)) (-159 (-208)))) (-15 -2188 ((-208) (-208))) (-15 -2188 ((-159 (-208)) (-159 (-208)))) (-15 -1690 ((-208) (-721) (-208))) (-15 -1690 ((-159 (-208)) (-721) (-159 (-208)))) (-15 -1702 ((-208) (-208) (-208))) (-15 -1702 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3031 ((-208) (-208) (-208))) (-15 -3031 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2081 ((-208) (-208) (-208))) (-15 -2081 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2143 ((-208) (-208) (-208))) (-15 -2143 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2336 ((-159 (-208)) (-159 (-208)))) (-15 -2336 ((-208) (-208))) (-15 -3558 ((-208) (-208))) (-15 -3558 ((-159 (-208)) (-159 (-208)))) (-15 -3976 ((-208) (-208) (-208))) (-15 -3976 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))) (T -209))
+((-3976 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3976 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3558 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2336 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2336 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2143 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2143 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2081 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3031 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1702 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-1702 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1690 (*1 *2 *3 *2) (-12 (-5 *2 (-159 (-208))) (-5 *3 (-721)) (-5 *1 (-209)))) (-1690 (*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-721)) (-5 *1 (-209)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-2188 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3456 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-1312 (*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-1312 (*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))) (-3926 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209)))))
+(-10 -7 (-15 -3926 ((-208) (-208))) (-15 -3926 ((-159 (-208)) (-159 (-208)))) (-15 -1312 ((-208) (-208) (-208))) (-15 -1312 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3456 ((-208) (-208))) (-15 -3456 ((-159 (-208)) (-159 (-208)))) (-15 -2188 ((-208) (-208))) (-15 -2188 ((-159 (-208)) (-159 (-208)))) (-15 -1690 ((-208) (-721) (-208))) (-15 -1690 ((-159 (-208)) (-721) (-159 (-208)))) (-15 -1702 ((-208) (-208) (-208))) (-15 -1702 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -3031 ((-208) (-208) (-208))) (-15 -3031 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2081 ((-208) (-208) (-208))) (-15 -2081 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2143 ((-208) (-208) (-208))) (-15 -2143 ((-159 (-208)) (-159 (-208)) (-159 (-208)))) (-15 -2336 ((-159 (-208)) (-159 (-208)))) (-15 -2336 ((-208) (-208))) (-15 -3558 ((-208) (-208))) (-15 -3558 ((-159 (-208)) (-159 (-208)))) (-15 -3976 ((-208) (-208) (-208))) (-15 -3976 ((-159 (-208)) (-159 (-208)) (-159 (-208)))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721) (-721)) NIL)) (-1761 (($ $ $) NIL)) (-2096 (($ (-1184 |#1|)) NIL) (($ $) NIL)) (-2161 (($ |#1| |#1| |#1|) 32)) (-2719 (((-110) $) NIL)) (-3034 (($ $ (-531) (-531)) NIL)) (-1987 (($ $ (-531) (-531)) NIL)) (-2159 (($ $ (-531) (-531) (-531) (-531)) NIL)) (-2870 (($ $) NIL)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3680 (($ $ (-531) (-531) $) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531)) $) NIL)) (-2398 (($ $ (-531) (-1184 |#1|)) NIL)) (-3492 (($ $ (-531) (-1184 |#1|)) NIL)) (-3030 (($ |#1| |#1| |#1|) 31)) (-3264 (($ (-721) |#1|) NIL)) (-4082 (($) NIL T CONST)) (-2800 (($ $) NIL (|has| |#1| (-289)))) (-4011 (((-1184 |#1|) $ (-531)) NIL)) (-3826 (($ |#1|) 30)) (-1378 (($ |#1|) 29)) (-2863 (($ |#1|) 28)) (-2277 (((-721) $) NIL (|has| |#1| (-523)))) (-2693 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-4091 (((-721) $) NIL (|has| |#1| (-523)))) (-3001 (((-598 (-1184 |#1|)) $) NIL (|has| |#1| (-523)))) (-1548 (((-721) $) NIL)) (-3010 (($ (-721) (-721) |#1|) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#1| $) NIL (|has| |#1| (-6 (-4275 "*"))))) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#1|))) 11)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3924 (((-598 (-598 |#1|)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2147 (((-3 $ "failed") $) NIL (|has| |#1| (-344)))) (-4132 (($) 12)) (-2069 (($ $ $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531))) NIL)) (-3223 (($ (-598 |#1|)) NIL) (($ (-598 $)) NIL)) (-1439 (((-110) $) NIL)) (-3253 ((|#1| $) NIL (|has| |#1| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 (((-1184 |#1|) $ (-531)) NIL)) (-2265 (($ (-1184 |#1|)) NIL) (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-531) $) NIL) (((-1184 |#1|) $ (-1184 |#1|)) 15) (((-1184 |#1|) (-1184 |#1|) $) NIL) (((-886 |#1|) $ (-886 |#1|)) 20)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-210 |#1|) (-13 (-637 |#1| (-1184 |#1|) (-1184 |#1|)) (-10 -8 (-15 * ((-886 |#1|) $ (-886 |#1|))) (-15 -4132 ($)) (-15 -2863 ($ |#1|)) (-15 -1378 ($ |#1|)) (-15 -3826 ($ |#1|)) (-15 -3030 ($ |#1| |#1| |#1|)) (-15 -2161 ($ |#1| |#1| |#1|)))) (-13 (-344) (-1124))) (T -210))
+((* (*1 *2 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124))) (-5 *1 (-210 *3)))) (-4132 (*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-2863 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-1378 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-3826 (*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-3030 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))) (-2161 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))))
+(-13 (-637 |#1| (-1184 |#1|) (-1184 |#1|)) (-10 -8 (-15 * ((-886 |#1|) $ (-886 |#1|))) (-15 -4132 ($)) (-15 -2863 ($ |#1|)) (-15 -1378 ($ |#1|)) (-15 -3826 ($ |#1|)) (-15 -3030 ($ |#1| |#1| |#1|)) (-15 -2161 ($ |#1| |#1| |#1|))))
+((-2245 (($ (-1 (-110) |#2|) $) 16)) (-2717 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 25)) (-2543 (($) NIL) (($ (-598 |#2|)) 11)) (-2148 (((-110) $ $) 23)))
+(((-211 |#1| |#2|) (-10 -8 (-15 -2245 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -2543 (|#1| (-598 |#2|))) (-15 -2543 (|#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-212 |#2|) (-1030)) (T -211))
+NIL
+(-10 -8 (-15 -2245 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -2543 (|#1| (-598 |#2|))) (-15 -2543 (|#1|)) (-15 -2148 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-212 |#1|) (-133) (-1030)) (T -212))
NIL
(-13 (-218 |t#1|))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3289 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) 11) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) 19) (($ $ (-719)) NIL) (($ $) 16)) (-3340 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-719)) 14) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)))
-(((-213 |#1| |#2|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3340 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3340 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3340 (|#1| |#1| (-1099))) (-15 -3340 (|#1| |#1| (-597 (-1099)))) (-15 -3340 (|#1| |#1| (-1099) (-719))) (-15 -3340 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|)))) (-214 |#2|) (-984)) (T -213))
-NIL
-(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3340 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3340 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3340 (|#1| |#1| (-1099))) (-15 -3340 (|#1| |#1| (-597 (-1099)))) (-15 -3340 (|#1| |#1| (-1099) (-719))) (-15 -3340 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3340 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3289 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-719)) 49) (($ $ (-597 (-1099)) (-597 (-719))) 42 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 41 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 40 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 39 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 37 (|has| |#1| (-216))) (($ $) 35 (|has| |#1| (-216)))) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-719)) 47) (($ $ (-597 (-1099)) (-597 (-719))) 46 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 45 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 44 (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 43 (|has| |#1| (-841 (-1099)))) (($ $ (-719)) 38 (|has| |#1| (-216))) (($ $) 36 (|has| |#1| (-216)))) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-214 |#1|) (-133) (-984)) (T -214))
-((-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984)))) (-3289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4)) (-4 *4 (-984)))))
-(-13 (-984) (-10 -8 (-15 -3289 ($ $ (-1 |t#1| |t#1|))) (-15 -3289 ($ $ (-1 |t#1| |t#1|) (-719))) (-15 -3340 ($ $ (-1 |t#1| |t#1|))) (-15 -3340 ($ $ (-1 |t#1| |t#1|) (-719))) (IF (|has| |t#1| (-216)) (-6 (-216)) |%noBranch|) (IF (|has| |t#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-216) |has| |#1| (-216)) ((-599 $) . T) ((-675) . T) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3289 (($ $) NIL) (($ $ (-719)) 10)) (-3340 (($ $) 8) (($ $ (-719)) 12)))
-(((-215 |#1|) (-10 -8 (-15 -3340 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3340 (|#1| |#1|)) (-15 -3289 (|#1| |#1|))) (-216)) (T -215))
-NIL
-(-10 -8 (-15 -3340 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3340 (|#1| |#1|)) (-15 -3289 (|#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3289 (($ $) 36) (($ $ (-719)) 34)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $) 35) (($ $ (-719)) 33)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-3352 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) 11) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) 19) (($ $ (-721)) NIL) (($ $) 16)) (-4020 (($ $ (-1 |#2| |#2|)) 12) (($ $ (-1 |#2| |#2|) (-721)) 14) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)))
+(((-213 |#1| |#2|) (-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -4020 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4020 (|#1| |#1| (-1102))) (-15 -4020 (|#1| |#1| (-598 (-1102)))) (-15 -4020 (|#1| |#1| (-1102) (-721))) (-15 -4020 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4020 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -4020 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|)))) (-214 |#2|) (-986)) (T -213))
+NIL
+(-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -4020 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -4020 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4020 (|#1| |#1| (-1102))) (-15 -4020 (|#1| |#1| (-598 (-1102)))) (-15 -4020 (|#1| |#1| (-1102) (-721))) (-15 -4020 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -4020 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -4020 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3352 (($ $ (-1 |#1| |#1|)) 50) (($ $ (-1 |#1| |#1|) (-721)) 49) (($ $ (-598 (-1102)) (-598 (-721))) 42 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 41 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 40 (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 39 (|has| |#1| (-843 (-1102)))) (($ $ (-721)) 37 (|has| |#1| (-216))) (($ $) 35 (|has| |#1| (-216)))) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 |#1| |#1|)) 48) (($ $ (-1 |#1| |#1|) (-721)) 47) (($ $ (-598 (-1102)) (-598 (-721))) 46 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 45 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 44 (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 43 (|has| |#1| (-843 (-1102)))) (($ $ (-721)) 38 (|has| |#1| (-216))) (($ $) 36 (|has| |#1| (-216)))) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-214 |#1|) (-133) (-986)) (T -214))
+((-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-986)))) (-3352 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *1 (-214 *4)) (-4 *4 (-986)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-986)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *1 (-214 *4)) (-4 *4 (-986)))))
+(-13 (-986) (-10 -8 (-15 -3352 ($ $ (-1 |t#1| |t#1|))) (-15 -3352 ($ $ (-1 |t#1| |t#1|) (-721))) (-15 -4020 ($ $ (-1 |t#1| |t#1|))) (-15 -4020 ($ $ (-1 |t#1| |t#1|) (-721))) (IF (|has| |t#1| (-216)) (-6 (-216)) |%noBranch|) (IF (|has| |t#1| (-843 (-1102))) (-6 (-843 (-1102))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-216) |has| |#1| (-216)) ((-601 $) . T) ((-677) . T) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3352 (($ $) NIL) (($ $ (-721)) 10)) (-4020 (($ $) 8) (($ $ (-721)) 12)))
+(((-215 |#1|) (-10 -8 (-15 -4020 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-721))) (-15 -4020 (|#1| |#1|)) (-15 -3352 (|#1| |#1|))) (-216)) (T -215))
+NIL
+(-10 -8 (-15 -4020 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-721))) (-15 -4020 (|#1| |#1|)) (-15 -3352 (|#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3352 (($ $) 36) (($ $ (-721)) 34)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $) 35) (($ $ (-721)) 33)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-216) (-133)) (T -216))
-((-3289 (*1 *1 *1) (-4 *1 (-216))) (-3340 (*1 *1 *1) (-4 *1 (-216))) (-3289 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719)))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719)))))
-(-13 (-984) (-10 -8 (-15 -3289 ($ $)) (-15 -3340 ($ $)) (-15 -3289 ($ $ (-719))) (-15 -3340 ($ $ (-719)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1560 (($) 12) (($ (-597 |#2|)) NIL)) (-2579 (($ $) 14)) (-2377 (($ (-597 |#2|)) 10)) (-2366 (((-804) $) 21)))
-(((-217 |#1| |#2|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -1560 (|#1| (-597 |#2|))) (-15 -1560 (|#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -2579 (|#1| |#1|))) (-218 |#2|) (-1027)) (T -217))
-NIL
-(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -1560 (|#1| (-597 |#2|))) (-15 -1560 (|#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -2579 (|#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-218 |#1|) (-133) (-1027)) (T -218))
-((-1560 (*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1027)))) (-1560 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-218 *3)))) (-1842 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-218 *2)) (-4 *2 (-1027)))) (-1842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3)) (-4 *3 (-1027)))) (-2901 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3)) (-4 *3 (-1027)))))
-(-13 (-104 |t#1|) (-144 |t#1|) (-10 -8 (-15 -1560 ($)) (-15 -1560 ($ (-597 |t#1|))) (IF (|has| $ (-6 -4269)) (PROGN (-15 -1842 ($ |t#1| $)) (-15 -1842 ($ (-1 (-110) |t#1|) $)) (-15 -2901 ($ (-1 (-110) |t#1|) $))) |%noBranch|)))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3142 (((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530)))) 27)))
-(((-219) (-10 -7 (-15 -3142 ((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530))))))) (T -219))
-((-3142 (*1 *2 *3) (-12 (-5 *3 (-276 (-893 (-530)))) (-5 *2 (-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719)))))) (-5 *1 (-219)))))
-(-10 -7 (-15 -3142 ((-2 (|:| |varOrder| (-597 (-1099))) (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed")) (|:| |hom| (-597 (-1181 (-719))))) (-276 (-893 (-530))))))
-((-3023 (((-719)) 51)) (-2329 (((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) 49) (((-637 |#3|) (-637 $)) 41) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2488 (((-130)) 57)) (-3289 (($ $ (-1 |#3| |#3|) (-719)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-2366 (((-1181 |#3|) $) NIL) (($ |#3|) NIL) (((-804) $) NIL) (($ (-530)) 12) (($ (-388 (-530))) NIL)) (-3300 (((-719)) 15)) (-2364 (($ $ |#3|) 54)))
-(((-220 |#1| |#2| |#3|) (-10 -8 (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)) (-15 -3300 ((-719))) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2366 (|#1| |#3|)) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -2329 ((-637 |#3|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -3023 ((-719))) (-15 -2364 (|#1| |#1| |#3|)) (-15 -2488 ((-130))) (-15 -2366 ((-1181 |#3|) |#1|))) (-221 |#2| |#3|) (-719) (-1135)) (T -220))
-((-2488 (*1 *2) (-12 (-14 *4 (-719)) (-4 *5 (-1135)) (-5 *2 (-130)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-3023 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-3300 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))))
-(-10 -8 (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)) (-15 -3300 ((-719))) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2366 (|#1| |#3|)) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -2329 ((-637 |#3|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -3023 ((-719))) (-15 -2364 (|#1| |#1| |#3|)) (-15 -2488 ((-130))) (-15 -2366 ((-1181 |#3|) |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#2| (-1027)))) (-1813 (((-110) $) 72 (|has| |#2| (-128)))) (-3930 (($ (-862)) 125 (|has| |#2| (-984)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3418 (($ $ $) 121 (|has| |#2| (-741)))) (-1889 (((-3 $ "failed") $ $) 74 (|has| |#2| (-128)))) (-3186 (((-110) $ (-719)) 8)) (-3023 (((-719)) 107 (|has| |#2| (-349)))) (-1867 (((-530) $) 119 (|has| |#2| (-793)))) (-2552 ((|#2| $ (-530) |#2|) 52 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3139 (((-3 (-530) "failed") $) 67 (-3380 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) 64 (-3380 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1027)))) (-2585 (((-530) $) 68 (-3380 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) 65 (-3380 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) 60 (|has| |#2| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) 106 (-3380 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 105 (-3380 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 104 (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) 103 (|has| |#2| (-984)))) (-2707 (((-3 $ "failed") $) 79 (|has| |#2| (-675)))) (-1364 (($) 110 (|has| |#2| (-349)))) (-3592 ((|#2| $ (-530) |#2|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ (-530)) 51)) (-2514 (((-110) $) 117 (|has| |#2| (-793)))) (-3779 (((-597 |#2|) $) 30 (|has| $ (-6 -4269)))) (-2731 (((-110) $) 81 (|has| |#2| (-675)))) (-2166 (((-110) $) 118 (|has| |#2| (-793)))) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 116 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2395 (((-597 |#2|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 115 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-3583 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) 35)) (-1905 (((-862) $) 109 (|has| |#2| (-349)))) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#2| (-1027)))) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-1986 (($ (-862)) 108 (|has| |#2| (-349)))) (-2624 (((-1046) $) 21 (|has| |#2| (-1027)))) (-3048 ((|#2| $) 42 (|has| (-530) (-795)))) (-1522 (($ $ |#2|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#2| $ (-530) |#2|) 50) ((|#2| $ (-530)) 49)) (-3334 ((|#2| $ $) 124 (|has| |#2| (-984)))) (-2658 (($ (-1181 |#2|)) 126)) (-2488 (((-130)) 123 (|has| |#2| (-344)))) (-3289 (($ $) 98 (-3380 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) 96 (-3380 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) 94 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) 93 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) 92 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) 91 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) 84 (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-984)))) (-2632 (((-719) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4269))) (((-719) |#2| $) 28 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-1181 |#2|) $) 127) (($ (-530)) 66 (-1461 (-3380 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) 63 (-3380 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) 62 (|has| |#2| (-1027))) (((-804) $) 18 (|has| |#2| (-571 (-804))))) (-3300 (((-719)) 102 (|has| |#2| (-984)))) (-3889 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4269)))) (-3934 (($ $) 120 (|has| |#2| (-793)))) (-3080 (($) 71 (|has| |#2| (-128)) CONST)) (-3093 (($) 82 (|has| |#2| (-675)) CONST)) (-3340 (($ $) 97 (-3380 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) 95 (-3380 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) 90 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) 89 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) 88 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) 87 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) 86 (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-984)))) (-2306 (((-110) $ $) 113 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2284 (((-110) $ $) 112 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2248 (((-110) $ $) 20 (|has| |#2| (-1027)))) (-2297 (((-110) $ $) 114 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2272 (((-110) $ $) 111 (-1461 (|has| |#2| (-793)) (|has| |#2| (-741))))) (-2364 (($ $ |#2|) 122 (|has| |#2| (-344)))) (-2351 (($ $ $) 100 (|has| |#2| (-984))) (($ $) 99 (|has| |#2| (-984)))) (-2339 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-719)) 80 (|has| |#2| (-675))) (($ $ (-862)) 77 (|has| |#2| (-675)))) (* (($ (-530) $) 101 (|has| |#2| (-984))) (($ $ $) 78 (|has| |#2| (-675))) (($ $ |#2|) 76 (|has| |#2| (-675))) (($ |#2| $) 75 (|has| |#2| (-675))) (($ (-719) $) 73 (|has| |#2| (-128))) (($ (-862) $) 70 (|has| |#2| (-25)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-221 |#1| |#2|) (-133) (-719) (-1135)) (T -221))
-((-2658 (*1 *1 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1135)) (-4 *1 (-221 *3 *4)))) (-3930 (*1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-221 *3 *4)) (-4 *4 (-984)) (-4 *4 (-1135)))) (-3334 (*1 *2 *1 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))))
-(-13 (-563 (-530) |t#2|) (-571 (-1181 |t#2|)) (-10 -8 (-6 -4269) (-15 -2658 ($ (-1181 |t#2|))) (IF (|has| |t#2| (-1027)) (-6 (-392 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-984)) (PROGN (-6 (-109 |t#2| |t#2|)) (-6 (-214 |t#2|)) (-6 (-358 |t#2|)) (-15 -3930 ($ (-862))) (-15 -3334 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-128)) (-6 (-128)) |%noBranch|) (IF (|has| |t#2| (-675)) (PROGN (-6 (-675)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#2| (-162)) (PROGN (-6 (-37 |t#2|)) (-6 (-162))) |%noBranch|) (IF (|has| |t#2| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |t#2| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |t#2| (-741)) (-6 (-741)) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-1188 |t#2|)) |%noBranch|)))
-(((-21) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-23) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-25) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) -1461 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-109 |#2| |#2|) -1461 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-109 $ $) |has| |#2| (-162)) ((-128) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-571 (-804)) -1461 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-571 (-804))) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-571 (-1181 |#2|)) . T) ((-162) |has| |#2| (-162)) ((-214 |#2|) |has| |#2| (-984)) ((-216) -12 (|has| |#2| (-216)) (|has| |#2| (-984))) ((-268 #0=(-530) |#2|) . T) ((-270 #0# |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-349) |has| |#2| (-349)) ((-358 |#2|) |has| |#2| (-984)) ((-392 |#2|) |has| |#2| (-1027)) ((-468 |#2|) . T) ((-563 #0# |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-599 |#2|) -1461 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-599 $) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-593 (-530)) -12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984))) ((-593 |#2|) |has| |#2| (-984)) ((-666 |#2|) -1461 (|has| |#2| (-344)) (|has| |#2| (-162))) ((-675) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-675)) (|has| |#2| (-162))) ((-739) |has| |#2| (-793)) ((-740) -1461 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-741) |has| |#2| (-741)) ((-742) -1461 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-743) -1461 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-793) |has| |#2| (-793)) ((-795) -1461 (|has| |#2| (-793)) (|has| |#2| (-741))) ((-841 (-1099)) -12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984))) ((-975 (-388 (-530))) -12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027))) ((-975 (-530)) -12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) ((-975 |#2|) |has| |#2| (-1027)) ((-990 |#2|) -1461 (|has| |#2| (-984)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-990 $) |has| |#2| (-162)) ((-984) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-991) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-162))) ((-1039) -1461 (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-675)) (|has| |#2| (-162))) ((-1027) -1461 (|has| |#2| (-1027)) (|has| |#2| (-984)) (|has| |#2| (-793)) (|has| |#2| (-741)) (|has| |#2| (-675)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-1135) . T) ((-1188 |#2|) |has| |#2| (-344)))
-((-2753 (((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 21)) (-2134 ((|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 23)) (-3217 (((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)) 18)))
-(((-222 |#1| |#2| |#3|) (-10 -7 (-15 -2753 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -2134 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3217 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)))) (-719) (-1135) (-1135)) (T -222))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-5 *2 (-223 *5 *7)) (-5 *1 (-222 *5 *6 *7)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719)) (-4 *6 (-1135)) (-4 *2 (-1135)) (-5 *1 (-222 *5 *6 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-719)) (-4 *7 (-1135)) (-4 *5 (-1135)) (-5 *2 (-223 *6 *5)) (-5 *1 (-222 *6 *7 *5)))))
-(-10 -7 (-15 -2753 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -2134 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3217 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|))))
-((-2352 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-1813 (((-110) $) NIL (|has| |#2| (-128)))) (-3930 (($ (-862)) 56 (|has| |#2| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) 60 (|has| |#2| (-741)))) (-1889 (((-3 $ "failed") $ $) 49 (|has| |#2| (-128)))) (-3186 (((-110) $ (-719)) 17)) (-3023 (((-719)) NIL (|has| |#2| (-349)))) (-1867 (((-530) $) NIL (|has| |#2| (-793)))) (-2552 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1027)))) (-2585 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) 27 (|has| |#2| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-2707 (((-3 $ "failed") $) 53 (|has| |#2| (-675)))) (-1364 (($) NIL (|has| |#2| (-349)))) (-3592 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ (-530)) 51)) (-2514 (((-110) $) NIL (|has| |#2| (-793)))) (-3779 (((-597 |#2|) $) 15 (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (|has| |#2| (-675)))) (-2166 (((-110) $) NIL (|has| |#2| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 20 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 (((-530) $) 50 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) 41)) (-1905 (((-862) $) NIL (|has| |#2| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#2| (-1027)))) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#2| (-349)))) (-2624 (((-1046) $) NIL (|has| |#2| (-1027)))) (-3048 ((|#2| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) 24 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) 21)) (-3334 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2658 (($ (-1181 |#2|)) 18)) (-2488 (((-130)) NIL (|has| |#2| (-344)))) (-3289 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#2|) $) 10) (($ (-530)) NIL (-1461 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) 13 (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-3300 (((-719)) NIL (|has| |#2| (-984)))) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#2| (-793)))) (-3080 (($) 35 (|has| |#2| (-128)) CONST)) (-3093 (($) 38 (|has| |#2| (-675)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2248 (((-110) $ $) 26 (|has| |#2| (-1027)))) (-2297 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2272 (((-110) $ $) 58 (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2339 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) 44 (|has| |#2| (-675))) (($ $ |#2|) 42 (|has| |#2| (-675))) (($ |#2| $) 43 (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-223 |#1| |#2|) (-221 |#1| |#2|) (-719) (-1135)) (T -223))
+((-3352 (*1 *1 *1) (-4 *1 (-216))) (-4020 (*1 *1 *1) (-4 *1 (-216))) (-3352 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-721)))) (-4020 (*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-721)))))
+(-13 (-986) (-10 -8 (-15 -3352 ($ $)) (-15 -4020 ($ $)) (-15 -3352 ($ $ (-721))) (-15 -4020 ($ $ (-721)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2543 (($) 12) (($ (-598 |#2|)) NIL)) (-2480 (($ $) 14)) (-2274 (($ (-598 |#2|)) 10)) (-2265 (((-806) $) 21)))
+(((-217 |#1| |#2|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2543 (|#1| (-598 |#2|))) (-15 -2543 (|#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -2480 (|#1| |#1|))) (-218 |#2|) (-1030)) (T -217))
+NIL
+(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2543 (|#1| (-598 |#2|))) (-15 -2543 (|#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -2480 (|#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-218 |#1|) (-133) (-1030)) (T -218))
+((-2543 (*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1030)))) (-2543 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-218 *3)))) (-2717 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-218 *2)) (-4 *2 (-1030)))) (-2717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-218 *3)) (-4 *3 (-1030)))) (-2245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-218 *3)) (-4 *3 (-1030)))))
+(-13 (-104 |t#1|) (-144 |t#1|) (-10 -8 (-15 -2543 ($)) (-15 -2543 ($ (-598 |t#1|))) (IF (|has| $ (-6 -4273)) (PROGN (-15 -2717 ($ |t#1| $)) (-15 -2717 ($ (-1 (-110) |t#1|) $)) (-15 -2245 ($ (-1 (-110) |t#1|) $))) |%noBranch|)))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-2075 (((-2 (|:| |varOrder| (-598 (-1102))) (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) (|:| |hom| (-598 (-1184 (-721))))) (-276 (-895 (-531)))) 27)))
+(((-219) (-10 -7 (-15 -2075 ((-2 (|:| |varOrder| (-598 (-1102))) (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) (|:| |hom| (-598 (-1184 (-721))))) (-276 (-895 (-531))))))) (T -219))
+((-2075 (*1 *2 *3) (-12 (-5 *3 (-276 (-895 (-531)))) (-5 *2 (-2 (|:| |varOrder| (-598 (-1102))) (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) (|:| |hom| (-598 (-1184 (-721)))))) (-5 *1 (-219)))))
+(-10 -7 (-15 -2075 ((-2 (|:| |varOrder| (-598 (-1102))) (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed")) (|:| |hom| (-598 (-1184 (-721))))) (-276 (-895 (-531))))))
+((-3006 (((-721)) 51)) (-3073 (((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 $) (-1184 $)) 49) (((-639 |#3|) (-639 $)) 41) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-2190 (((-130)) 57)) (-3352 (($ $ (-1 |#3| |#3|) (-721)) NIL) (($ $ (-1 |#3| |#3|)) 18) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-2265 (((-1184 |#3|) $) NIL) (($ |#3|) NIL) (((-806) $) NIL) (($ (-531)) 12) (($ (-388 (-531))) NIL)) (-2284 (((-721)) 15)) (-2263 (($ $ |#3|) 54)))
+(((-220 |#1| |#2| |#3|) (-10 -8 (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)) (-15 -2284 ((-721))) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -2265 (|#1| |#3|)) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|) (-721))) (-15 -3073 ((-639 |#3|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 |#1|) (-1184 |#1|))) (-15 -3006 ((-721))) (-15 -2263 (|#1| |#1| |#3|)) (-15 -2190 ((-130))) (-15 -2265 ((-1184 |#3|) |#1|))) (-221 |#2| |#3|) (-721) (-1138)) (T -220))
+((-2190 (*1 *2) (-12 (-14 *4 (-721)) (-4 *5 (-1138)) (-5 *2 (-130)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-3006 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1138)) (-5 *2 (-721)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))) (-2284 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1138)) (-5 *2 (-721)) (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5)))))
+(-10 -8 (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)) (-15 -2284 ((-721))) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -2265 (|#1| |#3|)) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|) (-721))) (-15 -3073 ((-639 |#3|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 |#1|) (-1184 |#1|))) (-15 -3006 ((-721))) (-15 -2263 (|#1| |#1| |#3|)) (-15 -2190 ((-130))) (-15 -2265 ((-1184 |#3|) |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#2| (-1030)))) (-3019 (((-110) $) 72 (|has| |#2| (-128)))) (-1685 (($ (-864)) 125 (|has| |#2| (-986)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3818 (($ $ $) 121 (|has| |#2| (-743)))) (-2128 (((-3 $ "failed") $ $) 74 (|has| |#2| (-128)))) (-4058 (((-110) $ (-721)) 8)) (-3006 (((-721)) 107 (|has| |#2| (-349)))) (-3459 (((-531) $) 119 (|has| |#2| (-795)))) (-2454 ((|#2| $ (-531) |#2|) 52 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-3154 (((-3 (-531) "failed") $) 67 (-3427 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-3 (-388 (-531)) "failed") $) 64 (-3427 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (((-3 |#2| "failed") $) 61 (|has| |#2| (-1030)))) (-2523 (((-531) $) 68 (-3427 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-388 (-531)) $) 65 (-3427 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) ((|#2| $) 60 (|has| |#2| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) 106 (-3427 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 105 (-3427 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 104 (|has| |#2| (-986))) (((-639 |#2|) (-639 $)) 103 (|has| |#2| (-986)))) (-3622 (((-3 $ "failed") $) 79 (|has| |#2| (-677)))) (-1381 (($) 110 (|has| |#2| (-349)))) (-2693 ((|#2| $ (-531) |#2|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ (-531)) 51)) (-1599 (((-110) $) 117 (|has| |#2| (-795)))) (-2227 (((-598 |#2|) $) 30 (|has| $ (-6 -4273)))) (-3481 (((-110) $) 81 (|has| |#2| (-677)))) (-2985 (((-110) $) 118 (|has| |#2| (-795)))) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 116 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2445 (((-598 |#2|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 115 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2680 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) 35)) (-2211 (((-864) $) 109 (|has| |#2| (-349)))) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#2| (-1030)))) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-1889 (($ (-864)) 108 (|has| |#2| (-349)))) (-2529 (((-1049) $) 21 (|has| |#2| (-1030)))) (-3046 ((|#2| $) 42 (|has| (-531) (-797)))) (-3742 (($ $ |#2|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#2| $ (-531) |#2|) 50) ((|#2| $ (-531)) 49)) (-3225 ((|#2| $ $) 124 (|has| |#2| (-986)))) (-2602 (($ (-1184 |#2|)) 126)) (-2190 (((-130)) 123 (|has| |#2| (-344)))) (-3352 (($ $) 98 (-3427 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) 96 (-3427 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) 94 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) 93 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) 92 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) 91 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) 84 (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) 83 (|has| |#2| (-986)))) (-2539 (((-721) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4273))) (((-721) |#2| $) 28 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-1184 |#2|) $) 127) (($ (-531)) 66 (-1435 (-3427 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (|has| |#2| (-986)))) (($ (-388 (-531))) 63 (-3427 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (($ |#2|) 62 (|has| |#2| (-1030))) (((-806) $) 18 (|has| |#2| (-572 (-806))))) (-2284 (((-721)) 102 (|has| |#2| (-986)))) (-2060 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4273)))) (-1620 (($ $) 120 (|has| |#2| (-795)))) (-3035 (($) 71 (|has| |#2| (-128)) CONST)) (-3050 (($) 82 (|has| |#2| (-677)) CONST)) (-4020 (($ $) 97 (-3427 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) 95 (-3427 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) 90 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) 89 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) 88 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) 87 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) 86 (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) 85 (|has| |#2| (-986)))) (-2207 (((-110) $ $) 113 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2184 (((-110) $ $) 112 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2148 (((-110) $ $) 20 (|has| |#2| (-1030)))) (-2195 (((-110) $ $) 114 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2174 (((-110) $ $) 111 (-1435 (|has| |#2| (-795)) (|has| |#2| (-743))))) (-2263 (($ $ |#2|) 122 (|has| |#2| (-344)))) (-2250 (($ $ $) 100 (|has| |#2| (-986))) (($ $) 99 (|has| |#2| (-986)))) (-2237 (($ $ $) 69 (|has| |#2| (-25)))) (** (($ $ (-721)) 80 (|has| |#2| (-677))) (($ $ (-864)) 77 (|has| |#2| (-677)))) (* (($ (-531) $) 101 (|has| |#2| (-986))) (($ $ $) 78 (|has| |#2| (-677))) (($ $ |#2|) 76 (|has| |#2| (-677))) (($ |#2| $) 75 (|has| |#2| (-677))) (($ (-721) $) 73 (|has| |#2| (-128))) (($ (-864) $) 70 (|has| |#2| (-25)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-221 |#1| |#2|) (-133) (-721) (-1138)) (T -221))
+((-2602 (*1 *1 *2) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1138)) (-4 *1 (-221 *3 *4)))) (-1685 (*1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-221 *3 *4)) (-4 *4 (-986)) (-4 *4 (-1138)))) (-3225 (*1 *2 *1 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))))
+(-13 (-564 (-531) |t#2|) (-572 (-1184 |t#2|)) (-10 -8 (-6 -4273) (-15 -2602 ($ (-1184 |t#2|))) (IF (|has| |t#2| (-1030)) (-6 (-392 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-986)) (PROGN (-6 (-109 |t#2| |t#2|)) (-6 (-214 |t#2|)) (-6 (-358 |t#2|)) (-15 -1685 ($ (-864))) (-15 -3225 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-128)) (-6 (-128)) |%noBranch|) (IF (|has| |t#2| (-677)) (PROGN (-6 (-677)) (-15 * ($ |t#2| $)) (-15 * ($ $ |t#2|))) |%noBranch|) (IF (|has| |t#2| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#2| (-162)) (PROGN (-6 (-37 |t#2|)) (-6 (-162))) |%noBranch|) (IF (|has| |t#2| (-6 -4270)) (-6 -4270) |%noBranch|) (IF (|has| |t#2| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#2| (-743)) (-6 (-743)) |%noBranch|) (IF (|has| |t#2| (-344)) (-6 (-1191 |t#2|)) |%noBranch|)))
+(((-21) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-23) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-25) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-33) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) -1435 (|has| |#2| (-1030)) (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-677)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-109 |#2| |#2|) -1435 (|has| |#2| (-986)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-109 $ $) |has| |#2| (-162)) ((-128) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128))) ((-572 (-806)) -1435 (|has| |#2| (-1030)) (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-677)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-572 (-806))) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-572 (-1184 |#2|)) . T) ((-162) |has| |#2| (-162)) ((-214 |#2|) |has| |#2| (-986)) ((-216) -12 (|has| |#2| (-216)) (|has| |#2| (-986))) ((-268 #0=(-531) |#2|) . T) ((-270 #0# |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-349) |has| |#2| (-349)) ((-358 |#2|) |has| |#2| (-986)) ((-392 |#2|) |has| |#2| (-1030)) ((-468 |#2|) . T) ((-564 #0# |#2|) . T) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-601 |#2|) -1435 (|has| |#2| (-986)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-601 $) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-162))) ((-594 (-531)) -12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986))) ((-594 |#2|) |has| |#2| (-986)) ((-668 |#2|) -1435 (|has| |#2| (-344)) (|has| |#2| (-162))) ((-677) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-677)) (|has| |#2| (-162))) ((-741) |has| |#2| (-795)) ((-742) -1435 (|has| |#2| (-795)) (|has| |#2| (-743))) ((-743) |has| |#2| (-743)) ((-744) -1435 (|has| |#2| (-795)) (|has| |#2| (-743))) ((-745) -1435 (|has| |#2| (-795)) (|has| |#2| (-743))) ((-795) |has| |#2| (-795)) ((-797) -1435 (|has| |#2| (-795)) (|has| |#2| (-743))) ((-843 (-1102)) -12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986))) ((-977 (-388 (-531))) -12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030))) ((-977 (-531)) -12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) ((-977 |#2|) |has| |#2| (-1030)) ((-992 |#2|) -1435 (|has| |#2| (-986)) (|has| |#2| (-344)) (|has| |#2| (-162))) ((-992 $) |has| |#2| (-162)) ((-986) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-162))) ((-993) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-162))) ((-1042) -1435 (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-677)) (|has| |#2| (-162))) ((-1030) -1435 (|has| |#2| (-1030)) (|has| |#2| (-986)) (|has| |#2| (-795)) (|has| |#2| (-743)) (|has| |#2| (-677)) (|has| |#2| (-349)) (|has| |#2| (-344)) (|has| |#2| (-162)) (|has| |#2| (-128)) (|has| |#2| (-25))) ((-1138) . T) ((-1191 |#2|) |has| |#2| (-344)))
+((-3203 (((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 21)) (-1760 ((|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|) 23)) (-3261 (((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)) 18)))
+(((-222 |#1| |#2| |#3|) (-10 -7 (-15 -3203 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -1760 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3261 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|)))) (-721) (-1138) (-1138)) (T -222))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-223 *5 *6)) (-14 *5 (-721)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-5 *2 (-223 *5 *7)) (-5 *1 (-222 *5 *6 *7)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-721)) (-4 *6 (-1138)) (-4 *2 (-1138)) (-5 *1 (-222 *5 *6 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-721)) (-4 *7 (-1138)) (-4 *5 (-1138)) (-5 *2 (-223 *6 *5)) (-5 *1 (-222 *6 *7 *5)))))
+(-10 -7 (-15 -3203 ((-223 |#1| |#3|) (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -1760 (|#3| (-1 |#3| |#2| |#3|) (-223 |#1| |#2|) |#3|)) (-15 -3261 ((-223 |#1| |#3|) (-1 |#3| |#2|) (-223 |#1| |#2|))))
+((-2247 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-3019 (((-110) $) NIL (|has| |#2| (-128)))) (-1685 (($ (-864)) 56 (|has| |#2| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) 60 (|has| |#2| (-743)))) (-2128 (((-3 $ "failed") $ $) 49 (|has| |#2| (-128)))) (-4058 (((-110) $ (-721)) 17)) (-3006 (((-721)) NIL (|has| |#2| (-349)))) (-3459 (((-531) $) NIL (|has| |#2| (-795)))) (-2454 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (((-3 |#2| "failed") $) 29 (|has| |#2| (-1030)))) (-2523 (((-531) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) ((|#2| $) 27 (|has| |#2| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL (|has| |#2| (-986))) (((-639 |#2|) (-639 $)) NIL (|has| |#2| (-986)))) (-3622 (((-3 $ "failed") $) 53 (|has| |#2| (-677)))) (-1381 (($) NIL (|has| |#2| (-349)))) (-2693 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ (-531)) 51)) (-1599 (((-110) $) NIL (|has| |#2| (-795)))) (-2227 (((-598 |#2|) $) 15 (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (|has| |#2| (-677)))) (-2985 (((-110) $) NIL (|has| |#2| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 20 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 (((-531) $) 50 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) 41)) (-2211 (((-864) $) NIL (|has| |#2| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#2| (-1030)))) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#2| (-349)))) (-2529 (((-1049) $) NIL (|has| |#2| (-1030)))) (-3046 ((|#2| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) 24 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-531)) 21)) (-3225 ((|#2| $ $) NIL (|has| |#2| (-986)))) (-2602 (($ (-1184 |#2|)) 18)) (-2190 (((-130)) NIL (|has| |#2| (-344)))) (-3352 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#2|) $) 10) (($ (-531)) NIL (-1435 (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (|has| |#2| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (($ |#2|) 13 (|has| |#2| (-1030))) (((-806) $) NIL (|has| |#2| (-572 (-806))))) (-2284 (((-721)) NIL (|has| |#2| (-986)))) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#2| (-795)))) (-3035 (($) 35 (|has| |#2| (-128)) CONST)) (-3050 (($) 38 (|has| |#2| (-677)) CONST)) (-4020 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2148 (((-110) $ $) 26 (|has| |#2| (-1030)))) (-2195 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2174 (((-110) $ $) 58 (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $ $) NIL (|has| |#2| (-986))) (($ $) NIL (|has| |#2| (-986)))) (-2237 (($ $ $) 33 (|has| |#2| (-25)))) (** (($ $ (-721)) NIL (|has| |#2| (-677))) (($ $ (-864)) NIL (|has| |#2| (-677)))) (* (($ (-531) $) NIL (|has| |#2| (-986))) (($ $ $) 44 (|has| |#2| (-677))) (($ $ |#2|) 42 (|has| |#2| (-677))) (($ |#2| $) 43 (|has| |#2| (-677))) (($ (-721) $) NIL (|has| |#2| (-128))) (($ (-864) $) NIL (|has| |#2| (-25)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-223 |#1| |#2|) (-221 |#1| |#2|) (-721) (-1138)) (T -223))
NIL
(-221 |#1| |#2|)
-((-1576 (((-530) (-597 (-1082))) 24) (((-530) (-1082)) 19)) (-2541 (((-1186) (-597 (-1082))) 29) (((-1186) (-1082)) 28)) (-2839 (((-1082)) 14)) (-1275 (((-1082) (-530) (-1082)) 16)) (-3705 (((-597 (-1082)) (-597 (-1082)) (-530) (-1082)) 25) (((-1082) (-1082) (-530) (-1082)) 23)) (-1774 (((-597 (-1082)) (-597 (-1082))) 13) (((-597 (-1082)) (-1082)) 11)))
-(((-224) (-10 -7 (-15 -1774 ((-597 (-1082)) (-1082))) (-15 -1774 ((-597 (-1082)) (-597 (-1082)))) (-15 -2839 ((-1082))) (-15 -1275 ((-1082) (-530) (-1082))) (-15 -3705 ((-1082) (-1082) (-530) (-1082))) (-15 -3705 ((-597 (-1082)) (-597 (-1082)) (-530) (-1082))) (-15 -2541 ((-1186) (-1082))) (-15 -2541 ((-1186) (-597 (-1082)))) (-15 -1576 ((-530) (-1082))) (-15 -1576 ((-530) (-597 (-1082)))))) (T -224))
-((-1576 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-530)) (-5 *1 (-224)))) (-1576 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-224)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1186)) (-5 *1 (-224)))) (-2541 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-224)))) (-3705 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-597 (-1082))) (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *1 (-224)))) (-3705 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))) (-1275 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))) (-2839 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-224)))) (-1774 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)))) (-1774 (*1 *2 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)) (-5 *3 (-1082)))))
-(-10 -7 (-15 -1774 ((-597 (-1082)) (-1082))) (-15 -1774 ((-597 (-1082)) (-597 (-1082)))) (-15 -2839 ((-1082))) (-15 -1275 ((-1082) (-530) (-1082))) (-15 -3705 ((-1082) (-1082) (-530) (-1082))) (-15 -3705 ((-597 (-1082)) (-597 (-1082)) (-530) (-1082))) (-15 -2541 ((-1186) (-1082))) (-15 -2541 ((-1186) (-597 (-1082)))) (-15 -1576 ((-530) (-1082))) (-15 -1576 ((-530) (-597 (-1082)))))
-((** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 16)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ (-388 (-530)) $) 23) (($ $ (-388 (-530))) NIL)))
-(((-225 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-226)) (T -225))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 37)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 41)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 38)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ (-388 (-530)) $) 40) (($ $ (-388 (-530))) 39)))
+((-3956 (((-531) (-598 (-1085))) 24) (((-531) (-1085)) 19)) (-2487 (((-1189) (-598 (-1085))) 29) (((-1189) (-1085)) 28)) (-4179 (((-1085)) 14)) (-1291 (((-1085) (-531) (-1085)) 16)) (-3840 (((-598 (-1085)) (-598 (-1085)) (-531) (-1085)) 25) (((-1085) (-1085) (-531) (-1085)) 23)) (-1667 (((-598 (-1085)) (-598 (-1085))) 13) (((-598 (-1085)) (-1085)) 11)))
+(((-224) (-10 -7 (-15 -1667 ((-598 (-1085)) (-1085))) (-15 -1667 ((-598 (-1085)) (-598 (-1085)))) (-15 -4179 ((-1085))) (-15 -1291 ((-1085) (-531) (-1085))) (-15 -3840 ((-1085) (-1085) (-531) (-1085))) (-15 -3840 ((-598 (-1085)) (-598 (-1085)) (-531) (-1085))) (-15 -2487 ((-1189) (-1085))) (-15 -2487 ((-1189) (-598 (-1085)))) (-15 -3956 ((-531) (-1085))) (-15 -3956 ((-531) (-598 (-1085)))))) (T -224))
+((-3956 (*1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-531)) (-5 *1 (-224)))) (-3956 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-531)) (-5 *1 (-224)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1189)) (-5 *1 (-224)))) (-2487 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-224)))) (-3840 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-598 (-1085))) (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *1 (-224)))) (-3840 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-224)))) (-1291 (*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-224)))) (-4179 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-224)))) (-1667 (*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-224)))) (-1667 (*1 *2 *3) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-224)) (-5 *3 (-1085)))))
+(-10 -7 (-15 -1667 ((-598 (-1085)) (-1085))) (-15 -1667 ((-598 (-1085)) (-598 (-1085)))) (-15 -4179 ((-1085))) (-15 -1291 ((-1085) (-531) (-1085))) (-15 -3840 ((-1085) (-1085) (-531) (-1085))) (-15 -3840 ((-598 (-1085)) (-598 (-1085)) (-531) (-1085))) (-15 -2487 ((-1189) (-1085))) (-15 -2487 ((-1189) (-598 (-1085)))) (-15 -3956 ((-531) (-1085))) (-15 -3956 ((-531) (-598 (-1085)))))
+((** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 16)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ (-388 (-531)) $) 23) (($ $ (-388 (-531))) NIL)))
+(((-225 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-531))) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-226)) (T -225))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-531))) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 37)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 41)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 38)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ (-388 (-531)) $) 40) (($ $ (-388 (-531))) 39)))
(((-226) (-133)) (T -226))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-530)))) (-2483 (*1 *1 *1) (-4 *1 (-226))))
-(-13 (-272) (-37 (-388 (-530))) (-10 -8 (-15 ** ($ $ (-530))) (-15 -2483 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-272) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-675) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-2133 (($ $) 57)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1259 (($ $ $) 53 (|has| $ (-6 -4270)))) (-2756 (($ $ $) 52 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-1642 (($ $) 56)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4052 (($ $) 55)) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 59)) (-2846 (($ $) 58)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-1328 (($ $ $) 54 (|has| $ (-6 -4270)))) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-227 |#1|) (-133) (-1135)) (T -227))
-((-2407 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-2846 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-1642 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-4052 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-1328 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-1259 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))) (-2756 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
-(-13 (-949 |t#1|) (-10 -8 (-15 -2407 (|t#1| $)) (-15 -2846 ($ $)) (-15 -2133 ($ $)) (-15 -1642 ($ $)) (-15 -4052 ($ $)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1328 ($ $ $)) (-15 -1259 ($ $ $)) (-15 -2756 ($ $ $))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3254 ((|#1| $) NIL)) (-2133 (($ $) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-1307 (($ $) 10 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) NIL (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "rest" $) NIL (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3245 ((|#1| $) NIL)) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3057 (($ $) NIL) (($ $ (-719)) NIL)) (-2287 (($ $) NIL (|has| |#1| (-1027)))) (-3077 (($ $) 7 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2383 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-2027 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3683 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2939 (($ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2407 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-2441 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-4083 (((-110) $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) NIL) ((|#1| $ (-530) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-719) $ "count") 16)) (-2539 (((-530) $ $) NIL)) (-3715 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2365 (($ (-597 |#1|)) 22)) (-4246 (((-110) $) NIL)) (-3697 (($ $) NIL)) (-3301 (($ $) NIL (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-1328 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3483 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2366 (($ (-597 |#1|)) 17) (((-597 |#1|) $) 18) (((-804) $) 21 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 14 (|has| $ (-6 -4269)))))
-(((-228 |#1|) (-13 (-617 |#1|) (-10 -8 (-15 -2366 ($ (-597 |#1|))) (-15 -2366 ((-597 |#1|) $)) (-15 -2365 ($ (-597 |#1|))) (-15 -1902 ($ $ "unique")) (-15 -1902 ($ $ "sort")) (-15 -1902 ((-719) $ "count")))) (-795)) (T -228))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-2365 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-795)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-719)) (-5 *1 (-228 *4)) (-4 *4 (-795)))))
-(-13 (-617 |#1|) (-10 -8 (-15 -2366 ($ (-597 |#1|))) (-15 -2366 ((-597 |#1|) $)) (-15 -2365 ($ (-597 |#1|))) (-15 -1902 ($ $ "unique")) (-15 -1902 ($ $ "sort")) (-15 -1902 ((-719) $ "count"))))
-((-4092 (((-3 (-719) "failed") |#1| |#1| (-719)) 27)))
-(((-229 |#1|) (-10 -7 (-15 -4092 ((-3 (-719) "failed") |#1| |#1| (-719)))) (-13 (-675) (-349) (-10 -7 (-15 ** (|#1| |#1| (-530)))))) (T -229))
-((-4092 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-719)) (-4 *3 (-13 (-675) (-349) (-10 -7 (-15 ** (*3 *3 (-530)))))) (-5 *1 (-229 *3)))))
-(-10 -7 (-15 -4092 ((-3 (-719) "failed") |#1| |#1| (-719))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-806 |#1|)) $) NIL)) (-2577 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-3388 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1282 (($ $ (-597 (-530))) NIL)) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| (-223 (-2267 |#1|) (-719)) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#2| (-223 (-2267 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-806 |#1|)) NIL)) (-2944 (((-223 (-2267 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 (-223 (-2267 |#1|) (-719)) (-223 (-2267 |#1|) (-719))) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2040 (((-3 (-806 |#1|) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#2| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-3060 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1429 (((-223 (-2267 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-223 (-2267 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-230 |#1| |#2|) (-13 (-890 |#2| (-223 (-2267 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984)) (T -230))
-((-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-230 *3 *4)) (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
-(-13 (-890 |#2| (-223 (-2267 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530))))))
-((-2352 (((-110) $ $) NIL)) (-1341 (((-1186) $) 15)) (-1479 (((-171) $) 9)) (-2961 (($ (-171)) 10)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 7)) (-2248 (((-110) $ $) 13)))
-(((-231) (-13 (-1027) (-10 -8 (-15 -1479 ((-171) $)) (-15 -2961 ($ (-171))) (-15 -1341 ((-1186) $))))) (T -231))
-((-1479 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-2961 (*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-231)))))
-(-13 (-1027) (-10 -8 (-15 -1479 ((-171) $)) (-15 -2961 ($ (-171))) (-15 -1341 ((-1186) $))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3930 (($ (-862)) NIL (|has| |#4| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#4| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#4| (-349)))) (-1867 (((-530) $) NIL (|has| |#4| (-793)))) (-2552 ((|#4| $ (-530) |#4|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1027))) (((-3 (-530) "failed") $) NIL (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-2585 ((|#4| $) NIL (|has| |#4| (-1027))) (((-530) $) NIL (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-2329 (((-2 (|:| -2030 (-637 |#4|)) (|:| |vec| (-1181 |#4|))) (-637 $) (-1181 $)) NIL (|has| |#4| (-984))) (((-637 |#4|) (-637 $)) NIL (|has| |#4| (-984))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-1364 (($) NIL (|has| |#4| (-349)))) (-3592 ((|#4| $ (-530) |#4|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#4| $ (-530)) NIL)) (-2514 (((-110) $) NIL (|has| |#4| (-793)))) (-3779 (((-597 |#4|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-2166 (((-110) $) NIL (|has| |#4| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2395 (((-597 |#4|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-3583 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#4| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#4| (-349)))) (-2624 (((-1046) $) NIL)) (-3048 ((|#4| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#4|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2261 (((-597 |#4|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#4| $ (-530) |#4|) NIL) ((|#4| $ (-530)) 12)) (-3334 ((|#4| $ $) NIL (|has| |#4| (-984)))) (-2658 (($ (-1181 |#4|)) NIL)) (-2488 (((-130)) NIL (|has| |#4| (-344)))) (-3289 (($ $ (-1 |#4| |#4|) (-719)) NIL (|has| |#4| (-984))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984))))) (-2632 (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#4|) $) NIL) (((-804) $) NIL) (($ |#4|) NIL (|has| |#4| (-1027))) (($ (-530)) NIL (-1461 (-12 (|has| |#4| (-975 (-530))) (|has| |#4| (-1027))) (|has| |#4| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#4| (-975 (-388 (-530)))) (|has| |#4| (-1027))))) (-3300 (((-719)) NIL (|has| |#4| (-984)))) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#4| (-793)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) CONST)) (-3340 (($ $ (-1 |#4| |#4|) (-719)) NIL (|has| |#4| (-984))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-984))))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2272 (((-110) $ $) NIL (-1461 (|has| |#4| (-741)) (|has| |#4| (-793))))) (-2364 (($ $ |#4|) NIL (|has| |#4| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984))))) (($ $ (-862)) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (* (($ |#2| $) 14) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-675))) (($ |#4| $) NIL (|has| |#4| (-675))) (($ $ $) NIL (-1461 (-12 (|has| |#4| (-216)) (|has| |#4| (-984))) (-12 (|has| |#4| (-593 (-530))) (|has| |#4| (-984))) (|has| |#4| (-675)) (-12 (|has| |#4| (-841 (-1099))) (|has| |#4| (-984)))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-232 |#1| |#2| |#3| |#4|) (-13 (-221 |#1| |#4|) (-599 |#2|) (-599 |#3|)) (-862) (-984) (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-599 |#2|)) (T -232))
-NIL
-(-13 (-221 |#1| |#4|) (-599 |#2|) (-599 |#3|))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3930 (($ (-862)) NIL (|has| |#3| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#3| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#3| (-349)))) (-1867 (((-530) $) NIL (|has| |#3| (-793)))) (-2552 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1027))) (((-3 (-530) "failed") $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-2585 ((|#3| $) NIL (|has| |#3| (-1027))) (((-530) $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-2329 (((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) NIL (|has| |#3| (-984))) (((-637 |#3|) (-637 $)) NIL (|has| |#3| (-984))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-1364 (($) NIL (|has| |#3| (-349)))) (-3592 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#3| $ (-530)) NIL)) (-2514 (((-110) $) NIL (|has| |#3| (-793)))) (-3779 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-2166 (((-110) $) NIL (|has| |#3| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2395 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-3583 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#3| |#3|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#3| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#3| (-349)))) (-2624 (((-1046) $) NIL)) (-3048 ((|#3| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#3|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2261 (((-597 |#3|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#3| $ (-530) |#3|) NIL) ((|#3| $ (-530)) 11)) (-3334 ((|#3| $ $) NIL (|has| |#3| (-984)))) (-2658 (($ (-1181 |#3|)) NIL)) (-2488 (((-130)) NIL (|has| |#3| (-344)))) (-3289 (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984))))) (-2632 (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269))) (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#3|) $) NIL) (((-804) $) NIL) (($ |#3|) NIL (|has| |#3| (-1027))) (($ (-530)) NIL (-1461 (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (|has| |#3| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027))))) (-3300 (((-719)) NIL (|has| |#3| (-984)))) (-3889 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#3| (-793)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) CONST)) (-3340 (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984))))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2272 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2364 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984))))) (($ $ (-862)) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (* (($ |#2| $) 13) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-675))) (($ |#3| $) NIL (|has| |#3| (-675))) (($ $ $) NIL (-1461 (-12 (|has| |#3| (-216)) (|has| |#3| (-984))) (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984))) (|has| |#3| (-675)) (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-233 |#1| |#2| |#3|) (-13 (-221 |#1| |#3|) (-599 |#2|)) (-719) (-984) (-599 |#2|)) (T -233))
-NIL
-(-13 (-221 |#1| |#3|) (-599 |#2|))
-((-1772 (((-597 (-719)) $) 47) (((-597 (-719)) $ |#3|) 50)) (-2001 (((-719) $) 49) (((-719) $ |#3|) 52)) (-3373 (($ $) 65)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-2031 (((-719) $ |#3|) 39) (((-719) $) 36)) (-3135 (((-1 $ (-719)) |#3|) 15) (((-1 $ (-719)) $) 77)) (-2948 ((|#4| $) 58)) (-2003 (((-110) $) 56)) (-2384 (($ $) 64)) (-4098 (($ $ (-597 (-276 $))) 97) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-597 |#4|) (-597 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-597 |#4|) (-597 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-597 |#3|) (-597 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-597 |#3|) (-597 |#2|)) 84)) (-3289 (($ $ |#4|) NIL) (($ $ (-597 |#4|)) NIL) (($ $ |#4| (-719)) NIL) (($ $ (-597 |#4|) (-597 (-719))) NIL) (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3353 (((-597 |#3|) $) 75)) (-1429 ((|#5| $) NIL) (((-719) $ |#4|) NIL) (((-597 (-719)) $ (-597 |#4|)) NIL) (((-719) $ |#3|) 44)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-388 (-530))) NIL) (($ $) NIL)))
-(((-234 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -4098 (|#1| |#1| (-597 |#3|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#3| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#3|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#3| |#1|)) (-15 -3135 ((-1 |#1| (-719)) |#1|)) (-15 -3373 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2948 (|#4| |#1|)) (-15 -2003 ((-110) |#1|)) (-15 -2001 ((-719) |#1| |#3|)) (-15 -1772 ((-597 (-719)) |#1| |#3|)) (-15 -2001 ((-719) |#1|)) (-15 -1772 ((-597 (-719)) |#1|)) (-15 -1429 ((-719) |#1| |#3|)) (-15 -2031 ((-719) |#1|)) (-15 -2031 ((-719) |#1| |#3|)) (-15 -3353 ((-597 |#3|) |#1|)) (-15 -3135 ((-1 |#1| (-719)) |#3|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -2366 (|#1| |#3|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -1429 ((-597 (-719)) |#1| (-597 |#4|))) (-15 -1429 ((-719) |#1| |#4|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -2366 (|#1| |#4|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#4| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#4| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1429 (|#5| |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3289 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -3289 (|#1| |#1| |#4| (-719))) (-15 -3289 (|#1| |#1| (-597 |#4|))) (-15 -3289 (|#1| |#1| |#4|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-235 |#2| |#3| |#4| |#5|) (-984) (-795) (-248 |#3|) (-741)) (T -234))
-NIL
-(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -4098 (|#1| |#1| (-597 |#3|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#3| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#3|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#3| |#1|)) (-15 -3135 ((-1 |#1| (-719)) |#1|)) (-15 -3373 (|#1| |#1|)) (-15 -2384 (|#1| |#1|)) (-15 -2948 (|#4| |#1|)) (-15 -2003 ((-110) |#1|)) (-15 -2001 ((-719) |#1| |#3|)) (-15 -1772 ((-597 (-719)) |#1| |#3|)) (-15 -2001 ((-719) |#1|)) (-15 -1772 ((-597 (-719)) |#1|)) (-15 -1429 ((-719) |#1| |#3|)) (-15 -2031 ((-719) |#1|)) (-15 -2031 ((-719) |#1| |#3|)) (-15 -3353 ((-597 |#3|) |#1|)) (-15 -3135 ((-1 |#1| (-719)) |#3|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -2366 (|#1| |#3|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -1429 ((-597 (-719)) |#1| (-597 |#4|))) (-15 -1429 ((-719) |#1| |#4|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -2366 (|#1| |#4|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#4| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#4| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1429 (|#5| |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3289 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -3289 (|#1| |#1| |#4| (-719))) (-15 -3289 (|#1| |#1| (-597 |#4|))) (-15 -3289 (|#1| |#1| |#4|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1772 (((-597 (-719)) $) 212) (((-597 (-719)) $ |#2|) 210)) (-2001 (((-719) $) 211) (((-719) $ |#2|) 209)) (-2746 (((-597 |#3|) $) 108)) (-2577 (((-1095 $) $ |#3|) 123) (((-1095 |#1|) $) 122)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85 (|has| |#1| (-522)))) (-3446 (($ $) 86 (|has| |#1| (-522)))) (-1276 (((-110) $) 88 (|has| |#1| (-522)))) (-3471 (((-719) $) 110) (((-719) $ (-597 |#3|)) 109)) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 98 (|has| |#1| (-850)))) (-3544 (($ $) 96 (|has| |#1| (-432)))) (-3272 (((-399 $) $) 95 (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-3373 (($ $) 205)) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-530)) "failed") $) 160 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 158 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2585 ((|#1| $) 163) (((-388 (-530)) $) 159 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 157 (|has| |#1| (-975 (-530)))) ((|#3| $) 133) ((|#2| $) 218)) (-3388 (($ $ $ |#3|) 106 (|has| |#1| (-162)))) (-2562 (($ $) 152)) (-2329 (((-637 (-530)) (-637 $)) 132 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 131 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 130) (((-637 |#1|) (-637 $)) 129)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2548 (((-597 $) $) 107)) (-3295 (((-110) $) 94 (|has| |#1| (-850)))) (-2410 (($ $ |#1| |#4| $) 170)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 82 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 81 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ |#2|) 215) (((-719) $) 214)) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 167)) (-2735 (($ (-1095 |#1|) |#3|) 115) (($ (-1095 $) |#3|) 114)) (-2469 (((-597 $) $) 124)) (-3668 (((-110) $) 150)) (-2725 (($ |#1| |#4|) 151) (($ $ |#3| (-719)) 117) (($ $ (-597 |#3|) (-597 (-719))) 116)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) 118)) (-2944 ((|#4| $) 168) (((-719) $ |#3|) 120) (((-597 (-719)) $ (-597 |#3|)) 119)) (-2508 (($ $ $) 77 (|has| |#1| (-795)))) (-1817 (($ $ $) 76 (|has| |#1| (-795)))) (-3756 (($ (-1 |#4| |#4|) $) 169)) (-3217 (($ (-1 |#1| |#1|) $) 149)) (-3135 (((-1 $ (-719)) |#2|) 217) (((-1 $ (-719)) $) 204 (|has| |#1| (-216)))) (-2040 (((-3 |#3| "failed") $) 121)) (-2521 (($ $) 147)) (-2533 ((|#1| $) 146)) (-2948 ((|#3| $) 207)) (-2170 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1424 (((-1082) $) 9)) (-2003 (((-110) $) 208)) (-1862 (((-3 (-597 $) "failed") $) 112)) (-1534 (((-3 (-597 $) "failed") $) 113)) (-1487 (((-3 (-2 (|:| |var| |#3|) (|:| -3194 (-719))) "failed") $) 111)) (-2384 (($ $) 206)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 164)) (-2505 ((|#1| $) 165)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 93 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 99 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 97 (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-597 $) (-597 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-597 |#3|) (-597 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-597 |#3|) (-597 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 $)) 202 (|has| |#1| (-216))) (($ $ |#2| |#1|) 201 (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 |#1|)) 200 (|has| |#1| (-216)))) (-3060 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3289 (($ $ |#3|) 40) (($ $ (-597 |#3|)) 39) (($ $ |#3| (-719)) 38) (($ $ (-597 |#3|) (-597 (-719))) 37) (($ $) 236 (|has| |#1| (-216))) (($ $ (-719)) 234 (|has| |#1| (-216))) (($ $ (-1099)) 232 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 231 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 230 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 229 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-3353 (((-597 |#2|) $) 216)) (-1429 ((|#4| $) 148) (((-719) $ |#3|) 128) (((-597 (-719)) $ (-597 |#3|)) 127) (((-719) $ |#2|) 213)) (-3260 (((-833 (-360)) $) 80 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 79 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 78 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 102 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-388 (-530))) 70 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 83 (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) 166)) (-4085 ((|#1| $ |#4|) 153) (($ $ |#3| (-719)) 126) (($ $ (-597 |#3|) (-597 (-719))) 125)) (-3251 (((-3 $ "failed") $) 71 (-1461 (-3380 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 171 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 87 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ |#3|) 36) (($ $ (-597 |#3|)) 35) (($ $ |#3| (-719)) 34) (($ $ (-597 |#3|) (-597 (-719))) 33) (($ $) 235 (|has| |#1| (-216))) (($ $ (-719)) 233 (|has| |#1| (-216))) (($ $ (-1099)) 228 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 227 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 226 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 225 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2306 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 73 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 72 (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 156 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 155 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-235 |#1| |#2| |#3| |#4|) (-133) (-984) (-795) (-248 |t#2|) (-741)) (T -235))
-((-3135 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *4 *3 *5 *6)))) (-3353 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 *4)))) (-2031 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1429 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1772 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719)))) (-1772 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))) (-2001 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-110)))) (-2948 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-4 *2 (-248 *4)))) (-2384 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-248 *3)) (-4 *5 (-741)))) (-3373 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-248 *3)) (-4 *5 (-741)))) (-3135 (*1 *2 *1) (-12 (-4 *3 (-216)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *3 *4 *5 *6)))))
-(-13 (-890 |t#1| |t#4| |t#3|) (-214 |t#1|) (-975 |t#2|) (-10 -8 (-15 -3135 ((-1 $ (-719)) |t#2|)) (-15 -3353 ((-597 |t#2|) $)) (-15 -2031 ((-719) $ |t#2|)) (-15 -2031 ((-719) $)) (-15 -1429 ((-719) $ |t#2|)) (-15 -1772 ((-597 (-719)) $)) (-15 -2001 ((-719) $)) (-15 -1772 ((-597 (-719)) $ |t#2|)) (-15 -2001 ((-719) $ |t#2|)) (-15 -2003 ((-110) $)) (-15 -2948 (|t#3| $)) (-15 -2384 ($ $)) (-15 -3373 ($ $)) (IF (|has| |t#1| (-216)) (PROGN (-6 (-491 |t#2| |t#1|)) (-6 (-491 |t#2| $)) (-6 (-291 $)) (-15 -3135 ((-1 $ (-719)) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-272) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#4|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#2| |#1|) |has| |#1| (-216)) ((-491 |#2| $) |has| |#1| (-216)) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-890 |#1| |#4| |#3|) . T) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#2|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3468 ((|#1| $) 54)) (-1598 ((|#1| $) 44)) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-1907 (($ $) 60)) (-1337 (($ $) 48)) (-3684 ((|#1| |#1| $) 46)) (-2176 ((|#1| $) 45)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-4109 (((-719) $) 61)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-1260 ((|#1| |#1| $) 52)) (-1848 ((|#1| |#1| $) 51)) (-2441 (($ |#1| $) 40)) (-4156 (((-719) $) 55)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3288 ((|#1| $) 62)) (-1458 ((|#1| $) 50)) (-3083 ((|#1| $) 49)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3203 ((|#1| |#1| $) 58)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1540 ((|#1| $) 59)) (-1909 (($) 57) (($ (-597 |#1|)) 56)) (-4218 (((-719) $) 43)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3871 ((|#1| $) 53)) (-2242 (($ (-597 |#1|)) 42)) (-1371 ((|#1| $) 63)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-236 |#1|) (-133) (-1135)) (T -236))
-((-1909 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1909 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-236 *3)))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-3468 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-3871 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1260 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1848 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1458 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-3083 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))) (-1337 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(-13 (-1047 |t#1|) (-934 |t#1|) (-10 -8 (-15 -1909 ($)) (-15 -1909 ($ (-597 |t#1|))) (-15 -4156 ((-719) $)) (-15 -3468 (|t#1| $)) (-15 -3871 (|t#1| $)) (-15 -1260 (|t#1| |t#1| $)) (-15 -1848 (|t#1| |t#1| $)) (-15 -1458 (|t#1| $)) (-15 -3083 (|t#1| $)) (-15 -1337 ($ $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-934 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1047 |#1|) . T) ((-1135) . T))
-((-1433 (((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 139)) (-2042 (((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360))) 160) (((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 158) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 163) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 159) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 150) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 149) (((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360))) 129) (((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245))) 127) (((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360))) 128) (((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 125)) (-1997 (((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360))) 162) (((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 161) (((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 165) (((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 164) (((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360))) 152) (((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245))) 151) (((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360))) 135) (((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245))) 134) (((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360))) 133) (((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 132) (((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360))) 100) (((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245))) 99) (((-1182) (-1 (-208) (-208)) (-1022 (-360))) 96) (((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245))) 95)))
-(((-237) (-10 -7 (-15 -1997 ((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-1 (-208) (-208)) (-1022 (-360)))) (-15 -1997 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1997 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1997 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -1433 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -237))
-((-1433 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-2042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *2 (-1182)) (-5 *1 (-237)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237)))))
-(-10 -7 (-15 -1997 ((-1182) (-1 (-208) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-1 (-208) (-208)) (-1022 (-360)))) (-15 -1997 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-818 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1997 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-820 (-1 (-208) (-208))) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208)) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-360)) (-1022 (-360)))) (-15 -1997 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -2042 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-823 (-1 (-208) (-208) (-208))) (-1022 (-360)) (-1022 (-360)))) (-15 -1433 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
-((-1997 (((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245))) 96)))
-(((-238 |#1| |#2|) (-10 -7 (-15 -1997 ((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245))))) (-13 (-522) (-795) (-975 (-530))) (-411 |#1|)) (T -238))
-((-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-1099)) (-5 *5 (-597 (-245))) (-4 *7 (-411 *6)) (-4 *6 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-1182)) (-5 *1 (-238 *6 *7)))))
-(-10 -7 (-15 -1997 ((-1182) (-276 |#2|) (-1099) (-1099) (-597 (-245)))))
-((-2234 (((-530) (-530)) 50)) (-4215 (((-530) (-530)) 51)) (-4225 (((-208) (-208)) 52)) (-3642 (((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208))) 49)) (-4038 (((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110)) 47)))
-(((-239) (-10 -7 (-15 -4038 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110))) (-15 -3642 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -2234 ((-530) (-530))) (-15 -4215 ((-530) (-530))) (-15 -4225 ((-208) (-208))))) (T -239))
-((-4225 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))) (-4215 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))) (-2234 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))) (-3642 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208))) (-5 *2 (-1183)) (-5 *1 (-239)))) (-4038 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208))) (-5 *5 (-110)) (-5 *2 (-1183)) (-5 *1 (-239)))))
-(-10 -7 (-15 -4038 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)) (-110))) (-15 -3642 ((-1183) (-1 (-159 (-208)) (-159 (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -2234 ((-530) (-530))) (-15 -4215 ((-530) (-530))) (-15 -4225 ((-208) (-208))))
-((-2366 (((-1020 (-360)) (-1020 (-297 |#1|))) 16)))
-(((-240 |#1|) (-10 -7 (-15 -2366 ((-1020 (-360)) (-1020 (-297 |#1|))))) (-13 (-795) (-522) (-572 (-360)))) (T -240))
-((-2366 (*1 *2 *3) (-12 (-5 *3 (-1020 (-297 *4))) (-4 *4 (-13 (-795) (-522) (-572 (-360)))) (-5 *2 (-1020 (-360))) (-5 *1 (-240 *4)))))
-(-10 -7 (-15 -2366 ((-1020 (-360)) (-1020 (-297 |#1|)))))
-((-2042 (((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360))) 71) (((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 70) (((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360))) 61) (((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 60) (((-1059 (-208)) (-820 |#1|) (-1020 (-360))) 52) (((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245))) 51)) (-1997 (((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360))) 74) (((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 73) (((-1183) |#1| (-1020 (-360)) (-1020 (-360))) 64) (((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245))) 63) (((-1183) (-820 |#1|) (-1020 (-360))) 56) (((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245))) 55) (((-1182) (-818 |#1|) (-1020 (-360))) 43) (((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245))) 42) (((-1182) |#1| (-1020 (-360))) 35) (((-1182) |#1| (-1020 (-360)) (-597 (-245))) 34)))
-(((-241 |#1|) (-10 -7 (-15 -1997 ((-1182) |#1| (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) |#1| (-1020 (-360)))) (-15 -1997 ((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-818 |#1|) (-1020 (-360)))) (-15 -1997 ((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-820 |#1|) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)))) (-15 -1997 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -1997 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360))))) (-13 (-572 (-506)) (-1027))) (T -241))
-((-2042 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *5)))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *6)))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *5)))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-823 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *6)))) (-2042 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-2042 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1997 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1183)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1997 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-2042 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *5)))) (-2042 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *5)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183)) (-5 *1 (-241 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-818 *5)) (-5 *4 (-1020 (-360))) (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-241 *5)))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-818 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1182)) (-5 *1 (-241 *6)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1182)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))) (-1997 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027))))))
-(-10 -7 (-15 -1997 ((-1182) |#1| (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) |#1| (-1020 (-360)))) (-15 -1997 ((-1182) (-818 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1182) (-818 |#1|) (-1020 (-360)))) (-15 -1997 ((-1183) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-820 |#1|) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-820 |#1|) (-1020 (-360)))) (-15 -1997 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) |#1| (-1020 (-360)) (-1020 (-360)))) (-15 -1997 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -1997 ((-1183) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))) (-15 -2042 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)) (-597 (-245)))) (-15 -2042 ((-1059 (-208)) (-823 |#1|) (-1020 (-360)) (-1020 (-360)))))
-((-1997 (((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245))) 23) (((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208))) 24) (((-1182) (-597 (-884 (-208))) (-597 (-245))) 16) (((-1182) (-597 (-884 (-208)))) 17) (((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245))) 20) (((-1182) (-597 (-208)) (-597 (-208))) 21)))
-(((-242) (-10 -7 (-15 -1997 ((-1182) (-597 (-208)) (-597 (-208)))) (-15 -1997 ((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245)))) (-15 -1997 ((-1182) (-597 (-884 (-208))))) (-15 -1997 ((-1182) (-597 (-884 (-208))) (-597 (-245)))) (-15 -1997 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)))) (-15 -1997 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245)))))) (T -242))
-((-1997 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-242)))) (-1997 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1183)) (-5 *1 (-242)))) (-1997 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1997 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-242)))) (-1997 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1182)) (-5 *1 (-242)))))
-(-10 -7 (-15 -1997 ((-1182) (-597 (-208)) (-597 (-208)))) (-15 -1997 ((-1182) (-597 (-208)) (-597 (-208)) (-597 (-245)))) (-15 -1997 ((-1182) (-597 (-884 (-208))))) (-15 -1997 ((-1182) (-597 (-884 (-208))) (-597 (-245)))) (-15 -1997 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)))) (-15 -1997 ((-1183) (-597 (-208)) (-597 (-208)) (-597 (-208)) (-597 (-245)))))
-((-1375 (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 26)) (-3249 (((-862) (-597 (-245)) (-862)) 53)) (-3842 (((-862) (-597 (-245)) (-862)) 52)) (-1854 (((-597 (-360)) (-597 (-245)) (-597 (-360))) 69)) (-3424 (((-360) (-597 (-245)) (-360)) 58)) (-3713 (((-862) (-597 (-245)) (-862)) 54)) (-4191 (((-110) (-597 (-245)) (-110)) 28)) (-1283 (((-1082) (-597 (-245)) (-1082)) 20)) (-1618 (((-1082) (-597 (-245)) (-1082)) 27)) (-3134 (((-1059 (-208)) (-597 (-245))) 47)) (-3694 (((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360)))) 41)) (-2831 (((-815) (-597 (-245)) (-815)) 33)) (-2451 (((-815) (-597 (-245)) (-815)) 34)) (-3672 (((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208)))) 64)) (-3900 (((-110) (-597 (-245)) (-110)) 16)) (-4178 (((-110) (-597 (-245)) (-110)) 15)))
-(((-243) (-10 -7 (-15 -4178 ((-110) (-597 (-245)) (-110))) (-15 -3900 ((-110) (-597 (-245)) (-110))) (-15 -1375 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1283 ((-1082) (-597 (-245)) (-1082))) (-15 -1618 ((-1082) (-597 (-245)) (-1082))) (-15 -4191 ((-110) (-597 (-245)) (-110))) (-15 -2831 ((-815) (-597 (-245)) (-815))) (-15 -2451 ((-815) (-597 (-245)) (-815))) (-15 -3694 ((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360))))) (-15 -3842 ((-862) (-597 (-245)) (-862))) (-15 -3249 ((-862) (-597 (-245)) (-862))) (-15 -3134 ((-1059 (-208)) (-597 (-245)))) (-15 -3713 ((-862) (-597 (-245)) (-862))) (-15 -3424 ((-360) (-597 (-245)) (-360))) (-15 -3672 ((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208))))) (-15 -1854 ((-597 (-360)) (-597 (-245)) (-597 (-360)))))) (T -243))
-((-1854 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-360))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3672 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3424 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3713 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-243)))) (-3249 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3842 (*1 *2 *3 *2) (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3694 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2451 (*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-2831 (*1 *2 *3 *2) (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-4191 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1618 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1283 (*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-1375 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-3900 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))) (-4178 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
-(-10 -7 (-15 -4178 ((-110) (-597 (-245)) (-110))) (-15 -3900 ((-110) (-597 (-245)) (-110))) (-15 -1375 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-597 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1283 ((-1082) (-597 (-245)) (-1082))) (-15 -1618 ((-1082) (-597 (-245)) (-1082))) (-15 -4191 ((-110) (-597 (-245)) (-110))) (-15 -2831 ((-815) (-597 (-245)) (-815))) (-15 -2451 ((-815) (-597 (-245)) (-815))) (-15 -3694 ((-597 (-1022 (-360))) (-597 (-245)) (-597 (-1022 (-360))))) (-15 -3842 ((-862) (-597 (-245)) (-862))) (-15 -3249 ((-862) (-597 (-245)) (-862))) (-15 -3134 ((-1059 (-208)) (-597 (-245)))) (-15 -3713 ((-862) (-597 (-245)) (-862))) (-15 -3424 ((-360) (-597 (-245)) (-360))) (-15 -3672 ((-1 (-884 (-208)) (-884 (-208))) (-597 (-245)) (-1 (-884 (-208)) (-884 (-208))))) (-15 -1854 ((-597 (-360)) (-597 (-245)) (-597 (-360)))))
-((-2007 (((-3 |#1| "failed") (-597 (-245)) (-1099)) 17)))
-(((-244 |#1|) (-10 -7 (-15 -2007 ((-3 |#1| "failed") (-597 (-245)) (-1099)))) (-1135)) (T -244))
-((-2007 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *1 (-244 *2)) (-4 *2 (-1135)))))
-(-10 -7 (-15 -2007 ((-3 |#1| "failed") (-597 (-245)) (-1099))))
-((-2352 (((-110) $ $) NIL)) (-1375 (($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 15)) (-3249 (($ (-862)) 76)) (-3842 (($ (-862)) 75)) (-2291 (($ (-597 (-360))) 82)) (-3424 (($ (-360)) 58)) (-3713 (($ (-862)) 77)) (-4191 (($ (-110)) 23)) (-1283 (($ (-1082)) 18)) (-1618 (($ (-1082)) 19)) (-3134 (($ (-1059 (-208))) 71)) (-3694 (($ (-597 (-1022 (-360)))) 67)) (-1300 (($ (-597 (-1022 (-360)))) 59) (($ (-597 (-1022 (-388 (-530))))) 66)) (-2332 (($ (-360)) 29) (($ (-815)) 33)) (-2927 (((-110) (-597 $) (-1099)) 91)) (-2007 (((-3 (-51) "failed") (-597 $) (-1099)) 93)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2705 (($ (-360)) 34) (($ (-815)) 35)) (-2328 (($ (-1 (-884 (-208)) (-884 (-208)))) 57)) (-3672 (($ (-1 (-884 (-208)) (-884 (-208)))) 78)) (-4110 (($ (-1 (-208) (-208))) 39) (($ (-1 (-208) (-208) (-208))) 43) (($ (-1 (-208) (-208) (-208) (-208))) 47)) (-2366 (((-804) $) 87)) (-1802 (($ (-110)) 24) (($ (-597 (-1022 (-360)))) 52)) (-4178 (($ (-110)) 25)) (-2248 (((-110) $ $) 89)))
-(((-245) (-13 (-1027) (-10 -8 (-15 -4178 ($ (-110))) (-15 -1802 ($ (-110))) (-15 -1375 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1283 ($ (-1082))) (-15 -1618 ($ (-1082))) (-15 -4191 ($ (-110))) (-15 -1802 ($ (-597 (-1022 (-360))))) (-15 -2328 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2332 ($ (-360))) (-15 -2332 ($ (-815))) (-15 -2705 ($ (-360))) (-15 -2705 ($ (-815))) (-15 -4110 ($ (-1 (-208) (-208)))) (-15 -4110 ($ (-1 (-208) (-208) (-208)))) (-15 -4110 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -3424 ($ (-360))) (-15 -1300 ($ (-597 (-1022 (-360))))) (-15 -1300 ($ (-597 (-1022 (-388 (-530)))))) (-15 -3694 ($ (-597 (-1022 (-360))))) (-15 -3134 ($ (-1059 (-208)))) (-15 -3842 ($ (-862))) (-15 -3249 ($ (-862))) (-15 -3713 ($ (-862))) (-15 -3672 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2291 ($ (-597 (-360)))) (-15 -2007 ((-3 (-51) "failed") (-597 $) (-1099))) (-15 -2927 ((-110) (-597 $) (-1099)))))) (T -245))
-((-4178 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-1375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-245)))) (-1283 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))) (-1618 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))) (-4191 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-1802 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-2328 (*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2332 (*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2705 (*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245)))) (-4110 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245)))) (-3424 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-1300 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-388 (-530))))) (-5 *1 (-245)))) (-3694 (*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))) (-3134 (*1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-245)))) (-3842 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-3249 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-3713 (*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))) (-3672 (*1 *1 *2) (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245)))) (-2291 (*1 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-245)))) (-2007 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-51)) (-5 *1 (-245)))) (-2927 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-110)) (-5 *1 (-245)))))
-(-13 (-1027) (-10 -8 (-15 -4178 ($ (-110))) (-15 -1802 ($ (-110))) (-15 -1375 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1283 ($ (-1082))) (-15 -1618 ($ (-1082))) (-15 -4191 ($ (-110))) (-15 -1802 ($ (-597 (-1022 (-360))))) (-15 -2328 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2332 ($ (-360))) (-15 -2332 ($ (-815))) (-15 -2705 ($ (-360))) (-15 -2705 ($ (-815))) (-15 -4110 ($ (-1 (-208) (-208)))) (-15 -4110 ($ (-1 (-208) (-208) (-208)))) (-15 -4110 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -3424 ($ (-360))) (-15 -1300 ($ (-597 (-1022 (-360))))) (-15 -1300 ($ (-597 (-1022 (-388 (-530)))))) (-15 -3694 ($ (-597 (-1022 (-360))))) (-15 -3134 ($ (-1059 (-208)))) (-15 -3842 ($ (-862))) (-15 -3249 ($ (-862))) (-15 -3713 ($ (-862))) (-15 -3672 ($ (-1 (-884 (-208)) (-884 (-208))))) (-15 -2291 ($ (-597 (-360)))) (-15 -2007 ((-3 (-51) "failed") (-597 $) (-1099))) (-15 -2927 ((-110) (-597 $) (-1099)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1772 (((-597 (-719)) $) NIL) (((-597 (-719)) $ |#2|) NIL)) (-2001 (((-719) $) NIL) (((-719) $ |#2|) NIL)) (-2746 (((-597 |#3|) $) NIL)) (-2577 (((-1095 $) $ |#3|) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 |#3|)) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3373 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1051 |#1| |#2|) "failed") $) 21)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1051 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#3|) NIL (|has| |#1| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 |#3|) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))))) (-2031 (((-719) $ |#2|) NIL) (((-719) $) 10)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#1|) |#3|) NIL) (($ (-1095 $) |#3|) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) NIL)) (-2944 (((-502 |#3|) $) NIL) (((-719) $ |#3|) NIL) (((-597 (-719)) $ (-597 |#3|)) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 |#3|) (-502 |#3|)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3135 (((-1 $ (-719)) |#2|) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-2040 (((-3 |#3| "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2948 ((|#3| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2003 (((-110) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| |#3|) (|:| -3194 (-719))) "failed") $) NIL)) (-2384 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-597 |#3|) (-597 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-597 |#3|) (-597 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 $)) NIL (|has| |#1| (-216))) (($ $ |#2| |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 |#2|) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-3060 (($ $ |#3|) NIL (|has| |#1| (-162)))) (-3289 (($ $ |#3|) NIL) (($ $ (-597 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3353 (((-597 |#2|) $) NIL)) (-1429 (((-502 |#3|) $) NIL) (((-719) $ |#3|) NIL) (((-597 (-719)) $ (-597 |#3|)) NIL) (((-719) $ |#2|) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1051 |#1| |#2|)) 30) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ |#3|) NIL) (($ $ (-597 |#3|)) NIL) (($ $ |#3| (-719)) NIL) (($ $ (-597 |#3|) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-246 |#1| |#2| |#3|) (-13 (-235 |#1| |#2| |#3| (-502 |#3|)) (-975 (-1051 |#1| |#2|))) (-984) (-795) (-248 |#2|)) (T -246))
-NIL
-(-13 (-235 |#1| |#2| |#3| (-502 |#3|)) (-975 (-1051 |#1| |#2|)))
-((-2001 (((-719) $) 30)) (-3139 (((-3 |#2| "failed") $) 17)) (-2585 ((|#2| $) 27)) (-3289 (($ $) 12) (($ $ (-719)) 15)) (-2366 (((-804) $) 26) (($ |#2|) 10)) (-2248 (((-110) $ $) 20)) (-2272 (((-110) $ $) 29)))
-(((-247 |#1| |#2|) (-10 -8 (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -2001 ((-719) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-248 |#2|) (-795)) (T -247))
-NIL
-(-10 -8 (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -2001 ((-719) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-2001 (((-719) $) 22)) (-4007 ((|#1| $) 23)) (-3139 (((-3 |#1| "failed") $) 27)) (-2585 ((|#1| $) 26)) (-2031 (((-719) $) 24)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-3135 (($ |#1| (-719)) 25)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3289 (($ $) 21) (($ $ (-719)) 20)) (-2366 (((-804) $) 11) (($ |#1|) 28)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
-(((-248 |#1|) (-133) (-795)) (T -248))
-((-2366 (*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-3135 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-2001 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))) (-3289 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-248 *3)) (-4 *3 (-795)))))
-(-13 (-795) (-975 |t#1|) (-10 -8 (-15 -3135 ($ |t#1| (-719))) (-15 -2031 ((-719) $)) (-15 -4007 (|t#1| $)) (-15 -2001 ((-719) $)) (-15 -3289 ($ $)) (-15 -3289 ($ $ (-719))) (-15 -2366 ($ |t#1|))))
-(((-99) . T) ((-571 (-804)) . T) ((-795) . T) ((-975 |#1|) . T) ((-1027) . T))
-((-2746 (((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 41)) (-3702 (((-597 (-1099)) (-297 (-208)) (-719)) 80)) (-3367 (((-3 (-297 (-208)) "failed") (-297 (-208))) 51)) (-2020 (((-297 (-208)) (-297 (-208))) 67)) (-1604 (((-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 26)) (-3800 (((-110) (-597 (-297 (-208)))) 84)) (-2367 (((-110) (-297 (-208))) 24)) (-2161 (((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) 106)) (-3421 (((-597 (-297 (-208))) (-597 (-297 (-208)))) 88)) (-1448 (((-597 (-297 (-208))) (-597 (-297 (-208)))) 86)) (-2700 (((-637 (-208)) (-597 (-297 (-208))) (-719)) 95)) (-3052 (((-110) (-297 (-208))) 20) (((-110) (-597 (-297 (-208)))) 85)) (-3019 (((-597 (-208)) (-597 (-788 (-208))) (-208)) 14)) (-2268 (((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 101)) (-3997 (((-973) (-1099) (-973)) 34)))
-(((-249) (-10 -7 (-15 -3019 ((-597 (-208)) (-597 (-788 (-208))) (-208))) (-15 -1604 ((-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -3367 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2020 ((-297 (-208)) (-297 (-208)))) (-15 -3800 ((-110) (-597 (-297 (-208))))) (-15 -3052 ((-110) (-597 (-297 (-208))))) (-15 -3052 ((-110) (-297 (-208)))) (-15 -2700 ((-637 (-208)) (-597 (-297 (-208))) (-719))) (-15 -1448 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -3421 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -2367 ((-110) (-297 (-208)))) (-15 -2746 ((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -3702 ((-597 (-1099)) (-297 (-208)) (-719))) (-15 -3997 ((-973) (-1099) (-973))) (-15 -2268 ((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -2161 ((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))))))) (T -249))
-((-2161 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) (-5 *2 (-597 (-1082))) (-5 *1 (-249)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *2 (-360)) (-5 *1 (-249)))) (-3997 (*1 *2 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-249)))) (-3702 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-719)) (-5 *2 (-597 (-1099))) (-5 *1 (-249)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *2 (-597 (-1099))) (-5 *1 (-249)))) (-2367 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3421 (*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))) (-1448 (*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))) (-2700 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *4 (-719)) (-5 *2 (-637 (-208))) (-5 *1 (-249)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3052 (*1 *2 *3) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-2020 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-3367 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-1604 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *1 (-249)))) (-3019 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-788 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 *4)) (-5 *1 (-249)))))
-(-10 -7 (-15 -3019 ((-597 (-208)) (-597 (-788 (-208))) (-208))) (-15 -1604 ((-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -3367 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2020 ((-297 (-208)) (-297 (-208)))) (-15 -3800 ((-110) (-597 (-297 (-208))))) (-15 -3052 ((-110) (-597 (-297 (-208))))) (-15 -3052 ((-110) (-297 (-208)))) (-15 -2700 ((-637 (-208)) (-597 (-297 (-208))) (-719))) (-15 -1448 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -3421 ((-597 (-297 (-208))) (-597 (-297 (-208))))) (-15 -2367 ((-110) (-297 (-208)))) (-15 -2746 ((-597 (-1099)) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -3702 ((-597 (-1099)) (-297 (-208)) (-719))) (-15 -3997 ((-973) (-1099) (-973))) (-15 -2268 ((-360) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -2161 ((-597 (-1082)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))))))
-((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 44)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 26) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-250) (-784)) (T -250))
-NIL
-(-784)
-((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 58) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 54)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 34) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 36)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-251) (-784)) (T -251))
-NIL
-(-784)
-((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 76) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 73)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 44) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 55)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-252) (-784)) (T -252))
-NIL
-(-784)
-((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 50)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 31) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-253) (-784)) (T -253))
-NIL
-(-784)
-((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 50)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 28) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-254) (-784)) (T -254))
-NIL
-(-784)
-((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 73)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 28) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-255) (-784)) (T -255))
-NIL
-(-784)
-((-2352 (((-110) $ $) NIL)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 77)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 25) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-256) (-784)) (T -256))
-NIL
-(-784)
-((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2863 (((-597 (-530)) $) 19)) (-1429 (((-719) $) 17)) (-2366 (((-804) $) 23) (($ (-597 (-530))) 15)) (-4023 (($ (-719)) 20)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 9)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 11)))
-(((-257) (-13 (-795) (-10 -8 (-15 -2366 ($ (-597 (-530)))) (-15 -1429 ((-719) $)) (-15 -2863 ((-597 (-530)) $)) (-15 -4023 ($ (-719)))))) (T -257))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-257)))) (-2863 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-257)))))
-(-13 (-795) (-10 -8 (-15 -2366 ($ (-597 (-530)))) (-15 -1429 ((-719) $)) (-15 -2863 ((-597 (-530)) $)) (-15 -4023 ($ (-719)))))
-((-2386 ((|#2| |#2|) 77)) (-2244 ((|#2| |#2|) 65)) (-1699 (((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110))))) 116)) (-2360 ((|#2| |#2|) 75)) (-2219 ((|#2| |#2|) 63)) (-2409 ((|#2| |#2|) 79)) (-2269 ((|#2| |#2|) 67)) (-1948 ((|#2|) 46)) (-4124 (((-112) (-112)) 95)) (-2168 ((|#2| |#2|) 61)) (-3242 (((-110) |#2|) 134)) (-2243 ((|#2| |#2|) 181)) (-3738 ((|#2| |#2|) 157)) (-1775 ((|#2|) 59)) (-1521 ((|#2|) 58)) (-1623 ((|#2| |#2|) 177)) (-1724 ((|#2| |#2|) 153)) (-2650 ((|#2| |#2|) 185)) (-1281 ((|#2| |#2|) 161)) (-2945 ((|#2| |#2|) 149)) (-1710 ((|#2| |#2|) 151)) (-2227 ((|#2| |#2|) 187)) (-4193 ((|#2| |#2|) 163)) (-4004 ((|#2| |#2|) 183)) (-2549 ((|#2| |#2|) 159)) (-3428 ((|#2| |#2|) 179)) (-2716 ((|#2| |#2|) 155)) (-2892 ((|#2| |#2|) 193)) (-3791 ((|#2| |#2|) 169)) (-3267 ((|#2| |#2|) 189)) (-2873 ((|#2| |#2|) 165)) (-1469 ((|#2| |#2|) 197)) (-3308 ((|#2| |#2|) 173)) (-4051 ((|#2| |#2|) 199)) (-2043 ((|#2| |#2|) 175)) (-2419 ((|#2| |#2|) 195)) (-1594 ((|#2| |#2|) 171)) (-3255 ((|#2| |#2|) 191)) (-1435 ((|#2| |#2|) 167)) (-2853 ((|#2| |#2|) 62)) (-2421 ((|#2| |#2|) 80)) (-2281 ((|#2| |#2|) 68)) (-2398 ((|#2| |#2|) 78)) (-2254 ((|#2| |#2|) 66)) (-2373 ((|#2| |#2|) 76)) (-2231 ((|#2| |#2|) 64)) (-4195 (((-110) (-112)) 93)) (-2459 ((|#2| |#2|) 83)) (-2314 ((|#2| |#2|) 71)) (-2434 ((|#2| |#2|) 81)) (-2293 ((|#2| |#2|) 69)) (-2485 ((|#2| |#2|) 85)) (-2334 ((|#2| |#2|) 73)) (-3632 ((|#2| |#2|) 86)) (-2347 ((|#2| |#2|) 74)) (-2472 ((|#2| |#2|) 84)) (-2324 ((|#2| |#2|) 72)) (-2446 ((|#2| |#2|) 82)) (-2304 ((|#2| |#2|) 70)))
-(((-258 |#1| |#2|) (-10 -7 (-15 -2853 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -2373 (|#2| |#2|)) (-15 -2386 (|#2| |#2|)) (-15 -2398 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2421 (|#2| |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -2446 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -1948 (|#2|)) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -1521 (|#2|)) (-15 -1775 (|#2|)) (-15 -1710 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -4193 (|#2| |#2|)) (-15 -2873 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -3308 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -1623 (|#2| |#2|)) (-15 -3428 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -3267 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -2892 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -1699 ((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -3242 ((-110) |#2|))) (-13 (-795) (-522)) (-13 (-411 |#1|) (-941))) (T -258))
-((-3242 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3)) (-4 *3 (-13 (-411 *4) (-941))))) (-1699 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-597 (-2 (|:| |func| *2) (|:| |pole| (-110))))) (-4 *2 (-13 (-411 *4) (-941))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-258 *4 *2)))) (-4051 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1469 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2419 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2892 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3255 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3267 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2227 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2650 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-4004 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2243 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3428 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1623 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2043 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3308 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1594 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3791 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1435 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2873 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-4193 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1281 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2549 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-3738 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2716 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1724 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2945 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1710 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-1775 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-1521 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *4)) (-4 *4 (-13 (-411 *3) (-941))))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-941))))) (-1948 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-795) (-522))))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-941))))))
-(-10 -7 (-15 -2853 (|#2| |#2|)) (-15 -2168 (|#2| |#2|)) (-15 -2219 (|#2| |#2|)) (-15 -2231 (|#2| |#2|)) (-15 -2244 (|#2| |#2|)) (-15 -2254 (|#2| |#2|)) (-15 -2269 (|#2| |#2|)) (-15 -2281 (|#2| |#2|)) (-15 -2293 (|#2| |#2|)) (-15 -2304 (|#2| |#2|)) (-15 -2314 (|#2| |#2|)) (-15 -2324 (|#2| |#2|)) (-15 -2334 (|#2| |#2|)) (-15 -2347 (|#2| |#2|)) (-15 -2360 (|#2| |#2|)) (-15 -2373 (|#2| |#2|)) (-15 -2386 (|#2| |#2|)) (-15 -2398 (|#2| |#2|)) (-15 -2409 (|#2| |#2|)) (-15 -2421 (|#2| |#2|)) (-15 -2434 (|#2| |#2|)) (-15 -2446 (|#2| |#2|)) (-15 -2459 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2485 (|#2| |#2|)) (-15 -3632 (|#2| |#2|)) (-15 -1948 (|#2|)) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -1521 (|#2|)) (-15 -1775 (|#2|)) (-15 -1710 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -1724 (|#2| |#2|)) (-15 -2716 (|#2| |#2|)) (-15 -3738 (|#2| |#2|)) (-15 -2549 (|#2| |#2|)) (-15 -1281 (|#2| |#2|)) (-15 -4193 (|#2| |#2|)) (-15 -2873 (|#2| |#2|)) (-15 -1435 (|#2| |#2|)) (-15 -3791 (|#2| |#2|)) (-15 -1594 (|#2| |#2|)) (-15 -3308 (|#2| |#2|)) (-15 -2043 (|#2| |#2|)) (-15 -1623 (|#2| |#2|)) (-15 -3428 (|#2| |#2|)) (-15 -2243 (|#2| |#2|)) (-15 -4004 (|#2| |#2|)) (-15 -2650 (|#2| |#2|)) (-15 -2227 (|#2| |#2|)) (-15 -3267 (|#2| |#2|)) (-15 -3255 (|#2| |#2|)) (-15 -2892 (|#2| |#2|)) (-15 -2419 (|#2| |#2|)) (-15 -1469 (|#2| |#2|)) (-15 -4051 (|#2| |#2|)) (-15 -1699 ((-3 |#2| "failed") |#2| (-597 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -3242 ((-110) |#2|)))
-((-1519 (((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099)) 135)) (-3622 ((|#2| (-388 (-530)) |#2|) 51)) (-3954 ((|#2| |#2| (-570 |#2|)) 128)) (-2717 (((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099)) 127)) (-2250 ((|#2| |#2| (-1099)) 20) ((|#2| |#2|) 23)) (-3258 ((|#2| |#2| (-1099)) 141) ((|#2| |#2|) 139)))
-(((-259 |#1| |#2|) (-10 -7 (-15 -3258 (|#2| |#2|)) (-15 -3258 (|#2| |#2| (-1099))) (-15 -2717 ((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099))) (-15 -2250 (|#2| |#2|)) (-15 -2250 (|#2| |#2| (-1099))) (-15 -1519 ((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099))) (-15 -3954 (|#2| |#2| (-570 |#2|))) (-15 -3622 (|#2| (-388 (-530)) |#2|))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -259))
-((-3622 (*1 *2 *3 *2) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3954 (*1 *2 *2 *3) (-12 (-5 *3 (-570 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)))) (-1519 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-1099)) (-4 *2 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *5 *2)))) (-2250 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-2250 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2717 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-597 (-570 *3))) (|:| |vals| (-597 *3)))) (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-3258 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3258 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
-(-10 -7 (-15 -3258 (|#2| |#2|)) (-15 -3258 (|#2| |#2| (-1099))) (-15 -2717 ((-2 (|:| |func| |#2|) (|:| |kers| (-597 (-570 |#2|))) (|:| |vals| (-597 |#2|))) |#2| (-1099))) (-15 -2250 (|#2| |#2|)) (-15 -2250 (|#2| |#2| (-1099))) (-15 -1519 ((-3 |#2| "failed") (-597 (-570 |#2|)) |#2| (-1099))) (-15 -3954 (|#2| |#2| (-570 |#2|))) (-15 -3622 (|#2| (-388 (-530)) |#2|)))
-((-1229 (((-3 |#3| "failed") |#3|) 110)) (-2386 ((|#3| |#3|) 131)) (-2697 (((-3 |#3| "failed") |#3|) 82)) (-2244 ((|#3| |#3|) 121)) (-2481 (((-3 |#3| "failed") |#3|) 58)) (-2360 ((|#3| |#3|) 129)) (-2010 (((-3 |#3| "failed") |#3|) 46)) (-2219 ((|#3| |#3|) 119)) (-3352 (((-3 |#3| "failed") |#3|) 112)) (-2409 ((|#3| |#3|) 133)) (-3610 (((-3 |#3| "failed") |#3|) 84)) (-2269 ((|#3| |#3|) 123)) (-2120 (((-3 |#3| "failed") |#3| (-719)) 36)) (-3432 (((-3 |#3| "failed") |#3|) 74)) (-2168 ((|#3| |#3|) 118)) (-3626 (((-3 |#3| "failed") |#3|) 44)) (-2853 ((|#3| |#3|) 117)) (-3026 (((-3 |#3| "failed") |#3|) 113)) (-2421 ((|#3| |#3|) 134)) (-3517 (((-3 |#3| "failed") |#3|) 85)) (-2281 ((|#3| |#3|) 124)) (-3722 (((-3 |#3| "failed") |#3|) 111)) (-2398 ((|#3| |#3|) 132)) (-1963 (((-3 |#3| "failed") |#3|) 83)) (-2254 ((|#3| |#3|) 122)) (-1709 (((-3 |#3| "failed") |#3|) 60)) (-2373 ((|#3| |#3|) 130)) (-3765 (((-3 |#3| "failed") |#3|) 48)) (-2231 ((|#3| |#3|) 120)) (-3498 (((-3 |#3| "failed") |#3|) 66)) (-2459 ((|#3| |#3|) 137)) (-2771 (((-3 |#3| "failed") |#3|) 104)) (-2314 ((|#3| |#3|) 142)) (-1304 (((-3 |#3| "failed") |#3|) 62)) (-2434 ((|#3| |#3|) 135)) (-2198 (((-3 |#3| "failed") |#3|) 50)) (-2293 ((|#3| |#3|) 125)) (-3874 (((-3 |#3| "failed") |#3|) 70)) (-2485 ((|#3| |#3|) 139)) (-4057 (((-3 |#3| "failed") |#3|) 54)) (-2334 ((|#3| |#3|) 127)) (-3619 (((-3 |#3| "failed") |#3|) 72)) (-3632 ((|#3| |#3|) 140)) (-2655 (((-3 |#3| "failed") |#3|) 56)) (-2347 ((|#3| |#3|) 128)) (-2222 (((-3 |#3| "failed") |#3|) 68)) (-2472 ((|#3| |#3|) 138)) (-2510 (((-3 |#3| "failed") |#3|) 107)) (-2324 ((|#3| |#3|) 143)) (-3728 (((-3 |#3| "failed") |#3|) 64)) (-2446 ((|#3| |#3|) 136)) (-4071 (((-3 |#3| "failed") |#3|) 52)) (-2304 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-388 (-530))) 40 (|has| |#1| (-344)))))
-(((-260 |#1| |#2| |#3|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2853 (|#3| |#3|)) (-15 -2168 (|#3| |#3|)) (-15 -2219 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2293 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2347 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -2398 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2421 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2446 (|#3| |#3|)) (-15 -2459 (|#3| |#3|)) (-15 -2472 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)))) (-37 (-388 (-530))) (-1172 |#1|) (-1143 |#1| |#2|)) (T -260))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1172 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1143 *4 *5)))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4)))))
-(-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2853 (|#3| |#3|)) (-15 -2168 (|#3| |#3|)) (-15 -2219 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2293 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2347 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -2398 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2421 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2446 (|#3| |#3|)) (-15 -2459 (|#3| |#3|)) (-15 -2472 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -3632 (|#3| |#3|))))
-((-1229 (((-3 |#3| "failed") |#3|) 66)) (-2386 ((|#3| |#3|) 129)) (-2697 (((-3 |#3| "failed") |#3|) 50)) (-2244 ((|#3| |#3|) 117)) (-2481 (((-3 |#3| "failed") |#3|) 62)) (-2360 ((|#3| |#3|) 127)) (-2010 (((-3 |#3| "failed") |#3|) 46)) (-2219 ((|#3| |#3|) 115)) (-3352 (((-3 |#3| "failed") |#3|) 70)) (-2409 ((|#3| |#3|) 131)) (-3610 (((-3 |#3| "failed") |#3|) 54)) (-2269 ((|#3| |#3|) 119)) (-2120 (((-3 |#3| "failed") |#3| (-719)) 35)) (-3432 (((-3 |#3| "failed") |#3|) 44)) (-2168 ((|#3| |#3|) 104)) (-3626 (((-3 |#3| "failed") |#3|) 42)) (-2853 ((|#3| |#3|) 114)) (-3026 (((-3 |#3| "failed") |#3|) 72)) (-2421 ((|#3| |#3|) 132)) (-3517 (((-3 |#3| "failed") |#3|) 56)) (-2281 ((|#3| |#3|) 120)) (-3722 (((-3 |#3| "failed") |#3|) 68)) (-2398 ((|#3| |#3|) 130)) (-1963 (((-3 |#3| "failed") |#3|) 52)) (-2254 ((|#3| |#3|) 118)) (-1709 (((-3 |#3| "failed") |#3|) 64)) (-2373 ((|#3| |#3|) 128)) (-3765 (((-3 |#3| "failed") |#3|) 48)) (-2231 ((|#3| |#3|) 116)) (-3498 (((-3 |#3| "failed") |#3|) 74)) (-2459 ((|#3| |#3|) 135)) (-2771 (((-3 |#3| "failed") |#3|) 58)) (-2314 ((|#3| |#3|) 123)) (-1304 (((-3 |#3| "failed") |#3|) 105)) (-2434 ((|#3| |#3|) 133)) (-2198 (((-3 |#3| "failed") |#3|) 94)) (-2293 ((|#3| |#3|) 121)) (-3874 (((-3 |#3| "failed") |#3|) 109)) (-2485 ((|#3| |#3|) 137)) (-4057 (((-3 |#3| "failed") |#3|) 101)) (-2334 ((|#3| |#3|) 125)) (-3619 (((-3 |#3| "failed") |#3|) 110)) (-3632 ((|#3| |#3|) 138)) (-2655 (((-3 |#3| "failed") |#3|) 103)) (-2347 ((|#3| |#3|) 126)) (-2222 (((-3 |#3| "failed") |#3|) 76)) (-2472 ((|#3| |#3|) 136)) (-2510 (((-3 |#3| "failed") |#3|) 60)) (-2324 ((|#3| |#3|) 124)) (-3728 (((-3 |#3| "failed") |#3|) 106)) (-2446 ((|#3| |#3|) 134)) (-4071 (((-3 |#3| "failed") |#3|) 97)) (-2304 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-388 (-530))) 40 (|has| |#1| (-344)))))
-(((-261 |#1| |#2| |#3| |#4|) (-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2853 (|#3| |#3|)) (-15 -2168 (|#3| |#3|)) (-15 -2219 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2293 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2347 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -2398 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2421 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2446 (|#3| |#3|)) (-15 -2459 (|#3| |#3|)) (-15 -2472 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -3632 (|#3| |#3|)))) (-37 (-388 (-530))) (-1141 |#1|) (-1164 |#1| |#2|) (-923 |#2|)) (T -261))
-((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-530))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1141 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5)) (-4 *6 (-923 *5)))) (-2853 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2168 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2219 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2231 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2244 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2254 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2269 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2281 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2293 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2304 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2314 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2324 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2334 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2347 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2360 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2373 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2386 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2398 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2409 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2421 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2434 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2446 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2459 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-2485 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))) (-3632 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4)))))
-(-13 (-923 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-530)))) |%noBranch|) (-15 -2853 (|#3| |#3|)) (-15 -2168 (|#3| |#3|)) (-15 -2219 (|#3| |#3|)) (-15 -2231 (|#3| |#3|)) (-15 -2244 (|#3| |#3|)) (-15 -2254 (|#3| |#3|)) (-15 -2269 (|#3| |#3|)) (-15 -2281 (|#3| |#3|)) (-15 -2293 (|#3| |#3|)) (-15 -2304 (|#3| |#3|)) (-15 -2314 (|#3| |#3|)) (-15 -2324 (|#3| |#3|)) (-15 -2334 (|#3| |#3|)) (-15 -2347 (|#3| |#3|)) (-15 -2360 (|#3| |#3|)) (-15 -2373 (|#3| |#3|)) (-15 -2386 (|#3| |#3|)) (-15 -2398 (|#3| |#3|)) (-15 -2409 (|#3| |#3|)) (-15 -2421 (|#3| |#3|)) (-15 -2434 (|#3| |#3|)) (-15 -2446 (|#3| |#3|)) (-15 -2459 (|#3| |#3|)) (-15 -2472 (|#3| |#3|)) (-15 -2485 (|#3| |#3|)) (-15 -3632 (|#3| |#3|))))
-((-3311 (((-110) $) 19)) (-1564 (((-171) $) 7)) (-2671 (((-3 (-1099) "failed") $) 14)) (-1566 (((-3 (-597 $) "failed") $) NIL)) (-3692 (((-3 (-1099) "failed") $) 21)) (-3246 (((-3 (-1031) "failed") $) 17)) (-1613 (((-110) $) 15)) (-2366 (((-804) $) NIL)) (-2121 (((-110) $) 9)))
-(((-262) (-13 (-571 (-804)) (-10 -8 (-15 -1564 ((-171) $)) (-15 -1613 ((-110) $)) (-15 -3246 ((-3 (-1031) "failed") $)) (-15 -3311 ((-110) $)) (-15 -3692 ((-3 (-1099) "failed") $)) (-15 -2121 ((-110) $)) (-15 -2671 ((-3 (-1099) "failed") $)) (-15 -1566 ((-3 (-597 $) "failed") $))))) (T -262))
-((-1564 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-3246 (*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-262)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-3692 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))) (-2121 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-2671 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))) (-1566 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-262))) (-5 *1 (-262)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -1564 ((-171) $)) (-15 -1613 ((-110) $)) (-15 -3246 ((-3 (-1031) "failed") $)) (-15 -3311 ((-110) $)) (-15 -3692 ((-3 (-1099) "failed") $)) (-15 -2121 ((-110) $)) (-15 -2671 ((-3 (-1099) "failed") $)) (-15 -1566 ((-3 (-597 $) "failed") $))))
-((-2283 (($ (-1 (-110) |#2|) $) 24)) (-3077 (($ $) 36)) (-1842 (($ (-1 (-110) |#2|) $) NIL) (($ |#2| $) 34)) (-2383 (($ |#2| $) 32) (($ (-1 (-110) |#2|) $) 18)) (-2090 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4028 (($ |#2| $ (-530)) 20) (($ $ $ (-530)) 22)) (-1843 (($ $ (-530)) 11) (($ $ (-1148 (-530))) 14)) (-1328 (($ $ |#2|) 30) (($ $ $) NIL)) (-3483 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-597 $)) NIL)))
-(((-263 |#1| |#2|) (-10 -8 (-15 -2090 (|#1| |#1| |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -2090 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1| |#2|)) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -2383 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2383 (|#1| |#2| |#1|)) (-15 -3077 (|#1| |#1|))) (-264 |#2|) (-1135)) (T -263))
-NIL
-(-10 -8 (-15 -2090 (|#1| |#1| |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -2090 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1328 (|#1| |#1| |#2|)) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -2383 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2383 (|#1| |#2| |#1|)) (-15 -3077 (|#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) 85)) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2287 (($ $) 83 (|has| |#1| (-1027)))) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ (-1 (-110) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1027)))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2090 (($ (-1 (-110) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2441 (($ |#1| $ (-530)) 88) (($ $ $ (-530)) 87)) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-3715 (($ $ (-530)) 91) (($ $ (-1148 (-530))) 90)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-1328 (($ $ |#1|) 93) (($ $ $) 92)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-264 |#1|) (-133) (-1135)) (T -264))
-((-1328 (*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-1328 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-3715 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-1842 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2441 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-264 *2)) (-4 *2 (-1135)))) (-2441 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2090 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-2901 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))) (-1842 (*1 *1 *2 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-2287 (*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027)))) (-2090 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))))
-(-13 (-602 |t#1|) (-10 -8 (-6 -4270) (-15 -1328 ($ $ |t#1|)) (-15 -1328 ($ $ $)) (-15 -3715 ($ $ (-530))) (-15 -3715 ($ $ (-1148 (-530)))) (-15 -1842 ($ (-1 (-110) |t#1|) $)) (-15 -2441 ($ |t#1| $ (-530))) (-15 -2441 ($ $ $ (-530))) (-15 -2090 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -2901 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -1842 ($ |t#1| $)) (-15 -2287 ($ $))) |%noBranch|) (IF (|has| |t#1| (-795)) (-15 -2090 ($ $ $)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-531)))) (-2422 (*1 *1 *1) (-4 *1 (-226))))
+(-13 (-272) (-37 (-388 (-531))) (-10 -8 (-15 ** ($ $ (-531))) (-15 -2422 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-272) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-677) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-2072 (($ $) 57)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-3560 (($ $ $) 53 (|has| $ (-6 -4274)))) (-2179 (($ $ $) 52 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-3396 (($ $) 56)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3566 (($ $) 55)) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 59)) (-3162 (($ $) 58)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-1818 (($ $ $) 54 (|has| $ (-6 -4274)))) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-227 |#1|) (-133) (-1138)) (T -227))
+((-2309 (*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-2072 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-3566 (*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-1818 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-3560 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138)))) (-2179 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138)))))
+(-13 (-951 |t#1|) (-10 -8 (-15 -2309 (|t#1| $)) (-15 -3162 ($ $)) (-15 -2072 ($ $)) (-15 -3396 ($ $)) (-15 -3566 ($ $)) (IF (|has| $ (-6 -4274)) (PROGN (-15 -1818 ($ $ $)) (-15 -3560 ($ $ $)) (-15 -2179 ($ $ $))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-3308 ((|#1| $) NIL)) (-2072 (($ $) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| |#1| (-797))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-1332 (($ $) 10 (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) NIL (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "rest" $) NIL (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) NIL)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-3297 ((|#1| $) NIL)) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3062 (($ $) NIL) (($ $ (-721)) NIL)) (-2705 (($ $) NIL (|has| |#1| (-1030)))) (-3086 (($ $) 7 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-1976 (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030))) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) (-1 (-110) |#1|) $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3508 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2907 (($ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2309 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-3944 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2765 (((-110) $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1151 (-531))) NIL) ((|#1| $ (-531)) NIL) ((|#1| $ (-531) |#1|) NIL) (($ $ "unique") 9) (($ $ "sort") 12) (((-721) $ "count") 16)) (-2357 (((-531) $ $) NIL)) (-1551 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-3929 (($ (-598 |#1|)) 22)) (-2930 (((-110) $) NIL)) (-1958 (($ $) NIL)) (-2980 (($ $) NIL (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-1818 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3536 (($ $ $) NIL) (($ |#1| $) NIL) (($ (-598 $)) NIL) (($ $ |#1|) NIL)) (-2265 (($ (-598 |#1|)) 17) (((-598 |#1|) $) 18) (((-806) $) 21 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 14 (|has| $ (-6 -4273)))))
+(((-228 |#1|) (-13 (-619 |#1|) (-10 -8 (-15 -2265 ($ (-598 |#1|))) (-15 -2265 ((-598 |#1|) $)) (-15 -3929 ($ (-598 |#1|))) (-15 -1785 ($ $ "unique")) (-15 -1785 ($ $ "sort")) (-15 -1785 ((-721) $ "count")))) (-797)) (T -228))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-228 *3)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-228 *3)) (-4 *3 (-797)))) (-3929 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-228 *3)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-797)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-797)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-721)) (-5 *1 (-228 *4)) (-4 *4 (-797)))))
+(-13 (-619 |#1|) (-10 -8 (-15 -2265 ($ (-598 |#1|))) (-15 -2265 ((-598 |#1|) $)) (-15 -3929 ($ (-598 |#1|))) (-15 -1785 ($ $ "unique")) (-15 -1785 ($ $ "sort")) (-15 -1785 ((-721) $ "count"))))
+((-1351 (((-3 (-721) "failed") |#1| |#1| (-721)) 27)))
+(((-229 |#1|) (-10 -7 (-15 -1351 ((-3 (-721) "failed") |#1| |#1| (-721)))) (-13 (-677) (-349) (-10 -7 (-15 ** (|#1| |#1| (-531)))))) (T -229))
+((-1351 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-721)) (-4 *3 (-13 (-677) (-349) (-10 -7 (-15 ** (*3 *3 (-531)))))) (-5 *1 (-229 *3)))))
+(-10 -7 (-15 -1351 ((-3 (-721) "failed") |#1| |#1| (-721))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-808 |#1|)) $) NIL)) (-2516 (((-1098 $) $ (-808 |#1|)) NIL) (((-1098 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-808 |#1|))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-808 |#1|) "failed") $) NIL)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-808 |#1|) $) NIL)) (-3115 (($ $ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-2701 (($ $ (-598 (-531))) NIL)) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| (-223 (-2167 |#1|) (-721)) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#2|) (-808 |#1|)) NIL) (($ (-1098 $) (-808 |#1|)) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#2| (-223 (-2167 |#1|) (-721))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-808 |#1|)) NIL)) (-3005 (((-223 (-2167 |#1|) (-721)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 (-223 (-2167 |#1|) (-721)) (-223 (-2167 |#1|) (-721))) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3471 (((-3 (-808 |#1|) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-808 |#1|)) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#2| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-808 |#1|) |#2|) NIL) (($ $ (-598 (-808 |#1|)) (-598 |#2|)) NIL) (($ $ (-808 |#1|) $) NIL) (($ $ (-598 (-808 |#1|)) (-598 $)) NIL)) (-3176 (($ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2012 (((-223 (-2167 |#1|) (-721)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-808 |#1|) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-808 |#1|)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#2| (-523)))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-223 (-2167 |#1|) (-721))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-230 |#1| |#2|) (-13 (-892 |#2| (-223 (-2167 |#1|) (-721)) (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) (-598 (-1102)) (-986)) (T -230))
+((-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-230 *3 *4)) (-14 *3 (-598 (-1102))) (-4 *4 (-986)))))
+(-13 (-892 |#2| (-223 (-2167 |#1|) (-721)) (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531))))))
+((-2247 (((-110) $ $) NIL)) (-1334 (((-1189) $) 15)) (-1544 (((-171) $) 9)) (-2633 (($ (-171)) 10)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 7)) (-2148 (((-110) $ $) 13)))
+(((-231) (-13 (-1030) (-10 -8 (-15 -1544 ((-171) $)) (-15 -2633 ($ (-171))) (-15 -1334 ((-1189) $))))) (T -231))
+((-1544 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-2633 (*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))) (-1334 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-231)))))
+(-13 (-1030) (-10 -8 (-15 -1544 ((-171) $)) (-15 -2633 ($ (-171))) (-15 -1334 ((-1189) $))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1685 (($ (-864)) NIL (|has| |#4| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#4| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#4| (-349)))) (-3459 (((-531) $) NIL (|has| |#4| (-795)))) (-2454 ((|#4| $ (-531) |#4|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#4| "failed") $) NIL (|has| |#4| (-1030))) (((-3 (-531) "failed") $) NIL (-12 (|has| |#4| (-977 (-531))) (|has| |#4| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#4| (-977 (-388 (-531)))) (|has| |#4| (-1030))))) (-2523 ((|#4| $) NIL (|has| |#4| (-1030))) (((-531) $) NIL (-12 (|has| |#4| (-977 (-531))) (|has| |#4| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#4| (-977 (-388 (-531)))) (|has| |#4| (-1030))))) (-3073 (((-2 (|:| -1751 (-639 |#4|)) (|:| |vec| (-1184 |#4|))) (-639 $) (-1184 $)) NIL (|has| |#4| (-986))) (((-639 |#4|) (-639 $)) NIL (|has| |#4| (-986))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))))) (-1381 (($) NIL (|has| |#4| (-349)))) (-2693 ((|#4| $ (-531) |#4|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#4| $ (-531)) NIL)) (-1599 (((-110) $) NIL (|has| |#4| (-795)))) (-2227 (((-598 |#4|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))))) (-2985 (((-110) $) NIL (|has| |#4| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2445 (((-598 |#4|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2680 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#4| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#4| (-349)))) (-2529 (((-1049) $) NIL)) (-3046 ((|#4| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#4|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-3163 (((-598 |#4|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#4| $ (-531) |#4|) NIL) ((|#4| $ (-531)) 12)) (-3225 ((|#4| $ $) NIL (|has| |#4| (-986)))) (-2602 (($ (-1184 |#4|)) NIL)) (-2190 (((-130)) NIL (|has| |#4| (-344)))) (-3352 (($ $ (-1 |#4| |#4|) (-721)) NIL (|has| |#4| (-986))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-986)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-986))))) (-2539 (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#4|) $) NIL) (((-806) $) NIL) (($ |#4|) NIL (|has| |#4| (-1030))) (($ (-531)) NIL (-1435 (-12 (|has| |#4| (-977 (-531))) (|has| |#4| (-1030))) (|has| |#4| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#4| (-977 (-388 (-531)))) (|has| |#4| (-1030))))) (-2284 (((-721)) NIL (|has| |#4| (-986)))) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#4| (-795)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) CONST)) (-4020 (($ $ (-1 |#4| |#4|) (-721)) NIL (|has| |#4| (-986))) (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-986)))) (($ $) NIL (-12 (|has| |#4| (-216)) (|has| |#4| (-986))))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2174 (((-110) $ $) NIL (-1435 (|has| |#4| (-743)) (|has| |#4| (-795))))) (-2263 (($ $ |#4|) NIL (|has| |#4| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986))))) (($ $ (-864)) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))))) (* (($ |#2| $) 14) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL) (($ |#3| $) 18) (($ $ |#4|) NIL (|has| |#4| (-677))) (($ |#4| $) NIL (|has| |#4| (-677))) (($ $ $) NIL (-1435 (-12 (|has| |#4| (-216)) (|has| |#4| (-986))) (-12 (|has| |#4| (-594 (-531))) (|has| |#4| (-986))) (|has| |#4| (-677)) (-12 (|has| |#4| (-843 (-1102))) (|has| |#4| (-986)))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-232 |#1| |#2| |#3| |#4|) (-13 (-221 |#1| |#4|) (-601 |#2|) (-601 |#3|)) (-864) (-986) (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-601 |#2|)) (T -232))
+NIL
+(-13 (-221 |#1| |#4|) (-601 |#2|) (-601 |#3|))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1685 (($ (-864)) NIL (|has| |#3| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#3| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#3| (-349)))) (-3459 (((-531) $) NIL (|has| |#3| (-795)))) (-2454 ((|#3| $ (-531) |#3|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#3| "failed") $) NIL (|has| |#3| (-1030))) (((-3 (-531) "failed") $) NIL (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030))))) (-2523 ((|#3| $) NIL (|has| |#3| (-1030))) (((-531) $) NIL (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030))))) (-3073 (((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 $) (-1184 $)) NIL (|has| |#3| (-986))) (((-639 |#3|) (-639 $)) NIL (|has| |#3| (-986))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))))) (-1381 (($) NIL (|has| |#3| (-349)))) (-2693 ((|#3| $ (-531) |#3|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#3| $ (-531)) NIL)) (-1599 (((-110) $) NIL (|has| |#3| (-795)))) (-2227 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))))) (-2985 (((-110) $) NIL (|has| |#3| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2445 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2680 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#3| |#3|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#3| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#3| (-349)))) (-2529 (((-1049) $) NIL)) (-3046 ((|#3| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#3|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-598 |#3|) (-598 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-3163 (((-598 |#3|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#3| $ (-531) |#3|) NIL) ((|#3| $ (-531)) 11)) (-3225 ((|#3| $ $) NIL (|has| |#3| (-986)))) (-2602 (($ (-1184 |#3|)) NIL)) (-2190 (((-130)) NIL (|has| |#3| (-344)))) (-3352 (($ $ (-1 |#3| |#3|) (-721)) NIL (|has| |#3| (-986))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986))))) (-2539 (((-721) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273))) (((-721) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#3|) $) NIL) (((-806) $) NIL) (($ |#3|) NIL (|has| |#3| (-1030))) (($ (-531)) NIL (-1435 (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030))) (|has| |#3| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030))))) (-2284 (((-721)) NIL (|has| |#3| (-986)))) (-2060 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#3| (-795)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) CONST)) (-4020 (($ $ (-1 |#3| |#3|) (-721)) NIL (|has| |#3| (-986))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-986))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986))))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2174 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2263 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986))))) (($ $ (-864)) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))))) (* (($ |#2| $) 13) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL) (($ $ |#3|) NIL (|has| |#3| (-677))) (($ |#3| $) NIL (|has| |#3| (-677))) (($ $ $) NIL (-1435 (-12 (|has| |#3| (-216)) (|has| |#3| (-986))) (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986))) (|has| |#3| (-677)) (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-233 |#1| |#2| |#3|) (-13 (-221 |#1| |#3|) (-601 |#2|)) (-721) (-986) (-601 |#2|)) (T -233))
+NIL
+(-13 (-221 |#1| |#3|) (-601 |#2|))
+((-1584 (((-598 (-721)) $) 47) (((-598 (-721)) $ |#3|) 50)) (-3449 (((-721) $) 49) (((-721) $ |#3|) 52)) (-1524 (($ $) 65)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 |#3| "failed") $) 72)) (-3617 (((-721) $ |#3|) 39) (((-721) $) 36)) (-4252 (((-1 $ (-721)) |#3|) 15) (((-1 $ (-721)) $) 77)) (-2941 ((|#4| $) 58)) (-1921 (((-110) $) 56)) (-2319 (($ $) 64)) (-4115 (($ $ (-598 (-276 $))) 97) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-598 |#4|) (-598 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-598 |#4|) (-598 $)) NIL) (($ $ |#3| $) NIL) (($ $ (-598 |#3|) (-598 $)) 89) (($ $ |#3| |#2|) NIL) (($ $ (-598 |#3|) (-598 |#2|)) 84)) (-3352 (($ $ |#4|) NIL) (($ $ (-598 |#4|)) NIL) (($ $ |#4| (-721)) NIL) (($ $ (-598 |#4|) (-598 (-721))) NIL) (($ $) NIL) (($ $ (-721)) NIL) (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 32)) (-3288 (((-598 |#3|) $) 75)) (-2012 ((|#5| $) NIL) (((-721) $ |#4|) NIL) (((-598 (-721)) $ (-598 |#4|)) NIL) (((-721) $ |#3|) 44)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (($ |#3|) 67) (($ (-388 (-531))) NIL) (($ $) NIL)))
+(((-234 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -4115 (|#1| |#1| (-598 |#3|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#3| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#3|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#3| |#1|)) (-15 -4252 ((-1 |#1| (-721)) |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2941 (|#4| |#1|)) (-15 -1921 ((-110) |#1|)) (-15 -3449 ((-721) |#1| |#3|)) (-15 -1584 ((-598 (-721)) |#1| |#3|)) (-15 -3449 ((-721) |#1|)) (-15 -1584 ((-598 (-721)) |#1|)) (-15 -2012 ((-721) |#1| |#3|)) (-15 -3617 ((-721) |#1|)) (-15 -3617 ((-721) |#1| |#3|)) (-15 -3288 ((-598 |#3|) |#1|)) (-15 -4252 ((-1 |#1| (-721)) |#3|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -2265 (|#1| |#3|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -2012 ((-598 (-721)) |#1| (-598 |#4|))) (-15 -2012 ((-721) |#1| |#4|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -2265 (|#1| |#4|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#4| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#4| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2012 (|#5| |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3352 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -3352 (|#1| |#1| |#4| (-721))) (-15 -3352 (|#1| |#1| (-598 |#4|))) (-15 -3352 (|#1| |#1| |#4|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-235 |#2| |#3| |#4| |#5|) (-986) (-797) (-248 |#3|) (-743)) (T -234))
+NIL
+(-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -4115 (|#1| |#1| (-598 |#3|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#3| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#3|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#3| |#1|)) (-15 -4252 ((-1 |#1| (-721)) |#1|)) (-15 -1524 (|#1| |#1|)) (-15 -2319 (|#1| |#1|)) (-15 -2941 (|#4| |#1|)) (-15 -1921 ((-110) |#1|)) (-15 -3449 ((-721) |#1| |#3|)) (-15 -1584 ((-598 (-721)) |#1| |#3|)) (-15 -3449 ((-721) |#1|)) (-15 -1584 ((-598 (-721)) |#1|)) (-15 -2012 ((-721) |#1| |#3|)) (-15 -3617 ((-721) |#1|)) (-15 -3617 ((-721) |#1| |#3|)) (-15 -3288 ((-598 |#3|) |#1|)) (-15 -4252 ((-1 |#1| (-721)) |#3|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -2265 (|#1| |#3|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -2012 ((-598 (-721)) |#1| (-598 |#4|))) (-15 -2012 ((-721) |#1| |#4|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -2265 (|#1| |#4|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#4| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#4| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2012 (|#5| |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3352 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -3352 (|#1| |#1| |#4| (-721))) (-15 -3352 (|#1| |#1| (-598 |#4|))) (-15 -3352 (|#1| |#1| |#4|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1584 (((-598 (-721)) $) 212) (((-598 (-721)) $ |#2|) 210)) (-3449 (((-721) $) 211) (((-721) $ |#2|) 209)) (-2695 (((-598 |#3|) $) 108)) (-2516 (((-1098 $) $ |#3|) 123) (((-1098 |#1|) $) 122)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85 (|has| |#1| (-523)))) (-3258 (($ $) 86 (|has| |#1| (-523)))) (-2921 (((-110) $) 88 (|has| |#1| (-523)))) (-4109 (((-721) $) 110) (((-721) $ (-598 |#3|)) 109)) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 98 (|has| |#1| (-852)))) (-3240 (($ $) 96 (|has| |#1| (-432)))) (-2956 (((-399 $) $) 95 (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 101 (|has| |#1| (-852)))) (-1524 (($ $) 205)) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-531)) "failed") $) 160 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 158 (|has| |#1| (-977 (-531)))) (((-3 |#3| "failed") $) 134) (((-3 |#2| "failed") $) 219)) (-2523 ((|#1| $) 163) (((-388 (-531)) $) 159 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 157 (|has| |#1| (-977 (-531)))) ((|#3| $) 133) ((|#2| $) 218)) (-3115 (($ $ $ |#3|) 106 (|has| |#1| (-162)))) (-2500 (($ $) 152)) (-3073 (((-639 (-531)) (-639 $)) 132 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 131 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 130) (((-639 |#1|) (-639 $)) 129)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2488 (((-598 $) $) 107)) (-2534 (((-110) $) 94 (|has| |#1| (-852)))) (-2490 (($ $ |#1| |#4| $) 170)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 82 (-12 (|has| |#3| (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 81 (-12 (|has| |#3| (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ |#2|) 215) (((-721) $) 214)) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 167)) (-2682 (($ (-1098 |#1|) |#3|) 115) (($ (-1098 $) |#3|) 114)) (-1230 (((-598 $) $) 124)) (-3380 (((-110) $) 150)) (-2669 (($ |#1| |#4|) 151) (($ $ |#3| (-721)) 117) (($ $ (-598 |#3|) (-598 (-721))) 116)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) 118)) (-3005 ((|#4| $) 168) (((-721) $ |#3|) 120) (((-598 (-721)) $ (-598 |#3|)) 119)) (-4103 (($ $ $) 77 (|has| |#1| (-797)))) (-1241 (($ $ $) 76 (|has| |#1| (-797)))) (-2736 (($ (-1 |#4| |#4|) $) 169)) (-3261 (($ (-1 |#1| |#1|) $) 149)) (-4252 (((-1 $ (-721)) |#2|) 217) (((-1 $ (-721)) $) 204 (|has| |#1| (-216)))) (-3471 (((-3 |#3| "failed") $) 121)) (-2462 (($ $) 147)) (-2475 ((|#1| $) 146)) (-2941 ((|#3| $) 207)) (-2078 (($ (-598 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1521 (((-1085) $) 9)) (-1921 (((-110) $) 208)) (-3443 (((-3 (-598 $) "failed") $) 112)) (-2077 (((-3 (-598 $) "failed") $) 113)) (-3448 (((-3 (-2 (|:| |var| |#3|) (|:| -1790 (-721))) "failed") $) 111)) (-2319 (($ $) 206)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 164)) (-2448 ((|#1| $) 165)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 93 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 100 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 99 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 97 (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-598 $) (-598 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-598 |#3|) (-598 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-598 |#3|) (-598 $)) 136) (($ $ |#2| $) 203 (|has| |#1| (-216))) (($ $ (-598 |#2|) (-598 $)) 202 (|has| |#1| (-216))) (($ $ |#2| |#1|) 201 (|has| |#1| (-216))) (($ $ (-598 |#2|) (-598 |#1|)) 200 (|has| |#1| (-216)))) (-3176 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3352 (($ $ |#3|) 40) (($ $ (-598 |#3|)) 39) (($ $ |#3| (-721)) 38) (($ $ (-598 |#3|) (-598 (-721))) 37) (($ $) 236 (|has| |#1| (-216))) (($ $ (-721)) 234 (|has| |#1| (-216))) (($ $ (-1102)) 232 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 231 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 230 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 229 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 222) (($ $ (-1 |#1| |#1|)) 221)) (-3288 (((-598 |#2|) $) 216)) (-2012 ((|#4| $) 148) (((-721) $ |#3|) 128) (((-598 (-721)) $ (-598 |#3|)) 127) (((-721) $ |#2|) 213)) (-3318 (((-835 (-360)) $) 80 (-12 (|has| |#3| (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) 79 (-12 (|has| |#3| (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) 78 (-12 (|has| |#3| (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 102 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ |#2|) 220) (($ (-388 (-531))) 70 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531)))))) (($ $) 83 (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) 166)) (-3188 ((|#1| $ |#4|) 153) (($ $ |#3| (-721)) 126) (($ $ (-598 |#3|) (-598 (-721))) 125)) (-2750 (((-3 $ "failed") $) 71 (-1435 (-3427 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 171 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 87 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ |#3|) 36) (($ $ (-598 |#3|)) 35) (($ $ |#3| (-721)) 34) (($ $ (-598 |#3|) (-598 (-721))) 33) (($ $) 235 (|has| |#1| (-216))) (($ $ (-721)) 233 (|has| |#1| (-216))) (($ $ (-1102)) 228 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 227 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 226 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 225 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 224) (($ $ (-1 |#1| |#1|)) 223)) (-2207 (((-110) $ $) 74 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 73 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 75 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 72 (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 156 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 155 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-235 |#1| |#2| |#3| |#4|) (-133) (-986) (-797) (-248 |t#2|) (-743)) (T -235))
+((-4252 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-1 *1 (-721))) (-4 *1 (-235 *4 *3 *5 *6)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-598 *4)))) (-3617 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-721)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) (-1584 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-598 (-721))))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-721)))) (-1584 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-598 (-721))))) (-3449 (*1 *2 *1 *3) (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721)))) (-1921 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-110)))) (-2941 (*1 *2 *1) (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-4 *2 (-248 *4)))) (-2319 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-986)) (-4 *3 (-797)) (-4 *4 (-248 *3)) (-4 *5 (-743)))) (-1524 (*1 *1 *1) (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-986)) (-4 *3 (-797)) (-4 *4 (-248 *3)) (-4 *5 (-743)))) (-4252 (*1 *2 *1) (-12 (-4 *3 (-216)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-1 *1 (-721))) (-4 *1 (-235 *3 *4 *5 *6)))))
+(-13 (-892 |t#1| |t#4| |t#3|) (-214 |t#1|) (-977 |t#2|) (-10 -8 (-15 -4252 ((-1 $ (-721)) |t#2|)) (-15 -3288 ((-598 |t#2|) $)) (-15 -3617 ((-721) $ |t#2|)) (-15 -3617 ((-721) $)) (-15 -2012 ((-721) $ |t#2|)) (-15 -1584 ((-598 (-721)) $)) (-15 -3449 ((-721) $)) (-15 -1584 ((-598 (-721)) $ |t#2|)) (-15 -3449 ((-721) $ |t#2|)) (-15 -1921 ((-110) $)) (-15 -2941 (|t#3| $)) (-15 -2319 ($ $)) (-15 -1524 ($ $)) (IF (|has| |t#1| (-216)) (PROGN (-6 (-492 |t#2| |t#1|)) (-6 (-492 |t#2| $)) (-6 (-291 $)) (-15 -4252 ((-1 $ (-721)) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#4|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-573 (-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531))))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-272) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#4|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-852)) (|has| |#1| (-432))) ((-492 |#2| |#1|) |has| |#1| (-216)) ((-492 |#2| $) |has| |#1| (-216)) ((-492 |#3| |#1|) . T) ((-492 |#3| $) . T) ((-492 $ $) . T) ((-523) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-843 |#3|) . T) ((-829 (-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360)))) ((-829 (-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))) ((-892 |#1| |#4| |#3|) . T) ((-852) |has| |#1| (-852)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-977 |#2|) . T) ((-977 |#3|) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) |has| |#1| (-852)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-2628 ((|#1| $) 54)) (-1573 ((|#1| $) 44)) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2978 (($ $) 60)) (-4106 (($ $) 48)) (-3196 ((|#1| |#1| $) 46)) (-4205 ((|#1| $) 45)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2428 (((-721) $) 61)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-2472 ((|#1| |#1| $) 52)) (-2676 ((|#1| |#1| $) 51)) (-3944 (($ |#1| $) 40)) (-4194 (((-721) $) 55)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2572 ((|#1| $) 62)) (-3966 ((|#1| $) 50)) (-1388 ((|#1| $) 49)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-3969 ((|#1| |#1| $) 58)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2329 ((|#1| $) 59)) (-1419 (($) 57) (($ (-598 |#1|)) 56)) (-1216 (((-721) $) 43)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3142 ((|#1| $) 53)) (-2524 (($ (-598 |#1|)) 42)) (-3052 ((|#1| $) 63)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-236 |#1|) (-133) (-1138)) (T -236))
+((-1419 (*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-1419 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-236 *3)))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) (-2628 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-3142 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-2472 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-2676 (*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-3966 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))) (-4106 (*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))))
+(-13 (-1050 |t#1|) (-936 |t#1|) (-10 -8 (-15 -1419 ($)) (-15 -1419 ($ (-598 |t#1|))) (-15 -4194 ((-721) $)) (-15 -2628 (|t#1| $)) (-15 -3142 (|t#1| $)) (-15 -2472 (|t#1| |t#1| $)) (-15 -2676 (|t#1| |t#1| $)) (-15 -3966 (|t#1| $)) (-15 -1388 (|t#1| $)) (-15 -4106 ($ $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-936 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1050 |#1|) . T) ((-1138) . T))
+((-1944 (((-1 (-886 (-208)) (-208) (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 139)) (-1985 (((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360))) 160) (((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 158) (((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360))) 163) (((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 159) (((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360))) 150) (((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 149) (((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360))) 129) (((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245))) 127) (((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360))) 128) (((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245))) 125)) (-1942 (((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360))) 162) (((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 161) (((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360))) 165) (((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 164) (((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360))) 152) (((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245))) 151) (((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360))) 135) (((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245))) 134) (((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360))) 133) (((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245))) 132) (((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360))) 100) (((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245))) 99) (((-1185) (-1 (-208) (-208)) (-1025 (-360))) 96) (((-1185) (-1 (-208) (-208)) (-1025 (-360)) (-598 (-245))) 95)))
+(((-237) (-10 -7 (-15 -1942 ((-1185) (-1 (-208) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-1 (-208) (-208)) (-1025 (-360)))) (-15 -1942 ((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1942 ((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1942 ((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)))) (-15 -1944 ((-1 (-886 (-208)) (-208) (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -237))
+((-1944 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208) (-208))) (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *2 (-1185)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *2 (-1185)) (-5 *1 (-237)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1025 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-237)))))
+(-10 -7 (-15 -1942 ((-1185) (-1 (-208) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-1 (-208) (-208)) (-1025 (-360)))) (-15 -1942 ((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-820 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1942 ((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-822 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-822 (-1 (-208) (-208))) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208)) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-360)) (-1025 (-360)))) (-15 -1942 ((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)))) (-15 -1985 ((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-825 (-1 (-208) (-208) (-208))) (-1025 (-360)) (-1025 (-360)))) (-15 -1944 ((-1 (-886 (-208)) (-208) (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
+((-1942 (((-1185) (-276 |#2|) (-1102) (-1102) (-598 (-245))) 96)))
+(((-238 |#1| |#2|) (-10 -7 (-15 -1942 ((-1185) (-276 |#2|) (-1102) (-1102) (-598 (-245))))) (-13 (-523) (-797) (-977 (-531))) (-411 |#1|)) (T -238))
+((-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-1102)) (-5 *5 (-598 (-245))) (-4 *7 (-411 *6)) (-4 *6 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-1185)) (-5 *1 (-238 *6 *7)))))
+(-10 -7 (-15 -1942 ((-1185) (-276 |#2|) (-1102) (-1102) (-598 (-245)))))
+((-2095 (((-531) (-531)) 50)) (-1936 (((-531) (-531)) 51)) (-3432 (((-208) (-208)) 52)) (-1897 (((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208))) 49)) (-3918 (((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)) (-110)) 47)))
+(((-239) (-10 -7 (-15 -3918 ((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)) (-110))) (-15 -1897 ((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)))) (-15 -2095 ((-531) (-531))) (-15 -1936 ((-531) (-531))) (-15 -3432 ((-208) (-208))))) (T -239))
+((-3432 (*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))) (-1936 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-239)))) (-2095 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-239)))) (-1897 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1025 (-208))) (-5 *2 (-1186)) (-5 *1 (-239)))) (-3918 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1025 (-208))) (-5 *5 (-110)) (-5 *2 (-1186)) (-5 *1 (-239)))))
+(-10 -7 (-15 -3918 ((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)) (-110))) (-15 -1897 ((-1186) (-1 (-159 (-208)) (-159 (-208))) (-1025 (-208)) (-1025 (-208)))) (-15 -2095 ((-531) (-531))) (-15 -1936 ((-531) (-531))) (-15 -3432 ((-208) (-208))))
+((-2265 (((-1023 (-360)) (-1023 (-297 |#1|))) 16)))
+(((-240 |#1|) (-10 -7 (-15 -2265 ((-1023 (-360)) (-1023 (-297 |#1|))))) (-13 (-797) (-523) (-573 (-360)))) (T -240))
+((-2265 (*1 *2 *3) (-12 (-5 *3 (-1023 (-297 *4))) (-4 *4 (-13 (-797) (-523) (-573 (-360)))) (-5 *2 (-1023 (-360))) (-5 *1 (-240 *4)))))
+(-10 -7 (-15 -2265 ((-1023 (-360)) (-1023 (-297 |#1|)))))
+((-1985 (((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360))) 71) (((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245))) 70) (((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360))) 61) (((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245))) 60) (((-1062 (-208)) (-822 |#1|) (-1023 (-360))) 52) (((-1062 (-208)) (-822 |#1|) (-1023 (-360)) (-598 (-245))) 51)) (-1942 (((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360))) 74) (((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245))) 73) (((-1186) |#1| (-1023 (-360)) (-1023 (-360))) 64) (((-1186) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245))) 63) (((-1186) (-822 |#1|) (-1023 (-360))) 56) (((-1186) (-822 |#1|) (-1023 (-360)) (-598 (-245))) 55) (((-1185) (-820 |#1|) (-1023 (-360))) 43) (((-1185) (-820 |#1|) (-1023 (-360)) (-598 (-245))) 42) (((-1185) |#1| (-1023 (-360))) 35) (((-1185) |#1| (-1023 (-360)) (-598 (-245))) 34)))
+(((-241 |#1|) (-10 -7 (-15 -1942 ((-1185) |#1| (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) |#1| (-1023 (-360)))) (-15 -1942 ((-1185) (-820 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-820 |#1|) (-1023 (-360)))) (-15 -1942 ((-1186) (-822 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-822 |#1|) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) (-822 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-822 |#1|) (-1023 (-360)))) (-15 -1942 ((-1186) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) |#1| (-1023 (-360)) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)))) (-15 -1942 ((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360))))) (-13 (-573 (-507)) (-1030))) (T -241))
+((-1985 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-825 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *5)))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-825 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *6)))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-825 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) (-5 *1 (-241 *5)))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-825 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) (-5 *1 (-241 *6)))) (-1985 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1985 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1942 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1186)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1942 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1985 (*1 *2 *3 *4) (-12 (-5 *3 (-822 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *5)))) (-1985 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *6)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-822 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) (-5 *1 (-241 *5)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-822 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186)) (-5 *1 (-241 *6)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-820 *5)) (-5 *4 (-1023 (-360))) (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1185)) (-5 *1 (-241 *5)))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-820 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1185)) (-5 *1 (-241 *6)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1185)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))) (-1942 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030))))))
+(-10 -7 (-15 -1942 ((-1185) |#1| (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) |#1| (-1023 (-360)))) (-15 -1942 ((-1185) (-820 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1185) (-820 |#1|) (-1023 (-360)))) (-15 -1942 ((-1186) (-822 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-822 |#1|) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) (-822 |#1|) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-822 |#1|) (-1023 (-360)))) (-15 -1942 ((-1186) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) |#1| (-1023 (-360)) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) |#1| (-1023 (-360)) (-1023 (-360)))) (-15 -1942 ((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1942 ((-1186) (-825 |#1|) (-1023 (-360)) (-1023 (-360)))) (-15 -1985 ((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360)) (-598 (-245)))) (-15 -1985 ((-1062 (-208)) (-825 |#1|) (-1023 (-360)) (-1023 (-360)))))
+((-1942 (((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)) (-598 (-245))) 23) (((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208))) 24) (((-1185) (-598 (-886 (-208))) (-598 (-245))) 16) (((-1185) (-598 (-886 (-208)))) 17) (((-1185) (-598 (-208)) (-598 (-208)) (-598 (-245))) 20) (((-1185) (-598 (-208)) (-598 (-208))) 21)))
+(((-242) (-10 -7 (-15 -1942 ((-1185) (-598 (-208)) (-598 (-208)))) (-15 -1942 ((-1185) (-598 (-208)) (-598 (-208)) (-598 (-245)))) (-15 -1942 ((-1185) (-598 (-886 (-208))))) (-15 -1942 ((-1185) (-598 (-886 (-208))) (-598 (-245)))) (-15 -1942 ((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)))) (-15 -1942 ((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)) (-598 (-245)))))) (T -242))
+((-1942 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-598 (-208))) (-5 *4 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-242)))) (-1942 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1186)) (-5 *1 (-242)))) (-1942 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *4 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-242)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *2 (-1185)) (-5 *1 (-242)))) (-1942 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-598 (-208))) (-5 *4 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-242)))) (-1942 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1185)) (-5 *1 (-242)))))
+(-10 -7 (-15 -1942 ((-1185) (-598 (-208)) (-598 (-208)))) (-15 -1942 ((-1185) (-598 (-208)) (-598 (-208)) (-598 (-245)))) (-15 -1942 ((-1185) (-598 (-886 (-208))))) (-15 -1942 ((-1185) (-598 (-886 (-208))) (-598 (-245)))) (-15 -1942 ((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)))) (-15 -1942 ((-1186) (-598 (-208)) (-598 (-208)) (-598 (-208)) (-598 (-245)))))
+((-2010 (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-598 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 26)) (-2444 (((-864) (-598 (-245)) (-864)) 53)) (-3496 (((-864) (-598 (-245)) (-864)) 52)) (-1247 (((-598 (-360)) (-598 (-245)) (-598 (-360))) 69)) (-2420 (((-360) (-598 (-245)) (-360)) 58)) (-3327 (((-864) (-598 (-245)) (-864)) 54)) (-1597 (((-110) (-598 (-245)) (-110)) 28)) (-1285 (((-1085) (-598 (-245)) (-1085)) 20)) (-2698 (((-1085) (-598 (-245)) (-1085)) 27)) (-2108 (((-1062 (-208)) (-598 (-245))) 47)) (-2652 (((-598 (-1025 (-360))) (-598 (-245)) (-598 (-1025 (-360)))) 41)) (-4166 (((-817) (-598 (-245)) (-817)) 33)) (-3088 (((-817) (-598 (-245)) (-817)) 34)) (-4096 (((-1 (-886 (-208)) (-886 (-208))) (-598 (-245)) (-1 (-886 (-208)) (-886 (-208)))) 64)) (-3980 (((-110) (-598 (-245)) (-110)) 16)) (-3262 (((-110) (-598 (-245)) (-110)) 15)))
+(((-243) (-10 -7 (-15 -3262 ((-110) (-598 (-245)) (-110))) (-15 -3980 ((-110) (-598 (-245)) (-110))) (-15 -2010 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-598 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1285 ((-1085) (-598 (-245)) (-1085))) (-15 -2698 ((-1085) (-598 (-245)) (-1085))) (-15 -1597 ((-110) (-598 (-245)) (-110))) (-15 -4166 ((-817) (-598 (-245)) (-817))) (-15 -3088 ((-817) (-598 (-245)) (-817))) (-15 -2652 ((-598 (-1025 (-360))) (-598 (-245)) (-598 (-1025 (-360))))) (-15 -3496 ((-864) (-598 (-245)) (-864))) (-15 -2444 ((-864) (-598 (-245)) (-864))) (-15 -2108 ((-1062 (-208)) (-598 (-245)))) (-15 -3327 ((-864) (-598 (-245)) (-864))) (-15 -2420 ((-360) (-598 (-245)) (-360))) (-15 -4096 ((-1 (-886 (-208)) (-886 (-208))) (-598 (-245)) (-1 (-886 (-208)) (-886 (-208))))) (-15 -1247 ((-598 (-360)) (-598 (-245)) (-598 (-360)))))) (T -243))
+((-1247 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-360))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-4096 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2420 (*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3327 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2108 (*1 *2 *3) (-12 (-5 *3 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-243)))) (-2444 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3496 (*1 *2 *3 *2) (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2652 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3088 (*1 *2 *3 *2) (-12 (-5 *2 (-817)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-4166 (*1 *2 *3 *2) (-12 (-5 *2 (-817)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-1597 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2698 (*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-1285 (*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-2010 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3980 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))))
+(-10 -7 (-15 -3262 ((-110) (-598 (-245)) (-110))) (-15 -3980 ((-110) (-598 (-245)) (-110))) (-15 -2010 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) (-598 (-245)) (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1285 ((-1085) (-598 (-245)) (-1085))) (-15 -2698 ((-1085) (-598 (-245)) (-1085))) (-15 -1597 ((-110) (-598 (-245)) (-110))) (-15 -4166 ((-817) (-598 (-245)) (-817))) (-15 -3088 ((-817) (-598 (-245)) (-817))) (-15 -2652 ((-598 (-1025 (-360))) (-598 (-245)) (-598 (-1025 (-360))))) (-15 -3496 ((-864) (-598 (-245)) (-864))) (-15 -2444 ((-864) (-598 (-245)) (-864))) (-15 -2108 ((-1062 (-208)) (-598 (-245)))) (-15 -3327 ((-864) (-598 (-245)) (-864))) (-15 -2420 ((-360) (-598 (-245)) (-360))) (-15 -4096 ((-1 (-886 (-208)) (-886 (-208))) (-598 (-245)) (-1 (-886 (-208)) (-886 (-208))))) (-15 -1247 ((-598 (-360)) (-598 (-245)) (-598 (-360)))))
+((-1908 (((-3 |#1| "failed") (-598 (-245)) (-1102)) 17)))
+(((-244 |#1|) (-10 -7 (-15 -1908 ((-3 |#1| "failed") (-598 (-245)) (-1102)))) (-1138)) (T -244))
+((-1908 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *1 (-244 *2)) (-4 *2 (-1138)))))
+(-10 -7 (-15 -1908 ((-3 |#1| "failed") (-598 (-245)) (-1102))))
+((-2247 (((-110) $ $) NIL)) (-2010 (($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 15)) (-2444 (($ (-864)) 76)) (-3496 (($ (-864)) 75)) (-3887 (($ (-598 (-360))) 82)) (-2420 (($ (-360)) 58)) (-3327 (($ (-864)) 77)) (-1597 (($ (-110)) 23)) (-1285 (($ (-1085)) 18)) (-2698 (($ (-1085)) 19)) (-2108 (($ (-1062 (-208))) 71)) (-2652 (($ (-598 (-1025 (-360)))) 67)) (-2368 (($ (-598 (-1025 (-360)))) 59) (($ (-598 (-1025 (-388 (-531))))) 66)) (-2374 (($ (-360)) 29) (($ (-817)) 33)) (-2267 (((-110) (-598 $) (-1102)) 91)) (-1908 (((-3 (-51) "failed") (-598 $) (-1102)) 93)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1575 (($ (-360)) 34) (($ (-817)) 35)) (-3348 (($ (-1 (-886 (-208)) (-886 (-208)))) 57)) (-4096 (($ (-1 (-886 (-208)) (-886 (-208)))) 78)) (-2027 (($ (-1 (-208) (-208))) 39) (($ (-1 (-208) (-208) (-208))) 43) (($ (-1 (-208) (-208) (-208) (-208))) 47)) (-2265 (((-806) $) 87)) (-4077 (($ (-110)) 24) (($ (-598 (-1025 (-360)))) 52)) (-3262 (($ (-110)) 25)) (-2148 (((-110) $ $) 89)))
+(((-245) (-13 (-1030) (-10 -8 (-15 -3262 ($ (-110))) (-15 -4077 ($ (-110))) (-15 -2010 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1285 ($ (-1085))) (-15 -2698 ($ (-1085))) (-15 -1597 ($ (-110))) (-15 -4077 ($ (-598 (-1025 (-360))))) (-15 -3348 ($ (-1 (-886 (-208)) (-886 (-208))))) (-15 -2374 ($ (-360))) (-15 -2374 ($ (-817))) (-15 -1575 ($ (-360))) (-15 -1575 ($ (-817))) (-15 -2027 ($ (-1 (-208) (-208)))) (-15 -2027 ($ (-1 (-208) (-208) (-208)))) (-15 -2027 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -2420 ($ (-360))) (-15 -2368 ($ (-598 (-1025 (-360))))) (-15 -2368 ($ (-598 (-1025 (-388 (-531)))))) (-15 -2652 ($ (-598 (-1025 (-360))))) (-15 -2108 ($ (-1062 (-208)))) (-15 -3496 ($ (-864))) (-15 -2444 ($ (-864))) (-15 -3327 ($ (-864))) (-15 -4096 ($ (-1 (-886 (-208)) (-886 (-208))))) (-15 -3887 ($ (-598 (-360)))) (-15 -1908 ((-3 (-51) "failed") (-598 $) (-1102))) (-15 -2267 ((-110) (-598 $) (-1102)))))) (T -245))
+((-3262 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-2010 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-245)))) (-1285 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-245)))) (-2698 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-245)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))) (-3348 (*1 *1 *2) (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *1 (-245)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2374 (*1 *1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-245)))) (-1575 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-1575 (*1 *1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-245)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245)))) (-2027 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245)))) (-2420 (*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))) (-2368 (*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-388 (-531))))) (-5 *1 (-245)))) (-2652 (*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))) (-2108 (*1 *1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-245)))) (-3496 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))) (-2444 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))) (-3327 (*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))) (-4096 (*1 *1 *2) (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *1 (-245)))) (-3887 (*1 *1 *2) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-245)))) (-1908 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *2 (-51)) (-5 *1 (-245)))) (-2267 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *2 (-110)) (-5 *1 (-245)))))
+(-13 (-1030) (-10 -8 (-15 -3262 ($ (-110))) (-15 -4077 ($ (-110))) (-15 -2010 ($ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1285 ($ (-1085))) (-15 -2698 ($ (-1085))) (-15 -1597 ($ (-110))) (-15 -4077 ($ (-598 (-1025 (-360))))) (-15 -3348 ($ (-1 (-886 (-208)) (-886 (-208))))) (-15 -2374 ($ (-360))) (-15 -2374 ($ (-817))) (-15 -1575 ($ (-360))) (-15 -1575 ($ (-817))) (-15 -2027 ($ (-1 (-208) (-208)))) (-15 -2027 ($ (-1 (-208) (-208) (-208)))) (-15 -2027 ($ (-1 (-208) (-208) (-208) (-208)))) (-15 -2420 ($ (-360))) (-15 -2368 ($ (-598 (-1025 (-360))))) (-15 -2368 ($ (-598 (-1025 (-388 (-531)))))) (-15 -2652 ($ (-598 (-1025 (-360))))) (-15 -2108 ($ (-1062 (-208)))) (-15 -3496 ($ (-864))) (-15 -2444 ($ (-864))) (-15 -3327 ($ (-864))) (-15 -4096 ($ (-1 (-886 (-208)) (-886 (-208))))) (-15 -3887 ($ (-598 (-360)))) (-15 -1908 ((-3 (-51) "failed") (-598 $) (-1102))) (-15 -2267 ((-110) (-598 $) (-1102)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1584 (((-598 (-721)) $) NIL) (((-598 (-721)) $ |#2|) NIL)) (-3449 (((-721) $) NIL) (((-721) $ |#2|) NIL)) (-2695 (((-598 |#3|) $) NIL)) (-2516 (((-1098 $) $ |#3|) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 |#3|)) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-1524 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 |#3| "failed") $) NIL) (((-3 |#2| "failed") $) NIL) (((-3 (-1054 |#1| |#2|) "failed") $) 21)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) ((|#3| $) NIL) ((|#2| $) NIL) (((-1054 |#1| |#2|) $) NIL)) (-3115 (($ $ $ |#3|) NIL (|has| |#1| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 |#3|) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))))) (-3617 (((-721) $ |#2|) NIL) (((-721) $) 10)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#1|) |#3|) NIL) (($ (-1098 $) |#3|) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 |#3|)) NIL) (($ $ |#3| (-721)) NIL) (($ $ (-598 |#3|) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) NIL)) (-3005 (((-503 |#3|) $) NIL) (((-721) $ |#3|) NIL) (((-598 (-721)) $ (-598 |#3|)) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 |#3|) (-503 |#3|)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-4252 (((-1 $ (-721)) |#2|) NIL) (((-1 $ (-721)) $) NIL (|has| |#1| (-216)))) (-3471 (((-3 |#3| "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2941 ((|#3| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-1921 (((-110) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| |#3|) (|:| -1790 (-721))) "failed") $) NIL)) (-2319 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#3| |#1|) NIL) (($ $ (-598 |#3|) (-598 |#1|)) NIL) (($ $ |#3| $) NIL) (($ $ (-598 |#3|) (-598 $)) NIL) (($ $ |#2| $) NIL (|has| |#1| (-216))) (($ $ (-598 |#2|) (-598 $)) NIL (|has| |#1| (-216))) (($ $ |#2| |#1|) NIL (|has| |#1| (-216))) (($ $ (-598 |#2|) (-598 |#1|)) NIL (|has| |#1| (-216)))) (-3176 (($ $ |#3|) NIL (|has| |#1| (-162)))) (-3352 (($ $ |#3|) NIL) (($ $ (-598 |#3|)) NIL) (($ $ |#3| (-721)) NIL) (($ $ (-598 |#3|) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3288 (((-598 |#2|) $) NIL)) (-2012 (((-503 |#3|) $) NIL) (((-721) $ |#3|) NIL) (((-598 (-721)) $ (-598 |#3|)) NIL) (((-721) $ |#2|) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ |#3|) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) 24) (($ |#3|) 23) (($ |#2|) NIL) (($ (-1054 |#1| |#2|)) 30) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 |#3|)) NIL) (($ $ |#3| (-721)) NIL) (($ $ (-598 |#3|) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ |#3|) NIL) (($ $ (-598 |#3|)) NIL) (($ $ |#3| (-721)) NIL) (($ $ (-598 |#3|) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-246 |#1| |#2| |#3|) (-13 (-235 |#1| |#2| |#3| (-503 |#3|)) (-977 (-1054 |#1| |#2|))) (-986) (-797) (-248 |#2|)) (T -246))
+NIL
+(-13 (-235 |#1| |#2| |#3| (-503 |#3|)) (-977 (-1054 |#1| |#2|)))
+((-3449 (((-721) $) 30)) (-3154 (((-3 |#2| "failed") $) 17)) (-2523 ((|#2| $) 27)) (-3352 (($ $) 12) (($ $ (-721)) 15)) (-2265 (((-806) $) 26) (($ |#2|) 10)) (-2148 (((-110) $ $) 20)) (-2174 (((-110) $ $) 29)))
+(((-247 |#1| |#2|) (-10 -8 (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -3449 ((-721) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-248 |#2|) (-797)) (T -247))
+NIL
+(-10 -8 (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -3449 ((-721) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3449 (((-721) $) 22)) (-3524 ((|#1| $) 23)) (-3154 (((-3 |#1| "failed") $) 27)) (-2523 ((|#1| $) 26)) (-3617 (((-721) $) 24)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-4252 (($ |#1| (-721)) 25)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3352 (($ $) 21) (($ $ (-721)) 20)) (-2265 (((-806) $) 11) (($ |#1|) 28)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)))
+(((-248 |#1|) (-133) (-797)) (T -248))
+((-2265 (*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) (-4252 (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-248 *2)) (-4 *2 (-797)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-797)) (-5 *2 (-721)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) (-3449 (*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-797)) (-5 *2 (-721)))) (-3352 (*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-248 *3)) (-4 *3 (-797)))))
+(-13 (-797) (-977 |t#1|) (-10 -8 (-15 -4252 ($ |t#1| (-721))) (-15 -3617 ((-721) $)) (-15 -3524 (|t#1| $)) (-15 -3449 ((-721) $)) (-15 -3352 ($ $)) (-15 -3352 ($ $ (-721))) (-15 -2265 ($ |t#1|))))
+(((-99) . T) ((-572 (-806)) . T) ((-797) . T) ((-977 |#1|) . T) ((-1030) . T))
+((-2695 (((-598 (-1102)) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 41)) (-3798 (((-598 (-1102)) (-297 (-208)) (-721)) 80)) (-1684 (((-3 (-297 (-208)) "failed") (-297 (-208))) 51)) (-1895 (((-297 (-208)) (-297 (-208))) 67)) (-2208 (((-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 26)) (-3406 (((-110) (-598 (-297 (-208)))) 84)) (-2015 (((-110) (-297 (-208))) 24)) (-2201 (((-598 (-1085)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) 106)) (-1403 (((-598 (-297 (-208))) (-598 (-297 (-208)))) 88)) (-2258 (((-598 (-297 (-208))) (-598 (-297 (-208)))) 86)) (-2571 (((-639 (-208)) (-598 (-297 (-208))) (-721)) 95)) (-3283 (((-110) (-297 (-208))) 20) (((-110) (-598 (-297 (-208)))) 85)) (-2041 (((-598 (-208)) (-598 (-790 (-208))) (-208)) 14)) (-3562 (((-360) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 101)) (-3625 (((-975) (-1102) (-975)) 34)))
+(((-249) (-10 -7 (-15 -2041 ((-598 (-208)) (-598 (-790 (-208))) (-208))) (-15 -2208 ((-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -1684 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -1895 ((-297 (-208)) (-297 (-208)))) (-15 -3406 ((-110) (-598 (-297 (-208))))) (-15 -3283 ((-110) (-598 (-297 (-208))))) (-15 -3283 ((-110) (-297 (-208)))) (-15 -2571 ((-639 (-208)) (-598 (-297 (-208))) (-721))) (-15 -2258 ((-598 (-297 (-208))) (-598 (-297 (-208))))) (-15 -1403 ((-598 (-297 (-208))) (-598 (-297 (-208))))) (-15 -2015 ((-110) (-297 (-208)))) (-15 -2695 ((-598 (-1102)) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -3798 ((-598 (-1102)) (-297 (-208)) (-721))) (-15 -3625 ((-975) (-1102) (-975))) (-15 -3562 ((-360) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2201 ((-598 (-1085)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))))))) (T -249))
+((-2201 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) (-5 *2 (-598 (-1085))) (-5 *1 (-249)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *2 (-360)) (-5 *1 (-249)))) (-3625 (*1 *2 *3 *2) (-12 (-5 *2 (-975)) (-5 *3 (-1102)) (-5 *1 (-249)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-721)) (-5 *2 (-598 (-1102))) (-5 *1 (-249)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *2 (-598 (-1102))) (-5 *1 (-249)))) (-2015 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-1403 (*1 *2 *2) (-12 (-5 *2 (-598 (-297 (-208)))) (-5 *1 (-249)))) (-2258 (*1 *2 *2) (-12 (-5 *2 (-598 (-297 (-208)))) (-5 *1 (-249)))) (-2571 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *4 (-721)) (-5 *2 (-639 (-208))) (-5 *1 (-249)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3283 (*1 *2 *3) (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-3406 (*1 *2 *3) (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))) (-1895 (*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-1684 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))) (-2208 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (-5 *1 (-249)))) (-2041 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-790 (-208)))) (-5 *4 (-208)) (-5 *2 (-598 *4)) (-5 *1 (-249)))))
+(-10 -7 (-15 -2041 ((-598 (-208)) (-598 (-790 (-208))) (-208))) (-15 -2208 ((-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -1684 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -1895 ((-297 (-208)) (-297 (-208)))) (-15 -3406 ((-110) (-598 (-297 (-208))))) (-15 -3283 ((-110) (-598 (-297 (-208))))) (-15 -3283 ((-110) (-297 (-208)))) (-15 -2571 ((-639 (-208)) (-598 (-297 (-208))) (-721))) (-15 -2258 ((-598 (-297 (-208))) (-598 (-297 (-208))))) (-15 -1403 ((-598 (-297 (-208))) (-598 (-297 (-208))))) (-15 -2015 ((-110) (-297 (-208)))) (-15 -2695 ((-598 (-1102)) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -3798 ((-598 (-1102)) (-297 (-208)) (-721))) (-15 -3625 ((-975) (-1102) (-975))) (-15 -3562 ((-360) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2201 ((-598 (-1085)) (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))))))
+((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 44)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 26) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-250) (-786)) (T -250))
+NIL
+(-786)
+((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 58) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 54)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 34) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 36)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-251) (-786)) (T -251))
+NIL
+(-786)
+((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 76) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 73)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 44) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 55)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-252) (-786)) (T -252))
+NIL
+(-786)
+((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 50)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 31) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-253) (-786)) (T -253))
+NIL
+(-786)
+((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 50)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 28) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-254) (-786)) (T -254))
+NIL
+(-786)
+((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 73)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 28) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-255) (-786)) (T -255))
+NIL
+(-786)
+((-2247 (((-110) $ $) NIL)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 77)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 25) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-256) (-786)) (T -256))
+NIL
+(-786)
+((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3631 (((-598 (-531)) $) 19)) (-2012 (((-721) $) 17)) (-2265 (((-806) $) 23) (($ (-598 (-531))) 15)) (-2337 (($ (-721)) 20)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 9)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 11)))
+(((-257) (-13 (-797) (-10 -8 (-15 -2265 ($ (-598 (-531)))) (-15 -2012 ((-721) $)) (-15 -3631 ((-598 (-531)) $)) (-15 -2337 ($ (-721)))))) (T -257))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-257)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-257)))) (-3631 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-257)))) (-2337 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-257)))))
+(-13 (-797) (-10 -8 (-15 -2265 ($ (-598 (-531)))) (-15 -2012 ((-721) $)) (-15 -3631 ((-598 (-531)) $)) (-15 -2337 ($ (-721)))))
+((-2367 ((|#2| |#2|) 77)) (-2218 ((|#2| |#2|) 65)) (-2013 (((-3 |#2| "failed") |#2| (-598 (-2 (|:| |func| |#2|) (|:| |pole| (-110))))) 116)) (-2343 ((|#2| |#2|) 75)) (-2198 ((|#2| |#2|) 63)) (-2391 ((|#2| |#2|) 79)) (-2241 ((|#2| |#2|) 67)) (-1880 ((|#2|) 46)) (-3254 (((-112) (-112)) 95)) (-2076 ((|#2| |#2|) 61)) (-3399 (((-110) |#2|) 134)) (-1829 ((|#2| |#2|) 181)) (-1617 ((|#2| |#2|) 157)) (-3898 ((|#2|) 59)) (-3528 ((|#2|) 58)) (-3833 ((|#2| |#2|) 177)) (-2199 ((|#2| |#2|) 153)) (-1330 ((|#2| |#2|) 185)) (-3891 ((|#2| |#2|) 161)) (-3055 ((|#2| |#2|) 149)) (-2514 ((|#2| |#2|) 151)) (-3078 ((|#2| |#2|) 187)) (-2230 ((|#2| |#2|) 163)) (-2640 ((|#2| |#2|) 183)) (-2814 ((|#2| |#2|) 159)) (-4089 ((|#2| |#2|) 179)) (-1324 ((|#2| |#2|) 155)) (-1336 ((|#2| |#2|) 193)) (-2238 ((|#2| |#2|) 169)) (-3143 ((|#2| |#2|) 189)) (-2399 ((|#2| |#2|) 165)) (-3218 ((|#2| |#2|) 197)) (-2449 ((|#2| |#2|) 173)) (-3181 ((|#2| |#2|) 199)) (-3669 ((|#2| |#2|) 175)) (-3290 ((|#2| |#2|) 195)) (-3173 ((|#2| |#2|) 171)) (-3021 ((|#2| |#2|) 191)) (-4015 ((|#2| |#2|) 167)) (-2798 ((|#2| |#2|) 62)) (-2403 ((|#2| |#2|) 80)) (-2253 ((|#2| |#2|) 68)) (-2379 ((|#2| |#2|) 78)) (-2229 ((|#2| |#2|) 66)) (-2356 ((|#2| |#2|) 76)) (-2210 ((|#2| |#2|) 64)) (-3167 (((-110) (-112)) 93)) (-2442 ((|#2| |#2|) 83)) (-2292 ((|#2| |#2|) 71)) (-2416 ((|#2| |#2|) 81)) (-2266 ((|#2| |#2|) 69)) (-2468 ((|#2| |#2|) 85)) (-2318 ((|#2| |#2|) 73)) (-2753 ((|#2| |#2|) 86)) (-2331 ((|#2| |#2|) 74)) (-2456 ((|#2| |#2|) 84)) (-2305 ((|#2| |#2|) 72)) (-2429 ((|#2| |#2|) 82)) (-2279 ((|#2| |#2|) 70)))
+(((-258 |#1| |#2|) (-10 -7 (-15 -2798 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -2210 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -2229 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2279 (|#2| |#2|)) (-15 -2292 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2331 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2416 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2442 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -1880 (|#2|)) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -3528 (|#2|)) (-15 -3898 (|#2|)) (-15 -2514 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -1324 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -1330 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#2| (-598 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -3399 ((-110) |#2|))) (-13 (-797) (-523)) (-13 (-411 |#1|) (-943))) (T -258))
+((-3399 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3)) (-4 *3 (-13 (-411 *4) (-943))))) (-2013 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-598 (-2 (|:| |func| *2) (|:| |pole| (-110))))) (-4 *2 (-13 (-411 *4) (-943))) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-258 *4 *2)))) (-3181 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3218 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3290 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3021 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3143 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3078 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1330 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2640 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1829 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3833 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3669 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2449 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3173 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2238 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-4015 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2399 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2230 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3891 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2814 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1617 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-1324 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2199 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3055 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2514 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-3898 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-797) (-523))))) (-3528 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-797) (-523))))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *4)) (-4 *4 (-13 (-411 *3) (-943))))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-943))))) (-1880 (*1 *2) (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2)) (-4 *3 (-13 (-797) (-523))))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2210 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2)) (-4 *2 (-13 (-411 *3) (-943))))))
+(-10 -7 (-15 -2798 (|#2| |#2|)) (-15 -2076 (|#2| |#2|)) (-15 -2198 (|#2| |#2|)) (-15 -2210 (|#2| |#2|)) (-15 -2218 (|#2| |#2|)) (-15 -2229 (|#2| |#2|)) (-15 -2241 (|#2| |#2|)) (-15 -2253 (|#2| |#2|)) (-15 -2266 (|#2| |#2|)) (-15 -2279 (|#2| |#2|)) (-15 -2292 (|#2| |#2|)) (-15 -2305 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2331 (|#2| |#2|)) (-15 -2343 (|#2| |#2|)) (-15 -2356 (|#2| |#2|)) (-15 -2367 (|#2| |#2|)) (-15 -2379 (|#2| |#2|)) (-15 -2391 (|#2| |#2|)) (-15 -2403 (|#2| |#2|)) (-15 -2416 (|#2| |#2|)) (-15 -2429 (|#2| |#2|)) (-15 -2442 (|#2| |#2|)) (-15 -2456 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2753 (|#2| |#2|)) (-15 -1880 (|#2|)) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -3528 (|#2|)) (-15 -3898 (|#2|)) (-15 -2514 (|#2| |#2|)) (-15 -3055 (|#2| |#2|)) (-15 -2199 (|#2| |#2|)) (-15 -1324 (|#2| |#2|)) (-15 -1617 (|#2| |#2|)) (-15 -2814 (|#2| |#2|)) (-15 -3891 (|#2| |#2|)) (-15 -2230 (|#2| |#2|)) (-15 -2399 (|#2| |#2|)) (-15 -4015 (|#2| |#2|)) (-15 -2238 (|#2| |#2|)) (-15 -3173 (|#2| |#2|)) (-15 -2449 (|#2| |#2|)) (-15 -3669 (|#2| |#2|)) (-15 -3833 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -1829 (|#2| |#2|)) (-15 -2640 (|#2| |#2|)) (-15 -1330 (|#2| |#2|)) (-15 -3078 (|#2| |#2|)) (-15 -3143 (|#2| |#2|)) (-15 -3021 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -3290 (|#2| |#2|)) (-15 -3218 (|#2| |#2|)) (-15 -3181 (|#2| |#2|)) (-15 -2013 ((-3 |#2| "failed") |#2| (-598 (-2 (|:| |func| |#2|) (|:| |pole| (-110)))))) (-15 -3399 ((-110) |#2|)))
+((-2119 (((-3 |#2| "failed") (-598 (-571 |#2|)) |#2| (-1102)) 135)) (-2219 ((|#2| (-388 (-531)) |#2|) 51)) (-2026 ((|#2| |#2| (-571 |#2|)) 128)) (-3414 (((-2 (|:| |func| |#2|) (|:| |kers| (-598 (-571 |#2|))) (|:| |vals| (-598 |#2|))) |#2| (-1102)) 127)) (-1319 ((|#2| |#2| (-1102)) 20) ((|#2| |#2|) 23)) (-2748 ((|#2| |#2| (-1102)) 141) ((|#2| |#2|) 139)))
+(((-259 |#1| |#2|) (-10 -7 (-15 -2748 (|#2| |#2|)) (-15 -2748 (|#2| |#2| (-1102))) (-15 -3414 ((-2 (|:| |func| |#2|) (|:| |kers| (-598 (-571 |#2|))) (|:| |vals| (-598 |#2|))) |#2| (-1102))) (-15 -1319 (|#2| |#2|)) (-15 -1319 (|#2| |#2| (-1102))) (-15 -2119 ((-3 |#2| "failed") (-598 (-571 |#2|)) |#2| (-1102))) (-15 -2026 (|#2| |#2| (-571 |#2|))) (-15 -2219 (|#2| (-388 (-531)) |#2|))) (-13 (-523) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -259))
+((-2219 (*1 *2 *3 *2) (-12 (-5 *3 (-388 (-531))) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-2026 (*1 *2 *2 *3) (-12 (-5 *3 (-571 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *4 *2)))) (-2119 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-598 (-571 *2))) (-5 *4 (-1102)) (-4 *2 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *5 *2)))) (-1319 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-1319 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-3414 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-598 (-571 *3))) (|:| |vals| (-598 *3)))) (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2748 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-2748 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))))
+(-10 -7 (-15 -2748 (|#2| |#2|)) (-15 -2748 (|#2| |#2| (-1102))) (-15 -3414 ((-2 (|:| |func| |#2|) (|:| |kers| (-598 (-571 |#2|))) (|:| |vals| (-598 |#2|))) |#2| (-1102))) (-15 -1319 (|#2| |#2|)) (-15 -1319 (|#2| |#2| (-1102))) (-15 -2119 ((-3 |#2| "failed") (-598 (-571 |#2|)) |#2| (-1102))) (-15 -2026 (|#2| |#2| (-571 |#2|))) (-15 -2219 (|#2| (-388 (-531)) |#2|)))
+((-3511 (((-3 |#3| "failed") |#3|) 110)) (-2367 ((|#3| |#3|) 131)) (-1752 (((-3 |#3| "failed") |#3|) 82)) (-2218 ((|#3| |#3|) 121)) (-3712 (((-3 |#3| "failed") |#3|) 58)) (-2343 ((|#3| |#3|) 129)) (-1704 (((-3 |#3| "failed") |#3|) 46)) (-2198 ((|#3| |#3|) 119)) (-3605 (((-3 |#3| "failed") |#3|) 112)) (-2391 ((|#3| |#3|) 133)) (-3343 (((-3 |#3| "failed") |#3|) 84)) (-2241 ((|#3| |#3|) 123)) (-1631 (((-3 |#3| "failed") |#3| (-721)) 36)) (-2121 (((-3 |#3| "failed") |#3|) 74)) (-2076 ((|#3| |#3|) 118)) (-2340 (((-3 |#3| "failed") |#3|) 44)) (-2798 ((|#3| |#3|) 117)) (-4063 (((-3 |#3| "failed") |#3|) 113)) (-2403 ((|#3| |#3|) 134)) (-2504 (((-3 |#3| "failed") |#3|) 85)) (-2253 ((|#3| |#3|) 124)) (-4202 (((-3 |#3| "failed") |#3|) 111)) (-2379 ((|#3| |#3|) 132)) (-1227 (((-3 |#3| "failed") |#3|) 83)) (-2229 ((|#3| |#3|) 122)) (-4068 (((-3 |#3| "failed") |#3|) 60)) (-2356 ((|#3| |#3|) 130)) (-1492 (((-3 |#3| "failed") |#3|) 48)) (-2210 ((|#3| |#3|) 120)) (-2366 (((-3 |#3| "failed") |#3|) 66)) (-2442 ((|#3| |#3|) 137)) (-1742 (((-3 |#3| "failed") |#3|) 104)) (-2292 ((|#3| |#3|) 142)) (-1467 (((-3 |#3| "failed") |#3|) 62)) (-2416 ((|#3| |#3|) 135)) (-2679 (((-3 |#3| "failed") |#3|) 50)) (-2266 ((|#3| |#3|) 125)) (-3446 (((-3 |#3| "failed") |#3|) 70)) (-2468 ((|#3| |#3|) 139)) (-3965 (((-3 |#3| "failed") |#3|) 54)) (-2318 ((|#3| |#3|) 127)) (-1497 (((-3 |#3| "failed") |#3|) 72)) (-2753 ((|#3| |#3|) 140)) (-3531 (((-3 |#3| "failed") |#3|) 56)) (-2331 ((|#3| |#3|) 128)) (-4183 (((-3 |#3| "failed") |#3|) 68)) (-2456 ((|#3| |#3|) 138)) (-1823 (((-3 |#3| "failed") |#3|) 107)) (-2305 ((|#3| |#3|) 143)) (-2002 (((-3 |#3| "failed") |#3|) 64)) (-2429 ((|#3| |#3|) 136)) (-4154 (((-3 |#3| "failed") |#3|) 52)) (-2279 ((|#3| |#3|) 126)) (** ((|#3| |#3| (-388 (-531))) 40 (|has| |#1| (-344)))))
+(((-260 |#1| |#2| |#3|) (-13 (-925 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-531)))) |%noBranch|) (-15 -2798 (|#3| |#3|)) (-15 -2076 (|#3| |#3|)) (-15 -2198 (|#3| |#3|)) (-15 -2210 (|#3| |#3|)) (-15 -2218 (|#3| |#3|)) (-15 -2229 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2331 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2753 (|#3| |#3|)))) (-37 (-388 (-531))) (-1175 |#1|) (-1146 |#1| |#2|)) (T -260))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-531))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1175 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1146 *4 *5)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2210 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3)) (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4)))))
+(-13 (-925 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-531)))) |%noBranch|) (-15 -2798 (|#3| |#3|)) (-15 -2076 (|#3| |#3|)) (-15 -2198 (|#3| |#3|)) (-15 -2210 (|#3| |#3|)) (-15 -2218 (|#3| |#3|)) (-15 -2229 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2331 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2753 (|#3| |#3|))))
+((-3511 (((-3 |#3| "failed") |#3|) 66)) (-2367 ((|#3| |#3|) 129)) (-1752 (((-3 |#3| "failed") |#3|) 50)) (-2218 ((|#3| |#3|) 117)) (-3712 (((-3 |#3| "failed") |#3|) 62)) (-2343 ((|#3| |#3|) 127)) (-1704 (((-3 |#3| "failed") |#3|) 46)) (-2198 ((|#3| |#3|) 115)) (-3605 (((-3 |#3| "failed") |#3|) 70)) (-2391 ((|#3| |#3|) 131)) (-3343 (((-3 |#3| "failed") |#3|) 54)) (-2241 ((|#3| |#3|) 119)) (-1631 (((-3 |#3| "failed") |#3| (-721)) 35)) (-2121 (((-3 |#3| "failed") |#3|) 44)) (-2076 ((|#3| |#3|) 104)) (-2340 (((-3 |#3| "failed") |#3|) 42)) (-2798 ((|#3| |#3|) 114)) (-4063 (((-3 |#3| "failed") |#3|) 72)) (-2403 ((|#3| |#3|) 132)) (-2504 (((-3 |#3| "failed") |#3|) 56)) (-2253 ((|#3| |#3|) 120)) (-4202 (((-3 |#3| "failed") |#3|) 68)) (-2379 ((|#3| |#3|) 130)) (-1227 (((-3 |#3| "failed") |#3|) 52)) (-2229 ((|#3| |#3|) 118)) (-4068 (((-3 |#3| "failed") |#3|) 64)) (-2356 ((|#3| |#3|) 128)) (-1492 (((-3 |#3| "failed") |#3|) 48)) (-2210 ((|#3| |#3|) 116)) (-2366 (((-3 |#3| "failed") |#3|) 74)) (-2442 ((|#3| |#3|) 135)) (-1742 (((-3 |#3| "failed") |#3|) 58)) (-2292 ((|#3| |#3|) 123)) (-1467 (((-3 |#3| "failed") |#3|) 105)) (-2416 ((|#3| |#3|) 133)) (-2679 (((-3 |#3| "failed") |#3|) 94)) (-2266 ((|#3| |#3|) 121)) (-3446 (((-3 |#3| "failed") |#3|) 109)) (-2468 ((|#3| |#3|) 137)) (-3965 (((-3 |#3| "failed") |#3|) 101)) (-2318 ((|#3| |#3|) 125)) (-1497 (((-3 |#3| "failed") |#3|) 110)) (-2753 ((|#3| |#3|) 138)) (-3531 (((-3 |#3| "failed") |#3|) 103)) (-2331 ((|#3| |#3|) 126)) (-4183 (((-3 |#3| "failed") |#3|) 76)) (-2456 ((|#3| |#3|) 136)) (-1823 (((-3 |#3| "failed") |#3|) 60)) (-2305 ((|#3| |#3|) 124)) (-2002 (((-3 |#3| "failed") |#3|) 106)) (-2429 ((|#3| |#3|) 134)) (-4154 (((-3 |#3| "failed") |#3|) 97)) (-2279 ((|#3| |#3|) 122)) (** ((|#3| |#3| (-388 (-531))) 40 (|has| |#1| (-344)))))
+(((-261 |#1| |#2| |#3| |#4|) (-13 (-925 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-531)))) |%noBranch|) (-15 -2798 (|#3| |#3|)) (-15 -2076 (|#3| |#3|)) (-15 -2198 (|#3| |#3|)) (-15 -2210 (|#3| |#3|)) (-15 -2218 (|#3| |#3|)) (-15 -2229 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2331 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2753 (|#3| |#3|)))) (-37 (-388 (-531))) (-1144 |#1|) (-1167 |#1| |#2|) (-925 |#2|)) (T -261))
+((** (*1 *2 *2 *3) (-12 (-5 *3 (-388 (-531))) (-4 *4 (-344)) (-4 *4 (-37 *3)) (-4 *5 (-1144 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1167 *4 *5)) (-4 *6 (-925 *5)))) (-2798 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2076 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2198 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2210 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2218 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2229 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2241 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2253 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2266 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2279 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2292 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2305 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2331 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2343 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2356 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2367 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2379 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2391 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2403 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2416 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2429 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2442 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))) (-2753 (*1 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3)) (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4)))))
+(-13 (-925 |#3|) (-10 -7 (IF (|has| |#1| (-344)) (-15 ** (|#3| |#3| (-388 (-531)))) |%noBranch|) (-15 -2798 (|#3| |#3|)) (-15 -2076 (|#3| |#3|)) (-15 -2198 (|#3| |#3|)) (-15 -2210 (|#3| |#3|)) (-15 -2218 (|#3| |#3|)) (-15 -2229 (|#3| |#3|)) (-15 -2241 (|#3| |#3|)) (-15 -2253 (|#3| |#3|)) (-15 -2266 (|#3| |#3|)) (-15 -2279 (|#3| |#3|)) (-15 -2292 (|#3| |#3|)) (-15 -2305 (|#3| |#3|)) (-15 -2318 (|#3| |#3|)) (-15 -2331 (|#3| |#3|)) (-15 -2343 (|#3| |#3|)) (-15 -2356 (|#3| |#3|)) (-15 -2367 (|#3| |#3|)) (-15 -2379 (|#3| |#3|)) (-15 -2391 (|#3| |#3|)) (-15 -2403 (|#3| |#3|)) (-15 -2416 (|#3| |#3|)) (-15 -2429 (|#3| |#3|)) (-15 -2442 (|#3| |#3|)) (-15 -2456 (|#3| |#3|)) (-15 -2468 (|#3| |#3|)) (-15 -2753 (|#3| |#3|))))
+((-3257 (((-110) $) 19)) (-1509 (((-171) $) 7)) (-1715 (((-3 (-1102) "failed") $) 14)) (-3846 (((-3 (-598 $) "failed") $) NIL)) (-2051 (((-3 (-1102) "failed") $) 21)) (-1624 (((-3 (-1034) "failed") $) 17)) (-3012 (((-110) $) 15)) (-2265 (((-806) $) NIL)) (-1341 (((-110) $) 9)))
+(((-262) (-13 (-572 (-806)) (-10 -8 (-15 -1509 ((-171) $)) (-15 -3012 ((-110) $)) (-15 -1624 ((-3 (-1034) "failed") $)) (-15 -3257 ((-110) $)) (-15 -2051 ((-3 (-1102) "failed") $)) (-15 -1341 ((-110) $)) (-15 -1715 ((-3 (-1102) "failed") $)) (-15 -3846 ((-3 (-598 $) "failed") $))))) (T -262))
+((-1509 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-1624 (*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-262)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-2051 (*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-262)))) (-1341 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))) (-1715 (*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-262)))) (-3846 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-262))) (-5 *1 (-262)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -1509 ((-171) $)) (-15 -3012 ((-110) $)) (-15 -1624 ((-3 (-1034) "failed") $)) (-15 -3257 ((-110) $)) (-15 -2051 ((-3 (-1102) "failed") $)) (-15 -1341 ((-110) $)) (-15 -1715 ((-3 (-1102) "failed") $)) (-15 -3846 ((-3 (-598 $) "failed") $))))
+((-2177 (($ (-1 (-110) |#2|) $) 24)) (-3086 (($ $) 36)) (-2717 (($ (-1 (-110) |#2|) $) NIL) (($ |#2| $) 34)) (-2283 (($ |#2| $) 32) (($ (-1 (-110) |#2|) $) 18)) (-3611 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 40)) (-4059 (($ |#2| $ (-531)) 20) (($ $ $ (-531)) 22)) (-1723 (($ $ (-531)) 11) (($ $ (-1151 (-531))) 14)) (-1818 (($ $ |#2|) 30) (($ $ $) NIL)) (-3536 (($ $ |#2|) 29) (($ |#2| $) NIL) (($ $ $) 26) (($ (-598 $)) NIL)))
+(((-263 |#1| |#2|) (-10 -8 (-15 -3611 (|#1| |#1| |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -3611 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1818 (|#1| |#1| |#1|)) (-15 -1818 (|#1| |#1| |#2|)) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2177 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| |#2| |#1|)) (-15 -3086 (|#1| |#1|))) (-264 |#2|) (-1138)) (T -263))
+NIL
+(-10 -8 (-15 -3611 (|#1| |#1| |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -3611 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1818 (|#1| |#1| |#1|)) (-15 -1818 (|#1| |#1| |#2|)) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2283 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2177 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2283 (|#1| |#2| |#1|)) (-15 -3086 (|#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) 85)) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2705 (($ $) 83 (|has| |#1| (-1030)))) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ (-1 (-110) |#1|) $) 89) (($ |#1| $) 84 (|has| |#1| (-1030)))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-3611 (($ (-1 (-110) |#1| |#1|) $ $) 86) (($ $ $) 82 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3944 (($ |#1| $ (-531)) 88) (($ $ $ (-531)) 87)) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-1551 (($ $ (-531)) 91) (($ $ (-1151 (-531))) 90)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-1818 (($ $ |#1|) 93) (($ $ $) 92)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-264 |#1|) (-133) (-1138)) (T -264))
+((-1818 (*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)))) (-1818 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-1551 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-2717 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-3944 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-264 *2)) (-4 *2 (-1138)))) (-3944 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-3611 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-2245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))) (-2717 (*1 *1 *2 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-1030)))) (-3611 (*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))))
+(-13 (-604 |t#1|) (-10 -8 (-6 -4274) (-15 -1818 ($ $ |t#1|)) (-15 -1818 ($ $ $)) (-15 -1551 ($ $ (-531))) (-15 -1551 ($ $ (-1151 (-531)))) (-15 -2717 ($ (-1 (-110) |t#1|) $)) (-15 -3944 ($ |t#1| $ (-531))) (-15 -3944 ($ $ $ (-531))) (-15 -3611 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -2245 ($ (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -2717 ($ |t#1| $)) (-15 -2705 ($ $))) |%noBranch|) (IF (|has| |t#1| (-797)) (-15 -3611 ($ $ $)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
((** (($ $ $) 10)))
(((-265 |#1|) (-10 -8 (-15 ** (|#1| |#1| |#1|))) (-266)) (T -265))
NIL
(-10 -8 (-15 ** (|#1| |#1| |#1|)))
-((-2168 (($ $) 6)) (-2853 (($ $) 7)) (** (($ $ $) 8)))
+((-2076 (($ $) 6)) (-2798 (($ $) 7)) (** (($ $ $) 8)))
(((-266) (-133)) (T -266))
-((** (*1 *1 *1 *1) (-4 *1 (-266))) (-2853 (*1 *1 *1) (-4 *1 (-266))) (-2168 (*1 *1 *1) (-4 *1 (-266))))
-(-13 (-10 -8 (-15 -2168 ($ $)) (-15 -2853 ($ $)) (-15 ** ($ $ $))))
-((-1619 (((-597 (-1080 |#1|)) (-1080 |#1|) |#1|) 35)) (-3355 ((|#2| |#2| |#1|) 38)) (-1931 ((|#2| |#2| |#1|) 40)) (-4074 ((|#2| |#2| |#1|) 39)))
-(((-267 |#1| |#2|) (-10 -7 (-15 -3355 (|#2| |#2| |#1|)) (-15 -4074 (|#2| |#2| |#1|)) (-15 -1931 (|#2| |#2| |#1|)) (-15 -1619 ((-597 (-1080 |#1|)) (-1080 |#1|) |#1|))) (-344) (-1172 |#1|)) (T -267))
-((-1619 (*1 *2 *3 *4) (-12 (-4 *4 (-344)) (-5 *2 (-597 (-1080 *4))) (-5 *1 (-267 *4 *5)) (-5 *3 (-1080 *4)) (-4 *5 (-1172 *4)))) (-1931 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))) (-4074 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))) (-3355 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
-(-10 -7 (-15 -3355 (|#2| |#2| |#1|)) (-15 -4074 (|#2| |#2| |#1|)) (-15 -1931 (|#2| |#2| |#1|)) (-15 -1619 ((-597 (-1080 |#1|)) (-1080 |#1|) |#1|)))
-((-1902 ((|#2| $ |#1|) 6)))
-(((-268 |#1| |#2|) (-133) (-1027) (-1135)) (T -268))
-((-1902 (*1 *2 *1 *3) (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))))
-(-13 (-10 -8 (-15 -1902 (|t#2| $ |t#1|))))
-((-3592 ((|#3| $ |#2| |#3|) 12)) (-3532 ((|#3| $ |#2|) 10)))
-(((-269 |#1| |#2| |#3|) (-10 -8 (-15 -3592 (|#3| |#1| |#2| |#3|)) (-15 -3532 (|#3| |#1| |#2|))) (-270 |#2| |#3|) (-1027) (-1135)) (T -269))
-NIL
-(-10 -8 (-15 -3592 (|#3| |#1| |#2| |#3|)) (-15 -3532 (|#3| |#1| |#2|)))
-((-2552 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4270)))) (-3592 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) 11)) (-1902 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
-(((-270 |#1| |#2|) (-133) (-1027) (-1135)) (T -270))
-((-1902 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-3532 (*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-3592 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))))
-(-13 (-268 |t#1| |t#2|) (-10 -8 (-15 -1902 (|t#2| $ |t#1| |t#2|)) (-15 -3532 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -2552 (|t#2| $ |t#1| |t#2|)) (-15 -3592 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
+((** (*1 *1 *1 *1) (-4 *1 (-266))) (-2798 (*1 *1 *1) (-4 *1 (-266))) (-2076 (*1 *1 *1) (-4 *1 (-266))))
+(-13 (-10 -8 (-15 -2076 ($ $)) (-15 -2798 ($ $)) (-15 ** ($ $ $))))
+((-1239 (((-598 (-1083 |#1|)) (-1083 |#1|) |#1|) 35)) (-3610 ((|#2| |#2| |#1|) 38)) (-3820 ((|#2| |#2| |#1|) 40)) (-4123 ((|#2| |#2| |#1|) 39)))
+(((-267 |#1| |#2|) (-10 -7 (-15 -3610 (|#2| |#2| |#1|)) (-15 -4123 (|#2| |#2| |#1|)) (-15 -3820 (|#2| |#2| |#1|)) (-15 -1239 ((-598 (-1083 |#1|)) (-1083 |#1|) |#1|))) (-344) (-1175 |#1|)) (T -267))
+((-1239 (*1 *2 *3 *4) (-12 (-4 *4 (-344)) (-5 *2 (-598 (-1083 *4))) (-5 *1 (-267 *4 *5)) (-5 *3 (-1083 *4)) (-4 *5 (-1175 *4)))) (-3820 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3)))) (-4123 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3)))) (-3610 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3)))))
+(-10 -7 (-15 -3610 (|#2| |#2| |#1|)) (-15 -4123 (|#2| |#2| |#1|)) (-15 -3820 (|#2| |#2| |#1|)) (-15 -1239 ((-598 (-1083 |#1|)) (-1083 |#1|) |#1|)))
+((-1785 ((|#2| $ |#1|) 6)))
+(((-268 |#1| |#2|) (-133) (-1030) (-1138)) (T -268))
+((-1785 (*1 *2 *1 *3) (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))))
+(-13 (-10 -8 (-15 -1785 (|t#2| $ |t#1|))))
+((-2693 ((|#3| $ |#2| |#3|) 12)) (-2627 ((|#3| $ |#2|) 10)))
+(((-269 |#1| |#2| |#3|) (-10 -8 (-15 -2693 (|#3| |#1| |#2| |#3|)) (-15 -2627 (|#3| |#1| |#2|))) (-270 |#2| |#3|) (-1030) (-1138)) (T -269))
+NIL
+(-10 -8 (-15 -2693 (|#3| |#1| |#2| |#3|)) (-15 -2627 (|#3| |#1| |#2|)))
+((-2454 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4274)))) (-2693 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) 11)) (-1785 ((|#2| $ |#1|) 6) ((|#2| $ |#1| |#2|) 12)))
+(((-270 |#1| |#2|) (-133) (-1030) (-1138)) (T -270))
+((-1785 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) (-2627 (*1 *2 *1 *3) (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) (-2693 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))))
+(-13 (-268 |t#1| |t#2|) (-10 -8 (-15 -1785 (|t#2| $ |t#1| |t#2|)) (-15 -2627 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4274)) (PROGN (-15 -2454 (|t#2| $ |t#1| |t#2|)) (-15 -2693 (|t#2| $ |t#1| |t#2|))) |%noBranch|)))
(((-268 |#1| |#2|) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 35)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 40)) (-3446 (($ $) 38)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) 33)) (-2134 (($ |#2| |#3|) 19)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 ((|#3| $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 20)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2943 (((-3 $ "failed") $ $) NIL)) (-2356 (((-719) $) 34)) (-1902 ((|#2| $ |#2|) 42)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 24)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 29 T CONST)) (-3093 (($) 36 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 37)))
-(((-271 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-289) (-10 -8 (-15 -4076 (|#3| $)) (-15 -2366 (|#2| $)) (-15 -2134 ($ |#2| |#3|)) (-15 -2943 ((-3 $ "failed") $ $)) (-15 -2707 ((-3 $ "failed") $)) (-15 -2483 ($ $)) (-15 -1902 (|#2| $ |#2|)))) (-162) (-1157 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -271))
-((-2707 (*1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-4076 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2366 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-2134 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2943 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2483 (*1 *1 *1) (-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1902 (*1 *2 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1157 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
-(-13 (-289) (-10 -8 (-15 -4076 (|#3| $)) (-15 -2366 (|#2| $)) (-15 -2134 ($ |#2| |#3|)) (-15 -2943 ((-3 $ "failed") $ $)) (-15 -2707 ((-3 $ "failed") $)) (-15 -2483 ($ $)) (-15 -1902 (|#2| $ |#2|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 35)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 40)) (-3258 (($ $) 38)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) 33)) (-1760 (($ |#2| |#3|) 19)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 ((|#3| $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 20)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2966 (((-3 $ "failed") $ $) NIL)) (-4100 (((-721) $) 34)) (-1785 ((|#2| $ |#2|) 42)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 24)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) ((|#2| $) NIL)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 29 T CONST)) (-3050 (($) 36 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 37)))
+(((-271 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-289) (-10 -8 (-15 -1406 (|#3| $)) (-15 -2265 (|#2| $)) (-15 -1760 ($ |#2| |#3|)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3622 ((-3 $ "failed") $)) (-15 -2422 ($ $)) (-15 -1785 (|#2| $ |#2|)))) (-162) (-1160 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| "failed") |#3| |#3|) (-1 (-3 |#2| "failed") |#2| |#2| |#3|)) (T -271))
+((-3622 (*1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1406 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1160 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) (-1760 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1160 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2966 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-2422 (*1 *1 *1) (-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) (-1785 (*1 *2 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7)) (-4 *2 (-1160 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))))
+(-13 (-289) (-10 -8 (-15 -1406 (|#3| $)) (-15 -2265 (|#2| $)) (-15 -1760 ($ |#2| |#3|)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3622 ((-3 $ "failed") $)) (-15 -2422 ($ $)) (-15 -1785 (|#2| $ |#2|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-272) (-133)) (T -272))
NIL
-(-13 (-984) (-109 $ $) (-10 -7 (-6 -4262)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1657 (($ (-1099) (-1099) (-1031) $) 17)) (-3032 (($ (-1099) (-597 (-906)) $) 22)) (-1535 (((-597 (-1014)) $) 10)) (-2999 (((-3 (-1031) "failed") (-1099) (-1099) $) 16)) (-1686 (((-3 (-597 (-906)) "failed") (-1099) $) 21)) (-3958 (($) 7)) (-3556 (($) 23)) (-2366 (((-804) $) 27)) (-3261 (($) 24)))
-(((-273) (-13 (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1535 ((-597 (-1014)) $)) (-15 -2999 ((-3 (-1031) "failed") (-1099) (-1099) $)) (-15 -1657 ($ (-1099) (-1099) (-1031) $)) (-15 -1686 ((-3 (-597 (-906)) "failed") (-1099) $)) (-15 -3032 ($ (-1099) (-597 (-906)) $)) (-15 -3556 ($)) (-15 -3261 ($))))) (T -273))
-((-3958 (*1 *1) (-5 *1 (-273))) (-1535 (*1 *2 *1) (-12 (-5 *2 (-597 (-1014))) (-5 *1 (-273)))) (-2999 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-273)))) (-1657 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-273)))) (-1686 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-597 (-906))) (-5 *1 (-273)))) (-3032 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-273)))) (-3556 (*1 *1) (-5 *1 (-273))) (-3261 (*1 *1) (-5 *1 (-273))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1535 ((-597 (-1014)) $)) (-15 -2999 ((-3 (-1031) "failed") (-1099) (-1099) $)) (-15 -1657 ($ (-1099) (-1099) (-1031) $)) (-15 -1686 ((-3 (-597 (-906)) "failed") (-1099) $)) (-15 -3032 ($ (-1099) (-597 (-906)) $)) (-15 -3556 ($)) (-15 -3261 ($))))
-((-3600 (((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))) 85)) (-3876 (((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|)))) 80) (((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719)) 38)) (-2258 (((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))) 82)) (-1987 (((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|)))) 62)) (-3290 (((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|)))) 61)) (-1814 (((-893 |#1|) (-637 (-388 (-893 |#1|)))) 50) (((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099)) 51)))
-(((-274 |#1|) (-10 -7 (-15 -1814 ((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099))) (-15 -1814 ((-893 |#1|) (-637 (-388 (-893 |#1|))))) (-15 -3290 ((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|))))) (-15 -1987 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))))) (-15 -3876 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719))) (-15 -3876 ((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|))))) (-15 -3600 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))) (-15 -2258 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|)))))) (-432)) (T -274))
-((-2258 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-597 (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))) (-3600 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-597 (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))) (-3876 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 *4)))) (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))) (-3876 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-388 (-893 *6)) (-1089 (-1099) (-893 *6)))) (-5 *5 (-719)) (-4 *6 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *6))))) (-5 *1 (-274 *6)) (-5 *4 (-637 (-388 (-893 *6)))))) (-1987 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))) (-3290 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-4 *4 (-432)) (-5 *2 (-597 (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))) (-5 *1 (-274 *4)))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-5 *2 (-893 *4)) (-5 *1 (-274 *4)) (-4 *4 (-432)))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-893 *5)))) (-5 *4 (-1099)) (-5 *2 (-893 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432)))))
-(-10 -7 (-15 -1814 ((-893 |#1|) (-637 (-388 (-893 |#1|))) (-1099))) (-15 -1814 ((-893 |#1|) (-637 (-388 (-893 |#1|))))) (-15 -3290 ((-597 (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (-637 (-388 (-893 |#1|))))) (-15 -1987 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))))) (-15 -3876 ((-597 (-637 (-388 (-893 |#1|)))) (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|))) (-637 (-388 (-893 |#1|))) (-719) (-719))) (-15 -3876 ((-597 (-637 (-388 (-893 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|)))))) (-637 (-388 (-893 |#1|))))) (-15 -3600 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |geneigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))) (-15 -2258 ((-597 (-2 (|:| |eigval| (-3 (-388 (-893 |#1|)) (-1089 (-1099) (-893 |#1|)))) (|:| |eigmult| (-719)) (|:| |eigvec| (-597 (-637 (-388 (-893 |#1|))))))) (-637 (-388 (-893 |#1|))))))
-((-3217 (((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)) 14)))
-(((-275 |#1| |#2|) (-10 -7 (-15 -3217 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)))) (-1135) (-1135)) (T -275))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-276 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-276 *6)) (-5 *1 (-275 *5 *6)))))
-(-10 -7 (-15 -3217 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1813 (((-110) $) NIL (|has| |#1| (-21)))) (-1760 (($ $) 12)) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1416 (($ $ $) 94 (|has| |#1| (-284)))) (-2350 (($) NIL (-1461 (|has| |#1| (-21)) (|has| |#1| (-675))) CONST)) (-1507 (($ $) 50 (|has| |#1| (-21)))) (-3569 (((-3 $ "failed") $) 61 (|has| |#1| (-675)))) (-1491 ((|#1| $) 11)) (-2707 (((-3 $ "failed") $) 59 (|has| |#1| (-675)))) (-2731 (((-110) $) NIL (|has| |#1| (-675)))) (-3217 (($ (-1 |#1| |#1|) $) 14)) (-1478 ((|#1| $) 10)) (-4104 (($ $) 49 (|has| |#1| (-21)))) (-2264 (((-3 $ "failed") $) 60 (|has| |#1| (-675)))) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2483 (($ $) 63 (-1461 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3818 (((-597 $) $) 84 (|has| |#1| (-522)))) (-4098 (($ $ $) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 $)) 28 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-1099) |#1|) 17 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 21 (|has| |#1| (-491 (-1099) |#1|)))) (-1685 (($ |#1| |#1|) 9)) (-2488 (((-130)) 89 (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) 86 (|has| |#1| (-841 (-1099))))) (-2555 (($ $ $) NIL (|has| |#1| (-453)))) (-2607 (($ $ $) NIL (|has| |#1| (-453)))) (-2366 (($ (-530)) NIL (|has| |#1| (-984))) (((-110) $) 36 (|has| |#1| (-1027))) (((-804) $) 35 (|has| |#1| (-1027)))) (-3300 (((-719)) 66 (|has| |#1| (-984)))) (-3080 (($) 46 (|has| |#1| (-21)) CONST)) (-3093 (($) 56 (|has| |#1| (-675)) CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099))))) (-2248 (($ |#1| |#1|) 8) (((-110) $ $) 31 (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 91 (-1461 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2351 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2339 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-530)) NIL (|has| |#1| (-453))) (($ $ (-719)) NIL (|has| |#1| (-675))) (($ $ (-862)) NIL (|has| |#1| (-1039)))) (* (($ $ |#1|) 54 (|has| |#1| (-1039))) (($ |#1| $) 53 (|has| |#1| (-1039))) (($ $ $) 52 (|has| |#1| (-1039))) (($ (-530) $) 69 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-25)))))
-(((-276 |#1|) (-13 (-1135) (-10 -8 (-15 -2248 ($ |#1| |#1|)) (-15 -1685 ($ |#1| |#1|)) (-15 -1760 ($ $)) (-15 -1478 (|#1| $)) (-15 -1491 (|#1| $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-491 (-1099) |#1|)) (-6 (-491 (-1099) |#1|)) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-6 (-571 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4098 ($ $ $)) (-15 -4098 ($ $ (-597 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2339 ($ |#1| $)) (-15 -2339 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4104 ($ $)) (-15 -1507 ($ $)) (-15 -2351 ($ |#1| $)) (-15 -2351 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-675)) (PROGN (-6 (-675)) (-15 -2264 ((-3 $ "failed") $)) (-15 -3569 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2264 ((-3 $ "failed") $)) (-15 -3569 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-6 (-984)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -3818 ((-597 $) $)) |%noBranch|) (IF (|has| |#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1188 |#1|)) (-15 -2364 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -1416 ($ $ $)) |%noBranch|))) (-1135)) (T -276))
-((-2248 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1685 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1760 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1478 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-1491 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-276 *3)))) (-4098 (*1 *1 *1 *1) (-12 (-4 *2 (-291 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)) (-5 *1 (-276 *2)))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)) (-5 *1 (-276 *3)))) (-2339 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135)))) (-2339 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-1507 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2351 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2351 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))) (-2264 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))) (-3569 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))) (-3818 (*1 *2 *1) (-12 (-5 *2 (-597 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-522)) (-4 *3 (-1135)))) (-1416 (*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1135)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135)))) (-2364 (*1 *1 *1 *1) (-1461 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135))))) (-2483 (*1 *1 *1) (-1461 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135))))))
-(-13 (-1135) (-10 -8 (-15 -2248 ($ |#1| |#1|)) (-15 -1685 ($ |#1| |#1|)) (-15 -1760 ($ $)) (-15 -1478 (|#1| $)) (-15 -1491 (|#1| $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-491 (-1099) |#1|)) (-6 (-491 (-1099) |#1|)) |%noBranch|) (IF (|has| |#1| (-1027)) (PROGN (-6 (-1027)) (-6 (-571 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4098 ($ $ $)) (-15 -4098 ($ $ (-597 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2339 ($ |#1| $)) (-15 -2339 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -4104 ($ $)) (-15 -1507 ($ $)) (-15 -2351 ($ |#1| $)) (-15 -2351 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1039)) (PROGN (-6 (-1039)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-675)) (PROGN (-6 (-675)) (-15 -2264 ((-3 $ "failed") $)) (-15 -3569 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2264 ((-3 $ "failed") $)) (-15 -3569 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-6 (-984)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|) (IF (|has| |#1| (-522)) (-15 -3818 ((-597 $) $)) |%noBranch|) (IF (|has| |#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1188 |#1|)) (-15 -2364 ($ $ $)) (-15 -2483 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -1416 ($ $ $)) |%noBranch|)))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) NIL)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-277 |#1| |#2|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027)) (T -277))
-NIL
-(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))
-((-3913 (((-293) (-1082) (-597 (-1082))) 16) (((-293) (-1082) (-1082)) 15) (((-293) (-597 (-1082))) 14) (((-293) (-1082)) 12)))
-(((-278) (-10 -7 (-15 -3913 ((-293) (-1082))) (-15 -3913 ((-293) (-597 (-1082)))) (-15 -3913 ((-293) (-1082) (-1082))) (-15 -3913 ((-293) (-1082) (-597 (-1082)))))) (T -278))
-((-3913 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1082))) (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3913 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-293)) (-5 *1 (-278)))) (-3913 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278)))))
-(-10 -7 (-15 -3913 ((-293) (-1082))) (-15 -3913 ((-293) (-597 (-1082)))) (-15 -3913 ((-293) (-1082) (-1082))) (-15 -3913 ((-293) (-1082) (-597 (-1082)))))
-((-3217 ((|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|)) 18)))
-(((-279 |#1| |#2|) (-10 -7 (-15 -3217 (|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|)))) (-284) (-1135)) (T -279))
-((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1082)) (-5 *5 (-570 *6)) (-4 *6 (-284)) (-4 *2 (-1135)) (-5 *1 (-279 *6 *2)))))
-(-10 -7 (-15 -3217 (|#2| (-1 |#2| |#1|) (-1082) (-570 |#1|))))
-((-3217 ((|#2| (-1 |#2| |#1|) (-570 |#1|)) 17)))
-(((-280 |#1| |#2|) (-10 -7 (-15 -3217 (|#2| (-1 |#2| |#1|) (-570 |#1|)))) (-284) (-284)) (T -280))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-570 *5)) (-4 *5 (-284)) (-4 *2 (-284)) (-5 *1 (-280 *5 *2)))))
-(-10 -7 (-15 -3217 (|#2| (-1 |#2| |#1|) (-570 |#1|))))
-((-1332 (((-110) (-208)) 10)))
-(((-281 |#1| |#2|) (-10 -7 (-15 -1332 ((-110) (-208)))) (-208) (-208)) (T -281))
-((-1332 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-10 -7 (-15 -1332 ((-110) (-208))))
-((-3460 (((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208)))) 93)) (-1950 (((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208)))) 107) (((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208)))) 61)) (-3493 (((-597 (-1082)) (-1080 (-208))) NIL)) (-1869 (((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208)))) 58)) (-4025 (((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208)))) 49)) (-4093 (((-597 (-1082)) (-597 (-208))) NIL)) (-1384 (((-208) (-1022 (-788 (-208)))) 25)) (-1674 (((-208) (-1022 (-788 (-208)))) 26)) (-1975 (((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 54)) (-1922 (((-1082) (-208)) NIL)))
-(((-282) (-10 -7 (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -1975 ((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1869 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -3460 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -4025 ((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))))) (T -282))
-((-3493 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-282)))) (-4025 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-3460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099))) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))) (-1869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099)) (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-110)) (-5 *1 (-282)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))))
-(-10 -7 (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -1975 ((-110) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1869 ((-597 (-208)) (-297 (-208)) (-1099) (-1022 (-788 (-208))))) (-15 -3460 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-297 (-208)) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -1950 ((-1080 (-208)) (-1181 (-297 (-208))) (-597 (-1099)) (-1022 (-788 (-208))))) (-15 -4025 ((-597 (-208)) (-893 (-388 (-530))) (-1099) (-1022 (-788 (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))))
-((-2473 (((-597 (-570 $)) $) 30)) (-1416 (($ $ (-276 $)) 81) (($ $ (-597 (-276 $))) 123) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-3139 (((-3 (-570 $) "failed") $) 113)) (-2585 (((-570 $) $) 112)) (-3324 (($ $) 19) (($ (-597 $)) 56)) (-2381 (((-597 (-112)) $) 38)) (-4124 (((-112) (-112)) 91)) (-3457 (((-110) $) 131)) (-3217 (($ (-1 $ $) (-570 $)) 89)) (-3707 (((-3 (-570 $) "failed") $) 93)) (-1990 (($ (-112) $) 61) (($ (-112) (-597 $)) 100)) (-1826 (((-110) $ (-112)) 117) (((-110) $ (-1099)) 116)) (-4156 (((-719) $) 46)) (-2861 (((-110) $ $) 59) (((-110) $ (-1099)) 51)) (-1403 (((-110) $) 129)) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) 121) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 84) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) 69) (($ $ (-1099) (-1 $ $)) 75) (($ $ (-597 (-112)) (-597 (-1 $ $))) 83) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 85) (($ $ (-112) (-1 $ (-597 $))) 71) (($ $ (-112) (-1 $ $)) 77)) (-1902 (($ (-112) $) 62) (($ (-112) $ $) 63) (($ (-112) $ $ $) 64) (($ (-112) $ $ $ $) 65) (($ (-112) (-597 $)) 109)) (-3313 (($ $) 53) (($ $ $) 119)) (-1678 (($ $) 17) (($ (-597 $)) 55)) (-4195 (((-110) (-112)) 22)))
-(((-283 |#1|) (-10 -8 (-15 -3457 ((-110) |#1|)) (-15 -1403 ((-110) |#1|)) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -2861 ((-110) |#1| (-1099))) (-15 -2861 ((-110) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#1| |#1|) (-570 |#1|))) (-15 -1990 (|#1| (-112) (-597 |#1|))) (-15 -1990 (|#1| (-112) |#1|)) (-15 -1826 ((-110) |#1| (-1099))) (-15 -1826 ((-110) |#1| (-112))) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -2381 ((-597 (-112)) |#1|)) (-15 -2473 ((-597 (-570 |#1|)) |#1|)) (-15 -3707 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -4156 ((-719) |#1|)) (-15 -3313 (|#1| |#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3324 (|#1| (-597 |#1|))) (-15 -3324 (|#1| |#1|)) (-15 -1678 (|#1| (-597 |#1|))) (-15 -1678 (|#1| |#1|)) (-15 -1416 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -1416 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1416 (|#1| |#1| (-276 |#1|))) (-15 -1902 (|#1| (-112) (-597 |#1|))) (-15 -1902 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2585 ((-570 |#1|) |#1|)) (-15 -3139 ((-3 (-570 |#1|) "failed") |#1|))) (-284)) (T -283))
-((-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284)))))
-(-10 -8 (-15 -3457 ((-110) |#1|)) (-15 -1403 ((-110) |#1|)) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -2861 ((-110) |#1| (-1099))) (-15 -2861 ((-110) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#1| |#1|) (-570 |#1|))) (-15 -1990 (|#1| (-112) (-597 |#1|))) (-15 -1990 (|#1| (-112) |#1|)) (-15 -1826 ((-110) |#1| (-1099))) (-15 -1826 ((-110) |#1| (-112))) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -2381 ((-597 (-112)) |#1|)) (-15 -2473 ((-597 (-570 |#1|)) |#1|)) (-15 -3707 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -4156 ((-719) |#1|)) (-15 -3313 (|#1| |#1| |#1|)) (-15 -3313 (|#1| |#1|)) (-15 -3324 (|#1| (-597 |#1|))) (-15 -3324 (|#1| |#1|)) (-15 -1678 (|#1| (-597 |#1|))) (-15 -1678 (|#1| |#1|)) (-15 -1416 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -1416 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1416 (|#1| |#1| (-276 |#1|))) (-15 -1902 (|#1| (-112) (-597 |#1|))) (-15 -1902 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2585 ((-570 |#1|) |#1|)) (-15 -3139 ((-3 (-570 |#1|) "failed") |#1|)))
-((-2352 (((-110) $ $) 7)) (-2473 (((-597 (-570 $)) $) 44)) (-1416 (($ $ (-276 $)) 56) (($ $ (-597 (-276 $))) 55) (($ $ (-597 (-570 $)) (-597 $)) 54)) (-3139 (((-3 (-570 $) "failed") $) 69)) (-2585 (((-570 $) $) 68)) (-3324 (($ $) 51) (($ (-597 $)) 50)) (-2381 (((-597 (-112)) $) 43)) (-4124 (((-112) (-112)) 42)) (-3457 (((-110) $) 22 (|has| $ (-975 (-530))))) (-3210 (((-1095 $) (-570 $)) 25 (|has| $ (-984)))) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-3217 (($ (-1 $ $) (-570 $)) 36)) (-3707 (((-3 (-570 $) "failed") $) 46)) (-1424 (((-1082) $) 9)) (-2560 (((-597 (-570 $)) $) 45)) (-1990 (($ (-112) $) 38) (($ (-112) (-597 $)) 37)) (-1826 (((-110) $ (-112)) 40) (((-110) $ (-1099)) 39)) (-4156 (((-719) $) 47)) (-2624 (((-1046) $) 10)) (-2861 (((-110) $ $) 35) (((-110) $ (-1099)) 34)) (-1403 (((-110) $) 23 (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) 67) (($ $ (-597 (-570 $)) (-597 $)) 66) (($ $ (-597 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-597 $) (-597 $)) 62) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 33) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 32) (($ $ (-1099) (-1 $ (-597 $))) 31) (($ $ (-1099) (-1 $ $)) 30) (($ $ (-597 (-112)) (-597 (-1 $ $))) 29) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 28) (($ $ (-112) (-1 $ (-597 $))) 27) (($ $ (-112) (-1 $ $)) 26)) (-1902 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-597 $)) 57)) (-3313 (($ $) 49) (($ $ $) 48)) (-1781 (($ $) 24 (|has| $ (-984)))) (-2366 (((-804) $) 11) (($ (-570 $)) 70)) (-1678 (($ $) 53) (($ (-597 $)) 52)) (-4195 (((-110) (-112)) 41)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
+(-13 (-986) (-109 $ $) (-10 -7 (-6 -4266)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2007 (($ (-1102) (-1102) (-1034) $) 17)) (-1339 (($ (-1102) (-598 (-908)) $) 22)) (-3699 (((-598 (-1017)) $) 10)) (-2129 (((-3 (-1034) "failed") (-1102) (-1102) $) 16)) (-3563 (((-3 (-598 (-908)) "failed") (-1102) $) 21)) (-3781 (($) 7)) (-3645 (($) 23)) (-2265 (((-806) $) 27)) (-3819 (($) 24)))
+(((-273) (-13 (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -3699 ((-598 (-1017)) $)) (-15 -2129 ((-3 (-1034) "failed") (-1102) (-1102) $)) (-15 -2007 ($ (-1102) (-1102) (-1034) $)) (-15 -3563 ((-3 (-598 (-908)) "failed") (-1102) $)) (-15 -1339 ($ (-1102) (-598 (-908)) $)) (-15 -3645 ($)) (-15 -3819 ($))))) (T -273))
+((-3781 (*1 *1) (-5 *1 (-273))) (-3699 (*1 *2 *1) (-12 (-5 *2 (-598 (-1017))) (-5 *1 (-273)))) (-2129 (*1 *2 *3 *3 *1) (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-273)))) (-2007 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-1102)) (-5 *3 (-1034)) (-5 *1 (-273)))) (-3563 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-598 (-908))) (-5 *1 (-273)))) (-1339 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-908))) (-5 *1 (-273)))) (-3645 (*1 *1) (-5 *1 (-273))) (-3819 (*1 *1) (-5 *1 (-273))))
+(-13 (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -3699 ((-598 (-1017)) $)) (-15 -2129 ((-3 (-1034) "failed") (-1102) (-1102) $)) (-15 -2007 ($ (-1102) (-1102) (-1034) $)) (-15 -3563 ((-3 (-598 (-908)) "failed") (-1102) $)) (-15 -1339 ($ (-1102) (-598 (-908)) $)) (-15 -3645 ($)) (-15 -3819 ($))))
+((-3208 (((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |geneigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|)))) 85)) (-3545 (((-598 (-639 (-388 (-895 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|)))))) (-639 (-388 (-895 |#1|)))) 80) (((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))) (-721) (-721)) 38)) (-1510 (((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|)))) 82)) (-2959 (((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|)))) 62)) (-4167 (((-598 (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (-639 (-388 (-895 |#1|)))) 61)) (-3369 (((-895 |#1|) (-639 (-388 (-895 |#1|)))) 50) (((-895 |#1|) (-639 (-388 (-895 |#1|))) (-1102)) 51)))
+(((-274 |#1|) (-10 -7 (-15 -3369 ((-895 |#1|) (-639 (-388 (-895 |#1|))) (-1102))) (-15 -3369 ((-895 |#1|) (-639 (-388 (-895 |#1|))))) (-15 -4167 ((-598 (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (-639 (-388 (-895 |#1|))))) (-15 -2959 ((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))))) (-15 -3545 ((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))) (-721) (-721))) (-15 -3545 ((-598 (-639 (-388 (-895 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|)))))) (-639 (-388 (-895 |#1|))))) (-15 -3208 ((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |geneigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|))))) (-15 -1510 ((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|)))))) (-432)) (T -274))
+((-1510 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-598 (-2 (|:| |eigval| (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-639 (-388 (-895 *4)))))) (-3208 (*1 *2 *3) (-12 (-4 *4 (-432)) (-5 *2 (-598 (-2 (|:| |eigval| (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4)))) (|:| |geneigvec| (-598 (-639 (-388 (-895 *4)))))))) (-5 *1 (-274 *4)) (-5 *3 (-639 (-388 (-895 *4)))))) (-3545 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-388 (-895 *5)) (-1092 (-1102) (-895 *5)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 *4)))) (-4 *5 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-639 (-388 (-895 *5)))))) (-3545 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-388 (-895 *6)) (-1092 (-1102) (-895 *6)))) (-5 *5 (-721)) (-4 *6 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *6))))) (-5 *1 (-274 *6)) (-5 *4 (-639 (-388 (-895 *6)))))) (-2959 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-388 (-895 *5)) (-1092 (-1102) (-895 *5)))) (-4 *5 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *5))))) (-5 *1 (-274 *5)) (-5 *4 (-639 (-388 (-895 *5)))))) (-4167 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 *4)))) (-4 *4 (-432)) (-5 *2 (-598 (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4))))) (-5 *1 (-274 *4)))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 *4)))) (-5 *2 (-895 *4)) (-5 *1 (-274 *4)) (-4 *4 (-432)))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-388 (-895 *5)))) (-5 *4 (-1102)) (-5 *2 (-895 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432)))))
+(-10 -7 (-15 -3369 ((-895 |#1|) (-639 (-388 (-895 |#1|))) (-1102))) (-15 -3369 ((-895 |#1|) (-639 (-388 (-895 |#1|))))) (-15 -4167 ((-598 (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (-639 (-388 (-895 |#1|))))) (-15 -2959 ((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))))) (-15 -3545 ((-598 (-639 (-388 (-895 |#1|)))) (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|))) (-639 (-388 (-895 |#1|))) (-721) (-721))) (-15 -3545 ((-598 (-639 (-388 (-895 |#1|)))) (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|)))))) (-639 (-388 (-895 |#1|))))) (-15 -3208 ((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |geneigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|))))) (-15 -1510 ((-598 (-2 (|:| |eigval| (-3 (-388 (-895 |#1|)) (-1092 (-1102) (-895 |#1|)))) (|:| |eigmult| (-721)) (|:| |eigvec| (-598 (-639 (-388 (-895 |#1|))))))) (-639 (-388 (-895 |#1|))))))
+((-3261 (((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)) 14)))
+(((-275 |#1| |#2|) (-10 -7 (-15 -3261 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|)))) (-1138) (-1138)) (T -275))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-276 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-276 *6)) (-5 *1 (-275 *5 *6)))))
+(-10 -7 (-15 -3261 ((-276 |#2|) (-1 |#2| |#1|) (-276 |#1|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3019 (((-110) $) NIL (|has| |#1| (-21)))) (-2780 (($ $) 12)) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3184 (($ $ $) 94 (|has| |#1| (-284)))) (-4082 (($) NIL (-1435 (|has| |#1| (-21)) (|has| |#1| (-677))) CONST)) (-3231 (($ $) 50 (|has| |#1| (-21)))) (-1886 (((-3 $ "failed") $) 61 (|has| |#1| (-677)))) (-1493 ((|#1| $) 11)) (-3622 (((-3 $ "failed") $) 59 (|has| |#1| (-677)))) (-3481 (((-110) $) NIL (|has| |#1| (-677)))) (-3261 (($ (-1 |#1| |#1|) $) 14)) (-1484 ((|#1| $) 10)) (-1762 (($ $) 49 (|has| |#1| (-21)))) (-2886 (((-3 $ "failed") $) 60 (|has| |#1| (-677)))) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2422 (($ $) 63 (-1435 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1902 (((-598 $) $) 84 (|has| |#1| (-523)))) (-4115 (($ $ $) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 $)) 28 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-1102) |#1|) 17 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 21 (|has| |#1| (-492 (-1102) |#1|)))) (-1623 (($ |#1| |#1|) 9)) (-2190 (((-130)) 89 (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) 86 (|has| |#1| (-843 (-1102))))) (-4164 (($ $ $) NIL (|has| |#1| (-453)))) (-3214 (($ $ $) NIL (|has| |#1| (-453)))) (-2265 (($ (-531)) NIL (|has| |#1| (-986))) (((-110) $) 36 (|has| |#1| (-1030))) (((-806) $) 35 (|has| |#1| (-1030)))) (-2284 (((-721)) 66 (|has| |#1| (-986)))) (-3035 (($) 46 (|has| |#1| (-21)) CONST)) (-3050 (($) 56 (|has| |#1| (-677)) CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102))))) (-2148 (($ |#1| |#1|) 8) (((-110) $ $) 31 (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 91 (-1435 (|has| |#1| (-344)) (|has| |#1| (-453))))) (-2250 (($ |#1| $) 44 (|has| |#1| (-21))) (($ $ |#1|) 45 (|has| |#1| (-21))) (($ $ $) 43 (|has| |#1| (-21))) (($ $) 42 (|has| |#1| (-21)))) (-2237 (($ |#1| $) 39 (|has| |#1| (-25))) (($ $ |#1|) 40 (|has| |#1| (-25))) (($ $ $) 38 (|has| |#1| (-25)))) (** (($ $ (-531)) NIL (|has| |#1| (-453))) (($ $ (-721)) NIL (|has| |#1| (-677))) (($ $ (-864)) NIL (|has| |#1| (-1042)))) (* (($ $ |#1|) 54 (|has| |#1| (-1042))) (($ |#1| $) 53 (|has| |#1| (-1042))) (($ $ $) 52 (|has| |#1| (-1042))) (($ (-531) $) 69 (|has| |#1| (-21))) (($ (-721) $) NIL (|has| |#1| (-21))) (($ (-864) $) NIL (|has| |#1| (-25)))))
+(((-276 |#1|) (-13 (-1138) (-10 -8 (-15 -2148 ($ |#1| |#1|)) (-15 -1623 ($ |#1| |#1|)) (-15 -2780 ($ $)) (-15 -1484 (|#1| $)) (-15 -1493 (|#1| $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-492 (-1102) |#1|)) (-6 (-492 (-1102) |#1|)) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-6 (-1030)) (-6 (-572 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4115 ($ $ $)) (-15 -4115 ($ $ (-598 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2237 ($ |#1| $)) (-15 -2237 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1762 ($ $)) (-15 -3231 ($ $)) (-15 -2250 ($ |#1| $)) (-15 -2250 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-677)) (PROGN (-6 (-677)) (-15 -2886 ((-3 $ "failed") $)) (-15 -1886 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2886 ((-3 $ "failed") $)) (-15 -1886 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-6 (-986)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-668 |#1|)) |%noBranch|) (IF (|has| |#1| (-523)) (-15 -1902 ((-598 $) $)) |%noBranch|) (IF (|has| |#1| (-843 (-1102))) (-6 (-843 (-1102))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1191 |#1|)) (-15 -2263 ($ $ $)) (-15 -2422 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -3184 ($ $ $)) |%noBranch|))) (-1138)) (T -276))
+((-2148 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-1623 (*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-2780 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-1484 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-1493 (*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-276 *3)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *2 (-291 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)) (-5 *1 (-276 *2)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-276 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1030)) (-4 *3 (-1138)) (-5 *1 (-276 *3)))) (-2237 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1138)))) (-2237 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1138)))) (-1762 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) (-3231 (*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) (-2250 (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) (-2250 (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))) (-2886 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-677)) (-4 *2 (-1138)))) (-1886 (*1 *1 *1) (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-677)) (-4 *2 (-1138)))) (-1902 (*1 *2 *1) (-12 (-5 *2 (-598 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-523)) (-4 *3 (-1138)))) (-3184 (*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1138)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1042)) (-4 *2 (-1138)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1042)) (-4 *2 (-1138)))) (-2263 (*1 *1 *1 *1) (-1435 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1138))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1138))))) (-2422 (*1 *1 *1) (-1435 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1138))) (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1138))))))
+(-13 (-1138) (-10 -8 (-15 -2148 ($ |#1| |#1|)) (-15 -1623 ($ |#1| |#1|)) (-15 -2780 ($ $)) (-15 -1484 (|#1| $)) (-15 -1493 (|#1| $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-492 (-1102) |#1|)) (-6 (-492 (-1102) |#1|)) |%noBranch|) (IF (|has| |#1| (-1030)) (PROGN (-6 (-1030)) (-6 (-572 (-110))) (IF (|has| |#1| (-291 |#1|)) (PROGN (-15 -4115 ($ $ $)) (-15 -4115 ($ $ (-598 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -2237 ($ |#1| $)) (-15 -2237 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1762 ($ $)) (-15 -3231 ($ $)) (-15 -2250 ($ |#1| $)) (-15 -2250 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1042)) (PROGN (-6 (-1042)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-677)) (PROGN (-6 (-677)) (-15 -2886 ((-3 $ "failed") $)) (-15 -1886 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-453)) (PROGN (-6 (-453)) (-15 -2886 ((-3 $ "failed") $)) (-15 -1886 ((-3 $ "failed") $))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-6 (-986)) (-6 (-109 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-668 |#1|)) |%noBranch|) (IF (|has| |#1| (-523)) (-15 -1902 ((-598 $) $)) |%noBranch|) (IF (|has| |#1| (-843 (-1102))) (-6 (-843 (-1102))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-1191 |#1|)) (-15 -2263 ($ $ $)) (-15 -2422 ($ $))) |%noBranch|) (IF (|has| |#1| (-284)) (-15 -3184 ($ $ $)) |%noBranch|)))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) NIL)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-277 |#1| |#2|) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) (-1030) (-1030)) (T -277))
+NIL
+(-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273)))
+((-3959 (((-293) (-1085) (-598 (-1085))) 16) (((-293) (-1085) (-1085)) 15) (((-293) (-598 (-1085))) 14) (((-293) (-1085)) 12)))
+(((-278) (-10 -7 (-15 -3959 ((-293) (-1085))) (-15 -3959 ((-293) (-598 (-1085)))) (-15 -3959 ((-293) (-1085) (-1085))) (-15 -3959 ((-293) (-1085) (-598 (-1085)))))) (T -278))
+((-3959 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-1085))) (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3959 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-293)) (-5 *1 (-278)))) (-3959 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278)))))
+(-10 -7 (-15 -3959 ((-293) (-1085))) (-15 -3959 ((-293) (-598 (-1085)))) (-15 -3959 ((-293) (-1085) (-1085))) (-15 -3959 ((-293) (-1085) (-598 (-1085)))))
+((-3261 ((|#2| (-1 |#2| |#1|) (-1085) (-571 |#1|)) 18)))
+(((-279 |#1| |#2|) (-10 -7 (-15 -3261 (|#2| (-1 |#2| |#1|) (-1085) (-571 |#1|)))) (-284) (-1138)) (T -279))
+((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1085)) (-5 *5 (-571 *6)) (-4 *6 (-284)) (-4 *2 (-1138)) (-5 *1 (-279 *6 *2)))))
+(-10 -7 (-15 -3261 (|#2| (-1 |#2| |#1|) (-1085) (-571 |#1|))))
+((-3261 ((|#2| (-1 |#2| |#1|) (-571 |#1|)) 17)))
+(((-280 |#1| |#2|) (-10 -7 (-15 -3261 (|#2| (-1 |#2| |#1|) (-571 |#1|)))) (-284) (-284)) (T -280))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-571 *5)) (-4 *5 (-284)) (-4 *2 (-284)) (-5 *1 (-280 *5 *2)))))
+(-10 -7 (-15 -3261 (|#2| (-1 |#2| |#1|) (-571 |#1|))))
+((-1240 (((-110) (-208)) 10)))
+(((-281 |#1| |#2|) (-10 -7 (-15 -1240 ((-110) (-208)))) (-208) (-208)) (T -281))
+((-1240 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-10 -7 (-15 -1240 ((-110) (-208))))
+((-2485 (((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208)))) 93)) (-3195 (((-1083 (-208)) (-1184 (-297 (-208))) (-598 (-1102)) (-1025 (-790 (-208)))) 107) (((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208)))) 61)) (-4022 (((-598 (-1085)) (-1083 (-208))) NIL)) (-1606 (((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208)))) 58)) (-1591 (((-598 (-208)) (-895 (-388 (-531))) (-1102) (-1025 (-790 (-208)))) 49)) (-3127 (((-598 (-1085)) (-598 (-208))) NIL)) (-1325 (((-208) (-1025 (-790 (-208)))) 25)) (-2766 (((-208) (-1025 (-790 (-208)))) 26)) (-2216 (((-110) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 54)) (-1890 (((-1085) (-208)) NIL)))
+(((-282) (-10 -7 (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -2216 ((-110) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1606 ((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208))))) (-15 -2485 ((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-1184 (-297 (-208))) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -1591 ((-598 (-208)) (-895 (-388 (-531))) (-1102) (-1025 (-790 (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))))) (T -282))
+((-4022 (*1 *2 *3) (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-282)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-282)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-282)))) (-1591 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *4 (-1102)) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-282)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *4 (-598 (-1102))) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))) (-3195 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-598 (-1102))) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))) (-2485 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-598 (-1102))) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))) (-1606 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1102)) (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-282)))) (-2216 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-110)) (-5 *1 (-282)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-282)))))
+(-10 -7 (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -2216 ((-110) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1606 ((-598 (-208)) (-297 (-208)) (-1102) (-1025 (-790 (-208))))) (-15 -2485 ((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-297 (-208)) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -3195 ((-1083 (-208)) (-1184 (-297 (-208))) (-598 (-1102)) (-1025 (-790 (-208))))) (-15 -1591 ((-598 (-208)) (-895 (-388 (-531))) (-1102) (-1025 (-790 (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))))
+((-2410 (((-598 (-571 $)) $) 30)) (-3184 (($ $ (-276 $)) 81) (($ $ (-598 (-276 $))) 123) (($ $ (-598 (-571 $)) (-598 $)) NIL)) (-3154 (((-3 (-571 $) "failed") $) 113)) (-2523 (((-571 $) $) 112)) (-1238 (($ $) 19) (($ (-598 $)) 56)) (-4051 (((-598 (-112)) $) 38)) (-3254 (((-112) (-112)) 91)) (-4250 (((-110) $) 131)) (-3261 (($ (-1 $ $) (-571 $)) 89)) (-1302 (((-3 (-571 $) "failed") $) 93)) (-1930 (($ (-112) $) 61) (($ (-112) (-598 $)) 100)) (-4247 (((-110) $ (-112)) 117) (((-110) $ (-1102)) 116)) (-4194 (((-721) $) 46)) (-2781 (((-110) $ $) 59) (((-110) $ (-1102)) 51)) (-1787 (((-110) $) 129)) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL) (($ $ (-598 (-276 $))) 121) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) 84) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) 69) (($ $ (-1102) (-1 $ $)) 75) (($ $ (-598 (-112)) (-598 (-1 $ $))) 83) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) 85) (($ $ (-112) (-1 $ (-598 $))) 71) (($ $ (-112) (-1 $ $)) 77)) (-1785 (($ (-112) $) 62) (($ (-112) $ $) 63) (($ (-112) $ $ $) 64) (($ (-112) $ $ $ $) 65) (($ (-112) (-598 $)) 109)) (-1771 (($ $) 53) (($ $ $) 119)) (-3504 (($ $) 17) (($ (-598 $)) 55)) (-3167 (((-110) (-112)) 22)))
+(((-283 |#1|) (-10 -8 (-15 -4250 ((-110) |#1|)) (-15 -1787 ((-110) |#1|)) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| |#1|)))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| |#1|)))) (-15 -2781 ((-110) |#1| (-1102))) (-15 -2781 ((-110) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#1| |#1|) (-571 |#1|))) (-15 -1930 (|#1| (-112) (-598 |#1|))) (-15 -1930 (|#1| (-112) |#1|)) (-15 -4247 ((-110) |#1| (-1102))) (-15 -4247 ((-110) |#1| (-112))) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -4051 ((-598 (-112)) |#1|)) (-15 -2410 ((-598 (-571 |#1|)) |#1|)) (-15 -1302 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -4194 ((-721) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -1238 (|#1| (-598 |#1|))) (-15 -1238 (|#1| |#1|)) (-15 -3504 (|#1| (-598 |#1|))) (-15 -3504 (|#1| |#1|)) (-15 -3184 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -3184 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -3184 (|#1| |#1| (-276 |#1|))) (-15 -1785 (|#1| (-112) (-598 |#1|))) (-15 -1785 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-571 |#1|) |#1|)) (-15 -2523 ((-571 |#1|) |#1|)) (-15 -3154 ((-3 (-571 |#1|) "failed") |#1|))) (-284)) (T -283))
+((-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284)))))
+(-10 -8 (-15 -4250 ((-110) |#1|)) (-15 -1787 ((-110) |#1|)) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| |#1|)))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| |#1|)))) (-15 -2781 ((-110) |#1| (-1102))) (-15 -2781 ((-110) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#1| |#1|) (-571 |#1|))) (-15 -1930 (|#1| (-112) (-598 |#1|))) (-15 -1930 (|#1| (-112) |#1|)) (-15 -4247 ((-110) |#1| (-1102))) (-15 -4247 ((-110) |#1| (-112))) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -4051 ((-598 (-112)) |#1|)) (-15 -2410 ((-598 (-571 |#1|)) |#1|)) (-15 -1302 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -4194 ((-721) |#1|)) (-15 -1771 (|#1| |#1| |#1|)) (-15 -1771 (|#1| |#1|)) (-15 -1238 (|#1| (-598 |#1|))) (-15 -1238 (|#1| |#1|)) (-15 -3504 (|#1| (-598 |#1|))) (-15 -3504 (|#1| |#1|)) (-15 -3184 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -3184 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -3184 (|#1| |#1| (-276 |#1|))) (-15 -1785 (|#1| (-112) (-598 |#1|))) (-15 -1785 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-571 |#1|) |#1|)) (-15 -2523 ((-571 |#1|) |#1|)) (-15 -3154 ((-3 (-571 |#1|) "failed") |#1|)))
+((-2247 (((-110) $ $) 7)) (-2410 (((-598 (-571 $)) $) 44)) (-3184 (($ $ (-276 $)) 56) (($ $ (-598 (-276 $))) 55) (($ $ (-598 (-571 $)) (-598 $)) 54)) (-3154 (((-3 (-571 $) "failed") $) 69)) (-2523 (((-571 $) $) 68)) (-1238 (($ $) 51) (($ (-598 $)) 50)) (-4051 (((-598 (-112)) $) 43)) (-3254 (((-112) (-112)) 42)) (-4250 (((-110) $) 22 (|has| $ (-977 (-531))))) (-2733 (((-1098 $) (-571 $)) 25 (|has| $ (-986)))) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-3261 (($ (-1 $ $) (-571 $)) 36)) (-1302 (((-3 (-571 $) "failed") $) 46)) (-1521 (((-1085) $) 9)) (-2501 (((-598 (-571 $)) $) 45)) (-1930 (($ (-112) $) 38) (($ (-112) (-598 $)) 37)) (-4247 (((-110) $ (-112)) 40) (((-110) $ (-1102)) 39)) (-4194 (((-721) $) 47)) (-2529 (((-1049) $) 10)) (-2781 (((-110) $ $) 35) (((-110) $ (-1102)) 34)) (-1787 (((-110) $) 23 (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) 67) (($ $ (-598 (-571 $)) (-598 $)) 66) (($ $ (-598 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-598 $) (-598 $)) 62) (($ $ (-598 (-1102)) (-598 (-1 $ $))) 33) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) 32) (($ $ (-1102) (-1 $ (-598 $))) 31) (($ $ (-1102) (-1 $ $)) 30) (($ $ (-598 (-112)) (-598 (-1 $ $))) 29) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) 28) (($ $ (-112) (-1 $ (-598 $))) 27) (($ $ (-112) (-1 $ $)) 26)) (-1785 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-598 $)) 57)) (-1771 (($ $) 49) (($ $ $) 48)) (-3608 (($ $) 24 (|has| $ (-986)))) (-2265 (((-806) $) 11) (($ (-571 $)) 70)) (-3504 (($ $) 53) (($ (-598 $)) 52)) (-3167 (((-110) (-112)) 41)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)))
(((-284) (-133)) (T -284))
-((-1902 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1902 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1902 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1902 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))) (-1416 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *1))) (-4 *1 (-284)))) (-1416 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-570 *1))) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-1678 (*1 *1 *1) (-4 *1 (-284))) (-1678 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284)))) (-3324 (*1 *1 *1) (-4 *1 (-284))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284)))) (-3313 (*1 *1 *1) (-4 *1 (-284))) (-3313 (*1 *1 *1 *1) (-4 *1 (-284))) (-4156 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-719)))) (-3707 (*1 *2 *1) (|partial| -12 (-5 *2 (-570 *1)) (-4 *1 (-284)))) (-2560 (*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))) (-2473 (*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))) (-2381 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-597 (-112))))) (-4124 (*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-4195 (*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-1826 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-1826 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110)))) (-1990 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1990 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284)))) (-3217 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-570 *1)) (-4 *1 (-284)))) (-2861 (*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))) (-2861 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-1 *1 *1))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1 *1 (-597 *1))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 (-1 *1 *1))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-597 *1))) (-4 *1 (-284)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-570 *1)) (-4 *1 (-984)) (-4 *1 (-284)) (-5 *2 (-1095 *1)))) (-1781 (*1 *1 *1) (-12 (-4 *1 (-984)) (-4 *1 (-284)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110)))) (-3457 (*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110)))))
-(-13 (-795) (-975 (-570 $)) (-491 (-570 $) $) (-291 $) (-10 -8 (-15 -1902 ($ (-112) $)) (-15 -1902 ($ (-112) $ $)) (-15 -1902 ($ (-112) $ $ $)) (-15 -1902 ($ (-112) $ $ $ $)) (-15 -1902 ($ (-112) (-597 $))) (-15 -1416 ($ $ (-276 $))) (-15 -1416 ($ $ (-597 (-276 $)))) (-15 -1416 ($ $ (-597 (-570 $)) (-597 $))) (-15 -1678 ($ $)) (-15 -1678 ($ (-597 $))) (-15 -3324 ($ $)) (-15 -3324 ($ (-597 $))) (-15 -3313 ($ $)) (-15 -3313 ($ $ $)) (-15 -4156 ((-719) $)) (-15 -3707 ((-3 (-570 $) "failed") $)) (-15 -2560 ((-597 (-570 $)) $)) (-15 -2473 ((-597 (-570 $)) $)) (-15 -2381 ((-597 (-112)) $)) (-15 -4124 ((-112) (-112))) (-15 -4195 ((-110) (-112))) (-15 -1826 ((-110) $ (-112))) (-15 -1826 ((-110) $ (-1099))) (-15 -1990 ($ (-112) $)) (-15 -1990 ($ (-112) (-597 $))) (-15 -3217 ($ (-1 $ $) (-570 $))) (-15 -2861 ((-110) $ $)) (-15 -2861 ((-110) $ (-1099))) (-15 -4098 ($ $ (-597 (-1099)) (-597 (-1 $ $)))) (-15 -4098 ($ $ (-597 (-1099)) (-597 (-1 $ (-597 $))))) (-15 -4098 ($ $ (-1099) (-1 $ (-597 $)))) (-15 -4098 ($ $ (-1099) (-1 $ $))) (-15 -4098 ($ $ (-597 (-112)) (-597 (-1 $ $)))) (-15 -4098 ($ $ (-597 (-112)) (-597 (-1 $ (-597 $))))) (-15 -4098 ($ $ (-112) (-1 $ (-597 $)))) (-15 -4098 ($ $ (-112) (-1 $ $))) (IF (|has| $ (-984)) (PROGN (-15 -3210 ((-1095 $) (-570 $))) (-15 -1781 ($ $))) |%noBranch|) (IF (|has| $ (-975 (-530))) (PROGN (-15 -1403 ((-110) $)) (-15 -3457 ((-110) $))) |%noBranch|)))
-(((-99) . T) ((-571 (-804)) . T) ((-291 $) . T) ((-491 (-570 $) $) . T) ((-491 $ $) . T) ((-795) . T) ((-975 (-570 $)) . T) ((-1027) . T))
-((-1670 (((-597 |#1|) (-597 |#1|)) 10)))
-(((-285 |#1|) (-10 -7 (-15 -1670 ((-597 |#1|) (-597 |#1|)))) (-793)) (T -285))
-((-1670 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-793)) (-5 *1 (-285 *3)))))
-(-10 -7 (-15 -1670 ((-597 |#1|) (-597 |#1|))))
-((-3217 (((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)) 17)))
-(((-286 |#1| |#2|) (-10 -7 (-15 -3217 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|)))) (-984) (-984)) (T -286))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-637 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-637 *6)) (-5 *1 (-286 *5 *6)))))
-(-10 -7 (-15 -3217 ((-637 |#2|) (-1 |#2| |#1|) (-637 |#1|))))
-((-2574 (((-1181 (-297 (-360))) (-1181 (-297 (-208)))) 105)) (-3476 (((-1022 (-788 (-208))) (-1022 (-788 (-360)))) 40)) (-3493 (((-597 (-1082)) (-1080 (-208))) 87)) (-3500 (((-297 (-360)) (-893 (-208))) 50)) (-2093 (((-208) (-893 (-208))) 46)) (-4144 (((-1082) (-360)) 169)) (-3671 (((-788 (-208)) (-788 (-360))) 34)) (-3891 (((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208)))) 143)) (-2546 (((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) 181) (((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) 179)) (-2030 (((-637 (-208)) (-597 (-208)) (-719)) 14)) (-1651 (((-1181 (-647)) (-597 (-208))) 94)) (-4093 (((-597 (-1082)) (-597 (-208))) 75)) (-4101 (((-3 (-297 (-208)) "failed") (-297 (-208))) 120)) (-1332 (((-110) (-208) (-1022 (-788 (-208)))) 109)) (-3688 (((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) 198)) (-1384 (((-208) (-1022 (-788 (-208)))) 107)) (-1674 (((-208) (-1022 (-788 (-208)))) 108)) (-3490 (((-208) (-388 (-530))) 27)) (-1471 (((-1082) (-360)) 73)) (-2545 (((-208) (-360)) 17)) (-2268 (((-360) (-1181 (-297 (-208)))) 154)) (-2194 (((-297 (-208)) (-297 (-360))) 23)) (-2023 (((-388 (-530)) (-297 (-208))) 53)) (-2131 (((-297 (-388 (-530))) (-297 (-208))) 69)) (-4147 (((-297 (-360)) (-297 (-208))) 98)) (-2519 (((-208) (-297 (-208))) 54)) (-3237 (((-597 (-208)) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) 64)) (-1794 (((-1022 (-788 (-208))) (-1022 (-788 (-208)))) 61)) (-1922 (((-1082) (-208)) 72)) (-2727 (((-647) (-208)) 90)) (-2163 (((-388 (-530)) (-208)) 55)) (-3865 (((-297 (-360)) (-208)) 49)) (-3260 (((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360))))) 43)) (-3483 (((-973) (-597 (-973))) 165) (((-973) (-973) (-973)) 162)) (-2159 (((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
-(((-287) (-10 -7 (-15 -2545 ((-208) (-360))) (-15 -2194 ((-297 (-208)) (-297 (-360)))) (-15 -3671 ((-788 (-208)) (-788 (-360)))) (-15 -3476 ((-1022 (-788 (-208))) (-1022 (-788 (-360))))) (-15 -3260 ((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360)))))) (-15 -2163 ((-388 (-530)) (-208))) (-15 -2023 ((-388 (-530)) (-297 (-208)))) (-15 -2519 ((-208) (-297 (-208)))) (-15 -4101 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2268 ((-360) (-1181 (-297 (-208))))) (-15 -3891 ((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208))))) (-15 -2131 ((-297 (-388 (-530))) (-297 (-208)))) (-15 -1794 ((-1022 (-788 (-208))) (-1022 (-788 (-208))))) (-15 -3237 ((-597 (-208)) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-15 -2727 ((-647) (-208))) (-15 -1651 ((-1181 (-647)) (-597 (-208)))) (-15 -4147 ((-297 (-360)) (-297 (-208)))) (-15 -2574 ((-1181 (-297 (-360))) (-1181 (-297 (-208))))) (-15 -1332 ((-110) (-208) (-1022 (-788 (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -1471 ((-1082) (-360))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))) (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -3483 ((-973) (-973) (-973))) (-15 -3483 ((-973) (-597 (-973)))) (-15 -4144 ((-1082) (-360))) (-15 -2546 ((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))))) (-15 -2546 ((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))) (-15 -2159 ((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3688 ((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -3500 ((-297 (-360)) (-893 (-208)))) (-15 -2093 ((-208) (-893 (-208)))) (-15 -3865 ((-297 (-360)) (-208))) (-15 -3490 ((-208) (-388 (-530)))) (-15 -2030 ((-637 (-208)) (-597 (-208)) (-719))))) (T -287))
-((-2030 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-208))) (-5 *4 (-719)) (-5 *2 (-637 (-208))) (-5 *1 (-287)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-388 (-530))) (-5 *2 (-208)) (-5 *1 (-287)))) (-3865 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-2093 (*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-3500 (*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-3688 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *2 (-973)) (-5 *1 (-287)))) (-2159 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-973)) (-5 *1 (-287)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *2 (-973)) (-5 *1 (-287)))) (-2546 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *2 (-973)) (-5 *1 (-287)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-597 (-973))) (-5 *2 (-973)) (-5 *1 (-287)))) (-3483 (*1 *2 *2 *2) (-12 (-5 *2 (-973)) (-5 *1 (-287)))) (-1674 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1384 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))) (-4093 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))) (-1471 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-1922 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-287)))) (-1332 (*1 *2 *3 *4) (-12 (-5 *4 (-1022 (-788 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-287)))) (-2574 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-1181 (-297 (-360)))) (-5 *1 (-287)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-1651 (*1 *2 *3) (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1181 (-647))) (-5 *1 (-287)))) (-2727 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-647)) (-5 *1 (-287)))) (-3237 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *2 (-597 (-208))) (-5 *1 (-287)))) (-1794 (*1 *2 *2) (-12 (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-530)))) (-5 *1 (-287)))) (-3891 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530)))) (-5 *1 (-287)))) (-2268 (*1 *2 *3) (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))) (-4101 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-2023 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-530))) (-5 *1 (-287)))) (-2163 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-530))) (-5 *1 (-287)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-597 (-1022 (-788 (-360))))) (-5 *2 (-597 (-1022 (-788 (-208))))) (-5 *1 (-287)))) (-3476 (*1 *2 *3) (-12 (-5 *3 (-1022 (-788 (-360)))) (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))) (-3671 (*1 *2 *3) (-12 (-5 *3 (-788 (-360))) (-5 *2 (-788 (-208))) (-5 *1 (-287)))) (-2194 (*1 *2 *3) (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-2545 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287)))))
-(-10 -7 (-15 -2545 ((-208) (-360))) (-15 -2194 ((-297 (-208)) (-297 (-360)))) (-15 -3671 ((-788 (-208)) (-788 (-360)))) (-15 -3476 ((-1022 (-788 (-208))) (-1022 (-788 (-360))))) (-15 -3260 ((-597 (-1022 (-788 (-208)))) (-597 (-1022 (-788 (-360)))))) (-15 -2163 ((-388 (-530)) (-208))) (-15 -2023 ((-388 (-530)) (-297 (-208)))) (-15 -2519 ((-208) (-297 (-208)))) (-15 -4101 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -2268 ((-360) (-1181 (-297 (-208))))) (-15 -3891 ((-2 (|:| |additions| (-530)) (|:| |multiplications| (-530)) (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))) (-1181 (-297 (-208))))) (-15 -2131 ((-297 (-388 (-530))) (-297 (-208)))) (-15 -1794 ((-1022 (-788 (-208))) (-1022 (-788 (-208))))) (-15 -3237 ((-597 (-208)) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-15 -2727 ((-647) (-208))) (-15 -1651 ((-1181 (-647)) (-597 (-208)))) (-15 -4147 ((-297 (-360)) (-297 (-208)))) (-15 -2574 ((-1181 (-297 (-360))) (-1181 (-297 (-208))))) (-15 -1332 ((-110) (-208) (-1022 (-788 (-208))))) (-15 -1922 ((-1082) (-208))) (-15 -1471 ((-1082) (-360))) (-15 -4093 ((-597 (-1082)) (-597 (-208)))) (-15 -3493 ((-597 (-1082)) (-1080 (-208)))) (-15 -1384 ((-208) (-1022 (-788 (-208))))) (-15 -1674 ((-208) (-1022 (-788 (-208))))) (-15 -3483 ((-973) (-973) (-973))) (-15 -3483 ((-973) (-597 (-973)))) (-15 -4144 ((-1082) (-360))) (-15 -2546 ((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))))) (-15 -2546 ((-973) (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))) (-15 -2159 ((-973) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -3688 ((-973) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -3500 ((-297 (-360)) (-893 (-208)))) (-15 -2093 ((-208) (-893 (-208)))) (-15 -3865 ((-297 (-360)) (-208))) (-15 -3490 ((-208) (-388 (-530)))) (-15 -2030 ((-637 (-208)) (-597 (-208)) (-719))))
-((-1426 (((-110) $ $) 11)) (-3590 (($ $ $) 15)) (-3571 (($ $ $) 14)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 44)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 53)) (-2204 (($ $ $) 21) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3551 (((-3 $ "failed") $ $) 17)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 46)))
-(((-288 |#1|) (-10 -8 (-15 -3212 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -2832 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2832 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -1426 ((-110) |#1| |#1|)) (-15 -1286 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -3856 ((-2 (|:| -2065 (-597 |#1|)) (|:| -1974 |#1|)) (-597 |#1|))) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|))) (-289)) (T -288))
-NIL
-(-10 -8 (-15 -3212 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -2832 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2832 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -3590 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -1426 ((-110) |#1| |#1|)) (-15 -1286 ((-3 (-597 |#1|) "failed") (-597 |#1|) |#1|)) (-15 -3856 ((-2 (|:| -2065 (-597 |#1|)) (|:| -1974 |#1|)) (-597 |#1|))) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-1785 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1785 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1785 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1785 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 *1)) (-4 *1 (-284)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))) (-3184 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-276 *1))) (-4 *1 (-284)))) (-3184 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-571 *1))) (-5 *3 (-598 *1)) (-4 *1 (-284)))) (-3504 (*1 *1 *1) (-4 *1 (-284))) (-3504 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-284)))) (-1238 (*1 *1 *1) (-4 *1 (-284))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-284)))) (-1771 (*1 *1 *1) (-4 *1 (-284))) (-1771 (*1 *1 *1 *1) (-4 *1 (-284))) (-4194 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-721)))) (-1302 (*1 *2 *1) (|partial| -12 (-5 *2 (-571 *1)) (-4 *1 (-284)))) (-2501 (*1 *2 *1) (-12 (-5 *2 (-598 (-571 *1))) (-4 *1 (-284)))) (-2410 (*1 *2 *1) (-12 (-5 *2 (-598 (-571 *1))) (-4 *1 (-284)))) (-4051 (*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-598 (-112))))) (-3254 (*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-3167 (*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-4247 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110)))) (-4247 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1102)) (-5 *2 (-110)))) (-1930 (*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112)))) (-1930 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 *1)) (-4 *1 (-284)))) (-3261 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-571 *1)) (-4 *1 (-284)))) (-2781 (*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))) (-2781 (*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1102)) (-5 *2 (-110)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-1 *1 *1))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-1 *1 (-598 *1)))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1 *1 (-598 *1))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 (-1 *1 *1))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 (-1 *1 (-598 *1)))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-598 *1))) (-4 *1 (-284)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284)))) (-2733 (*1 *2 *3) (-12 (-5 *3 (-571 *1)) (-4 *1 (-986)) (-4 *1 (-284)) (-5 *2 (-1098 *1)))) (-3608 (*1 *1 *1) (-12 (-4 *1 (-986)) (-4 *1 (-284)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-977 (-531))) (-4 *1 (-284)) (-5 *2 (-110)))) (-4250 (*1 *2 *1) (-12 (-4 *1 (-977 (-531))) (-4 *1 (-284)) (-5 *2 (-110)))))
+(-13 (-797) (-977 (-571 $)) (-492 (-571 $) $) (-291 $) (-10 -8 (-15 -1785 ($ (-112) $)) (-15 -1785 ($ (-112) $ $)) (-15 -1785 ($ (-112) $ $ $)) (-15 -1785 ($ (-112) $ $ $ $)) (-15 -1785 ($ (-112) (-598 $))) (-15 -3184 ($ $ (-276 $))) (-15 -3184 ($ $ (-598 (-276 $)))) (-15 -3184 ($ $ (-598 (-571 $)) (-598 $))) (-15 -3504 ($ $)) (-15 -3504 ($ (-598 $))) (-15 -1238 ($ $)) (-15 -1238 ($ (-598 $))) (-15 -1771 ($ $)) (-15 -1771 ($ $ $)) (-15 -4194 ((-721) $)) (-15 -1302 ((-3 (-571 $) "failed") $)) (-15 -2501 ((-598 (-571 $)) $)) (-15 -2410 ((-598 (-571 $)) $)) (-15 -4051 ((-598 (-112)) $)) (-15 -3254 ((-112) (-112))) (-15 -3167 ((-110) (-112))) (-15 -4247 ((-110) $ (-112))) (-15 -4247 ((-110) $ (-1102))) (-15 -1930 ($ (-112) $)) (-15 -1930 ($ (-112) (-598 $))) (-15 -3261 ($ (-1 $ $) (-571 $))) (-15 -2781 ((-110) $ $)) (-15 -2781 ((-110) $ (-1102))) (-15 -4115 ($ $ (-598 (-1102)) (-598 (-1 $ $)))) (-15 -4115 ($ $ (-598 (-1102)) (-598 (-1 $ (-598 $))))) (-15 -4115 ($ $ (-1102) (-1 $ (-598 $)))) (-15 -4115 ($ $ (-1102) (-1 $ $))) (-15 -4115 ($ $ (-598 (-112)) (-598 (-1 $ $)))) (-15 -4115 ($ $ (-598 (-112)) (-598 (-1 $ (-598 $))))) (-15 -4115 ($ $ (-112) (-1 $ (-598 $)))) (-15 -4115 ($ $ (-112) (-1 $ $))) (IF (|has| $ (-986)) (PROGN (-15 -2733 ((-1098 $) (-571 $))) (-15 -3608 ($ $))) |%noBranch|) (IF (|has| $ (-977 (-531))) (PROGN (-15 -1787 ((-110) $)) (-15 -4250 ((-110) $))) |%noBranch|)))
+(((-99) . T) ((-572 (-806)) . T) ((-291 $) . T) ((-492 (-571 $) $) . T) ((-492 $ $) . T) ((-797) . T) ((-977 (-571 $)) . T) ((-1030) . T))
+((-2597 (((-598 |#1|) (-598 |#1|)) 10)))
+(((-285 |#1|) (-10 -7 (-15 -2597 ((-598 |#1|) (-598 |#1|)))) (-795)) (T -285))
+((-2597 (*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-795)) (-5 *1 (-285 *3)))))
+(-10 -7 (-15 -2597 ((-598 |#1|) (-598 |#1|))))
+((-3261 (((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)) 17)))
+(((-286 |#1| |#2|) (-10 -7 (-15 -3261 ((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|)))) (-986) (-986)) (T -286))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-639 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-639 *6)) (-5 *1 (-286 *5 *6)))))
+(-10 -7 (-15 -3261 ((-639 |#2|) (-1 |#2| |#1|) (-639 |#1|))))
+((-3996 (((-1184 (-297 (-360))) (-1184 (-297 (-208)))) 105)) (-2369 (((-1025 (-790 (-208))) (-1025 (-790 (-360)))) 40)) (-4022 (((-598 (-1085)) (-1083 (-208))) 87)) (-1328 (((-297 (-360)) (-895 (-208))) 50)) (-1457 (((-208) (-895 (-208))) 46)) (-3614 (((-1085) (-360)) 169)) (-2591 (((-790 (-208)) (-790 (-360))) 34)) (-3011 (((-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531))) (-1184 (-297 (-208)))) 143)) (-1928 (((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) 181) (((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) 179)) (-1751 (((-639 (-208)) (-598 (-208)) (-721)) 14)) (-2020 (((-1184 (-649)) (-598 (-208))) 94)) (-3127 (((-598 (-1085)) (-598 (-208))) 75)) (-4146 (((-3 (-297 (-208)) "failed") (-297 (-208))) 120)) (-1240 (((-110) (-208) (-1025 (-790 (-208)))) 109)) (-2231 (((-975) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) 198)) (-1325 (((-208) (-1025 (-790 (-208)))) 107)) (-2766 (((-208) (-1025 (-790 (-208)))) 108)) (-2123 (((-208) (-388 (-531))) 27)) (-1373 (((-1085) (-360)) 73)) (-3626 (((-208) (-360)) 17)) (-3562 (((-360) (-1184 (-297 (-208)))) 154)) (-2871 (((-297 (-208)) (-297 (-360))) 23)) (-3421 (((-388 (-531)) (-297 (-208))) 53)) (-4186 (((-297 (-388 (-531))) (-297 (-208))) 69)) (-1745 (((-297 (-360)) (-297 (-208))) 98)) (-1322 (((-208) (-297 (-208))) 54)) (-1361 (((-598 (-208)) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) 64)) (-2214 (((-1025 (-790 (-208))) (-1025 (-790 (-208)))) 61)) (-1890 (((-1085) (-208)) 72)) (-1718 (((-649) (-208)) 90)) (-3919 (((-388 (-531)) (-208)) 55)) (-2315 (((-297 (-360)) (-208)) 49)) (-3318 (((-598 (-1025 (-790 (-208)))) (-598 (-1025 (-790 (-360))))) 43)) (-3536 (((-975) (-598 (-975))) 165) (((-975) (-975) (-975)) 162)) (-2145 (((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 195)))
+(((-287) (-10 -7 (-15 -3626 ((-208) (-360))) (-15 -2871 ((-297 (-208)) (-297 (-360)))) (-15 -2591 ((-790 (-208)) (-790 (-360)))) (-15 -2369 ((-1025 (-790 (-208))) (-1025 (-790 (-360))))) (-15 -3318 ((-598 (-1025 (-790 (-208)))) (-598 (-1025 (-790 (-360)))))) (-15 -3919 ((-388 (-531)) (-208))) (-15 -3421 ((-388 (-531)) (-297 (-208)))) (-15 -1322 ((-208) (-297 (-208)))) (-15 -4146 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -3562 ((-360) (-1184 (-297 (-208))))) (-15 -3011 ((-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531))) (-1184 (-297 (-208))))) (-15 -4186 ((-297 (-388 (-531))) (-297 (-208)))) (-15 -2214 ((-1025 (-790 (-208))) (-1025 (-790 (-208))))) (-15 -1361 ((-598 (-208)) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-15 -1718 ((-649) (-208))) (-15 -2020 ((-1184 (-649)) (-598 (-208)))) (-15 -1745 ((-297 (-360)) (-297 (-208)))) (-15 -3996 ((-1184 (-297 (-360))) (-1184 (-297 (-208))))) (-15 -1240 ((-110) (-208) (-1025 (-790 (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -1373 ((-1085) (-360))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))) (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -3536 ((-975) (-975) (-975))) (-15 -3536 ((-975) (-598 (-975)))) (-15 -3614 ((-1085) (-360))) (-15 -1928 ((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))))) (-15 -1928 ((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))))) (-15 -2145 ((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2231 ((-975) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -1328 ((-297 (-360)) (-895 (-208)))) (-15 -1457 ((-208) (-895 (-208)))) (-15 -2315 ((-297 (-360)) (-208))) (-15 -2123 ((-208) (-388 (-531)))) (-15 -1751 ((-639 (-208)) (-598 (-208)) (-721))))) (T -287))
+((-1751 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-208))) (-5 *4 (-721)) (-5 *2 (-639 (-208))) (-5 *1 (-287)))) (-2123 (*1 *2 *3) (-12 (-5 *3 (-388 (-531))) (-5 *2 (-208)) (-5 *1 (-287)))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-1457 (*1 *2 *3) (-12 (-5 *3 (-895 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1328 (*1 *2 *3) (-12 (-5 *3 (-895 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-2231 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *2 (-975)) (-5 *1 (-287)))) (-2145 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-975)) (-5 *1 (-287)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) (-5 *2 (-975)) (-5 *1 (-287)))) (-1928 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *2 (-975)) (-5 *1 (-287)))) (-3614 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1085)) (-5 *1 (-287)))) (-3536 (*1 *2 *3) (-12 (-5 *3 (-598 (-975))) (-5 *2 (-975)) (-5 *1 (-287)))) (-3536 (*1 *2 *2 *2) (-12 (-5 *2 (-975)) (-5 *1 (-287)))) (-2766 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-1325 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))) (-4022 (*1 *2 *3) (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-287)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-287)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1085)) (-5 *1 (-287)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-287)))) (-1240 (*1 *2 *3 *4) (-12 (-5 *4 (-1025 (-790 (-208)))) (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-287)))) (-3996 (*1 *2 *3) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-1184 (-297 (-360)))) (-5 *1 (-287)))) (-1745 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))) (-2020 (*1 *2 *3) (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1184 (-649))) (-5 *1 (-287)))) (-1718 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-649)) (-5 *1 (-287)))) (-1361 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *2 (-598 (-208))) (-5 *1 (-287)))) (-2214 (*1 *2 *2) (-12 (-5 *2 (-1025 (-790 (-208)))) (-5 *1 (-287)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-531)))) (-5 *1 (-287)))) (-3011 (*1 *2 *3) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531)))) (-5 *1 (-287)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))) (-4146 (*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-1322 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-531))) (-5 *1 (-287)))) (-3919 (*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-531))) (-5 *1 (-287)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-598 (-1025 (-790 (-360))))) (-5 *2 (-598 (-1025 (-790 (-208))))) (-5 *1 (-287)))) (-2369 (*1 *2 *3) (-12 (-5 *3 (-1025 (-790 (-360)))) (-5 *2 (-1025 (-790 (-208)))) (-5 *1 (-287)))) (-2591 (*1 *2 *3) (-12 (-5 *3 (-790 (-360))) (-5 *2 (-790 (-208))) (-5 *1 (-287)))) (-2871 (*1 *2 *3) (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))) (-3626 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287)))))
+(-10 -7 (-15 -3626 ((-208) (-360))) (-15 -2871 ((-297 (-208)) (-297 (-360)))) (-15 -2591 ((-790 (-208)) (-790 (-360)))) (-15 -2369 ((-1025 (-790 (-208))) (-1025 (-790 (-360))))) (-15 -3318 ((-598 (-1025 (-790 (-208)))) (-598 (-1025 (-790 (-360)))))) (-15 -3919 ((-388 (-531)) (-208))) (-15 -3421 ((-388 (-531)) (-297 (-208)))) (-15 -1322 ((-208) (-297 (-208)))) (-15 -4146 ((-3 (-297 (-208)) "failed") (-297 (-208)))) (-15 -3562 ((-360) (-1184 (-297 (-208))))) (-15 -3011 ((-2 (|:| |additions| (-531)) (|:| |multiplications| (-531)) (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531))) (-1184 (-297 (-208))))) (-15 -4186 ((-297 (-388 (-531))) (-297 (-208)))) (-15 -2214 ((-1025 (-790 (-208))) (-1025 (-790 (-208))))) (-15 -1361 ((-598 (-208)) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-15 -1718 ((-649) (-208))) (-15 -2020 ((-1184 (-649)) (-598 (-208)))) (-15 -1745 ((-297 (-360)) (-297 (-208)))) (-15 -3996 ((-1184 (-297 (-360))) (-1184 (-297 (-208))))) (-15 -1240 ((-110) (-208) (-1025 (-790 (-208))))) (-15 -1890 ((-1085) (-208))) (-15 -1373 ((-1085) (-360))) (-15 -3127 ((-598 (-1085)) (-598 (-208)))) (-15 -4022 ((-598 (-1085)) (-1083 (-208)))) (-15 -1325 ((-208) (-1025 (-790 (-208))))) (-15 -2766 ((-208) (-1025 (-790 (-208))))) (-15 -3536 ((-975) (-975) (-975))) (-15 -3536 ((-975) (-598 (-975)))) (-15 -3614 ((-1085) (-360))) (-15 -1928 ((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))))) (-15 -1928 ((-975) (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))))) (-15 -2145 ((-975) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -2231 ((-975) (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))) (-15 -1328 ((-297 (-360)) (-895 (-208)))) (-15 -1457 ((-208) (-895 (-208)))) (-15 -2315 ((-297 (-360)) (-208))) (-15 -2123 ((-208) (-388 (-531)))) (-15 -1751 ((-639 (-208)) (-598 (-208)) (-721))))
+((-2760 (((-110) $ $) 11)) (-3650 (($ $ $) 15)) (-3630 (($ $ $) 14)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 44)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 53)) (-2109 (($ $ $) 21) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 32) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 37)) (-3609 (((-3 $ "failed") $ $) 17)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 46)))
+(((-288 |#1|) (-10 -8 (-15 -3038 ((-3 (-598 |#1|) "failed") (-598 |#1|) |#1|)) (-15 -2857 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2857 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -2760 ((-110) |#1| |#1|)) (-15 -1995 ((-3 (-598 |#1|) "failed") (-598 |#1|) |#1|)) (-15 -2434 ((-2 (|:| -2005 (-598 |#1|)) (|:| -1861 |#1|)) (-598 |#1|))) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|))) (-289)) (T -288))
+NIL
+(-10 -8 (-15 -3038 ((-3 (-598 |#1|) "failed") (-598 |#1|) |#1|)) (-15 -2857 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) "failed") |#1| |#1| |#1|)) (-15 -2857 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -3650 (|#1| |#1| |#1|)) (-15 -3630 (|#1| |#1| |#1|)) (-15 -2760 ((-110) |#1| |#1|)) (-15 -1995 ((-3 (-598 |#1|) "failed") (-598 |#1|) |#1|)) (-15 -2434 ((-2 (|:| -2005 (-598 |#1|)) (|:| -1861 |#1|)) (-598 |#1|))) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-289) (-133)) (T -289))
-((-1426 (*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))) (-2356 (*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-719)))) (-3763 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-289)))) (-3571 (*1 *1 *1 *1) (-4 *1 (-289))) (-3590 (*1 *1 *1 *1) (-4 *1 (-289))) (-2832 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1))) (-4 *1 (-289)))) (-2832 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-289)))) (-3212 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-289)))))
-(-13 (-861) (-10 -8 (-15 -1426 ((-110) $ $)) (-15 -2356 ((-719) $)) (-15 -3763 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3571 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -2832 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $)) (-15 -2832 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3212 ((-3 (-597 $) "failed") (-597 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-4098 (($ $ (-597 |#2|) (-597 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-276 |#2|)) 11) (($ $ (-597 (-276 |#2|))) NIL)))
-(((-290 |#1| |#2|) (-10 -8 (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|)))) (-291 |#2|) (-1027)) (T -290))
-NIL
-(-10 -8 (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))))
-((-4098 (($ $ (-597 |#1|) (-597 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-276 |#1|)) 11) (($ $ (-597 (-276 |#1|))) 10)))
-(((-291 |#1|) (-133) (-1027)) (T -291))
-((-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1027)))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1027)))))
-(-13 (-491 |t#1| |t#1|) (-10 -8 (-15 -4098 ($ $ (-276 |t#1|))) (-15 -4098 ($ $ (-597 (-276 |t#1|))))))
-(((-491 |#1| |#1|) . T))
-((-4098 ((|#1| (-1 |#1| (-530)) (-1101 (-388 (-530)))) 25)))
-(((-292 |#1|) (-10 -7 (-15 -4098 (|#1| (-1 |#1| (-530)) (-1101 (-388 (-530)))))) (-37 (-388 (-530)))) (T -292))
-((-4098 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-530))) (-5 *4 (-1101 (-388 (-530)))) (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-530)))))))
-(-10 -7 (-15 -4098 (|#1| (-1 |#1| (-530)) (-1101 (-388 (-530))))))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 7)) (-2248 (((-110) $ $) 9)))
-(((-293) (-1027)) (T -293))
-NIL
-(-1027)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 62)) (-1612 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1167 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-1166 |#2| |#3| |#4|) "failed") $) 25)) (-2585 (((-1167 |#1| |#2| |#3| |#4|) $) NIL) (((-1099) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-530) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-530)))) (((-1166 |#2| |#3| |#4|) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-1167 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1181 (-1167 |#1| |#2| |#3| |#4|)))) (-637 $) (-1181 $)) NIL) (((-637 (-1167 |#1| |#2| |#3| |#4|)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-1167 |#1| |#2| |#3| |#4|) $) 21)) (-2972 (((-3 $ "failed") $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1075)))) (-2166 (((-110) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-1817 (($ $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-3217 (($ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) $) NIL)) (-2595 (((-3 (-788 |#2|) "failed") $) 78)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-289)))) (-3175 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-1167 |#1| |#2| |#3| |#4|)) (-597 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-276 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-597 (-276 (-1167 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-291 (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-597 (-1099)) (-597 (-1167 |#1| |#2| |#3| |#4|))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-491 (-1099) (-1167 |#1| |#2| |#3| |#4|)))) (($ $ (-1099) (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-491 (-1099) (-1167 |#1| |#2| |#3| |#4|))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-268 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-719)) NIL) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-1167 |#1| |#2| |#3| |#4|) $) 17)) (-3260 (((-833 (-530)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-572 (-506)))) (((-360) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-960))) (((-208) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-1167 |#1| |#2| |#3| |#4|)) 29) (($ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-975 (-1099)))) (($ (-1166 |#2| |#3| |#4|)) 36)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-1167 |#1| |#2| |#3| |#4|) (-850))) (|has| (-1167 |#1| |#2| |#3| |#4|) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-1167 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-768)))) (-3080 (($) 41 T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1099)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-841 (-1099)))) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) (-719)) NIL) (($ $ (-1 (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-1167 |#1| |#2| |#3| |#4|) (-795)))) (-2364 (($ $ $) 34) (($ (-1167 |#1| |#2| |#3| |#4|) (-1167 |#1| |#2| |#3| |#4|)) 31)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-1167 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1167 |#1| |#2| |#3| |#4|)) NIL)))
-(((-294 |#1| |#2| |#3| |#4|) (-13 (-932 (-1167 |#1| |#2| |#3| |#4|)) (-975 (-1166 |#2| |#3| |#4|)) (-10 -8 (-15 -2595 ((-3 (-788 |#2|) "failed") $)) (-15 -2366 ($ (-1166 |#2| |#3| |#4|))))) (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -294))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1166 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4) (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *1 (-294 *3 *4 *5 *6)))) (-2595 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-788 *4)) (-5 *1 (-294 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))))
-(-13 (-932 (-1167 |#1| |#2| |#3| |#4|)) (-975 (-1166 |#2| |#3| |#4|)) (-10 -8 (-15 -2595 ((-3 (-788 |#2|) "failed") $)) (-15 -2366 ($ (-1166 |#2| |#3| |#4|)))))
-((-3217 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 13)))
-(((-295 |#1| |#2|) (-10 -7 (-15 -3217 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-795) (-795)) (T -295))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-5 *2 (-297 *6)) (-5 *1 (-295 *5 *6)))))
-(-10 -7 (-15 -3217 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|))))
-((-2805 (((-51) |#2| (-276 |#2|) (-719)) 33) (((-51) |#2| (-276 |#2|)) 24) (((-51) |#2| (-719)) 28) (((-51) |#2|) 25) (((-51) (-1099)) 21)) (-2460 (((-51) |#2| (-276 |#2|) (-388 (-530))) 51) (((-51) |#2| (-276 |#2|)) 48) (((-51) |#2| (-388 (-530))) 50) (((-51) |#2|) 49) (((-51) (-1099)) 47)) (-2457 (((-51) |#2| (-276 |#2|) (-388 (-530))) 46) (((-51) |#2| (-276 |#2|)) 43) (((-51) |#2| (-388 (-530))) 45) (((-51) |#2|) 44) (((-51) (-1099)) 42)) (-2817 (((-51) |#2| (-276 |#2|) (-530)) 39) (((-51) |#2| (-276 |#2|)) 35) (((-51) |#2| (-530)) 38) (((-51) |#2|) 36) (((-51) (-1099)) 34)))
-(((-296 |#1| |#2|) (-10 -7 (-15 -2805 ((-51) (-1099))) (-15 -2805 ((-51) |#2|)) (-15 -2805 ((-51) |#2| (-719))) (-15 -2805 ((-51) |#2| (-276 |#2|))) (-15 -2805 ((-51) |#2| (-276 |#2|) (-719))) (-15 -2817 ((-51) (-1099))) (-15 -2817 ((-51) |#2|)) (-15 -2817 ((-51) |#2| (-530))) (-15 -2817 ((-51) |#2| (-276 |#2|))) (-15 -2817 ((-51) |#2| (-276 |#2|) (-530))) (-15 -2457 ((-51) (-1099))) (-15 -2457 ((-51) |#2|)) (-15 -2457 ((-51) |#2| (-388 (-530)))) (-15 -2457 ((-51) |#2| (-276 |#2|))) (-15 -2457 ((-51) |#2| (-276 |#2|) (-388 (-530)))) (-15 -2460 ((-51) (-1099))) (-15 -2460 ((-51) |#2|)) (-15 -2460 ((-51) |#2| (-388 (-530)))) (-15 -2460 ((-51) |#2| (-276 |#2|))) (-15 -2460 ((-51) |#2| (-276 |#2|) (-388 (-530))))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -296))
-((-2460 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2460 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2460 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2457 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2457 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2457 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2457 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2817 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 *5) (-593 *5))) (-5 *5 (-530)) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2817 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *5 (-13 (-432) (-795) (-975 *4) (-593 *4))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2817 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2817 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-719)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2805 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2805 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1121) (-411 *4))))))
-(-10 -7 (-15 -2805 ((-51) (-1099))) (-15 -2805 ((-51) |#2|)) (-15 -2805 ((-51) |#2| (-719))) (-15 -2805 ((-51) |#2| (-276 |#2|))) (-15 -2805 ((-51) |#2| (-276 |#2|) (-719))) (-15 -2817 ((-51) (-1099))) (-15 -2817 ((-51) |#2|)) (-15 -2817 ((-51) |#2| (-530))) (-15 -2817 ((-51) |#2| (-276 |#2|))) (-15 -2817 ((-51) |#2| (-276 |#2|) (-530))) (-15 -2457 ((-51) (-1099))) (-15 -2457 ((-51) |#2|)) (-15 -2457 ((-51) |#2| (-388 (-530)))) (-15 -2457 ((-51) |#2| (-276 |#2|))) (-15 -2457 ((-51) |#2| (-276 |#2|) (-388 (-530)))) (-15 -2460 ((-51) (-1099))) (-15 -2460 ((-51) |#2|)) (-15 -2460 ((-51) |#2| (-388 (-530)))) (-15 -2460 ((-51) |#2| (-276 |#2|))) (-15 -2460 ((-51) |#2| (-276 |#2|) (-388 (-530)))))
-((-2352 (((-110) $ $) NIL)) (-3460 (((-597 $) $ (-1099)) NIL (|has| |#1| (-522))) (((-597 $) $) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $)) NIL (|has| |#1| (-522))) (((-597 $) (-893 $)) NIL (|has| |#1| (-522)))) (-4202 (($ $ (-1099)) NIL (|has| |#1| (-522))) (($ $) NIL (|has| |#1| (-522))) (($ (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (($ (-1095 $)) NIL (|has| |#1| (-522))) (($ (-893 $)) NIL (|has| |#1| (-522)))) (-1813 (((-110) $) 27 (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-2746 (((-597 (-1099)) $) 351)) (-2577 (((-388 (-1095 $)) $ (-570 $)) NIL (|has| |#1| (-522)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-2473 (((-597 (-570 $)) $) NIL)) (-2386 (($ $) 161 (|has| |#1| (-522)))) (-2244 (($ $) 137 (|has| |#1| (-522)))) (-4017 (($ $ (-1020 $)) 222 (|has| |#1| (-522))) (($ $ (-1099)) 218 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL (-1461 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) 368) (($ $ (-597 (-570 $)) (-597 $)) 412)) (-4002 (((-399 (-1095 $)) (-1095 $)) 295 (-12 (|has| |#1| (-432)) (|has| |#1| (-522))))) (-3544 (($ $) NIL (|has| |#1| (-522)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-522)))) (-2625 (($ $) NIL (|has| |#1| (-522)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2360 (($ $) 157 (|has| |#1| (-522)))) (-2219 (($ $) 133 (|has| |#1| (-522)))) (-3923 (($ $ (-530)) 72 (|has| |#1| (-522)))) (-2409 (($ $) 165 (|has| |#1| (-522)))) (-2269 (($ $) 141 (|has| |#1| (-522)))) (-2350 (($) NIL (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))) CONST)) (-2933 (((-597 $) $ (-1099)) NIL (|has| |#1| (-522))) (((-597 $) $) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $) (-1099)) NIL (|has| |#1| (-522))) (((-597 $) (-1095 $)) NIL (|has| |#1| (-522))) (((-597 $) (-893 $)) NIL (|has| |#1| (-522)))) (-1326 (($ $ (-1099)) NIL (|has| |#1| (-522))) (($ $) NIL (|has| |#1| (-522))) (($ (-1095 $) (-1099)) 124 (|has| |#1| (-522))) (($ (-1095 $)) NIL (|has| |#1| (-522))) (($ (-893 $)) NIL (|has| |#1| (-522)))) (-3139 (((-3 (-570 $) "failed") $) 17) (((-3 (-1099) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-47) "failed") $) 323 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-893 |#1|)) "failed") $) NIL (|has| |#1| (-522))) (((-3 (-893 |#1|) "failed") $) NIL (|has| |#1| (-984))) (((-3 (-388 (-530)) "failed") $) 46 (-1461 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-2585 (((-570 $) $) 11) (((-1099) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-893 |#1|)) $) NIL (|has| |#1| (-522))) (((-893 |#1|) $) NIL (|has| |#1| (-984))) (((-388 (-530)) $) 306 (-1461 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3590 (($ $ $) NIL (|has| |#1| (-522)))) (-2329 (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 117 (|has| |#1| (-984))) (((-637 |#1|) (-637 $)) 107 (|has| |#1| (-984))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (-2134 (($ $) 89 (|has| |#1| (-522)))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (-3571 (($ $ $) NIL (|has| |#1| (-522)))) (-2801 (($ $ (-1020 $)) 226 (|has| |#1| (-522))) (($ $ (-1099)) 224 (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-522)))) (-3295 (((-110) $) NIL (|has| |#1| (-522)))) (-1751 (($ $ $) 192 (|has| |#1| (-522)))) (-1948 (($) 127 (|has| |#1| (-522)))) (-2937 (($ $ $) 212 (|has| |#1| (-522)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 374 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 381 (|has| |#1| (-827 (-360))))) (-3324 (($ $) NIL) (($ (-597 $)) NIL)) (-2381 (((-597 (-112)) $) NIL)) (-4124 (((-112) (-112)) 267)) (-2731 (((-110) $) 25 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (-3457 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4127 (($ $) 71 (|has| |#1| (-984)))) (-1918 (((-1051 |#1| (-570 $)) $) 84 (|has| |#1| (-984)))) (-1449 (((-110) $) 64 (|has| |#1| (-522)))) (-3741 (($ $ (-530)) NIL (|has| |#1| (-522)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-522)))) (-3210 (((-1095 $) (-570 $)) 268 (|has| $ (-984)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 $ $) (-570 $)) 408)) (-3707 (((-3 (-570 $) "failed") $) NIL)) (-2168 (($ $) 131 (|has| |#1| (-522)))) (-1890 (($ $) 237 (|has| |#1| (-522)))) (-2170 (($ (-597 $)) NIL (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-1424 (((-1082) $) NIL)) (-2560 (((-597 (-570 $)) $) 49)) (-1990 (($ (-112) $) NIL) (($ (-112) (-597 $)) 413)) (-1862 (((-3 (-597 $) "failed") $) NIL (|has| |#1| (-1039)))) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $) NIL (|has| |#1| (-984)))) (-1534 (((-3 (-597 $) "failed") $) 416 (|has| |#1| (-25)))) (-3062 (((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $) 420 (|has| |#1| (-25)))) (-1487 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $) NIL (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112)) NIL (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099)) NIL (|has| |#1| (-984)))) (-1826 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) 53)) (-2483 (($ $) NIL (-1461 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-1900 (($ $ (-1099)) 241 (|has| |#1| (-522))) (($ $ (-1020 $)) 243 (|has| |#1| (-522)))) (-4156 (((-719) $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 43)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 288 (|has| |#1| (-522)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-2861 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2896 (($ $ (-1099)) 216 (|has| |#1| (-522))) (($ $) 214 (|has| |#1| (-522)))) (-1303 (($ $) 208 (|has| |#1| (-522)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 293 (-12 (|has| |#1| (-432)) (|has| |#1| (-522))))) (-2611 (((-399 $) $) NIL (|has| |#1| (-522)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-522))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-522)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-522)))) (-2853 (($ $) 129 (|has| |#1| (-522)))) (-1403 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) 407) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) 361) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1099)) NIL (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-572 (-506)))) (($ $) NIL (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 349 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-112)) (-597 $) (-1099)) 348 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ $)) NIL (|has| |#1| (-984)))) (-2356 (((-719) $) NIL (|has| |#1| (-522)))) (-2172 (($ $) 229 (|has| |#1| (-522)))) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3313 (($ $) NIL) (($ $ $) NIL)) (-2206 (($ $) 239 (|has| |#1| (-522)))) (-2101 (($ $) 190 (|has| |#1| (-522)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-984))) (($ $ (-1099)) NIL (|has| |#1| (-984)))) (-1269 (($ $) 73 (|has| |#1| (-522)))) (-1928 (((-1051 |#1| (-570 $)) $) 86 (|has| |#1| (-522)))) (-1781 (($ $) 304 (|has| $ (-984)))) (-2421 (($ $) 167 (|has| |#1| (-522)))) (-2281 (($ $) 143 (|has| |#1| (-522)))) (-2398 (($ $) 163 (|has| |#1| (-522)))) (-2254 (($ $) 139 (|has| |#1| (-522)))) (-2373 (($ $) 159 (|has| |#1| (-522)))) (-2231 (($ $) 135 (|has| |#1| (-522)))) (-3260 (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (($ (-399 $)) NIL (|has| |#1| (-522))) (((-506) $) 346 (|has| |#1| (-572 (-506))))) (-2555 (($ $ $) NIL (|has| |#1| (-453)))) (-2607 (($ $ $) NIL (|has| |#1| (-453)))) (-2366 (((-804) $) 406) (($ (-570 $)) 397) (($ (-1099)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-522))) (($ (-47)) 299 (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) (($ (-1051 |#1| (-570 $))) 88 (|has| |#1| (-984))) (($ (-388 |#1|)) NIL (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) NIL (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) NIL (|has| |#1| (-522))) (($ (-388 (-893 |#1|))) NIL (|has| |#1| (-522))) (($ (-893 |#1|)) NIL (|has| |#1| (-984))) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-522)) (|has| |#1| (-975 (-388 (-530)))))) (($ (-530)) 34 (-1461 (|has| |#1| (-975 (-530))) (|has| |#1| (-984))))) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL (|has| |#1| (-984)))) (-1678 (($ $) NIL) (($ (-597 $)) NIL)) (-2947 (($ $ $) 210 (|has| |#1| (-522)))) (-2323 (($ $ $) 196 (|has| |#1| (-522)))) (-3981 (($ $ $) 200 (|has| |#1| (-522)))) (-2790 (($ $ $) 194 (|has| |#1| (-522)))) (-1374 (($ $ $) 198 (|has| |#1| (-522)))) (-4195 (((-110) (-112)) 9)) (-2459 (($ $) 173 (|has| |#1| (-522)))) (-2314 (($ $) 149 (|has| |#1| (-522)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 169 (|has| |#1| (-522)))) (-2293 (($ $) 145 (|has| |#1| (-522)))) (-2485 (($ $) 177 (|has| |#1| (-522)))) (-2334 (($ $) 153 (|has| |#1| (-522)))) (-2520 (($ (-1099) $) NIL) (($ (-1099) $ $) NIL) (($ (-1099) $ $ $) NIL) (($ (-1099) $ $ $ $) NIL) (($ (-1099) (-597 $)) NIL)) (-3179 (($ $) 204 (|has| |#1| (-522)))) (-1607 (($ $) 202 (|has| |#1| (-522)))) (-3632 (($ $) 179 (|has| |#1| (-522)))) (-2347 (($ $) 155 (|has| |#1| (-522)))) (-2472 (($ $) 175 (|has| |#1| (-522)))) (-2324 (($ $) 151 (|has| |#1| (-522)))) (-2446 (($ $) 171 (|has| |#1| (-522)))) (-2304 (($ $) 147 (|has| |#1| (-522)))) (-3934 (($ $) 182 (|has| |#1| (-522)))) (-3080 (($) 20 (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) CONST)) (-2318 (($ $) 233 (|has| |#1| (-522)))) (-3093 (($) 22 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))) CONST)) (-3187 (($ $) 184 (|has| |#1| (-522))) (($ $ $) 186 (|has| |#1| (-522)))) (-1870 (($ $) 231 (|has| |#1| (-522)))) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-984))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-984))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-984))) (($ $ (-1099)) NIL (|has| |#1| (-984)))) (-2703 (($ $) 235 (|has| |#1| (-522)))) (-3564 (($ $ $) 188 (|has| |#1| (-522)))) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 81)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 80)) (-2364 (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 98 (|has| |#1| (-522))) (($ $ $) 42 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-2351 (($ $ $) 40 (-1461 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ $) 29 (-1461 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (-2339 (($ $ $) 38 (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))) (** (($ $ $) 66 (|has| |#1| (-522))) (($ $ (-388 (-530))) 301 (|has| |#1| (-522))) (($ $ (-530)) 76 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522)))) (($ $ (-719)) 74 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039)))) (($ $ (-862)) 78 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039))))) (* (($ (-388 (-530)) $) NIL (|has| |#1| (-522))) (($ $ (-388 (-530))) NIL (|has| |#1| (-522))) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))) (($ $ $) 36 (-1461 (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) (|has| |#1| (-1039)))) (($ (-530) $) 32 (-1461 (|has| |#1| (-21)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ (-719) $) NIL (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))))) (($ (-862) $) NIL (-1461 (|has| |#1| (-25)) (-12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))))))
-(((-297 |#1|) (-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-522)) (PROGN (-6 (-29 |#1|)) (-6 (-1121)) (-6 (-151)) (-6 (-583)) (-6 (-1063)) (-15 -2134 ($ $)) (-15 -1449 ((-110) $)) (-15 -3923 ($ $ (-530))) (IF (|has| |#1| (-432)) (PROGN (-15 -1473 ((-399 (-1095 $)) (-1095 $))) (-15 -4002 ((-399 (-1095 $)) (-1095 $)))) |%noBranch|) (IF (|has| |#1| (-975 (-530))) (-6 (-975 (-47))) |%noBranch|)) |%noBranch|))) (-795)) (T -297))
-((-2134 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-522)) (-4 *2 (-795)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-3923 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-1473 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795)))) (-4002 (*1 *2 *3) (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795)))))
-(-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-522)) (PROGN (-6 (-29 |#1|)) (-6 (-1121)) (-6 (-151)) (-6 (-583)) (-6 (-1063)) (-15 -2134 ($ $)) (-15 -1449 ((-110) $)) (-15 -3923 ($ $ (-530))) (IF (|has| |#1| (-432)) (PROGN (-15 -1473 ((-399 (-1095 $)) (-1095 $))) (-15 -4002 ((-399 (-1095 $)) (-1095 $)))) |%noBranch|) (IF (|has| |#1| (-975 (-530))) (-6 (-975 (-47))) |%noBranch|)) |%noBranch|)))
-((-3983 (((-51) |#2| (-112) (-276 |#2|) (-597 |#2|)) 88) (((-51) |#2| (-112) (-276 |#2|) (-276 |#2|)) 84) (((-51) |#2| (-112) (-276 |#2|) |#2|) 86) (((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|) 87) (((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|))) 80) (((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|)) 82) (((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|)) 83) (((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|))) 81) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|)) 89) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|)) 85)))
-(((-298 |#1| |#2|) (-10 -7 (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -3983 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) (-597 |#2|)))) (-13 (-795) (-522) (-572 (-506))) (-411 |#1|)) (T -298))
-((-3983 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-597 *3)) (-4 *3 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))) (-3983 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-3983 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-3983 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *5)))) (-3983 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-112))) (-5 *6 (-597 (-276 *8))) (-4 *8 (-411 *7)) (-5 *5 (-276 *8)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-3983 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3983 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 (-276 *8))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *8)) (-5 *6 (-597 *8)) (-4 *8 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-3983 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3983 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-597 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3983 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5)) (-4 *5 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51)) (-5 *1 (-298 *5 *6)))))
-(-10 -7 (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -3983 ((-51) (-597 (-276 |#2|)) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 |#2|))) (-15 -3983 ((-51) (-597 |#2|) (-597 (-112)) (-276 |#2|) (-597 (-276 |#2|)))) (-15 -3983 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -3983 ((-51) |#2| (-112) (-276 |#2|) (-597 |#2|))))
-((-3090 (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082)) 46) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530)) 47) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082)) 43) (((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530)) 44)) (-3494 (((-1 (-208) (-208)) (-208)) 45)))
-(((-299) (-10 -7 (-15 -3494 ((-1 (-208) (-208)) (-208))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082))))) (T -299))
-((-3090 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *8 (-1082)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-3090 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-3090 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *7 (-1082)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-3090 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *2 (-1131 (-867))) (-5 *1 (-299)))) (-3494 (*1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
-(-10 -7 (-15 -3494 ((-1 (-208) (-208)) (-208))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-1 (-208) (-208)) (-530) (-1082))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530))) (-15 -3090 ((-1131 (-867)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-208) (-530) (-1082))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 25)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 20)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) 32)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) 16)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) NIL) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-1293 (((-388 (-530)) $) 17)) (-3734 (($ (-1166 |#1| |#2| |#3|)) 11)) (-3194 (((-1166 |#1| |#2| |#3|) $) 12)) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-1429 (((-388 (-530)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 10)) (-2366 (((-804) $) 38) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) 30)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) NIL)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 27)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 33)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-300 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-740) (-10 -8 (-15 -3734 ($ (-1166 |#1| |#2| |#3|))) (-15 -3194 ((-1166 |#1| |#2| |#3|) $)) (-15 -1293 ((-388 (-530)) $)))) (-13 (-344) (-795)) (-1099) |#1|) (T -300))
-((-3734 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-1166 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))) (-1293 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))))
-(-13 (-1162 |#1|) (-740) (-10 -8 (-15 -3734 ($ (-1166 |#1| |#2| |#3|))) (-15 -3194 ((-1166 |#1| |#2| |#3|) $)) (-15 -1293 ((-388 (-530)) $))))
-((-3741 (((-2 (|:| -3194 (-719)) (|:| -2065 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719)) 24)) (-2168 (((-597 (-2 (|:| -2065 (-719)) (|:| |logand| |#1|))) (-399 |#1|)) 28)))
-(((-301 |#1|) (-10 -7 (-15 -3741 ((-2 (|:| -3194 (-719)) (|:| -2065 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719))) (-15 -2168 ((-597 (-2 (|:| -2065 (-719)) (|:| |logand| |#1|))) (-399 |#1|)))) (-522)) (T -301))
-((-2168 (*1 *2 *3) (-12 (-5 *3 (-399 *4)) (-4 *4 (-522)) (-5 *2 (-597 (-2 (|:| -2065 (-719)) (|:| |logand| *4)))) (-5 *1 (-301 *4)))) (-3741 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *5)) (-4 *5 (-522)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *5) (|:| |radicand| (-597 *5)))) (-5 *1 (-301 *5)) (-5 *4 (-719)))))
-(-10 -7 (-15 -3741 ((-2 (|:| -3194 (-719)) (|:| -2065 |#1|) (|:| |radicand| (-597 |#1|))) (-399 |#1|) (-719))) (-15 -2168 ((-597 (-2 (|:| -2065 (-719)) (|:| |logand| |#1|))) (-399 |#1|))))
-((-2746 (((-597 |#2|) (-1095 |#4|)) 43)) (-4043 ((|#3| (-530)) 46)) (-3021 (((-1095 |#4|) (-1095 |#3|)) 30)) (-1399 (((-1095 |#4|) (-1095 |#4|) (-530)) 56)) (-3321 (((-1095 |#3|) (-1095 |#4|)) 21)) (-1429 (((-597 (-719)) (-1095 |#4|) (-597 |#2|)) 40)) (-1811 (((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|)) 35)))
-(((-302 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1811 ((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|))) (-15 -1429 ((-597 (-719)) (-1095 |#4|) (-597 |#2|))) (-15 -2746 ((-597 |#2|) (-1095 |#4|))) (-15 -3321 ((-1095 |#3|) (-1095 |#4|))) (-15 -3021 ((-1095 |#4|) (-1095 |#3|))) (-15 -1399 ((-1095 |#4|) (-1095 |#4|) (-530))) (-15 -4043 (|#3| (-530)))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|)) (T -302))
-((-4043 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-984)) (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-890 *2 *4 *5)))) (-1399 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *7)) (-5 *3 (-530)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *1 (-302 *4 *5 *6 *7)))) (-3021 (*1 *2 *3) (-12 (-5 *3 (-1095 *6)) (-4 *6 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-1095 *7)) (-5 *1 (-302 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-1095 *6)) (-5 *1 (-302 *4 *5 *6 *7)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-597 *5)) (-5 *1 (-302 *4 *5 *6 *7)))) (-1429 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *8)) (-5 *4 (-597 *6)) (-4 *6 (-795)) (-4 *8 (-890 *7 *5 *6)) (-4 *5 (-741)) (-4 *7 (-984)) (-5 *2 (-597 (-719))) (-5 *1 (-302 *5 *6 *7 *8)))) (-1811 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 *8)) (-4 *7 (-795)) (-4 *8 (-984)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-1095 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
-(-10 -7 (-15 -1811 ((-1095 |#3|) (-1095 |#4|) (-597 |#2|) (-597 |#3|))) (-15 -1429 ((-597 (-719)) (-1095 |#4|) (-597 |#2|))) (-15 -2746 ((-597 |#2|) (-1095 |#4|))) (-15 -3321 ((-1095 |#3|) (-1095 |#4|))) (-15 -3021 ((-1095 |#4|) (-1095 |#3|))) (-15 -1399 ((-1095 |#4|) (-1095 |#4|) (-530))) (-15 -4043 (|#3| (-530))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 14)) (-3678 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-530)))) $) 18)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-3519 ((|#1| $ (-530)) NIL)) (-4016 (((-530) $ (-530)) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-2580 (($ (-1 |#1| |#1|) $) NIL)) (-1466 (($ (-1 (-530) (-530)) $) 10)) (-1424 (((-1082) $) NIL)) (-3613 (($ $ $) NIL (|has| (-530) (-740)))) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-4085 (((-530) |#1| $) NIL)) (-3080 (($) 15 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) 21 (|has| |#1| (-795)))) (-2351 (($ $) 11) (($ $ $) 20)) (-2339 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL) (($ (-530) |#1|) 19)))
-(((-303 |#1|) (-13 (-21) (-666 (-530)) (-304 |#1| (-530)) (-10 -7 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|))) (-1027)) (T -303))
-NIL
-(-13 (-21) (-666 (-530)) (-304 |#1| (-530)) (-10 -7 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3678 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $) 27)) (-1889 (((-3 $ "failed") $ $) 19)) (-3023 (((-719) $) 28)) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 32)) (-2585 ((|#1| $) 31)) (-3519 ((|#1| $ (-530)) 25)) (-4016 ((|#2| $ (-530)) 26)) (-2580 (($ (-1 |#1| |#1|) $) 22)) (-1466 (($ (-1 |#2| |#2|) $) 23)) (-1424 (((-1082) $) 9)) (-3613 (($ $ $) 21 (|has| |#2| (-740)))) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ |#1|) 33)) (-4085 ((|#2| |#1| $) 24)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2339 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ |#2| |#1|) 29)))
-(((-304 |#1| |#2|) (-133) (-1027) (-128)) (T -304))
-((-2339 (*1 *1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128)))) (-3023 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-719)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)) (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4)))))) (-4016 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1027)) (-4 *2 (-128)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128)) (-4 *2 (-1027)))) (-4085 (*1 *2 *3 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128)))) (-1466 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128)))) (-3613 (*1 *1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128)) (-4 *3 (-740)))))
-(-13 (-128) (-975 |t#1|) (-10 -8 (-15 -2339 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3023 ((-719) $)) (-15 -3678 ((-597 (-2 (|:| |gen| |t#1|) (|:| -2853 |t#2|))) $)) (-15 -4016 (|t#2| $ (-530))) (-15 -3519 (|t#1| $ (-530))) (-15 -4085 (|t#2| |t#1| $)) (-15 -1466 ($ (-1 |t#2| |t#2|) $)) (-15 -2580 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-740)) (-15 -3613 ($ $ $)) |%noBranch|)))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-975 |#1|) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3678 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-3519 ((|#1| $ (-530)) NIL)) (-4016 (((-719) $ (-530)) NIL)) (-2580 (($ (-1 |#1| |#1|) $) NIL)) (-1466 (($ (-1 (-719) (-719)) $) NIL)) (-1424 (((-1082) $) NIL)) (-3613 (($ $ $) NIL (|has| (-719) (-740)))) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-4085 (((-719) |#1| $) NIL)) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-719) |#1|) NIL)))
-(((-305 |#1|) (-304 |#1| (-719)) (-1027)) (T -305))
-NIL
-(-304 |#1| (-719))
-((-1239 (($ $) 53)) (-2410 (($ $ |#2| |#3| $) 14)) (-3756 (($ (-1 |#3| |#3|) $) 35)) (-2494 (((-110) $) 27)) (-2505 ((|#2| $) 29)) (-3551 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-3829 ((|#2| $) 49)) (-3441 (((-597 |#2|) $) 38)) (-2659 (($ $ $ (-719)) 23)) (-2364 (($ $ |#2|) 42)))
-(((-306 |#1| |#2| |#3|) (-10 -8 (-15 -1239 (|#1| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2659 (|#1| |#1| |#1| (-719))) (-15 -2410 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3756 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3441 ((-597 |#2|) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2494 ((-110) |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2364 (|#1| |#1| |#2|))) (-307 |#2| |#3|) (-984) (-740)) (T -306))
-NIL
-(-10 -8 (-15 -1239 (|#1| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2659 (|#1| |#1| |#1| (-719))) (-15 -2410 (|#1| |#1| |#2| |#3| |#1|)) (-15 -3756 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3441 ((-597 |#2|) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2494 ((-110) |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2364 (|#1| |#1| |#2|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 88 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 86 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 85)) (-2585 (((-530) $) 89 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 87 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 84)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 73 (|has| |#1| (-432)))) (-2410 (($ $ |#1| |#2| $) 77)) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 80)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| |#2|) 59)) (-2944 ((|#2| $) 79)) (-3756 (($ (-1 |#2| |#2|) $) 78)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 83)) (-2505 ((|#1| $) 82)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-522)))) (-1429 ((|#2| $) 62)) (-3829 ((|#1| $) 74 (|has| |#1| (-432)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45) (($ (-388 (-530))) 55 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530))))))) (-3441 (((-597 |#1|) $) 81)) (-4085 ((|#1| $ |#2|) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 76 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-307 |#1| |#2|) (-133) (-984) (-740)) (T -307))
-((-2494 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-110)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-597 *3)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-719)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-3756 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-2410 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))) (-2659 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *3 (-162)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-522)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)) (-4 *2 (-432)))) (-1239 (*1 *1 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *2 (-432)))))
-(-13 (-46 |t#1| |t#2|) (-392 |t#1|) (-10 -8 (-15 -2494 ((-110) $)) (-15 -2505 (|t#1| $)) (-15 -3441 ((-597 |t#1|) $)) (-15 -3579 ((-719) $)) (-15 -2944 (|t#2| $)) (-15 -3756 ($ (-1 |t#2| |t#2|) $)) (-15 -2410 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-162)) (-15 -2659 ($ $ $ (-719))) |%noBranch|) (IF (|has| |t#1| (-522)) (-15 -3551 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3829 (|t#1| $)) (-15 -1239 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-392 |#1|) . T) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-1770 (((-110) (-110)) NIL)) (-2552 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-2287 (($ $) NIL (|has| |#1| (-1027)))) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3219 (($ $ (-530)) NIL)) (-2871 (((-719) $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2441 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2403 (($ (-597 |#1|)) NIL)) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3715 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-1328 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-308 |#1|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2403 ($ (-597 |#1|))) (-15 -2871 ((-719) $)) (-15 -3219 ($ $ (-530))) (-15 -1770 ((-110) (-110))))) (-1135)) (T -308))
-((-2403 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-308 *3)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))) (-3219 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1135)))))
-(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2403 ($ (-597 |#1|))) (-15 -2871 ((-719) $)) (-15 -3219 ($ $ (-530))) (-15 -1770 ((-110) (-110)))))
-((-2536 (((-110) $) 42)) (-2766 (((-719)) 22)) (-1367 ((|#2| $) 46) (($ $ (-862)) 103)) (-3023 (((-719)) 98)) (-1574 (($ (-1181 |#2|)) 20)) (-1672 (((-110) $) 115)) (-2376 ((|#2| $) 48) (($ $ (-862)) 101)) (-1359 (((-1095 |#2|) $) NIL) (((-1095 $) $ (-862)) 95)) (-3005 (((-1095 |#2|) $) 83)) (-3396 (((-1095 |#2|) $) 80) (((-3 (-1095 |#2|) "failed") $ $) 77)) (-1658 (($ $ (-1095 |#2|)) 53)) (-1415 (((-781 (-862))) 28) (((-862)) 43)) (-2488 (((-130)) 25)) (-1429 (((-781 (-862)) $) 30) (((-862) $) 117)) (-1698 (($) 109)) (-2328 (((-1181 |#2|) $) NIL) (((-637 |#2|) (-1181 $)) 39)) (-3251 (($ $) NIL) (((-3 $ "failed") $) 86)) (-2856 (((-110) $) 41)))
-(((-309 |#1| |#2|) (-10 -8 (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -3023 ((-719))) (-15 -3251 (|#1| |#1|)) (-15 -3396 ((-3 (-1095 |#2|) "failed") |#1| |#1|)) (-15 -3396 ((-1095 |#2|) |#1|)) (-15 -3005 ((-1095 |#2|) |#1|)) (-15 -1658 (|#1| |#1| (-1095 |#2|))) (-15 -1672 ((-110) |#1|)) (-15 -1698 (|#1|)) (-15 -1367 (|#1| |#1| (-862))) (-15 -2376 (|#1| |#1| (-862))) (-15 -1359 ((-1095 |#1|) |#1| (-862))) (-15 -1367 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -1429 ((-862) |#1|)) (-15 -1415 ((-862))) (-15 -1359 ((-1095 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -2766 ((-719))) (-15 -1415 ((-781 (-862)))) (-15 -1429 ((-781 (-862)) |#1|)) (-15 -2536 ((-110) |#1|)) (-15 -2856 ((-110) |#1|)) (-15 -2488 ((-130)))) (-310 |#2|) (-344)) (T -309))
-((-2488 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-1415 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-781 (-862))) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-2766 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-1415 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-862)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3023 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))))
-(-10 -8 (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -3023 ((-719))) (-15 -3251 (|#1| |#1|)) (-15 -3396 ((-3 (-1095 |#2|) "failed") |#1| |#1|)) (-15 -3396 ((-1095 |#2|) |#1|)) (-15 -3005 ((-1095 |#2|) |#1|)) (-15 -1658 (|#1| |#1| (-1095 |#2|))) (-15 -1672 ((-110) |#1|)) (-15 -1698 (|#1|)) (-15 -1367 (|#1| |#1| (-862))) (-15 -2376 (|#1| |#1| (-862))) (-15 -1359 ((-1095 |#1|) |#1| (-862))) (-15 -1367 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -1429 ((-862) |#1|)) (-15 -1415 ((-862))) (-15 -1359 ((-1095 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -2766 ((-719))) (-15 -1415 ((-781 (-862)))) (-15 -1429 ((-781 (-862)) |#1|)) (-15 -2536 ((-110) |#1|)) (-15 -2856 ((-110) |#1|)) (-15 -2488 ((-130))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2536 (((-110) $) 91)) (-2766 (((-719)) 87)) (-1367 ((|#1| $) 137) (($ $ (-862)) 134 (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) 119 (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-3023 (((-719)) 109 (|has| |#1| (-349)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 98)) (-2585 ((|#1| $) 97)) (-1574 (($ (-1181 |#1|)) 143)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-349)))) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-1364 (($) 106 (|has| |#1| (-349)))) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-1677 (($) 121 (|has| |#1| (-349)))) (-2798 (((-110) $) 122 (|has| |#1| (-349)))) (-3948 (($ $ (-719)) 84 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 83 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) 68)) (-2031 (((-862) $) 124 (|has| |#1| (-349))) (((-781 (-862)) $) 81 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) 30)) (-2931 (($) 132 (|has| |#1| (-349)))) (-1672 (((-110) $) 131 (|has| |#1| (-349)))) (-2376 ((|#1| $) 138) (($ $ (-862)) 135 (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) 110 (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1359 (((-1095 |#1|) $) 142) (((-1095 $) $ (-862)) 136 (|has| |#1| (-349)))) (-1905 (((-862) $) 107 (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) 128 (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) 127 (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) 126 (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) 129 (|has| |#1| (-349)))) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-3657 (($) 111 (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) 108 (|has| |#1| (-349)))) (-1655 (((-110) $) 90)) (-2624 (((-1046) $) 10)) (-1974 (($) 130 (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 118 (|has| |#1| (-349)))) (-2611 (((-399 $) $) 71)) (-1415 (((-781 (-862))) 88) (((-862)) 140)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-1823 (((-719) $) 123 (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) 82 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) 96)) (-3289 (($ $) 115 (|has| |#1| (-349))) (($ $ (-719)) 113 (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) 89) (((-862) $) 139)) (-1781 (((-1095 |#1|)) 141)) (-3406 (($) 120 (|has| |#1| (-349)))) (-1698 (($) 133 (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) 145) (((-637 |#1|) (-1181 $)) 144)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 117 (|has| |#1| (-349)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ |#1|) 99)) (-3251 (($ $) 116 (|has| |#1| (-349))) (((-3 $ "failed") $) 80 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 28)) (-3220 (((-1181 $)) 147) (((-1181 $) (-862)) 146)) (-3944 (((-110) $ $) 37)) (-2856 (((-110) $) 92)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3962 (($ $) 86 (|has| |#1| (-349))) (($ $ (-719)) 85 (|has| |#1| (-349)))) (-3340 (($ $) 114 (|has| |#1| (-349))) (($ $ (-719)) 112 (|has| |#1| (-349)))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62) (($ $ |#1|) 95)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
+((-2760 (*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))) (-4100 (*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-721)))) (-2100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-289)))) (-3630 (*1 *1 *1 *1) (-4 *1 (-289))) (-3650 (*1 *1 *1 *1) (-4 *1 (-289))) (-2857 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) (-4 *1 (-289)))) (-2857 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-289)))) (-3038 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-289)))))
+(-13 (-863) (-10 -8 (-15 -2760 ((-110) $ $)) (-15 -4100 ((-721) $)) (-15 -2100 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3630 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -2857 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $)) (-15 -2857 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -3038 ((-3 (-598 $) "failed") (-598 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-4115 (($ $ (-598 |#2|) (-598 |#2|)) 14) (($ $ |#2| |#2|) NIL) (($ $ (-276 |#2|)) 11) (($ $ (-598 (-276 |#2|))) NIL)))
+(((-290 |#1| |#2|) (-10 -8 (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|)))) (-291 |#2|) (-1030)) (T -290))
+NIL
+(-10 -8 (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))))
+((-4115 (($ $ (-598 |#1|) (-598 |#1|)) 7) (($ $ |#1| |#1|) 6) (($ $ (-276 |#1|)) 11) (($ $ (-598 (-276 |#1|))) 10)))
+(((-291 |#1|) (-133) (-1030)) (T -291))
+((-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-276 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1030)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-276 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1030)))))
+(-13 (-492 |t#1| |t#1|) (-10 -8 (-15 -4115 ($ $ (-276 |t#1|))) (-15 -4115 ($ $ (-598 (-276 |t#1|))))))
+(((-492 |#1| |#1|) . T))
+((-4115 ((|#1| (-1 |#1| (-531)) (-1104 (-388 (-531)))) 25)))
+(((-292 |#1|) (-10 -7 (-15 -4115 (|#1| (-1 |#1| (-531)) (-1104 (-388 (-531)))))) (-37 (-388 (-531)))) (T -292))
+((-4115 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-531))) (-5 *4 (-1104 (-388 (-531)))) (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-531)))))))
+(-10 -7 (-15 -4115 (|#1| (-1 |#1| (-531)) (-1104 (-388 (-531))))))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 7)) (-2148 (((-110) $ $) 9)))
+(((-293) (-1030)) (T -293))
+NIL
+(-1030)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 62)) (-1317 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1170 |#1| |#2| |#3| |#4|) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-531)))) (((-3 (-1169 |#2| |#3| |#4|) "failed") $) 25)) (-2523 (((-1170 |#1| |#2| |#3| |#4|) $) NIL) (((-1102) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-531)))) (((-531) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-531)))) (((-1169 |#2| |#3| |#4|) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-1170 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1184 (-1170 |#1| |#2| |#3| |#4|)))) (-639 $) (-1184 $)) NIL) (((-639 (-1170 |#1| |#2| |#3| |#4|)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-1170 |#1| |#2| |#3| |#4|) $) 21)) (-2342 (((-3 $ "failed") $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-1078)))) (-2985 (((-110) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-1241 (($ $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-3261 (($ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) $) NIL)) (-1872 (((-3 (-790 |#2|) "failed") $) 78)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-289)))) (-2943 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-1170 |#1| |#2| |#3| |#4|)) (-598 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-291 (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-291 (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-276 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-291 (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-598 (-276 (-1170 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-291 (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-598 (-1102)) (-598 (-1170 |#1| |#2| |#3| |#4|))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-492 (-1102) (-1170 |#1| |#2| |#3| |#4|)))) (($ $ (-1102) (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-492 (-1102) (-1170 |#1| |#2| |#3| |#4|))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-1170 |#1| |#2| |#3| |#4|)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-268 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-721)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1102)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) (-721)) NIL) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-1170 |#1| |#2| |#3| |#4|) $) 17)) (-3318 (((-835 (-531)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-573 (-507)))) (((-360) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-962))) (((-208) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-1170 |#1| |#2| |#3| |#4|) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-1170 |#1| |#2| |#3| |#4|)) 29) (($ (-1102)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-977 (-1102)))) (($ (-1169 |#2| |#3| |#4|)) 36)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-1170 |#1| |#2| |#3| |#4|) (-852))) (|has| (-1170 |#1| |#2| |#3| |#4|) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-1170 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-770)))) (-3035 (($) 41 T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-721)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-216))) (($ $ (-1102)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-843 (-1102)))) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) (-721)) NIL) (($ $ (-1 (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-1170 |#1| |#2| |#3| |#4|) (-797)))) (-2263 (($ $ $) 34) (($ (-1170 |#1| |#2| |#3| |#4|) (-1170 |#1| |#2| |#3| |#4|)) 31)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-1170 |#1| |#2| |#3| |#4|) $) 30) (($ $ (-1170 |#1| |#2| |#3| |#4|)) NIL)))
+(((-294 |#1| |#2| |#3| |#4|) (-13 (-934 (-1170 |#1| |#2| |#3| |#4|)) (-977 (-1169 |#2| |#3| |#4|)) (-10 -8 (-15 -1872 ((-3 (-790 |#2|) "failed") $)) (-15 -2265 ($ (-1169 |#2| |#3| |#4|))))) (-13 (-797) (-977 (-531)) (-594 (-531)) (-432)) (-13 (-27) (-1124) (-411 |#1|)) (-1102) |#2|) (T -294))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1169 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) (-14 *6 *4) (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) (-5 *1 (-294 *3 *4 *5 *6)))) (-1872 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) (-5 *2 (-790 *4)) (-5 *1 (-294 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) (-14 *6 *4))))
+(-13 (-934 (-1170 |#1| |#2| |#3| |#4|)) (-977 (-1169 |#2| |#3| |#4|)) (-10 -8 (-15 -1872 ((-3 (-790 |#2|) "failed") $)) (-15 -2265 ($ (-1169 |#2| |#3| |#4|)))))
+((-3261 (((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)) 13)))
+(((-295 |#1| |#2|) (-10 -7 (-15 -3261 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|)))) (-797) (-797)) (T -295))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-797)) (-4 *6 (-797)) (-5 *2 (-297 *6)) (-5 *1 (-295 *5 *6)))))
+(-10 -7 (-15 -3261 ((-297 |#2|) (-1 |#2| |#1|) (-297 |#1|))))
+((-2373 (((-51) |#2| (-276 |#2|) (-721)) 33) (((-51) |#2| (-276 |#2|)) 24) (((-51) |#2| (-721)) 28) (((-51) |#2|) 25) (((-51) (-1102)) 21)) (-4067 (((-51) |#2| (-276 |#2|) (-388 (-531))) 51) (((-51) |#2| (-276 |#2|)) 48) (((-51) |#2| (-388 (-531))) 50) (((-51) |#2|) 49) (((-51) (-1102)) 47)) (-2397 (((-51) |#2| (-276 |#2|) (-388 (-531))) 46) (((-51) |#2| (-276 |#2|)) 43) (((-51) |#2| (-388 (-531))) 45) (((-51) |#2|) 44) (((-51) (-1102)) 42)) (-2385 (((-51) |#2| (-276 |#2|) (-531)) 39) (((-51) |#2| (-276 |#2|)) 35) (((-51) |#2| (-531)) 38) (((-51) |#2|) 36) (((-51) (-1102)) 34)))
+(((-296 |#1| |#2|) (-10 -7 (-15 -2373 ((-51) (-1102))) (-15 -2373 ((-51) |#2|)) (-15 -2373 ((-51) |#2| (-721))) (-15 -2373 ((-51) |#2| (-276 |#2|))) (-15 -2373 ((-51) |#2| (-276 |#2|) (-721))) (-15 -2385 ((-51) (-1102))) (-15 -2385 ((-51) |#2|)) (-15 -2385 ((-51) |#2| (-531))) (-15 -2385 ((-51) |#2| (-276 |#2|))) (-15 -2385 ((-51) |#2| (-276 |#2|) (-531))) (-15 -2397 ((-51) (-1102))) (-15 -2397 ((-51) |#2|)) (-15 -2397 ((-51) |#2| (-388 (-531)))) (-15 -2397 ((-51) |#2| (-276 |#2|))) (-15 -2397 ((-51) |#2| (-276 |#2|) (-388 (-531)))) (-15 -4067 ((-51) (-1102))) (-15 -4067 ((-51) |#2|)) (-15 -4067 ((-51) |#2| (-388 (-531)))) (-15 -4067 ((-51) |#2| (-276 |#2|))) (-15 -4067 ((-51) |#2| (-276 |#2|) (-388 (-531))))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -296))
+((-4067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-531))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-4067 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-4067 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1124) (-411 *4))))) (-2397 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2397 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-531))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2397 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-2397 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1124) (-411 *4))))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 *5) (-594 *5))) (-5 *5 (-531)) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2385 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-4 *5 (-13 (-432) (-797) (-977 *4) (-594 *4))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2385 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-2385 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1124) (-411 *4))))) (-2373 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-276 *3)) (-5 *5 (-721)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *6 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2373 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-2373 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-296 *4 *5)) (-4 *5 (-13 (-27) (-1124) (-411 *4))))))
+(-10 -7 (-15 -2373 ((-51) (-1102))) (-15 -2373 ((-51) |#2|)) (-15 -2373 ((-51) |#2| (-721))) (-15 -2373 ((-51) |#2| (-276 |#2|))) (-15 -2373 ((-51) |#2| (-276 |#2|) (-721))) (-15 -2385 ((-51) (-1102))) (-15 -2385 ((-51) |#2|)) (-15 -2385 ((-51) |#2| (-531))) (-15 -2385 ((-51) |#2| (-276 |#2|))) (-15 -2385 ((-51) |#2| (-276 |#2|) (-531))) (-15 -2397 ((-51) (-1102))) (-15 -2397 ((-51) |#2|)) (-15 -2397 ((-51) |#2| (-388 (-531)))) (-15 -2397 ((-51) |#2| (-276 |#2|))) (-15 -2397 ((-51) |#2| (-276 |#2|) (-388 (-531)))) (-15 -4067 ((-51) (-1102))) (-15 -4067 ((-51) |#2|)) (-15 -4067 ((-51) |#2| (-388 (-531)))) (-15 -4067 ((-51) |#2| (-276 |#2|))) (-15 -4067 ((-51) |#2| (-276 |#2|) (-388 (-531)))))
+((-2247 (((-110) $ $) NIL)) (-2485 (((-598 $) $ (-1102)) NIL (|has| |#1| (-523))) (((-598 $) $) NIL (|has| |#1| (-523))) (((-598 $) (-1098 $) (-1102)) NIL (|has| |#1| (-523))) (((-598 $) (-1098 $)) NIL (|has| |#1| (-523))) (((-598 $) (-895 $)) NIL (|has| |#1| (-523)))) (-2424 (($ $ (-1102)) NIL (|has| |#1| (-523))) (($ $) NIL (|has| |#1| (-523))) (($ (-1098 $) (-1102)) NIL (|has| |#1| (-523))) (($ (-1098 $)) NIL (|has| |#1| (-523))) (($ (-895 $)) NIL (|has| |#1| (-523)))) (-3019 (((-110) $) 27 (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (-2695 (((-598 (-1102)) $) 351)) (-2516 (((-388 (-1098 $)) $ (-571 $)) NIL (|has| |#1| (-523)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2410 (((-598 (-571 $)) $) NIL)) (-2367 (($ $) 161 (|has| |#1| (-523)))) (-2218 (($ $) 137 (|has| |#1| (-523)))) (-2423 (($ $ (-1023 $)) 222 (|has| |#1| (-523))) (($ $ (-1102)) 218 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL (-1435 (|has| |#1| (-21)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) 368) (($ $ (-598 (-571 $)) (-598 $)) 412)) (-1383 (((-399 (-1098 $)) (-1098 $)) 295 (-12 (|has| |#1| (-432)) (|has| |#1| (-523))))) (-3240 (($ $) NIL (|has| |#1| (-523)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-523)))) (-2563 (($ $) NIL (|has| |#1| (-523)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2343 (($ $) 157 (|has| |#1| (-523)))) (-2198 (($ $) 133 (|has| |#1| (-523)))) (-3140 (($ $ (-531)) 72 (|has| |#1| (-523)))) (-2391 (($ $) 165 (|has| |#1| (-523)))) (-2241 (($ $) 141 (|has| |#1| (-523)))) (-4082 (($) NIL (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))) CONST)) (-3007 (((-598 $) $ (-1102)) NIL (|has| |#1| (-523))) (((-598 $) $) NIL (|has| |#1| (-523))) (((-598 $) (-1098 $) (-1102)) NIL (|has| |#1| (-523))) (((-598 $) (-1098 $)) NIL (|has| |#1| (-523))) (((-598 $) (-895 $)) NIL (|has| |#1| (-523)))) (-2738 (($ $ (-1102)) NIL (|has| |#1| (-523))) (($ $) NIL (|has| |#1| (-523))) (($ (-1098 $) (-1102)) 124 (|has| |#1| (-523))) (($ (-1098 $)) NIL (|has| |#1| (-523))) (($ (-895 $)) NIL (|has| |#1| (-523)))) (-3154 (((-3 (-571 $) "failed") $) 17) (((-3 (-1102) "failed") $) NIL) (((-3 |#1| "failed") $) 421) (((-3 (-47) "failed") $) 323 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-895 |#1|)) "failed") $) NIL (|has| |#1| (-523))) (((-3 (-895 |#1|) "failed") $) NIL (|has| |#1| (-986))) (((-3 (-388 (-531)) "failed") $) 46 (-1435 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2523 (((-571 $) $) 11) (((-1102) $) NIL) ((|#1| $) 403) (((-47) $) NIL (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-895 |#1|)) $) NIL (|has| |#1| (-523))) (((-895 |#1|) $) NIL (|has| |#1| (-986))) (((-388 (-531)) $) 306 (-1435 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-3650 (($ $ $) NIL (|has| |#1| (-523)))) (-3073 (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 117 (|has| |#1| (-986))) (((-639 |#1|) (-639 $)) 107 (|has| |#1| (-986))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (-1760 (($ $) 89 (|has| |#1| (-523)))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))))) (-3630 (($ $ $) NIL (|has| |#1| (-523)))) (-3488 (($ $ (-1023 $)) 226 (|has| |#1| (-523))) (($ $ (-1102)) 224 (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-523)))) (-2534 (((-110) $) NIL (|has| |#1| (-523)))) (-1690 (($ $ $) 192 (|has| |#1| (-523)))) (-1880 (($) 127 (|has| |#1| (-523)))) (-2555 (($ $ $) 212 (|has| |#1| (-523)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 374 (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 381 (|has| |#1| (-829 (-360))))) (-1238 (($ $) NIL) (($ (-598 $)) NIL)) (-4051 (((-598 (-112)) $) NIL)) (-3254 (((-112) (-112)) 267)) (-3481 (((-110) $) 25 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))))) (-4250 (((-110) $) NIL (|has| $ (-977 (-531))))) (-3027 (($ $) 71 (|has| |#1| (-986)))) (-1840 (((-1054 |#1| (-571 $)) $) 84 (|has| |#1| (-986)))) (-1686 (((-110) $) 64 (|has| |#1| (-523)))) (-2249 (($ $ (-531)) NIL (|has| |#1| (-523)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-523)))) (-2733 (((-1098 $) (-571 $)) 268 (|has| $ (-986)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 $ $) (-571 $)) 408)) (-1302 (((-3 (-571 $) "failed") $) NIL)) (-2076 (($ $) 131 (|has| |#1| (-523)))) (-1805 (($ $) 237 (|has| |#1| (-523)))) (-2078 (($ (-598 $)) NIL (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-1521 (((-1085) $) NIL)) (-2501 (((-598 (-571 $)) $) 49)) (-1930 (($ (-112) $) NIL) (($ (-112) (-598 $)) 413)) (-3443 (((-3 (-598 $) "failed") $) NIL (|has| |#1| (-1042)))) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $) NIL (|has| |#1| (-986)))) (-2077 (((-3 (-598 $) "failed") $) 416 (|has| |#1| (-25)))) (-2124 (((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $) 420 (|has| |#1| (-25)))) (-3448 (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $) NIL (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112)) NIL (|has| |#1| (-986))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102)) NIL (|has| |#1| (-986)))) (-4247 (((-110) $ (-112)) NIL) (((-110) $ (-1102)) 53)) (-2422 (($ $) NIL (-1435 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-2974 (($ $ (-1102)) 241 (|has| |#1| (-523))) (($ $ (-1023 $)) 243 (|has| |#1| (-523)))) (-4194 (((-721) $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 43)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 288 (|has| |#1| (-523)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-2781 (((-110) $ $) NIL) (((-110) $ (-1102)) NIL)) (-2616 (($ $ (-1102)) 216 (|has| |#1| (-523))) (($ $) 214 (|has| |#1| (-523)))) (-1569 (($ $) 208 (|has| |#1| (-523)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 293 (-12 (|has| |#1| (-432)) (|has| |#1| (-523))))) (-2552 (((-399 $) $) NIL (|has| |#1| (-523)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-523))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-523)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-523)))) (-2798 (($ $) 129 (|has| |#1| (-523)))) (-1787 (((-110) $) NIL (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) 407) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) 361) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1102)) NIL (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-573 (-507)))) (($ $) NIL (|has| |#1| (-573 (-507)))) (($ $ (-112) $ (-1102)) 349 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-112)) (-598 $) (-1102)) 348 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $))) NIL (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $)))) NIL (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ (-598 $))) NIL (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ $)) NIL (|has| |#1| (-986)))) (-4100 (((-721) $) NIL (|has| |#1| (-523)))) (-2152 (($ $) 229 (|has| |#1| (-523)))) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-1771 (($ $) NIL) (($ $ $) NIL)) (-2187 (($ $) 239 (|has| |#1| (-523)))) (-2188 (($ $) 190 (|has| |#1| (-523)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-986))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-986))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-986))) (($ $ (-1102)) NIL (|has| |#1| (-986)))) (-2842 (($ $) 73 (|has| |#1| (-523)))) (-1853 (((-1054 |#1| (-571 $)) $) 86 (|has| |#1| (-523)))) (-3608 (($ $) 304 (|has| $ (-986)))) (-2403 (($ $) 167 (|has| |#1| (-523)))) (-2253 (($ $) 143 (|has| |#1| (-523)))) (-2379 (($ $) 163 (|has| |#1| (-523)))) (-2229 (($ $) 139 (|has| |#1| (-523)))) (-2356 (($ $) 159 (|has| |#1| (-523)))) (-2210 (($ $) 135 (|has| |#1| (-523)))) (-3318 (((-835 (-531)) $) NIL (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| |#1| (-573 (-835 (-360))))) (($ (-399 $)) NIL (|has| |#1| (-523))) (((-507) $) 346 (|has| |#1| (-573 (-507))))) (-4164 (($ $ $) NIL (|has| |#1| (-453)))) (-3214 (($ $ $) NIL (|has| |#1| (-453)))) (-2265 (((-806) $) 406) (($ (-571 $)) 397) (($ (-1102)) 363) (($ |#1|) 324) (($ $) NIL (|has| |#1| (-523))) (($ (-47)) 299 (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) (($ (-1054 |#1| (-571 $))) 88 (|has| |#1| (-986))) (($ (-388 |#1|)) NIL (|has| |#1| (-523))) (($ (-895 (-388 |#1|))) NIL (|has| |#1| (-523))) (($ (-388 (-895 (-388 |#1|)))) NIL (|has| |#1| (-523))) (($ (-388 (-895 |#1|))) NIL (|has| |#1| (-523))) (($ (-895 |#1|)) NIL (|has| |#1| (-986))) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-523)) (|has| |#1| (-977 (-388 (-531)))))) (($ (-531)) 34 (-1435 (|has| |#1| (-977 (-531))) (|has| |#1| (-986))))) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL (|has| |#1| (-986)))) (-3504 (($ $) NIL) (($ (-598 $)) NIL)) (-2589 (($ $ $) 210 (|has| |#1| (-523)))) (-3031 (($ $ $) 196 (|has| |#1| (-523)))) (-2143 (($ $ $) 200 (|has| |#1| (-523)))) (-1702 (($ $ $) 194 (|has| |#1| (-523)))) (-2081 (($ $ $) 198 (|has| |#1| (-523)))) (-3167 (((-110) (-112)) 9)) (-2442 (($ $) 173 (|has| |#1| (-523)))) (-2292 (($ $) 149 (|has| |#1| (-523)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 169 (|has| |#1| (-523)))) (-2266 (($ $) 145 (|has| |#1| (-523)))) (-2468 (($ $) 177 (|has| |#1| (-523)))) (-2318 (($ $) 153 (|has| |#1| (-523)))) (-2507 (($ (-1102) $) NIL) (($ (-1102) $ $) NIL) (($ (-1102) $ $ $) NIL) (($ (-1102) $ $ $ $) NIL) (($ (-1102) (-598 $)) NIL)) (-3558 (($ $) 204 (|has| |#1| (-523)))) (-2336 (($ $) 202 (|has| |#1| (-523)))) (-2753 (($ $) 179 (|has| |#1| (-523)))) (-2331 (($ $) 155 (|has| |#1| (-523)))) (-2456 (($ $) 175 (|has| |#1| (-523)))) (-2305 (($ $) 151 (|has| |#1| (-523)))) (-2429 (($ $) 171 (|has| |#1| (-523)))) (-2279 (($ $) 147 (|has| |#1| (-523)))) (-1620 (($ $) 182 (|has| |#1| (-523)))) (-3035 (($) 20 (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) CONST)) (-1677 (($ $) 233 (|has| |#1| (-523)))) (-3050 (($) 22 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))) CONST)) (-3926 (($ $) 184 (|has| |#1| (-523))) (($ $ $) 186 (|has| |#1| (-523)))) (-1400 (($ $) 231 (|has| |#1| (-523)))) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-986))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-986))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-986))) (($ $ (-1102)) NIL (|has| |#1| (-986)))) (-3510 (($ $) 235 (|has| |#1| (-523)))) (-1312 (($ $ $) 188 (|has| |#1| (-523)))) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 81)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 80)) (-2263 (($ (-1054 |#1| (-571 $)) (-1054 |#1| (-571 $))) 98 (|has| |#1| (-523))) (($ $ $) 42 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-2250 (($ $ $) 40 (-1435 (|has| |#1| (-21)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (($ $) 29 (-1435 (|has| |#1| (-21)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (-2237 (($ $ $) 38 (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))) (** (($ $ $) 66 (|has| |#1| (-523))) (($ $ (-388 (-531))) 301 (|has| |#1| (-523))) (($ $ (-531)) 76 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523)))) (($ $ (-721)) 74 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042)))) (($ $ (-864)) 78 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042))))) (* (($ (-388 (-531)) $) NIL (|has| |#1| (-523))) (($ $ (-388 (-531))) NIL (|has| |#1| (-523))) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162))) (($ $ $) 36 (-1435 (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) (|has| |#1| (-1042)))) (($ (-531) $) 32 (-1435 (|has| |#1| (-21)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (($ (-721) $) NIL (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))))) (($ (-864) $) NIL (-1435 (|has| |#1| (-25)) (-12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))))))
+(((-297 |#1|) (-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-523)) (PROGN (-6 (-29 |#1|)) (-6 (-1124)) (-6 (-151)) (-6 (-584)) (-6 (-1066)) (-15 -1760 ($ $)) (-15 -1686 ((-110) $)) (-15 -3140 ($ $ (-531))) (IF (|has| |#1| (-432)) (PROGN (-15 -2894 ((-399 (-1098 $)) (-1098 $))) (-15 -1383 ((-399 (-1098 $)) (-1098 $)))) |%noBranch|) (IF (|has| |#1| (-977 (-531))) (-6 (-977 (-47))) |%noBranch|)) |%noBranch|))) (-797)) (T -297))
+((-1760 (*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-523)) (-4 *2 (-797)))) (-1686 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-523)) (-4 *3 (-797)))) (-3140 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-297 *3)) (-4 *3 (-523)) (-4 *3 (-797)))) (-2894 (*1 *2 *3) (-12 (-5 *2 (-399 (-1098 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1098 *1)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-797)))) (-1383 (*1 *2 *3) (-12 (-5 *2 (-399 (-1098 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1098 *1)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-797)))))
+(-13 (-411 |#1|) (-10 -8 (IF (|has| |#1| (-523)) (PROGN (-6 (-29 |#1|)) (-6 (-1124)) (-6 (-151)) (-6 (-584)) (-6 (-1066)) (-15 -1760 ($ $)) (-15 -1686 ((-110) $)) (-15 -3140 ($ $ (-531))) (IF (|has| |#1| (-432)) (PROGN (-15 -2894 ((-399 (-1098 $)) (-1098 $))) (-15 -1383 ((-399 (-1098 $)) (-1098 $)))) |%noBranch|) (IF (|has| |#1| (-977 (-531))) (-6 (-977 (-47))) |%noBranch|)) |%noBranch|)))
+((-3384 (((-51) |#2| (-112) (-276 |#2|) (-598 |#2|)) 88) (((-51) |#2| (-112) (-276 |#2|) (-276 |#2|)) 84) (((-51) |#2| (-112) (-276 |#2|) |#2|) 86) (((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|) 87) (((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|))) 80) (((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 |#2|)) 82) (((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 |#2|)) 83) (((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|))) 81) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|)) 89) (((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|)) 85)))
+(((-298 |#1| |#2|) (-10 -7 (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|)))) (-15 -3384 ((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|)))) (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) (-598 |#2|)))) (-13 (-797) (-523) (-573 (-507))) (-411 |#1|)) (T -298))
+((-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-598 *3)) (-4 *3 (-411 *7)) (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))) (-3384 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-3384 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *3)))) (-3384 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *5)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-112))) (-5 *6 (-598 (-276 *8))) (-4 *8 (-411 *7)) (-5 *5 (-276 *8)) (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-3384 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-598 *7)) (-5 *4 (-598 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3384 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-598 (-276 *8))) (-5 *4 (-598 (-112))) (-5 *5 (-276 *8)) (-5 *6 (-598 *8)) (-4 *8 (-411 *7)) (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *7 *8)))) (-3384 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-598 (-276 *7))) (-5 *4 (-598 (-112))) (-5 *5 (-276 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3384 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-598 *7)) (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *6 *7)))) (-3384 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5)) (-4 *5 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51)) (-5 *1 (-298 *5 *6)))))
+(-10 -7 (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-276 |#2|))) (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|)))) (-15 -3384 ((-51) (-598 (-276 |#2|)) (-598 (-112)) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 |#2|))) (-15 -3384 ((-51) (-598 |#2|) (-598 (-112)) (-276 |#2|) (-598 (-276 |#2|)))) (-15 -3384 ((-51) (-276 |#2|) (-112) (-276 |#2|) |#2|)) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) |#2|)) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) (-276 |#2|))) (-15 -3384 ((-51) |#2| (-112) (-276 |#2|) (-598 |#2|))))
+((-2934 (((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531) (-1085)) 46) (((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531)) 47) (((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531) (-1085)) 43) (((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531)) 44)) (-2333 (((-1 (-208) (-208)) (-208)) 45)))
+(((-299) (-10 -7 (-15 -2333 ((-1 (-208) (-208)) (-208))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531) (-1085))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531) (-1085))))) (T -299))
+((-2934 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-208)) (-5 *7 (-531)) (-5 *8 (-1085)) (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) (-2934 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-208)) (-5 *7 (-531)) (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) (-2934 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-531)) (-5 *7 (-1085)) (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) (-2934 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-531)) (-5 *2 (-1134 (-869))) (-5 *1 (-299)))) (-2333 (*1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
+(-10 -7 (-15 -2333 ((-1 (-208) (-208)) (-208))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-1 (-208) (-208)) (-531) (-1085))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531))) (-15 -2934 ((-1134 (-869)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-208) (-531) (-1085))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 25)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) NIL) (($ $ (-388 (-531)) (-388 (-531))) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) 20)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) 32)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) NIL) (((-388 (-531)) $ (-388 (-531))) 16)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL) (($ $ (-388 (-531))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) NIL) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3636 (((-388 (-531)) $) 17)) (-3155 (($ (-1169 |#1| |#2| |#3|)) 11)) (-1790 (((-1169 |#1| |#2| |#3|) $) 12)) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) NIL) (($ $ $) NIL (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2012 (((-388 (-531)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 10)) (-2265 (((-806) $) 38) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) 30)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) NIL)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 27)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 33)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-300 |#1| |#2| |#3|) (-13 (-1165 |#1|) (-742) (-10 -8 (-15 -3155 ($ (-1169 |#1| |#2| |#3|))) (-15 -1790 ((-1169 |#1| |#2| |#3|) $)) (-15 -3636 ((-388 (-531)) $)))) (-13 (-344) (-797)) (-1102) |#1|) (T -300))
+((-3155 (*1 *1 *2) (-12 (-5 *2 (-1169 *3 *4 *5)) (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-1169 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3))) (-3636 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-300 *3 *4 *5)) (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3))))
+(-13 (-1165 |#1|) (-742) (-10 -8 (-15 -3155 ($ (-1169 |#1| |#2| |#3|))) (-15 -1790 ((-1169 |#1| |#2| |#3|) $)) (-15 -3636 ((-388 (-531)) $))))
+((-2249 (((-2 (|:| -1790 (-721)) (|:| -2005 |#1|) (|:| |radicand| (-598 |#1|))) (-399 |#1|) (-721)) 24)) (-2076 (((-598 (-2 (|:| -2005 (-721)) (|:| |logand| |#1|))) (-399 |#1|)) 28)))
+(((-301 |#1|) (-10 -7 (-15 -2249 ((-2 (|:| -1790 (-721)) (|:| -2005 |#1|) (|:| |radicand| (-598 |#1|))) (-399 |#1|) (-721))) (-15 -2076 ((-598 (-2 (|:| -2005 (-721)) (|:| |logand| |#1|))) (-399 |#1|)))) (-523)) (T -301))
+((-2076 (*1 *2 *3) (-12 (-5 *3 (-399 *4)) (-4 *4 (-523)) (-5 *2 (-598 (-2 (|:| -2005 (-721)) (|:| |logand| *4)))) (-5 *1 (-301 *4)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-399 *5)) (-4 *5 (-523)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *5) (|:| |radicand| (-598 *5)))) (-5 *1 (-301 *5)) (-5 *4 (-721)))))
+(-10 -7 (-15 -2249 ((-2 (|:| -1790 (-721)) (|:| -2005 |#1|) (|:| |radicand| (-598 |#1|))) (-399 |#1|) (-721))) (-15 -2076 ((-598 (-2 (|:| -2005 (-721)) (|:| |logand| |#1|))) (-399 |#1|))))
+((-2695 (((-598 |#2|) (-1098 |#4|)) 43)) (-2037 ((|#3| (-531)) 46)) (-3872 (((-1098 |#4|) (-1098 |#3|)) 30)) (-2741 (((-1098 |#4|) (-1098 |#4|) (-531)) 56)) (-1252 (((-1098 |#3|) (-1098 |#4|)) 21)) (-2012 (((-598 (-721)) (-1098 |#4|) (-598 |#2|)) 40)) (-2508 (((-1098 |#3|) (-1098 |#4|) (-598 |#2|) (-598 |#3|)) 35)))
+(((-302 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2508 ((-1098 |#3|) (-1098 |#4|) (-598 |#2|) (-598 |#3|))) (-15 -2012 ((-598 (-721)) (-1098 |#4|) (-598 |#2|))) (-15 -2695 ((-598 |#2|) (-1098 |#4|))) (-15 -1252 ((-1098 |#3|) (-1098 |#4|))) (-15 -3872 ((-1098 |#4|) (-1098 |#3|))) (-15 -2741 ((-1098 |#4|) (-1098 |#4|) (-531))) (-15 -2037 (|#3| (-531)))) (-743) (-797) (-986) (-892 |#3| |#1| |#2|)) (T -302))
+((-2037 (*1 *2 *3) (-12 (-5 *3 (-531)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-986)) (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-892 *2 *4 *5)))) (-2741 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 *7)) (-5 *3 (-531)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-5 *1 (-302 *4 *5 *6 *7)))) (-3872 (*1 *2 *3) (-12 (-5 *3 (-1098 *6)) (-4 *6 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-1098 *7)) (-5 *1 (-302 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-1252 (*1 *2 *3) (-12 (-5 *3 (-1098 *7)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-5 *2 (-1098 *6)) (-5 *1 (-302 *4 *5 *6 *7)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-1098 *7)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-5 *2 (-598 *5)) (-5 *1 (-302 *4 *5 *6 *7)))) (-2012 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *8)) (-5 *4 (-598 *6)) (-4 *6 (-797)) (-4 *8 (-892 *7 *5 *6)) (-4 *5 (-743)) (-4 *7 (-986)) (-5 *2 (-598 (-721))) (-5 *1 (-302 *5 *6 *7 *8)))) (-2508 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-5 *5 (-598 *8)) (-4 *7 (-797)) (-4 *8 (-986)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) (-5 *2 (-1098 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
+(-10 -7 (-15 -2508 ((-1098 |#3|) (-1098 |#4|) (-598 |#2|) (-598 |#3|))) (-15 -2012 ((-598 (-721)) (-1098 |#4|) (-598 |#2|))) (-15 -2695 ((-598 |#2|) (-1098 |#4|))) (-15 -1252 ((-1098 |#3|) (-1098 |#4|))) (-15 -3872 ((-1098 |#4|) (-1098 |#3|))) (-15 -2741 ((-1098 |#4|) (-1098 |#4|) (-531))) (-15 -2037 (|#3| (-531))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 14)) (-4034 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-531)))) $) 18)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3616 ((|#1| $ (-531)) NIL)) (-2880 (((-531) $ (-531)) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2483 (($ (-1 |#1| |#1|) $) NIL)) (-3762 (($ (-1 (-531) (-531)) $) 10)) (-1521 (((-1085) $) NIL)) (-3881 (($ $ $) NIL (|has| (-531) (-742)))) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-3188 (((-531) |#1| $) NIL)) (-3035 (($) 15 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) 21 (|has| |#1| (-797)))) (-2250 (($ $) 11) (($ $ $) 20)) (-2237 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ (-531)) NIL) (($ (-531) |#1|) 19)))
+(((-303 |#1|) (-13 (-21) (-668 (-531)) (-304 |#1| (-531)) (-10 -7 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) (-1030)) (T -303))
+NIL
+(-13 (-21) (-668 (-531)) (-304 |#1| (-531)) (-10 -7 (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-4034 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $) 27)) (-2128 (((-3 $ "failed") $ $) 19)) (-3006 (((-721) $) 28)) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 32)) (-2523 ((|#1| $) 31)) (-3616 ((|#1| $ (-531)) 25)) (-2880 ((|#2| $ (-531)) 26)) (-2483 (($ (-1 |#1| |#1|) $) 22)) (-3762 (($ (-1 |#2| |#2|) $) 23)) (-1521 (((-1085) $) 9)) (-3881 (($ $ $) 21 (|has| |#2| (-742)))) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ |#1|) 33)) (-3188 ((|#2| |#1| $) 24)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2237 (($ $ $) 14) (($ |#1| $) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ |#2| |#1|) 29)))
+(((-304 |#1| |#2|) (-133) (-1030) (-128)) (T -304))
+((-2237 (*1 *1 *2 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-128)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-128)))) (-3006 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)) (-5 *2 (-721)))) (-4034 (*1 *2 *1) (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)) (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))))) (-2880 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1030)) (-4 *2 (-128)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128)) (-4 *2 (-1030)))) (-3188 (*1 *2 *3 *1) (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-128)))) (-3762 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128)))) (-3881 (*1 *1 *1 *1) (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-128)) (-4 *3 (-742)))))
+(-13 (-128) (-977 |t#1|) (-10 -8 (-15 -2237 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3006 ((-721) $)) (-15 -4034 ((-598 (-2 (|:| |gen| |t#1|) (|:| -2798 |t#2|))) $)) (-15 -2880 (|t#2| $ (-531))) (-15 -3616 (|t#1| $ (-531))) (-15 -3188 (|t#2| |t#1| $)) (-15 -3762 ($ (-1 |t#2| |t#2|) $)) (-15 -2483 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-742)) (-15 -3881 ($ $ $)) |%noBranch|)))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-977 |#1|) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-4034 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3616 ((|#1| $ (-531)) NIL)) (-2880 (((-721) $ (-531)) NIL)) (-2483 (($ (-1 |#1| |#1|) $) NIL)) (-3762 (($ (-1 (-721) (-721)) $) NIL)) (-1521 (((-1085) $) NIL)) (-3881 (($ $ $) NIL (|has| (-721) (-742)))) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-3188 (((-721) |#1| $) NIL)) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL) (($ |#1| $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-721) |#1|) NIL)))
+(((-305 |#1|) (-304 |#1| (-721)) (-1030)) (T -305))
+NIL
+(-304 |#1| (-721))
+((-2226 (($ $) 53)) (-2490 (($ $ |#2| |#3| $) 14)) (-2736 (($ (-1 |#3| |#3|) $) 35)) (-2435 (((-110) $) 27)) (-2448 ((|#2| $) 29)) (-3609 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#2|) 46)) (-1767 ((|#2| $) 49)) (-2708 (((-598 |#2|) $) 38)) (-2911 (($ $ $ (-721)) 23)) (-2263 (($ $ |#2|) 42)))
+(((-306 |#1| |#2| |#3|) (-10 -8 (-15 -2226 (|#1| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2911 (|#1| |#1| |#1| (-721))) (-15 -2490 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2736 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2708 ((-598 |#2|) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2435 ((-110) |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2263 (|#1| |#1| |#2|))) (-307 |#2| |#3|) (-986) (-742)) (T -306))
+NIL
+(-10 -8 (-15 -2226 (|#1| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2911 (|#1| |#1| |#1| (-721))) (-15 -2490 (|#1| |#1| |#2| |#3| |#1|)) (-15 -2736 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2708 ((-598 |#2|) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2435 ((-110) |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2263 (|#1| |#1| |#2|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 88 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 86 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 85)) (-2523 (((-531) $) 89 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 87 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 84)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 73 (|has| |#1| (-432)))) (-2490 (($ $ |#1| |#2| $) 77)) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 80)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| |#2|) 59)) (-3005 ((|#2| $) 79)) (-2736 (($ (-1 |#2| |#2|) $) 78)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 83)) (-2448 ((|#1| $) 82)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) 75 (|has| |#1| (-523)))) (-2012 ((|#2| $) 62)) (-1767 ((|#1| $) 74 (|has| |#1| (-432)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45) (($ (-388 (-531))) 55 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531))))))) (-2708 (((-598 |#1|) $) 81)) (-3188 ((|#1| $ |#2|) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 76 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-307 |#1| |#2|) (-133) (-986) (-742)) (T -307))
+((-2435 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-110)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-598 *3)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-721)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-2736 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)))) (-2490 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))) (-2911 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-4 *3 (-162)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *2 (-523)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)) (-4 *2 (-432)))) (-2226 (*1 *1 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *2 (-432)))))
+(-13 (-46 |t#1| |t#2|) (-392 |t#1|) (-10 -8 (-15 -2435 ((-110) $)) (-15 -2448 (|t#1| $)) (-15 -2708 ((-598 |t#1|) $)) (-15 -3517 ((-721) $)) (-15 -3005 (|t#2| $)) (-15 -2736 ($ (-1 |t#2| |t#2|) $)) (-15 -2490 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-162)) (-15 -2911 ($ $ $ (-721))) |%noBranch|) (IF (|has| |t#1| (-523)) (-15 -3609 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -1767 (|t#1| $)) (-15 -2226 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-392 |#1|) . T) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-1814 (((-110) (-110)) NIL)) (-2454 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) NIL)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-2705 (($ $) NIL (|has| |#1| (-1030)))) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2916 (($ $ (-531)) NIL)) (-2912 (((-721) $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3944 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1404 (($ (-598 |#1|)) NIL)) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-1551 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-1818 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-308 |#1|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -1404 ($ (-598 |#1|))) (-15 -2912 ((-721) $)) (-15 -2916 ($ $ (-531))) (-15 -1814 ((-110) (-110))))) (-1138)) (T -308))
+((-1404 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-308 *3)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-308 *3)) (-4 *3 (-1138)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-308 *3)) (-4 *3 (-1138)))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1138)))))
+(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -1404 ($ (-598 |#1|))) (-15 -2912 ((-721) $)) (-15 -2916 ($ $ (-531))) (-15 -1814 ((-110) (-110)))))
+((-2330 (((-110) $) 42)) (-2675 (((-721)) 22)) (-1354 ((|#2| $) 46) (($ $ (-864)) 103)) (-3006 (((-721)) 98)) (-2767 (($ (-1184 |#2|)) 20)) (-3653 (((-110) $) 115)) (-1899 ((|#2| $) 48) (($ $ (-864)) 101)) (-1233 (((-1098 |#2|) $) NIL) (((-1098 $) $ (-864)) 95)) (-1832 (((-1098 |#2|) $) 83)) (-1612 (((-1098 |#2|) $) 80) (((-3 (-1098 |#2|) "failed") $ $) 77)) (-3601 (($ $ (-1098 |#2|)) 53)) (-3717 (((-783 (-864))) 28) (((-864)) 43)) (-2190 (((-130)) 25)) (-2012 (((-783 (-864)) $) 30) (((-864) $) 117)) (-2389 (($) 109)) (-3348 (((-1184 |#2|) $) NIL) (((-639 |#2|) (-1184 $)) 39)) (-2750 (($ $) NIL) (((-3 $ "failed") $) 86)) (-1697 (((-110) $) 41)))
+(((-309 |#1| |#2|) (-10 -8 (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -3006 ((-721))) (-15 -2750 (|#1| |#1|)) (-15 -1612 ((-3 (-1098 |#2|) "failed") |#1| |#1|)) (-15 -1612 ((-1098 |#2|) |#1|)) (-15 -1832 ((-1098 |#2|) |#1|)) (-15 -3601 (|#1| |#1| (-1098 |#2|))) (-15 -3653 ((-110) |#1|)) (-15 -2389 (|#1|)) (-15 -1354 (|#1| |#1| (-864))) (-15 -1899 (|#1| |#1| (-864))) (-15 -1233 ((-1098 |#1|) |#1| (-864))) (-15 -1354 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2012 ((-864) |#1|)) (-15 -3717 ((-864))) (-15 -1233 ((-1098 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -2675 ((-721))) (-15 -3717 ((-783 (-864)))) (-15 -2012 ((-783 (-864)) |#1|)) (-15 -2330 ((-110) |#1|)) (-15 -1697 ((-110) |#1|)) (-15 -2190 ((-130)))) (-310 |#2|) (-344)) (T -309))
+((-2190 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3717 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-783 (-864))) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-2675 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3717 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-864)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))) (-3006 (*1 *2) (-12 (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-309 *3 *4)) (-4 *3 (-310 *4)))))
+(-10 -8 (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -3006 ((-721))) (-15 -2750 (|#1| |#1|)) (-15 -1612 ((-3 (-1098 |#2|) "failed") |#1| |#1|)) (-15 -1612 ((-1098 |#2|) |#1|)) (-15 -1832 ((-1098 |#2|) |#1|)) (-15 -3601 (|#1| |#1| (-1098 |#2|))) (-15 -3653 ((-110) |#1|)) (-15 -2389 (|#1|)) (-15 -1354 (|#1| |#1| (-864))) (-15 -1899 (|#1| |#1| (-864))) (-15 -1233 ((-1098 |#1|) |#1| (-864))) (-15 -1354 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -2012 ((-864) |#1|)) (-15 -3717 ((-864))) (-15 -1233 ((-1098 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -2675 ((-721))) (-15 -3717 ((-783 (-864)))) (-15 -2012 ((-783 (-864)) |#1|)) (-15 -2330 ((-110) |#1|)) (-15 -1697 ((-110) |#1|)) (-15 -2190 ((-130))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2330 (((-110) $) 91)) (-2675 (((-721)) 87)) (-1354 ((|#1| $) 137) (($ $ (-864)) 134 (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) 119 (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-3006 (((-721)) 109 (|has| |#1| (-349)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 98)) (-2523 ((|#1| $) 97)) (-2767 (($ (-1184 |#1|)) 143)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 125 (|has| |#1| (-349)))) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-1381 (($) 106 (|has| |#1| (-349)))) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-1806 (($) 121 (|has| |#1| (-349)))) (-1971 (((-110) $) 122 (|has| |#1| (-349)))) (-3493 (($ $ (-721)) 84 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 83 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) 68)) (-3617 (((-864) $) 124 (|has| |#1| (-349))) (((-783 (-864)) $) 81 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) 30)) (-3323 (($) 132 (|has| |#1| (-349)))) (-3653 (((-110) $) 131 (|has| |#1| (-349)))) (-1899 ((|#1| $) 138) (($ $ (-864)) 135 (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) 110 (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-1233 (((-1098 |#1|) $) 142) (((-1098 $) $ (-864)) 136 (|has| |#1| (-349)))) (-2211 (((-864) $) 107 (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) 128 (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) 127 (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) 126 (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) 129 (|has| |#1| (-349)))) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3788 (($) 111 (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) 108 (|has| |#1| (-349)))) (-3693 (((-110) $) 90)) (-2529 (((-1049) $) 10)) (-1861 (($) 130 (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 118 (|has| |#1| (-349)))) (-2552 (((-399 $) $) 71)) (-3717 (((-783 (-864))) 88) (((-864)) 140)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2350 (((-721) $) 123 (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) 82 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) 96)) (-3352 (($ $) 115 (|has| |#1| (-349))) (($ $ (-721)) 113 (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) 89) (((-864) $) 139)) (-3608 (((-1098 |#1|)) 141)) (-2498 (($) 120 (|has| |#1| (-349)))) (-2389 (($) 133 (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) 145) (((-639 |#1|) (-1184 $)) 144)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 117 (|has| |#1| (-349)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ |#1|) 99)) (-2750 (($ $) 116 (|has| |#1| (-349))) (((-3 $ "failed") $) 80 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 28)) (-3523 (((-1184 $)) 147) (((-1184 $) (-864)) 146)) (-2587 (((-110) $ $) 37)) (-1697 (((-110) $) 92)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2730 (($ $) 86 (|has| |#1| (-349))) (($ $ (-721)) 85 (|has| |#1| (-349)))) (-4020 (($ $) 114 (|has| |#1| (-349))) (($ $ (-721)) 112 (|has| |#1| (-349)))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62) (($ $ |#1|) 95)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
(((-310 |#1|) (-133) (-344)) (T -310))
-((-3220 (*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *3)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *4)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1181 *3)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3)))) (-1781 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3)))) (-1415 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1359 (*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1095 *1)) (-4 *1 (-310 *4)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-1367 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-1698 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-2931 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-1672 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110)))) (-1974 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-1658 (*1 *1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3)) (-4 *3 (-344)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))) (-3396 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))) (-3396 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1095 *3)))))
-(-13 (-1198 |t#1|) (-975 |t#1|) (-10 -8 (-15 -3220 ((-1181 $))) (-15 -3220 ((-1181 $) (-862))) (-15 -2328 ((-1181 |t#1|) $)) (-15 -2328 ((-637 |t#1|) (-1181 $))) (-15 -1574 ($ (-1181 |t#1|))) (-15 -1359 ((-1095 |t#1|) $)) (-15 -1781 ((-1095 |t#1|))) (-15 -1415 ((-862))) (-15 -1429 ((-862) $)) (-15 -2376 (|t#1| $)) (-15 -1367 (|t#1| $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-330)) (-15 -1359 ((-1095 $) $ (-862))) (-15 -2376 ($ $ (-862))) (-15 -1367 ($ $ (-862))) (-15 -1698 ($)) (-15 -2931 ($)) (-15 -1672 ((-110) $)) (-15 -1974 ($)) (-15 -1658 ($ $ (-1095 |t#1|))) (-15 -3005 ((-1095 |t#1|) $)) (-15 -3396 ((-1095 |t#1|) $)) (-15 -3396 ((-3 (-1095 |t#1|) "failed") $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-216) |has| |#1| (-349)) ((-226) . T) ((-272) . T) ((-289) . T) ((-1198 |#1|) . T) ((-344) . T) ((-383) -1461 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-349) |has| |#1| (-349)) ((-330) |has| |#1| (-349)) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-349)) ((-1139) . T) ((-1188 |#1|) . T))
-((-2352 (((-110) $ $) NIL)) (-2374 (($ (-1098) $) 88)) (-1255 (($) 77)) (-2733 (((-1046) (-1046)) 11)) (-2656 (($) 78)) (-4018 (($) 90) (($ (-297 (-647))) 98) (($ (-297 (-649))) 94) (($ (-297 (-642))) 102) (($ (-297 (-360))) 109) (($ (-297 (-530))) 105) (($ (-297 (-159 (-360)))) 113)) (-2182 (($ (-1098) $) 89)) (-2601 (($ (-597 (-804))) 79)) (-3870 (((-1186) $) 75)) (-2691 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2564 (($ (-1046)) 51)) (-4161 (((-1031) $) 25)) (-4032 (($ (-1020 (-893 (-530))) $) 85) (($ (-1020 (-893 (-530))) (-893 (-530)) $) 86)) (-1610 (($ (-1046)) 87)) (-2169 (($ (-1098) $) 115) (($ (-1098) $ $) 116)) (-3970 (($ (-1099) (-597 (-1099))) 76)) (-2005 (($ (-1082)) 82) (($ (-597 (-1082))) 80)) (-2366 (((-804) $) 118)) (-1897 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3250 (-110)) (|:| -3417 (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -1300 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3919 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 $))) (|:| |commonBranch| (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $) 44)) (-2929 (($ (-1082)) 187)) (-2260 (($ (-597 $)) 114)) (-3106 (($ (-1099) (-1082)) 120) (($ (-1099) (-297 (-649))) 160) (($ (-1099) (-297 (-647))) 161) (($ (-1099) (-297 (-642))) 162) (($ (-1099) (-637 (-649))) 123) (($ (-1099) (-637 (-647))) 126) (($ (-1099) (-637 (-642))) 129) (($ (-1099) (-1181 (-649))) 132) (($ (-1099) (-1181 (-647))) 135) (($ (-1099) (-1181 (-642))) 138) (($ (-1099) (-637 (-297 (-649)))) 141) (($ (-1099) (-637 (-297 (-647)))) 144) (($ (-1099) (-637 (-297 (-642)))) 147) (($ (-1099) (-1181 (-297 (-649)))) 150) (($ (-1099) (-1181 (-297 (-647)))) 153) (($ (-1099) (-1181 (-297 (-642)))) 156) (($ (-1099) (-597 (-893 (-530))) (-297 (-649))) 157) (($ (-1099) (-597 (-893 (-530))) (-297 (-647))) 158) (($ (-1099) (-597 (-893 (-530))) (-297 (-642))) 159) (($ (-1099) (-297 (-530))) 184) (($ (-1099) (-297 (-360))) 185) (($ (-1099) (-297 (-159 (-360)))) 186) (($ (-1099) (-637 (-297 (-530)))) 165) (($ (-1099) (-637 (-297 (-360)))) 168) (($ (-1099) (-637 (-297 (-159 (-360))))) 171) (($ (-1099) (-1181 (-297 (-530)))) 174) (($ (-1099) (-1181 (-297 (-360)))) 177) (($ (-1099) (-1181 (-297 (-159 (-360))))) 180) (($ (-1099) (-597 (-893 (-530))) (-297 (-530))) 181) (($ (-1099) (-597 (-893 (-530))) (-297 (-360))) 182) (($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360)))) 183)) (-2248 (((-110) $ $) NIL)))
-(((-311) (-13 (-1027) (-10 -8 (-15 -2366 ((-804) $)) (-15 -4032 ($ (-1020 (-893 (-530))) $)) (-15 -4032 ($ (-1020 (-893 (-530))) (-893 (-530)) $)) (-15 -2374 ($ (-1098) $)) (-15 -2182 ($ (-1098) $)) (-15 -2564 ($ (-1046))) (-15 -1610 ($ (-1046))) (-15 -2005 ($ (-1082))) (-15 -2005 ($ (-597 (-1082)))) (-15 -2929 ($ (-1082))) (-15 -4018 ($)) (-15 -4018 ($ (-297 (-647)))) (-15 -4018 ($ (-297 (-649)))) (-15 -4018 ($ (-297 (-642)))) (-15 -4018 ($ (-297 (-360)))) (-15 -4018 ($ (-297 (-530)))) (-15 -4018 ($ (-297 (-159 (-360))))) (-15 -2169 ($ (-1098) $)) (-15 -2169 ($ (-1098) $ $)) (-15 -3106 ($ (-1099) (-1082))) (-15 -3106 ($ (-1099) (-297 (-649)))) (-15 -3106 ($ (-1099) (-297 (-647)))) (-15 -3106 ($ (-1099) (-297 (-642)))) (-15 -3106 ($ (-1099) (-637 (-649)))) (-15 -3106 ($ (-1099) (-637 (-647)))) (-15 -3106 ($ (-1099) (-637 (-642)))) (-15 -3106 ($ (-1099) (-1181 (-649)))) (-15 -3106 ($ (-1099) (-1181 (-647)))) (-15 -3106 ($ (-1099) (-1181 (-642)))) (-15 -3106 ($ (-1099) (-637 (-297 (-649))))) (-15 -3106 ($ (-1099) (-637 (-297 (-647))))) (-15 -3106 ($ (-1099) (-637 (-297 (-642))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-649))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-647))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-642))))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-649)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-647)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-642)))) (-15 -3106 ($ (-1099) (-297 (-530)))) (-15 -3106 ($ (-1099) (-297 (-360)))) (-15 -3106 ($ (-1099) (-297 (-159 (-360))))) (-15 -3106 ($ (-1099) (-637 (-297 (-530))))) (-15 -3106 ($ (-1099) (-637 (-297 (-360))))) (-15 -3106 ($ (-1099) (-637 (-297 (-159 (-360)))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-530))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-360))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-159 (-360)))))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-530)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-360)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360))))) (-15 -2260 ($ (-597 $))) (-15 -1255 ($)) (-15 -2656 ($)) (-15 -2601 ($ (-597 (-804)))) (-15 -3970 ($ (-1099) (-597 (-1099)))) (-15 -2691 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1897 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3250 (-110)) (|:| -3417 (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -1300 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3919 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 $))) (|:| |commonBranch| (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $)) (-15 -3870 ((-1186) $)) (-15 -4161 ((-1031) $)) (-15 -2733 ((-1046) (-1046)))))) (T -311))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-311)))) (-4032 (*1 *1 *2 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *1 (-311)))) (-4032 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *3 (-893 (-530))) (-5 *1 (-311)))) (-2374 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2182 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2564 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))) (-1610 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))) (-2005 (*1 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-311)))) (-2929 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))) (-4018 (*1 *1) (-5 *1 (-311))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-311)))) (-4018 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-2169 (*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-2169 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-649))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-647))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-642))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-649))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-647))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-642))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-649))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-647))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-642))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-649)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-647)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-642)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-649)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-647)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-642)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-649))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-647))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-642))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-530))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-360))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-530)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-360)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-530)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-360)))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-530))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-360))) (-5 *1 (-311)))) (-3106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-2260 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-311)))) (-1255 (*1 *1) (-5 *1 (-311))) (-2656 (*1 *1) (-5 *1 (-311))) (-2601 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-311)))) (-3970 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-311)))) (-2691 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-311)))) (-1897 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| (-311)) (|:| |elseClause| (-311)))) (|:| |returnBranch| (-2 (|:| -3250 (-110)) (|:| -3417 (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |blockBranch| (-597 (-311))) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -1300 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3919 (-311)))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 (-311)))) (|:| |commonBranch| (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804))))) (-5 *1 (-311)))) (-3870 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-311)))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-311)))) (-2733 (*1 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ((-804) $)) (-15 -4032 ($ (-1020 (-893 (-530))) $)) (-15 -4032 ($ (-1020 (-893 (-530))) (-893 (-530)) $)) (-15 -2374 ($ (-1098) $)) (-15 -2182 ($ (-1098) $)) (-15 -2564 ($ (-1046))) (-15 -1610 ($ (-1046))) (-15 -2005 ($ (-1082))) (-15 -2005 ($ (-597 (-1082)))) (-15 -2929 ($ (-1082))) (-15 -4018 ($)) (-15 -4018 ($ (-297 (-647)))) (-15 -4018 ($ (-297 (-649)))) (-15 -4018 ($ (-297 (-642)))) (-15 -4018 ($ (-297 (-360)))) (-15 -4018 ($ (-297 (-530)))) (-15 -4018 ($ (-297 (-159 (-360))))) (-15 -2169 ($ (-1098) $)) (-15 -2169 ($ (-1098) $ $)) (-15 -3106 ($ (-1099) (-1082))) (-15 -3106 ($ (-1099) (-297 (-649)))) (-15 -3106 ($ (-1099) (-297 (-647)))) (-15 -3106 ($ (-1099) (-297 (-642)))) (-15 -3106 ($ (-1099) (-637 (-649)))) (-15 -3106 ($ (-1099) (-637 (-647)))) (-15 -3106 ($ (-1099) (-637 (-642)))) (-15 -3106 ($ (-1099) (-1181 (-649)))) (-15 -3106 ($ (-1099) (-1181 (-647)))) (-15 -3106 ($ (-1099) (-1181 (-642)))) (-15 -3106 ($ (-1099) (-637 (-297 (-649))))) (-15 -3106 ($ (-1099) (-637 (-297 (-647))))) (-15 -3106 ($ (-1099) (-637 (-297 (-642))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-649))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-647))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-642))))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-649)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-647)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-642)))) (-15 -3106 ($ (-1099) (-297 (-530)))) (-15 -3106 ($ (-1099) (-297 (-360)))) (-15 -3106 ($ (-1099) (-297 (-159 (-360))))) (-15 -3106 ($ (-1099) (-637 (-297 (-530))))) (-15 -3106 ($ (-1099) (-637 (-297 (-360))))) (-15 -3106 ($ (-1099) (-637 (-297 (-159 (-360)))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-530))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-360))))) (-15 -3106 ($ (-1099) (-1181 (-297 (-159 (-360)))))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-530)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-360)))) (-15 -3106 ($ (-1099) (-597 (-893 (-530))) (-297 (-159 (-360))))) (-15 -2260 ($ (-597 $))) (-15 -1255 ($)) (-15 -2656 ($)) (-15 -2601 ($ (-597 (-804)))) (-15 -3970 ($ (-1099) (-597 (-1099)))) (-15 -2691 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1897 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1099)) (|:| |arrayIndex| (-597 (-893 (-530)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1099)) (|:| |rand| (-804)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1098)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3250 (-110)) (|:| -3417 (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804)))))) (|:| |blockBranch| (-597 $)) (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082)) (|:| |forBranch| (-2 (|:| -1300 (-1020 (-893 (-530)))) (|:| |span| (-893 (-530))) (|:| -3919 $))) (|:| |labelBranch| (-1046)) (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 $))) (|:| |commonBranch| (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099))))) (|:| |printBranch| (-597 (-804)))) $)) (-15 -3870 ((-1186) $)) (-15 -4161 ((-1031) $)) (-15 -2733 ((-1046) (-1046)))))
-((-2352 (((-110) $ $) NIL)) (-2591 (((-110) $) 11)) (-2219 (($ |#1|) 8)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2231 (($ |#1|) 9)) (-2366 (((-804) $) 17)) (-3117 ((|#1| $) 12)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 19)))
-(((-312 |#1|) (-13 (-795) (-10 -8 (-15 -2219 ($ |#1|)) (-15 -2231 ($ |#1|)) (-15 -2591 ((-110) $)) (-15 -3117 (|#1| $)))) (-795)) (T -312))
-((-2219 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))) (-2231 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))) (-2591 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-795)))) (-3117 (*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795)))))
-(-13 (-795) (-10 -8 (-15 -2219 ($ |#1|)) (-15 -2231 ($ |#1|)) (-15 -2591 ((-110) $)) (-15 -3117 (|#1| $))))
-((-2213 (((-311) (-1099) (-893 (-530))) 23)) (-1467 (((-311) (-1099) (-893 (-530))) 27)) (-1883 (((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530)))) 26) (((-311) (-1099) (-893 (-530)) (-893 (-530))) 24)) (-2711 (((-311) (-1099) (-893 (-530))) 31)))
-(((-313) (-10 -7 (-15 -2213 ((-311) (-1099) (-893 (-530)))) (-15 -1883 ((-311) (-1099) (-893 (-530)) (-893 (-530)))) (-15 -1883 ((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530))))) (-15 -1467 ((-311) (-1099) (-893 (-530)))) (-15 -2711 ((-311) (-1099) (-893 (-530)))))) (T -313))
-((-2711 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1467 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1883 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1020 (-893 (-530)))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1883 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311)) (-5 *1 (-313)))))
-(-10 -7 (-15 -2213 ((-311) (-1099) (-893 (-530)))) (-15 -1883 ((-311) (-1099) (-893 (-530)) (-893 (-530)))) (-15 -1883 ((-311) (-1099) (-1020 (-893 (-530))) (-1020 (-893 (-530))))) (-15 -1467 ((-311) (-1099) (-893 (-530)))) (-15 -2711 ((-311) (-1099) (-893 (-530)))))
-((-3217 (((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)) 33)))
-(((-314 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3217 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-344) (-1157 |#5|) (-1157 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -314))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-317 *5 *6 *7 *8)) (-4 *5 (-344)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *9 (-344)) (-4 *10 (-1157 *9)) (-4 *11 (-1157 (-388 *10))) (-5 *2 (-317 *9 *10 *11 *12)) (-5 *1 (-314 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-323 *9 *10 *11)))))
-(-10 -7 (-15 -3217 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|))))
-((-1809 (((-110) $) 14)))
-(((-315 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1809 ((-110) |#1|))) (-316 |#2| |#3| |#4| |#5|) (-344) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -315))
-NIL
-(-10 -8 (-15 -1809 ((-110) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2134 (($ $) 26)) (-1809 (((-110) $) 25)) (-1424 (((-1082) $) 9)) (-3046 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 32)) (-2624 (((-1046) $) 10)) (-1974 (((-3 |#4| "failed") $) 24)) (-3041 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-530)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-3850 (((-2 (|:| -3509 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20)))
-(((-316 |#1| |#2| |#3| |#4|) (-133) (-344) (-1157 |t#1|) (-1157 (-388 |t#2|)) (-323 |t#1| |t#2| |t#3|)) (T -316))
-((-3046 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-394 *4 (-388 *4) *5 *6)))) (-3041 (*1 *1 *2) (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344)) (-4 *1 (-316 *3 *4 *5 *6)))) (-3041 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5)))) (-3041 (*1 *1 *2 *2) (-12 (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))) (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4)))) (-3041 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-530)) (-4 *2 (-344)) (-4 *4 (-1157 *2)) (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6)) (-4 *6 (-323 *2 *4 *5)))) (-3850 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-2 (|:| -3509 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6))))) (-2134 (*1 *1 *1) (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))) (-4 *5 (-323 *2 *3 *4)))) (-1809 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))) (-1974 (*1 *2 *1) (|partial| -12 (-4 *1 (-316 *3 *4 *5 *2)) (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *2 (-323 *3 *4 *5)))) (-3041 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-344)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5)))))
-(-13 (-21) (-10 -8 (-15 -3046 ((-394 |t#2| (-388 |t#2|) |t#3| |t#4|) $)) (-15 -3041 ($ (-394 |t#2| (-388 |t#2|) |t#3| |t#4|))) (-15 -3041 ($ |t#4|)) (-15 -3041 ($ |t#1| |t#1|)) (-15 -3041 ($ |t#1| |t#1| (-530))) (-15 -3850 ((-2 (|:| -3509 (-394 |t#2| (-388 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -2134 ($ $)) (-15 -1809 ((-110) $)) (-15 -1974 ((-3 |t#4| "failed") $)) (-15 -3041 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2134 (($ $) 33)) (-1809 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-1319 (((-1181 |#4|) $) 125)) (-3046 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 31)) (-2624 (((-1046) $) NIL)) (-1974 (((-3 |#4| "failed") $) 36)) (-4053 (((-1181 |#4|) $) 118)) (-3041 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-530)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-3850 (((-2 (|:| -3509 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2366 (((-804) $) 17)) (-3080 (($) 14 T CONST)) (-2248 (((-110) $ $) 20)) (-2351 (($ $) 27) (($ $ $) NIL)) (-2339 (($ $ $) 25)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 23)))
-(((-317 |#1| |#2| |#3| |#4|) (-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4053 ((-1181 |#4|) $)) (-15 -1319 ((-1181 |#4|) $)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -317))
-((-4053 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))) (-1319 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))))
-(-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4053 ((-1181 |#4|) $)) (-15 -1319 ((-1181 |#4|) $))))
-((-4098 (($ $ (-1099) |#2|) NIL) (($ $ (-597 (-1099)) (-597 |#2|)) 20) (($ $ (-597 (-276 |#2|))) 15) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-597 |#2|) (-597 |#2|)) NIL)) (-1902 (($ $ |#2|) 11)))
-(((-318 |#1| |#2|) (-10 -8 (-15 -1902 (|#1| |#1| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 |#2|))) (-15 -4098 (|#1| |#1| (-1099) |#2|))) (-319 |#2|) (-1027)) (T -318))
-NIL
-(-10 -8 (-15 -1902 (|#1| |#1| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 |#2|))) (-15 -4098 (|#1| |#1| (-1099) |#2|)))
-((-3217 (($ (-1 |#1| |#1|) $) 6)) (-4098 (($ $ (-1099) |#1|) 17 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 16 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-597 (-276 |#1|))) 15 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 14 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-291 |#1|))) (($ $ (-597 |#1|) (-597 |#1|)) 12 (|has| |#1| (-291 |#1|)))) (-1902 (($ $ |#1|) 11 (|has| |#1| (-268 |#1| |#1|)))))
-(((-319 |#1|) (-133) (-1027)) (T -319))
-((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1027)))))
-(-13 (-10 -8 (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-268 |t#1| |t#1|)) (-6 (-268 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-491 (-1099) |t#1|)) (-6 (-491 (-1099) |t#1|)) |%noBranch|)))
-(((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1099)) $) NIL)) (-3305 (((-110)) 91) (((-110) (-110)) 92)) (-2473 (((-597 (-570 $)) $) NIL)) (-2386 (($ $) NIL)) (-2244 (($ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-2625 (($ $) NIL)) (-2360 (($ $) NIL)) (-2219 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-570 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-297 |#3|)) 71) (((-3 $ "failed") (-1099)) 97) (((-3 $ "failed") (-297 (-530))) 59 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-388 (-893 (-530)))) 65 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-893 (-530))) 60 (|has| |#3| (-975 (-530)))) (((-3 $ "failed") (-297 (-360))) 89 (|has| |#3| (-975 (-360)))) (((-3 $ "failed") (-388 (-893 (-360)))) 83 (|has| |#3| (-975 (-360)))) (((-3 $ "failed") (-893 (-360))) 78 (|has| |#3| (-975 (-360))))) (-2585 (((-570 $) $) NIL) ((|#3| $) NIL) (($ (-297 |#3|)) 72) (($ (-1099)) 98) (($ (-297 (-530))) 61 (|has| |#3| (-975 (-530)))) (($ (-388 (-893 (-530)))) 66 (|has| |#3| (-975 (-530)))) (($ (-893 (-530))) 62 (|has| |#3| (-975 (-530)))) (($ (-297 (-360))) 90 (|has| |#3| (-975 (-360)))) (($ (-388 (-893 (-360)))) 84 (|has| |#3| (-975 (-360)))) (($ (-893 (-360))) 80 (|has| |#3| (-975 (-360))))) (-2707 (((-3 $ "failed") $) NIL)) (-1948 (($) 10)) (-3324 (($ $) NIL) (($ (-597 $)) NIL)) (-2381 (((-597 (-112)) $) NIL)) (-4124 (((-112) (-112)) NIL)) (-2731 (((-110) $) NIL)) (-3457 (((-110) $) NIL (|has| $ (-975 (-530))))) (-3210 (((-1095 $) (-570 $)) NIL (|has| $ (-984)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 $ $) (-570 $)) NIL)) (-3707 (((-3 (-570 $) "failed") $) NIL)) (-1945 (($ $) 94)) (-2168 (($ $) NIL)) (-1424 (((-1082) $) NIL)) (-2560 (((-597 (-570 $)) $) NIL)) (-1990 (($ (-112) $) 93) (($ (-112) (-597 $)) NIL)) (-1826 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-4156 (((-719) $) NIL)) (-2624 (((-1046) $) NIL)) (-2861 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2853 (($ $) NIL)) (-1403 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3313 (($ $) NIL) (($ $ $) NIL)) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL)) (-1781 (($ $) NIL (|has| $ (-984)))) (-2373 (($ $) NIL)) (-2231 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-570 $)) NIL) (($ |#3|) NIL) (($ (-530)) NIL) (((-297 |#3|) $) 96)) (-3300 (((-719)) NIL)) (-1678 (($ $) NIL) (($ (-597 $)) NIL)) (-4195 (((-110) (-112)) NIL)) (-2314 (($ $) NIL)) (-2293 (($ $) NIL)) (-2304 (($ $) NIL)) (-3934 (($ $) NIL)) (-3080 (($) 95 T CONST)) (-3093 (($) 24 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
-(((-320 |#1| |#2| |#3|) (-13 (-284) (-37 |#3|) (-975 |#3|) (-841 (-1099)) (-10 -8 (-15 -2585 ($ (-297 |#3|))) (-15 -3139 ((-3 $ "failed") (-297 |#3|))) (-15 -2585 ($ (-1099))) (-15 -3139 ((-3 $ "failed") (-1099))) (-15 -2366 ((-297 |#3|) $)) (IF (|has| |#3| (-975 (-530))) (PROGN (-15 -2585 ($ (-297 (-530)))) (-15 -3139 ((-3 $ "failed") (-297 (-530)))) (-15 -2585 ($ (-388 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-530))))) (-15 -2585 ($ (-893 (-530)))) (-15 -3139 ((-3 $ "failed") (-893 (-530))))) |%noBranch|) (IF (|has| |#3| (-975 (-360))) (PROGN (-15 -2585 ($ (-297 (-360)))) (-15 -3139 ((-3 $ "failed") (-297 (-360)))) (-15 -2585 ($ (-388 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2585 ($ (-893 (-360)))) (-15 -3139 ((-3 $ "failed") (-893 (-360))))) |%noBranch|) (-15 -3934 ($ $)) (-15 -2625 ($ $)) (-15 -2853 ($ $)) (-15 -2168 ($ $)) (-15 -1945 ($ $)) (-15 -2219 ($ $)) (-15 -2231 ($ $)) (-15 -2244 ($ $)) (-15 -2293 ($ $)) (-15 -2304 ($ $)) (-15 -2314 ($ $)) (-15 -2360 ($ $)) (-15 -2373 ($ $)) (-15 -2386 ($ $)) (-15 -1948 ($)) (-15 -2746 ((-597 (-1099)) $)) (-15 -3305 ((-110))) (-15 -3305 ((-110) (-110))))) (-597 (-1099)) (-597 (-1099)) (-368)) (T -320))
-((-2585 (*1 *1 *2) (-12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 *2)) (-14 *4 (-597 *2)) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 *2)) (-14 *4 (-597 *2)) (-4 *5 (-368)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-297 *5)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-530)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-530)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-530))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3934 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2625 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2853 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2168 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-1945 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2219 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2231 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2244 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2293 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2304 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2314 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2360 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-1948 (*1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099))) (-14 *3 (-597 (-1099))) (-4 *4 (-368)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-368)))) (-3305 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))) (-3305 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368)))))
-(-13 (-284) (-37 |#3|) (-975 |#3|) (-841 (-1099)) (-10 -8 (-15 -2585 ($ (-297 |#3|))) (-15 -3139 ((-3 $ "failed") (-297 |#3|))) (-15 -2585 ($ (-1099))) (-15 -3139 ((-3 $ "failed") (-1099))) (-15 -2366 ((-297 |#3|) $)) (IF (|has| |#3| (-975 (-530))) (PROGN (-15 -2585 ($ (-297 (-530)))) (-15 -3139 ((-3 $ "failed") (-297 (-530)))) (-15 -2585 ($ (-388 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-530))))) (-15 -2585 ($ (-893 (-530)))) (-15 -3139 ((-3 $ "failed") (-893 (-530))))) |%noBranch|) (IF (|has| |#3| (-975 (-360))) (PROGN (-15 -2585 ($ (-297 (-360)))) (-15 -3139 ((-3 $ "failed") (-297 (-360)))) (-15 -2585 ($ (-388 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2585 ($ (-893 (-360)))) (-15 -3139 ((-3 $ "failed") (-893 (-360))))) |%noBranch|) (-15 -3934 ($ $)) (-15 -2625 ($ $)) (-15 -2853 ($ $)) (-15 -2168 ($ $)) (-15 -1945 ($ $)) (-15 -2219 ($ $)) (-15 -2231 ($ $)) (-15 -2244 ($ $)) (-15 -2293 ($ $)) (-15 -2304 ($ $)) (-15 -2314 ($ $)) (-15 -2360 ($ $)) (-15 -2373 ($ $)) (-15 -2386 ($ $)) (-15 -1948 ($)) (-15 -2746 ((-597 (-1099)) $)) (-15 -3305 ((-110))) (-15 -3305 ((-110) (-110)))))
-((-3217 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
-(((-321 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3217 (|#8| (-1 |#5| |#1|) |#4|))) (-1139) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-1139) (-1157 |#5|) (-1157 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -321))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1139)) (-4 *8 (-1139)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *9 (-1157 *8)) (-4 *2 (-323 *8 *9 *10)) (-5 *1 (-321 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1157 (-388 *9))))))
-(-10 -7 (-15 -3217 (|#8| (-1 |#5| |#1|) |#4|)))
-((-3508 (((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) $) 38)) (-1574 (($ (-1181 (-388 |#3|)) (-1181 $)) NIL) (($ (-1181 (-388 |#3|))) NIL) (($ (-1181 |#3|) |#3|) 161)) (-1728 (((-1181 $) (-1181 $)) 145)) (-1789 (((-597 (-597 |#2|))) 119)) (-3725 (((-110) |#2| |#2|) 73)) (-1239 (($ $) 139)) (-2255 (((-719)) 31)) (-1256 (((-1181 $) (-1181 $)) 198)) (-4116 (((-597 (-893 |#2|)) (-1099)) 110)) (-1747 (((-110) $) 158)) (-3001 (((-110) $) 25) (((-110) $ |#2|) 29) (((-110) $ |#3|) 202)) (-3429 (((-3 |#3| "failed")) 50)) (-2835 (((-719)) 170)) (-1902 ((|#2| $ |#2| |#2|) 132)) (-2174 (((-3 |#3| "failed")) 68)) (-3289 (($ $ (-1 (-388 |#3|) (-388 |#3|)) (-719)) NIL) (($ $ (-1 (-388 |#3|) (-388 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-4123 (((-1181 $) (-1181 $)) 151)) (-1831 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1684 (((-110)) 33)))
-(((-322 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1789 ((-597 (-597 |#2|)))) (-15 -4116 ((-597 (-893 |#2|)) (-1099))) (-15 -1831 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3429 ((-3 |#3| "failed"))) (-15 -2174 ((-3 |#3| "failed"))) (-15 -1902 (|#2| |#1| |#2| |#2|)) (-15 -1239 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3001 ((-110) |#1| |#3|)) (-15 -3001 ((-110) |#1| |#2|)) (-15 -1574 (|#1| (-1181 |#3|) |#3|)) (-15 -3508 ((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1728 ((-1181 |#1|) (-1181 |#1|))) (-15 -1256 ((-1181 |#1|) (-1181 |#1|))) (-15 -4123 ((-1181 |#1|) (-1181 |#1|))) (-15 -3001 ((-110) |#1|)) (-15 -1747 ((-110) |#1|)) (-15 -3725 ((-110) |#2| |#2|)) (-15 -1684 ((-110))) (-15 -2835 ((-719))) (-15 -2255 ((-719))) (-15 -3289 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3289 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-719))) (-15 -1574 (|#1| (-1181 (-388 |#3|)))) (-15 -1574 (|#1| (-1181 (-388 |#3|)) (-1181 |#1|)))) (-323 |#2| |#3| |#4|) (-1139) (-1157 |#2|) (-1157 (-388 |#3|))) (T -322))
-((-2255 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-2835 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1684 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-3725 (*1 *2 *3 *3) (-12 (-4 *3 (-1139)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6)))) (-2174 (*1 *2) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-3429 (*1 *2) (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *5 (-1139)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-597 (-893 *5))) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7)))) (-1789 (*1 *2) (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-597 (-597 *4))) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))))
-(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1789 ((-597 (-597 |#2|)))) (-15 -4116 ((-597 (-893 |#2|)) (-1099))) (-15 -1831 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3429 ((-3 |#3| "failed"))) (-15 -2174 ((-3 |#3| "failed"))) (-15 -1902 (|#2| |#1| |#2| |#2|)) (-15 -1239 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3001 ((-110) |#1| |#3|)) (-15 -3001 ((-110) |#1| |#2|)) (-15 -1574 (|#1| (-1181 |#3|) |#3|)) (-15 -3508 ((-2 (|:| |num| (-1181 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1728 ((-1181 |#1|) (-1181 |#1|))) (-15 -1256 ((-1181 |#1|) (-1181 |#1|))) (-15 -4123 ((-1181 |#1|) (-1181 |#1|))) (-15 -3001 ((-110) |#1|)) (-15 -1747 ((-110) |#1|)) (-15 -3725 ((-110) |#2| |#2|)) (-15 -1684 ((-110))) (-15 -2835 ((-719))) (-15 -2255 ((-719))) (-15 -3289 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3289 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-719))) (-15 -1574 (|#1| (-1181 (-388 |#3|)))) (-15 -1574 (|#1| (-1181 (-388 |#3|)) (-1181 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3508 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 193)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 91 (|has| (-388 |#2|) (-344)))) (-3446 (($ $) 92 (|has| (-388 |#2|) (-344)))) (-1276 (((-110) $) 94 (|has| (-388 |#2|) (-344)))) (-1863 (((-637 (-388 |#2|)) (-1181 $)) 44) (((-637 (-388 |#2|))) 59)) (-1367 (((-388 |#2|) $) 50)) (-3143 (((-1109 (-862) (-719)) (-530)) 144 (|has| (-388 |#2|) (-330)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 111 (|has| (-388 |#2|) (-344)))) (-3272 (((-399 $) $) 112 (|has| (-388 |#2|) (-344)))) (-1426 (((-110) $ $) 102 (|has| (-388 |#2|) (-344)))) (-3023 (((-719)) 85 (|has| (-388 |#2|) (-349)))) (-1240 (((-110)) 210)) (-2757 (((-110) |#1|) 209) (((-110) |#2|) 208)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 166 (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 164 (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) 163)) (-2585 (((-530) $) 167 (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) 165 (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) 162)) (-1574 (($ (-1181 (-388 |#2|)) (-1181 $)) 46) (($ (-1181 (-388 |#2|))) 62) (($ (-1181 |#2|) |#2|) 192)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-388 |#2|) (-330)))) (-3590 (($ $ $) 106 (|has| (-388 |#2|) (-344)))) (-1984 (((-637 (-388 |#2|)) $ (-1181 $)) 51) (((-637 (-388 |#2|)) $) 57)) (-2329 (((-637 (-530)) (-637 $)) 161 (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 160 (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) 159) (((-637 (-388 |#2|)) (-637 $)) 158)) (-1728 (((-1181 $) (-1181 $)) 198)) (-2134 (($ |#3|) 155) (((-3 $ "failed") (-388 |#3|)) 152 (|has| (-388 |#2|) (-344)))) (-2707 (((-3 $ "failed") $) 32)) (-1789 (((-597 (-597 |#1|))) 179 (|has| |#1| (-349)))) (-3725 (((-110) |#1| |#1|) 214)) (-2426 (((-862)) 52)) (-1364 (($) 88 (|has| (-388 |#2|) (-349)))) (-4088 (((-110)) 207)) (-1358 (((-110) |#1|) 206) (((-110) |#2|) 205)) (-3571 (($ $ $) 105 (|has| (-388 |#2|) (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 100 (|has| (-388 |#2|) (-344)))) (-1239 (($ $) 185)) (-1677 (($) 146 (|has| (-388 |#2|) (-330)))) (-2798 (((-110) $) 147 (|has| (-388 |#2|) (-330)))) (-3948 (($ $ (-719)) 138 (|has| (-388 |#2|) (-330))) (($ $) 137 (|has| (-388 |#2|) (-330)))) (-3295 (((-110) $) 113 (|has| (-388 |#2|) (-344)))) (-2031 (((-862) $) 149 (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) 135 (|has| (-388 |#2|) (-330)))) (-2731 (((-110) $) 30)) (-2255 (((-719)) 217)) (-1256 (((-1181 $) (-1181 $)) 199)) (-2376 (((-388 |#2|) $) 49)) (-4116 (((-597 (-893 |#1|)) (-1099)) 180 (|has| |#1| (-344)))) (-2972 (((-3 $ "failed") $) 139 (|has| (-388 |#2|) (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 109 (|has| (-388 |#2|) (-344)))) (-1359 ((|#3| $) 42 (|has| (-388 |#2|) (-344)))) (-1905 (((-862) $) 87 (|has| (-388 |#2|) (-349)))) (-2123 ((|#3| $) 153)) (-2170 (($ (-597 $)) 98 (|has| (-388 |#2|) (-344))) (($ $ $) 97 (|has| (-388 |#2|) (-344)))) (-1424 (((-1082) $) 9)) (-2696 (((-637 (-388 |#2|))) 194)) (-3198 (((-637 (-388 |#2|))) 196)) (-2483 (($ $) 114 (|has| (-388 |#2|) (-344)))) (-2171 (($ (-1181 |#2|) |#2|) 190)) (-1412 (((-637 (-388 |#2|))) 195)) (-3075 (((-637 (-388 |#2|))) 197)) (-3839 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-2614 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 191)) (-3361 (((-1181 $)) 203)) (-3696 (((-1181 $)) 204)) (-1747 (((-110) $) 202)) (-3001 (((-110) $) 201) (((-110) $ |#1|) 188) (((-110) $ |#2|) 187)) (-3657 (($) 140 (|has| (-388 |#2|) (-330)) CONST)) (-1986 (($ (-862)) 86 (|has| (-388 |#2|) (-349)))) (-3429 (((-3 |#2| "failed")) 182)) (-2624 (((-1046) $) 10)) (-2835 (((-719)) 216)) (-1974 (($) 157)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 99 (|has| (-388 |#2|) (-344)))) (-2204 (($ (-597 $)) 96 (|has| (-388 |#2|) (-344))) (($ $ $) 95 (|has| (-388 |#2|) (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 143 (|has| (-388 |#2|) (-330)))) (-2611 (((-399 $) $) 110 (|has| (-388 |#2|) (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 107 (|has| (-388 |#2|) (-344)))) (-3551 (((-3 $ "failed") $ $) 90 (|has| (-388 |#2|) (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 101 (|has| (-388 |#2|) (-344)))) (-2356 (((-719) $) 103 (|has| (-388 |#2|) (-344)))) (-1902 ((|#1| $ |#1| |#1|) 184)) (-2174 (((-3 |#2| "failed")) 183)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 104 (|has| (-388 |#2|) (-344)))) (-3060 (((-388 |#2|) (-1181 $)) 45) (((-388 |#2|)) 58)) (-1823 (((-719) $) 148 (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) 136 (|has| (-388 |#2|) (-330)))) (-3289 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) 120 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 119 (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-597 (-1099)) (-597 (-719))) 127 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099) (-719)) 128 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-597 (-1099))) 129 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099)) 130 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-719)) 132 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3380 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 134 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3380 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-1542 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) 151 (|has| (-388 |#2|) (-344)))) (-1781 ((|#3|) 156)) (-3406 (($) 145 (|has| (-388 |#2|) (-330)))) (-2328 (((-1181 (-388 |#2|)) $ (-1181 $)) 48) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) 47) (((-1181 (-388 |#2|)) $) 64) (((-637 (-388 |#2|)) (-1181 $)) 63)) (-3260 (((-1181 (-388 |#2|)) $) 61) (($ (-1181 (-388 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 142 (|has| (-388 |#2|) (-330)))) (-4123 (((-1181 $) (-1181 $)) 200)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 |#2|)) 35) (($ (-388 (-530))) 84 (-1461 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-975 (-388 (-530)))))) (($ $) 89 (|has| (-388 |#2|) (-344)))) (-3251 (($ $) 141 (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) 41 (|has| (-388 |#2|) (-138)))) (-1814 ((|#3| $) 43)) (-3300 (((-719)) 28)) (-2190 (((-110)) 213)) (-4054 (((-110) |#1|) 212) (((-110) |#2|) 211)) (-3220 (((-1181 $)) 65)) (-3944 (((-110) $ $) 93 (|has| (-388 |#2|) (-344)))) (-1831 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1684 (((-110)) 215)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) 122 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 121 (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) 123 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099) (-719)) 124 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-597 (-1099))) 125 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-1099)) 126 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) (-3380 (|has| (-388 |#2|) (-841 (-1099))) (|has| (-388 |#2|) (-344))))) (($ $ (-719)) 131 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3380 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 133 (-1461 (-3380 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3380 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 118 (|has| (-388 |#2|) (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 115 (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 |#2|)) 37) (($ (-388 |#2|) $) 36) (($ (-388 (-530)) $) 117 (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) 116 (|has| (-388 |#2|) (-344)))))
-(((-323 |#1| |#2| |#3|) (-133) (-1139) (-1157 |t#1|) (-1157 (-388 |t#2|))) (T -323))
-((-2255 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))) (-2835 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))) (-1684 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-3725 (*1 *2 *3 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-2190 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-4054 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-4054 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-1240 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-2757 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-2757 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-4088 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1358 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-1358 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-3696 (*1 *2) (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))) (-3361 (*1 *2) (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))) (-1747 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-4123 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1256 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1728 (*1 *2 *2) (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-3075 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-3198 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-1412 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-2696 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))) (-2614 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))) (-2171 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))) (-3839 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-2 (|:| |num| (-637 *5)) (|:| |den| *5))))) (-3001 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))) (-3001 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))) (-1239 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))))) (-1902 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3))))) (-2174 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139)) (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))) (-3429 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139)) (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))) (-1831 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1139)) (-4 *6 (-1157 (-388 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-323 *4 *5 *6)))) (-4116 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *4 (-344)) (-5 *2 (-597 (-893 *4))))) (-1789 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-597 (-597 *3))))))
-(-13 (-673 (-388 |t#2|) |t#3|) (-10 -8 (-15 -2255 ((-719))) (-15 -2835 ((-719))) (-15 -1684 ((-110))) (-15 -3725 ((-110) |t#1| |t#1|)) (-15 -2190 ((-110))) (-15 -4054 ((-110) |t#1|)) (-15 -4054 ((-110) |t#2|)) (-15 -1240 ((-110))) (-15 -2757 ((-110) |t#1|)) (-15 -2757 ((-110) |t#2|)) (-15 -4088 ((-110))) (-15 -1358 ((-110) |t#1|)) (-15 -1358 ((-110) |t#2|)) (-15 -3696 ((-1181 $))) (-15 -3361 ((-1181 $))) (-15 -1747 ((-110) $)) (-15 -3001 ((-110) $)) (-15 -4123 ((-1181 $) (-1181 $))) (-15 -1256 ((-1181 $) (-1181 $))) (-15 -1728 ((-1181 $) (-1181 $))) (-15 -3075 ((-637 (-388 |t#2|)))) (-15 -3198 ((-637 (-388 |t#2|)))) (-15 -1412 ((-637 (-388 |t#2|)))) (-15 -2696 ((-637 (-388 |t#2|)))) (-15 -3508 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1574 ($ (-1181 |t#2|) |t#2|)) (-15 -2614 ((-2 (|:| |num| (-1181 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2171 ($ (-1181 |t#2|) |t#2|)) (-15 -3839 ((-2 (|:| |num| (-637 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3001 ((-110) $ |t#1|)) (-15 -3001 ((-110) $ |t#2|)) (-15 -3289 ($ $ (-1 |t#2| |t#2|))) (-15 -1239 ($ $)) (-15 -1902 (|t#1| $ |t#1| |t#1|)) (-15 -2174 ((-3 |t#2| "failed"))) (-15 -3429 ((-3 |t#2| "failed"))) (-15 -1831 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-344)) (-15 -4116 ((-597 (-893 |t#1|)) (-1099))) |%noBranch|) (IF (|has| |t#1| (-349)) (-15 -1789 ((-597 (-597 |t#1|)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-37 #1=(-388 |#2|)) . T) ((-37 $) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-99) . T) ((-109 #0# #0#) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-138))) ((-140) |has| (-388 |#2|) (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 |#3|) . T) ((-214 #1#) |has| (-388 |#2|) (-344)) ((-216) -1461 (|has| (-388 |#2|) (-330)) (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344)))) ((-226) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-272) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-289) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-344) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-383) |has| (-388 |#2|) (-330)) ((-349) -1461 (|has| (-388 |#2|) (-349)) (|has| (-388 |#2|) (-330))) ((-330) |has| (-388 |#2|) (-330)) ((-351 #1# |#3|) . T) ((-390 #1# |#3|) . T) ((-358 #1#) . T) ((-392 #1#) . T) ((-432) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-522) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-599 #0#) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-599 #1#) . T) ((-599 $) . T) ((-593 #1#) . T) ((-593 (-530)) |has| (-388 |#2|) (-593 (-530))) ((-666 #0#) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-666 #1#) . T) ((-666 $) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-673 #1# |#3|) . T) ((-675) . T) ((-841 (-1099)) -12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099)))) ((-861) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-975 (-388 (-530))) |has| (-388 |#2|) (-975 (-388 (-530)))) ((-975 #1#) . T) ((-975 (-530)) |has| (-388 |#2|) (-975 (-530))) ((-990 #0#) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-990 #1#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| (-388 |#2|) (-330)) ((-1139) -1461 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-851 |#1|) "failed") $) NIL)) (-2585 (((-851 |#1|) $) NIL)) (-1574 (($ (-1181 (-851 |#1|))) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-851 |#1|) (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| (-851 |#1|) (-349)))) (-2798 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| (-851 |#1|) (-349)))) (-1672 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-2376 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1905 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-3005 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-3396 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-1658 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1342 (((-899 (-1046))) NIL)) (-1974 (($) NIL (|has| (-851 |#1|) (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 (-851 |#1|))) NIL)) (-3406 (($) NIL (|has| (-851 |#1|) (-349)))) (-1698 (($) NIL (|has| (-851 |#1|) (-349)))) (-2328 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-3251 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3340 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
-(((-324 |#1| |#2|) (-13 (-310 (-851 |#1|)) (-10 -7 (-15 -1342 ((-899 (-1046)))))) (-862) (-862)) (T -324))
-((-1342 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-324 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))))
-(-13 (-310 (-851 |#1|)) (-10 -7 (-15 -1342 ((-899 (-1046))))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 46)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) 43 (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 115)) (-2585 ((|#1| $) 86)) (-1574 (($ (-1181 |#1|)) 104)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) 98 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) 130 (|has| |#1| (-349)))) (-2798 (((-110) $) 49 (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) 47 (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) 132 (|has| |#1| (-349)))) (-1672 (((-110) $) NIL (|has| |#1| (-349)))) (-2376 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) 90) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) 140 (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 147)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) 71 (|has| |#1| (-349)))) (-1655 (((-110) $) 118)) (-2624 (((-1046) $) NIL)) (-1342 (((-899 (-1046))) 44)) (-1974 (($) 128 (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 93 (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) 67) (((-862)) 68)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) 131 (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) 125 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 |#1|)) 96)) (-3406 (($) 129 (|has| |#1| (-349)))) (-1698 (($) 137 (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) 59) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) 143) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 75)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 139)) (-3220 (((-1181 $)) 117) (((-1181 $) (-862)) 73)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) 32 T CONST)) (-3093 (($) 19 T CONST)) (-3962 (($ $) 81 (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) 48)) (-2364 (($ $ $) 145) (($ $ |#1|) 146)) (-2351 (($ $) 127) (($ $ $) NIL)) (-2339 (($ $ $) 61)) (** (($ $ (-862)) 149) (($ $ (-719)) 150) (($ $ (-530)) 148)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 77) (($ $ $) 76) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
-(((-325 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1342 ((-899 (-1046)))))) (-330) (-1095 |#1|)) (T -325))
-((-1342 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330)) (-14 *4 (-1095 *3)))))
-(-13 (-310 |#1|) (-10 -7 (-15 -1342 ((-899 (-1046))))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| |#1| (-349)))) (-1672 (((-110) $) NIL (|has| |#1| (-349)))) (-2376 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1342 (((-899 (-1046))) NIL)) (-1974 (($) NIL (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 |#1|)) NIL)) (-3406 (($) NIL (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-326 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -1342 ((-899 (-1046)))))) (-330) (-862)) (T -326))
-((-1342 (*1 *2) (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
-(-13 (-310 |#1|) (-10 -7 (-15 -1342 ((-899 (-1046))))))
-((-3867 (((-719) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) 42)) (-3101 (((-899 (-1046)) (-1095 |#1|)) 85)) (-2416 (((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) (-1095 |#1|)) 78)) (-3727 (((-637 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) 86)) (-3445 (((-3 (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) "failed") (-862)) 13)) (-2082 (((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) (-862)) 18)))
-(((-327 |#1|) (-10 -7 (-15 -3101 ((-899 (-1046)) (-1095 |#1|))) (-15 -2416 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) (-1095 |#1|))) (-15 -3727 ((-637 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -3867 ((-719) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -3445 ((-3 (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) "failed") (-862))) (-15 -2082 ((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) (-862)))) (-330)) (T -327))
-((-2082 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-3 (-1095 *4) (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-3445 (*1 *2 *3) (|partial| -12 (-5 *3 (-862)) (-5 *2 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-719)) (-5 *1 (-327 *4)))) (-3727 (*1 *2 *3) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-637 *4)) (-5 *1 (-327 *4)))) (-2416 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-5 *1 (-327 *4)))) (-3101 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-899 (-1046))) (-5 *1 (-327 *4)))))
-(-10 -7 (-15 -3101 ((-899 (-1046)) (-1095 |#1|))) (-15 -2416 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) (-1095 |#1|))) (-15 -3727 ((-637 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -3867 ((-719) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -3445 ((-3 (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) "failed") (-862))) (-15 -2082 ((-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) (-862))))
-((-2366 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
-(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2366 (|#3| |#1|)) (-15 -2366 (|#1| |#3|))) (-310 |#2|) (-330) (-310 |#2|)) (T -328))
-((-2366 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *2 *4 *3)) (-4 *3 (-310 *4)))) (-2366 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *3 *4 *2)) (-4 *3 (-310 *4)))))
-(-10 -7 (-15 -2366 (|#3| |#1|)) (-15 -2366 (|#1| |#3|)))
-((-2798 (((-110) $) 52)) (-2031 (((-781 (-862)) $) 21) (((-862) $) 53)) (-2972 (((-3 $ "failed") $) 16)) (-3657 (($) 9)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 95)) (-1823 (((-3 (-719) "failed") $ $) 73) (((-719) $) 61)) (-3289 (($ $ (-719)) NIL) (($ $) 8)) (-3406 (($) 46)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 34)) (-3251 (((-3 $ "failed") $) 40) (($ $) 39)))
-(((-329 |#1|) (-10 -8 (-15 -2031 ((-862) |#1|)) (-15 -1823 ((-719) |#1|)) (-15 -2798 ((-110) |#1|)) (-15 -3406 (|#1|)) (-15 -2665 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -3251 (|#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -1823 ((-3 (-719) "failed") |#1| |#1|)) (-15 -2031 ((-781 (-862)) |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)))) (-330)) (T -329))
-NIL
-(-10 -8 (-15 -2031 ((-862) |#1|)) (-15 -1823 ((-719) |#1|)) (-15 -2798 ((-110) |#1|)) (-15 -3406 (|#1|)) (-15 -2665 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -3251 (|#1| |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -1823 ((-3 (-719) "failed") |#1| |#1|)) (-15 -2031 ((-781 (-862)) |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-3143 (((-1109 (-862) (-719)) (-530)) 90)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-3023 (((-719)) 100)) (-2350 (($) 17 T CONST)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-1364 (($) 103)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-1677 (($) 88)) (-2798 (((-110) $) 87)) (-3948 (($ $) 76) (($ $ (-719)) 75)) (-3295 (((-110) $) 68)) (-2031 (((-781 (-862)) $) 78) (((-862) $) 85)) (-2731 (((-110) $) 30)) (-2972 (((-3 $ "failed") $) 99)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-1905 (((-862) $) 102)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-3657 (($) 98 T CONST)) (-1986 (($ (-862)) 101)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 91)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-1823 (((-3 (-719) "failed") $ $) 77) (((-719) $) 86)) (-3289 (($ $ (-719)) 96) (($ $) 94)) (-3406 (($) 89)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 92)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63)) (-3251 (((-3 $ "failed") $) 79) (($ $) 93)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-719)) 97) (($ $) 95)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
+((-3523 (*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1184 *1)) (-4 *1 (-310 *3)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-864)) (-4 *4 (-344)) (-5 *2 (-1184 *1)) (-4 *1 (-310 *4)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1184 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344)) (-5 *2 (-639 *4)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3)))) (-1233 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1098 *3)))) (-3608 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1098 *3)))) (-3717 (*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-864)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-864)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344)))) (-1233 (*1 *2 *1 *3) (-12 (-5 *3 (-864)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1098 *1)) (-4 *1 (-310 *4)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-1354 (*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)))) (-2389 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-3323 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-3653 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110)))) (-1861 (*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))) (-3601 (*1 *1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3)) (-4 *3 (-344)))) (-1832 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1098 *3)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1098 *3)))) (-1612 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-1098 *3)))))
+(-13 (-1201 |t#1|) (-977 |t#1|) (-10 -8 (-15 -3523 ((-1184 $))) (-15 -3523 ((-1184 $) (-864))) (-15 -3348 ((-1184 |t#1|) $)) (-15 -3348 ((-639 |t#1|) (-1184 $))) (-15 -2767 ($ (-1184 |t#1|))) (-15 -1233 ((-1098 |t#1|) $)) (-15 -3608 ((-1098 |t#1|))) (-15 -3717 ((-864))) (-15 -2012 ((-864) $)) (-15 -1899 (|t#1| $)) (-15 -1354 (|t#1| $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-330)) (-15 -1233 ((-1098 $) $ (-864))) (-15 -1899 ($ $ (-864))) (-15 -1354 ($ $ (-864))) (-15 -2389 ($)) (-15 -3323 ($)) (-15 -3653 ((-110) $)) (-15 -1861 ($)) (-15 -3601 ($ $ (-1098 |t#1|))) (-15 -1832 ((-1098 |t#1|) $)) (-15 -1612 ((-1098 |t#1|) $)) (-15 -1612 ((-3 (-1098 |t#1|) "failed") $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-216) |has| |#1| (-349)) ((-226) . T) ((-272) . T) ((-289) . T) ((-1201 |#1|) . T) ((-344) . T) ((-383) -1435 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-349) |has| |#1| (-349)) ((-330) |has| |#1| (-349)) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-977 |#1|) . T) ((-992 #0#) . T) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-349)) ((-1142) . T) ((-1191 |#1|) . T))
+((-2247 (((-110) $ $) NIL)) (-2961 (($ (-1101) $) 88)) (-1263 (($) 77)) (-2134 (((-1049) (-1049)) 11)) (-1379 (($) 78)) (-4019 (($) 90) (($ (-297 (-649))) 98) (($ (-297 (-651))) 94) (($ (-297 (-644))) 102) (($ (-297 (-360))) 109) (($ (-297 (-531))) 105) (($ (-297 (-159 (-360)))) 113)) (-2904 (($ (-1101) $) 89)) (-1746 (($ (-598 (-806))) 79)) (-1421 (((-1189) $) 75)) (-3730 (((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 27)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1337 (($ (-1049)) 51)) (-1795 (((-1034) $) 25)) (-1587 (($ (-1023 (-895 (-531))) $) 85) (($ (-1023 (-895 (-531))) (-895 (-531)) $) 86)) (-1581 (($ (-1049)) 87)) (-1533 (($ (-1101) $) 115) (($ (-1101) $ $) 116)) (-4035 (($ (-1102) (-598 (-1102))) 76)) (-1986 (($ (-1085)) 82) (($ (-598 (-1085))) 80)) (-2265 (((-806) $) 118)) (-1289 (((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1102)) (|:| |arrayIndex| (-598 (-895 (-531)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1101)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1589 (-110)) (|:| -3482 (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |blockBranch| (-598 $)) (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) (|:| |forBranch| (-2 (|:| -2368 (-1023 (-895 (-531)))) (|:| |span| (-895 (-531))) (|:| -3964 $))) (|:| |labelBranch| (-1049)) (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 $))) (|:| |commonBranch| (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) (|:| |printBranch| (-598 (-806)))) $) 44)) (-2764 (($ (-1085)) 187)) (-2664 (($ (-598 $)) 114)) (-3447 (($ (-1102) (-1085)) 120) (($ (-1102) (-297 (-651))) 160) (($ (-1102) (-297 (-649))) 161) (($ (-1102) (-297 (-644))) 162) (($ (-1102) (-639 (-651))) 123) (($ (-1102) (-639 (-649))) 126) (($ (-1102) (-639 (-644))) 129) (($ (-1102) (-1184 (-651))) 132) (($ (-1102) (-1184 (-649))) 135) (($ (-1102) (-1184 (-644))) 138) (($ (-1102) (-639 (-297 (-651)))) 141) (($ (-1102) (-639 (-297 (-649)))) 144) (($ (-1102) (-639 (-297 (-644)))) 147) (($ (-1102) (-1184 (-297 (-651)))) 150) (($ (-1102) (-1184 (-297 (-649)))) 153) (($ (-1102) (-1184 (-297 (-644)))) 156) (($ (-1102) (-598 (-895 (-531))) (-297 (-651))) 157) (($ (-1102) (-598 (-895 (-531))) (-297 (-649))) 158) (($ (-1102) (-598 (-895 (-531))) (-297 (-644))) 159) (($ (-1102) (-297 (-531))) 184) (($ (-1102) (-297 (-360))) 185) (($ (-1102) (-297 (-159 (-360)))) 186) (($ (-1102) (-639 (-297 (-531)))) 165) (($ (-1102) (-639 (-297 (-360)))) 168) (($ (-1102) (-639 (-297 (-159 (-360))))) 171) (($ (-1102) (-1184 (-297 (-531)))) 174) (($ (-1102) (-1184 (-297 (-360)))) 177) (($ (-1102) (-1184 (-297 (-159 (-360))))) 180) (($ (-1102) (-598 (-895 (-531))) (-297 (-531))) 181) (($ (-1102) (-598 (-895 (-531))) (-297 (-360))) 182) (($ (-1102) (-598 (-895 (-531))) (-297 (-159 (-360)))) 183)) (-2148 (((-110) $ $) NIL)))
+(((-311) (-13 (-1030) (-10 -8 (-15 -2265 ((-806) $)) (-15 -1587 ($ (-1023 (-895 (-531))) $)) (-15 -1587 ($ (-1023 (-895 (-531))) (-895 (-531)) $)) (-15 -2961 ($ (-1101) $)) (-15 -2904 ($ (-1101) $)) (-15 -1337 ($ (-1049))) (-15 -1581 ($ (-1049))) (-15 -1986 ($ (-1085))) (-15 -1986 ($ (-598 (-1085)))) (-15 -2764 ($ (-1085))) (-15 -4019 ($)) (-15 -4019 ($ (-297 (-649)))) (-15 -4019 ($ (-297 (-651)))) (-15 -4019 ($ (-297 (-644)))) (-15 -4019 ($ (-297 (-360)))) (-15 -4019 ($ (-297 (-531)))) (-15 -4019 ($ (-297 (-159 (-360))))) (-15 -1533 ($ (-1101) $)) (-15 -1533 ($ (-1101) $ $)) (-15 -3447 ($ (-1102) (-1085))) (-15 -3447 ($ (-1102) (-297 (-651)))) (-15 -3447 ($ (-1102) (-297 (-649)))) (-15 -3447 ($ (-1102) (-297 (-644)))) (-15 -3447 ($ (-1102) (-639 (-651)))) (-15 -3447 ($ (-1102) (-639 (-649)))) (-15 -3447 ($ (-1102) (-639 (-644)))) (-15 -3447 ($ (-1102) (-1184 (-651)))) (-15 -3447 ($ (-1102) (-1184 (-649)))) (-15 -3447 ($ (-1102) (-1184 (-644)))) (-15 -3447 ($ (-1102) (-639 (-297 (-651))))) (-15 -3447 ($ (-1102) (-639 (-297 (-649))))) (-15 -3447 ($ (-1102) (-639 (-297 (-644))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-651))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-649))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-644))))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-651)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-649)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-644)))) (-15 -3447 ($ (-1102) (-297 (-531)))) (-15 -3447 ($ (-1102) (-297 (-360)))) (-15 -3447 ($ (-1102) (-297 (-159 (-360))))) (-15 -3447 ($ (-1102) (-639 (-297 (-531))))) (-15 -3447 ($ (-1102) (-639 (-297 (-360))))) (-15 -3447 ($ (-1102) (-639 (-297 (-159 (-360)))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-531))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-360))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-159 (-360)))))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-531)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-360)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-159 (-360))))) (-15 -2664 ($ (-598 $))) (-15 -1263 ($)) (-15 -1379 ($)) (-15 -1746 ($ (-598 (-806)))) (-15 -4035 ($ (-1102) (-598 (-1102)))) (-15 -3730 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1289 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1102)) (|:| |arrayIndex| (-598 (-895 (-531)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1101)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1589 (-110)) (|:| -3482 (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |blockBranch| (-598 $)) (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) (|:| |forBranch| (-2 (|:| -2368 (-1023 (-895 (-531)))) (|:| |span| (-895 (-531))) (|:| -3964 $))) (|:| |labelBranch| (-1049)) (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 $))) (|:| |commonBranch| (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) (|:| |printBranch| (-598 (-806)))) $)) (-15 -1421 ((-1189) $)) (-15 -1795 ((-1034) $)) (-15 -2134 ((-1049) (-1049)))))) (T -311))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-311)))) (-1587 (*1 *1 *2 *1) (-12 (-5 *2 (-1023 (-895 (-531)))) (-5 *1 (-311)))) (-1587 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1023 (-895 (-531)))) (-5 *3 (-895 (-531))) (-5 *1 (-311)))) (-2961 (*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) (-2904 (*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) (-1337 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-311)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-311)))) (-2764 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-311)))) (-4019 (*1 *1) (-5 *1 (-311))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-651))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-644))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-5 *1 (-311)))) (-4019 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-1533 (*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) (-1533 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1085)) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-651))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-649))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-644))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-651))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-649))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-644))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-651))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-649))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-644))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-651)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-649)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-644)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-651)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-649)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-644)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-651))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-649))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-644))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-531))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-360))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-531)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-360)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-531)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-360)))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-159 (-360))))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-531))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-360))) (-5 *1 (-311)))) (-3447 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-5 *1 (-311)))) (-1263 (*1 *1) (-5 *1 (-311))) (-1379 (*1 *1) (-5 *1 (-311))) (-1746 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-311)))) (-4035 (*1 *1 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1102)) (-5 *1 (-311)))) (-3730 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-311)))) (-1289 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1102)) (|:| |arrayIndex| (-598 (-895 (-531)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1101)) (|:| |thenClause| (-311)) (|:| |elseClause| (-311)))) (|:| |returnBranch| (-2 (|:| -1589 (-110)) (|:| -3482 (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |blockBranch| (-598 (-311))) (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) (|:| |forBranch| (-2 (|:| -2368 (-1023 (-895 (-531)))) (|:| |span| (-895 (-531))) (|:| -3964 (-311)))) (|:| |labelBranch| (-1049)) (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 (-311)))) (|:| |commonBranch| (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) (|:| |printBranch| (-598 (-806))))) (-5 *1 (-311)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-311)))) (-1795 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-311)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ((-806) $)) (-15 -1587 ($ (-1023 (-895 (-531))) $)) (-15 -1587 ($ (-1023 (-895 (-531))) (-895 (-531)) $)) (-15 -2961 ($ (-1101) $)) (-15 -2904 ($ (-1101) $)) (-15 -1337 ($ (-1049))) (-15 -1581 ($ (-1049))) (-15 -1986 ($ (-1085))) (-15 -1986 ($ (-598 (-1085)))) (-15 -2764 ($ (-1085))) (-15 -4019 ($)) (-15 -4019 ($ (-297 (-649)))) (-15 -4019 ($ (-297 (-651)))) (-15 -4019 ($ (-297 (-644)))) (-15 -4019 ($ (-297 (-360)))) (-15 -4019 ($ (-297 (-531)))) (-15 -4019 ($ (-297 (-159 (-360))))) (-15 -1533 ($ (-1101) $)) (-15 -1533 ($ (-1101) $ $)) (-15 -3447 ($ (-1102) (-1085))) (-15 -3447 ($ (-1102) (-297 (-651)))) (-15 -3447 ($ (-1102) (-297 (-649)))) (-15 -3447 ($ (-1102) (-297 (-644)))) (-15 -3447 ($ (-1102) (-639 (-651)))) (-15 -3447 ($ (-1102) (-639 (-649)))) (-15 -3447 ($ (-1102) (-639 (-644)))) (-15 -3447 ($ (-1102) (-1184 (-651)))) (-15 -3447 ($ (-1102) (-1184 (-649)))) (-15 -3447 ($ (-1102) (-1184 (-644)))) (-15 -3447 ($ (-1102) (-639 (-297 (-651))))) (-15 -3447 ($ (-1102) (-639 (-297 (-649))))) (-15 -3447 ($ (-1102) (-639 (-297 (-644))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-651))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-649))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-644))))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-651)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-649)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-644)))) (-15 -3447 ($ (-1102) (-297 (-531)))) (-15 -3447 ($ (-1102) (-297 (-360)))) (-15 -3447 ($ (-1102) (-297 (-159 (-360))))) (-15 -3447 ($ (-1102) (-639 (-297 (-531))))) (-15 -3447 ($ (-1102) (-639 (-297 (-360))))) (-15 -3447 ($ (-1102) (-639 (-297 (-159 (-360)))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-531))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-360))))) (-15 -3447 ($ (-1102) (-1184 (-297 (-159 (-360)))))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-531)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-360)))) (-15 -3447 ($ (-1102) (-598 (-895 (-531))) (-297 (-159 (-360))))) (-15 -2664 ($ (-598 $))) (-15 -1263 ($)) (-15 -1379 ($)) (-15 -1746 ($ (-598 (-806)))) (-15 -4035 ($ (-1102) (-598 (-1102)))) (-15 -3730 ((-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1289 ((-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1102)) (|:| |arrayIndex| (-598 (-895 (-531)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1102)) (|:| |rand| (-806)) (|:| |ints2Floats?| (-110)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1101)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -1589 (-110)) (|:| -3482 (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806)))))) (|:| |blockBranch| (-598 $)) (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085)) (|:| |forBranch| (-2 (|:| -2368 (-1023 (-895 (-531)))) (|:| |span| (-895 (-531))) (|:| -3964 $))) (|:| |labelBranch| (-1049)) (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 $))) (|:| |commonBranch| (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102))))) (|:| |printBranch| (-598 (-806)))) $)) (-15 -1421 ((-1189) $)) (-15 -1795 ((-1034) $)) (-15 -2134 ((-1049) (-1049)))))
+((-2247 (((-110) $ $) NIL)) (-2841 (((-110) $) 11)) (-2198 (($ |#1|) 8)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2210 (($ |#1|) 9)) (-2265 (((-806) $) 17)) (-3662 ((|#1| $) 12)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 19)))
+(((-312 |#1|) (-13 (-797) (-10 -8 (-15 -2198 ($ |#1|)) (-15 -2210 ($ |#1|)) (-15 -2841 ((-110) $)) (-15 -3662 (|#1| $)))) (-797)) (T -312))
+((-2198 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797)))) (-2210 (*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797)))) (-2841 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-797)))) (-3662 (*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797)))))
+(-13 (-797) (-10 -8 (-15 -2198 ($ |#1|)) (-15 -2210 ($ |#1|)) (-15 -2841 ((-110) $)) (-15 -3662 (|#1| $))))
+((-1502 (((-311) (-1102) (-895 (-531))) 23)) (-1916 (((-311) (-1102) (-895 (-531))) 27)) (-1266 (((-311) (-1102) (-1023 (-895 (-531))) (-1023 (-895 (-531)))) 26) (((-311) (-1102) (-895 (-531)) (-895 (-531))) 24)) (-3676 (((-311) (-1102) (-895 (-531))) 31)))
+(((-313) (-10 -7 (-15 -1502 ((-311) (-1102) (-895 (-531)))) (-15 -1266 ((-311) (-1102) (-895 (-531)) (-895 (-531)))) (-15 -1266 ((-311) (-1102) (-1023 (-895 (-531))) (-1023 (-895 (-531))))) (-15 -1916 ((-311) (-1102) (-895 (-531)))) (-15 -3676 ((-311) (-1102) (-895 (-531)))))) (T -313))
+((-3676 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1916 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1266 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-1023 (-895 (-531)))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1266 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) (-5 *1 (-313)))) (-1502 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311)) (-5 *1 (-313)))))
+(-10 -7 (-15 -1502 ((-311) (-1102) (-895 (-531)))) (-15 -1266 ((-311) (-1102) (-895 (-531)) (-895 (-531)))) (-15 -1266 ((-311) (-1102) (-1023 (-895 (-531))) (-1023 (-895 (-531))))) (-15 -1916 ((-311) (-1102) (-895 (-531)))) (-15 -3676 ((-311) (-1102) (-895 (-531)))))
+((-3261 (((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)) 33)))
+(((-314 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3261 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-344) (-1160 |#5|) (-1160 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -314))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-317 *5 *6 *7 *8)) (-4 *5 (-344)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *9 (-344)) (-4 *10 (-1160 *9)) (-4 *11 (-1160 (-388 *10))) (-5 *2 (-317 *9 *10 *11 *12)) (-5 *1 (-314 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-323 *9 *10 *11)))))
+(-10 -7 (-15 -3261 ((-317 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-317 |#1| |#2| |#3| |#4|))))
+((-3841 (((-110) $) 14)))
+(((-315 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3841 ((-110) |#1|))) (-316 |#2| |#3| |#4| |#5|) (-344) (-1160 |#2|) (-1160 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -315))
+NIL
+(-10 -8 (-15 -3841 ((-110) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1760 (($ $) 26)) (-3841 (((-110) $) 25)) (-1521 (((-1085) $) 9)) (-2003 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 32)) (-2529 (((-1049) $) 10)) (-1861 (((-3 |#4| "failed") $) 24)) (-2535 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 31) (($ |#4|) 30) (($ |#1| |#1|) 29) (($ |#1| |#1| (-531)) 28) (($ |#4| |#2| |#2| |#2| |#1|) 23)) (-4044 (((-2 (|:| -2968 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 27)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20)))
+(((-316 |#1| |#2| |#3| |#4|) (-133) (-344) (-1160 |t#1|) (-1160 (-388 |t#2|)) (-323 |t#1| |t#2| |t#3|)) (T -316))
+((-2003 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-394 *4 (-388 *4) *5 *6)))) (-2535 (*1 *1 *2) (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344)) (-4 *1 (-316 *3 *4 *5 *6)))) (-2535 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5)))) (-2535 (*1 *1 *2 *2) (-12 (-4 *2 (-344)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))) (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4)))) (-2535 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-531)) (-4 *2 (-344)) (-4 *4 (-1160 *2)) (-4 *5 (-1160 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6)) (-4 *6 (-323 *2 *4 *5)))) (-4044 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-2 (|:| -2968 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6))))) (-1760 (*1 *1 *1) (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))) (-4 *5 (-323 *2 *3 *4)))) (-3841 (*1 *2 *1) (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))) (-1861 (*1 *2 *1) (|partial| -12 (-4 *1 (-316 *3 *4 *5 *2)) (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *2 (-323 *3 *4 *5)))) (-2535 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-344)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5)))))
+(-13 (-21) (-10 -8 (-15 -2003 ((-394 |t#2| (-388 |t#2|) |t#3| |t#4|) $)) (-15 -2535 ($ (-394 |t#2| (-388 |t#2|) |t#3| |t#4|))) (-15 -2535 ($ |t#4|)) (-15 -2535 ($ |t#1| |t#1|)) (-15 -2535 ($ |t#1| |t#1| (-531))) (-15 -4044 ((-2 (|:| -2968 (-394 |t#2| (-388 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -1760 ($ $)) (-15 -3841 ((-110) $)) (-15 -1861 ((-3 |t#4| "failed") $)) (-15 -2535 ($ |t#4| |t#2| |t#2| |t#2| |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1760 (($ $) 33)) (-3841 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-3200 (((-1184 |#4|) $) 125)) (-2003 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 31)) (-2529 (((-1049) $) NIL)) (-1861 (((-3 |#4| "failed") $) 36)) (-3458 (((-1184 |#4|) $) 118)) (-2535 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 41) (($ |#4|) 43) (($ |#1| |#1|) 45) (($ |#1| |#1| (-531)) 47) (($ |#4| |#2| |#2| |#2| |#1|) 49)) (-4044 (((-2 (|:| -2968 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39)) (-2265 (((-806) $) 17)) (-3035 (($) 14 T CONST)) (-2148 (((-110) $ $) 20)) (-2250 (($ $) 27) (($ $ $) NIL)) (-2237 (($ $ $) 25)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 23)))
+(((-317 |#1| |#2| |#3| |#4|) (-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3458 ((-1184 |#4|) $)) (-15 -3200 ((-1184 |#4|) $)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -317))
+((-3458 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-1184 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))) (-3200 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-1184 *6)) (-5 *1 (-317 *3 *4 *5 *6)) (-4 *6 (-323 *3 *4 *5)))))
+(-13 (-316 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3458 ((-1184 |#4|) $)) (-15 -3200 ((-1184 |#4|) $))))
+((-4115 (($ $ (-1102) |#2|) NIL) (($ $ (-598 (-1102)) (-598 |#2|)) 20) (($ $ (-598 (-276 |#2|))) 15) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-598 |#2|) (-598 |#2|)) NIL)) (-1785 (($ $ |#2|) 11)))
+(((-318 |#1| |#2|) (-10 -8 (-15 -1785 (|#1| |#1| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 |#2|))) (-15 -4115 (|#1| |#1| (-1102) |#2|))) (-319 |#2|) (-1030)) (T -318))
+NIL
+(-10 -8 (-15 -1785 (|#1| |#1| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 |#2|))) (-15 -4115 (|#1| |#1| (-1102) |#2|)))
+((-3261 (($ (-1 |#1| |#1|) $) 6)) (-4115 (($ $ (-1102) |#1|) 17 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 16 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-598 (-276 |#1|))) 15 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 14 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 13 (|has| |#1| (-291 |#1|))) (($ $ (-598 |#1|) (-598 |#1|)) 12 (|has| |#1| (-291 |#1|)))) (-1785 (($ $ |#1|) 11 (|has| |#1| (-268 |#1| |#1|)))))
+(((-319 |#1|) (-133) (-1030)) (T -319))
+((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1030)))))
+(-13 (-10 -8 (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-268 |t#1| |t#1|)) (-6 (-268 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-492 (-1102) |t#1|)) (-6 (-492 (-1102) |t#1|)) |%noBranch|)))
+(((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1102)) $) NIL)) (-2293 (((-110)) 91) (((-110) (-110)) 92)) (-2410 (((-598 (-571 $)) $) NIL)) (-2367 (($ $) NIL)) (-2218 (($ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL)) (-2563 (($ $) NIL)) (-2343 (($ $) NIL)) (-2198 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-571 $) "failed") $) NIL) (((-3 |#3| "failed") $) NIL) (((-3 $ "failed") (-297 |#3|)) 71) (((-3 $ "failed") (-1102)) 97) (((-3 $ "failed") (-297 (-531))) 59 (|has| |#3| (-977 (-531)))) (((-3 $ "failed") (-388 (-895 (-531)))) 65 (|has| |#3| (-977 (-531)))) (((-3 $ "failed") (-895 (-531))) 60 (|has| |#3| (-977 (-531)))) (((-3 $ "failed") (-297 (-360))) 89 (|has| |#3| (-977 (-360)))) (((-3 $ "failed") (-388 (-895 (-360)))) 83 (|has| |#3| (-977 (-360)))) (((-3 $ "failed") (-895 (-360))) 78 (|has| |#3| (-977 (-360))))) (-2523 (((-571 $) $) NIL) ((|#3| $) NIL) (($ (-297 |#3|)) 72) (($ (-1102)) 98) (($ (-297 (-531))) 61 (|has| |#3| (-977 (-531)))) (($ (-388 (-895 (-531)))) 66 (|has| |#3| (-977 (-531)))) (($ (-895 (-531))) 62 (|has| |#3| (-977 (-531)))) (($ (-297 (-360))) 90 (|has| |#3| (-977 (-360)))) (($ (-388 (-895 (-360)))) 84 (|has| |#3| (-977 (-360)))) (($ (-895 (-360))) 80 (|has| |#3| (-977 (-360))))) (-3622 (((-3 $ "failed") $) NIL)) (-1880 (($) 10)) (-1238 (($ $) NIL) (($ (-598 $)) NIL)) (-4051 (((-598 (-112)) $) NIL)) (-3254 (((-112) (-112)) NIL)) (-3481 (((-110) $) NIL)) (-4250 (((-110) $) NIL (|has| $ (-977 (-531))))) (-2733 (((-1098 $) (-571 $)) NIL (|has| $ (-986)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 $ $) (-571 $)) NIL)) (-1302 (((-3 (-571 $) "failed") $) NIL)) (-1835 (($ $) 94)) (-2076 (($ $) NIL)) (-1521 (((-1085) $) NIL)) (-2501 (((-598 (-571 $)) $) NIL)) (-1930 (($ (-112) $) 93) (($ (-112) (-598 $)) NIL)) (-4247 (((-110) $ (-112)) NIL) (((-110) $ (-1102)) NIL)) (-4194 (((-721) $) NIL)) (-2529 (((-1049) $) NIL)) (-2781 (((-110) $ $) NIL) (((-110) $ (-1102)) NIL)) (-2798 (($ $) NIL)) (-1787 (((-110) $) NIL (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) NIL)) (-1771 (($ $) NIL) (($ $ $) NIL)) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL)) (-3608 (($ $) NIL (|has| $ (-986)))) (-2356 (($ $) NIL)) (-2210 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-571 $)) NIL) (($ |#3|) NIL) (($ (-531)) NIL) (((-297 |#3|) $) 96)) (-2284 (((-721)) NIL)) (-3504 (($ $) NIL) (($ (-598 $)) NIL)) (-3167 (((-110) (-112)) NIL)) (-2292 (($ $) NIL)) (-2266 (($ $) NIL)) (-2279 (($ $) NIL)) (-1620 (($ $) NIL)) (-3035 (($) 95 T CONST)) (-3050 (($) 24 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ |#3| $) NIL) (($ $ |#3|) NIL) (($ $ $) NIL) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL)))
+(((-320 |#1| |#2| |#3|) (-13 (-284) (-37 |#3|) (-977 |#3|) (-843 (-1102)) (-10 -8 (-15 -2523 ($ (-297 |#3|))) (-15 -3154 ((-3 $ "failed") (-297 |#3|))) (-15 -2523 ($ (-1102))) (-15 -3154 ((-3 $ "failed") (-1102))) (-15 -2265 ((-297 |#3|) $)) (IF (|has| |#3| (-977 (-531))) (PROGN (-15 -2523 ($ (-297 (-531)))) (-15 -3154 ((-3 $ "failed") (-297 (-531)))) (-15 -2523 ($ (-388 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-531))))) (-15 -2523 ($ (-895 (-531)))) (-15 -3154 ((-3 $ "failed") (-895 (-531))))) |%noBranch|) (IF (|has| |#3| (-977 (-360))) (PROGN (-15 -2523 ($ (-297 (-360)))) (-15 -3154 ((-3 $ "failed") (-297 (-360)))) (-15 -2523 ($ (-388 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-360))))) (-15 -2523 ($ (-895 (-360)))) (-15 -3154 ((-3 $ "failed") (-895 (-360))))) |%noBranch|) (-15 -1620 ($ $)) (-15 -2563 ($ $)) (-15 -2798 ($ $)) (-15 -2076 ($ $)) (-15 -1835 ($ $)) (-15 -2198 ($ $)) (-15 -2210 ($ $)) (-15 -2218 ($ $)) (-15 -2266 ($ $)) (-15 -2279 ($ $)) (-15 -2292 ($ $)) (-15 -2343 ($ $)) (-15 -2356 ($ $)) (-15 -2367 ($ $)) (-15 -1880 ($)) (-15 -2695 ((-598 (-1102)) $)) (-15 -2293 ((-110))) (-15 -2293 ((-110) (-110))))) (-598 (-1102)) (-598 (-1102)) (-368)) (T -320))
+((-2523 (*1 *1 *2) (-12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 *2)) (-14 *4 (-598 *2)) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 *2)) (-14 *4 (-598 *2)) (-4 *5 (-368)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-297 *5)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-531))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-531)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-895 (-531)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-531))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-531))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-895 (-360)))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-360))) (-5 *1 (-320 *3 *4 *5)) (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-1620 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2563 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2798 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2076 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-1835 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2198 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2210 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2218 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2266 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2279 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2292 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2343 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2356 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-1880 (*1 *1) (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102))) (-14 *3 (-598 (-1102))) (-4 *4 (-368)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-368)))) (-2293 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368)))))
+(-13 (-284) (-37 |#3|) (-977 |#3|) (-843 (-1102)) (-10 -8 (-15 -2523 ($ (-297 |#3|))) (-15 -3154 ((-3 $ "failed") (-297 |#3|))) (-15 -2523 ($ (-1102))) (-15 -3154 ((-3 $ "failed") (-1102))) (-15 -2265 ((-297 |#3|) $)) (IF (|has| |#3| (-977 (-531))) (PROGN (-15 -2523 ($ (-297 (-531)))) (-15 -3154 ((-3 $ "failed") (-297 (-531)))) (-15 -2523 ($ (-388 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-531))))) (-15 -2523 ($ (-895 (-531)))) (-15 -3154 ((-3 $ "failed") (-895 (-531))))) |%noBranch|) (IF (|has| |#3| (-977 (-360))) (PROGN (-15 -2523 ($ (-297 (-360)))) (-15 -3154 ((-3 $ "failed") (-297 (-360)))) (-15 -2523 ($ (-388 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-360))))) (-15 -2523 ($ (-895 (-360)))) (-15 -3154 ((-3 $ "failed") (-895 (-360))))) |%noBranch|) (-15 -1620 ($ $)) (-15 -2563 ($ $)) (-15 -2798 ($ $)) (-15 -2076 ($ $)) (-15 -1835 ($ $)) (-15 -2198 ($ $)) (-15 -2210 ($ $)) (-15 -2218 ($ $)) (-15 -2266 ($ $)) (-15 -2279 ($ $)) (-15 -2292 ($ $)) (-15 -2343 ($ $)) (-15 -2356 ($ $)) (-15 -2367 ($ $)) (-15 -1880 ($)) (-15 -2695 ((-598 (-1102)) $)) (-15 -2293 ((-110))) (-15 -2293 ((-110) (-110)))))
+((-3261 ((|#8| (-1 |#5| |#1|) |#4|) 19)))
+(((-321 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3261 (|#8| (-1 |#5| |#1|) |#4|))) (-1142) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-1142) (-1160 |#5|) (-1160 (-388 |#6|)) (-323 |#5| |#6| |#7|)) (T -321))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1142)) (-4 *8 (-1142)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *9 (-1160 *8)) (-4 *2 (-323 *8 *9 *10)) (-5 *1 (-321 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1160 (-388 *9))))))
+(-10 -7 (-15 -3261 (|#8| (-1 |#5| |#1|) |#4|)))
+((-1461 (((-2 (|:| |num| (-1184 |#3|)) (|:| |den| |#3|)) $) 38)) (-2767 (($ (-1184 (-388 |#3|)) (-1184 $)) NIL) (($ (-1184 (-388 |#3|))) NIL) (($ (-1184 |#3|) |#3|) 161)) (-2492 (((-1184 $) (-1184 $)) 145)) (-2709 (((-598 (-598 |#2|))) 119)) (-3428 (((-110) |#2| |#2|) 73)) (-2226 (($ $) 139)) (-2262 (((-721)) 31)) (-1272 (((-1184 $) (-1184 $)) 198)) (-4083 (((-598 (-895 |#2|)) (-1102)) 110)) (-3824 (((-110) $) 158)) (-3570 (((-110) $) 25) (((-110) $ |#2|) 29) (((-110) $ |#3|) 202)) (-3667 (((-3 |#3| "failed")) 50)) (-2509 (((-721)) 170)) (-1785 ((|#2| $ |#2| |#2|) 132)) (-3751 (((-3 |#3| "failed")) 68)) (-3352 (($ $ (-1 (-388 |#3|) (-388 |#3|)) (-721)) NIL) (($ $ (-1 (-388 |#3|) (-388 |#3|))) NIL) (($ $ (-1 |#3| |#3|)) 206) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-3568 (((-1184 $) (-1184 $)) 151)) (-1689 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 66)) (-1855 (((-110)) 33)))
+(((-322 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -2709 ((-598 (-598 |#2|)))) (-15 -4083 ((-598 (-895 |#2|)) (-1102))) (-15 -1689 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3667 ((-3 |#3| "failed"))) (-15 -3751 ((-3 |#3| "failed"))) (-15 -1785 (|#2| |#1| |#2| |#2|)) (-15 -2226 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3570 ((-110) |#1| |#3|)) (-15 -3570 ((-110) |#1| |#2|)) (-15 -2767 (|#1| (-1184 |#3|) |#3|)) (-15 -1461 ((-2 (|:| |num| (-1184 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2492 ((-1184 |#1|) (-1184 |#1|))) (-15 -1272 ((-1184 |#1|) (-1184 |#1|))) (-15 -3568 ((-1184 |#1|) (-1184 |#1|))) (-15 -3570 ((-110) |#1|)) (-15 -3824 ((-110) |#1|)) (-15 -3428 ((-110) |#2| |#2|)) (-15 -1855 ((-110))) (-15 -2509 ((-721))) (-15 -2262 ((-721))) (-15 -3352 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3352 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-721))) (-15 -2767 (|#1| (-1184 (-388 |#3|)))) (-15 -2767 (|#1| (-1184 (-388 |#3|)) (-1184 |#1|)))) (-323 |#2| |#3| |#4|) (-1142) (-1160 |#2|) (-1160 (-388 |#3|))) (T -322))
+((-2262 (*1 *2) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-721)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-2509 (*1 *2) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-721)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-1855 (*1 *2) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))) (-3428 (*1 *2 *3 *3) (-12 (-4 *3 (-1142)) (-4 *5 (-1160 *3)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6)))) (-3751 (*1 *2) (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-3667 (*1 *2) (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-322 *3 *4 *2 *5)) (-4 *3 (-323 *4 *2 *5)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *5 (-1142)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-5 *2 (-598 (-895 *5))) (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7)))) (-2709 (*1 *2) (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-598 (-598 *4))) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6)))))
+(-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -2709 ((-598 (-598 |#2|)))) (-15 -4083 ((-598 (-895 |#2|)) (-1102))) (-15 -1689 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -3667 ((-3 |#3| "failed"))) (-15 -3751 ((-3 |#3| "failed"))) (-15 -1785 (|#2| |#1| |#2| |#2|)) (-15 -2226 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -3570 ((-110) |#1| |#3|)) (-15 -3570 ((-110) |#1| |#2|)) (-15 -2767 (|#1| (-1184 |#3|) |#3|)) (-15 -1461 ((-2 (|:| |num| (-1184 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -2492 ((-1184 |#1|) (-1184 |#1|))) (-15 -1272 ((-1184 |#1|) (-1184 |#1|))) (-15 -3568 ((-1184 |#1|) (-1184 |#1|))) (-15 -3570 ((-110) |#1|)) (-15 -3824 ((-110) |#1|)) (-15 -3428 ((-110) |#2| |#2|)) (-15 -1855 ((-110))) (-15 -2509 ((-721))) (-15 -2262 ((-721))) (-15 -3352 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)))) (-15 -3352 (|#1| |#1| (-1 (-388 |#3|) (-388 |#3|)) (-721))) (-15 -2767 (|#1| (-1184 (-388 |#3|)))) (-15 -2767 (|#1| (-1184 (-388 |#3|)) (-1184 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1461 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) 193)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 91 (|has| (-388 |#2|) (-344)))) (-3258 (($ $) 92 (|has| (-388 |#2|) (-344)))) (-2921 (((-110) $) 94 (|has| (-388 |#2|) (-344)))) (-1849 (((-639 (-388 |#2|)) (-1184 $)) 44) (((-639 (-388 |#2|))) 59)) (-1354 (((-388 |#2|) $) 50)) (-3646 (((-1112 (-864) (-721)) (-531)) 144 (|has| (-388 |#2|) (-330)))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 111 (|has| (-388 |#2|) (-344)))) (-2956 (((-399 $) $) 112 (|has| (-388 |#2|) (-344)))) (-2760 (((-110) $ $) 102 (|has| (-388 |#2|) (-344)))) (-3006 (((-721)) 85 (|has| (-388 |#2|) (-349)))) (-1860 (((-110)) 210)) (-1730 (((-110) |#1|) 209) (((-110) |#2|) 208)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 166 (|has| (-388 |#2|) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 164 (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-3 (-388 |#2|) "failed") $) 163)) (-2523 (((-531) $) 167 (|has| (-388 |#2|) (-977 (-531)))) (((-388 (-531)) $) 165 (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-388 |#2|) $) 162)) (-2767 (($ (-1184 (-388 |#2|)) (-1184 $)) 46) (($ (-1184 (-388 |#2|))) 62) (($ (-1184 |#2|) |#2|) 192)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| (-388 |#2|) (-330)))) (-3650 (($ $ $) 106 (|has| (-388 |#2|) (-344)))) (-1982 (((-639 (-388 |#2|)) $ (-1184 $)) 51) (((-639 (-388 |#2|)) $) 57)) (-3073 (((-639 (-531)) (-639 $)) 161 (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 160 (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-388 |#2|))) (|:| |vec| (-1184 (-388 |#2|)))) (-639 $) (-1184 $)) 159) (((-639 (-388 |#2|)) (-639 $)) 158)) (-2492 (((-1184 $) (-1184 $)) 198)) (-1760 (($ |#3|) 155) (((-3 $ "failed") (-388 |#3|)) 152 (|has| (-388 |#2|) (-344)))) (-3622 (((-3 $ "failed") $) 32)) (-2709 (((-598 (-598 |#1|))) 179 (|has| |#1| (-349)))) (-3428 (((-110) |#1| |#1|) 214)) (-2277 (((-864)) 52)) (-1381 (($) 88 (|has| (-388 |#2|) (-349)))) (-2903 (((-110)) 207)) (-2809 (((-110) |#1|) 206) (((-110) |#2|) 205)) (-3630 (($ $ $) 105 (|has| (-388 |#2|) (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 100 (|has| (-388 |#2|) (-344)))) (-2226 (($ $) 185)) (-1806 (($) 146 (|has| (-388 |#2|) (-330)))) (-1971 (((-110) $) 147 (|has| (-388 |#2|) (-330)))) (-3493 (($ $ (-721)) 138 (|has| (-388 |#2|) (-330))) (($ $) 137 (|has| (-388 |#2|) (-330)))) (-2534 (((-110) $) 113 (|has| (-388 |#2|) (-344)))) (-3617 (((-864) $) 149 (|has| (-388 |#2|) (-330))) (((-783 (-864)) $) 135 (|has| (-388 |#2|) (-330)))) (-3481 (((-110) $) 30)) (-2262 (((-721)) 217)) (-1272 (((-1184 $) (-1184 $)) 199)) (-1899 (((-388 |#2|) $) 49)) (-4083 (((-598 (-895 |#1|)) (-1102)) 180 (|has| |#1| (-344)))) (-2342 (((-3 $ "failed") $) 139 (|has| (-388 |#2|) (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 109 (|has| (-388 |#2|) (-344)))) (-1233 ((|#3| $) 42 (|has| (-388 |#2|) (-344)))) (-2211 (((-864) $) 87 (|has| (-388 |#2|) (-349)))) (-1749 ((|#3| $) 153)) (-2078 (($ (-598 $)) 98 (|has| (-388 |#2|) (-344))) (($ $ $) 97 (|has| (-388 |#2|) (-344)))) (-1521 (((-1085) $) 9)) (-1789 (((-639 (-388 |#2|))) 194)) (-1953 (((-639 (-388 |#2|))) 196)) (-2422 (($ $) 114 (|has| (-388 |#2|) (-344)))) (-1729 (($ (-1184 |#2|) |#2|) 190)) (-3519 (((-639 (-388 |#2|))) 195)) (-3970 (((-639 (-388 |#2|))) 197)) (-3594 (((-2 (|:| |num| (-639 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 189)) (-3883 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) 191)) (-2505 (((-1184 $)) 203)) (-2670 (((-1184 $)) 204)) (-3824 (((-110) $) 202)) (-3570 (((-110) $) 201) (((-110) $ |#1|) 188) (((-110) $ |#2|) 187)) (-3788 (($) 140 (|has| (-388 |#2|) (-330)) CONST)) (-1889 (($ (-864)) 86 (|has| (-388 |#2|) (-349)))) (-3667 (((-3 |#2| "failed")) 182)) (-2529 (((-1049) $) 10)) (-2509 (((-721)) 216)) (-1861 (($) 157)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 99 (|has| (-388 |#2|) (-344)))) (-2109 (($ (-598 $)) 96 (|has| (-388 |#2|) (-344))) (($ $ $) 95 (|has| (-388 |#2|) (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 143 (|has| (-388 |#2|) (-330)))) (-2552 (((-399 $) $) 110 (|has| (-388 |#2|) (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 107 (|has| (-388 |#2|) (-344)))) (-3609 (((-3 $ "failed") $ $) 90 (|has| (-388 |#2|) (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 101 (|has| (-388 |#2|) (-344)))) (-4100 (((-721) $) 103 (|has| (-388 |#2|) (-344)))) (-1785 ((|#1| $ |#1| |#1|) 184)) (-3751 (((-3 |#2| "failed")) 183)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 104 (|has| (-388 |#2|) (-344)))) (-3176 (((-388 |#2|) (-1184 $)) 45) (((-388 |#2|)) 58)) (-2350 (((-721) $) 148 (|has| (-388 |#2|) (-330))) (((-3 (-721) "failed") $ $) 136 (|has| (-388 |#2|) (-330)))) (-3352 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) 120 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 119 (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) 186) (($ $ (-598 (-1102)) (-598 (-721))) 127 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-1102) (-721)) 128 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-598 (-1102))) 129 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-1102)) 130 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-721)) 132 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3427 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 134 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3427 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3381 (((-639 (-388 |#2|)) (-1184 $) (-1 (-388 |#2|) (-388 |#2|))) 151 (|has| (-388 |#2|) (-344)))) (-3608 ((|#3|) 156)) (-2498 (($) 145 (|has| (-388 |#2|) (-330)))) (-3348 (((-1184 (-388 |#2|)) $ (-1184 $)) 48) (((-639 (-388 |#2|)) (-1184 $) (-1184 $)) 47) (((-1184 (-388 |#2|)) $) 64) (((-639 (-388 |#2|)) (-1184 $)) 63)) (-3318 (((-1184 (-388 |#2|)) $) 61) (($ (-1184 (-388 |#2|))) 60) ((|#3| $) 168) (($ |#3|) 154)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 142 (|has| (-388 |#2|) (-330)))) (-3568 (((-1184 $) (-1184 $)) 200)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 |#2|)) 35) (($ (-388 (-531))) 84 (-1435 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-977 (-388 (-531)))))) (($ $) 89 (|has| (-388 |#2|) (-344)))) (-2750 (($ $) 141 (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) 41 (|has| (-388 |#2|) (-138)))) (-3369 ((|#3| $) 43)) (-2284 (((-721)) 28)) (-1966 (((-110)) 213)) (-2935 (((-110) |#1|) 212) (((-110) |#2|) 211)) (-3523 (((-1184 $)) 65)) (-2587 (((-110) $ $) 93 (|has| (-388 |#2|) (-344)))) (-1689 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 181)) (-1855 (((-110)) 215)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) 122 (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) 121 (|has| (-388 |#2|) (-344))) (($ $ (-598 (-1102)) (-598 (-721))) 123 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-1102) (-721)) 124 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-598 (-1102))) 125 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-1102)) 126 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) (-3427 (|has| (-388 |#2|) (-843 (-1102))) (|has| (-388 |#2|) (-344))))) (($ $ (-721)) 131 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3427 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) 133 (-1435 (-3427 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-216))) (-3427 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 118 (|has| (-388 |#2|) (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 115 (|has| (-388 |#2|) (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 |#2|)) 37) (($ (-388 |#2|) $) 36) (($ (-388 (-531)) $) 117 (|has| (-388 |#2|) (-344))) (($ $ (-388 (-531))) 116 (|has| (-388 |#2|) (-344)))))
+(((-323 |#1| |#2| |#3|) (-133) (-1142) (-1160 |t#1|) (-1160 (-388 |t#2|))) (T -323))
+((-2262 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-721)))) (-2509 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-721)))) (-1855 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-3428 (*1 *2 *3 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-1966 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-2935 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-2935 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) (-1860 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-1730 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-1730 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) (-2903 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-2809 (*1 *2 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-2809 (*1 *2 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) (-2670 (*1 *2) (-12 (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)))) (-2505 (*1 *2) (-12 (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)))) (-3824 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-3570 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-3568 (*1 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) (-1272 (*1 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) (-2492 (*1 *2 *2) (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) (-3970 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))) (-1953 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))) (-3519 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))) (-1789 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))) (-1461 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1184 *4)) (|:| |den| *4))))) (-2767 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1160 *4)) (-4 *4 (-1142)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1160 (-388 *3))))) (-3883 (*1 *2 *1) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-2 (|:| |num| (-1184 *4)) (|:| |den| *4))))) (-1729 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1160 *4)) (-4 *4 (-1142)) (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1160 (-388 *3))))) (-3594 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-2 (|:| |num| (-639 *5)) (|:| |den| *5))))) (-3570 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))) (-3570 (*1 *2 *1 *3) (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))) (-2226 (*1 *1 *1) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1142)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))))) (-1785 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1142)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3))))) (-3751 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1142)) (-4 *4 (-1160 (-388 *2))) (-4 *2 (-1160 *3)))) (-3667 (*1 *2) (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1142)) (-4 *4 (-1160 (-388 *2))) (-4 *2 (-1160 *3)))) (-1689 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-1142)) (-4 *6 (-1160 (-388 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-323 *4 *5 *6)))) (-4083 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-4 *4 (-344)) (-5 *2 (-598 (-895 *4))))) (-2709 (*1 *2) (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-598 (-598 *3))))))
+(-13 (-675 (-388 |t#2|) |t#3|) (-10 -8 (-15 -2262 ((-721))) (-15 -2509 ((-721))) (-15 -1855 ((-110))) (-15 -3428 ((-110) |t#1| |t#1|)) (-15 -1966 ((-110))) (-15 -2935 ((-110) |t#1|)) (-15 -2935 ((-110) |t#2|)) (-15 -1860 ((-110))) (-15 -1730 ((-110) |t#1|)) (-15 -1730 ((-110) |t#2|)) (-15 -2903 ((-110))) (-15 -2809 ((-110) |t#1|)) (-15 -2809 ((-110) |t#2|)) (-15 -2670 ((-1184 $))) (-15 -2505 ((-1184 $))) (-15 -3824 ((-110) $)) (-15 -3570 ((-110) $)) (-15 -3568 ((-1184 $) (-1184 $))) (-15 -1272 ((-1184 $) (-1184 $))) (-15 -2492 ((-1184 $) (-1184 $))) (-15 -3970 ((-639 (-388 |t#2|)))) (-15 -1953 ((-639 (-388 |t#2|)))) (-15 -3519 ((-639 (-388 |t#2|)))) (-15 -1789 ((-639 (-388 |t#2|)))) (-15 -1461 ((-2 (|:| |num| (-1184 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2767 ($ (-1184 |t#2|) |t#2|)) (-15 -3883 ((-2 (|:| |num| (-1184 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1729 ($ (-1184 |t#2|) |t#2|)) (-15 -3594 ((-2 (|:| |num| (-639 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -3570 ((-110) $ |t#1|)) (-15 -3570 ((-110) $ |t#2|)) (-15 -3352 ($ $ (-1 |t#2| |t#2|))) (-15 -2226 ($ $)) (-15 -1785 (|t#1| $ |t#1| |t#1|)) (-15 -3751 ((-3 |t#2| "failed"))) (-15 -3667 ((-3 |t#2| "failed"))) (-15 -1689 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-344)) (-15 -4083 ((-598 (-895 |t#1|)) (-1102))) |%noBranch|) (IF (|has| |t#1| (-349)) (-15 -2709 ((-598 (-598 |t#1|)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-37 #1=(-388 |#2|)) . T) ((-37 $) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-99) . T) ((-109 #0# #0#) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-138))) ((-140) |has| (-388 |#2|) (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 |#3|) . T) ((-214 #1#) |has| (-388 |#2|) (-344)) ((-216) -1435 (|has| (-388 |#2|) (-330)) (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344)))) ((-226) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-272) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-289) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-344) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-383) |has| (-388 |#2|) (-330)) ((-349) -1435 (|has| (-388 |#2|) (-349)) (|has| (-388 |#2|) (-330))) ((-330) |has| (-388 |#2|) (-330)) ((-351 #1# |#3|) . T) ((-390 #1# |#3|) . T) ((-358 #1#) . T) ((-392 #1#) . T) ((-432) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-523) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-601 #0#) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-601 #1#) . T) ((-601 $) . T) ((-594 #1#) . T) ((-594 (-531)) |has| (-388 |#2|) (-594 (-531))) ((-668 #0#) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-668 #1#) . T) ((-668 $) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-675 #1# |#3|) . T) ((-677) . T) ((-843 (-1102)) -12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102)))) ((-863) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-977 (-388 (-531))) |has| (-388 |#2|) (-977 (-388 (-531)))) ((-977 #1#) . T) ((-977 (-531)) |has| (-388 |#2|) (-977 (-531))) ((-992 #0#) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))) ((-992 #1#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| (-388 |#2|) (-330)) ((-1142) -1435 (|has| (-388 |#2|) (-330)) (|has| (-388 |#2|) (-344))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-853 |#1|) (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| (-853 |#1|) (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-853 |#1|) "failed") $) NIL)) (-2523 (((-853 |#1|) $) NIL)) (-2767 (($ (-1184 (-853 |#1|))) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-853 |#1|) (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-853 |#1|) (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| (-853 |#1|) (-349)))) (-1971 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349)))) (($ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| (-853 |#1|) (-349))) (((-783 (-864)) $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| (-853 |#1|) (-349)))) (-3653 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-1899 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-853 |#1|) (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 (-853 |#1|)) $) NIL) (((-1098 $) $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2211 (((-864) $) NIL (|has| (-853 |#1|) (-349)))) (-1832 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349)))) (-1612 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-1098 (-853 |#1|)) "failed") $ $) NIL (|has| (-853 |#1|) (-349)))) (-3601 (($ $ (-1098 (-853 |#1|))) NIL (|has| (-853 |#1|) (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-853 |#1|) (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-2825 (((-901 (-1049))) NIL)) (-1861 (($) NIL (|has| (-853 |#1|) (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-853 |#1|) (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 (-853 |#1|))) NIL)) (-2498 (($) NIL (|has| (-853 |#1|) (-349)))) (-2389 (($) NIL (|has| (-853 |#1|) (-349)))) (-3348 (((-1184 (-853 |#1|)) $) NIL) (((-639 (-853 |#1|)) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-853 |#1|) (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-853 |#1|)) NIL)) (-2750 (($ $) NIL (|has| (-853 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-4020 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ (-853 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-853 |#1|)) NIL) (($ (-853 |#1|) $) NIL)))
+(((-324 |#1| |#2|) (-13 (-310 (-853 |#1|)) (-10 -7 (-15 -2825 ((-901 (-1049)))))) (-864) (-864)) (T -324))
+((-2825 (*1 *2) (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-324 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))))
+(-13 (-310 (-853 |#1|)) (-10 -7 (-15 -2825 ((-901 (-1049))))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 46)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) 43 (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 115)) (-2523 ((|#1| $) 86)) (-2767 (($ (-1184 |#1|)) 104)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 95 (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) 98 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) 130 (|has| |#1| (-349)))) (-1971 (((-110) $) 49 (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) 47 (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) 132 (|has| |#1| (-349)))) (-3653 (((-110) $) NIL (|has| |#1| (-349)))) (-1899 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) 90) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) 140 (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 147)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) 71 (|has| |#1| (-349)))) (-3693 (((-110) $) 118)) (-2529 (((-1049) $) NIL)) (-2825 (((-901 (-1049))) 44)) (-1861 (($) 128 (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 93 (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) 67) (((-864)) 68)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) 131 (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) 125 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 |#1|)) 96)) (-2498 (($) 129 (|has| |#1| (-349)))) (-2389 (($) 137 (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) 59) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) 143) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 75)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 139)) (-3523 (((-1184 $)) 117) (((-1184 $) (-864)) 73)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) 32 T CONST)) (-3050 (($) 19 T CONST)) (-2730 (($ $) 81 (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 48)) (-2263 (($ $ $) 145) (($ $ |#1|) 146)) (-2250 (($ $) 127) (($ $ $) NIL)) (-2237 (($ $ $) 61)) (** (($ $ (-864)) 149) (($ $ (-721)) 150) (($ $ (-531)) 148)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 77) (($ $ $) 76) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 144)))
+(((-325 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -2825 ((-901 (-1049)))))) (-330) (-1098 |#1|)) (T -325))
+((-2825 (*1 *2) (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330)) (-14 *4 (-1098 *3)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -2825 ((-901 (-1049))))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| |#1| (-349)))) (-3653 (((-110) $) NIL (|has| |#1| (-349)))) (-1899 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) NIL) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-2825 (((-901 (-1049))) NIL)) (-1861 (($) NIL (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 |#1|)) NIL)) (-2498 (($) NIL (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) NIL) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) NIL)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-326 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -2825 ((-901 (-1049)))))) (-330) (-864)) (T -326))
+((-2825 (*1 *2) (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -2825 ((-901 (-1049))))))
+((-1592 (((-721) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) 42)) (-3331 (((-901 (-1049)) (-1098 |#1|)) 85)) (-2519 (((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) (-1098 |#1|)) 78)) (-2313 (((-639 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) 86)) (-2936 (((-3 (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) "failed") (-864)) 13)) (-2358 (((-3 (-1098 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) (-864)) 18)))
+(((-327 |#1|) (-10 -7 (-15 -3331 ((-901 (-1049)) (-1098 |#1|))) (-15 -2519 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) (-1098 |#1|))) (-15 -2313 ((-639 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1592 ((-721) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -2936 ((-3 (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) "failed") (-864))) (-15 -2358 ((-3 (-1098 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) (-864)))) (-330)) (T -327))
+((-2358 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-3 (-1098 *4) (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049))))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-2936 (*1 *2 *3) (|partial| -12 (-5 *3 (-864)) (-5 *2 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-5 *1 (-327 *4)) (-4 *4 (-330)))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-4 *4 (-330)) (-5 *2 (-721)) (-5 *1 (-327 *4)))) (-2313 (*1 *2 *3) (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-4 *4 (-330)) (-5 *2 (-639 *4)) (-5 *1 (-327 *4)))) (-2519 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-5 *1 (-327 *4)))) (-3331 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-901 (-1049))) (-5 *1 (-327 *4)))))
+(-10 -7 (-15 -3331 ((-901 (-1049)) (-1098 |#1|))) (-15 -2519 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) (-1098 |#1|))) (-15 -2313 ((-639 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1592 ((-721) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -2936 ((-3 (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) "failed") (-864))) (-15 -2358 ((-3 (-1098 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) (-864))))
+((-2265 ((|#1| |#3|) 86) ((|#3| |#1|) 69)))
+(((-328 |#1| |#2| |#3|) (-10 -7 (-15 -2265 (|#3| |#1|)) (-15 -2265 (|#1| |#3|))) (-310 |#2|) (-330) (-310 |#2|)) (T -328))
+((-2265 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *2 *4 *3)) (-4 *3 (-310 *4)))) (-2265 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *3 *4 *2)) (-4 *3 (-310 *4)))))
+(-10 -7 (-15 -2265 (|#3| |#1|)) (-15 -2265 (|#1| |#3|)))
+((-1971 (((-110) $) 52)) (-3617 (((-783 (-864)) $) 21) (((-864) $) 53)) (-2342 (((-3 $ "failed") $) 16)) (-3788 (($) 9)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 95)) (-2350 (((-3 (-721) "failed") $ $) 73) (((-721) $) 61)) (-3352 (($ $ (-721)) NIL) (($ $) 8)) (-2498 (($) 46)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 34)) (-2750 (((-3 $ "failed") $) 40) (($ $) 39)))
+(((-329 |#1|) (-10 -8 (-15 -3617 ((-864) |#1|)) (-15 -2350 ((-721) |#1|)) (-15 -1971 ((-110) |#1|)) (-15 -2498 (|#1|)) (-15 -1737 ((-3 (-1184 |#1|) "failed") (-639 |#1|))) (-15 -2750 (|#1| |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -2350 ((-3 (-721) "failed") |#1| |#1|)) (-15 -3617 ((-783 (-864)) |#1|)) (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)))) (-330)) (T -329))
+NIL
+(-10 -8 (-15 -3617 ((-864) |#1|)) (-15 -2350 ((-721) |#1|)) (-15 -1971 ((-110) |#1|)) (-15 -2498 (|#1|)) (-15 -1737 ((-3 (-1184 |#1|) "failed") (-639 |#1|))) (-15 -2750 (|#1| |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -2350 ((-3 (-721) "failed") |#1| |#1|)) (-15 -3617 ((-783 (-864)) |#1|)) (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-3646 (((-1112 (-864) (-721)) (-531)) 90)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-3006 (((-721)) 100)) (-4082 (($) 17 T CONST)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 84)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-1381 (($) 103)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-1806 (($) 88)) (-1971 (((-110) $) 87)) (-3493 (($ $) 76) (($ $ (-721)) 75)) (-2534 (((-110) $) 68)) (-3617 (((-783 (-864)) $) 78) (((-864) $) 85)) (-3481 (((-110) $) 30)) (-2342 (((-3 $ "failed") $) 99)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2211 (((-864) $) 102)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3788 (($) 98 T CONST)) (-1889 (($ (-864)) 101)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 91)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2350 (((-3 (-721) "failed") $ $) 77) (((-721) $) 86)) (-3352 (($ $ (-721)) 96) (($ $) 94)) (-2498 (($) 89)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 92)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63)) (-2750 (((-3 $ "failed") $) 79) (($ $) 93)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-721)) 97) (($ $) 95)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64)))
(((-330) (-133)) (T -330))
-((-3251 (*1 *1 *1) (-4 *1 (-330))) (-2665 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-330)) (-5 *2 (-1181 *1)))) (-2480 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))))) (-3143 (*1 *2 *3) (-12 (-4 *1 (-330)) (-5 *3 (-530)) (-5 *2 (-1109 (-862) (-719))))) (-3406 (*1 *1) (-4 *1 (-330))) (-1677 (*1 *1) (-4 *1 (-330))) (-2798 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110)))) (-1823 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-719)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-862)))) (-1853 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(-13 (-383) (-349) (-1075) (-216) (-10 -8 (-15 -3251 ($ $)) (-15 -2665 ((-3 (-1181 $) "failed") (-637 $))) (-15 -2480 ((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530)))))) (-15 -3143 ((-1109 (-862) (-719)) (-530))) (-15 -3406 ($)) (-15 -1677 ($)) (-15 -2798 ((-110) $)) (-15 -1823 ((-719) $)) (-15 -2031 ((-862) $)) (-15 -1853 ((-3 "prime" "polynomial" "normal" "cyclic")))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-571 (-804)) . T) ((-162) . T) ((-216) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) . T) ((-349) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) . T) ((-1139) . T))
-((-2596 (((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|) 53)) (-3696 (((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))) 51)))
-(((-331 |#1| |#2| |#3|) (-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|))) (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))) (-1157 |#1|) (-390 |#1| |#2|)) (T -331))
-((-2596 (*1 *2 *3) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3696 (*1 *2) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-3867 (((-719)) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-851 |#1|) "failed") $) NIL)) (-2585 (((-851 |#1|) $) NIL)) (-1574 (($ (-1181 (-851 |#1|))) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-851 |#1|) (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| (-851 |#1|) (-349)))) (-2798 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| (-851 |#1|) (-349)))) (-1672 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-2376 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1905 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-3005 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-3396 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-1658 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-3159 (((-1181 (-597 (-2 (|:| -3417 (-851 |#1|)) (|:| -1986 (-1046)))))) NIL)) (-1584 (((-637 (-851 |#1|))) NIL)) (-1974 (($) NIL (|has| (-851 |#1|) (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 (-851 |#1|))) NIL)) (-3406 (($) NIL (|has| (-851 |#1|) (-349)))) (-1698 (($) NIL (|has| (-851 |#1|) (-349)))) (-2328 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-3251 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3340 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
-(((-332 |#1| |#2|) (-13 (-310 (-851 |#1|)) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 (-851 |#1|)) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 (-851 |#1|)))) (-15 -3867 ((-719))))) (-862) (-862)) (T -332))
-((-3159 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 (-851 *3)) (|:| -1986 (-1046)))))) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-1584 (*1 *2) (-12 (-5 *2 (-637 (-851 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-3867 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))))
-(-13 (-310 (-851 |#1|)) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 (-851 |#1|)) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 (-851 |#1|)))) (-15 -3867 ((-719)))))
-((-2352 (((-110) $ $) 62)) (-1813 (((-110) $) 75)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) 93) (($ $ (-862)) 91 (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) 149 (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-3867 (((-719)) 90)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) 163 (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 113)) (-2585 ((|#1| $) 92)) (-1574 (($ (-1181 |#1|)) 59)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) 159 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) 150 (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) 99 (|has| |#1| (-349)))) (-1672 (((-110) $) 176 (|has| |#1| (-349)))) (-2376 ((|#1| $) 95) (($ $ (-862)) 94 (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) 190) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) 135 (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) 74 (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) 71 (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) 83 (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) 70 (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 193)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) 138 (|has| |#1| (-349)))) (-1655 (((-110) $) 109)) (-2624 (((-1046) $) NIL)) (-3159 (((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) 84)) (-1584 (((-637 |#1|)) 88)) (-1974 (($) 97 (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 151 (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) 152)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) 63)) (-1781 (((-1095 |#1|)) 153)) (-3406 (($) 134 (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) 107) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) 125) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 58)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 157)) (-3220 (((-1181 $)) 173) (((-1181 $) (-862)) 102)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) 30 T CONST)) (-3093 (($) 22 T CONST)) (-3962 (($ $) 108 (|has| |#1| (-349))) (($ $ (-719)) 100 (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) 184)) (-2364 (($ $ $) 105) (($ $ |#1|) 106)) (-2351 (($ $) 178) (($ $ $) 182)) (-2339 (($ $ $) 180)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 139)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 187) (($ $ $) 143) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
-(((-333 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 |#1|))) (-15 -3867 ((-719))))) (-330) (-3 (-1095 |#1|) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (T -333))
-((-3159 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046)))))) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) *2)))) (-1584 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046))))))))) (-3867 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046))))))))))
-(-13 (-310 |#1|) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 |#1|))) (-15 -3867 ((-719)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-3867 (((-719)) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| |#1| (-349)))) (-1672 (((-110) $) NIL (|has| |#1| (-349)))) (-2376 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-3159 (((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046)))))) NIL)) (-1584 (((-637 |#1|)) NIL)) (-1974 (($) NIL (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 |#1|)) NIL)) (-3406 (($) NIL (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-334 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 |#1|))) (-15 -3867 ((-719))))) (-330) (-862)) (T -334))
-((-3159 (*1 *2) (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046)))))) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))) (-1584 (*1 *2) (-12 (-5 *2 (-637 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))) (-3867 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
-(-13 (-310 |#1|) (-10 -7 (-15 -3159 ((-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))))) (-15 -1584 ((-637 |#1|))) (-15 -3867 ((-719)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-851 |#1|) (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| (-851 |#1|) (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-851 |#1|) "failed") $) NIL)) (-2585 (((-851 |#1|) $) NIL)) (-1574 (($ (-1181 (-851 |#1|))) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-851 |#1|) (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-851 |#1|) (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| (-851 |#1|) (-349)))) (-2798 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349)))) (($ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| (-851 |#1|) (-349))) (((-781 (-862)) $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| (-851 |#1|) (-349)))) (-1672 (((-110) $) NIL (|has| (-851 |#1|) (-349)))) (-2376 (((-851 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-851 |#1|) (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 (-851 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1905 (((-862) $) NIL (|has| (-851 |#1|) (-349)))) (-3005 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349)))) (-3396 (((-1095 (-851 |#1|)) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-1095 (-851 |#1|)) "failed") $ $) NIL (|has| (-851 |#1|) (-349)))) (-1658 (($ $ (-1095 (-851 |#1|))) NIL (|has| (-851 |#1|) (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-851 |#1|) (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| (-851 |#1|) (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL (|has| (-851 |#1|) (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-851 |#1|) (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| (-851 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 (-851 |#1|))) NIL)) (-3406 (($) NIL (|has| (-851 |#1|) (-349)))) (-1698 (($) NIL (|has| (-851 |#1|) (-349)))) (-2328 (((-1181 (-851 |#1|)) $) NIL) (((-637 (-851 |#1|)) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-851 |#1|) (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-851 |#1|)) NIL)) (-3251 (($ $) NIL (|has| (-851 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| (-851 |#1|) (-138)) (|has| (-851 |#1|) (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-3340 (($ $) NIL (|has| (-851 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-851 |#1|) (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ (-851 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-851 |#1|)) NIL) (($ (-851 |#1|) $) NIL)))
-(((-335 |#1| |#2|) (-310 (-851 |#1|)) (-862) (-862)) (T -335))
-NIL
-(-310 (-851 |#1|))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) 120 (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) 140 (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 93)) (-2585 ((|#1| $) 90)) (-1574 (($ (-1181 |#1|)) 85)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) 82 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) 42 (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) 121 (|has| |#1| (-349)))) (-1672 (((-110) $) 74 (|has| |#1| (-349)))) (-2376 ((|#1| $) 39) (($ $ (-862)) 43 (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) 65) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) 97 (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) 95 (|has| |#1| (-349)))) (-1655 (((-110) $) 142)) (-2624 (((-1046) $) NIL)) (-1974 (($) 36 (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 115 (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) 139)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) 59)) (-1781 (((-1095 |#1|)) 88)) (-3406 (($) 126 (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) 53) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) 138) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 87)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 144)) (-3220 (((-1181 $)) 109) (((-1181 $) (-862)) 49)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) 111 T CONST)) (-3093 (($) 32 T CONST)) (-3962 (($ $) 68 (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) 107)) (-2364 (($ $ $) 99) (($ $ |#1|) 100)) (-2351 (($ $) 80) (($ $ $) 105)) (-2339 (($ $ $) 103)) (** (($ $ (-862)) NIL) (($ $ (-719)) 44) (($ $ (-530)) 130)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 78) (($ $ $) 56) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
-(((-336 |#1| |#2|) (-310 |#1|) (-330) (-1095 |#1|)) (T -336))
+((-2750 (*1 *1 *1) (-4 *1 (-330))) (-1737 (*1 *2 *3) (|partial| -12 (-5 *3 (-639 *1)) (-4 *1 (-330)) (-5 *2 (-1184 *1)))) (-2272 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))))) (-3646 (*1 *2 *3) (-12 (-4 *1 (-330)) (-5 *3 (-531)) (-5 *2 (-1112 (-864) (-721))))) (-2498 (*1 *1) (-4 *1 (-330))) (-1806 (*1 *1) (-4 *1 (-330))) (-1971 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110)))) (-2350 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-721)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-864)))) (-1485 (*1 *2) (-12 (-4 *1 (-330)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(-13 (-383) (-349) (-1078) (-216) (-10 -8 (-15 -2750 ($ $)) (-15 -1737 ((-3 (-1184 $) "failed") (-639 $))) (-15 -2272 ((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531)))))) (-15 -3646 ((-1112 (-864) (-721)) (-531))) (-15 -2498 ($)) (-15 -1806 ($)) (-15 -1971 ((-110) $)) (-15 -2350 ((-721) $)) (-15 -3617 ((-864) $)) (-15 -1485 ((-3 "prime" "polynomial" "normal" "cyclic")))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-572 (-806)) . T) ((-162) . T) ((-216) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) . T) ((-349) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) . T) ((-1142) . T))
+((-2720 (((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) |#1|) 53)) (-2670 (((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|)))) 51)))
+(((-331 |#1| |#2| |#3|) (-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) |#1|))) (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))) (-1160 |#1|) (-390 |#1| |#2|)) (T -331))
+((-2720 (*1 *2 *3) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2670 (*1 *2) (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+(-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-853 |#1|) (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-1592 (((-721)) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| (-853 |#1|) (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-853 |#1|) "failed") $) NIL)) (-2523 (((-853 |#1|) $) NIL)) (-2767 (($ (-1184 (-853 |#1|))) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-853 |#1|) (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-853 |#1|) (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| (-853 |#1|) (-349)))) (-1971 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349)))) (($ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| (-853 |#1|) (-349))) (((-783 (-864)) $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| (-853 |#1|) (-349)))) (-3653 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-1899 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-853 |#1|) (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 (-853 |#1|)) $) NIL) (((-1098 $) $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2211 (((-864) $) NIL (|has| (-853 |#1|) (-349)))) (-1832 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349)))) (-1612 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-1098 (-853 |#1|)) "failed") $ $) NIL (|has| (-853 |#1|) (-349)))) (-3601 (($ $ (-1098 (-853 |#1|))) NIL (|has| (-853 |#1|) (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-853 |#1|) (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-3515 (((-1184 (-598 (-2 (|:| -3482 (-853 |#1|)) (|:| -1889 (-1049)))))) NIL)) (-1398 (((-639 (-853 |#1|))) NIL)) (-1861 (($) NIL (|has| (-853 |#1|) (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-853 |#1|) (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 (-853 |#1|))) NIL)) (-2498 (($) NIL (|has| (-853 |#1|) (-349)))) (-2389 (($) NIL (|has| (-853 |#1|) (-349)))) (-3348 (((-1184 (-853 |#1|)) $) NIL) (((-639 (-853 |#1|)) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-853 |#1|) (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-853 |#1|)) NIL)) (-2750 (($ $) NIL (|has| (-853 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-4020 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ (-853 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-853 |#1|)) NIL) (($ (-853 |#1|) $) NIL)))
+(((-332 |#1| |#2|) (-13 (-310 (-853 |#1|)) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 (-853 |#1|)) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 (-853 |#1|)))) (-15 -1592 ((-721))))) (-864) (-864)) (T -332))
+((-3515 (*1 *2) (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 (-853 *3)) (|:| -1889 (-1049)))))) (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-1398 (*1 *2) (-12 (-5 *2 (-639 (-853 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-1592 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))))
+(-13 (-310 (-853 |#1|)) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 (-853 |#1|)) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 (-853 |#1|)))) (-15 -1592 ((-721)))))
+((-2247 (((-110) $ $) 62)) (-3019 (((-110) $) 75)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) 93) (($ $ (-864)) 91 (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) 149 (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-1592 (((-721)) 90)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) 163 (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 113)) (-2523 ((|#1| $) 92)) (-2767 (($ (-1184 |#1|)) 59)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 189 (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) 159 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) 150 (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) 99 (|has| |#1| (-349)))) (-3653 (((-110) $) 176 (|has| |#1| (-349)))) (-1899 ((|#1| $) 95) (($ $ (-864)) 94 (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) 190) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) 135 (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) 74 (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) 71 (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) 83 (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) 70 (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 193)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) 138 (|has| |#1| (-349)))) (-3693 (((-110) $) 109)) (-2529 (((-1049) $) NIL)) (-3515 (((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) 84)) (-1398 (((-639 |#1|)) 88)) (-1861 (($) 97 (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 151 (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) 152)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) 63)) (-3608 (((-1098 |#1|)) 153)) (-2498 (($) 134 (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) 107) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) 125) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 58)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 157)) (-3523 (((-1184 $)) 173) (((-1184 $) (-864)) 102)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) 30 T CONST)) (-3050 (($) 22 T CONST)) (-2730 (($ $) 108 (|has| |#1| (-349))) (($ $ (-721)) 100 (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 184)) (-2263 (($ $ $) 105) (($ $ |#1|) 106)) (-2250 (($ $) 178) (($ $ $) 182)) (-2237 (($ $ $) 180)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 139)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 187) (($ $ $) 143) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 104)))
+(((-333 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 |#1|))) (-15 -1592 ((-721))))) (-330) (-3 (-1098 |#1|) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (T -333))
+((-3515 (*1 *2) (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1098 *3) *2)))) (-1398 (*1 *2) (-12 (-5 *2 (-639 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1098 *3) (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049))))))))) (-1592 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1098 *3) (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049))))))))))
+(-13 (-310 |#1|) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 |#1|))) (-15 -1592 ((-721)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-1592 (((-721)) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| |#1| (-349)))) (-3653 (((-110) $) NIL (|has| |#1| (-349)))) (-1899 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) NIL) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-3515 (((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049)))))) NIL)) (-1398 (((-639 |#1|)) NIL)) (-1861 (($) NIL (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 |#1|)) NIL)) (-2498 (($) NIL (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) NIL) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) NIL)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-334 |#1| |#2|) (-13 (-310 |#1|) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 |#1|))) (-15 -1592 ((-721))))) (-330) (-864)) (T -334))
+((-3515 (*1 *2) (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864)))) (-1398 (*1 *2) (-12 (-5 *2 (-639 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864)))) (-1592 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864)))))
+(-13 (-310 |#1|) (-10 -7 (-15 -3515 ((-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))))) (-15 -1398 ((-639 |#1|))) (-15 -1592 ((-721)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-853 |#1|) (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| (-853 |#1|) (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-853 |#1|) "failed") $) NIL)) (-2523 (((-853 |#1|) $) NIL)) (-2767 (($ (-1184 (-853 |#1|))) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-853 |#1|) (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-853 |#1|) (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| (-853 |#1|) (-349)))) (-1971 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349)))) (($ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| (-853 |#1|) (-349))) (((-783 (-864)) $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| (-853 |#1|) (-349)))) (-3653 (((-110) $) NIL (|has| (-853 |#1|) (-349)))) (-1899 (((-853 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-853 |#1|) (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 (-853 |#1|)) $) NIL) (((-1098 $) $ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-2211 (((-864) $) NIL (|has| (-853 |#1|) (-349)))) (-1832 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349)))) (-1612 (((-1098 (-853 |#1|)) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-1098 (-853 |#1|)) "failed") $ $) NIL (|has| (-853 |#1|) (-349)))) (-3601 (($ $ (-1098 (-853 |#1|))) NIL (|has| (-853 |#1|) (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-853 |#1|) (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| (-853 |#1|) (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL (|has| (-853 |#1|) (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-853 |#1|) (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| (-853 |#1|) (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 (-853 |#1|))) NIL)) (-2498 (($) NIL (|has| (-853 |#1|) (-349)))) (-2389 (($) NIL (|has| (-853 |#1|) (-349)))) (-3348 (((-1184 (-853 |#1|)) $) NIL) (((-639 (-853 |#1|)) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-853 |#1|) (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-853 |#1|)) NIL)) (-2750 (($ $) NIL (|has| (-853 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| (-853 |#1|) (-138)) (|has| (-853 |#1|) (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-4020 (($ $) NIL (|has| (-853 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-853 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ (-853 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-853 |#1|)) NIL) (($ (-853 |#1|) $) NIL)))
+(((-335 |#1| |#2|) (-310 (-853 |#1|)) (-864) (-864)) (T -335))
+NIL
+(-310 (-853 |#1|))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) 120 (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) 140 (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 93)) (-2523 ((|#1| $) 90)) (-2767 (($ (-1184 |#1|)) 85)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 117 (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) 82 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) 42 (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) 121 (|has| |#1| (-349)))) (-3653 (((-110) $) 74 (|has| |#1| (-349)))) (-1899 ((|#1| $) 39) (($ $ (-864)) 43 (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) 65) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) 97 (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) 95 (|has| |#1| (-349)))) (-3693 (((-110) $) 142)) (-2529 (((-1049) $) NIL)) (-1861 (($) 36 (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 115 (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) 139)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) 59)) (-3608 (((-1098 |#1|)) 88)) (-2498 (($) 126 (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) 53) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) 138) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 87)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 144)) (-3523 (((-1184 $)) 109) (((-1184 $) (-864)) 49)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) 111 T CONST)) (-3050 (($) 32 T CONST)) (-2730 (($ $) 68 (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) 107)) (-2263 (($ $ $) 99) (($ $ |#1|) 100)) (-2250 (($ $) 80) (($ $ $) 105)) (-2237 (($ $ $) 103)) (** (($ $ (-864)) NIL) (($ $ (-721)) 44) (($ $ (-531)) 130)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 78) (($ $ $) 56) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 76)))
+(((-336 |#1| |#2|) (-310 |#1|) (-330) (-1098 |#1|)) (T -336))
NIL
(-310 |#1|)
-((-1717 ((|#1| (-1095 |#2|)) 52)))
-(((-337 |#1| |#2|) (-10 -7 (-15 -1717 (|#1| (-1095 |#2|)))) (-13 (-383) (-10 -7 (-15 -2366 (|#1| |#2|)) (-15 -1905 ((-862) |#1|)) (-15 -3220 ((-1181 |#1|) (-862))) (-15 -3962 (|#1| |#1|)))) (-330)) (T -337))
-((-1717 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-4 *2 (-13 (-383) (-10 -7 (-15 -2366 (*2 *4)) (-15 -1905 ((-862) *2)) (-15 -3220 ((-1181 *2) (-862))) (-15 -3962 (*2 *2))))) (-5 *1 (-337 *2 *4)))))
-(-10 -7 (-15 -1717 (|#1| (-1095 |#2|))))
-((-2165 (((-899 (-1095 |#1|)) (-1095 |#1|)) 36)) (-1364 (((-1095 |#1|) (-862) (-862)) 113) (((-1095 |#1|) (-862)) 112)) (-2798 (((-110) (-1095 |#1|)) 84)) (-1382 (((-862) (-862)) 71)) (-4059 (((-862) (-862)) 74)) (-2236 (((-862) (-862)) 69)) (-1672 (((-110) (-1095 |#1|)) 88)) (-3616 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 101)) (-3221 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 104)) (-1690 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 103)) (-2039 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 102)) (-3885 (((-3 (-1095 |#1|) "failed") (-1095 |#1|)) 98)) (-2638 (((-1095 |#1|) (-1095 |#1|)) 62)) (-1952 (((-1095 |#1|) (-862)) 107)) (-1998 (((-1095 |#1|) (-862)) 110)) (-3299 (((-1095 |#1|) (-862)) 109)) (-3602 (((-1095 |#1|) (-862)) 108)) (-1675 (((-1095 |#1|) (-862)) 105)))
-(((-338 |#1|) (-10 -7 (-15 -2798 ((-110) (-1095 |#1|))) (-15 -1672 ((-110) (-1095 |#1|))) (-15 -2236 ((-862) (-862))) (-15 -1382 ((-862) (-862))) (-15 -4059 ((-862) (-862))) (-15 -1675 ((-1095 |#1|) (-862))) (-15 -1952 ((-1095 |#1|) (-862))) (-15 -3602 ((-1095 |#1|) (-862))) (-15 -3299 ((-1095 |#1|) (-862))) (-15 -1998 ((-1095 |#1|) (-862))) (-15 -3885 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3616 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -2039 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1690 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3221 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1364 ((-1095 |#1|) (-862))) (-15 -1364 ((-1095 |#1|) (-862) (-862))) (-15 -2638 ((-1095 |#1|) (-1095 |#1|))) (-15 -2165 ((-899 (-1095 |#1|)) (-1095 |#1|)))) (-330)) (T -338))
-((-2165 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-899 (-1095 *4))) (-5 *1 (-338 *4)) (-5 *3 (-1095 *4)))) (-2638 (*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1364 (*1 *2 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3221 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1690 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-2039 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3616 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3885 (*1 *2 *2) (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3299 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1952 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1675 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-4059 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-1382 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-2236 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))) (-2798 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))))
-(-10 -7 (-15 -2798 ((-110) (-1095 |#1|))) (-15 -1672 ((-110) (-1095 |#1|))) (-15 -2236 ((-862) (-862))) (-15 -1382 ((-862) (-862))) (-15 -4059 ((-862) (-862))) (-15 -1675 ((-1095 |#1|) (-862))) (-15 -1952 ((-1095 |#1|) (-862))) (-15 -3602 ((-1095 |#1|) (-862))) (-15 -3299 ((-1095 |#1|) (-862))) (-15 -1998 ((-1095 |#1|) (-862))) (-15 -3885 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3616 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -2039 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1690 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -3221 ((-3 (-1095 |#1|) "failed") (-1095 |#1|))) (-15 -1364 ((-1095 |#1|) (-862))) (-15 -1364 ((-1095 |#1|) (-862) (-862))) (-15 -2638 ((-1095 |#1|) (-1095 |#1|))) (-15 -2165 ((-899 (-1095 |#1|)) (-1095 |#1|))))
-((-1708 (((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|) 34)))
-(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -1708 ((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|))) (-330) (-1157 |#1|) (-1157 |#2|)) (T -339))
-((-1708 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3)))))
-(-10 -7 (-15 -1708 ((-3 (-597 |#3|) "failed") (-597 |#3|) |#3|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| |#1| (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| |#1| (-349)))) (-2798 (((-110) $) NIL (|has| |#1| (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| |#1| (-349))) (((-781 (-862)) $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| |#1| (-349)))) (-1672 (((-110) $) NIL (|has| |#1| (-349)))) (-2376 ((|#1| $) NIL) (($ $ (-862)) NIL (|has| |#1| (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 |#1|) $) NIL) (((-1095 $) $ (-862)) NIL (|has| |#1| (-349)))) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-3005 (((-1095 |#1|) $) NIL (|has| |#1| (-349)))) (-3396 (((-1095 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1095 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-1658 (($ $ (-1095 |#1|)) NIL (|has| |#1| (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL (|has| |#1| (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| |#1| (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 |#1|)) NIL)) (-3406 (($) NIL (|has| |#1| (-349)))) (-1698 (($) NIL (|has| |#1| (-349)))) (-2328 (((-1181 |#1|) $) NIL) (((-637 |#1|) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) NIL)) (-3251 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-3340 (($ $) NIL (|has| |#1| (-349))) (($ $ (-719)) NIL (|has| |#1| (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-340 |#1| |#2|) (-310 |#1|) (-330) (-862)) (T -340))
+((-3967 ((|#1| (-1098 |#2|)) 52)))
+(((-337 |#1| |#2|) (-10 -7 (-15 -3967 (|#1| (-1098 |#2|)))) (-13 (-383) (-10 -7 (-15 -2265 (|#1| |#2|)) (-15 -2211 ((-864) |#1|)) (-15 -3523 ((-1184 |#1|) (-864))) (-15 -2730 (|#1| |#1|)))) (-330)) (T -337))
+((-3967 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-4 *2 (-13 (-383) (-10 -7 (-15 -2265 (*2 *4)) (-15 -2211 ((-864) *2)) (-15 -3523 ((-1184 *2) (-864))) (-15 -2730 (*2 *2))))) (-5 *1 (-337 *2 *4)))))
+(-10 -7 (-15 -3967 (|#1| (-1098 |#2|))))
+((-2175 (((-901 (-1098 |#1|)) (-1098 |#1|)) 36)) (-1381 (((-1098 |#1|) (-864) (-864)) 113) (((-1098 |#1|) (-864)) 112)) (-1971 (((-110) (-1098 |#1|)) 84)) (-2914 (((-864) (-864)) 71)) (-2142 (((-864) (-864)) 74)) (-2433 (((-864) (-864)) 69)) (-3653 (((-110) (-1098 |#1|)) 88)) (-1356 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 101)) (-3293 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 104)) (-2582 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 103)) (-3633 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 102)) (-1530 (((-3 (-1098 |#1|) "failed") (-1098 |#1|)) 98)) (-2270 (((-1098 |#1|) (-1098 |#1|)) 62)) (-1220 (((-1098 |#1|) (-864)) 107)) (-1409 (((-1098 |#1|) (-864)) 110)) (-4151 (((-1098 |#1|) (-864)) 109)) (-1528 (((-1098 |#1|) (-864)) 108)) (-4170 (((-1098 |#1|) (-864)) 105)))
+(((-338 |#1|) (-10 -7 (-15 -1971 ((-110) (-1098 |#1|))) (-15 -3653 ((-110) (-1098 |#1|))) (-15 -2433 ((-864) (-864))) (-15 -2914 ((-864) (-864))) (-15 -2142 ((-864) (-864))) (-15 -4170 ((-1098 |#1|) (-864))) (-15 -1220 ((-1098 |#1|) (-864))) (-15 -1528 ((-1098 |#1|) (-864))) (-15 -4151 ((-1098 |#1|) (-864))) (-15 -1409 ((-1098 |#1|) (-864))) (-15 -1530 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -1356 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -3633 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -2582 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -3293 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -1381 ((-1098 |#1|) (-864))) (-15 -1381 ((-1098 |#1|) (-864) (-864))) (-15 -2270 ((-1098 |#1|) (-1098 |#1|))) (-15 -2175 ((-901 (-1098 |#1|)) (-1098 |#1|)))) (-330)) (T -338))
+((-2175 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-901 (-1098 *4))) (-5 *1 (-338 *4)) (-5 *3 (-1098 *4)))) (-2270 (*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1381 (*1 *2 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-3293 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-2582 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-3633 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1356 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1530 (*1 *2 *2) (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))) (-1409 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-4151 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-1220 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4)) (-4 *4 (-330)))) (-2142 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-2914 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-2433 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))) (-1971 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-338 *4)))))
+(-10 -7 (-15 -1971 ((-110) (-1098 |#1|))) (-15 -3653 ((-110) (-1098 |#1|))) (-15 -2433 ((-864) (-864))) (-15 -2914 ((-864) (-864))) (-15 -2142 ((-864) (-864))) (-15 -4170 ((-1098 |#1|) (-864))) (-15 -1220 ((-1098 |#1|) (-864))) (-15 -1528 ((-1098 |#1|) (-864))) (-15 -4151 ((-1098 |#1|) (-864))) (-15 -1409 ((-1098 |#1|) (-864))) (-15 -1530 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -1356 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -3633 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -2582 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -3293 ((-3 (-1098 |#1|) "failed") (-1098 |#1|))) (-15 -1381 ((-1098 |#1|) (-864))) (-15 -1381 ((-1098 |#1|) (-864) (-864))) (-15 -2270 ((-1098 |#1|) (-1098 |#1|))) (-15 -2175 ((-901 (-1098 |#1|)) (-1098 |#1|))))
+((-4197 (((-3 (-598 |#3|) "failed") (-598 |#3|) |#3|) 34)))
+(((-339 |#1| |#2| |#3|) (-10 -7 (-15 -4197 ((-3 (-598 |#3|) "failed") (-598 |#3|) |#3|))) (-330) (-1160 |#1|) (-1160 |#2|)) (T -339))
+((-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3)))))
+(-10 -7 (-15 -4197 ((-3 (-598 |#3|) "failed") (-598 |#3|) |#3|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| |#1| (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| |#1| (-349)))) (-1971 (((-110) $) NIL (|has| |#1| (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| |#1| (-349))) (((-783 (-864)) $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| |#1| (-349)))) (-3653 (((-110) $) NIL (|has| |#1| (-349)))) (-1899 ((|#1| $) NIL) (($ $ (-864)) NIL (|has| |#1| (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 |#1|) $) NIL) (((-1098 $) $ (-864)) NIL (|has| |#1| (-349)))) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1832 (((-1098 |#1|) $) NIL (|has| |#1| (-349)))) (-1612 (((-1098 |#1|) $) NIL (|has| |#1| (-349))) (((-3 (-1098 |#1|) "failed") $ $) NIL (|has| |#1| (-349)))) (-3601 (($ $ (-1098 |#1|)) NIL (|has| |#1| (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL (|has| |#1| (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| |#1| (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 |#1|)) NIL)) (-2498 (($) NIL (|has| |#1| (-349)))) (-2389 (($) NIL (|has| |#1| (-349)))) (-3348 (((-1184 |#1|) $) NIL) (((-639 |#1|) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) NIL)) (-2750 (($ $) NIL (|has| |#1| (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-4020 (($ $) NIL (|has| |#1| (-349))) (($ $ (-721)) NIL (|has| |#1| (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ |#1|) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-340 |#1| |#2|) (-310 |#1|) (-330) (-864)) (T -340))
NIL
(-310 |#1|)
-((-3669 (((-110) (-597 (-893 |#1|))) 34)) (-1241 (((-597 (-893 |#1|)) (-597 (-893 |#1|))) 46)) (-2845 (((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|))) 41)))
-(((-341 |#1| |#2|) (-10 -7 (-15 -3669 ((-110) (-597 (-893 |#1|)))) (-15 -2845 ((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|)))) (-15 -1241 ((-597 (-893 |#1|)) (-597 (-893 |#1|))))) (-432) (-597 (-1099))) (T -341))
-((-1241 (*1 *2 *2) (-12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099))))) (-2845 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099))))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-110)) (-5 *1 (-341 *4 *5)) (-14 *5 (-597 (-1099))))))
-(-10 -7 (-15 -3669 ((-110) (-597 (-893 |#1|)))) (-15 -2845 ((-3 (-597 (-893 |#1|)) "failed") (-597 (-893 |#1|)))) (-15 -1241 ((-597 (-893 |#1|)) (-597 (-893 |#1|)))))
-((-2352 (((-110) $ $) NIL)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) 15)) (-3519 ((|#1| $ (-530)) NIL)) (-2033 (((-530) $ (-530)) NIL)) (-2580 (($ (-1 |#1| |#1|) $) 32)) (-3999 (($ (-1 (-530) (-530)) $) 24)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 26)) (-2624 (((-1046) $) NIL)) (-3721 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-530)))) $) 28)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 38) (($ |#1|) NIL)) (-3093 (($) 9 T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ |#1| (-530)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
-(((-342 |#1|) (-13 (-453) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-530))) (-15 -3023 ((-719) $)) (-15 -2033 ((-530) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3999 ($ (-1 (-530) (-530)) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-530)))) $)))) (-1027)) (T -342))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-2033 (*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-530) (-530))) (-5 *1 (-342 *3)) (-4 *3 (-1027)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-342 *3)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-530))))) (-5 *1 (-342 *3)) (-4 *3 (-1027)))))
-(-13 (-453) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-530))) (-15 -3023 ((-719) $)) (-15 -2033 ((-530) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3999 ($ (-1 (-530) (-530)) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-530)))) $))))
-((-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 13)) (-3446 (($ $) 14)) (-3272 (((-399 $) $) 30)) (-3295 (((-110) $) 26)) (-2483 (($ $) 19)) (-2204 (($ $ $) 23) (($ (-597 $)) NIL)) (-2611 (((-399 $) $) 31)) (-3551 (((-3 $ "failed") $ $) 22)) (-2356 (((-719) $) 25)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 35)) (-3944 (((-110) $ $) 16)) (-2364 (($ $ $) 33)))
-(((-343 |#1|) (-10 -8 (-15 -2364 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3295 ((-110) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -2356 ((-719) |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)) (-15 -3944 ((-110) |#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|))) (-344)) (T -343))
-NIL
-(-10 -8 (-15 -2364 (|#1| |#1| |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -3295 ((-110) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -2356 ((-719) |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)) (-15 -3944 ((-110) |#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
+((-3598 (((-110) (-598 (-895 |#1|))) 34)) (-3716 (((-598 (-895 |#1|)) (-598 (-895 |#1|))) 46)) (-3134 (((-3 (-598 (-895 |#1|)) "failed") (-598 (-895 |#1|))) 41)))
+(((-341 |#1| |#2|) (-10 -7 (-15 -3598 ((-110) (-598 (-895 |#1|)))) (-15 -3134 ((-3 (-598 (-895 |#1|)) "failed") (-598 (-895 |#1|)))) (-15 -3716 ((-598 (-895 |#1|)) (-598 (-895 |#1|))))) (-432) (-598 (-1102))) (T -341))
+((-3716 (*1 *2 *2) (-12 (-5 *2 (-598 (-895 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-598 (-1102))))) (-3134 (*1 *2 *2) (|partial| -12 (-5 *2 (-598 (-895 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4)) (-14 *4 (-598 (-1102))))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-432)) (-5 *2 (-110)) (-5 *1 (-341 *4 *5)) (-14 *5 (-598 (-1102))))))
+(-10 -7 (-15 -3598 ((-110) (-598 (-895 |#1|)))) (-15 -3134 ((-3 (-598 (-895 |#1|)) "failed") (-598 (-895 |#1|)))) (-15 -3716 ((-598 (-895 |#1|)) (-598 (-895 |#1|)))))
+((-2247 (((-110) $ $) NIL)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) 15)) (-3616 ((|#1| $ (-531)) NIL)) (-4173 (((-531) $ (-531)) NIL)) (-2483 (($ (-1 |#1| |#1|) $) 32)) (-3080 (($ (-1 (-531) (-531)) $) 24)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 26)) (-2529 (((-1049) $) NIL)) (-2721 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-531)))) $) 28)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 38) (($ |#1|) NIL)) (-3050 (($) 9 T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL) (($ |#1| (-531)) 17)) (* (($ $ $) 43) (($ |#1| $) 21) (($ $ |#1|) 19)))
+(((-342 |#1|) (-13 (-453) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-531))) (-15 -3006 ((-721) $)) (-15 -4173 ((-531) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -3080 ($ (-1 (-531) (-531)) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-531)))) $)))) (-1030)) (T -342))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1030)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1030)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-342 *2)) (-4 *2 (-1030)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) (-4173 (*1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-342 *2)) (-4 *2 (-1030)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-531) (-531))) (-5 *1 (-342 *3)) (-4 *3 (-1030)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-342 *3)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-531))))) (-5 *1 (-342 *3)) (-4 *3 (-1030)))))
+(-13 (-453) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-531))) (-15 -3006 ((-721) $)) (-15 -4173 ((-531) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -3080 ($ (-1 (-531) (-531)) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-531)))) $))))
+((-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 13)) (-3258 (($ $) 14)) (-2956 (((-399 $) $) 30)) (-2534 (((-110) $) 26)) (-2422 (($ $) 19)) (-2109 (($ $ $) 23) (($ (-598 $)) NIL)) (-2552 (((-399 $) $) 31)) (-3609 (((-3 $ "failed") $ $) 22)) (-4100 (((-721) $) 25)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 35)) (-2587 (((-110) $ $) 16)) (-2263 (($ $ $) 33)))
+(((-343 |#1|) (-10 -8 (-15 -2263 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2534 ((-110) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -4100 ((-721) |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2587 ((-110) |#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|))) (-344)) (T -343))
+NIL
+(-10 -8 (-15 -2263 (|#1| |#1| |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -2534 ((-110) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -4100 ((-721) |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2587 ((-110) |#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64)))
(((-344) (-133)) (T -344))
-((-2364 (*1 *1 *1 *1) (-4 *1 (-344))))
-(-13 (-289) (-1139) (-226) (-10 -8 (-15 -2364 ($ $ $)) (-6 -4267) (-6 -4261)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2352 (((-110) $ $) 7)) (-3753 ((|#2| $ |#2|) 13)) (-3102 (($ $ (-1082)) 18)) (-1214 ((|#2| $) 14)) (-2551 (($ |#1|) 20) (($ |#1| (-1082)) 19)) (-3907 ((|#1| $) 16)) (-1424 (((-1082) $) 9)) (-3816 (((-1082) $) 15)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3422 (($ $) 17)) (-2248 (((-110) $ $) 6)))
-(((-345 |#1| |#2|) (-133) (-1027) (-1027)) (T -345))
-((-2551 (*1 *1 *2) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-2551 (*1 *1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1027)) (-4 *4 (-1027)))) (-3102 (*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3422 (*1 *1 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3816 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-1082)))) (-1214 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3753 (*1 *2 *1 *2) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2551 ($ |t#1|)) (-15 -2551 ($ |t#1| (-1082))) (-15 -3102 ($ $ (-1082))) (-15 -3422 ($ $)) (-15 -3907 (|t#1| $)) (-15 -3816 ((-1082) $)) (-15 -1214 (|t#2| $)) (-15 -3753 (|t#2| $ |t#2|))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-3753 ((|#1| $ |#1|) 30)) (-3102 (($ $ (-1082)) 22)) (-3806 (((-3 |#1| "failed") $) 29)) (-1214 ((|#1| $) 27)) (-2551 (($ (-369)) 21) (($ (-369) (-1082)) 20)) (-3907 (((-369) $) 24)) (-1424 (((-1082) $) NIL)) (-3816 (((-1082) $) 25)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 19)) (-3422 (($ $) 23)) (-2248 (((-110) $ $) 18)))
-(((-346 |#1|) (-13 (-345 (-369) |#1|) (-10 -8 (-15 -3806 ((-3 |#1| "failed") $)))) (-1027)) (T -346))
-((-3806 (*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1027)))))
-(-13 (-345 (-369) |#1|) (-10 -8 (-15 -3806 ((-3 |#1| "failed") $))))
-((-3365 (((-1181 (-637 |#2|)) (-1181 $)) 61)) (-2603 (((-637 |#2|) (-1181 $)) 120)) (-2228 ((|#2| $) 32)) (-4209 (((-637 |#2|) $ (-1181 $)) 123)) (-2635 (((-3 $ "failed") $) 75)) (-4005 ((|#2| $) 35)) (-3581 (((-1095 |#2|) $) 83)) (-3988 ((|#2| (-1181 $)) 106)) (-2670 (((-1095 |#2|) $) 28)) (-2662 (((-110)) 100)) (-1574 (($ (-1181 |#2|) (-1181 $)) 113)) (-2707 (((-3 $ "failed") $) 79)) (-3943 (((-110)) 95)) (-3470 (((-110)) 90)) (-2305 (((-110)) 53)) (-1257 (((-637 |#2|) (-1181 $)) 118)) (-2465 ((|#2| $) 31)) (-3846 (((-637 |#2|) $ (-1181 $)) 122)) (-1232 (((-3 $ "failed") $) 73)) (-2602 ((|#2| $) 34)) (-2209 (((-1095 |#2|) $) 82)) (-2837 ((|#2| (-1181 $)) 104)) (-2461 (((-1095 |#2|) $) 26)) (-1921 (((-110)) 99)) (-3123 (((-110)) 92)) (-2561 (((-110)) 51)) (-3766 (((-110)) 87)) (-3719 (((-110)) 101)) (-2328 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) 111)) (-3675 (((-110)) 97)) (-3758 (((-597 (-1181 |#2|))) 86)) (-3439 (((-110)) 98)) (-2164 (((-110)) 96)) (-3566 (((-110)) 46)) (-1957 (((-110)) 102)))
-(((-347 |#1| |#2|) (-10 -8 (-15 -3581 ((-1095 |#2|) |#1|)) (-15 -2209 ((-1095 |#2|) |#1|)) (-15 -3758 ((-597 (-1181 |#2|)))) (-15 -2635 ((-3 |#1| "failed") |#1|)) (-15 -1232 ((-3 |#1| "failed") |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 -3470 ((-110))) (-15 -3123 ((-110))) (-15 -3943 ((-110))) (-15 -2561 ((-110))) (-15 -2305 ((-110))) (-15 -3766 ((-110))) (-15 -1957 ((-110))) (-15 -3719 ((-110))) (-15 -2662 ((-110))) (-15 -1921 ((-110))) (-15 -3566 ((-110))) (-15 -3439 ((-110))) (-15 -2164 ((-110))) (-15 -3675 ((-110))) (-15 -2670 ((-1095 |#2|) |#1|)) (-15 -2461 ((-1095 |#2|) |#1|)) (-15 -2603 ((-637 |#2|) (-1181 |#1|))) (-15 -1257 ((-637 |#2|) (-1181 |#1|))) (-15 -3988 (|#2| (-1181 |#1|))) (-15 -2837 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -4005 (|#2| |#1|)) (-15 -2602 (|#2| |#1|)) (-15 -2228 (|#2| |#1|)) (-15 -2465 (|#2| |#1|)) (-15 -4209 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3846 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3365 ((-1181 (-637 |#2|)) (-1181 |#1|)))) (-348 |#2|) (-162)) (T -347))
-((-3675 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2164 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3439 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3566 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1921 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2662 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3719 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1957 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3766 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2305 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2561 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3943 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3123 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3470 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3758 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-597 (-1181 *4))) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))))
-(-10 -8 (-15 -3581 ((-1095 |#2|) |#1|)) (-15 -2209 ((-1095 |#2|) |#1|)) (-15 -3758 ((-597 (-1181 |#2|)))) (-15 -2635 ((-3 |#1| "failed") |#1|)) (-15 -1232 ((-3 |#1| "failed") |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 -3470 ((-110))) (-15 -3123 ((-110))) (-15 -3943 ((-110))) (-15 -2561 ((-110))) (-15 -2305 ((-110))) (-15 -3766 ((-110))) (-15 -1957 ((-110))) (-15 -3719 ((-110))) (-15 -2662 ((-110))) (-15 -1921 ((-110))) (-15 -3566 ((-110))) (-15 -3439 ((-110))) (-15 -2164 ((-110))) (-15 -3675 ((-110))) (-15 -2670 ((-1095 |#2|) |#1|)) (-15 -2461 ((-1095 |#2|) |#1|)) (-15 -2603 ((-637 |#2|) (-1181 |#1|))) (-15 -1257 ((-637 |#2|) (-1181 |#1|))) (-15 -3988 (|#2| (-1181 |#1|))) (-15 -2837 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -4005 (|#2| |#1|)) (-15 -2602 (|#2| |#1|)) (-15 -2228 (|#2| |#1|)) (-15 -2465 (|#2| |#1|)) (-15 -4209 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3846 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3365 ((-1181 (-637 |#2|)) (-1181 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2291 (((-3 $ "failed")) 37 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3365 (((-1181 (-637 |#1|)) (-1181 $)) 78)) (-3990 (((-1181 $)) 81)) (-2350 (($) 17 T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 40 (|has| |#1| (-522)))) (-1383 (((-3 $ "failed")) 38 (|has| |#1| (-522)))) (-2603 (((-637 |#1|) (-1181 $)) 65)) (-2228 ((|#1| $) 74)) (-4209 (((-637 |#1|) $ (-1181 $)) 76)) (-2635 (((-3 $ "failed") $) 45 (|has| |#1| (-522)))) (-2862 (($ $ (-862)) 28)) (-4005 ((|#1| $) 72)) (-3581 (((-1095 |#1|) $) 42 (|has| |#1| (-522)))) (-3988 ((|#1| (-1181 $)) 67)) (-2670 (((-1095 |#1|) $) 63)) (-2662 (((-110)) 57)) (-1574 (($ (-1181 |#1|) (-1181 $)) 69)) (-2707 (((-3 $ "failed") $) 47 (|has| |#1| (-522)))) (-2426 (((-862)) 80)) (-3485 (((-110)) 54)) (-1667 (($ $ (-862)) 33)) (-3943 (((-110)) 50)) (-3470 (((-110)) 48)) (-2305 (((-110)) 52)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 41 (|has| |#1| (-522)))) (-3832 (((-3 $ "failed")) 39 (|has| |#1| (-522)))) (-1257 (((-637 |#1|) (-1181 $)) 66)) (-2465 ((|#1| $) 75)) (-3846 (((-637 |#1|) $ (-1181 $)) 77)) (-1232 (((-3 $ "failed") $) 46 (|has| |#1| (-522)))) (-4138 (($ $ (-862)) 29)) (-2602 ((|#1| $) 73)) (-2209 (((-1095 |#1|) $) 43 (|has| |#1| (-522)))) (-2837 ((|#1| (-1181 $)) 68)) (-2461 (((-1095 |#1|) $) 64)) (-1921 (((-110)) 58)) (-1424 (((-1082) $) 9)) (-3123 (((-110)) 49)) (-2561 (((-110)) 51)) (-3766 (((-110)) 53)) (-2624 (((-1046) $) 10)) (-3719 (((-110)) 56)) (-2328 (((-1181 |#1|) $ (-1181 $)) 71) (((-637 |#1|) (-1181 $) (-1181 $)) 70)) (-3028 (((-597 (-893 |#1|)) (-1181 $)) 79)) (-2607 (($ $ $) 25)) (-3675 (((-110)) 62)) (-2366 (((-804) $) 11)) (-3758 (((-597 (-1181 |#1|))) 44 (|has| |#1| (-522)))) (-2346 (($ $ $ $) 26)) (-3439 (((-110)) 60)) (-3980 (($ $ $) 24)) (-2164 (((-110)) 61)) (-3566 (((-110)) 59)) (-1957 (((-110)) 55)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-2263 (*1 *1 *1 *1) (-4 *1 (-344))))
+(-13 (-289) (-1142) (-226) (-10 -8 (-15 -2263 ($ $ $)) (-6 -4271) (-6 -4265)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T))
+((-2247 (((-110) $ $) 7)) (-2618 ((|#2| $ |#2|) 13)) (-1743 (($ $ (-1085)) 18)) (-3641 ((|#2| $) 14)) (-1833 (($ |#1|) 20) (($ |#1| (-1085)) 19)) (-3955 ((|#1| $) 16)) (-1521 (((-1085) $) 9)) (-3454 (((-1085) $) 15)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-4074 (($ $) 17)) (-2148 (((-110) $ $) 6)))
+(((-345 |#1| |#2|) (-133) (-1030) (-1030)) (T -345))
+((-1833 (*1 *1 *2) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-1833 (*1 *1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1030)) (-4 *4 (-1030)))) (-1743 (*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-4074 (*1 *1 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-3454 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-5 *2 (-1085)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-2618 (*1 *2 *1 *2) (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))))
+(-13 (-1030) (-10 -8 (-15 -1833 ($ |t#1|)) (-15 -1833 ($ |t#1| (-1085))) (-15 -1743 ($ $ (-1085))) (-15 -4074 ($ $)) (-15 -3955 (|t#1| $)) (-15 -3454 ((-1085) $)) (-15 -3641 (|t#2| $)) (-15 -2618 (|t#2| $ |t#2|))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-2618 ((|#1| $ |#1|) 30)) (-1743 (($ $ (-1085)) 22)) (-1616 (((-3 |#1| "failed") $) 29)) (-3641 ((|#1| $) 27)) (-1833 (($ (-369)) 21) (($ (-369) (-1085)) 20)) (-3955 (((-369) $) 24)) (-1521 (((-1085) $) NIL)) (-3454 (((-1085) $) 25)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 19)) (-4074 (($ $) 23)) (-2148 (((-110) $ $) 18)))
+(((-346 |#1|) (-13 (-345 (-369) |#1|) (-10 -8 (-15 -1616 ((-3 |#1| "failed") $)))) (-1030)) (T -346))
+((-1616 (*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1030)))))
+(-13 (-345 (-369) |#1|) (-10 -8 (-15 -1616 ((-3 |#1| "failed") $))))
+((-2550 (((-1184 (-639 |#2|)) (-1184 $)) 61)) (-3939 (((-639 |#2|) (-1184 $)) 120)) (-1668 ((|#2| $) 32)) (-2264 (((-639 |#2|) $ (-1184 $)) 123)) (-1387 (((-3 $ "failed") $) 75)) (-2065 ((|#2| $) 35)) (-3415 (((-1098 |#2|) $) 83)) (-3960 ((|#2| (-1184 $)) 106)) (-3586 (((-1098 |#2|) $) 28)) (-1437 (((-110)) 100)) (-2767 (($ (-1184 |#2|) (-1184 $)) 113)) (-3622 (((-3 $ "failed") $) 79)) (-2790 (((-110)) 95)) (-3769 (((-110)) 90)) (-2298 (((-110)) 53)) (-1950 (((-639 |#2|) (-1184 $)) 118)) (-1807 ((|#2| $) 31)) (-3405 (((-639 |#2|) $ (-1184 $)) 122)) (-2234 (((-3 $ "failed") $) 73)) (-1288 ((|#2| $) 34)) (-1480 (((-1098 |#2|) $) 82)) (-3579 ((|#2| (-1184 $)) 104)) (-1875 (((-1098 |#2|) $) 26)) (-2239 (((-110)) 99)) (-4223 (((-110)) 92)) (-1561 (((-110)) 51)) (-3036 (((-110)) 87)) (-1513 (((-110)) 101)) (-3348 (((-1184 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) 111)) (-1817 (((-110)) 97)) (-2273 (((-598 (-1184 |#2|))) 86)) (-1431 (((-110)) 98)) (-2578 (((-110)) 96)) (-1964 (((-110)) 46)) (-2819 (((-110)) 102)))
+(((-347 |#1| |#2|) (-10 -8 (-15 -3415 ((-1098 |#2|) |#1|)) (-15 -1480 ((-1098 |#2|) |#1|)) (-15 -2273 ((-598 (-1184 |#2|)))) (-15 -1387 ((-3 |#1| "failed") |#1|)) (-15 -2234 ((-3 |#1| "failed") |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 -3769 ((-110))) (-15 -4223 ((-110))) (-15 -2790 ((-110))) (-15 -1561 ((-110))) (-15 -2298 ((-110))) (-15 -3036 ((-110))) (-15 -2819 ((-110))) (-15 -1513 ((-110))) (-15 -1437 ((-110))) (-15 -2239 ((-110))) (-15 -1964 ((-110))) (-15 -1431 ((-110))) (-15 -2578 ((-110))) (-15 -1817 ((-110))) (-15 -3586 ((-1098 |#2|) |#1|)) (-15 -1875 ((-1098 |#2|) |#1|)) (-15 -3939 ((-639 |#2|) (-1184 |#1|))) (-15 -1950 ((-639 |#2|) (-1184 |#1|))) (-15 -3960 (|#2| (-1184 |#1|))) (-15 -3579 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -2065 (|#2| |#1|)) (-15 -1288 (|#2| |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1807 (|#2| |#1|)) (-15 -2264 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -3405 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -2550 ((-1184 (-639 |#2|)) (-1184 |#1|)))) (-348 |#2|) (-162)) (T -347))
+((-1817 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2578 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1431 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1964 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2239 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1437 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1513 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2819 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3036 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2298 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-1561 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2790 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-4223 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-3769 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))) (-2273 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-598 (-1184 *4))) (-5 *1 (-347 *3 *4)) (-4 *3 (-348 *4)))))
+(-10 -8 (-15 -3415 ((-1098 |#2|) |#1|)) (-15 -1480 ((-1098 |#2|) |#1|)) (-15 -2273 ((-598 (-1184 |#2|)))) (-15 -1387 ((-3 |#1| "failed") |#1|)) (-15 -2234 ((-3 |#1| "failed") |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 -3769 ((-110))) (-15 -4223 ((-110))) (-15 -2790 ((-110))) (-15 -1561 ((-110))) (-15 -2298 ((-110))) (-15 -3036 ((-110))) (-15 -2819 ((-110))) (-15 -1513 ((-110))) (-15 -1437 ((-110))) (-15 -2239 ((-110))) (-15 -1964 ((-110))) (-15 -1431 ((-110))) (-15 -2578 ((-110))) (-15 -1817 ((-110))) (-15 -3586 ((-1098 |#2|) |#1|)) (-15 -1875 ((-1098 |#2|) |#1|)) (-15 -3939 ((-639 |#2|) (-1184 |#1|))) (-15 -1950 ((-639 |#2|) (-1184 |#1|))) (-15 -3960 (|#2| (-1184 |#1|))) (-15 -3579 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -2065 (|#2| |#1|)) (-15 -1288 (|#2| |#1|)) (-15 -1668 (|#2| |#1|)) (-15 -1807 (|#2| |#1|)) (-15 -2264 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -3405 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -2550 ((-1184 (-639 |#2|)) (-1184 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3887 (((-3 $ "failed")) 37 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-2550 (((-1184 (-639 |#1|)) (-1184 $)) 78)) (-2022 (((-1184 $)) 81)) (-4082 (($) 17 T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 40 (|has| |#1| (-523)))) (-2783 (((-3 $ "failed")) 38 (|has| |#1| (-523)))) (-3939 (((-639 |#1|) (-1184 $)) 65)) (-1668 ((|#1| $) 74)) (-2264 (((-639 |#1|) $ (-1184 $)) 76)) (-1387 (((-3 $ "failed") $) 45 (|has| |#1| (-523)))) (-1666 (($ $ (-864)) 28)) (-2065 ((|#1| $) 72)) (-3415 (((-1098 |#1|) $) 42 (|has| |#1| (-523)))) (-3960 ((|#1| (-1184 $)) 67)) (-3586 (((-1098 |#1|) $) 63)) (-1437 (((-110)) 57)) (-2767 (($ (-1184 |#1|) (-1184 $)) 69)) (-3622 (((-3 $ "failed") $) 47 (|has| |#1| (-523)))) (-2277 (((-864)) 80)) (-2629 (((-110)) 54)) (-2083 (($ $ (-864)) 33)) (-2790 (((-110)) 50)) (-3769 (((-110)) 48)) (-2298 (((-110)) 52)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 41 (|has| |#1| (-523)))) (-2816 (((-3 $ "failed")) 39 (|has| |#1| (-523)))) (-1950 (((-639 |#1|) (-1184 $)) 66)) (-1807 ((|#1| $) 75)) (-3405 (((-639 |#1|) $ (-1184 $)) 77)) (-2234 (((-3 $ "failed") $) 46 (|has| |#1| (-523)))) (-2585 (($ $ (-864)) 29)) (-1288 ((|#1| $) 73)) (-1480 (((-1098 |#1|) $) 43 (|has| |#1| (-523)))) (-3579 ((|#1| (-1184 $)) 68)) (-1875 (((-1098 |#1|) $) 64)) (-2239 (((-110)) 58)) (-1521 (((-1085) $) 9)) (-4223 (((-110)) 49)) (-1561 (((-110)) 51)) (-3036 (((-110)) 53)) (-2529 (((-1049) $) 10)) (-1513 (((-110)) 56)) (-3348 (((-1184 |#1|) $ (-1184 $)) 71) (((-639 |#1|) (-1184 $) (-1184 $)) 70)) (-2570 (((-598 (-895 |#1|)) (-1184 $)) 79)) (-3214 (($ $ $) 25)) (-1817 (((-110)) 62)) (-2265 (((-806) $) 11)) (-2273 (((-598 (-1184 |#1|))) 44 (|has| |#1| (-523)))) (-2801 (($ $ $ $) 26)) (-1431 (((-110)) 60)) (-1605 (($ $ $) 24)) (-2578 (((-110)) 61)) (-1964 (((-110)) 59)) (-2819 (((-110)) 55)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-348 |#1|) (-133) (-162)) (T -348))
-((-3990 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-348 *3)))) (-2426 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-862)))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1181 (-637 *4))))) (-3846 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-4209 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-2465 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-2228 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-2602 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-4005 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-2328 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1181 *4)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162)) (-4 *1 (-348 *4)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3988 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1257 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-2603 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-2461 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))) (-2670 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))) (-3675 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2164 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3439 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3566 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1921 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2662 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3719 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1957 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3485 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3766 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2305 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2561 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3943 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3123 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3470 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2707 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-1232 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-2635 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522)))) (-3758 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-597 (-1181 *3))))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-1095 *3)))) (-3581 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522)) (-5 *2 (-1095 *3)))) (-3357 (*1 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3220 (-597 *1)))) (-4 *1 (-348 *3)))) (-3751 (*1 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3220 (-597 *1)))) (-4 *1 (-348 *3)))) (-3832 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))) (-1383 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))) (-2291 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
-(-13 (-693 |t#1|) (-10 -8 (-15 -3990 ((-1181 $))) (-15 -2426 ((-862))) (-15 -3028 ((-597 (-893 |t#1|)) (-1181 $))) (-15 -3365 ((-1181 (-637 |t#1|)) (-1181 $))) (-15 -3846 ((-637 |t#1|) $ (-1181 $))) (-15 -4209 ((-637 |t#1|) $ (-1181 $))) (-15 -2465 (|t#1| $)) (-15 -2228 (|t#1| $)) (-15 -2602 (|t#1| $)) (-15 -4005 (|t#1| $)) (-15 -2328 ((-1181 |t#1|) $ (-1181 $))) (-15 -2328 ((-637 |t#1|) (-1181 $) (-1181 $))) (-15 -1574 ($ (-1181 |t#1|) (-1181 $))) (-15 -2837 (|t#1| (-1181 $))) (-15 -3988 (|t#1| (-1181 $))) (-15 -1257 ((-637 |t#1|) (-1181 $))) (-15 -2603 ((-637 |t#1|) (-1181 $))) (-15 -2461 ((-1095 |t#1|) $)) (-15 -2670 ((-1095 |t#1|) $)) (-15 -3675 ((-110))) (-15 -2164 ((-110))) (-15 -3439 ((-110))) (-15 -3566 ((-110))) (-15 -1921 ((-110))) (-15 -2662 ((-110))) (-15 -3719 ((-110))) (-15 -1957 ((-110))) (-15 -3485 ((-110))) (-15 -3766 ((-110))) (-15 -2305 ((-110))) (-15 -2561 ((-110))) (-15 -3943 ((-110))) (-15 -3123 ((-110))) (-15 -3470 ((-110))) (IF (|has| |t#1| (-522)) (PROGN (-15 -2707 ((-3 $ "failed") $)) (-15 -1232 ((-3 $ "failed") $)) (-15 -2635 ((-3 $ "failed") $)) (-15 -3758 ((-597 (-1181 |t#1|)))) (-15 -2209 ((-1095 |t#1|) $)) (-15 -3581 ((-1095 |t#1|) $)) (-15 -3357 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -3832 ((-3 $ "failed"))) (-15 -1383 ((-3 $ "failed"))) (-15 -2291 ((-3 $ "failed"))) (-6 -4266)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-693 |#1|) . T) ((-710) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 7)) (-3023 (((-719)) 16)) (-1364 (($) 13)) (-1905 (((-862) $) 14)) (-1424 (((-1082) $) 9)) (-1986 (($ (-862)) 15)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
+((-2022 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1184 *1)) (-4 *1 (-348 *3)))) (-2277 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-864)))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-598 (-895 *4))))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1184 (-639 *4))))) (-3405 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-2264 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1668 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1288 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-2065 (*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-1184 *4)))) (-3348 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-2767 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-162)) (-4 *1 (-348 *4)))) (-3579 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-3960 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162)))) (-1950 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-3939 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-1875 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1098 *3)))) (-3586 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1098 *3)))) (-1817 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2578 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1431 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1964 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2239 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1437 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1513 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2819 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2629 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3036 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2298 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-1561 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-2790 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-4223 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3769 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))) (-3622 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-2234 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-1387 (*1 *1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523)))) (-2273 (*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-598 (-1184 *3))))) (-1480 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-1098 *3)))) (-3415 (*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523)) (-5 *2 (-1098 *3)))) (-4152 (*1 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3523 (-598 *1)))) (-4 *1 (-348 *3)))) (-3491 (*1 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-5 *2 (-2 (|:| |particular| *1) (|:| -3523 (-598 *1)))) (-4 *1 (-348 *3)))) (-2816 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))) (-2783 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))) (-3887 (*1 *1) (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))))
+(-13 (-695 |t#1|) (-10 -8 (-15 -2022 ((-1184 $))) (-15 -2277 ((-864))) (-15 -2570 ((-598 (-895 |t#1|)) (-1184 $))) (-15 -2550 ((-1184 (-639 |t#1|)) (-1184 $))) (-15 -3405 ((-639 |t#1|) $ (-1184 $))) (-15 -2264 ((-639 |t#1|) $ (-1184 $))) (-15 -1807 (|t#1| $)) (-15 -1668 (|t#1| $)) (-15 -1288 (|t#1| $)) (-15 -2065 (|t#1| $)) (-15 -3348 ((-1184 |t#1|) $ (-1184 $))) (-15 -3348 ((-639 |t#1|) (-1184 $) (-1184 $))) (-15 -2767 ($ (-1184 |t#1|) (-1184 $))) (-15 -3579 (|t#1| (-1184 $))) (-15 -3960 (|t#1| (-1184 $))) (-15 -1950 ((-639 |t#1|) (-1184 $))) (-15 -3939 ((-639 |t#1|) (-1184 $))) (-15 -1875 ((-1098 |t#1|) $)) (-15 -3586 ((-1098 |t#1|) $)) (-15 -1817 ((-110))) (-15 -2578 ((-110))) (-15 -1431 ((-110))) (-15 -1964 ((-110))) (-15 -2239 ((-110))) (-15 -1437 ((-110))) (-15 -1513 ((-110))) (-15 -2819 ((-110))) (-15 -2629 ((-110))) (-15 -3036 ((-110))) (-15 -2298 ((-110))) (-15 -1561 ((-110))) (-15 -2790 ((-110))) (-15 -4223 ((-110))) (-15 -3769 ((-110))) (IF (|has| |t#1| (-523)) (PROGN (-15 -3622 ((-3 $ "failed") $)) (-15 -2234 ((-3 $ "failed") $)) (-15 -1387 ((-3 $ "failed") $)) (-15 -2273 ((-598 (-1184 |t#1|)))) (-15 -1480 ((-1098 |t#1|) $)) (-15 -3415 ((-1098 |t#1|) $)) (-15 -4152 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -2816 ((-3 $ "failed"))) (-15 -2783 ((-3 $ "failed"))) (-15 -3887 ((-3 $ "failed"))) (-6 -4270)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-671) . T) ((-695 |#1|) . T) ((-712) . T) ((-992 |#1|) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 7)) (-3006 (((-721)) 16)) (-1381 (($) 13)) (-2211 (((-864) $) 14)) (-1521 (((-1085) $) 9)) (-1889 (($ (-864)) 15)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)))
(((-349) (-133)) (T -349))
-((-3023 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-719)))) (-1986 (*1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-349)))) (-1905 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-862)))) (-1364 (*1 *1) (-4 *1 (-349))))
-(-13 (-1027) (-10 -8 (-15 -3023 ((-719))) (-15 -1986 ($ (-862))) (-15 -1905 ((-862) $)) (-15 -1364 ($))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1863 (((-637 |#2|) (-1181 $)) 40)) (-1574 (($ (-1181 |#2|) (-1181 $)) 34)) (-1984 (((-637 |#2|) $ (-1181 $)) 42)) (-3060 ((|#2| (-1181 $)) 13)) (-2328 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) 25)))
-(((-350 |#1| |#2| |#3|) (-10 -8 (-15 -1863 ((-637 |#2|) (-1181 |#1|))) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1984 ((-637 |#2|) |#1| (-1181 |#1|)))) (-351 |#2| |#3|) (-162) (-1157 |#2|)) (T -350))
-NIL
-(-10 -8 (-15 -1863 ((-637 |#2|) (-1181 |#1|))) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1984 ((-637 |#2|) |#1| (-1181 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1863 (((-637 |#1|) (-1181 $)) 44)) (-1367 ((|#1| $) 50)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1574 (($ (-1181 |#1|) (-1181 $)) 46)) (-1984 (((-637 |#1|) $ (-1181 $)) 51)) (-2707 (((-3 $ "failed") $) 32)) (-2426 (((-862)) 52)) (-2731 (((-110) $) 30)) (-2376 ((|#1| $) 49)) (-1359 ((|#2| $) 42 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3060 ((|#1| (-1181 $)) 45)) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) 47)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35)) (-3251 (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-1814 ((|#2| $) 43)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-351 |#1| |#2|) (-133) (-162) (-1157 |t#1|)) (T -351))
-((-2426 (*1 *2) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-862)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-2328 (*1 *2 *1 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4)))) (-2328 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1574 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162)) (-4 *1 (-351 *4 *5)) (-4 *5 (-1157 *4)))) (-3060 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1157 *2)) (-4 *2 (-162)))) (-1863 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1814 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-1359 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344)) (-4 *2 (-1157 *3)))))
-(-13 (-37 |t#1|) (-10 -8 (-15 -2426 ((-862))) (-15 -1984 ((-637 |t#1|) $ (-1181 $))) (-15 -1367 (|t#1| $)) (-15 -2376 (|t#1| $)) (-15 -2328 ((-1181 |t#1|) $ (-1181 $))) (-15 -2328 ((-637 |t#1|) (-1181 $) (-1181 $))) (-15 -1574 ($ (-1181 |t#1|) (-1181 $))) (-15 -3060 (|t#1| (-1181 $))) (-15 -1863 ((-637 |t#1|) (-1181 $))) (-15 -1814 (|t#2| $)) (IF (|has| |t#1| (-344)) (-15 -1359 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2753 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-2134 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3217 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
-(((-352 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2134 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2753 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1135) (-354 |#1|) (-1135) (-354 |#3|)) (T -352))
-((-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *2 (-354 *6)) (-5 *1 (-352 *5 *4 *6 *2)) (-4 *4 (-354 *5)))))
-(-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2134 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2753 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2741 (((-110) (-1 (-110) |#2| |#2|) $) NIL) (((-110) $) 18)) (-1627 (($ (-1 (-110) |#2| |#2|) $) NIL) (($ $) 28)) (-1307 (($ (-1 (-110) |#2| |#2|) $) 27) (($ $) 22)) (-4106 (($ $) 25)) (-2027 (((-530) (-1 (-110) |#2|) $) NIL) (((-530) |#2| $) 11) (((-530) |#2| $ (-530)) NIL)) (-3683 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
-(((-353 |#1| |#2|) (-10 -8 (-15 -1627 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2741 ((-110) |#1|)) (-15 -1307 (|#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1307 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|))) (-354 |#2|) (-1135)) (T -353))
-NIL
-(-10 -8 (-15 -1627 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2741 ((-110) |#1|)) (-15 -1307 (|#1| |#1|)) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1307 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -4106 (|#1| |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-2027 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-354 |#1|) (-133) (-1135)) (T -354))
-((-3683 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-4106 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)))) (-1307 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-2741 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-2027 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135)) (-5 *2 (-530)))) (-2027 (*1 *2 *3 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-530)))) (-2027 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))) (-1307 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))) (-2741 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-795)) (-5 *2 (-110)))) (-3121 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (|has| *1 (-6 -4270)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-1337 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-354 *2)) (-4 *2 (-1135)))) (-1627 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-354 *3)) (-4 *3 (-1135)))) (-1627 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795)))))
-(-13 (-602 |t#1|) (-10 -8 (-6 -4269) (-15 -3683 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -4106 ($ $)) (-15 -1307 ($ (-1 (-110) |t#1| |t#1|) $)) (-15 -2741 ((-110) (-1 (-110) |t#1| |t#1|) $)) (-15 -2027 ((-530) (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -2027 ((-530) |t#1| $)) (-15 -2027 ((-530) |t#1| $ (-530)))) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-6 (-795)) (-15 -3683 ($ $ $)) (-15 -1307 ($ $)) (-15 -2741 ((-110) $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -3121 ($ $ $ (-530))) (-15 -1337 ($ $)) (-15 -1627 ($ (-1 (-110) |t#1| |t#1|) $)) (IF (|has| |t#1| (-795)) (-15 -1627 ($ $)) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3702 (((-597 |#1|) $) 32)) (-1911 (($ $ (-719)) 33)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3575 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 36)) (-2627 (($ $) 34)) (-2448 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 37)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-4098 (($ $ |#1| $) 31) (($ $ (-597 |#1|) (-597 $)) 30)) (-1429 (((-719) $) 38)) (-2377 (($ $ $) 29)) (-2366 (((-804) $) 11) (($ |#1|) 41) (((-1194 |#1| |#2|) $) 40) (((-1203 |#1| |#2|) $) 39)) (-2065 ((|#2| (-1203 |#1| |#2|) $) 42)) (-3080 (($) 18 T CONST)) (-2288 (($ (-622 |#1|)) 35)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#2|) 28 (|has| |#2| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
-(((-355 |#1| |#2|) (-133) (-795) (-162)) (T -355))
-((-2065 (*1 *2 *3 *1) (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-795)) (-4 *2 (-162)))) (-2366 (*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-1194 *3 *4)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-1203 *3 *4)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-719)))) (-2448 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-3575 (*1 *2 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2288 (*1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-4 *1 (-355 *3 *4)) (-4 *4 (-162)))) (-2627 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-1911 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *2 (-597 *3)))) (-4098 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-795)) (-4 *5 (-162)))))
-(-13 (-588 |t#2|) (-10 -8 (-15 -2065 (|t#2| (-1203 |t#1| |t#2|) $)) (-15 -2366 ($ |t#1|)) (-15 -2366 ((-1194 |t#1| |t#2|) $)) (-15 -2366 ((-1203 |t#1| |t#2|) $)) (-15 -1429 ((-719) $)) (-15 -2448 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -3575 ((-1203 |t#1| |t#2|) (-1203 |t#1| |t#2|) $)) (-15 -2288 ($ (-622 |t#1|))) (-15 -2627 ($ $)) (-15 -1911 ($ $ (-719))) (-15 -3702 ((-597 |t#1|) $)) (-15 -4098 ($ $ |t#1| $)) (-15 -4098 ($ $ (-597 |t#1|) (-597 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#2|) . T) ((-588 |#2|) . T) ((-666 |#2|) . T) ((-990 |#2|) . T) ((-1027) . T))
-((-2980 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 24)) (-1798 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 13)) (-3206 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 22)))
-(((-356 |#1| |#2|) (-10 -7 (-15 -1798 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -3206 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2980 (|#2| (-1 (-110) |#1| |#1|) |#2|))) (-1135) (-13 (-354 |#1|) (-10 -7 (-6 -4270)))) (T -356))
-((-2980 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))) (-3206 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))) (-1798 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
-(-10 -7 (-15 -1798 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -3206 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2980 (|#2| (-1 (-110) |#1| |#1|) |#2|)))
-((-2329 (((-637 |#2|) (-637 $)) NIL) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 22) (((-637 (-530)) (-637 $)) 14)))
-(((-357 |#1| |#2|) (-10 -8 (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 |#2|) (-637 |#1|)))) (-358 |#2|) (-984)) (T -357))
-NIL
-(-10 -8 (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 |#2|) (-637 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2329 (((-637 |#1|) (-637 $)) 34) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 33) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 41 (|has| |#1| (-593 (-530)))) (((-637 (-530)) (-637 $)) 40 (|has| |#1| (-593 (-530))))) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-358 |#1|) (-133) (-984)) (T -358))
-NIL
-(-13 (-593 |t#1|) (-10 -7 (IF (|has| |t#1| (-593 (-530))) (-6 (-593 (-530))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1757 (((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|) 51) (((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|) 50) (((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|) 47) (((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|) 41)) (-1258 (((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|) 30) (((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|) 18)))
-(((-359 |#1|) (-10 -7 (-15 -1757 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -1757 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|)) (-15 -1757 ((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -1757 ((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -1258 ((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -1258 ((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|))) (-13 (-344) (-793))) (T -359))
-((-1258 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530)))))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-159 *5)))) (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-793))))) (-1258 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 (-159 (-530)))))) (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 (-159 (-530))))))) (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))) (-1757 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530)))))) (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -1757 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -1757 ((-597 (-597 (-276 (-893 (-159 |#1|))))) (-597 (-276 (-388 (-893 (-159 (-530)))))) |#1|)) (-15 -1757 ((-597 (-276 (-893 (-159 |#1|)))) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -1757 ((-597 (-276 (-893 (-159 |#1|)))) (-276 (-388 (-893 (-159 (-530))))) |#1|)) (-15 -1258 ((-597 (-159 |#1|)) (-388 (-893 (-159 (-530)))) |#1|)) (-15 -1258 ((-597 (-597 (-159 |#1|))) (-597 (-388 (-893 (-159 (-530))))) (-597 (-1099)) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 33)) (-1612 (((-530) $) 55)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1951 (($ $) 110)) (-2386 (($ $) 82)) (-2244 (($ $) 71)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) 44)) (-1426 (((-110) $ $) NIL)) (-2360 (($ $) 80)) (-2219 (($ $) 69)) (-1867 (((-530) $) 64)) (-4207 (($ $ (-530)) 62)) (-2409 (($ $) NIL)) (-2269 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-2963 (($ $) 112)) (-3139 (((-3 (-530) "failed") $) 189) (((-3 (-388 (-530)) "failed") $) 185)) (-2585 (((-530) $) 187) (((-388 (-530)) $) 183)) (-3590 (($ $ $) NIL)) (-1361 (((-530) $ $) 102)) (-2707 (((-3 $ "failed") $) 114)) (-3171 (((-388 (-530)) $ (-719)) 190) (((-388 (-530)) $ (-719) (-719)) 182)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2582 (((-862)) 73) (((-862) (-862)) 98 (|has| $ (-6 -4260)))) (-2514 (((-110) $) 106)) (-1948 (($) 40)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-1596 (((-1186) (-719)) 152)) (-3263 (((-1186)) 157) (((-1186) (-719)) 158)) (-1394 (((-1186)) 159) (((-1186) (-719)) 160)) (-3007 (((-1186)) 155) (((-1186) (-719)) 156)) (-2031 (((-530) $) 58)) (-2731 (((-110) $) 104)) (-3741 (($ $ (-530)) NIL)) (-3258 (($ $) 48)) (-2376 (($ $) NIL)) (-2166 (((-110) $) 35)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-1817 (($ $ $) NIL) (($) 99 (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-3208 (((-530) $) 17)) (-3433 (($) 87) (($ $) 92)) (-1945 (($) 91) (($ $) 93)) (-2168 (($ $) 83)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 116)) (-2887 (((-862) (-530)) 43 (|has| $ (-6 -4260)))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) 53)) (-3175 (($ $) 109)) (-3018 (($ (-530) (-530)) 107) (($ (-530) (-530) (-862)) 108)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3194 (((-530) $) 19)) (-1878 (($) 94)) (-2853 (($ $) 79)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2513 (((-862)) 100) (((-862) (-862)) 101 (|has| $ (-6 -4260)))) (-3289 (($ $ (-719)) NIL) (($ $) 115)) (-1764 (((-862) (-530)) 47 (|has| $ (-6 -4260)))) (-2421 (($ $) NIL)) (-2281 (($ $) NIL)) (-2398 (($ $) NIL)) (-2254 (($ $) NIL)) (-2373 (($ $) 81)) (-2231 (($ $) 70)) (-3260 (((-360) $) 175) (((-208) $) 177) (((-833 (-360)) $) NIL) (((-1082) $) 162) (((-506) $) 173) (($ (-208)) 181)) (-2366 (((-804) $) 164) (($ (-530)) 186) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-530)) 186) (($ (-388 (-530))) NIL) (((-208) $) 178)) (-3300 (((-719)) NIL)) (-2748 (($ $) 111)) (-1711 (((-862)) 54) (((-862) (-862)) 66 (|has| $ (-6 -4260)))) (-1510 (((-862)) 103)) (-2459 (($ $) 86)) (-2314 (($ $) 46) (($ $ $) 52)) (-3944 (((-110) $ $) NIL)) (-2434 (($ $) 84)) (-2293 (($ $) 37)) (-2485 (($ $) NIL)) (-2334 (($ $) NIL)) (-3632 (($ $) NIL)) (-2347 (($ $) NIL)) (-2472 (($ $) NIL)) (-2324 (($ $) NIL)) (-2446 (($ $) 85)) (-2304 (($ $) 49)) (-3934 (($ $) 51)) (-3080 (($) 34 T CONST)) (-3093 (($) 38 T CONST)) (-3987 (((-1082) $) 27) (((-1082) $ (-110)) 29) (((-1186) (-770) $) 30) (((-1186) (-770) $ (-110)) 31)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 39)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 42)) (-2364 (($ $ $) 45) (($ $ (-530)) 41)) (-2351 (($ $) 36) (($ $ $) 50)) (-2339 (($ $ $) 61)) (** (($ $ (-862)) 67) (($ $ (-719)) NIL) (($ $ (-530)) 88) (($ $ (-388 (-530))) 125) (($ $ $) 117)) (* (($ (-862) $) 65) (($ (-719) $) NIL) (($ (-530) $) 68) (($ $ $) 60) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-360) (-13 (-385) (-216) (-572 (-1082)) (-776) (-571 (-208)) (-1121) (-572 (-506)) (-10 -8 (-15 -2364 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -3258 ($ $)) (-15 -1361 ((-530) $ $)) (-15 -4207 ($ $ (-530))) (-15 -3171 ((-388 (-530)) $ (-719))) (-15 -3171 ((-388 (-530)) $ (-719) (-719))) (-15 -3433 ($)) (-15 -1945 ($)) (-15 -1878 ($)) (-15 -2314 ($ $ $)) (-15 -3433 ($ $)) (-15 -1945 ($ $)) (-15 -3260 ($ (-208))) (-15 -1394 ((-1186))) (-15 -1394 ((-1186) (-719))) (-15 -3007 ((-1186))) (-15 -3007 ((-1186) (-719))) (-15 -3263 ((-1186))) (-15 -3263 ((-1186) (-719))) (-15 -1596 ((-1186) (-719))) (-6 -4260) (-6 -4252)))) (T -360))
-((** (*1 *1 *1 *1) (-5 *1 (-360))) (-2364 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-3258 (*1 *1 *1) (-5 *1 (-360))) (-1361 (*1 *2 *1 *1) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360)))) (-3171 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))) (-3171 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))) (-3433 (*1 *1) (-5 *1 (-360))) (-1945 (*1 *1) (-5 *1 (-360))) (-1878 (*1 *1) (-5 *1 (-360))) (-2314 (*1 *1 *1 *1) (-5 *1 (-360))) (-3433 (*1 *1 *1) (-5 *1 (-360))) (-1945 (*1 *1 *1) (-5 *1 (-360))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-360)))) (-1394 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-1394 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-3007 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-3007 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-3263 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))) (-3263 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))))
-(-13 (-385) (-216) (-572 (-1082)) (-776) (-571 (-208)) (-1121) (-572 (-506)) (-10 -8 (-15 -2364 ($ $ (-530))) (-15 ** ($ $ $)) (-15 -3258 ($ $)) (-15 -1361 ((-530) $ $)) (-15 -4207 ($ $ (-530))) (-15 -3171 ((-388 (-530)) $ (-719))) (-15 -3171 ((-388 (-530)) $ (-719) (-719))) (-15 -3433 ($)) (-15 -1945 ($)) (-15 -1878 ($)) (-15 -2314 ($ $ $)) (-15 -3433 ($ $)) (-15 -1945 ($ $)) (-15 -3260 ($ (-208))) (-15 -1394 ((-1186))) (-15 -1394 ((-1186) (-719))) (-15 -3007 ((-1186))) (-15 -3007 ((-1186) (-719))) (-15 -3263 ((-1186))) (-15 -3263 ((-1186) (-719))) (-15 -1596 ((-1186) (-719))) (-6 -4260) (-6 -4252)))
-((-2688 (((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|) 46) (((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|) 45) (((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|) 42) (((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|) 36)) (-3881 (((-597 |#1|) (-388 (-893 (-530))) |#1|) 20) (((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|) 30)))
-(((-361 |#1|) (-10 -7 (-15 -2688 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|)) (-15 -2688 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|)) (-15 -2688 ((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|)) (-15 -2688 ((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|)) (-15 -3881 ((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|)) (-15 -3881 ((-597 |#1|) (-388 (-893 (-530))) |#1|))) (-13 (-793) (-344))) (T -361))
-((-3881 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-3881 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 *5))) (-5 *1 (-361 *5)) (-4 *5 (-13 (-793) (-344))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 (-530))))) (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 (-530)))))) (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344))))))
-(-10 -7 (-15 -2688 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-388 (-893 (-530)))) |#1|)) (-15 -2688 ((-597 (-597 (-276 (-893 |#1|)))) (-597 (-276 (-388 (-893 (-530))))) |#1|)) (-15 -2688 ((-597 (-276 (-893 |#1|))) (-388 (-893 (-530))) |#1|)) (-15 -2688 ((-597 (-276 (-893 |#1|))) (-276 (-388 (-893 (-530)))) |#1|)) (-15 -3881 ((-597 (-597 |#1|)) (-597 (-388 (-893 (-530)))) (-597 (-1099)) |#1|)) (-15 -3881 ((-597 |#1|) (-388 (-893 (-530))) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) 26)) (-2585 ((|#2| $) 28)) (-2562 (($ $) NIL)) (-3579 (((-719) $) 10)) (-2469 (((-597 $) $) 20)) (-3668 (((-110) $) NIL)) (-3940 (($ |#2| |#1|) 18)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3477 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2521 ((|#2| $) 15)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 45) (($ |#2|) 27)) (-3441 (((-597 |#1|) $) 17)) (-4085 ((|#1| $ |#2|) 47)) (-3080 (($) 29 T CONST)) (-1537 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
-(((-362 |#1| |#2|) (-13 (-363 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-984) (-795)) (T -362))
-((* (*1 *1 *2 *3) (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795)))))
+((-3006 (*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-721)))) (-1889 (*1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-349)))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-864)))) (-1381 (*1 *1) (-4 *1 (-349))))
+(-13 (-1030) (-10 -8 (-15 -3006 ((-721))) (-15 -1889 ($ (-864))) (-15 -2211 ((-864) $)) (-15 -1381 ($))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-1849 (((-639 |#2|) (-1184 $)) 40)) (-2767 (($ (-1184 |#2|) (-1184 $)) 34)) (-1982 (((-639 |#2|) $ (-1184 $)) 42)) (-3176 ((|#2| (-1184 $)) 13)) (-3348 (((-1184 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) 25)))
+(((-350 |#1| |#2| |#3|) (-10 -8 (-15 -1849 ((-639 |#2|) (-1184 |#1|))) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1982 ((-639 |#2|) |#1| (-1184 |#1|)))) (-351 |#2| |#3|) (-162) (-1160 |#2|)) (T -350))
+NIL
+(-10 -8 (-15 -1849 ((-639 |#2|) (-1184 |#1|))) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1982 ((-639 |#2|) |#1| (-1184 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1849 (((-639 |#1|) (-1184 $)) 44)) (-1354 ((|#1| $) 50)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2767 (($ (-1184 |#1|) (-1184 $)) 46)) (-1982 (((-639 |#1|) $ (-1184 $)) 51)) (-3622 (((-3 $ "failed") $) 32)) (-2277 (((-864)) 52)) (-3481 (((-110) $) 30)) (-1899 ((|#1| $) 49)) (-1233 ((|#2| $) 42 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3176 ((|#1| (-1184 $)) 45)) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) 47)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35)) (-2750 (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-3369 ((|#2| $) 43)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-351 |#1| |#2|) (-133) (-162) (-1160 |t#1|)) (T -351))
+((-2277 (*1 *2) (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-864)))) (-1982 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) (-3348 (*1 *2 *1 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-1184 *4)))) (-3348 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) (-2767 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-162)) (-4 *1 (-351 *4 *5)) (-4 *5 (-1160 *4)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1160 *2)) (-4 *2 (-162)))) (-1849 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) (-3369 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) (-1233 (*1 *2 *1) (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344)) (-4 *2 (-1160 *3)))))
+(-13 (-37 |t#1|) (-10 -8 (-15 -2277 ((-864))) (-15 -1982 ((-639 |t#1|) $ (-1184 $))) (-15 -1354 (|t#1| $)) (-15 -1899 (|t#1| $)) (-15 -3348 ((-1184 |t#1|) $ (-1184 $))) (-15 -3348 ((-639 |t#1|) (-1184 $) (-1184 $))) (-15 -2767 ($ (-1184 |t#1|) (-1184 $))) (-15 -3176 (|t#1| (-1184 $))) (-15 -1849 ((-639 |t#1|) (-1184 $))) (-15 -3369 (|t#2| $)) (IF (|has| |t#1| (-344)) (-15 -1233 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) . T) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3203 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 23)) (-1760 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 15)) (-3261 ((|#4| (-1 |#3| |#1|) |#2|) 21)))
+(((-352 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1760 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3203 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1138) (-354 |#1|) (-1138) (-354 |#3|)) (T -352))
+((-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-4 *2 (-354 *6)) (-5 *1 (-352 *5 *4 *6 *2)) (-4 *4 (-354 *5)))))
+(-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1760 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3203 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3202 (((-110) (-1 (-110) |#2| |#2|) $) NIL) (((-110) $) 18)) (-2375 (($ (-1 (-110) |#2| |#2|) $) NIL) (($ $) 28)) (-1332 (($ (-1 (-110) |#2| |#2|) $) 27) (($ $) 22)) (-1828 (($ $) 25)) (-1976 (((-531) (-1 (-110) |#2|) $) NIL) (((-531) |#2| $) 11) (((-531) |#2| $ (-531)) NIL)) (-3508 (($ (-1 (-110) |#2| |#2|) $ $) NIL) (($ $ $) 20)))
+(((-353 |#1| |#2|) (-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3202 ((-110) |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1332 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|))) (-354 |#2|) (-1138)) (T -353))
+NIL
+(-10 -8 (-15 -2375 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -3202 ((-110) |#1|)) (-15 -1332 (|#1| |#1|)) (-15 -3508 (|#1| |#1| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1332 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1828 (|#1| |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-1976 (((-531) (-1 (-110) |#1|) $) 97) (((-531) |#1| $) 96 (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) 95 (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 83 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 82 (|has| |#1| (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-354 |#1|) (-133) (-1138)) (T -354))
+((-3508 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) (-1828 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)))) (-1332 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) (-3202 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1138)) (-5 *2 (-110)))) (-1976 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-354 *4)) (-4 *4 (-1138)) (-5 *2 (-531)))) (-1976 (*1 *2 *3 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-531)))) (-1976 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))) (-1332 (*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))) (-3202 (*1 *2 *1) (-12 (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-797)) (-5 *2 (-110)))) (-2162 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-531)) (|has| *1 (-6 -4274)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) (-4106 (*1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-354 *2)) (-4 *2 (-1138)))) (-2375 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4274)) (-4 *1 (-354 *3)) (-4 *3 (-1138)))) (-2375 (*1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797)))))
+(-13 (-604 |t#1|) (-10 -8 (-6 -4273) (-15 -3508 ($ (-1 (-110) |t#1| |t#1|) $ $)) (-15 -1828 ($ $)) (-15 -1332 ($ (-1 (-110) |t#1| |t#1|) $)) (-15 -3202 ((-110) (-1 (-110) |t#1| |t#1|) $)) (-15 -1976 ((-531) (-1 (-110) |t#1|) $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -1976 ((-531) |t#1| $)) (-15 -1976 ((-531) |t#1| $ (-531)))) |%noBranch|) (IF (|has| |t#1| (-797)) (PROGN (-6 (-797)) (-15 -3508 ($ $ $)) (-15 -1332 ($ $)) (-15 -3202 ((-110) $))) |%noBranch|) (IF (|has| $ (-6 -4274)) (PROGN (-15 -2162 ($ $ $ (-531))) (-15 -4106 ($ $)) (-15 -2375 ($ (-1 (-110) |t#1| |t#1|) $)) (IF (|has| |t#1| (-797)) (-15 -2375 ($ $)) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-797) |has| |#1| (-797)) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1138) . T))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3798 (((-598 |#1|) $) 32)) (-2879 (($ $ (-721)) 33)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2489 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 36)) (-4104 (($ $) 34)) (-2931 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 37)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-4115 (($ $ |#1| $) 31) (($ $ (-598 |#1|) (-598 $)) 30)) (-2012 (((-721) $) 38)) (-2274 (($ $ $) 29)) (-2265 (((-806) $) 11) (($ |#1|) 41) (((-1197 |#1| |#2|) $) 40) (((-1206 |#1| |#2|) $) 39)) (-2005 ((|#2| (-1206 |#1| |#2|) $) 42)) (-3035 (($) 18 T CONST)) (-2043 (($ (-624 |#1|)) 35)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#2|) 28 (|has| |#2| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#2| $) 23) (($ $ |#2|) 26)))
+(((-355 |#1| |#2|) (-133) (-797) (-162)) (T -355))
+((-2005 (*1 *2 *3 *1) (-12 (-5 *3 (-1206 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-797)) (-4 *2 (-162)))) (-2265 (*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *2 (-1197 *3 *4)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *2 (-1206 *3 *4)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *2 (-721)))) (-2931 (*1 *2 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2489 (*1 *2 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2043 (*1 *1 *2) (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-4 *1 (-355 *3 *4)) (-4 *4 (-162)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) (-2879 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *2 (-598 *3)))) (-4115 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 *1)) (-4 *1 (-355 *4 *5)) (-4 *4 (-797)) (-4 *5 (-162)))))
+(-13 (-589 |t#2|) (-10 -8 (-15 -2005 (|t#2| (-1206 |t#1| |t#2|) $)) (-15 -2265 ($ |t#1|)) (-15 -2265 ((-1197 |t#1| |t#2|) $)) (-15 -2265 ((-1206 |t#1| |t#2|) $)) (-15 -2012 ((-721) $)) (-15 -2931 ((-1206 |t#1| |t#2|) (-1206 |t#1| |t#2|) $)) (-15 -2489 ((-1206 |t#1| |t#2|) (-1206 |t#1| |t#2|) $)) (-15 -2043 ($ (-624 |t#1|))) (-15 -4104 ($ $)) (-15 -2879 ($ $ (-721))) (-15 -3798 ((-598 |t#1|) $)) (-15 -4115 ($ $ |t#1| $)) (-15 -4115 ($ $ (-598 |t#1|) (-598 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#2|) . T) ((-589 |#2|) . T) ((-668 |#2|) . T) ((-992 |#2|) . T) ((-1030) . T))
+((-2793 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 24)) (-2957 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 13)) (-2820 ((|#2| (-1 (-110) |#1| |#1|) |#2|) 22)))
+(((-356 |#1| |#2|) (-10 -7 (-15 -2957 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2820 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2793 (|#2| (-1 (-110) |#1| |#1|) |#2|))) (-1138) (-13 (-354 |#1|) (-10 -7 (-6 -4274)))) (T -356))
+((-2793 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))))) (-2820 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))))) (-2957 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2)) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))))))
+(-10 -7 (-15 -2957 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2820 (|#2| (-1 (-110) |#1| |#1|) |#2|)) (-15 -2793 (|#2| (-1 (-110) |#1| |#1|) |#2|)))
+((-3073 (((-639 |#2|) (-639 $)) NIL) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 22) (((-639 (-531)) (-639 $)) 14)))
+(((-357 |#1| |#2|) (-10 -8 (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 |#2|) (-639 |#1|)))) (-358 |#2|) (-986)) (T -357))
+NIL
+(-10 -8 (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 |#2|) (-639 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3073 (((-639 |#1|) (-639 $)) 34) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 33) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 41 (|has| |#1| (-594 (-531)))) (((-639 (-531)) (-639 $)) 40 (|has| |#1| (-594 (-531))))) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-358 |#1|) (-133) (-986)) (T -358))
+NIL
+(-13 (-594 |t#1|) (-10 -7 (IF (|has| |t#1| (-594 (-531))) (-6 (-594 (-531))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3772 (((-598 (-276 (-895 (-159 |#1|)))) (-276 (-388 (-895 (-159 (-531))))) |#1|) 51) (((-598 (-276 (-895 (-159 |#1|)))) (-388 (-895 (-159 (-531)))) |#1|) 50) (((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-276 (-388 (-895 (-159 (-531)))))) |#1|) 47) (((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-388 (-895 (-159 (-531))))) |#1|) 41)) (-3694 (((-598 (-598 (-159 |#1|))) (-598 (-388 (-895 (-159 (-531))))) (-598 (-1102)) |#1|) 30) (((-598 (-159 |#1|)) (-388 (-895 (-159 (-531)))) |#1|) 18)))
+(((-359 |#1|) (-10 -7 (-15 -3772 ((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-388 (-895 (-159 (-531))))) |#1|)) (-15 -3772 ((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-276 (-388 (-895 (-159 (-531)))))) |#1|)) (-15 -3772 ((-598 (-276 (-895 (-159 |#1|)))) (-388 (-895 (-159 (-531)))) |#1|)) (-15 -3772 ((-598 (-276 (-895 (-159 |#1|)))) (-276 (-388 (-895 (-159 (-531))))) |#1|)) (-15 -3694 ((-598 (-159 |#1|)) (-388 (-895 (-159 (-531)))) |#1|)) (-15 -3694 ((-598 (-598 (-159 |#1|))) (-598 (-388 (-895 (-159 (-531))))) (-598 (-1102)) |#1|))) (-13 (-344) (-795))) (T -359))
+((-3694 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-388 (-895 (-159 (-531)))))) (-5 *4 (-598 (-1102))) (-5 *2 (-598 (-598 (-159 *5)))) (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-795))))) (-3694 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-159 (-531))))) (-5 *2 (-598 (-159 *4))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-895 (-159 (-531)))))) (-5 *2 (-598 (-276 (-895 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-159 (-531))))) (-5 *2 (-598 (-276 (-895 (-159 *4))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-276 (-388 (-895 (-159 (-531))))))) (-5 *2 (-598 (-598 (-276 (-895 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 (-159 (-531)))))) (-5 *2 (-598 (-598 (-276 (-895 (-159 *4)))))) (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795))))))
+(-10 -7 (-15 -3772 ((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-388 (-895 (-159 (-531))))) |#1|)) (-15 -3772 ((-598 (-598 (-276 (-895 (-159 |#1|))))) (-598 (-276 (-388 (-895 (-159 (-531)))))) |#1|)) (-15 -3772 ((-598 (-276 (-895 (-159 |#1|)))) (-388 (-895 (-159 (-531)))) |#1|)) (-15 -3772 ((-598 (-276 (-895 (-159 |#1|)))) (-276 (-388 (-895 (-159 (-531))))) |#1|)) (-15 -3694 ((-598 (-159 |#1|)) (-388 (-895 (-159 (-531)))) |#1|)) (-15 -3694 ((-598 (-598 (-159 |#1|))) (-598 (-388 (-895 (-159 (-531))))) (-598 (-1102)) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 33)) (-1317 (((-531) $) 55)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2796 (($ $) 110)) (-2367 (($ $) 82)) (-2218 (($ $) 71)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) 44)) (-2760 (((-110) $ $) NIL)) (-2343 (($ $) 80)) (-2198 (($ $) 69)) (-3459 (((-531) $) 64)) (-3709 (($ $ (-531)) 62)) (-2391 (($ $) NIL)) (-2241 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-1694 (($ $) 112)) (-3154 (((-3 (-531) "failed") $) 189) (((-3 (-388 (-531)) "failed") $) 185)) (-2523 (((-531) $) 187) (((-388 (-531)) $) 183)) (-3650 (($ $ $) NIL)) (-2743 (((-531) $ $) 102)) (-3622 (((-3 $ "failed") $) 114)) (-1525 (((-388 (-531)) $ (-721)) 190) (((-388 (-531)) $ (-721) (-721)) 182)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3963 (((-864)) 73) (((-864) (-864)) 98 (|has| $ (-6 -4264)))) (-1599 (((-110) $) 106)) (-1880 (($) 40)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL)) (-3707 (((-1189) (-721)) 152)) (-3776 (((-1189)) 157) (((-1189) (-721)) 158)) (-2883 (((-1189)) 159) (((-1189) (-721)) 160)) (-2254 (((-1189)) 155) (((-1189) (-721)) 156)) (-3617 (((-531) $) 58)) (-3481 (((-110) $) 104)) (-2249 (($ $ (-531)) NIL)) (-2748 (($ $) 48)) (-1899 (($ $) NIL)) (-2985 (((-110) $) 35)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL) (($) NIL (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-1241 (($ $ $) NIL) (($) 99 (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-2580 (((-531) $) 17)) (-3738 (($) 87) (($ $) 92)) (-1835 (($) 91) (($ $) 93)) (-2076 (($ $) 83)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 116)) (-3704 (((-864) (-531)) 43 (|has| $ (-6 -4264)))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) 53)) (-2943 (($ $) 109)) (-2947 (($ (-531) (-531)) 107) (($ (-531) (-531) (-864)) 108)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1790 (((-531) $) 19)) (-3696 (($) 94)) (-2798 (($ $) 79)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2890 (((-864)) 100) (((-864) (-864)) 101 (|has| $ (-6 -4264)))) (-3352 (($ $ (-721)) NIL) (($ $) 115)) (-3529 (((-864) (-531)) 47 (|has| $ (-6 -4264)))) (-2403 (($ $) NIL)) (-2253 (($ $) NIL)) (-2379 (($ $) NIL)) (-2229 (($ $) NIL)) (-2356 (($ $) 81)) (-2210 (($ $) 70)) (-3318 (((-360) $) 175) (((-208) $) 177) (((-835 (-360)) $) NIL) (((-1085) $) 162) (((-507) $) 173) (($ (-208)) 181)) (-2265 (((-806) $) 164) (($ (-531)) 186) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-531)) 186) (($ (-388 (-531))) NIL) (((-208) $) 178)) (-2284 (((-721)) NIL)) (-3831 (($ $) 111)) (-2138 (((-864)) 54) (((-864) (-864)) 66 (|has| $ (-6 -4264)))) (-3276 (((-864)) 103)) (-2442 (($ $) 86)) (-2292 (($ $) 46) (($ $ $) 52)) (-2587 (((-110) $ $) NIL)) (-2416 (($ $) 84)) (-2266 (($ $) 37)) (-2468 (($ $) NIL)) (-2318 (($ $) NIL)) (-2753 (($ $) NIL)) (-2331 (($ $) NIL)) (-2456 (($ $) NIL)) (-2305 (($ $) NIL)) (-2429 (($ $) 85)) (-2279 (($ $) 49)) (-1620 (($ $) 51)) (-3035 (($) 34 T CONST)) (-3050 (($) 38 T CONST)) (-4231 (((-1085) $) 27) (((-1085) $ (-110)) 29) (((-1189) (-772) $) 30) (((-1189) (-772) $ (-110)) 31)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 39)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 42)) (-2263 (($ $ $) 45) (($ $ (-531)) 41)) (-2250 (($ $) 36) (($ $ $) 50)) (-2237 (($ $ $) 61)) (** (($ $ (-864)) 67) (($ $ (-721)) NIL) (($ $ (-531)) 88) (($ $ (-388 (-531))) 125) (($ $ $) 117)) (* (($ (-864) $) 65) (($ (-721) $) NIL) (($ (-531) $) 68) (($ $ $) 60) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL)))
+(((-360) (-13 (-385) (-216) (-573 (-1085)) (-778) (-572 (-208)) (-1124) (-573 (-507)) (-10 -8 (-15 -2263 ($ $ (-531))) (-15 ** ($ $ $)) (-15 -2748 ($ $)) (-15 -2743 ((-531) $ $)) (-15 -3709 ($ $ (-531))) (-15 -1525 ((-388 (-531)) $ (-721))) (-15 -1525 ((-388 (-531)) $ (-721) (-721))) (-15 -3738 ($)) (-15 -1835 ($)) (-15 -3696 ($)) (-15 -2292 ($ $ $)) (-15 -3738 ($ $)) (-15 -1835 ($ $)) (-15 -3318 ($ (-208))) (-15 -2883 ((-1189))) (-15 -2883 ((-1189) (-721))) (-15 -2254 ((-1189))) (-15 -2254 ((-1189) (-721))) (-15 -3776 ((-1189))) (-15 -3776 ((-1189) (-721))) (-15 -3707 ((-1189) (-721))) (-6 -4264) (-6 -4256)))) (T -360))
+((** (*1 *1 *1 *1) (-5 *1 (-360))) (-2263 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-360)))) (-2748 (*1 *1 *1) (-5 *1 (-360))) (-2743 (*1 *2 *1 *1) (-12 (-5 *2 (-531)) (-5 *1 (-360)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-360)))) (-1525 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-360)))) (-1525 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-360)))) (-3738 (*1 *1) (-5 *1 (-360))) (-1835 (*1 *1) (-5 *1 (-360))) (-3696 (*1 *1) (-5 *1 (-360))) (-2292 (*1 *1 *1 *1) (-5 *1 (-360))) (-3738 (*1 *1 *1) (-5 *1 (-360))) (-1835 (*1 *1 *1) (-5 *1 (-360))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-360)))) (-2883 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))) (-2883 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) (-2254 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))) (-2254 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) (-3776 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))) (-3776 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))) (-3707 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))))
+(-13 (-385) (-216) (-573 (-1085)) (-778) (-572 (-208)) (-1124) (-573 (-507)) (-10 -8 (-15 -2263 ($ $ (-531))) (-15 ** ($ $ $)) (-15 -2748 ($ $)) (-15 -2743 ((-531) $ $)) (-15 -3709 ($ $ (-531))) (-15 -1525 ((-388 (-531)) $ (-721))) (-15 -1525 ((-388 (-531)) $ (-721) (-721))) (-15 -3738 ($)) (-15 -1835 ($)) (-15 -3696 ($)) (-15 -2292 ($ $ $)) (-15 -3738 ($ $)) (-15 -1835 ($ $)) (-15 -3318 ($ (-208))) (-15 -2883 ((-1189))) (-15 -2883 ((-1189) (-721))) (-15 -2254 ((-1189))) (-15 -2254 ((-1189) (-721))) (-15 -3776 ((-1189))) (-15 -3776 ((-1189) (-721))) (-15 -3707 ((-1189) (-721))) (-6 -4264) (-6 -4256)))
+((-1871 (((-598 (-276 (-895 |#1|))) (-276 (-388 (-895 (-531)))) |#1|) 46) (((-598 (-276 (-895 |#1|))) (-388 (-895 (-531))) |#1|) 45) (((-598 (-598 (-276 (-895 |#1|)))) (-598 (-276 (-388 (-895 (-531))))) |#1|) 42) (((-598 (-598 (-276 (-895 |#1|)))) (-598 (-388 (-895 (-531)))) |#1|) 36)) (-1615 (((-598 |#1|) (-388 (-895 (-531))) |#1|) 20) (((-598 (-598 |#1|)) (-598 (-388 (-895 (-531)))) (-598 (-1102)) |#1|) 30)))
+(((-361 |#1|) (-10 -7 (-15 -1871 ((-598 (-598 (-276 (-895 |#1|)))) (-598 (-388 (-895 (-531)))) |#1|)) (-15 -1871 ((-598 (-598 (-276 (-895 |#1|)))) (-598 (-276 (-388 (-895 (-531))))) |#1|)) (-15 -1871 ((-598 (-276 (-895 |#1|))) (-388 (-895 (-531))) |#1|)) (-15 -1871 ((-598 (-276 (-895 |#1|))) (-276 (-388 (-895 (-531)))) |#1|)) (-15 -1615 ((-598 (-598 |#1|)) (-598 (-388 (-895 (-531)))) (-598 (-1102)) |#1|)) (-15 -1615 ((-598 |#1|) (-388 (-895 (-531))) |#1|))) (-13 (-795) (-344))) (T -361))
+((-1615 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-531)))) (-5 *2 (-598 *4)) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) (-1615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-388 (-895 (-531))))) (-5 *4 (-598 (-1102))) (-5 *2 (-598 (-598 *5))) (-5 *1 (-361 *5)) (-4 *5 (-13 (-795) (-344))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-895 (-531))))) (-5 *2 (-598 (-276 (-895 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-531)))) (-5 *2 (-598 (-276 (-895 *4)))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-276 (-388 (-895 (-531)))))) (-5 *2 (-598 (-598 (-276 (-895 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 (-531))))) (-5 *2 (-598 (-598 (-276 (-895 *4))))) (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344))))))
+(-10 -7 (-15 -1871 ((-598 (-598 (-276 (-895 |#1|)))) (-598 (-388 (-895 (-531)))) |#1|)) (-15 -1871 ((-598 (-598 (-276 (-895 |#1|)))) (-598 (-276 (-388 (-895 (-531))))) |#1|)) (-15 -1871 ((-598 (-276 (-895 |#1|))) (-388 (-895 (-531))) |#1|)) (-15 -1871 ((-598 (-276 (-895 |#1|))) (-276 (-388 (-895 (-531)))) |#1|)) (-15 -1615 ((-598 (-598 |#1|)) (-598 (-388 (-895 (-531)))) (-598 (-1102)) |#1|)) (-15 -1615 ((-598 |#1|) (-388 (-895 (-531))) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) 26)) (-2523 ((|#2| $) 28)) (-2500 (($ $) NIL)) (-3517 (((-721) $) 10)) (-1230 (((-598 $) $) 20)) (-3380 (((-110) $) NIL)) (-4007 (($ |#2| |#1|) 18)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3226 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 14)) (-2462 ((|#2| $) 15)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 45) (($ |#2|) 27)) (-2708 (((-598 |#1|) $) 17)) (-3188 ((|#1| $ |#2|) 47)) (-3035 (($) 29 T CONST)) (-2400 (((-598 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 13)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#1| $) 32) (($ $ |#1|) 33) (($ |#1| |#2|) 35) (($ |#2| |#1|) 36)))
+(((-362 |#1| |#2|) (-13 (-363 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-986) (-797)) (T -362))
+((* (*1 *1 *2 *3) (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-986)) (-4 *2 (-797)))))
(-13 (-363 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#2| "failed") $) 44)) (-2585 ((|#2| $) 43)) (-2562 (($ $) 30)) (-3579 (((-719) $) 34)) (-2469 (((-597 $) $) 35)) (-3668 (((-110) $) 38)) (-3940 (($ |#2| |#1|) 39)) (-3217 (($ (-1 |#1| |#1|) $) 40)) (-3477 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2521 ((|#2| $) 33)) (-2533 ((|#1| $) 32)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ |#2|) 45)) (-3441 (((-597 |#1|) $) 36)) (-4085 ((|#1| $ |#2|) 41)) (-3080 (($) 18 T CONST)) (-1537 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
-(((-363 |#1| |#2|) (-133) (-984) (-1027)) (T -363))
-((* (*1 *1 *2 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027)))) (-4085 (*1 *2 *1 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)))) (-3940 (*1 *1 *2 *3) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-110)))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *3)))) (-2469 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *1)) (-4 *1 (-363 *3 *4)))) (-3579 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-719)))) (-2521 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984)))) (-3477 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027)))))
-(-13 (-109 |t#1| |t#1|) (-975 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4085 (|t#1| $ |t#2|)) (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (-15 -3940 ($ |t#2| |t#1|)) (-15 -3668 ((-110) $)) (-15 -1537 ((-597 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -3441 ((-597 |t#1|) $)) (-15 -2469 ((-597 $) $)) (-15 -3579 ((-719) $)) (-15 -2521 (|t#2| $)) (-15 -2533 (|t#1| $)) (-15 -3477 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2562 ($ $)) (IF (|has| |t#1| (-162)) (-6 (-666 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) |has| |#1| (-162)) ((-975 |#2|) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-637 (-647))) 14) (($ (-597 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 11)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#2| "failed") $) 44)) (-2523 ((|#2| $) 43)) (-2500 (($ $) 30)) (-3517 (((-721) $) 34)) (-1230 (((-598 $) $) 35)) (-3380 (((-110) $) 38)) (-4007 (($ |#2| |#1|) 39)) (-3261 (($ (-1 |#1| |#1|) $) 40)) (-3226 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 31)) (-2462 ((|#2| $) 33)) (-2475 ((|#1| $) 32)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ |#2|) 45)) (-2708 (((-598 |#1|) $) 36)) (-3188 ((|#1| $ |#2|) 41)) (-3035 (($) 18 T CONST)) (-2400 (((-598 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 37)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26) (($ |#1| |#2|) 42)))
+(((-363 |#1| |#2|) (-133) (-986) (-1030)) (T -363))
+((* (*1 *1 *2 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1030)))) (-3188 (*1 *2 *1 *3) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-986)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)))) (-4007 (*1 *1 *2 *3) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1030)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-110)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-598 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-598 *3)))) (-1230 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-598 *1)) (-4 *1 (-363 *3 *4)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-721)))) (-2462 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1030)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-986)))) (-3226 (*1 *2 *1) (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1030)))))
+(-13 (-109 |t#1| |t#1|) (-977 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -3188 (|t#1| $ |t#2|)) (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (-15 -4007 ($ |t#2| |t#1|)) (-15 -3380 ((-110) $)) (-15 -2400 ((-598 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -2708 ((-598 |t#1|) $)) (-15 -1230 ((-598 $) $)) (-15 -3517 ((-721) $)) (-15 -2462 (|t#2| $)) (-15 -2475 (|t#1| $)) (-15 -3226 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -2500 ($ $)) (IF (|has| |t#1| (-162)) (-6 (-668 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) |has| |#1| (-162)) ((-977 |#2|) . T) ((-992 |#1|) . T) ((-1030) . T))
+((-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-639 (-649))) 14) (($ (-598 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 11)))
(((-364) (-133)) (T -364))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-637 (-647))) (-4 *1 (-364)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-364)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-364)))))
-(-13 (-376) (-10 -8 (-15 -2366 ($ (-637 (-647)))) (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))))))
-(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-3139 (((-3 $ "failed") (-637 (-297 (-360)))) 21) (((-3 $ "failed") (-637 (-297 (-530)))) 19) (((-3 $ "failed") (-637 (-893 (-360)))) 17) (((-3 $ "failed") (-637 (-893 (-530)))) 15) (((-3 $ "failed") (-637 (-388 (-893 (-360))))) 13) (((-3 $ "failed") (-637 (-388 (-893 (-530))))) 11)) (-2585 (($ (-637 (-297 (-360)))) 22) (($ (-637 (-297 (-530)))) 20) (($ (-637 (-893 (-360)))) 18) (($ (-637 (-893 (-530)))) 16) (($ (-637 (-388 (-893 (-360))))) 14) (($ (-637 (-388 (-893 (-530))))) 12)) (-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 23)))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-639 (-649))) (-4 *1 (-364)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-364)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-364)))))
+(-13 (-376) (-10 -8 (-15 -2265 ($ (-639 (-649)))) (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))))))
+(((-572 (-806)) . T) ((-376) . T) ((-1138) . T))
+((-3154 (((-3 $ "failed") (-639 (-297 (-360)))) 21) (((-3 $ "failed") (-639 (-297 (-531)))) 19) (((-3 $ "failed") (-639 (-895 (-360)))) 17) (((-3 $ "failed") (-639 (-895 (-531)))) 15) (((-3 $ "failed") (-639 (-388 (-895 (-360))))) 13) (((-3 $ "failed") (-639 (-388 (-895 (-531))))) 11)) (-2523 (($ (-639 (-297 (-360)))) 22) (($ (-639 (-297 (-531)))) 20) (($ (-639 (-895 (-360)))) 18) (($ (-639 (-895 (-531)))) 16) (($ (-639 (-388 (-895 (-360))))) 14) (($ (-639 (-388 (-895 (-531))))) 12)) (-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-598 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 23)))
(((-365) (-133)) (T -365))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-365)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-365)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-297 (-360)))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-297 (-360)))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-297 (-530)))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-893 (-360)))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-893 (-360)))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-893 (-530)))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-893 (-530)))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-893 (-360))))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-388 (-893 (-360))))) (-4 *1 (-365)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-893 (-530))))) (-4 *1 (-365)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-637 (-388 (-893 (-530))))) (-4 *1 (-365)))))
-(-13 (-376) (-10 -8 (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2585 ($ (-637 (-297 (-360))))) (-15 -3139 ((-3 $ "failed") (-637 (-297 (-360))))) (-15 -2585 ($ (-637 (-297 (-530))))) (-15 -3139 ((-3 $ "failed") (-637 (-297 (-530))))) (-15 -2585 ($ (-637 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-637 (-893 (-360))))) (-15 -2585 ($ (-637 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-637 (-893 (-530))))) (-15 -2585 ($ (-637 (-388 (-893 (-360)))))) (-15 -3139 ((-3 $ "failed") (-637 (-388 (-893 (-360)))))) (-15 -2585 ($ (-637 (-388 (-893 (-530)))))) (-15 -3139 ((-3 $ "failed") (-637 (-388 (-893 (-530))))))))
-(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 28)) (-3080 (($) 12 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
-(((-366 |#1| |#2|) (-13 (-109 |#1| |#1|) (-486 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|))) (-984) (-795)) (T -366))
-NIL
-(-13 (-109 |#1| |#1|) (-486 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-666 |#1|)) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-3023 (((-719) $) 59)) (-2350 (($) NIL T CONST)) (-3575 (((-3 $ "failed") $ $) 61)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3686 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-2731 (((-110) $) 15)) (-3519 ((|#1| $ (-530)) NIL)) (-2033 (((-719) $ (-530)) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-2580 (($ (-1 |#1| |#1|) $) 38)) (-3999 (($ (-1 (-719) (-719)) $) 35)) (-2448 (((-3 $ "failed") $ $) 50)) (-1424 (((-1082) $) NIL)) (-2458 (($ $ $) 26)) (-2325 (($ $ $) 24)) (-2624 (((-1046) $) NIL)) (-3721 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $) 32)) (-3763 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2366 (((-804) $) 22) (($ |#1|) NIL)) (-3093 (($) 9 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 41)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) 63 (|has| |#1| (-795)))) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ |#1| (-719)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
-(((-367 |#1|) (-13 (-675) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -2325 ($ $ $)) (-15 -2458 ($ $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -3763 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3686 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3023 ((-719) $)) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $)) (-15 -2033 ((-719) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3999 ($ (-1 (-719) (-719)) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|))) (-1027)) (T -367))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2325 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-2448 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3763 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-3686 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-719))))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2033 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-367 *4)) (-4 *4 (-1027)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-367 *2)) (-4 *2 (-1027)))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-719) (-719))) (-5 *1 (-367 *3)) (-4 *3 (-1027)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-367 *3)))))
-(-13 (-675) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -2325 ($ $ $)) (-15 -2458 ($ $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -3763 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3686 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3023 ((-719) $)) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $)) (-15 -2033 ((-719) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3999 ($ (-1 (-719) (-719)) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 45)) (-2585 (((-530) $) 44)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-2508 (($ $ $) 52)) (-1817 (($ $ $) 51)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-530)) 46)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 49)) (-2284 (((-110) $ $) 48)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 50)) (-2272 (((-110) $ $) 47)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-365)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-365)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-297 (-360)))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-297 (-360)))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-297 (-531)))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-297 (-531)))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-895 (-360)))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-895 (-360)))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-895 (-531)))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-895 (-531)))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-388 (-895 (-360))))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-388 (-895 (-360))))) (-4 *1 (-365)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-639 (-388 (-895 (-531))))) (-4 *1 (-365)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-639 (-388 (-895 (-531))))) (-4 *1 (-365)))))
+(-13 (-376) (-10 -8 (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2523 ($ (-639 (-297 (-360))))) (-15 -3154 ((-3 $ "failed") (-639 (-297 (-360))))) (-15 -2523 ($ (-639 (-297 (-531))))) (-15 -3154 ((-3 $ "failed") (-639 (-297 (-531))))) (-15 -2523 ($ (-639 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-639 (-895 (-360))))) (-15 -2523 ($ (-639 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-639 (-895 (-531))))) (-15 -2523 ($ (-639 (-388 (-895 (-360)))))) (-15 -3154 ((-3 $ "failed") (-639 (-388 (-895 (-360)))))) (-15 -2523 ($ (-639 (-388 (-895 (-531)))))) (-15 -3154 ((-3 $ "failed") (-639 (-388 (-895 (-531))))))))
+(((-572 (-806)) . T) ((-376) . T) ((-1138) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 28)) (-3035 (($) 12 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#1| $) 16) (($ $ |#1|) 19)))
+(((-366 |#1| |#2|) (-13 (-109 |#1| |#1|) (-487 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-668 |#1|)) |%noBranch|))) (-986) (-797)) (T -366))
+NIL
+(-13 (-109 |#1| |#1|) (-487 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-162)) (-6 (-668 |#1|)) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-3006 (((-721) $) 59)) (-4082 (($) NIL T CONST)) (-2489 (((-3 $ "failed") $ $) 61)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1273 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 53)) (-3481 (((-110) $) 15)) (-3616 ((|#1| $ (-531)) NIL)) (-4173 (((-721) $ (-531)) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2483 (($ (-1 |#1| |#1|) $) 38)) (-3080 (($ (-1 (-721) (-721)) $) 35)) (-2931 (((-3 $ "failed") $ $) 50)) (-1521 (((-1085) $) NIL)) (-2236 (($ $ $) 26)) (-2592 (($ $ $) 24)) (-2529 (((-1049) $) NIL)) (-2721 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $) 32)) (-2100 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 56)) (-2265 (((-806) $) 22) (($ |#1|) NIL)) (-3050 (($) 9 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 41)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) 63 (|has| |#1| (-797)))) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ |#1| (-721)) 40)) (* (($ $ $) 47) (($ |#1| $) 30) (($ $ |#1|) 28)))
+(((-367 |#1|) (-13 (-677) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-721))) (-15 -2592 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -2931 ((-3 $ "failed") $ $)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -2100 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1273 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3006 ((-721) $)) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $)) (-15 -4173 ((-721) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -3080 ($ (-1 (-721) (-721)) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|))) (-1030)) (T -367))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2592 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2236 (*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2931 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-2100 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-1273 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3)))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-721))))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-721)) (-5 *1 (-367 *4)) (-4 *4 (-1030)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-367 *2)) (-4 *2 (-1030)))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-721) (-721))) (-5 *1 (-367 *3)) (-4 *3 (-1030)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-367 *3)))))
+(-13 (-677) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-721))) (-15 -2592 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -2931 ((-3 $ "failed") $ $)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -2100 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1273 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3006 ((-721) $)) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $)) (-15 -4173 ((-721) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -3080 ($ (-1 (-721) (-721)) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-797)) (-6 (-797)) |%noBranch|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 45)) (-2523 (((-531) $) 44)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-4103 (($ $ $) 52)) (-1241 (($ $ $) 51)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-531)) 46)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 49)) (-2184 (((-110) $ $) 48)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 50)) (-2174 (((-110) $ $) 47)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-368) (-133)) (T -368))
NIL
-(-13 (-522) (-795) (-975 (-530)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-975 (-530)) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1988 (((-110) $) 20)) (-1624 (((-110) $) 19)) (-3538 (($ (-1082) (-1082) (-1082)) 21)) (-3907 (((-1082) $) 16)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3100 (($ (-1082) (-1082) (-1082)) 14)) (-2724 (((-1082) $) 17)) (-3976 (((-110) $) 18)) (-4094 (((-1082) $) 15)) (-2366 (((-804) $) 12) (($ (-1082)) 13) (((-1082) $) 9)) (-2248 (((-110) $ $) 7)))
+(-13 (-523) (-797) (-977 (-531)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-797) . T) ((-977 (-531)) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-4136 (((-110) $) 20)) (-3408 (((-110) $) 19)) (-3010 (($ (-1085) (-1085) (-1085)) 21)) (-3955 (((-1085) $) 16)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3056 (($ (-1085) (-1085) (-1085)) 14)) (-3588 (((-1085) $) 17)) (-1888 (((-110) $) 18)) (-1626 (((-1085) $) 15)) (-2265 (((-806) $) 12) (($ (-1085)) 13) (((-1085) $) 9)) (-2148 (((-110) $ $) 7)))
(((-369) (-370)) (T -369))
NIL
(-370)
-((-2352 (((-110) $ $) 7)) (-1988 (((-110) $) 14)) (-1624 (((-110) $) 15)) (-3538 (($ (-1082) (-1082) (-1082)) 13)) (-3907 (((-1082) $) 18)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3100 (($ (-1082) (-1082) (-1082)) 20)) (-2724 (((-1082) $) 17)) (-3976 (((-110) $) 16)) (-4094 (((-1082) $) 19)) (-2366 (((-804) $) 11) (($ (-1082)) 22) (((-1082) $) 21)) (-2248 (((-110) $ $) 6)))
+((-2247 (((-110) $ $) 7)) (-4136 (((-110) $) 14)) (-3408 (((-110) $) 15)) (-3010 (($ (-1085) (-1085) (-1085)) 13)) (-3955 (((-1085) $) 18)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3056 (($ (-1085) (-1085) (-1085)) 20)) (-3588 (((-1085) $) 17)) (-1888 (((-110) $) 16)) (-1626 (((-1085) $) 19)) (-2265 (((-806) $) 11) (($ (-1085)) 22) (((-1085) $) 21)) (-2148 (((-110) $ $) 6)))
(((-370) (-133)) (T -370))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))) (-2366 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3100 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))) (-4094 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3907 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-2724 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))) (-3976 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-1624 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3538 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ($ (-1082))) (-15 -2366 ((-1082) $)) (-15 -3100 ($ (-1082) (-1082) (-1082))) (-15 -4094 ((-1082) $)) (-15 -3907 ((-1082) $)) (-15 -2724 ((-1082) $)) (-15 -3976 ((-110) $)) (-15 -1624 ((-110) $)) (-15 -1988 ((-110) $)) (-15 -3538 ($ (-1082) (-1082) (-1082)))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1322 (((-804) $) 50)) (-2350 (($) NIL T CONST)) (-2862 (($ $ (-862)) NIL)) (-1667 (($ $ (-862)) NIL)) (-4138 (($ $ (-862)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($ (-719)) 26)) (-2488 (((-719)) 17)) (-4213 (((-804) $) 52)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) NIL)) (-2346 (($ $ $ $) NIL)) (-3980 (($ $ $) NIL)) (-3080 (($) 20 T CONST)) (-2248 (((-110) $ $) 28)) (-2351 (($ $) 34) (($ $ $) 36)) (-2339 (($ $ $) 37)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
-(((-371 |#1| |#2| |#3|) (-13 (-693 |#3|) (-10 -8 (-15 -2488 ((-719))) (-15 -4213 ((-804) $)) (-15 -1322 ((-804) $)) (-15 -1974 ($ (-719))))) (-719) (-719) (-162)) (T -371))
-((-2488 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))) (-4213 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-162)))) (-1322 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-162)))) (-1974 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))))
-(-13 (-693 |#3|) (-10 -8 (-15 -2488 ((-719))) (-15 -4213 ((-804) $)) (-15 -1322 ((-804) $)) (-15 -1974 ($ (-719)))))
-((-2501 (((-1082)) 10)) (-2531 (((-1071 (-1082))) 28)) (-3156 (((-1186) (-1082)) 25) (((-1186) (-369)) 24)) (-3164 (((-1186)) 26)) (-2854 (((-1071 (-1082))) 27)))
-(((-372) (-10 -7 (-15 -2854 ((-1071 (-1082)))) (-15 -2531 ((-1071 (-1082)))) (-15 -3164 ((-1186))) (-15 -3156 ((-1186) (-369))) (-15 -3156 ((-1186) (-1082))) (-15 -2501 ((-1082))))) (T -372))
-((-2501 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-372)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-372)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-372)))) (-3164 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-372)))) (-2531 (*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))) (-2854 (*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
-(-10 -7 (-15 -2854 ((-1071 (-1082)))) (-15 -2531 ((-1071 (-1082)))) (-15 -3164 ((-1186))) (-15 -3156 ((-1186) (-369))) (-15 -3156 ((-1186) (-1082))) (-15 -2501 ((-1082))))
-((-2031 (((-719) (-317 |#1| |#2| |#3| |#4|)) 16)))
-(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2031 ((-719) (-317 |#1| |#2| |#3| |#4|)))) (-13 (-349) (-344)) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -373))
-((-2031 (*1 *2 *3) (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344))) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *7 (-323 *4 *5 *6)) (-5 *2 (-719)) (-5 *1 (-373 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2031 ((-719) (-317 |#1| |#2| |#3| |#4|))))
-((-2366 (((-375) |#1|) 11)))
-(((-374 |#1|) (-10 -7 (-15 -2366 ((-375) |#1|))) (-1027)) (T -374))
-((-2366 (*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-374 *3)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -2366 ((-375) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1464 (((-597 (-1082)) $ (-597 (-1082))) 38)) (-2387 (((-597 (-1082)) $ (-597 (-1082))) 39)) (-2998 (((-597 (-1082)) $ (-597 (-1082))) 40)) (-3897 (((-597 (-1082)) $) 35)) (-3538 (($) 23)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1752 (((-597 (-1082)) $) 36)) (-2484 (((-597 (-1082)) $) 37)) (-2388 (((-1186) $ (-530)) 33) (((-1186) $) 34)) (-3260 (($ (-804) (-530)) 30)) (-2366 (((-804) $) 42) (($ (-804)) 25)) (-2248 (((-110) $ $) NIL)))
-(((-375) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-804))) (-15 -3260 ($ (-804) (-530))) (-15 -2388 ((-1186) $ (-530))) (-15 -2388 ((-1186) $)) (-15 -2484 ((-597 (-1082)) $)) (-15 -1752 ((-597 (-1082)) $)) (-15 -3538 ($)) (-15 -3897 ((-597 (-1082)) $)) (-15 -2998 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -2387 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -1464 ((-597 (-1082)) $ (-597 (-1082))))))) (T -375))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-375)))) (-3260 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-375)))) (-2388 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-375)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-375)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-1752 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-3538 (*1 *1) (-5 *1 (-375))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-2998 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-2387 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))) (-1464 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ($ (-804))) (-15 -3260 ($ (-804) (-530))) (-15 -2388 ((-1186) $ (-530))) (-15 -2388 ((-1186) $)) (-15 -2484 ((-597 (-1082)) $)) (-15 -1752 ((-597 (-1082)) $)) (-15 -3538 ($)) (-15 -3897 ((-597 (-1082)) $)) (-15 -2998 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -2387 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -1464 ((-597 (-1082)) $ (-597 (-1082))))))
-((-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8)))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370)))) (-2265 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) (-3056 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) (-3955 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) (-3588 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))) (-1888 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))) (-3010 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ($ (-1085))) (-15 -2265 ((-1085) $)) (-15 -3056 ($ (-1085) (-1085) (-1085))) (-15 -1626 ((-1085) $)) (-15 -3955 ((-1085) $)) (-15 -3588 ((-1085) $)) (-15 -1888 ((-110) $)) (-15 -3408 ((-110) $)) (-15 -4136 ((-110) $)) (-15 -3010 ($ (-1085) (-1085) (-1085)))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3416 (((-806) $) 50)) (-4082 (($) NIL T CONST)) (-1666 (($ $ (-864)) NIL)) (-2083 (($ $ (-864)) NIL)) (-2585 (($ $ (-864)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($ (-721)) 26)) (-2190 (((-721)) 17)) (-3600 (((-806) $) 52)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) NIL)) (-2801 (($ $ $ $) NIL)) (-1605 (($ $ $) NIL)) (-3035 (($) 20 T CONST)) (-2148 (((-110) $ $) 28)) (-2250 (($ $) 34) (($ $ $) 36)) (-2237 (($ $ $) 37)) (** (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 38) (($ $ |#3|) NIL) (($ |#3| $) 33)))
+(((-371 |#1| |#2| |#3|) (-13 (-695 |#3|) (-10 -8 (-15 -2190 ((-721))) (-15 -3600 ((-806) $)) (-15 -3416 ((-806) $)) (-15 -1861 ($ (-721))))) (-721) (-721) (-162)) (T -371))
+((-2190 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))) (-3600 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-721)) (-14 *4 (-721)) (-4 *5 (-162)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-721)) (-14 *4 (-721)) (-4 *5 (-162)))) (-1861 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-162)))))
+(-13 (-695 |#3|) (-10 -8 (-15 -2190 ((-721))) (-15 -3600 ((-806) $)) (-15 -3416 ((-806) $)) (-15 -1861 ($ (-721)))))
+((-3306 (((-1085)) 10)) (-1427 (((-1074 (-1085))) 28)) (-3177 (((-1189) (-1085)) 25) (((-1189) (-369)) 24)) (-3194 (((-1189)) 26)) (-2649 (((-1074 (-1085))) 27)))
+(((-372) (-10 -7 (-15 -2649 ((-1074 (-1085)))) (-15 -1427 ((-1074 (-1085)))) (-15 -3194 ((-1189))) (-15 -3177 ((-1189) (-369))) (-15 -3177 ((-1189) (-1085))) (-15 -3306 ((-1085))))) (T -372))
+((-3306 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-372)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-372)))) (-3177 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1189)) (-5 *1 (-372)))) (-3194 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-372)))) (-1427 (*1 *2) (-12 (-5 *2 (-1074 (-1085))) (-5 *1 (-372)))) (-2649 (*1 *2) (-12 (-5 *2 (-1074 (-1085))) (-5 *1 (-372)))))
+(-10 -7 (-15 -2649 ((-1074 (-1085)))) (-15 -1427 ((-1074 (-1085)))) (-15 -3194 ((-1189))) (-15 -3177 ((-1189) (-369))) (-15 -3177 ((-1189) (-1085))) (-15 -3306 ((-1085))))
+((-3617 (((-721) (-317 |#1| |#2| |#3| |#4|)) 16)))
+(((-373 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3617 ((-721) (-317 |#1| |#2| |#3| |#4|)))) (-13 (-349) (-344)) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -373))
+((-3617 (*1 *2 *3) (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344))) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-4 *7 (-323 *4 *5 *6)) (-5 *2 (-721)) (-5 *1 (-373 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3617 ((-721) (-317 |#1| |#2| |#3| |#4|))))
+((-2265 (((-375) |#1|) 11)))
+(((-374 |#1|) (-10 -7 (-15 -2265 ((-375) |#1|))) (-1030)) (T -374))
+((-2265 (*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-374 *3)) (-4 *3 (-1030)))))
+(-10 -7 (-15 -2265 ((-375) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-2617 (((-598 (-1085)) $ (-598 (-1085))) 38)) (-3931 (((-598 (-1085)) $ (-598 (-1085))) 39)) (-3619 (((-598 (-1085)) $ (-598 (-1085))) 40)) (-1340 (((-598 (-1085)) $) 35)) (-3010 (($) 23)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1514 (((-598 (-1085)) $) 36)) (-3692 (((-598 (-1085)) $) 37)) (-2286 (((-1189) $ (-531)) 33) (((-1189) $) 34)) (-3318 (($ (-806) (-531)) 30)) (-2265 (((-806) $) 42) (($ (-806)) 25)) (-2148 (((-110) $ $) NIL)))
+(((-375) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-806))) (-15 -3318 ($ (-806) (-531))) (-15 -2286 ((-1189) $ (-531))) (-15 -2286 ((-1189) $)) (-15 -3692 ((-598 (-1085)) $)) (-15 -1514 ((-598 (-1085)) $)) (-15 -3010 ($)) (-15 -1340 ((-598 (-1085)) $)) (-15 -3619 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -3931 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -2617 ((-598 (-1085)) $ (-598 (-1085))))))) (T -375))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-375)))) (-3318 (*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-375)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-375)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-375)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-1514 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-3010 (*1 *1) (-5 *1 (-375))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-3619 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-3931 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))) (-2617 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ($ (-806))) (-15 -3318 ($ (-806) (-531))) (-15 -2286 ((-1189) $ (-531))) (-15 -2286 ((-1189) $)) (-15 -3692 ((-598 (-1085)) $)) (-15 -1514 ((-598 (-1085)) $)) (-15 -3010 ($)) (-15 -1340 ((-598 (-1085)) $)) (-15 -3619 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -3931 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -2617 ((-598 (-1085)) $ (-598 (-1085))))))
+((-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8)))
(((-376) (-133)) (T -376))
-((-3176 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-1186)))))
-(-13 (-1135) (-571 (-804)) (-10 -8 (-15 -3176 ((-1186) $))))
-(((-571 (-804)) . T) ((-1135) . T))
-((-3139 (((-3 $ "failed") (-297 (-360))) 21) (((-3 $ "failed") (-297 (-530))) 19) (((-3 $ "failed") (-893 (-360))) 17) (((-3 $ "failed") (-893 (-530))) 15) (((-3 $ "failed") (-388 (-893 (-360)))) 13) (((-3 $ "failed") (-388 (-893 (-530)))) 11)) (-2585 (($ (-297 (-360))) 22) (($ (-297 (-530))) 20) (($ (-893 (-360))) 18) (($ (-893 (-530))) 16) (($ (-388 (-893 (-360)))) 14) (($ (-388 (-893 (-530)))) 12)) (-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 23)))
+((-3206 (*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-1189)))))
+(-13 (-1138) (-572 (-806)) (-10 -8 (-15 -3206 ((-1189) $))))
+(((-572 (-806)) . T) ((-1138) . T))
+((-3154 (((-3 $ "failed") (-297 (-360))) 21) (((-3 $ "failed") (-297 (-531))) 19) (((-3 $ "failed") (-895 (-360))) 17) (((-3 $ "failed") (-895 (-531))) 15) (((-3 $ "failed") (-388 (-895 (-360)))) 13) (((-3 $ "failed") (-388 (-895 (-531)))) 11)) (-2523 (($ (-297 (-360))) 22) (($ (-297 (-531))) 20) (($ (-895 (-360))) 18) (($ (-895 (-531))) 16) (($ (-388 (-895 (-360)))) 14) (($ (-388 (-895 (-531)))) 12)) (-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-598 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 23)))
(((-377) (-133)) (T -377))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-377)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-377)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-530))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-360))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-360))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-530))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-360)))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-360)))) (-4 *1 (-377)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-530)))) (-4 *1 (-377)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-893 (-530)))) (-4 *1 (-377)))))
-(-13 (-376) (-10 -8 (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2585 ($ (-297 (-360)))) (-15 -3139 ((-3 $ "failed") (-297 (-360)))) (-15 -2585 ($ (-297 (-530)))) (-15 -3139 ((-3 $ "failed") (-297 (-530)))) (-15 -2585 ($ (-893 (-360)))) (-15 -3139 ((-3 $ "failed") (-893 (-360)))) (-15 -2585 ($ (-893 (-530)))) (-15 -3139 ((-3 $ "failed") (-893 (-530)))) (-15 -2585 ($ (-388 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-360))))) (-15 -2585 ($ (-388 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-388 (-893 (-530)))))))
-(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-2784 (((-597 (-1082)) (-597 (-1082))) 9)) (-3176 (((-1186) (-369)) 27)) (-4044 (((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099))) 60) (((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099)) 35) (((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099))) 34)))
-(((-378) (-10 -7 (-15 -4044 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)))) (-15 -4044 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099))) (-15 -4044 ((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099)))) (-15 -3176 ((-1186) (-369))) (-15 -2784 ((-597 (-1082)) (-597 (-1082)))))) (T -378))
-((-2784 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-378)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-378)))) (-4044 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *5 (-1102)) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))) (-4044 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099))))) (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))) (-4044 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099))))) (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-378)))))
-(-10 -7 (-15 -4044 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)))) (-15 -4044 ((-1031) (-1099) (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099)))) (-597 (-597 (-3 (|:| |array| (-597 (-1099))) (|:| |scalar| (-1099))))) (-597 (-1099)) (-1099))) (-15 -4044 ((-1031) (-1099) (-597 (-1099)) (-1102) (-597 (-1099)))) (-15 -3176 ((-1186) (-369))) (-15 -2784 ((-597 (-1082)) (-597 (-1082)))))
-((-3176 (((-1186) $) 38)) (-2366 (((-804) $) 98) (($ (-311)) 100) (($ (-597 (-311))) 99) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 97) (($ (-297 (-649))) 54) (($ (-297 (-647))) 73) (($ (-297 (-642))) 86) (($ (-276 (-297 (-649)))) 68) (($ (-276 (-297 (-647)))) 81) (($ (-276 (-297 (-642)))) 94) (($ (-297 (-530))) 104) (($ (-297 (-360))) 117) (($ (-297 (-159 (-360)))) 130) (($ (-276 (-297 (-530)))) 112) (($ (-276 (-297 (-360)))) 125) (($ (-276 (-297 (-159 (-360))))) 138)))
-(((-379 |#1| |#2| |#3| |#4|) (-13 (-376) (-10 -8 (-15 -2366 ($ (-311))) (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2366 ($ (-297 (-649)))) (-15 -2366 ($ (-297 (-647)))) (-15 -2366 ($ (-297 (-642)))) (-15 -2366 ($ (-276 (-297 (-649))))) (-15 -2366 ($ (-276 (-297 (-647))))) (-15 -2366 ($ (-276 (-297 (-642))))) (-15 -2366 ($ (-297 (-530)))) (-15 -2366 ($ (-297 (-360)))) (-15 -2366 ($ (-297 (-159 (-360))))) (-15 -2366 ($ (-276 (-297 (-530))))) (-15 -2366 ($ (-276 (-297 (-360))))) (-15 -2366 ($ (-276 (-297 (-159 (-360)))))))) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-1099)) (-1103)) (T -379))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-649)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-647)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-642)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-530)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-159 (-360))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-14 *5 (-597 (-1099))) (-14 *6 (-1103)))))
-(-13 (-376) (-10 -8 (-15 -2366 ($ (-311))) (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2366 ($ (-297 (-649)))) (-15 -2366 ($ (-297 (-647)))) (-15 -2366 ($ (-297 (-642)))) (-15 -2366 ($ (-276 (-297 (-649))))) (-15 -2366 ($ (-276 (-297 (-647))))) (-15 -2366 ($ (-276 (-297 (-642))))) (-15 -2366 ($ (-297 (-530)))) (-15 -2366 ($ (-297 (-360)))) (-15 -2366 ($ (-297 (-159 (-360))))) (-15 -2366 ($ (-276 (-297 (-530))))) (-15 -2366 ($ (-276 (-297 (-360))))) (-15 -2366 ($ (-276 (-297 (-159 (-360))))))))
-((-2352 (((-110) $ $) NIL)) (-2605 ((|#2| $) 36)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2098 (($ (-388 |#2|)) 85)) (-1423 (((-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))) $) 37)) (-3289 (($ $) 32) (($ $ (-719)) 34)) (-3260 (((-388 |#2|) $) 46)) (-2377 (($ (-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|)))) 31)) (-2366 (((-804) $) 120)) (-3340 (($ $) 33) (($ $ (-719)) 35)) (-2248 (((-110) $ $) NIL)) (-2339 (($ |#2| $) 39)))
-(((-380 |#1| |#2|) (-13 (-1027) (-572 (-388 |#2|)) (-10 -8 (-15 -2339 ($ |#2| $)) (-15 -2098 ($ (-388 |#2|))) (-15 -2605 (|#2| $)) (-15 -1423 ((-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))) $)) (-15 -2377 ($ (-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))))) (-15 -3289 ($ $)) (-15 -3340 ($ $)) (-15 -3289 ($ $ (-719))) (-15 -3340 ($ $ (-719))))) (-13 (-344) (-140)) (-1157 |#1|)) (T -380))
-((-2339 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2)) (-4 *2 (-1157 *3)))) (-2098 (*1 *1 *2) (-12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-2605 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-380 *3 *2)) (-4 *3 (-13 (-344) (-140))))) (-1423 (*1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *2 (-597 (-2 (|:| -3194 (-719)) (|:| -3705 *4) (|:| |num| *4)))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3194 (-719)) (|:| -3705 *4) (|:| |num| *4)))) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-3289 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1157 *2)))) (-3340 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1157 *2)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))))
-(-13 (-1027) (-572 (-388 |#2|)) (-10 -8 (-15 -2339 ($ |#2| $)) (-15 -2098 ($ (-388 |#2|))) (-15 -2605 (|#2| $)) (-15 -1423 ((-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))) $)) (-15 -2377 ($ (-597 (-2 (|:| -3194 (-719)) (|:| -3705 |#2|) (|:| |num| |#2|))))) (-15 -3289 ($ $)) (-15 -3340 ($ $)) (-15 -3289 ($ $ (-719))) (-15 -3340 ($ $ (-719)))))
-((-2352 (((-110) $ $) 9 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 15 (|has| |#1| (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 14 (|has| |#1| (-827 (-530))))) (-1424 (((-1082) $) 13 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2624 (((-1046) $) 12 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2366 (((-804) $) 11 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))) (-2248 (((-110) $ $) 10 (-1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))))))
-(((-381 |#1|) (-133) (-1135)) (T -381))
-NIL
-(-13 (-1135) (-10 -7 (IF (|has| |t#1| (-827 (-530))) (-6 (-827 (-530))) |%noBranch|) (IF (|has| |t#1| (-827 (-360))) (-6 (-827 (-360))) |%noBranch|)))
-(((-99) -1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-571 (-804)) -1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-1027) -1461 (|has| |#1| (-827 (-530))) (|has| |#1| (-827 (-360)))) ((-1135) . T))
-((-3948 (($ $) 10) (($ $ (-719)) 11)))
-(((-382 |#1|) (-10 -8 (-15 -3948 (|#1| |#1| (-719))) (-15 -3948 (|#1| |#1|))) (-383)) (T -382))
-NIL
-(-10 -8 (-15 -3948 (|#1| |#1| (-719))) (-15 -3948 (|#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3948 (($ $) 76) (($ $ (-719)) 75)) (-3295 (((-110) $) 68)) (-2031 (((-781 (-862)) $) 78)) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-1823 (((-3 (-719) "failed") $ $) 77)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63)) (-3251 (((-3 $ "failed") $) 79)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-377)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-377)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-531))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-360))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-360))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-531))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-360)))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-895 (-360)))) (-4 *1 (-377)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-531)))) (-4 *1 (-377)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 (-895 (-531)))) (-4 *1 (-377)))))
+(-13 (-376) (-10 -8 (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2523 ($ (-297 (-360)))) (-15 -3154 ((-3 $ "failed") (-297 (-360)))) (-15 -2523 ($ (-297 (-531)))) (-15 -3154 ((-3 $ "failed") (-297 (-531)))) (-15 -2523 ($ (-895 (-360)))) (-15 -3154 ((-3 $ "failed") (-895 (-360)))) (-15 -2523 ($ (-895 (-531)))) (-15 -3154 ((-3 $ "failed") (-895 (-531)))) (-15 -2523 ($ (-388 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-360))))) (-15 -2523 ($ (-388 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-388 (-895 (-531)))))))
+(((-572 (-806)) . T) ((-376) . T) ((-1138) . T))
+((-2185 (((-598 (-1085)) (-598 (-1085))) 9)) (-3206 (((-1189) (-369)) 27)) (-3573 (((-1034) (-1102) (-598 (-1102)) (-1105) (-598 (-1102))) 60) (((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)) (-1102)) 35) (((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102))) 34)))
+(((-378) (-10 -7 (-15 -3573 ((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)))) (-15 -3573 ((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)) (-1102))) (-15 -3573 ((-1034) (-1102) (-598 (-1102)) (-1105) (-598 (-1102)))) (-15 -3206 ((-1189) (-369))) (-15 -2185 ((-598 (-1085)) (-598 (-1085)))))) (T -378))
+((-2185 (*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-378)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1189)) (-5 *1 (-378)))) (-3573 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-598 (-1102))) (-5 *5 (-1105)) (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-378)))) (-3573 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-598 (-598 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-598 (-3 (|:| |array| (-598 *3)) (|:| |scalar| (-1102))))) (-5 *6 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-378)))) (-3573 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-598 (-598 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-598 (-3 (|:| |array| (-598 *3)) (|:| |scalar| (-1102))))) (-5 *6 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-378)))))
+(-10 -7 (-15 -3573 ((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)))) (-15 -3573 ((-1034) (-1102) (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102)))) (-598 (-598 (-3 (|:| |array| (-598 (-1102))) (|:| |scalar| (-1102))))) (-598 (-1102)) (-1102))) (-15 -3573 ((-1034) (-1102) (-598 (-1102)) (-1105) (-598 (-1102)))) (-15 -3206 ((-1189) (-369))) (-15 -2185 ((-598 (-1085)) (-598 (-1085)))))
+((-3206 (((-1189) $) 38)) (-2265 (((-806) $) 98) (($ (-311)) 100) (($ (-598 (-311))) 99) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 97) (($ (-297 (-651))) 54) (($ (-297 (-649))) 73) (($ (-297 (-644))) 86) (($ (-276 (-297 (-651)))) 68) (($ (-276 (-297 (-649)))) 81) (($ (-276 (-297 (-644)))) 94) (($ (-297 (-531))) 104) (($ (-297 (-360))) 117) (($ (-297 (-159 (-360)))) 130) (($ (-276 (-297 (-531)))) 112) (($ (-276 (-297 (-360)))) 125) (($ (-276 (-297 (-159 (-360))))) 138)))
+(((-379 |#1| |#2| |#3| |#4|) (-13 (-376) (-10 -8 (-15 -2265 ($ (-311))) (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2265 ($ (-297 (-651)))) (-15 -2265 ($ (-297 (-649)))) (-15 -2265 ($ (-297 (-644)))) (-15 -2265 ($ (-276 (-297 (-651))))) (-15 -2265 ($ (-276 (-297 (-649))))) (-15 -2265 ($ (-276 (-297 (-644))))) (-15 -2265 ($ (-297 (-531)))) (-15 -2265 ($ (-297 (-360)))) (-15 -2265 ($ (-297 (-159 (-360))))) (-15 -2265 ($ (-276 (-297 (-531))))) (-15 -2265 ($ (-276 (-297 (-360))))) (-15 -2265 ($ (-276 (-297 (-159 (-360)))))))) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-1102)) (-1106)) (T -379))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-651))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-644))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-651)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-649)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-644)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-531)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-360)))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-276 (-297 (-159 (-360))))) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-14 *5 (-598 (-1102))) (-14 *6 (-1106)))))
+(-13 (-376) (-10 -8 (-15 -2265 ($ (-311))) (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2265 ($ (-297 (-651)))) (-15 -2265 ($ (-297 (-649)))) (-15 -2265 ($ (-297 (-644)))) (-15 -2265 ($ (-276 (-297 (-651))))) (-15 -2265 ($ (-276 (-297 (-649))))) (-15 -2265 ($ (-276 (-297 (-644))))) (-15 -2265 ($ (-297 (-531)))) (-15 -2265 ($ (-297 (-360)))) (-15 -2265 ($ (-297 (-159 (-360))))) (-15 -2265 ($ (-276 (-297 (-531))))) (-15 -2265 ($ (-276 (-297 (-360))))) (-15 -2265 ($ (-276 (-297 (-159 (-360))))))))
+((-2247 (((-110) $ $) NIL)) (-1994 ((|#2| $) 36)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1642 (($ (-388 |#2|)) 85)) (-1764 (((-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))) $) 37)) (-3352 (($ $) 32) (($ $ (-721)) 34)) (-3318 (((-388 |#2|) $) 46)) (-2274 (($ (-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|)))) 31)) (-2265 (((-806) $) 120)) (-4020 (($ $) 33) (($ $ (-721)) 35)) (-2148 (((-110) $ $) NIL)) (-2237 (($ |#2| $) 39)))
+(((-380 |#1| |#2|) (-13 (-1030) (-573 (-388 |#2|)) (-10 -8 (-15 -2237 ($ |#2| $)) (-15 -1642 ($ (-388 |#2|))) (-15 -1994 (|#2| $)) (-15 -1764 ((-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))) $)) (-15 -2274 ($ (-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))))) (-15 -3352 ($ $)) (-15 -4020 ($ $)) (-15 -3352 ($ $ (-721))) (-15 -4020 ($ $ (-721))))) (-13 (-344) (-140)) (-1160 |#1|)) (T -380))
+((-2237 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2)) (-4 *2 (-1160 *3)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-1994 (*1 *2 *1) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-380 *3 *2)) (-4 *3 (-13 (-344) (-140))))) (-1764 (*1 *2 *1) (-12 (-4 *3 (-13 (-344) (-140))) (-5 *2 (-598 (-2 (|:| -1790 (-721)) (|:| -3840 *4) (|:| |num| *4)))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1160 *3)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -1790 (-721)) (|:| -3840 *4) (|:| |num| *4)))) (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)))) (-3352 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1160 *2)))) (-4020 (*1 *1 *1) (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3)) (-4 *3 (-1160 *2)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1160 *3)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4)) (-4 *4 (-1160 *3)))))
+(-13 (-1030) (-573 (-388 |#2|)) (-10 -8 (-15 -2237 ($ |#2| $)) (-15 -1642 ($ (-388 |#2|))) (-15 -1994 (|#2| $)) (-15 -1764 ((-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))) $)) (-15 -2274 ($ (-598 (-2 (|:| -1790 (-721)) (|:| -3840 |#2|) (|:| |num| |#2|))))) (-15 -3352 ($ $)) (-15 -4020 ($ $)) (-15 -3352 ($ $ (-721))) (-15 -4020 ($ $ (-721)))))
+((-2247 (((-110) $ $) 9 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 15 (|has| |#1| (-829 (-360)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 14 (|has| |#1| (-829 (-531))))) (-1521 (((-1085) $) 13 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))) (-2529 (((-1049) $) 12 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))) (-2265 (((-806) $) 11 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))) (-2148 (((-110) $ $) 10 (-1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))))))
+(((-381 |#1|) (-133) (-1138)) (T -381))
+NIL
+(-13 (-1138) (-10 -7 (IF (|has| |t#1| (-829 (-531))) (-6 (-829 (-531))) |%noBranch|) (IF (|has| |t#1| (-829 (-360))) (-6 (-829 (-360))) |%noBranch|)))
+(((-99) -1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))) ((-572 (-806)) -1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-1030) -1435 (|has| |#1| (-829 (-531))) (|has| |#1| (-829 (-360)))) ((-1138) . T))
+((-3493 (($ $) 10) (($ $ (-721)) 11)))
+(((-382 |#1|) (-10 -8 (-15 -3493 (|#1| |#1| (-721))) (-15 -3493 (|#1| |#1|))) (-383)) (T -382))
+NIL
+(-10 -8 (-15 -3493 (|#1| |#1| (-721))) (-15 -3493 (|#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3493 (($ $) 76) (($ $ (-721)) 75)) (-2534 (((-110) $) 68)) (-3617 (((-783 (-864)) $) 78)) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2350 (((-3 (-721) "failed") $ $) 77)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63)) (-2750 (((-3 $ "failed") $) 79)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64)))
(((-383) (-133)) (T -383))
-((-2031 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-781 (-862))))) (-1823 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-719)))) (-3948 (*1 *1 *1) (-4 *1 (-383))) (-3948 (*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-719)))))
-(-13 (-344) (-138) (-10 -8 (-15 -2031 ((-781 (-862)) $)) (-15 -1823 ((-3 (-719) "failed") $ $)) (-15 -3948 ($ $)) (-15 -3948 ($ $ (-719)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-3018 (($ (-530) (-530)) 11) (($ (-530) (-530) (-862)) NIL)) (-2513 (((-862)) 16) (((-862) (-862)) NIL)))
-(((-384 |#1|) (-10 -8 (-15 -2513 ((-862) (-862))) (-15 -2513 ((-862))) (-15 -3018 (|#1| (-530) (-530) (-862))) (-15 -3018 (|#1| (-530) (-530)))) (-385)) (T -384))
-((-2513 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385)))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385)))))
-(-10 -8 (-15 -2513 ((-862) (-862))) (-15 -2513 ((-862))) (-15 -3018 (|#1| (-530) (-530) (-862))) (-15 -3018 (|#1| (-530) (-530))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1612 (((-530) $) 86)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1951 (($ $) 84)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-2625 (($ $) 94)) (-1426 (((-110) $ $) 57)) (-1867 (((-530) $) 111)) (-2350 (($) 17 T CONST)) (-2963 (($ $) 83)) (-3139 (((-3 (-530) "failed") $) 99) (((-3 (-388 (-530)) "failed") $) 96)) (-2585 (((-530) $) 98) (((-388 (-530)) $) 95)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2582 (((-862)) 127) (((-862) (-862)) 124 (|has| $ (-6 -4260)))) (-2514 (((-110) $) 109)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 90)) (-2031 (((-530) $) 133)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 93)) (-2376 (($ $) 89)) (-2166 (((-110) $) 110)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2508 (($ $ $) 108) (($) 121 (-12 (-3676 (|has| $ (-6 -4260))) (-3676 (|has| $ (-6 -4252)))))) (-1817 (($ $ $) 107) (($) 120 (-12 (-3676 (|has| $ (-6 -4260))) (-3676 (|has| $ (-6 -4252)))))) (-3208 (((-530) $) 130)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2887 (((-862) (-530)) 123 (|has| $ (-6 -4260)))) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-1979 (($ $) 85)) (-3175 (($ $) 87)) (-3018 (($ (-530) (-530)) 135) (($ (-530) (-530) (-862)) 134)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-3194 (((-530) $) 131)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2513 (((-862)) 128) (((-862) (-862)) 125 (|has| $ (-6 -4260)))) (-1764 (((-862) (-530)) 122 (|has| $ (-6 -4260)))) (-3260 (((-360) $) 102) (((-208) $) 101) (((-833 (-360)) $) 91)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ (-530)) 100) (($ (-388 (-530))) 97)) (-3300 (((-719)) 28)) (-2748 (($ $) 88)) (-1711 (((-862)) 129) (((-862) (-862)) 126 (|has| $ (-6 -4260)))) (-1510 (((-862)) 132)) (-3944 (((-110) $ $) 37)) (-3934 (($ $) 112)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 105)) (-2284 (((-110) $ $) 104)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 106)) (-2272 (((-110) $ $) 103)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66) (($ $ (-388 (-530))) 92)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
+((-3617 (*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-783 (-864))))) (-2350 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-721)))) (-3493 (*1 *1 *1) (-4 *1 (-383))) (-3493 (*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-721)))))
+(-13 (-344) (-138) (-10 -8 (-15 -3617 ((-783 (-864)) $)) (-15 -2350 ((-3 (-721) "failed") $ $)) (-15 -3493 ($ $)) (-15 -3493 ($ $ (-721)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-138) . T) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T))
+((-2947 (($ (-531) (-531)) 11) (($ (-531) (-531) (-864)) NIL)) (-2890 (((-864)) 16) (((-864) (-864)) NIL)))
+(((-384 |#1|) (-10 -8 (-15 -2890 ((-864) (-864))) (-15 -2890 ((-864))) (-15 -2947 (|#1| (-531) (-531) (-864))) (-15 -2947 (|#1| (-531) (-531)))) (-385)) (T -384))
+((-2890 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-384 *3)) (-4 *3 (-385)))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-384 *3)) (-4 *3 (-385)))))
+(-10 -8 (-15 -2890 ((-864) (-864))) (-15 -2890 ((-864))) (-15 -2947 (|#1| (-531) (-531) (-864))) (-15 -2947 (|#1| (-531) (-531))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1317 (((-531) $) 86)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2796 (($ $) 84)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2563 (($ $) 94)) (-2760 (((-110) $ $) 57)) (-3459 (((-531) $) 111)) (-4082 (($) 17 T CONST)) (-1694 (($ $) 83)) (-3154 (((-3 (-531) "failed") $) 99) (((-3 (-388 (-531)) "failed") $) 96)) (-2523 (((-531) $) 98) (((-388 (-531)) $) 95)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-3963 (((-864)) 127) (((-864) (-864)) 124 (|has| $ (-6 -4264)))) (-1599 (((-110) $) 109)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 90)) (-3617 (((-531) $) 133)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 93)) (-1899 (($ $) 89)) (-2985 (((-110) $) 110)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-4103 (($ $ $) 108) (($) 121 (-12 (-3745 (|has| $ (-6 -4264))) (-3745 (|has| $ (-6 -4256)))))) (-1241 (($ $ $) 107) (($) 120 (-12 (-3745 (|has| $ (-6 -4264))) (-3745 (|has| $ (-6 -4256)))))) (-2580 (((-531) $) 130)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3704 (((-864) (-531)) 123 (|has| $ (-6 -4264)))) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2322 (($ $) 85)) (-2943 (($ $) 87)) (-2947 (($ (-531) (-531)) 135) (($ (-531) (-531) (-864)) 134)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-1790 (((-531) $) 131)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2890 (((-864)) 128) (((-864) (-864)) 125 (|has| $ (-6 -4264)))) (-3529 (((-864) (-531)) 122 (|has| $ (-6 -4264)))) (-3318 (((-360) $) 102) (((-208) $) 101) (((-835 (-360)) $) 91)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ (-531)) 100) (($ (-388 (-531))) 97)) (-2284 (((-721)) 28)) (-3831 (($ $) 88)) (-2138 (((-864)) 129) (((-864) (-864)) 126 (|has| $ (-6 -4264)))) (-3276 (((-864)) 132)) (-2587 (((-110) $ $) 37)) (-1620 (($ $) 112)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 105)) (-2184 (((-110) $ $) 104)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 106)) (-2174 (((-110) $ $) 103)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66) (($ $ (-388 (-531))) 92)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64)))
(((-385) (-133)) (T -385))
-((-3018 (*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-385)))) (-3018 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-4 *1 (-385)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-1510 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-3194 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-3208 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530)))) (-1711 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-2513 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-2582 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) (-1711 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-2513 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-2582 (*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385)))) (-2887 (*1 *2 *3) (-12 (-5 *3 (-530)) (|has| *1 (-6 -4260)) (-4 *1 (-385)) (-5 *2 (-862)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-530)) (|has| *1 (-6 -4260)) (-4 *1 (-385)) (-5 *2 (-862)))) (-2508 (*1 *1) (-12 (-4 *1 (-385)) (-3676 (|has| *1 (-6 -4260))) (-3676 (|has| *1 (-6 -4252))))) (-1817 (*1 *1) (-12 (-4 *1 (-385)) (-3676 (|has| *1 (-6 -4260))) (-3676 (|has| *1 (-6 -4252))))))
-(-13 (-993) (-10 -8 (-6 -4136) (-15 -3018 ($ (-530) (-530))) (-15 -3018 ($ (-530) (-530) (-862))) (-15 -2031 ((-530) $)) (-15 -1510 ((-862))) (-15 -3194 ((-530) $)) (-15 -3208 ((-530) $)) (-15 -1711 ((-862))) (-15 -2513 ((-862))) (-15 -2582 ((-862))) (IF (|has| $ (-6 -4260)) (PROGN (-15 -1711 ((-862) (-862))) (-15 -2513 ((-862) (-862))) (-15 -2582 ((-862) (-862))) (-15 -2887 ((-862) (-530))) (-15 -1764 ((-862) (-530)))) |%noBranch|) (IF (|has| $ (-6 -4252)) |%noBranch| (IF (|has| $ (-6 -4260)) |%noBranch| (PROGN (-15 -2508 ($)) (-15 -1817 ($)))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-360)) . T) ((-572 (-833 (-360))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-793) . T) ((-795) . T) ((-827 (-360)) . T) ((-861) . T) ((-941) . T) ((-960) . T) ((-993) . T) ((-975 (-388 (-530))) . T) ((-975 (-530)) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-3217 (((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)) 20)))
-(((-386 |#1| |#2|) (-10 -7 (-15 -3217 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) (-522) (-522)) (T -386))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-5 *2 (-399 *6)) (-5 *1 (-386 *5 *6)))))
-(-10 -7 (-15 -3217 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|))))
-((-3217 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 13)))
-(((-387 |#1| |#2|) (-10 -7 (-15 -3217 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-522) (-522)) (T -387))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-5 *2 (-388 *6)) (-5 *1 (-387 *5 *6)))))
-(-10 -7 (-15 -3217 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 13)) (-1612 ((|#1| $) 21 (|has| |#1| (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| |#1| (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 17) (((-3 (-1099) "failed") $) NIL (|has| |#1| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 70 (|has| |#1| (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530))))) (-2585 ((|#1| $) 15) (((-1099) $) NIL (|has| |#1| (-975 (-1099)))) (((-388 (-530)) $) 67 (|has| |#1| (-975 (-530)))) (((-530) $) NIL (|has| |#1| (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) 50)) (-1364 (($) NIL (|has| |#1| (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| |#1| (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#1| (-827 (-360))))) (-2731 (((-110) $) 64)) (-4127 (($ $) NIL)) (-1918 ((|#1| $) 71)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2166 (((-110) $) NIL (|has| |#1| (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 97)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| |#1| (-289)))) (-3175 ((|#1| $) 28 (|has| |#1| (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 135 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 131 (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-2356 (((-719) $) NIL)) (-1902 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-1269 (($ $) NIL)) (-1928 ((|#1| $) 73)) (-3260 (((-833 (-530)) $) NIL (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#1| (-572 (-833 (-360))))) (((-506) $) NIL (|has| |#1| (-572 (-506)))) (((-360) $) NIL (|has| |#1| (-960))) (((-208) $) NIL (|has| |#1| (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 115 (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 10) (($ (-1099)) NIL (|has| |#1| (-975 (-1099))))) (-3251 (((-3 $ "failed") $) 99 (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 100)) (-2748 ((|#1| $) 26 (|has| |#1| (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| |#1| (-768)))) (-3080 (($) 22 T CONST)) (-3093 (($) 8 T CONST)) (-3987 (((-1082) $) 43 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1082) $ (-110)) 44 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1186) (-770) $) 45 (-12 (|has| |#1| (-515)) (|has| |#1| (-776)))) (((-1186) (-770) $ (-110)) 46 (-12 (|has| |#1| (-515)) (|has| |#1| (-776))))) (-3340 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 56)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) 24 (|has| |#1| (-795)))) (-2364 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2351 (($ $) 25) (($ $ $) 55)) (-2339 (($ $ $) 53)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 125)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 60) (($ $ $) 57) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
-(((-388 |#1|) (-13 (-932 |#1|) (-10 -7 (IF (|has| |#1| (-515)) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4267)) (-6 -4256) |%noBranch|) |%noBranch|) |%noBranch|))) (-522)) (T -388))
-NIL
-(-13 (-932 |#1|) (-10 -7 (IF (|has| |#1| (-515)) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4256)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4267)) (-6 -4256) |%noBranch|) |%noBranch|) |%noBranch|)))
-((-1863 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 18)) (-1574 (($ (-1181 |#2|) (-1181 $)) NIL) (($ (-1181 |#2|)) 24)) (-1984 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 38)) (-1359 ((|#3| $) 60)) (-3060 ((|#2| (-1181 $)) NIL) ((|#2|) 20)) (-2328 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 22) (((-637 |#2|) (-1181 $)) 36)) (-3260 (((-1181 |#2|) $) 11) (($ (-1181 |#2|)) 13)) (-1814 ((|#3| $) 52)))
-(((-389 |#1| |#2| |#3|) (-10 -8 (-15 -1984 ((-637 |#2|) |#1|)) (-15 -3060 (|#2|)) (-15 -1863 ((-637 |#2|))) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -1359 (|#3| |#1|)) (-15 -1814 (|#3| |#1|)) (-15 -1863 ((-637 |#2|) (-1181 |#1|))) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1984 ((-637 |#2|) |#1| (-1181 |#1|)))) (-390 |#2| |#3|) (-162) (-1157 |#2|)) (T -389))
-((-1863 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)) (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5)))) (-3060 (*1 *2) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4)) (-4 *3 (-390 *2 *4)))))
-(-10 -8 (-15 -1984 ((-637 |#2|) |#1|)) (-15 -3060 (|#2|)) (-15 -1863 ((-637 |#2|))) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -1359 (|#3| |#1|)) (-15 -1814 (|#3| |#1|)) (-15 -1863 ((-637 |#2|) (-1181 |#1|))) (-15 -3060 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -1984 ((-637 |#2|) |#1| (-1181 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1863 (((-637 |#1|) (-1181 $)) 44) (((-637 |#1|)) 59)) (-1367 ((|#1| $) 50)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1574 (($ (-1181 |#1|) (-1181 $)) 46) (($ (-1181 |#1|)) 62)) (-1984 (((-637 |#1|) $ (-1181 $)) 51) (((-637 |#1|) $) 57)) (-2707 (((-3 $ "failed") $) 32)) (-2426 (((-862)) 52)) (-2731 (((-110) $) 30)) (-2376 ((|#1| $) 49)) (-1359 ((|#2| $) 42 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3060 ((|#1| (-1181 $)) 45) ((|#1|) 58)) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) 47) (((-1181 |#1|) $) 64) (((-637 |#1|) (-1181 $)) 63)) (-3260 (((-1181 |#1|) $) 61) (($ (-1181 |#1|)) 60)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35)) (-3251 (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-1814 ((|#2| $) 43)) (-3300 (((-719)) 28)) (-3220 (((-1181 $)) 65)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-390 |#1| |#2|) (-133) (-162) (-1157 |t#1|)) (T -390))
-((-3220 (*1 *2) (-12 (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1)) (-4 *1 (-390 *3 *4)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4)))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1157 *3)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *3)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1157 *3)))) (-1863 (*1 *2) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-637 *3)))) (-3060 (*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-637 *3)))))
-(-13 (-351 |t#1| |t#2|) (-10 -8 (-15 -3220 ((-1181 $))) (-15 -2328 ((-1181 |t#1|) $)) (-15 -2328 ((-637 |t#1|) (-1181 $))) (-15 -1574 ($ (-1181 |t#1|))) (-15 -3260 ((-1181 |t#1|) $)) (-15 -3260 ($ (-1181 |t#1|))) (-15 -1863 ((-637 |t#1|))) (-15 -3060 (|t#1|)) (-15 -1984 ((-637 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-351 |#1| |#2|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) 27) (((-3 (-530) "failed") $) 19)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) 24) (((-530) $) 14)) (-2366 (($ |#2|) NIL) (($ (-388 (-530))) 22) (($ (-530)) 11)))
-(((-391 |#1| |#2|) (-10 -8 (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2366 (|#1| (-530))) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|))) (-392 |#2|) (-1135)) (T -391))
-NIL
-(-10 -8 (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2366 (|#1| (-530))) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)))
-((-3139 (((-3 |#1| "failed") $) 7) (((-3 (-388 (-530)) "failed") $) 16 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 13 (|has| |#1| (-975 (-530))))) (-2585 ((|#1| $) 8) (((-388 (-530)) $) 15 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 12 (|has| |#1| (-975 (-530))))) (-2366 (($ |#1|) 6) (($ (-388 (-530))) 17 (|has| |#1| (-975 (-388 (-530))))) (($ (-530)) 14 (|has| |#1| (-975 (-530))))))
-(((-392 |#1|) (-133) (-1135)) (T -392))
-NIL
-(-13 (-975 |t#1|) (-10 -7 (IF (|has| |t#1| (-975 (-530))) (-6 (-975 (-530))) |%noBranch|) (IF (|has| |t#1| (-975 (-388 (-530)))) (-6 (-975 (-388 (-530)))) |%noBranch|)))
-(((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T))
-((-3217 (((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)) 33)))
-(((-393 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3217 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)))) (-289) (-932 |#1|) (-1157 |#2|) (-13 (-390 |#2| |#3|) (-975 |#2|)) (-289) (-932 |#5|) (-1157 |#6|) (-13 (-390 |#6| |#7|) (-975 |#6|))) (T -393))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289)) (-4 *6 (-932 *5)) (-4 *7 (-1157 *6)) (-4 *8 (-13 (-390 *6 *7) (-975 *6))) (-4 *9 (-289)) (-4 *10 (-932 *9)) (-4 *11 (-1157 *10)) (-5 *2 (-394 *9 *10 *11 *12)) (-5 *1 (-393 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-390 *10 *11) (-975 *10))))))
-(-10 -7 (-15 -3217 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|))))
-((-2352 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-3495 ((|#4| (-719) (-1181 |#4|)) 56)) (-2731 (((-110) $) NIL)) (-1918 (((-1181 |#4|) $) 17)) (-2376 ((|#2| $) 54)) (-2202 (($ $) 139)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 100)) (-3046 (($ (-1181 |#4|)) 99)) (-2624 (((-1046) $) NIL)) (-1928 ((|#1| $) 18)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 134)) (-3220 (((-1181 |#4|) $) 129)) (-3093 (($) 11 T CONST)) (-2248 (((-110) $ $) 40)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 122)) (* (($ $ $) 121)))
-(((-394 |#1| |#2| |#3| |#4|) (-13 (-453) (-10 -8 (-15 -3046 ($ (-1181 |#4|))) (-15 -3220 ((-1181 |#4|) $)) (-15 -2376 (|#2| $)) (-15 -1918 ((-1181 |#4|) $)) (-15 -1928 (|#1| $)) (-15 -2202 ($ $)) (-15 -3495 (|#4| (-719) (-1181 |#4|))))) (-289) (-932 |#1|) (-1157 |#2|) (-13 (-390 |#2| |#3|) (-975 |#2|))) (T -394))
-((-3046 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-394 *3 *4 *5 *6)))) (-3220 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))))) (-2376 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-394 *3 *2 *4 *5)) (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-975 *2))))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4))))) (-1928 (*1 *2 *1) (-12 (-4 *3 (-932 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-289)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))) (-2202 (*1 *1 *1) (-12 (-4 *2 (-289)) (-4 *3 (-932 *2)) (-4 *4 (-1157 *3)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))) (-3495 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-1181 *2)) (-4 *5 (-289)) (-4 *6 (-932 *5)) (-4 *2 (-13 (-390 *6 *7) (-975 *6))) (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1157 *6)))))
-(-13 (-453) (-10 -8 (-15 -3046 ($ (-1181 |#4|))) (-15 -3220 ((-1181 |#4|) $)) (-15 -2376 (|#2| $)) (-15 -1918 ((-1181 |#4|) $)) (-15 -1928 (|#1| $)) (-15 -2202 ($ $)) (-15 -3495 (|#4| (-719) (-1181 |#4|)))))
-((-2352 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2376 ((|#2| $) 61)) (-1569 (($ (-1181 |#4|)) 25) (($ (-394 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-975 |#2|)))) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 34)) (-3220 (((-1181 |#4|) $) 26)) (-3093 (($) 23 T CONST)) (-2248 (((-110) $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ $ $) 72)))
-(((-395 |#1| |#2| |#3| |#4| |#5|) (-13 (-675) (-10 -8 (-15 -3220 ((-1181 |#4|) $)) (-15 -2376 (|#2| $)) (-15 -1569 ($ (-1181 |#4|))) (IF (|has| |#4| (-975 |#2|)) (-15 -1569 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-289) (-932 |#1|) (-1157 |#2|) (-390 |#2| |#3|) (-1181 |#4|)) (T -395))
-((-3220 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-4 *6 (-390 *4 *5)) (-14 *7 *2))) (-2376 (*1 *2 *1) (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4)) (-14 *6 (-1181 *5)))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-1181 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1569 (*1 *1 *2) (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-975 *4)) (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-390 *4 *5)) (-14 *7 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)))))
-(-13 (-675) (-10 -8 (-15 -3220 ((-1181 |#4|) $)) (-15 -2376 (|#2| $)) (-15 -1569 ($ (-1181 |#4|))) (IF (|has| |#4| (-975 |#2|)) (-15 -1569 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|)))
-((-3217 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
-(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|))) (-398 |#2|) (-162) (-398 |#4|) (-162)) (T -396))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-398 *6)) (-5 *1 (-396 *4 *5 *2 *6)) (-4 *4 (-398 *5)))))
-(-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2291 (((-3 $ "failed")) 86)) (-3365 (((-1181 (-637 |#2|)) (-1181 $)) NIL) (((-1181 (-637 |#2|))) 91)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 85)) (-1383 (((-3 $ "failed")) 84)) (-2603 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 102)) (-4209 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 110)) (-3991 (((-1095 (-893 |#2|))) 55)) (-3988 ((|#2| (-1181 $)) NIL) ((|#2|) 106)) (-1574 (($ (-1181 |#2|) (-1181 $)) NIL) (($ (-1181 |#2|)) 112)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 83)) (-3832 (((-3 $ "failed")) 75)) (-1257 (((-637 |#2|) (-1181 $)) NIL) (((-637 |#2|)) 100)) (-3846 (((-637 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) $) 108)) (-3342 (((-1095 (-893 |#2|))) 54)) (-2837 ((|#2| (-1181 $)) NIL) ((|#2|) 104)) (-2328 (((-1181 |#2|) $ (-1181 $)) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $) 111) (((-637 |#2|) (-1181 $)) 118)) (-3260 (((-1181 |#2|) $) 96) (($ (-1181 |#2|)) 98)) (-3028 (((-597 (-893 |#2|)) (-1181 $)) NIL) (((-597 (-893 |#2|))) 94)) (-3003 (($ (-637 |#2|) $) 90)))
-(((-397 |#1| |#2|) (-10 -8 (-15 -3003 (|#1| (-637 |#2|) |#1|)) (-15 -3991 ((-1095 (-893 |#2|)))) (-15 -3342 ((-1095 (-893 |#2|)))) (-15 -4209 ((-637 |#2|) |#1|)) (-15 -3846 ((-637 |#2|) |#1|)) (-15 -2603 ((-637 |#2|))) (-15 -1257 ((-637 |#2|))) (-15 -3988 (|#2|)) (-15 -2837 (|#2|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -3028 ((-597 (-893 |#2|)))) (-15 -3365 ((-1181 (-637 |#2|)))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed"))) (-15 -1383 ((-3 |#1| "failed"))) (-15 -3832 ((-3 |#1| "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed"))) (-15 -3357 ((-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed"))) (-15 -2603 ((-637 |#2|) (-1181 |#1|))) (-15 -1257 ((-637 |#2|) (-1181 |#1|))) (-15 -3988 (|#2| (-1181 |#1|))) (-15 -2837 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -4209 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3846 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3365 ((-1181 (-637 |#2|)) (-1181 |#1|))) (-15 -3028 ((-597 (-893 |#2|)) (-1181 |#1|)))) (-398 |#2|) (-162)) (T -397))
-((-3365 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3028 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2837 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-3988 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-1257 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2603 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3342 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3991 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))))
-(-10 -8 (-15 -3003 (|#1| (-637 |#2|) |#1|)) (-15 -3991 ((-1095 (-893 |#2|)))) (-15 -3342 ((-1095 (-893 |#2|)))) (-15 -4209 ((-637 |#2|) |#1|)) (-15 -3846 ((-637 |#2|) |#1|)) (-15 -2603 ((-637 |#2|))) (-15 -1257 ((-637 |#2|))) (-15 -3988 (|#2|)) (-15 -2837 (|#2|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -1574 (|#1| (-1181 |#2|))) (-15 -3028 ((-597 (-893 |#2|)))) (-15 -3365 ((-1181 (-637 |#2|)))) (-15 -2328 ((-637 |#2|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1|)) (-15 -2291 ((-3 |#1| "failed"))) (-15 -1383 ((-3 |#1| "failed"))) (-15 -3832 ((-3 |#1| "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed"))) (-15 -3357 ((-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed"))) (-15 -2603 ((-637 |#2|) (-1181 |#1|))) (-15 -1257 ((-637 |#2|) (-1181 |#1|))) (-15 -3988 (|#2| (-1181 |#1|))) (-15 -2837 (|#2| (-1181 |#1|))) (-15 -1574 (|#1| (-1181 |#2|) (-1181 |#1|))) (-15 -2328 ((-637 |#2|) (-1181 |#1|) (-1181 |#1|))) (-15 -2328 ((-1181 |#2|) |#1| (-1181 |#1|))) (-15 -4209 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3846 ((-637 |#2|) |#1| (-1181 |#1|))) (-15 -3365 ((-1181 (-637 |#2|)) (-1181 |#1|))) (-15 -3028 ((-597 (-893 |#2|)) (-1181 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2291 (((-3 $ "failed")) 37 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3365 (((-1181 (-637 |#1|)) (-1181 $)) 78) (((-1181 (-637 |#1|))) 100)) (-3990 (((-1181 $)) 81)) (-2350 (($) 17 T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 40 (|has| |#1| (-522)))) (-1383 (((-3 $ "failed")) 38 (|has| |#1| (-522)))) (-2603 (((-637 |#1|) (-1181 $)) 65) (((-637 |#1|)) 92)) (-2228 ((|#1| $) 74)) (-4209 (((-637 |#1|) $ (-1181 $)) 76) (((-637 |#1|) $) 90)) (-2635 (((-3 $ "failed") $) 45 (|has| |#1| (-522)))) (-3991 (((-1095 (-893 |#1|))) 88 (|has| |#1| (-344)))) (-2862 (($ $ (-862)) 28)) (-4005 ((|#1| $) 72)) (-3581 (((-1095 |#1|) $) 42 (|has| |#1| (-522)))) (-3988 ((|#1| (-1181 $)) 67) ((|#1|) 94)) (-2670 (((-1095 |#1|) $) 63)) (-2662 (((-110)) 57)) (-1574 (($ (-1181 |#1|) (-1181 $)) 69) (($ (-1181 |#1|)) 98)) (-2707 (((-3 $ "failed") $) 47 (|has| |#1| (-522)))) (-2426 (((-862)) 80)) (-3485 (((-110)) 54)) (-1667 (($ $ (-862)) 33)) (-3943 (((-110)) 50)) (-3470 (((-110)) 48)) (-2305 (((-110)) 52)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) 41 (|has| |#1| (-522)))) (-3832 (((-3 $ "failed")) 39 (|has| |#1| (-522)))) (-1257 (((-637 |#1|) (-1181 $)) 66) (((-637 |#1|)) 93)) (-2465 ((|#1| $) 75)) (-3846 (((-637 |#1|) $ (-1181 $)) 77) (((-637 |#1|) $) 91)) (-1232 (((-3 $ "failed") $) 46 (|has| |#1| (-522)))) (-3342 (((-1095 (-893 |#1|))) 89 (|has| |#1| (-344)))) (-4138 (($ $ (-862)) 29)) (-2602 ((|#1| $) 73)) (-2209 (((-1095 |#1|) $) 43 (|has| |#1| (-522)))) (-2837 ((|#1| (-1181 $)) 68) ((|#1|) 95)) (-2461 (((-1095 |#1|) $) 64)) (-1921 (((-110)) 58)) (-1424 (((-1082) $) 9)) (-3123 (((-110)) 49)) (-2561 (((-110)) 51)) (-3766 (((-110)) 53)) (-2624 (((-1046) $) 10)) (-3719 (((-110)) 56)) (-1902 ((|#1| $ (-530)) 101)) (-2328 (((-1181 |#1|) $ (-1181 $)) 71) (((-637 |#1|) (-1181 $) (-1181 $)) 70) (((-1181 |#1|) $) 103) (((-637 |#1|) (-1181 $)) 102)) (-3260 (((-1181 |#1|) $) 97) (($ (-1181 |#1|)) 96)) (-3028 (((-597 (-893 |#1|)) (-1181 $)) 79) (((-597 (-893 |#1|))) 99)) (-2607 (($ $ $) 25)) (-3675 (((-110)) 62)) (-2366 (((-804) $) 11)) (-3220 (((-1181 $)) 104)) (-3758 (((-597 (-1181 |#1|))) 44 (|has| |#1| (-522)))) (-2346 (($ $ $ $) 26)) (-3439 (((-110)) 60)) (-3003 (($ (-637 |#1|) $) 87)) (-3980 (($ $ $) 24)) (-2164 (((-110)) 61)) (-3566 (((-110)) 59)) (-1957 (((-110)) 55)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+((-2947 (*1 *1 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-385)))) (-2947 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-864)) (-4 *1 (-385)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) (-3276 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) (-1790 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) (-2580 (*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531)))) (-2138 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) (-2890 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) (-3963 (*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) (-2138 (*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) (-2890 (*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385)))) (-3704 (*1 *2 *3) (-12 (-5 *3 (-531)) (|has| *1 (-6 -4264)) (-4 *1 (-385)) (-5 *2 (-864)))) (-3529 (*1 *2 *3) (-12 (-5 *3 (-531)) (|has| *1 (-6 -4264)) (-4 *1 (-385)) (-5 *2 (-864)))) (-4103 (*1 *1) (-12 (-4 *1 (-385)) (-3745 (|has| *1 (-6 -4264))) (-3745 (|has| *1 (-6 -4256))))) (-1241 (*1 *1) (-12 (-4 *1 (-385)) (-3745 (|has| *1 (-6 -4264))) (-3745 (|has| *1 (-6 -4256))))))
+(-13 (-995) (-10 -8 (-6 -4148) (-15 -2947 ($ (-531) (-531))) (-15 -2947 ($ (-531) (-531) (-864))) (-15 -3617 ((-531) $)) (-15 -3276 ((-864))) (-15 -1790 ((-531) $)) (-15 -2580 ((-531) $)) (-15 -2138 ((-864))) (-15 -2890 ((-864))) (-15 -3963 ((-864))) (IF (|has| $ (-6 -4264)) (PROGN (-15 -2138 ((-864) (-864))) (-15 -2890 ((-864) (-864))) (-15 -3963 ((-864) (-864))) (-15 -3704 ((-864) (-531))) (-15 -3529 ((-864) (-531)))) |%noBranch|) (IF (|has| $ (-6 -4256)) |%noBranch| (IF (|has| $ (-6 -4264)) |%noBranch| (PROGN (-15 -4103 ($)) (-15 -1241 ($)))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-162) . T) ((-573 (-208)) . T) ((-573 (-360)) . T) ((-573 (-835 (-360))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-795) . T) ((-797) . T) ((-829 (-360)) . T) ((-863) . T) ((-943) . T) ((-962) . T) ((-995) . T) ((-977 (-388 (-531))) . T) ((-977 (-531)) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T))
+((-3261 (((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)) 20)))
+(((-386 |#1| |#2|) (-10 -7 (-15 -3261 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|)))) (-523) (-523)) (T -386))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-5 *2 (-399 *6)) (-5 *1 (-386 *5 *6)))))
+(-10 -7 (-15 -3261 ((-399 |#2|) (-1 |#2| |#1|) (-399 |#1|))))
+((-3261 (((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)) 13)))
+(((-387 |#1| |#2|) (-10 -7 (-15 -3261 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|)))) (-523) (-523)) (T -387))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-5 *2 (-388 *6)) (-5 *1 (-387 *5 *6)))))
+(-10 -7 (-15 -3261 ((-388 |#2|) (-1 |#2| |#1|) (-388 |#1|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 13)) (-1317 ((|#1| $) 21 (|has| |#1| (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| |#1| (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 17) (((-3 (-1102) "failed") $) NIL (|has| |#1| (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) 70 (|has| |#1| (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531))))) (-2523 ((|#1| $) 15) (((-1102) $) NIL (|has| |#1| (-977 (-1102)))) (((-388 (-531)) $) 67 (|has| |#1| (-977 (-531)))) (((-531) $) NIL (|has| |#1| (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) 50)) (-1381 (($) NIL (|has| |#1| (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| |#1| (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| |#1| (-829 (-360))))) (-3481 (((-110) $) 64)) (-3027 (($ $) NIL)) (-1840 ((|#1| $) 71)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-1078)))) (-2985 (((-110) $) NIL (|has| |#1| (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 97)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| |#1| (-289)))) (-2943 ((|#1| $) 28 (|has| |#1| (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 135 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 131 (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|)))) (-4100 (((-721) $) NIL)) (-1785 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) 63)) (-2842 (($ $) NIL)) (-1853 ((|#1| $) 73)) (-3318 (((-835 (-531)) $) NIL (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| |#1| (-573 (-835 (-360))))) (((-507) $) NIL (|has| |#1| (-573 (-507)))) (((-360) $) NIL (|has| |#1| (-962))) (((-208) $) NIL (|has| |#1| (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 115 (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 10) (($ (-1102)) NIL (|has| |#1| (-977 (-1102))))) (-2750 (((-3 $ "failed") $) 99 (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 100)) (-3831 ((|#1| $) 26 (|has| |#1| (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| |#1| (-770)))) (-3035 (($) 22 T CONST)) (-3050 (($) 8 T CONST)) (-4231 (((-1085) $) 43 (-12 (|has| |#1| (-516)) (|has| |#1| (-778)))) (((-1085) $ (-110)) 44 (-12 (|has| |#1| (-516)) (|has| |#1| (-778)))) (((-1189) (-772) $) 45 (-12 (|has| |#1| (-516)) (|has| |#1| (-778)))) (((-1189) (-772) $ (-110)) 46 (-12 (|has| |#1| (-516)) (|has| |#1| (-778))))) (-4020 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 56)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) 24 (|has| |#1| (-797)))) (-2263 (($ $ $) 126) (($ |#1| |#1|) 52)) (-2250 (($ $) 25) (($ $ $) 55)) (-2237 (($ $ $) 53)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 125)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 60) (($ $ $) 57) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ |#1| $) 61) (($ $ |#1|) 85)))
+(((-388 |#1|) (-13 (-934 |#1|) (-10 -7 (IF (|has| |#1| (-516)) (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4260)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4271)) (-6 -4260) |%noBranch|) |%noBranch|) |%noBranch|))) (-523)) (T -388))
+NIL
+(-13 (-934 |#1|) (-10 -7 (IF (|has| |#1| (-516)) (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4260)) (IF (|has| |#1| (-432)) (IF (|has| |#1| (-6 -4271)) (-6 -4260) |%noBranch|) |%noBranch|) |%noBranch|)))
+((-1849 (((-639 |#2|) (-1184 $)) NIL) (((-639 |#2|)) 18)) (-2767 (($ (-1184 |#2|) (-1184 $)) NIL) (($ (-1184 |#2|)) 24)) (-1982 (((-639 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) $) 38)) (-1233 ((|#3| $) 60)) (-3176 ((|#2| (-1184 $)) NIL) ((|#2|) 20)) (-3348 (((-1184 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) NIL) (((-1184 |#2|) $) 22) (((-639 |#2|) (-1184 $)) 36)) (-3318 (((-1184 |#2|) $) 11) (($ (-1184 |#2|)) 13)) (-3369 ((|#3| $) 52)))
+(((-389 |#1| |#2| |#3|) (-10 -8 (-15 -1982 ((-639 |#2|) |#1|)) (-15 -3176 (|#2|)) (-15 -1849 ((-639 |#2|))) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -1233 (|#3| |#1|)) (-15 -3369 (|#3| |#1|)) (-15 -1849 ((-639 |#2|) (-1184 |#1|))) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1982 ((-639 |#2|) |#1| (-1184 |#1|)))) (-390 |#2| |#3|) (-162) (-1160 |#2|)) (T -389))
+((-1849 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)) (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5)))) (-3176 (*1 *2) (-12 (-4 *4 (-1160 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4)) (-4 *3 (-390 *2 *4)))))
+(-10 -8 (-15 -1982 ((-639 |#2|) |#1|)) (-15 -3176 (|#2|)) (-15 -1849 ((-639 |#2|))) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -1233 (|#3| |#1|)) (-15 -3369 (|#3| |#1|)) (-15 -1849 ((-639 |#2|) (-1184 |#1|))) (-15 -3176 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -1982 ((-639 |#2|) |#1| (-1184 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1849 (((-639 |#1|) (-1184 $)) 44) (((-639 |#1|)) 59)) (-1354 ((|#1| $) 50)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2767 (($ (-1184 |#1|) (-1184 $)) 46) (($ (-1184 |#1|)) 62)) (-1982 (((-639 |#1|) $ (-1184 $)) 51) (((-639 |#1|) $) 57)) (-3622 (((-3 $ "failed") $) 32)) (-2277 (((-864)) 52)) (-3481 (((-110) $) 30)) (-1899 ((|#1| $) 49)) (-1233 ((|#2| $) 42 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3176 ((|#1| (-1184 $)) 45) ((|#1|) 58)) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) 47) (((-1184 |#1|) $) 64) (((-639 |#1|) (-1184 $)) 63)) (-3318 (((-1184 |#1|) $) 61) (($ (-1184 |#1|)) 60)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35)) (-2750 (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-3369 ((|#2| $) 43)) (-2284 (((-721)) 28)) (-3523 (((-1184 $)) 65)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-390 |#1| |#2|) (-133) (-162) (-1160 |t#1|)) (T -390))
+((-3523 (*1 *2) (-12 (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-1184 *1)) (-4 *1 (-390 *3 *4)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-1184 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4)))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1160 *3)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-1184 *3)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4)) (-4 *4 (-1160 *3)))) (-1849 (*1 *2) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-639 *3)))) (-3176 (*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162)))) (-1982 (*1 *2 *1) (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-639 *3)))))
+(-13 (-351 |t#1| |t#2|) (-10 -8 (-15 -3523 ((-1184 $))) (-15 -3348 ((-1184 |t#1|) $)) (-15 -3348 ((-639 |t#1|) (-1184 $))) (-15 -2767 ($ (-1184 |t#1|))) (-15 -3318 ((-1184 |t#1|) $)) (-15 -3318 ($ (-1184 |t#1|))) (-15 -1849 ((-639 |t#1|))) (-15 -3176 (|t#1|)) (-15 -1982 ((-639 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-351 |#1| |#2|) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) . T) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) 27) (((-3 (-531) "failed") $) 19)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) 24) (((-531) $) 14)) (-2265 (($ |#2|) NIL) (($ (-388 (-531))) 22) (($ (-531)) 11)))
+(((-391 |#1| |#2|) (-10 -8 (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|))) (-392 |#2|) (-1138)) (T -391))
+NIL
+(-10 -8 (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)))
+((-3154 (((-3 |#1| "failed") $) 7) (((-3 (-388 (-531)) "failed") $) 16 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 13 (|has| |#1| (-977 (-531))))) (-2523 ((|#1| $) 8) (((-388 (-531)) $) 15 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 12 (|has| |#1| (-977 (-531))))) (-2265 (($ |#1|) 6) (($ (-388 (-531))) 17 (|has| |#1| (-977 (-388 (-531))))) (($ (-531)) 14 (|has| |#1| (-977 (-531))))))
+(((-392 |#1|) (-133) (-1138)) (T -392))
+NIL
+(-13 (-977 |t#1|) (-10 -7 (IF (|has| |t#1| (-977 (-531))) (-6 (-977 (-531))) |%noBranch|) (IF (|has| |t#1| (-977 (-388 (-531)))) (-6 (-977 (-388 (-531)))) |%noBranch|)))
+(((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T))
+((-3261 (((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)) 33)))
+(((-393 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3261 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|)))) (-289) (-934 |#1|) (-1160 |#2|) (-13 (-390 |#2| |#3|) (-977 |#2|)) (-289) (-934 |#5|) (-1160 |#6|) (-13 (-390 |#6| |#7|) (-977 |#6|))) (T -393))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289)) (-4 *6 (-934 *5)) (-4 *7 (-1160 *6)) (-4 *8 (-13 (-390 *6 *7) (-977 *6))) (-4 *9 (-289)) (-4 *10 (-934 *9)) (-4 *11 (-1160 *10)) (-5 *2 (-394 *9 *10 *11 *12)) (-5 *1 (-393 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-390 *10 *11) (-977 *10))))))
+(-10 -7 (-15 -3261 ((-394 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-394 |#1| |#2| |#3| |#4|))))
+((-2247 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-1755 ((|#4| (-721) (-1184 |#4|)) 56)) (-3481 (((-110) $) NIL)) (-1840 (((-1184 |#4|) $) 17)) (-1899 ((|#2| $) 54)) (-1949 (($ $) 139)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 100)) (-2003 (($ (-1184 |#4|)) 99)) (-2529 (((-1049) $) NIL)) (-1853 ((|#1| $) 18)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 134)) (-3523 (((-1184 |#4|) $) 129)) (-3050 (($) 11 T CONST)) (-2148 (((-110) $ $) 40)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 122)) (* (($ $ $) 121)))
+(((-394 |#1| |#2| |#3| |#4|) (-13 (-453) (-10 -8 (-15 -2003 ($ (-1184 |#4|))) (-15 -3523 ((-1184 |#4|) $)) (-15 -1899 (|#2| $)) (-15 -1840 ((-1184 |#4|) $)) (-15 -1853 (|#1| $)) (-15 -1949 ($ $)) (-15 -1755 (|#4| (-721) (-1184 |#4|))))) (-289) (-934 |#1|) (-1160 |#2|) (-13 (-390 |#2| |#3|) (-977 |#2|))) (T -394))
+((-2003 (*1 *1 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-13 (-390 *4 *5) (-977 *4))) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *3 (-289)) (-5 *1 (-394 *3 *4 *5 *6)))) (-3523 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-1184 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-977 *4))))) (-1899 (*1 *2 *1) (-12 (-4 *4 (-1160 *2)) (-4 *2 (-934 *3)) (-5 *1 (-394 *3 *2 *4 *5)) (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-977 *2))))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-1184 *6)) (-5 *1 (-394 *3 *4 *5 *6)) (-4 *6 (-13 (-390 *4 *5) (-977 *4))))) (-1853 (*1 *2 *1) (-12 (-4 *3 (-934 *2)) (-4 *4 (-1160 *3)) (-4 *2 (-289)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-977 *3))))) (-1949 (*1 *1 *1) (-12 (-4 *2 (-289)) (-4 *3 (-934 *2)) (-4 *4 (-1160 *3)) (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-977 *3))))) (-1755 (*1 *2 *3 *4) (-12 (-5 *3 (-721)) (-5 *4 (-1184 *2)) (-4 *5 (-289)) (-4 *6 (-934 *5)) (-4 *2 (-13 (-390 *6 *7) (-977 *6))) (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1160 *6)))))
+(-13 (-453) (-10 -8 (-15 -2003 ($ (-1184 |#4|))) (-15 -3523 ((-1184 |#4|) $)) (-15 -1899 (|#2| $)) (-15 -1840 ((-1184 |#4|) $)) (-15 -1853 (|#1| $)) (-15 -1949 ($ $)) (-15 -1755 (|#4| (-721) (-1184 |#4|)))))
+((-2247 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-1899 ((|#2| $) 61)) (-3731 (($ (-1184 |#4|)) 25) (($ (-394 |#1| |#2| |#3| |#4|)) 76 (|has| |#4| (-977 |#2|)))) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 34)) (-3523 (((-1184 |#4|) $) 26)) (-3050 (($) 23 T CONST)) (-2148 (((-110) $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ $ $) 72)))
+(((-395 |#1| |#2| |#3| |#4| |#5|) (-13 (-677) (-10 -8 (-15 -3523 ((-1184 |#4|) $)) (-15 -1899 (|#2| $)) (-15 -3731 ($ (-1184 |#4|))) (IF (|has| |#4| (-977 |#2|)) (-15 -3731 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-289) (-934 |#1|) (-1160 |#2|) (-390 |#2| |#3|) (-1184 |#4|)) (T -395))
+((-3523 (*1 *2 *1) (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-1184 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-4 *6 (-390 *4 *5)) (-14 *7 *2))) (-1899 (*1 *2 *1) (-12 (-4 *4 (-1160 *2)) (-4 *2 (-934 *3)) (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4)) (-14 *6 (-1184 *5)))) (-3731 (*1 *1 *2) (-12 (-5 *2 (-1184 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-3731 (*1 *1 *2) (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-977 *4)) (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *6 (-390 *4 *5)) (-14 *7 (-1184 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7)))))
+(-13 (-677) (-10 -8 (-15 -3523 ((-1184 |#4|) $)) (-15 -1899 (|#2| $)) (-15 -3731 ($ (-1184 |#4|))) (IF (|has| |#4| (-977 |#2|)) (-15 -3731 ($ (-394 |#1| |#2| |#3| |#4|))) |%noBranch|)))
+((-3261 ((|#3| (-1 |#4| |#2|) |#1|) 26)))
+(((-396 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) (-398 |#2|) (-162) (-398 |#4|) (-162)) (T -396))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-398 *6)) (-5 *1 (-396 *4 *5 *2 *6)) (-4 *4 (-398 *5)))))
+(-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|)))
+((-3887 (((-3 $ "failed")) 86)) (-2550 (((-1184 (-639 |#2|)) (-1184 $)) NIL) (((-1184 (-639 |#2|))) 91)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 85)) (-2783 (((-3 $ "failed")) 84)) (-3939 (((-639 |#2|) (-1184 $)) NIL) (((-639 |#2|)) 102)) (-2264 (((-639 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) $) 110)) (-3668 (((-1098 (-895 |#2|))) 55)) (-3960 ((|#2| (-1184 $)) NIL) ((|#2|) 106)) (-2767 (($ (-1184 |#2|) (-1184 $)) NIL) (($ (-1184 |#2|)) 112)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 83)) (-2816 (((-3 $ "failed")) 75)) (-1950 (((-639 |#2|) (-1184 $)) NIL) (((-639 |#2|)) 100)) (-3405 (((-639 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) $) 108)) (-2280 (((-1098 (-895 |#2|))) 54)) (-3579 ((|#2| (-1184 $)) NIL) ((|#2|) 104)) (-3348 (((-1184 |#2|) $ (-1184 $)) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) NIL) (((-1184 |#2|) $) 111) (((-639 |#2|) (-1184 $)) 118)) (-3318 (((-1184 |#2|) $) 96) (($ (-1184 |#2|)) 98)) (-2570 (((-598 (-895 |#2|)) (-1184 $)) NIL) (((-598 (-895 |#2|))) 94)) (-2979 (($ (-639 |#2|) $) 90)))
+(((-397 |#1| |#2|) (-10 -8 (-15 -2979 (|#1| (-639 |#2|) |#1|)) (-15 -3668 ((-1098 (-895 |#2|)))) (-15 -2280 ((-1098 (-895 |#2|)))) (-15 -2264 ((-639 |#2|) |#1|)) (-15 -3405 ((-639 |#2|) |#1|)) (-15 -3939 ((-639 |#2|))) (-15 -1950 ((-639 |#2|))) (-15 -3960 (|#2|)) (-15 -3579 (|#2|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -2570 ((-598 (-895 |#2|)))) (-15 -2550 ((-1184 (-639 |#2|)))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -3887 ((-3 |#1| "failed"))) (-15 -2783 ((-3 |#1| "failed"))) (-15 -2816 ((-3 |#1| "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed"))) (-15 -4152 ((-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed"))) (-15 -3939 ((-639 |#2|) (-1184 |#1|))) (-15 -1950 ((-639 |#2|) (-1184 |#1|))) (-15 -3960 (|#2| (-1184 |#1|))) (-15 -3579 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -2264 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -3405 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -2550 ((-1184 (-639 |#2|)) (-1184 |#1|))) (-15 -2570 ((-598 (-895 |#2|)) (-1184 |#1|)))) (-398 |#2|) (-162)) (T -397))
+((-2550 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2570 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-598 (-895 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3579 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-3960 (*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2)))) (-1950 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-639 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3939 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-639 *4)) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-2280 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1098 (-895 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))) (-3668 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-1098 (-895 *4))) (-5 *1 (-397 *3 *4)) (-4 *3 (-398 *4)))))
+(-10 -8 (-15 -2979 (|#1| (-639 |#2|) |#1|)) (-15 -3668 ((-1098 (-895 |#2|)))) (-15 -2280 ((-1098 (-895 |#2|)))) (-15 -2264 ((-639 |#2|) |#1|)) (-15 -3405 ((-639 |#2|) |#1|)) (-15 -3939 ((-639 |#2|))) (-15 -1950 ((-639 |#2|))) (-15 -3960 (|#2|)) (-15 -3579 (|#2|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -2767 (|#1| (-1184 |#2|))) (-15 -2570 ((-598 (-895 |#2|)))) (-15 -2550 ((-1184 (-639 |#2|)))) (-15 -3348 ((-639 |#2|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1|)) (-15 -3887 ((-3 |#1| "failed"))) (-15 -2783 ((-3 |#1| "failed"))) (-15 -2816 ((-3 |#1| "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed"))) (-15 -4152 ((-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed"))) (-15 -3939 ((-639 |#2|) (-1184 |#1|))) (-15 -1950 ((-639 |#2|) (-1184 |#1|))) (-15 -3960 (|#2| (-1184 |#1|))) (-15 -3579 (|#2| (-1184 |#1|))) (-15 -2767 (|#1| (-1184 |#2|) (-1184 |#1|))) (-15 -3348 ((-639 |#2|) (-1184 |#1|) (-1184 |#1|))) (-15 -3348 ((-1184 |#2|) |#1| (-1184 |#1|))) (-15 -2264 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -3405 ((-639 |#2|) |#1| (-1184 |#1|))) (-15 -2550 ((-1184 (-639 |#2|)) (-1184 |#1|))) (-15 -2570 ((-598 (-895 |#2|)) (-1184 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3887 (((-3 $ "failed")) 37 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-2550 (((-1184 (-639 |#1|)) (-1184 $)) 78) (((-1184 (-639 |#1|))) 100)) (-2022 (((-1184 $)) 81)) (-4082 (($) 17 T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 40 (|has| |#1| (-523)))) (-2783 (((-3 $ "failed")) 38 (|has| |#1| (-523)))) (-3939 (((-639 |#1|) (-1184 $)) 65) (((-639 |#1|)) 92)) (-1668 ((|#1| $) 74)) (-2264 (((-639 |#1|) $ (-1184 $)) 76) (((-639 |#1|) $) 90)) (-1387 (((-3 $ "failed") $) 45 (|has| |#1| (-523)))) (-3668 (((-1098 (-895 |#1|))) 88 (|has| |#1| (-344)))) (-1666 (($ $ (-864)) 28)) (-2065 ((|#1| $) 72)) (-3415 (((-1098 |#1|) $) 42 (|has| |#1| (-523)))) (-3960 ((|#1| (-1184 $)) 67) ((|#1|) 94)) (-3586 (((-1098 |#1|) $) 63)) (-1437 (((-110)) 57)) (-2767 (($ (-1184 |#1|) (-1184 $)) 69) (($ (-1184 |#1|)) 98)) (-3622 (((-3 $ "failed") $) 47 (|has| |#1| (-523)))) (-2277 (((-864)) 80)) (-2629 (((-110)) 54)) (-2083 (($ $ (-864)) 33)) (-2790 (((-110)) 50)) (-3769 (((-110)) 48)) (-2298 (((-110)) 52)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) 41 (|has| |#1| (-523)))) (-2816 (((-3 $ "failed")) 39 (|has| |#1| (-523)))) (-1950 (((-639 |#1|) (-1184 $)) 66) (((-639 |#1|)) 93)) (-1807 ((|#1| $) 75)) (-3405 (((-639 |#1|) $ (-1184 $)) 77) (((-639 |#1|) $) 91)) (-2234 (((-3 $ "failed") $) 46 (|has| |#1| (-523)))) (-2280 (((-1098 (-895 |#1|))) 89 (|has| |#1| (-344)))) (-2585 (($ $ (-864)) 29)) (-1288 ((|#1| $) 73)) (-1480 (((-1098 |#1|) $) 43 (|has| |#1| (-523)))) (-3579 ((|#1| (-1184 $)) 68) ((|#1|) 95)) (-1875 (((-1098 |#1|) $) 64)) (-2239 (((-110)) 58)) (-1521 (((-1085) $) 9)) (-4223 (((-110)) 49)) (-1561 (((-110)) 51)) (-3036 (((-110)) 53)) (-2529 (((-1049) $) 10)) (-1513 (((-110)) 56)) (-1785 ((|#1| $ (-531)) 101)) (-3348 (((-1184 |#1|) $ (-1184 $)) 71) (((-639 |#1|) (-1184 $) (-1184 $)) 70) (((-1184 |#1|) $) 103) (((-639 |#1|) (-1184 $)) 102)) (-3318 (((-1184 |#1|) $) 97) (($ (-1184 |#1|)) 96)) (-2570 (((-598 (-895 |#1|)) (-1184 $)) 79) (((-598 (-895 |#1|))) 99)) (-3214 (($ $ $) 25)) (-1817 (((-110)) 62)) (-2265 (((-806) $) 11)) (-3523 (((-1184 $)) 104)) (-2273 (((-598 (-1184 |#1|))) 44 (|has| |#1| (-523)))) (-2801 (($ $ $ $) 26)) (-1431 (((-110)) 60)) (-2979 (($ (-639 |#1|) $) 87)) (-1605 (($ $ $) 24)) (-2578 (((-110)) 61)) (-1964 (((-110)) 59)) (-2819 (((-110)) 55)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
(((-398 |#1|) (-133) (-162)) (T -398))
-((-3220 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-398 *3)))) (-2328 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3)))) (-2328 (*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162)) (-5 *2 (-637 *4)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3365 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 (-637 *3))))) (-3028 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-597 (-893 *3))))) (-1574 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-3260 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-2837 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3988 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-1257 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-2603 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-3846 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))) (-3342 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1095 (-893 *3))))) (-3991 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1095 (-893 *3))))) (-3003 (*1 *1 *2 *1) (-12 (-5 *2 (-637 *3)) (-4 *1 (-398 *3)) (-4 *3 (-162)))))
-(-13 (-348 |t#1|) (-10 -8 (-15 -3220 ((-1181 $))) (-15 -2328 ((-1181 |t#1|) $)) (-15 -2328 ((-637 |t#1|) (-1181 $))) (-15 -1902 (|t#1| $ (-530))) (-15 -3365 ((-1181 (-637 |t#1|)))) (-15 -3028 ((-597 (-893 |t#1|)))) (-15 -1574 ($ (-1181 |t#1|))) (-15 -3260 ((-1181 |t#1|) $)) (-15 -3260 ($ (-1181 |t#1|))) (-15 -2837 (|t#1|)) (-15 -3988 (|t#1|)) (-15 -1257 ((-637 |t#1|))) (-15 -2603 ((-637 |t#1|))) (-15 -3846 ((-637 |t#1|) $)) (-15 -4209 ((-637 |t#1|) $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -3342 ((-1095 (-893 |t#1|)))) (-15 -3991 ((-1095 (-893 |t#1|))))) |%noBranch|) (-15 -3003 ($ (-637 |t#1|) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-348 |#1|) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-693 |#1|) . T) ((-710) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 42)) (-3487 (($ $) 57)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 146)) (-3446 (($ $) NIL)) (-1276 (((-110) $) 36)) (-2291 ((|#1| $) 13)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-1139)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-1139)))) (-3687 (($ |#1| (-530)) 31)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 116)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 55)) (-2707 (((-3 $ "failed") $) 131)) (-2180 (((-3 (-388 (-530)) "failed") $) 63 (|has| |#1| (-515)))) (-3016 (((-110) $) 59 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 70 (|has| |#1| (-515)))) (-2372 (($ |#1| (-530)) 33)) (-3295 (((-110) $) 152 (|has| |#1| (-1139)))) (-2731 (((-110) $) 43)) (-3577 (((-719) $) 38)) (-4171 (((-3 "nil" "sqfr" "irred" "prime") $ (-530)) 137)) (-3519 ((|#1| $ (-530)) 136)) (-3209 (((-530) $ (-530)) 135)) (-3181 (($ |#1| (-530)) 30)) (-3217 (($ (-1 |#1| |#1|) $) 143)) (-3764 (($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530))))) 58)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2274 (($ |#1| (-530)) 32)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) 147 (|has| |#1| (-432)))) (-1715 (($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-3721 (((-597 (-2 (|:| -2611 |#1|) (|:| -3194 (-530)))) $) 54)) (-3859 (((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $) 12)) (-2611 (((-399 $) $) NIL (|has| |#1| (-1139)))) (-3551 (((-3 $ "failed") $ $) 138)) (-3194 (((-530) $) 132)) (-2246 ((|#1| $) 56)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 79 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 85 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) $) NIL (|has| |#1| (-491 (-1099) $))) (($ $ (-597 (-1099)) (-597 $)) 86 (|has| |#1| (-491 (-1099) $))) (($ $ (-597 (-276 $))) 82 (|has| |#1| (-291 $))) (($ $ (-276 $)) NIL (|has| |#1| (-291 $))) (($ $ $ $) NIL (|has| |#1| (-291 $))) (($ $ (-597 $) (-597 $)) NIL (|has| |#1| (-291 $)))) (-1902 (($ $ |#1|) 71 (|has| |#1| (-268 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-268 $ $)))) (-3289 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3260 (((-506) $) 27 (|has| |#1| (-572 (-506)))) (((-360) $) 92 (|has| |#1| (-960))) (((-208) $) 95 (|has| |#1| (-960)))) (-2366 (((-804) $) 114) (($ (-530)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530)))))) (-3300 (((-719)) 48)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 40 T CONST)) (-3093 (($) 39 T CONST)) (-3340 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2248 (((-110) $ $) 96)) (-2351 (($ $) 128) (($ $ $) NIL)) (-2339 (($ $ $) 140)) (** (($ $ (-862)) NIL) (($ $ (-719)) 102)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
-(((-399 |#1|) (-13 (-522) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2246 (|#1| $)) (-15 -3194 ((-530) $)) (-15 -3764 ($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))))) (-15 -3859 ((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $)) (-15 -3181 ($ |#1| (-530))) (-15 -3721 ((-597 (-2 (|:| -2611 |#1|) (|:| -3194 (-530)))) $)) (-15 -2274 ($ |#1| (-530))) (-15 -3209 ((-530) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -4171 ((-3 "nil" "sqfr" "irred" "prime") $ (-530))) (-15 -3577 ((-719) $)) (-15 -2372 ($ |#1| (-530))) (-15 -3687 ($ |#1| (-530))) (-15 -1715 ($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2291 (|#1| $)) (-15 -3487 ($ $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |#1| (-1139)) (-6 (-1139)) |%noBranch|) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-491 (-1099) $)) (-6 (-491 (-1099) $)) |%noBranch|))) (-522)) (T -399))
-((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-522)) (-5 *1 (-399 *3)))) (-2246 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3764 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-530))))) (-4 *2 (-522)) (-5 *1 (-399 *2)))) (-3859 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-530))))) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3181 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -2611 *3) (|:| -3194 (-530))))) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-2274 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3209 (*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-4171 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *4)) (-4 *4 (-522)))) (-3577 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-399 *3)) (-4 *3 (-522)))) (-2372 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3687 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-1715 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-2291 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3487 (*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))) (-2180 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522)))))
-(-13 (-522) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2246 (|#1| $)) (-15 -3194 ((-530) $)) (-15 -3764 ($ |#1| (-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))))) (-15 -3859 ((-597 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-530)))) $)) (-15 -3181 ($ |#1| (-530))) (-15 -3721 ((-597 (-2 (|:| -2611 |#1|) (|:| -3194 (-530)))) $)) (-15 -2274 ($ |#1| (-530))) (-15 -3209 ((-530) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -4171 ((-3 "nil" "sqfr" "irred" "prime") $ (-530))) (-15 -3577 ((-719) $)) (-15 -2372 ($ |#1| (-530))) (-15 -3687 ($ |#1| (-530))) (-15 -1715 ($ |#1| (-530) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -2291 (|#1| $)) (-15 -3487 ($ $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |#1| (-1139)) (-6 (-1139)) |%noBranch|) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-491 (-1099) $)) (-6 (-491 (-1099) $)) |%noBranch|)))
-((-3399 (((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|)) 21)) (-3326 (((-399 |#1|) (-399 |#1|) (-399 |#1|)) 16)))
-(((-400 |#1|) (-10 -7 (-15 -3399 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -3326 ((-399 |#1|) (-399 |#1|) (-399 |#1|)))) (-522)) (T -400))
-((-3326 (*1 *2 *2 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-522)) (-5 *1 (-400 *3)))) (-3399 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-522)) (-5 *2 (-399 *4)) (-5 *1 (-400 *4)))))
-(-10 -7 (-15 -3399 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -3326 ((-399 |#1|) (-399 |#1|) (-399 |#1|))))
-((-3993 ((|#2| |#2|) 166)) (-3977 (((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110)) 57)))
-(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3977 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110))) (-15 -3993 (|#2| |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -401))
-((-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1121) (-411 *3))) (-14 *4 (-1099)) (-14 *5 *2))) (-3977 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (|:| |%expansion| (-294 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-14 *6 (-1099)) (-14 *7 *3))))
-(-10 -7 (-15 -3977 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110))) (-15 -3993 (|#2| |#2|)))
-((-3217 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
-(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-984) (-795)) (-411 |#1|) (-13 (-984) (-795)) (-411 |#3|)) (T -402))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-984) (-795))) (-4 *6 (-13 (-984) (-795))) (-4 *2 (-411 *6)) (-5 *1 (-402 *5 *4 *6 *2)) (-4 *4 (-411 *5)))))
-(-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)))
-((-3993 ((|#2| |#2|) 90)) (-2587 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082)) 48)) (-2345 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082)) 154)))
-(((-403 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2587 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -2345 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -3993 (|#2| |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|) (-10 -8 (-15 -2366 ($ |#3|)))) (-793) (-13 (-1159 |#2| |#3|) (-344) (-1121) (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $)))) (-923 |#4|) (-1099)) (T -403))
-((-3993 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *2 (-13 (-27) (-1121) (-411 *3) (-10 -8 (-15 -2366 ($ *4))))) (-4 *4 (-793)) (-4 *5 (-13 (-1159 *2 *4) (-344) (-1121) (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $))))) (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1099)))) (-2345 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2366 ($ *7))))) (-4 *7 (-793)) (-4 *8 (-13 (-1159 *3 *7) (-344) (-1121) (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8)) (-14 *10 (-1099)))) (-2587 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2366 ($ *7))))) (-4 *7 (-793)) (-4 *8 (-13 (-1159 *3 *7) (-344) (-1121) (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8)) (-14 *10 (-1099)))))
-(-10 -7 (-15 -2587 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -2345 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))) |#2| (-110) (-1082))) (-15 -3993 (|#2| |#2|)))
-((-2753 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-2134 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3217 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
-(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2134 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2753 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1027) (-406 |#1|) (-1027) (-406 |#3|)) (T -404))
-((-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1027)) (-4 *5 (-1027)) (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1027)) (-4 *2 (-1027)) (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-406 *6)) (-5 *1 (-404 *5 *4 *6 *2)) (-4 *4 (-406 *5)))))
-(-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -2134 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -2753 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
-((-2673 (($) 44)) (-4204 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-1746 (($ $ $) 39)) (-2431 (((-110) $ $) 28)) (-3023 (((-719)) 47)) (-1243 (($ (-597 |#2|)) 20) (($) NIL)) (-1364 (($) 53)) (-2822 (((-110) $ $) 13)) (-2508 ((|#2| $) 61)) (-1817 ((|#2| $) 59)) (-1905 (((-862) $) 55)) (-4033 (($ $ $) 35)) (-1986 (($ (-862)) 50)) (-1252 (($ $ |#2|) NIL) (($ $ $) 38)) (-2632 (((-719) (-1 (-110) |#2|) $) NIL) (((-719) |#2| $) 26)) (-2377 (($ (-597 |#2|)) 24)) (-3801 (($ $) 46)) (-2366 (((-804) $) 33)) (-1418 (((-719) $) 21)) (-3381 (($ (-597 |#2|)) 19) (($) NIL)) (-2248 (((-110) $ $) 16)))
-(((-405 |#1| |#2|) (-10 -8 (-15 -3023 ((-719))) (-15 -1986 (|#1| (-862))) (-15 -1905 ((-862) |#1|)) (-15 -1364 (|#1|)) (-15 -2508 (|#2| |#1|)) (-15 -1817 (|#2| |#1|)) (-15 -2673 (|#1|)) (-15 -3801 (|#1| |#1|)) (-15 -1418 ((-719) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2822 ((-110) |#1| |#1|)) (-15 -3381 (|#1|)) (-15 -3381 (|#1| (-597 |#2|))) (-15 -1243 (|#1|)) (-15 -1243 (|#1| (-597 |#2|))) (-15 -4033 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#2|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -2431 ((-110) |#1| |#1|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|))) (-406 |#2|) (-1027)) (T -405))
-((-3023 (*1 *2) (-12 (-4 *4 (-1027)) (-5 *2 (-719)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))))
-(-10 -8 (-15 -3023 ((-719))) (-15 -1986 (|#1| (-862))) (-15 -1905 ((-862) |#1|)) (-15 -1364 (|#1|)) (-15 -2508 (|#2| |#1|)) (-15 -1817 (|#2| |#1|)) (-15 -2673 (|#1|)) (-15 -3801 (|#1| |#1|)) (-15 -1418 ((-719) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2822 ((-110) |#1| |#1|)) (-15 -3381 (|#1|)) (-15 -3381 (|#1| (-597 |#2|))) (-15 -1243 (|#1|)) (-15 -1243 (|#1| (-597 |#2|))) (-15 -4033 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#2|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -2431 ((-110) |#1| |#1|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#2| |#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)))
-((-2352 (((-110) $ $) 19)) (-2673 (($) 67 (|has| |#1| (-349)))) (-4204 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-1746 (($ $ $) 78)) (-2431 (((-110) $ $) 79)) (-3186 (((-110) $ (-719)) 8)) (-3023 (((-719)) 61 (|has| |#1| (-349)))) (-1243 (($ (-597 |#1|)) 74) (($) 73)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-1364 (($) 64 (|has| |#1| (-349)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 70)) (-4027 (((-110) $ (-719)) 9)) (-2508 ((|#1| $) 65 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1817 ((|#1| $) 66 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-1905 (((-862) $) 63 (|has| |#1| (-349)))) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22)) (-4033 (($ $ $) 75)) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-1986 (($ (-862)) 62 (|has| |#1| (-349)))) (-2624 (((-1046) $) 21)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1252 (($ $ |#1|) 77) (($ $ $) 76)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-3801 (($ $) 68 (|has| |#1| (-349)))) (-2366 (((-804) $) 18)) (-1418 (((-719) $) 69)) (-3381 (($ (-597 |#1|)) 72) (($) 71)) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-406 |#1|) (-133) (-1027)) (T -406))
-((-1418 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1027)) (-5 *2 (-719)))) (-3801 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-349)))) (-2673 (*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1027)))) (-1817 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-2508 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795)))))
-(-13 (-212 |t#1|) (-1025 |t#1|) (-10 -8 (-6 -4269) (-15 -1418 ((-719) $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-349)) (-15 -3801 ($ $)) (-15 -2673 ($))) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-15 -1817 (|t#1| $)) (-15 -2508 (|t#1| $))) |%noBranch|)))
-(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-212 |#1|) . T) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-349) |has| |#1| (-349)) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1025 |#1|) . T) ((-1027) . T) ((-1135) . T))
-((-4021 (((-547 |#2|) |#2| (-1099)) 36)) (-3631 (((-547 |#2|) |#2| (-1099)) 20)) (-3280 ((|#2| |#2| (-1099)) 25)))
-(((-407 |#1| |#2|) (-10 -7 (-15 -3631 ((-547 |#2|) |#2| (-1099))) (-15 -4021 ((-547 |#2|) |#2| (-1099))) (-15 -3280 (|#2| |#2| (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-29 |#1|))) (T -407))
-((-3280 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1121) (-29 *4))))) (-4021 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1121) (-29 *5))))) (-3631 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1121) (-29 *5))))))
-(-10 -7 (-15 -3631 ((-547 |#2|) |#2| (-1099))) (-15 -4021 ((-547 |#2|) |#2| (-1099))) (-15 -3280 (|#2| |#2| (-1099))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-1899 (($ |#2| |#1|) 35)) (-3448 (($ |#2| |#1|) 33)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-312 |#2|)) 25)) (-3300 (((-719)) NIL)) (-3080 (($) 10 T CONST)) (-3093 (($) 16 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 34)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-408 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4256)) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|) |%noBranch|) (-15 -2366 ($ |#1|)) (-15 -2366 ($ (-312 |#2|))) (-15 -1899 ($ |#2| |#1|)) (-15 -3448 ($ |#2| |#1|)))) (-13 (-162) (-37 (-388 (-530)))) (-13 (-795) (-21))) (T -408))
-((-2366 (*1 *1 *2) (-12 (-5 *1 (-408 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-530))))) (-4 *3 (-13 (-795) (-21))))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-795) (-21))) (-5 *1 (-408 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))))) (-1899 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))) (-4 *2 (-13 (-795) (-21))))) (-3448 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530))))) (-4 *2 (-13 (-795) (-21))))))
-(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4256)) (IF (|has| |#1| (-6 -4256)) (-6 -4256) |%noBranch|) |%noBranch|) (-15 -2366 ($ |#1|)) (-15 -2366 ($ (-312 |#2|))) (-15 -1899 ($ |#2| |#1|)) (-15 -3448 ($ |#2| |#1|))))
-((-1545 (((-3 |#2| (-597 |#2|)) |#2| (-1099)) 109)))
-(((-409 |#1| |#2|) (-10 -7 (-15 -1545 ((-3 |#2| (-597 |#2|)) |#2| (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -409))
-((-1545 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 *3 (-597 *3))) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1121) (-900) (-29 *5))))))
-(-10 -7 (-15 -1545 ((-3 |#2| (-597 |#2|)) |#2| (-1099))))
-((-2746 (((-597 (-1099)) $) 72)) (-2577 (((-388 (-1095 $)) $ (-570 $)) 273)) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) 237)) (-3139 (((-3 (-570 $) "failed") $) NIL) (((-3 (-1099) "failed") $) 75) (((-3 (-530) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-388 (-893 |#2|)) "failed") $) 324) (((-3 (-893 |#2|) "failed") $) 235) (((-3 (-388 (-530)) "failed") $) NIL)) (-2585 (((-570 $) $) NIL) (((-1099) $) 30) (((-530) $) NIL) ((|#2| $) 231) (((-388 (-893 |#2|)) $) 305) (((-893 |#2|) $) 232) (((-388 (-530)) $) NIL)) (-4124 (((-112) (-112)) 47)) (-4127 (($ $) 87)) (-3707 (((-3 (-570 $) "failed") $) 228)) (-2560 (((-597 (-570 $)) $) 229)) (-1862 (((-3 (-597 $) "failed") $) 247)) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $) 254)) (-1534 (((-3 (-597 $) "failed") $) 245)) (-3062 (((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $) 264)) (-1487 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $) 251) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112)) 217) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099)) 219)) (-2494 (((-110) $) 19)) (-2505 ((|#2| $) 21)) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) 236) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 96) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1099)) 57) (($ $ (-597 (-1099))) 240) (($ $) 241) (($ $ (-112) $ (-1099)) 60) (($ $ (-597 (-112)) (-597 $) (-1099)) 67) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 107) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 242) (($ $ (-1099) (-719) (-1 $ (-597 $))) 94) (($ $ (-1099) (-719) (-1 $ $)) 93)) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) 106)) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) 238)) (-1269 (($ $) 284)) (-3260 (((-833 (-530)) $) 257) (((-833 (-360)) $) 261) (($ (-399 $)) 320) (((-506) $) NIL)) (-2366 (((-804) $) 239) (($ (-570 $)) 84) (($ (-1099)) 26) (($ |#2|) NIL) (($ (-1051 |#2| (-570 $))) NIL) (($ (-388 |#2|)) 289) (($ (-893 (-388 |#2|))) 329) (($ (-388 (-893 (-388 |#2|)))) 301) (($ (-388 (-893 |#2|))) 295) (($ $) NIL) (($ (-893 |#2|)) 185) (($ (-388 (-530))) 334) (($ (-530)) NIL)) (-3300 (((-719)) 79)) (-4195 (((-110) (-112)) 41)) (-2520 (($ (-1099) $) 33) (($ (-1099) $ $) 34) (($ (-1099) $ $ $) 35) (($ (-1099) $ $ $ $) 36) (($ (-1099) (-597 $)) 39)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
-(((-410 |#1| |#2|) (-10 -8 (-15 * (|#1| (-862) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3300 ((-719))) (-15 -2366 (|#1| (-530))) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-893 |#2|) |#1|)) (-15 -3139 ((-3 (-893 |#2|) "failed") |#1|)) (-15 -2366 (|#1| (-893 |#2|))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2585 ((-388 (-893 |#2|)) |#1|)) (-15 -3139 ((-3 (-388 (-893 |#2|)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-893 |#2|)))) (-15 -2577 ((-388 (-1095 |#1|)) |#1| (-570 |#1|))) (-15 -2366 (|#1| (-388 (-893 (-388 |#2|))))) (-15 -2366 (|#1| (-893 (-388 |#2|)))) (-15 -2366 (|#1| (-388 |#2|))) (-15 -1269 (|#1| |#1|)) (-15 -3260 (|#1| (-399 |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-719) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-719) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| |#1|)))) (-15 -3193 ((-3 (-2 (|:| |val| |#1|) (|:| -3194 (-530))) "failed") |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1| (-1099))) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1| (-112))) (-15 -4127 (|#1| |#1|)) (-15 -2366 (|#1| (-1051 |#2| (-570 |#1|)))) (-15 -3062 ((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 |#1|))) "failed") |#1|)) (-15 -1534 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1|)) (-15 -1862 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 |#1|) (-1099))) (-15 -4098 (|#1| |#1| (-112) |#1| (-1099))) (-15 -4098 (|#1| |#1|)) (-15 -4098 (|#1| |#1| (-597 (-1099)))) (-15 -4098 (|#1| |#1| (-1099))) (-15 -2520 (|#1| (-1099) (-597 |#1|))) (-15 -2520 (|#1| (-1099) |#1| |#1| |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1| |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1|)) (-15 -2746 ((-597 (-1099)) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2494 ((-110) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2366 (|#1| (-1099))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -2560 ((-597 (-570 |#1|)) |#1|)) (-15 -3707 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -1416 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -1416 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1416 (|#1| |#1| (-276 |#1|))) (-15 -1902 (|#1| (-112) (-597 |#1|))) (-15 -1902 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2585 ((-570 |#1|) |#1|)) (-15 -3139 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -2366 (|#1| (-570 |#1|))) (-15 -2366 ((-804) |#1|))) (-411 |#2|) (-795)) (T -410))
-((-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *4 (-795)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5)))) (-3300 (*1 *2) (-12 (-4 *4 (-795)) (-5 *2 (-719)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))))
-(-10 -8 (-15 * (|#1| (-862) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -3300 ((-719))) (-15 -2366 (|#1| (-530))) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-893 |#2|) |#1|)) (-15 -3139 ((-3 (-893 |#2|) "failed") |#1|)) (-15 -2366 (|#1| (-893 |#2|))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2366 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2585 ((-388 (-893 |#2|)) |#1|)) (-15 -3139 ((-3 (-388 (-893 |#2|)) "failed") |#1|)) (-15 -2366 (|#1| (-388 (-893 |#2|)))) (-15 -2577 ((-388 (-1095 |#1|)) |#1| (-570 |#1|))) (-15 -2366 (|#1| (-388 (-893 (-388 |#2|))))) (-15 -2366 (|#1| (-893 (-388 |#2|)))) (-15 -2366 (|#1| (-388 |#2|))) (-15 -1269 (|#1| |#1|)) (-15 -3260 (|#1| (-399 |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-719) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-719) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-719)) (-597 (-1 |#1| |#1|)))) (-15 -3193 ((-3 (-2 (|:| |val| |#1|) (|:| -3194 (-530))) "failed") |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1| (-1099))) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1| (-112))) (-15 -4127 (|#1| |#1|)) (-15 -2366 (|#1| (-1051 |#2| (-570 |#1|)))) (-15 -3062 ((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 |#1|))) "failed") |#1|)) (-15 -1534 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 |#1|)) (|:| -3194 (-530))) "failed") |#1|)) (-15 -1862 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 |#1|) (-1099))) (-15 -4098 (|#1| |#1| (-112) |#1| (-1099))) (-15 -4098 (|#1| |#1|)) (-15 -4098 (|#1| |#1| (-597 (-1099)))) (-15 -4098 (|#1| |#1| (-1099))) (-15 -2520 (|#1| (-1099) (-597 |#1|))) (-15 -2520 (|#1| (-1099) |#1| |#1| |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1| |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1| |#1|)) (-15 -2520 (|#1| (-1099) |#1|)) (-15 -2746 ((-597 (-1099)) |#1|)) (-15 -2505 (|#2| |#1|)) (-15 -2494 ((-110) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2366 (|#1| (-1099))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-112) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-112)) (-597 (-1 |#1| |#1|)))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| |#1|))) (-15 -4098 (|#1| |#1| (-1099) (-1 |#1| (-597 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| (-597 |#1|))))) (-15 -4098 (|#1| |#1| (-597 (-1099)) (-597 (-1 |#1| |#1|)))) (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -2560 ((-597 (-570 |#1|)) |#1|)) (-15 -3707 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -1416 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -1416 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1416 (|#1| |#1| (-276 |#1|))) (-15 -1902 (|#1| (-112) (-597 |#1|))) (-15 -1902 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1| |#1|)) (-15 -1902 (|#1| (-112) |#1|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -4098 (|#1| |#1| (-597 (-570 |#1|)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-570 |#1|) |#1|)) (-15 -2585 ((-570 |#1|) |#1|)) (-15 -3139 ((-3 (-570 |#1|) "failed") |#1|)) (-15 -2366 (|#1| (-570 |#1|))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 113 (|has| |#1| (-25)))) (-2746 (((-597 (-1099)) $) 200)) (-2577 (((-388 (-1095 $)) $ (-570 $)) 168 (|has| |#1| (-522)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 140 (|has| |#1| (-522)))) (-3446 (($ $) 141 (|has| |#1| (-522)))) (-1276 (((-110) $) 143 (|has| |#1| (-522)))) (-2473 (((-597 (-570 $)) $) 44)) (-1889 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-1416 (($ $ (-276 $)) 56) (($ $ (-597 (-276 $))) 55) (($ $ (-597 (-570 $)) (-597 $)) 54)) (-3544 (($ $) 160 (|has| |#1| (-522)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-522)))) (-1426 (((-110) $ $) 151 (|has| |#1| (-522)))) (-2350 (($) 101 (-1461 (|has| |#1| (-1039)) (|has| |#1| (-25))) CONST)) (-3139 (((-3 (-570 $) "failed") $) 69) (((-3 (-1099) "failed") $) 213) (((-3 (-530) "failed") $) 206 (|has| |#1| (-975 (-530)))) (((-3 |#1| "failed") $) 204) (((-3 (-388 (-893 |#1|)) "failed") $) 166 (|has| |#1| (-522))) (((-3 (-893 |#1|) "failed") $) 120 (|has| |#1| (-984))) (((-3 (-388 (-530)) "failed") $) 95 (-1461 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-2585 (((-570 $) $) 68) (((-1099) $) 212) (((-530) $) 207 (|has| |#1| (-975 (-530)))) ((|#1| $) 203) (((-388 (-893 |#1|)) $) 165 (|has| |#1| (-522))) (((-893 |#1|) $) 119 (|has| |#1| (-984))) (((-388 (-530)) $) 94 (-1461 (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530))))))) (-3590 (($ $ $) 155 (|has| |#1| (-522)))) (-2329 (((-637 (-530)) (-637 $)) 134 (-3380 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 133 (-3380 (|has| |#1| (-593 (-530))) (|has| |#1| (-984)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 132 (|has| |#1| (-984))) (((-637 |#1|) (-637 $)) 131 (|has| |#1| (-984)))) (-2707 (((-3 $ "failed") $) 103 (|has| |#1| (-1039)))) (-3571 (($ $ $) 154 (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-522)))) (-3295 (((-110) $) 162 (|has| |#1| (-522)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 209 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 208 (|has| |#1| (-827 (-360))))) (-3324 (($ $) 51) (($ (-597 $)) 50)) (-2381 (((-597 (-112)) $) 43)) (-4124 (((-112) (-112)) 42)) (-2731 (((-110) $) 102 (|has| |#1| (-1039)))) (-3457 (((-110) $) 22 (|has| $ (-975 (-530))))) (-4127 (($ $) 183 (|has| |#1| (-984)))) (-1918 (((-1051 |#1| (-570 $)) $) 184 (|has| |#1| (-984)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-522)))) (-3210 (((-1095 $) (-570 $)) 25 (|has| $ (-984)))) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-3217 (($ (-1 $ $) (-570 $)) 36)) (-3707 (((-3 (-570 $) "failed") $) 46)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-522))) (($ $ $) 146 (|has| |#1| (-522)))) (-1424 (((-1082) $) 9)) (-2560 (((-597 (-570 $)) $) 45)) (-1990 (($ (-112) $) 38) (($ (-112) (-597 $)) 37)) (-1862 (((-3 (-597 $) "failed") $) 189 (|has| |#1| (-1039)))) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $) 180 (|has| |#1| (-984)))) (-1534 (((-3 (-597 $) "failed") $) 187 (|has| |#1| (-25)))) (-3062 (((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $) 186 (|has| |#1| (-25)))) (-1487 (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $) 188 (|has| |#1| (-1039))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112)) 182 (|has| |#1| (-984))) (((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099)) 181 (|has| |#1| (-984)))) (-1826 (((-110) $ (-112)) 40) (((-110) $ (-1099)) 39)) (-2483 (($ $) 105 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-4156 (((-719) $) 47)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 202)) (-2505 ((|#1| $) 201)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-522)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-522))) (($ $ $) 144 (|has| |#1| (-522)))) (-2861 (((-110) $ $) 35) (((-110) $ (-1099)) 34)) (-2611 (((-399 $) $) 159 (|has| |#1| (-522)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-522))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-522)))) (-3551 (((-3 $ "failed") $ $) 139 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-522)))) (-1403 (((-110) $) 23 (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) 67) (($ $ (-597 (-570 $)) (-597 $)) 66) (($ $ (-597 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-597 $) (-597 $)) 62) (($ $ (-597 (-1099)) (-597 (-1 $ $))) 33) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) 32) (($ $ (-1099) (-1 $ (-597 $))) 31) (($ $ (-1099) (-1 $ $)) 30) (($ $ (-597 (-112)) (-597 (-1 $ $))) 29) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) 28) (($ $ (-112) (-1 $ (-597 $))) 27) (($ $ (-112) (-1 $ $)) 26) (($ $ (-1099)) 194 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099))) 193 (|has| |#1| (-572 (-506)))) (($ $) 192 (|has| |#1| (-572 (-506)))) (($ $ (-112) $ (-1099)) 191 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-112)) (-597 $) (-1099)) 190 (|has| |#1| (-572 (-506)))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $))) 179 (|has| |#1| (-984))) (($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $)))) 178 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ (-597 $))) 177 (|has| |#1| (-984))) (($ $ (-1099) (-719) (-1 $ $)) 176 (|has| |#1| (-984)))) (-2356 (((-719) $) 152 (|has| |#1| (-522)))) (-1902 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-597 $)) 57)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-522)))) (-3313 (($ $) 49) (($ $ $) 48)) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 125 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 124 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 123 (|has| |#1| (-984))) (($ $ (-1099)) 122 (|has| |#1| (-984)))) (-1269 (($ $) 173 (|has| |#1| (-522)))) (-1928 (((-1051 |#1| (-570 $)) $) 174 (|has| |#1| (-522)))) (-1781 (($ $) 24 (|has| $ (-984)))) (-3260 (((-833 (-530)) $) 211 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 210 (|has| |#1| (-572 (-833 (-360))))) (($ (-399 $)) 175 (|has| |#1| (-522))) (((-506) $) 97 (|has| |#1| (-572 (-506))))) (-2555 (($ $ $) 108 (|has| |#1| (-453)))) (-2607 (($ $ $) 109 (|has| |#1| (-453)))) (-2366 (((-804) $) 11) (($ (-570 $)) 70) (($ (-1099)) 214) (($ |#1|) 205) (($ (-1051 |#1| (-570 $))) 185 (|has| |#1| (-984))) (($ (-388 |#1|)) 171 (|has| |#1| (-522))) (($ (-893 (-388 |#1|))) 170 (|has| |#1| (-522))) (($ (-388 (-893 (-388 |#1|)))) 169 (|has| |#1| (-522))) (($ (-388 (-893 |#1|))) 167 (|has| |#1| (-522))) (($ $) 138 (|has| |#1| (-522))) (($ (-893 |#1|)) 121 (|has| |#1| (-984))) (($ (-388 (-530))) 96 (-1461 (|has| |#1| (-522)) (-12 (|has| |#1| (-975 (-530))) (|has| |#1| (-522))) (|has| |#1| (-975 (-388 (-530)))))) (($ (-530)) 93 (-1461 (|has| |#1| (-984)) (|has| |#1| (-975 (-530)))))) (-3251 (((-3 $ "failed") $) 135 (|has| |#1| (-138)))) (-3300 (((-719)) 130 (|has| |#1| (-984)))) (-1678 (($ $) 53) (($ (-597 $)) 52)) (-4195 (((-110) (-112)) 41)) (-3944 (((-110) $ $) 142 (|has| |#1| (-522)))) (-2520 (($ (-1099) $) 199) (($ (-1099) $ $) 198) (($ (-1099) $ $ $) 197) (($ (-1099) $ $ $ $) 196) (($ (-1099) (-597 $)) 195)) (-3080 (($) 112 (|has| |#1| (-25)) CONST)) (-3093 (($) 100 (|has| |#1| (-1039)) CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 129 (|has| |#1| (-984))) (($ $ (-1099) (-719)) 128 (|has| |#1| (-984))) (($ $ (-597 (-1099))) 127 (|has| |#1| (-984))) (($ $ (-1099)) 126 (|has| |#1| (-984)))) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2364 (($ (-1051 |#1| (-570 $)) (-1051 |#1| (-570 $))) 172 (|has| |#1| (-522))) (($ $ $) 106 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522))))) (-2351 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2339 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-530)) 107 (-1461 (|has| |#1| (-453)) (|has| |#1| (-522)))) (($ $ (-719)) 104 (|has| |#1| (-1039))) (($ $ (-862)) 99 (|has| |#1| (-1039)))) (* (($ (-388 (-530)) $) 164 (|has| |#1| (-522))) (($ $ (-388 (-530))) 163 (|has| |#1| (-522))) (($ |#1| $) 137 (|has| |#1| (-162))) (($ $ |#1|) 136 (|has| |#1| (-162))) (($ (-530) $) 118 (|has| |#1| (-21))) (($ (-719) $) 114 (|has| |#1| (-25))) (($ (-862) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1039)))))
-(((-411 |#1|) (-133) (-795)) (T -411))
-((-2494 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-110)))) (-2505 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-597 (-1099))))) (-2520 (*1 *1 *2 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2520 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2520 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2520 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))) (-2520 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 *1)) (-4 *1 (-411 *4)) (-4 *4 (-795)))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-506))))) (-4098 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-572 (-506))))) (-4098 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-572 (-506))))) (-4098 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1099)) (-4 *1 (-411 *4)) (-4 *4 (-795)) (-4 *4 (-572 (-506))))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 *1)) (-5 *4 (-1099)) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-572 (-506))))) (-1862 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-411 *3)))) (-1487 (*1 *2 *1) (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530)))) (-4 *1 (-411 *3)))) (-1534 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-411 *3)))) (-3062 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -2065 (-530)) (|:| |var| (-570 *1)))) (-4 *1 (-411 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1051 *3 (-570 *1))) (-4 *3 (-984)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-1051 *3 (-570 *1))) (-4 *1 (-411 *3)))) (-4127 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-984)))) (-1487 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-4 *4 (-984)) (-4 *4 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530)))) (-4 *1 (-411 *4)))) (-1487 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-984)) (-4 *4 (-795)) (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530)))) (-4 *1 (-411 *4)))) (-3193 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-2 (|:| |val| *1) (|:| -3194 (-530)))) (-4 *1 (-411 *3)))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-719))) (-5 *4 (-597 (-1 *1 *1))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-719))) (-5 *4 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *4 (-1 *1 (-597 *1))) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-4098 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *4 (-1 *1 *1)) (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-399 *1)) (-4 *1 (-411 *3)) (-4 *3 (-522)) (-4 *3 (-795)))) (-1928 (*1 *2 *1) (-12 (-4 *3 (-522)) (-4 *3 (-795)) (-5 *2 (-1051 *3 (-570 *1))) (-4 *1 (-411 *3)))) (-1269 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-522)))) (-2364 (*1 *1 *2 *2) (-12 (-5 *2 (-1051 *3 (-570 *1))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 *3))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-388 *3)))) (-4 *3 (-522)) (-4 *3 (-795)) (-4 *1 (-411 *3)))) (-2577 (*1 *2 *1 *3) (-12 (-5 *3 (-570 *1)) (-4 *1 (-411 *4)) (-4 *4 (-795)) (-4 *4 (-522)) (-5 *2 (-388 (-1095 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-1039)))))
-(-13 (-284) (-975 (-1099)) (-825 |t#1|) (-381 |t#1|) (-392 |t#1|) (-10 -8 (-15 -2494 ((-110) $)) (-15 -2505 (|t#1| $)) (-15 -2746 ((-597 (-1099)) $)) (-15 -2520 ($ (-1099) $)) (-15 -2520 ($ (-1099) $ $)) (-15 -2520 ($ (-1099) $ $ $)) (-15 -2520 ($ (-1099) $ $ $ $)) (-15 -2520 ($ (-1099) (-597 $))) (IF (|has| |t#1| (-572 (-506))) (PROGN (-6 (-572 (-506))) (-15 -4098 ($ $ (-1099))) (-15 -4098 ($ $ (-597 (-1099)))) (-15 -4098 ($ $)) (-15 -4098 ($ $ (-112) $ (-1099))) (-15 -4098 ($ $ (-597 (-112)) (-597 $) (-1099)))) |%noBranch|) (IF (|has| |t#1| (-1039)) (PROGN (-6 (-675)) (-15 ** ($ $ (-719))) (-15 -1862 ((-3 (-597 $) "failed") $)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-453)) (-6 (-453)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -1534 ((-3 (-597 $) "failed") $)) (-15 -3062 ((-3 (-2 (|:| -2065 (-530)) (|:| |var| (-570 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-984)) (PROGN (-6 (-984)) (-6 (-975 (-893 |t#1|))) (-6 (-841 (-1099))) (-6 (-358 |t#1|)) (-15 -2366 ($ (-1051 |t#1| (-570 $)))) (-15 -1918 ((-1051 |t#1| (-570 $)) $)) (-15 -4127 ($ $)) (-15 -1487 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-112))) (-15 -1487 ((-3 (-2 (|:| |var| (-570 $)) (|:| -3194 (-530))) "failed") $ (-1099))) (-15 -3193 ((-3 (-2 (|:| |val| $) (|:| -3194 (-530))) "failed") $)) (-15 -4098 ($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ $)))) (-15 -4098 ($ $ (-597 (-1099)) (-597 (-719)) (-597 (-1 $ (-597 $))))) (-15 -4098 ($ $ (-1099) (-719) (-1 $ (-597 $)))) (-15 -4098 ($ $ (-1099) (-719) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-344)) (-6 (-975 (-388 (-893 |t#1|)))) (-15 -3260 ($ (-399 $))) (-15 -1928 ((-1051 |t#1| (-570 $)) $)) (-15 -1269 ($ $)) (-15 -2364 ($ (-1051 |t#1| (-570 $)) (-1051 |t#1| (-570 $)))) (-15 -2366 ($ (-388 |t#1|))) (-15 -2366 ($ (-893 (-388 |t#1|)))) (-15 -2366 ($ (-388 (-893 (-388 |t#1|))))) (-15 -2577 ((-388 (-1095 $)) $ (-570 $))) (IF (|has| |t#1| (-975 (-530))) (-6 (-975 (-388 (-530)))) |%noBranch|)) |%noBranch|)))
-(((-21) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-23) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-388 (-530))) |has| |#1| (-522)) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-522)) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) |has| |#1| (-522)) ((-128) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) |has| |#1| (-522)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-226) |has| |#1| (-522)) ((-272) |has| |#1| (-522)) ((-289) |has| |#1| (-522)) ((-291 $) . T) ((-284) . T) ((-344) |has| |#1| (-522)) ((-358 |#1|) |has| |#1| (-984)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) |has| |#1| (-522)) ((-453) |has| |#1| (-453)) ((-491 (-570 $) $) . T) ((-491 $ $) . T) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-522)) ((-599 |#1|) |has| |#1| (-162)) ((-599 $) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-593 (-530)) -12 (|has| |#1| (-593 (-530))) (|has| |#1| (-984))) ((-593 |#1|) |has| |#1| (-984)) ((-666 #0#) |has| |#1| (-522)) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) -1461 (|has| |#1| (-1039)) (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-795) . T) ((-841 (-1099)) |has| |#1| (-984)) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-861) |has| |#1| (-522)) ((-975 (-388 (-530))) -1461 (|has| |#1| (-975 (-388 (-530)))) (-12 (|has| |#1| (-522)) (|has| |#1| (-975 (-530))))) ((-975 (-388 (-893 |#1|))) |has| |#1| (-522)) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-570 $)) . T) ((-975 (-893 |#1|)) |has| |#1| (-984)) ((-975 (-1099)) . T) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-522)) ((-990 |#1|) |has| |#1| (-162)) ((-990 $) |has| |#1| (-522)) ((-984) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-991) -1461 (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1039) -1461 (|has| |#1| (-1039)) (|has| |#1| (-984)) (|has| |#1| (-522)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1027) . T) ((-1135) . T) ((-1139) |has| |#1| (-522)))
-((-1751 ((|#2| |#2| |#2|) 33)) (-4124 (((-112) (-112)) 44)) (-3866 ((|#2| |#2|) 66)) (-1413 ((|#2| |#2|) 69)) (-2101 ((|#2| |#2|) 32)) (-2323 ((|#2| |#2| |#2|) 35)) (-3981 ((|#2| |#2| |#2|) 37)) (-2790 ((|#2| |#2| |#2|) 34)) (-1374 ((|#2| |#2| |#2|) 36)) (-4195 (((-110) (-112)) 42)) (-3179 ((|#2| |#2|) 39)) (-1607 ((|#2| |#2|) 38)) (-3934 ((|#2| |#2|) 27)) (-3187 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-3564 ((|#2| |#2| |#2|) 31)))
-(((-412 |#1| |#2|) (-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -3934 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3187 (|#2| |#2| |#2|)) (-15 -3564 (|#2| |#2| |#2|)) (-15 -2101 (|#2| |#2|)) (-15 -1751 (|#2| |#2| |#2|)) (-15 -2790 (|#2| |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -1374 (|#2| |#2| |#2|)) (-15 -3981 (|#2| |#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3866 (|#2| |#2|))) (-13 (-795) (-522)) (-411 |#1|)) (T -412))
-((-3866 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1413 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3179 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1607 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3981 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1374 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2323 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2790 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1751 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2101 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3564 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3187 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3187 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3934 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *4)) (-4 *4 (-411 *3)))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4)))))
-(-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -3934 (|#2| |#2|)) (-15 -3187 (|#2| |#2|)) (-15 -3187 (|#2| |#2| |#2|)) (-15 -3564 (|#2| |#2| |#2|)) (-15 -2101 (|#2| |#2|)) (-15 -1751 (|#2| |#2| |#2|)) (-15 -2790 (|#2| |#2| |#2|)) (-15 -2323 (|#2| |#2| |#2|)) (-15 -1374 (|#2| |#2| |#2|)) (-15 -3981 (|#2| |#2| |#2|)) (-15 -1607 (|#2| |#2|)) (-15 -3179 (|#2| |#2|)) (-15 -1413 (|#2| |#2|)) (-15 -3866 (|#2| |#2|)))
-((-1677 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|)) 61)))
-(((-413 |#1| |#2|) (-10 -7 (-15 -1677 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|))) (IF (|has| |#2| (-27)) (-15 -1677 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-522) (-795) (-140)) (-411 |#1|)) (T -413))
-((-1677 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-522) (-795) (-140))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1095 *3)) (|:| |pol2| (-1095 *3)) (|:| |prim| (-1095 *3)))) (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4)))) (-1677 (*1 *2 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-522) (-795) (-140))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-597 (-1095 *5))) (|:| |prim| (-1095 *5)))) (-5 *1 (-413 *4 *5)))))
-(-10 -7 (-15 -1677 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-597 (-1095 |#2|))) (|:| |prim| (-1095 |#2|))) (-597 |#2|))) (IF (|has| |#2| (-27)) (-15 -1677 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1095 |#2|)) (|:| |pol2| (-1095 |#2|)) (|:| |prim| (-1095 |#2|))) |#2| |#2|)) |%noBranch|))
-((-3055 (((-1186)) 19)) (-3356 (((-1095 (-388 (-530))) |#2| (-570 |#2|)) 41) (((-388 (-530)) |#2|) 25)))
-(((-414 |#1| |#2|) (-10 -7 (-15 -3356 ((-388 (-530)) |#2|)) (-15 -3356 ((-1095 (-388 (-530))) |#2| (-570 |#2|))) (-15 -3055 ((-1186)))) (-13 (-795) (-522) (-975 (-530))) (-411 |#1|)) (T -414))
-((-3055 (*1 *2) (-12 (-4 *3 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1186)) (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))) (-3356 (*1 *2 *3 *4) (-12 (-5 *4 (-570 *3)) (-4 *3 (-411 *5)) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-414 *5 *3)))) (-3356 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-388 (-530))) (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4)))))
-(-10 -7 (-15 -3356 ((-388 (-530)) |#2|)) (-15 -3356 ((-1095 (-388 (-530))) |#2| (-570 |#2|))) (-15 -3055 ((-1186))))
-((-2597 (((-110) $) 28)) (-1587 (((-110) $) 30)) (-1298 (((-110) $) 31)) (-2666 (((-110) $) 34)) (-3108 (((-110) $) 29)) (-2138 (((-110) $) 33)) (-2366 (((-804) $) 18) (($ (-1082)) 27) (($ (-1099)) 23) (((-1099) $) 22) (((-1031) $) 21)) (-4086 (((-110) $) 32)) (-2248 (((-110) $ $) 15)))
-(((-415) (-13 (-571 (-804)) (-10 -8 (-15 -2366 ($ (-1082))) (-15 -2366 ($ (-1099))) (-15 -2366 ((-1099) $)) (-15 -2366 ((-1031) $)) (-15 -2597 ((-110) $)) (-15 -3108 ((-110) $)) (-15 -1298 ((-110) $)) (-15 -2138 ((-110) $)) (-15 -2666 ((-110) $)) (-15 -4086 ((-110) $)) (-15 -1587 ((-110) $)) (-15 -2248 ((-110) $ $))))) (T -415))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-415)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-415)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-415)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-415)))) (-2597 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-3108 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1298 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2666 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1587 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2248 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -2366 ($ (-1082))) (-15 -2366 ($ (-1099))) (-15 -2366 ((-1099) $)) (-15 -2366 ((-1031) $)) (-15 -2597 ((-110) $)) (-15 -3108 ((-110) $)) (-15 -1298 ((-110) $)) (-15 -2138 ((-110) $)) (-15 -2666 ((-110) $)) (-15 -4086 ((-110) $)) (-15 -1587 ((-110) $)) (-15 -2248 ((-110) $ $))))
-((-4240 (((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|) 70)) (-2815 (((-399 |#3|) |#3|) 34)) (-2683 (((-3 (-399 (-1095 (-47))) "failed") |#3|) 46 (|has| |#2| (-975 (-47))))) (-4012 (((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4031 (-110))) |#3|) 37)))
-(((-416 |#1| |#2| |#3|) (-10 -7 (-15 -2815 ((-399 |#3|) |#3|)) (-15 -4240 ((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|)) (-15 -4012 ((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4031 (-110))) |#3|)) (IF (|has| |#2| (-975 (-47))) (-15 -2683 ((-3 (-399 (-1095 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-522) (-795) (-975 (-530))) (-411 |#1|) (-1157 |#2|)) (T -416))
-((-2683 (*1 *2 *3) (|partial| -12 (-4 *5 (-975 (-47))) (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-47)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-4012 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4031 (-110)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-4240 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-388 (-530))))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-2815 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4)) (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -2815 ((-399 |#3|) |#3|)) (-15 -4240 ((-3 (-399 (-1095 (-388 (-530)))) "failed") |#3|)) (-15 -4012 ((-3 (|:| |overq| (-1095 (-388 (-530)))) (|:| |overan| (-1095 (-47))) (|:| -4031 (-110))) |#3|)) (IF (|has| |#2| (-975 (-47))) (-15 -2683 ((-3 (-399 (-1095 (-47))) "failed") |#3|)) |%noBranch|))
-((-2352 (((-110) $ $) NIL)) (-3753 (((-1082) $ (-1082)) NIL)) (-3102 (($ $ (-1082)) NIL)) (-1214 (((-1082) $) NIL)) (-1495 (((-369) (-369) (-369)) 17) (((-369) (-369)) 15)) (-2551 (($ (-369)) NIL) (($ (-369) (-1082)) NIL)) (-3907 (((-369) $) NIL)) (-1424 (((-1082) $) NIL)) (-3816 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3036 (((-1186) (-1082)) 9)) (-3229 (((-1186) (-1082)) 10)) (-1562 (((-1186)) 11)) (-2366 (((-804) $) NIL)) (-3422 (($ $) 35)) (-2248 (((-110) $ $) NIL)))
-(((-417) (-13 (-345 (-369) (-1082)) (-10 -7 (-15 -1495 ((-369) (-369) (-369))) (-15 -1495 ((-369) (-369))) (-15 -3036 ((-1186) (-1082))) (-15 -3229 ((-1186) (-1082))) (-15 -1562 ((-1186)))))) (T -417))
-((-1495 (*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-1495 (*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-3036 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))) (-3229 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))) (-1562 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-417)))))
-(-13 (-345 (-369) (-1082)) (-10 -7 (-15 -1495 ((-369) (-369) (-369))) (-15 -1495 ((-369) (-369))) (-15 -3036 ((-1186) (-1082))) (-15 -3229 ((-1186) (-1082))) (-15 -1562 ((-1186)))))
-((-2352 (((-110) $ $) NIL)) (-3076 (((-3 (|:| |fst| (-415)) (|:| -3020 "void")) $) 11)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1314 (($) 32)) (-2303 (($) 38)) (-3926 (($) 34)) (-2463 (($) 36)) (-2797 (($) 33)) (-2573 (($) 35)) (-2341 (($) 37)) (-3240 (((-110) $) 8)) (-3537 (((-597 (-893 (-530))) $) 19)) (-2377 (($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-1099)) (-110)) 27) (($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-893 (-530))) (-110)) 28)) (-2366 (((-804) $) 23) (($ (-415)) 29)) (-2248 (((-110) $ $) NIL)))
-(((-418) (-13 (-1027) (-10 -8 (-15 -2366 ((-804) $)) (-15 -2366 ($ (-415))) (-15 -3076 ((-3 (|:| |fst| (-415)) (|:| -3020 "void")) $)) (-15 -3537 ((-597 (-893 (-530))) $)) (-15 -3240 ((-110) $)) (-15 -2377 ($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-1099)) (-110))) (-15 -2377 ($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-893 (-530))) (-110))) (-15 -1314 ($)) (-15 -2797 ($)) (-15 -3926 ($)) (-15 -2303 ($)) (-15 -2573 ($)) (-15 -2463 ($)) (-15 -2341 ($))))) (T -418))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-418)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-418)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *1 (-418)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-597 (-893 (-530)))) (-5 *1 (-418)))) (-3240 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *3 (-597 (-1099))) (-5 *4 (-110)) (-5 *1 (-418)))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-110)) (-5 *1 (-418)))) (-1314 (*1 *1) (-5 *1 (-418))) (-2797 (*1 *1) (-5 *1 (-418))) (-3926 (*1 *1) (-5 *1 (-418))) (-2303 (*1 *1) (-5 *1 (-418))) (-2573 (*1 *1) (-5 *1 (-418))) (-2463 (*1 *1) (-5 *1 (-418))) (-2341 (*1 *1) (-5 *1 (-418))))
-(-13 (-1027) (-10 -8 (-15 -2366 ((-804) $)) (-15 -2366 ($ (-415))) (-15 -3076 ((-3 (|:| |fst| (-415)) (|:| -3020 "void")) $)) (-15 -3537 ((-597 (-893 (-530))) $)) (-15 -3240 ((-110) $)) (-15 -2377 ($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-1099)) (-110))) (-15 -2377 ($ (-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-597 (-893 (-530))) (-110))) (-15 -1314 ($)) (-15 -2797 ($)) (-15 -3926 ($)) (-15 -2303 ($)) (-15 -2573 ($)) (-15 -2463 ($)) (-15 -2341 ($))))
-((-2352 (((-110) $ $) NIL)) (-3907 (((-1099) $) 8)) (-1424 (((-1082) $) 16)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 13)))
-(((-419 |#1|) (-13 (-1027) (-10 -8 (-15 -3907 ((-1099) $)))) (-1099)) (T -419))
-((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-419 *3)) (-14 *3 *2))))
-(-13 (-1027) (-10 -8 (-15 -3907 ((-1099) $))))
-((-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-1181 (-647))) 14) (($ (-597 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 11)))
+((-3523 (*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1184 *1)) (-4 *1 (-398 *3)))) (-3348 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 *3)))) (-3348 (*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162)) (-5 *2 (-639 *4)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-2550 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 (-639 *3))))) (-2570 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-598 (-895 *3))))) (-2767 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-3318 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 *3)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))) (-3579 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-3960 (*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))) (-1950 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))) (-3939 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))) (-3405 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))) (-2264 (*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))) (-2280 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1098 (-895 *3))))) (-3668 (*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344)) (-5 *2 (-1098 (-895 *3))))) (-2979 (*1 *1 *2 *1) (-12 (-5 *2 (-639 *3)) (-4 *1 (-398 *3)) (-4 *3 (-162)))))
+(-13 (-348 |t#1|) (-10 -8 (-15 -3523 ((-1184 $))) (-15 -3348 ((-1184 |t#1|) $)) (-15 -3348 ((-639 |t#1|) (-1184 $))) (-15 -1785 (|t#1| $ (-531))) (-15 -2550 ((-1184 (-639 |t#1|)))) (-15 -2570 ((-598 (-895 |t#1|)))) (-15 -2767 ($ (-1184 |t#1|))) (-15 -3318 ((-1184 |t#1|) $)) (-15 -3318 ($ (-1184 |t#1|))) (-15 -3579 (|t#1|)) (-15 -3960 (|t#1|)) (-15 -1950 ((-639 |t#1|))) (-15 -3939 ((-639 |t#1|))) (-15 -3405 ((-639 |t#1|) $)) (-15 -2264 ((-639 |t#1|) $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -2280 ((-1098 (-895 |t#1|)))) (-15 -3668 ((-1098 (-895 |t#1|))))) |%noBranch|) (-15 -2979 ($ (-639 |t#1|) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-348 |#1|) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-671) . T) ((-695 |#1|) . T) ((-712) . T) ((-992 |#1|) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 42)) (-4023 (($ $) 57)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 146)) (-3258 (($ $) NIL)) (-2921 (((-110) $) 36)) (-3887 ((|#1| $) 13)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-1142)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-1142)))) (-3984 (($ |#1| (-531)) 31)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 116)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 55)) (-3622 (((-3 $ "failed") $) 131)) (-1609 (((-3 (-388 (-531)) "failed") $) 63 (|has| |#1| (-516)))) (-3004 (((-110) $) 59 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 70 (|has| |#1| (-516)))) (-2598 (($ |#1| (-531)) 33)) (-2534 (((-110) $) 152 (|has| |#1| (-1142)))) (-3481 (((-110) $) 43)) (-2688 (((-721) $) 38)) (-2061 (((-3 "nil" "sqfr" "irred" "prime") $ (-531)) 137)) (-3616 ((|#1| $ (-531)) 136)) (-3786 (((-531) $ (-531)) 135)) (-1640 (($ |#1| (-531)) 30)) (-3261 (($ (-1 |#1| |#1|) $) 143)) (-1577 (($ |#1| (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531))))) 58)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-1299 (($ |#1| (-531)) 32)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) 147 (|has| |#1| (-432)))) (-2206 (($ |#1| (-531) (-3 "nil" "sqfr" "irred" "prime")) 29)) (-2721 (((-598 (-2 (|:| -2552 |#1|) (|:| -1790 (-531)))) $) 54)) (-1292 (((-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))) $) 12)) (-2552 (((-399 $) $) NIL (|has| |#1| (-1142)))) (-3609 (((-3 $ "failed") $ $) 138)) (-1790 (((-531) $) 132)) (-2140 ((|#1| $) 56)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 79 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 85 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) $) NIL (|has| |#1| (-492 (-1102) $))) (($ $ (-598 (-1102)) (-598 $)) 86 (|has| |#1| (-492 (-1102) $))) (($ $ (-598 (-276 $))) 82 (|has| |#1| (-291 $))) (($ $ (-276 $)) NIL (|has| |#1| (-291 $))) (($ $ $ $) NIL (|has| |#1| (-291 $))) (($ $ (-598 $) (-598 $)) NIL (|has| |#1| (-291 $)))) (-1785 (($ $ |#1|) 71 (|has| |#1| (-268 |#1| |#1|))) (($ $ $) 72 (|has| |#1| (-268 $ $)))) (-3352 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) 142)) (-3318 (((-507) $) 27 (|has| |#1| (-573 (-507)))) (((-360) $) 92 (|has| |#1| (-962))) (((-208) $) 95 (|has| |#1| (-962)))) (-2265 (((-806) $) 114) (($ (-531)) 46) (($ $) NIL) (($ |#1|) 45) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531)))))) (-2284 (((-721)) 48)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 40 T CONST)) (-3050 (($) 39 T CONST)) (-4020 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2148 (((-110) $ $) 96)) (-2250 (($ $) 128) (($ $ $) NIL)) (-2237 (($ $ $) 140)) (** (($ $ (-864)) NIL) (($ $ (-721)) 102)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 50) (($ $ $) 49) (($ |#1| $) 51) (($ $ |#1|) NIL)))
+(((-399 |#1|) (-13 (-523) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2140 (|#1| $)) (-15 -1790 ((-531) $)) (-15 -1577 ($ |#1| (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))))) (-15 -1292 ((-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))) $)) (-15 -1640 ($ |#1| (-531))) (-15 -2721 ((-598 (-2 (|:| -2552 |#1|) (|:| -1790 (-531)))) $)) (-15 -1299 ($ |#1| (-531))) (-15 -3786 ((-531) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -2061 ((-3 "nil" "sqfr" "irred" "prime") $ (-531))) (-15 -2688 ((-721) $)) (-15 -2598 ($ |#1| (-531))) (-15 -3984 ($ |#1| (-531))) (-15 -2206 ($ |#1| (-531) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3887 (|#1| $)) (-15 -4023 ($ $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-962)) (-6 (-962)) |%noBranch|) (IF (|has| |#1| (-1142)) (-6 (-1142)) |%noBranch|) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-492 (-1102) $)) (-6 (-492 (-1102) $)) |%noBranch|))) (-523)) (T -399))
+((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-523)) (-5 *1 (-399 *3)))) (-2140 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-1577 (*1 *1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-531))))) (-4 *2 (-523)) (-5 *1 (-399 *2)))) (-1292 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-531))))) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-1640 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| -2552 *3) (|:| -1790 (-531))))) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-1299 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-3786 (*1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-2061 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *4)) (-4 *4 (-523)))) (-2688 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-399 *3)) (-4 *3 (-523)))) (-2598 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-3984 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-2206 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-531)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-3887 (*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-4023 (*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-516)) (-4 *3 (-523)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-399 *3)) (-4 *3 (-516)) (-4 *3 (-523)))) (-1609 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-399 *3)) (-4 *3 (-516)) (-4 *3 (-523)))))
+(-13 (-523) (-214 |#1|) (-37 |#1|) (-319 |#1|) (-392 |#1|) (-10 -8 (-15 -2140 (|#1| $)) (-15 -1790 ((-531) $)) (-15 -1577 ($ |#1| (-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))))) (-15 -1292 ((-598 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-531)))) $)) (-15 -1640 ($ |#1| (-531))) (-15 -2721 ((-598 (-2 (|:| -2552 |#1|) (|:| -1790 (-531)))) $)) (-15 -1299 ($ |#1| (-531))) (-15 -3786 ((-531) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -2061 ((-3 "nil" "sqfr" "irred" "prime") $ (-531))) (-15 -2688 ((-721) $)) (-15 -2598 ($ |#1| (-531))) (-15 -3984 ($ |#1| (-531))) (-15 -2206 ($ |#1| (-531) (-3 "nil" "sqfr" "irred" "prime"))) (-15 -3887 (|#1| $)) (-15 -4023 ($ $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-432)) (-6 (-432)) |%noBranch|) (IF (|has| |#1| (-962)) (-6 (-962)) |%noBranch|) (IF (|has| |#1| (-1142)) (-6 (-1142)) |%noBranch|) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-268 $ $)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |#1| (-291 $)) (-6 (-291 $)) |%noBranch|) (IF (|has| |#1| (-492 (-1102) $)) (-6 (-492 (-1102) $)) |%noBranch|)))
+((-2522 (((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|)) 21)) (-4006 (((-399 |#1|) (-399 |#1|) (-399 |#1|)) 16)))
+(((-400 |#1|) (-10 -7 (-15 -2522 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -4006 ((-399 |#1|) (-399 |#1|) (-399 |#1|)))) (-523)) (T -400))
+((-4006 (*1 *2 *2 *2) (-12 (-5 *2 (-399 *3)) (-4 *3 (-523)) (-5 *1 (-400 *3)))) (-2522 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-523)) (-5 *2 (-399 *4)) (-5 *1 (-400 *4)))))
+(-10 -7 (-15 -2522 ((-399 |#1|) (-399 |#1|) (-1 (-399 |#1|) |#1|))) (-15 -4006 ((-399 |#1|) (-399 |#1|) (-399 |#1|))))
+((-1585 ((|#2| |#2|) 166)) (-3520 (((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110)) 57)))
+(((-401 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3520 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110))) (-15 -1585 (|#2| |#2|))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|)) (-1102) |#2|) (T -401))
+((-1585 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1124) (-411 *3))) (-14 *4 (-1102)) (-14 *5 *2))) (-3520 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (|:| |%expansion| (-294 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-14 *6 (-1102)) (-14 *7 *3))))
+(-10 -7 (-15 -3520 ((-3 (|:| |%expansion| (-294 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110))) (-15 -1585 (|#2| |#2|)))
+((-3261 ((|#4| (-1 |#3| |#1|) |#2|) 11)))
+(((-402 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|))) (-13 (-986) (-797)) (-411 |#1|) (-13 (-986) (-797)) (-411 |#3|)) (T -402))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-986) (-797))) (-4 *6 (-13 (-986) (-797))) (-4 *2 (-411 *6)) (-5 *1 (-402 *5 *4 *6 *2)) (-4 *4 (-411 *5)))))
+(-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)))
+((-1585 ((|#2| |#2|) 90)) (-3702 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085)) 48)) (-2473 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085)) 154)))
+(((-403 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3702 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085))) (-15 -2473 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085))) (-15 -1585 (|#2| |#2|))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|) (-10 -8 (-15 -2265 ($ |#3|)))) (-795) (-13 (-1162 |#2| |#3|) (-344) (-1124) (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $)))) (-925 |#4|) (-1102)) (T -403))
+((-1585 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-4 *2 (-13 (-27) (-1124) (-411 *3) (-10 -8 (-15 -2265 ($ *4))))) (-4 *4 (-795)) (-4 *5 (-13 (-1162 *2 *4) (-344) (-1124) (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-925 *5)) (-14 *7 (-1102)))) (-2473 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-4 *3 (-13 (-27) (-1124) (-411 *6) (-10 -8 (-15 -2265 ($ *7))))) (-4 *7 (-795)) (-4 *8 (-13 (-1162 *3 *7) (-344) (-1124) (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1085)) (-4 *9 (-925 *8)) (-14 *10 (-1102)))) (-3702 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-110)) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-4 *3 (-13 (-27) (-1124) (-411 *6) (-10 -8 (-15 -2265 ($ *7))))) (-4 *7 (-795)) (-4 *8 (-13 (-1162 *3 *7) (-344) (-1124) (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085)))))) (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1085)) (-4 *9 (-925 *8)) (-14 *10 (-1102)))))
+(-10 -7 (-15 -3702 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085))) (-15 -2473 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))) |#2| (-110) (-1085))) (-15 -1585 (|#2| |#2|)))
+((-3203 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22)) (-1760 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20)) (-3261 ((|#4| (-1 |#3| |#1|) |#2|) 17)))
+(((-404 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1760 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3203 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1030) (-406 |#1|) (-1030) (-406 |#3|)) (T -404))
+((-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1030)) (-4 *5 (-1030)) (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1030)) (-4 *2 (-1030)) (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-406 *6)) (-5 *1 (-404 *5 *4 *6 *2)) (-4 *4 (-406 *5)))))
+(-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -1760 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -3203 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|)))
+((-3847 (($) 44)) (-4210 (($ |#2| $) NIL) (($ $ |#2|) NIL) (($ $ $) 40)) (-3252 (($ $ $) 39)) (-3890 (((-110) $ $) 28)) (-3006 (((-721)) 47)) (-1245 (($ (-598 |#2|)) 20) (($) NIL)) (-1381 (($) 53)) (-2170 (((-110) $ $) 13)) (-4103 ((|#2| $) 61)) (-1241 ((|#2| $) 59)) (-2211 (((-864) $) 55)) (-1301 (($ $ $) 35)) (-1889 (($ (-864)) 50)) (-1786 (($ $ |#2|) NIL) (($ $ $) 38)) (-2539 (((-721) (-1 (-110) |#2|) $) NIL) (((-721) |#2| $) 26)) (-2274 (($ (-598 |#2|)) 24)) (-1595 (($ $) 46)) (-2265 (((-806) $) 33)) (-4112 (((-721) $) 21)) (-3445 (($ (-598 |#2|)) 19) (($) NIL)) (-2148 (((-110) $ $) 16)))
+(((-405 |#1| |#2|) (-10 -8 (-15 -3006 ((-721))) (-15 -1889 (|#1| (-864))) (-15 -2211 ((-864) |#1|)) (-15 -1381 (|#1|)) (-15 -4103 (|#2| |#1|)) (-15 -1241 (|#2| |#1|)) (-15 -3847 (|#1|)) (-15 -1595 (|#1| |#1|)) (-15 -4112 ((-721) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2170 ((-110) |#1| |#1|)) (-15 -3445 (|#1|)) (-15 -3445 (|#1| (-598 |#2|))) (-15 -1245 (|#1|)) (-15 -1245 (|#1| (-598 |#2|))) (-15 -1301 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#2|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -3890 ((-110) |#1| |#1|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -4210 (|#1| |#1| |#2|)) (-15 -4210 (|#1| |#2| |#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|))) (-406 |#2|) (-1030)) (T -405))
+((-3006 (*1 *2) (-12 (-4 *4 (-1030)) (-5 *2 (-721)) (-5 *1 (-405 *3 *4)) (-4 *3 (-406 *4)))))
+(-10 -8 (-15 -3006 ((-721))) (-15 -1889 (|#1| (-864))) (-15 -2211 ((-864) |#1|)) (-15 -1381 (|#1|)) (-15 -4103 (|#2| |#1|)) (-15 -1241 (|#2| |#1|)) (-15 -3847 (|#1|)) (-15 -1595 (|#1| |#1|)) (-15 -4112 ((-721) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2170 ((-110) |#1| |#1|)) (-15 -3445 (|#1|)) (-15 -3445 (|#1| (-598 |#2|))) (-15 -1245 (|#1|)) (-15 -1245 (|#1| (-598 |#2|))) (-15 -1301 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#2|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -3890 ((-110) |#1| |#1|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -4210 (|#1| |#1| |#2|)) (-15 -4210 (|#1| |#2| |#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)))
+((-2247 (((-110) $ $) 19)) (-3847 (($) 67 (|has| |#1| (-349)))) (-4210 (($ |#1| $) 82) (($ $ |#1|) 81) (($ $ $) 80)) (-3252 (($ $ $) 78)) (-3890 (((-110) $ $) 79)) (-4058 (((-110) $ (-721)) 8)) (-3006 (((-721)) 61 (|has| |#1| (-349)))) (-1245 (($ (-598 |#1|)) 74) (($) 73)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-1381 (($) 64 (|has| |#1| (-349)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 70)) (-3280 (((-110) $ (-721)) 9)) (-4103 ((|#1| $) 65 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1241 ((|#1| $) 66 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-2211 (((-864) $) 63 (|has| |#1| (-349)))) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22)) (-1301 (($ $ $) 75)) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-1889 (($ (-864)) 62 (|has| |#1| (-349)))) (-2529 (((-1049) $) 21)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1786 (($ $ |#1|) 77) (($ $ $) 76)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-1595 (($ $) 68 (|has| |#1| (-349)))) (-2265 (((-806) $) 18)) (-4112 (((-721) $) 69)) (-3445 (($ (-598 |#1|)) 72) (($) 71)) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-406 |#1|) (-133) (-1030)) (T -406))
+((-4112 (*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1030)) (-5 *2 (-721)))) (-1595 (*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-349)))) (-3847 (*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1030)))) (-1241 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-797)))) (-4103 (*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-797)))))
+(-13 (-212 |t#1|) (-1028 |t#1|) (-10 -8 (-6 -4273) (-15 -4112 ((-721) $)) (IF (|has| |t#1| (-349)) (PROGN (-6 (-349)) (-15 -1595 ($ $)) (-15 -3847 ($))) |%noBranch|) (IF (|has| |t#1| (-797)) (PROGN (-15 -1241 (|t#1| $)) (-15 -4103 (|t#1| $))) |%noBranch|)))
+(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-212 |#1|) . T) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-349) |has| |#1| (-349)) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1028 |#1|) . T) ((-1030) . T) ((-1138) . T))
+((-4204 (((-548 |#2|) |#2| (-1102)) 36)) (-2987 (((-548 |#2|) |#2| (-1102)) 20)) (-1578 ((|#2| |#2| (-1102)) 25)))
+(((-407 |#1| |#2|) (-10 -7 (-15 -2987 ((-548 |#2|) |#2| (-1102))) (-15 -4204 ((-548 |#2|) |#2| (-1102))) (-15 -1578 (|#2| |#2| (-1102)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-29 |#1|))) (T -407))
+((-1578 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1124) (-29 *4))))) (-4204 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1124) (-29 *5))))) (-2987 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-407 *5 *3)) (-4 *3 (-13 (-1124) (-29 *5))))))
+(-10 -7 (-15 -2987 ((-548 |#2|) |#2| (-1102))) (-15 -4204 ((-548 |#2|) |#2| (-1102))) (-15 -1578 (|#2| |#2| (-1102))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-2381 (($ |#2| |#1|) 35)) (-2515 (($ |#2| |#1|) 33)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-312 |#2|)) 25)) (-2284 (((-721)) NIL)) (-3035 (($) 10 T CONST)) (-3050 (($) 16 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 34)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 36) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-408 |#1| |#2|) (-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4260)) (IF (|has| |#1| (-6 -4260)) (-6 -4260) |%noBranch|) |%noBranch|) (-15 -2265 ($ |#1|)) (-15 -2265 ($ (-312 |#2|))) (-15 -2381 ($ |#2| |#1|)) (-15 -2515 ($ |#2| |#1|)))) (-13 (-162) (-37 (-388 (-531)))) (-13 (-797) (-21))) (T -408))
+((-2265 (*1 *1 *2) (-12 (-5 *1 (-408 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-531))))) (-4 *3 (-13 (-797) (-21))))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-797) (-21))) (-5 *1 (-408 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))))) (-2381 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))) (-4 *2 (-13 (-797) (-21))))) (-2515 (*1 *1 *2 *3) (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-531))))) (-4 *2 (-13 (-797) (-21))))))
+(-13 (-37 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4260)) (IF (|has| |#1| (-6 -4260)) (-6 -4260) |%noBranch|) |%noBranch|) (-15 -2265 ($ |#1|)) (-15 -2265 ($ (-312 |#2|))) (-15 -2381 ($ |#2| |#1|)) (-15 -2515 ($ |#2| |#1|))))
+((-1788 (((-3 |#2| (-598 |#2|)) |#2| (-1102)) 109)))
+(((-409 |#1| |#2|) (-10 -7 (-15 -1788 ((-3 |#2| (-598 |#2|)) |#2| (-1102)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-902) (-29 |#1|))) (T -409))
+((-1788 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 *3 (-598 *3))) (-5 *1 (-409 *5 *3)) (-4 *3 (-13 (-1124) (-902) (-29 *5))))))
+(-10 -7 (-15 -1788 ((-3 |#2| (-598 |#2|)) |#2| (-1102))))
+((-2695 (((-598 (-1102)) $) 72)) (-2516 (((-388 (-1098 $)) $ (-571 $)) 273)) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-598 (-571 $)) (-598 $)) 237)) (-3154 (((-3 (-571 $) "failed") $) NIL) (((-3 (-1102) "failed") $) 75) (((-3 (-531) "failed") $) NIL) (((-3 |#2| "failed") $) 233) (((-3 (-388 (-895 |#2|)) "failed") $) 324) (((-3 (-895 |#2|) "failed") $) 235) (((-3 (-388 (-531)) "failed") $) NIL)) (-2523 (((-571 $) $) NIL) (((-1102) $) 30) (((-531) $) NIL) ((|#2| $) 231) (((-388 (-895 |#2|)) $) 305) (((-895 |#2|) $) 232) (((-388 (-531)) $) NIL)) (-3254 (((-112) (-112)) 47)) (-3027 (($ $) 87)) (-1302 (((-3 (-571 $) "failed") $) 228)) (-2501 (((-598 (-571 $)) $) 229)) (-3443 (((-3 (-598 $) "failed") $) 247)) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $) 254)) (-2077 (((-3 (-598 $) "failed") $) 245)) (-2124 (((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $) 264)) (-3448 (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $) 251) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112)) 217) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102)) 219)) (-2435 (((-110) $) 19)) (-2448 ((|#2| $) 21)) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) 236) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) 96) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL) (($ $ (-1102)) 57) (($ $ (-598 (-1102))) 240) (($ $) 241) (($ $ (-112) $ (-1102)) 60) (($ $ (-598 (-112)) (-598 $) (-1102)) 67) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $))) 107) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $)))) 242) (($ $ (-1102) (-721) (-1 $ (-598 $))) 94) (($ $ (-1102) (-721) (-1 $ $)) 93)) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) 106)) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) 238)) (-2842 (($ $) 284)) (-3318 (((-835 (-531)) $) 257) (((-835 (-360)) $) 261) (($ (-399 $)) 320) (((-507) $) NIL)) (-2265 (((-806) $) 239) (($ (-571 $)) 84) (($ (-1102)) 26) (($ |#2|) NIL) (($ (-1054 |#2| (-571 $))) NIL) (($ (-388 |#2|)) 289) (($ (-895 (-388 |#2|))) 329) (($ (-388 (-895 (-388 |#2|)))) 301) (($ (-388 (-895 |#2|))) 295) (($ $) NIL) (($ (-895 |#2|)) 185) (($ (-388 (-531))) 334) (($ (-531)) NIL)) (-2284 (((-721)) 79)) (-3167 (((-110) (-112)) 41)) (-2507 (($ (-1102) $) 33) (($ (-1102) $ $) 34) (($ (-1102) $ $ $) 35) (($ (-1102) $ $ $ $) 36) (($ (-1102) (-598 $)) 39)) (* (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ |#2| $) 266) (($ $ |#2|) NIL) (($ $ $) NIL) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL)))
+(((-410 |#1| |#2|) (-10 -8 (-15 * (|#1| (-864) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2284 ((-721))) (-15 -2265 (|#1| (-531))) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-895 |#2|) |#1|)) (-15 -3154 ((-3 (-895 |#2|) "failed") |#1|)) (-15 -2265 (|#1| (-895 |#2|))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2523 ((-388 (-895 |#2|)) |#1|)) (-15 -3154 ((-3 (-388 (-895 |#2|)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-895 |#2|)))) (-15 -2516 ((-388 (-1098 |#1|)) |#1| (-571 |#1|))) (-15 -2265 (|#1| (-388 (-895 (-388 |#2|))))) (-15 -2265 (|#1| (-895 (-388 |#2|)))) (-15 -2265 (|#1| (-388 |#2|))) (-15 -2842 (|#1| |#1|)) (-15 -3318 (|#1| (-399 |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-721) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-721) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-721)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-721)) (-598 (-1 |#1| |#1|)))) (-15 -3058 ((-3 (-2 (|:| |val| |#1|) (|:| -1790 (-531))) "failed") |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1| (-1102))) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1| (-112))) (-15 -3027 (|#1| |#1|)) (-15 -2265 (|#1| (-1054 |#2| (-571 |#1|)))) (-15 -2124 ((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 |#1|))) "failed") |#1|)) (-15 -2077 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1|)) (-15 -3443 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 |#1|) (-1102))) (-15 -4115 (|#1| |#1| (-112) |#1| (-1102))) (-15 -4115 (|#1| |#1|)) (-15 -4115 (|#1| |#1| (-598 (-1102)))) (-15 -4115 (|#1| |#1| (-1102))) (-15 -2507 (|#1| (-1102) (-598 |#1|))) (-15 -2507 (|#1| (-1102) |#1| |#1| |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1| |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1|)) (-15 -2695 ((-598 (-1102)) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2435 ((-110) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2265 (|#1| (-1102))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| |#1|)))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| |#1|)))) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -2501 ((-598 (-571 |#1|)) |#1|)) (-15 -1302 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -3184 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -3184 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -3184 (|#1| |#1| (-276 |#1|))) (-15 -1785 (|#1| (-112) (-598 |#1|))) (-15 -1785 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-571 |#1|) |#1|)) (-15 -2523 ((-571 |#1|) |#1|)) (-15 -3154 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -2265 (|#1| (-571 |#1|))) (-15 -2265 ((-806) |#1|))) (-411 |#2|) (-797)) (T -410))
+((-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *4 (-797)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5)))) (-2284 (*1 *2) (-12 (-4 *4 (-797)) (-5 *2 (-721)) (-5 *1 (-410 *3 *4)) (-4 *3 (-411 *4)))))
+(-10 -8 (-15 * (|#1| (-864) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2284 ((-721))) (-15 -2265 (|#1| (-531))) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-895 |#2|) |#1|)) (-15 -3154 ((-3 (-895 |#2|) "failed") |#1|)) (-15 -2265 (|#1| (-895 |#2|))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -2265 (|#1| |#1|)) (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2523 ((-388 (-895 |#2|)) |#1|)) (-15 -3154 ((-3 (-388 (-895 |#2|)) "failed") |#1|)) (-15 -2265 (|#1| (-388 (-895 |#2|)))) (-15 -2516 ((-388 (-1098 |#1|)) |#1| (-571 |#1|))) (-15 -2265 (|#1| (-388 (-895 (-388 |#2|))))) (-15 -2265 (|#1| (-895 (-388 |#2|)))) (-15 -2265 (|#1| (-388 |#2|))) (-15 -2842 (|#1| |#1|)) (-15 -3318 (|#1| (-399 |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-721) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-721) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-721)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-721)) (-598 (-1 |#1| |#1|)))) (-15 -3058 ((-3 (-2 (|:| |val| |#1|) (|:| -1790 (-531))) "failed") |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1| (-1102))) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1| (-112))) (-15 -3027 (|#1| |#1|)) (-15 -2265 (|#1| (-1054 |#2| (-571 |#1|)))) (-15 -2124 ((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 |#1|))) "failed") |#1|)) (-15 -2077 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 |#1|)) (|:| -1790 (-531))) "failed") |#1|)) (-15 -3443 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 |#1|) (-1102))) (-15 -4115 (|#1| |#1| (-112) |#1| (-1102))) (-15 -4115 (|#1| |#1|)) (-15 -4115 (|#1| |#1| (-598 (-1102)))) (-15 -4115 (|#1| |#1| (-1102))) (-15 -2507 (|#1| (-1102) (-598 |#1|))) (-15 -2507 (|#1| (-1102) |#1| |#1| |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1| |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1| |#1|)) (-15 -2507 (|#1| (-1102) |#1|)) (-15 -2695 ((-598 (-1102)) |#1|)) (-15 -2448 (|#2| |#1|)) (-15 -2435 ((-110) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2265 (|#1| (-1102))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-112) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-112)) (-598 (-1 |#1| |#1|)))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| |#1|))) (-15 -4115 (|#1| |#1| (-1102) (-1 |#1| (-598 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| (-598 |#1|))))) (-15 -4115 (|#1| |#1| (-598 (-1102)) (-598 (-1 |#1| |#1|)))) (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -2501 ((-598 (-571 |#1|)) |#1|)) (-15 -1302 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -3184 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -3184 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -3184 (|#1| |#1| (-276 |#1|))) (-15 -1785 (|#1| (-112) (-598 |#1|))) (-15 -1785 (|#1| (-112) |#1| |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1| |#1|)) (-15 -1785 (|#1| (-112) |#1|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -4115 (|#1| |#1| (-598 (-571 |#1|)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-571 |#1|) |#1|)) (-15 -2523 ((-571 |#1|) |#1|)) (-15 -3154 ((-3 (-571 |#1|) "failed") |#1|)) (-15 -2265 (|#1| (-571 |#1|))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 113 (|has| |#1| (-25)))) (-2695 (((-598 (-1102)) $) 200)) (-2516 (((-388 (-1098 $)) $ (-571 $)) 168 (|has| |#1| (-523)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 140 (|has| |#1| (-523)))) (-3258 (($ $) 141 (|has| |#1| (-523)))) (-2921 (((-110) $) 143 (|has| |#1| (-523)))) (-2410 (((-598 (-571 $)) $) 44)) (-2128 (((-3 $ "failed") $ $) 115 (|has| |#1| (-21)))) (-3184 (($ $ (-276 $)) 56) (($ $ (-598 (-276 $))) 55) (($ $ (-598 (-571 $)) (-598 $)) 54)) (-3240 (($ $) 160 (|has| |#1| (-523)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-523)))) (-2760 (((-110) $ $) 151 (|has| |#1| (-523)))) (-4082 (($) 101 (-1435 (|has| |#1| (-1042)) (|has| |#1| (-25))) CONST)) (-3154 (((-3 (-571 $) "failed") $) 69) (((-3 (-1102) "failed") $) 213) (((-3 (-531) "failed") $) 206 (|has| |#1| (-977 (-531)))) (((-3 |#1| "failed") $) 204) (((-3 (-388 (-895 |#1|)) "failed") $) 166 (|has| |#1| (-523))) (((-3 (-895 |#1|) "failed") $) 120 (|has| |#1| (-986))) (((-3 (-388 (-531)) "failed") $) 95 (-1435 (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531))))))) (-2523 (((-571 $) $) 68) (((-1102) $) 212) (((-531) $) 207 (|has| |#1| (-977 (-531)))) ((|#1| $) 203) (((-388 (-895 |#1|)) $) 165 (|has| |#1| (-523))) (((-895 |#1|) $) 119 (|has| |#1| (-986))) (((-388 (-531)) $) 94 (-1435 (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531))))))) (-3650 (($ $ $) 155 (|has| |#1| (-523)))) (-3073 (((-639 (-531)) (-639 $)) 134 (-3427 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 133 (-3427 (|has| |#1| (-594 (-531))) (|has| |#1| (-986)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 132 (|has| |#1| (-986))) (((-639 |#1|) (-639 $)) 131 (|has| |#1| (-986)))) (-3622 (((-3 $ "failed") $) 103 (|has| |#1| (-1042)))) (-3630 (($ $ $) 154 (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-523)))) (-2534 (((-110) $) 162 (|has| |#1| (-523)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 209 (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 208 (|has| |#1| (-829 (-360))))) (-1238 (($ $) 51) (($ (-598 $)) 50)) (-4051 (((-598 (-112)) $) 43)) (-3254 (((-112) (-112)) 42)) (-3481 (((-110) $) 102 (|has| |#1| (-1042)))) (-4250 (((-110) $) 22 (|has| $ (-977 (-531))))) (-3027 (($ $) 183 (|has| |#1| (-986)))) (-1840 (((-1054 |#1| (-571 $)) $) 184 (|has| |#1| (-986)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-523)))) (-2733 (((-1098 $) (-571 $)) 25 (|has| $ (-986)))) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-3261 (($ (-1 $ $) (-571 $)) 36)) (-1302 (((-3 (-571 $) "failed") $) 46)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-523))) (($ $ $) 146 (|has| |#1| (-523)))) (-1521 (((-1085) $) 9)) (-2501 (((-598 (-571 $)) $) 45)) (-1930 (($ (-112) $) 38) (($ (-112) (-598 $)) 37)) (-3443 (((-3 (-598 $) "failed") $) 189 (|has| |#1| (-1042)))) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $) 180 (|has| |#1| (-986)))) (-2077 (((-3 (-598 $) "failed") $) 187 (|has| |#1| (-25)))) (-2124 (((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $) 186 (|has| |#1| (-25)))) (-3448 (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $) 188 (|has| |#1| (-1042))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112)) 182 (|has| |#1| (-986))) (((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102)) 181 (|has| |#1| (-986)))) (-4247 (((-110) $ (-112)) 40) (((-110) $ (-1102)) 39)) (-2422 (($ $) 105 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-4194 (((-721) $) 47)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 202)) (-2448 ((|#1| $) 201)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-523)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-523))) (($ $ $) 144 (|has| |#1| (-523)))) (-2781 (((-110) $ $) 35) (((-110) $ (-1102)) 34)) (-2552 (((-399 $) $) 159 (|has| |#1| (-523)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-523))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-523)))) (-3609 (((-3 $ "failed") $ $) 139 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-523)))) (-1787 (((-110) $) 23 (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) 67) (($ $ (-598 (-571 $)) (-598 $)) 66) (($ $ (-598 (-276 $))) 65) (($ $ (-276 $)) 64) (($ $ $ $) 63) (($ $ (-598 $) (-598 $)) 62) (($ $ (-598 (-1102)) (-598 (-1 $ $))) 33) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) 32) (($ $ (-1102) (-1 $ (-598 $))) 31) (($ $ (-1102) (-1 $ $)) 30) (($ $ (-598 (-112)) (-598 (-1 $ $))) 29) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) 28) (($ $ (-112) (-1 $ (-598 $))) 27) (($ $ (-112) (-1 $ $)) 26) (($ $ (-1102)) 194 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102))) 193 (|has| |#1| (-573 (-507)))) (($ $) 192 (|has| |#1| (-573 (-507)))) (($ $ (-112) $ (-1102)) 191 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-112)) (-598 $) (-1102)) 190 (|has| |#1| (-573 (-507)))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $))) 179 (|has| |#1| (-986))) (($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $)))) 178 (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ (-598 $))) 177 (|has| |#1| (-986))) (($ $ (-1102) (-721) (-1 $ $)) 176 (|has| |#1| (-986)))) (-4100 (((-721) $) 152 (|has| |#1| (-523)))) (-1785 (($ (-112) $) 61) (($ (-112) $ $) 60) (($ (-112) $ $ $) 59) (($ (-112) $ $ $ $) 58) (($ (-112) (-598 $)) 57)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-523)))) (-1771 (($ $) 49) (($ $ $) 48)) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 125 (|has| |#1| (-986))) (($ $ (-1102) (-721)) 124 (|has| |#1| (-986))) (($ $ (-598 (-1102))) 123 (|has| |#1| (-986))) (($ $ (-1102)) 122 (|has| |#1| (-986)))) (-2842 (($ $) 173 (|has| |#1| (-523)))) (-1853 (((-1054 |#1| (-571 $)) $) 174 (|has| |#1| (-523)))) (-3608 (($ $) 24 (|has| $ (-986)))) (-3318 (((-835 (-531)) $) 211 (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) 210 (|has| |#1| (-573 (-835 (-360))))) (($ (-399 $)) 175 (|has| |#1| (-523))) (((-507) $) 97 (|has| |#1| (-573 (-507))))) (-4164 (($ $ $) 108 (|has| |#1| (-453)))) (-3214 (($ $ $) 109 (|has| |#1| (-453)))) (-2265 (((-806) $) 11) (($ (-571 $)) 70) (($ (-1102)) 214) (($ |#1|) 205) (($ (-1054 |#1| (-571 $))) 185 (|has| |#1| (-986))) (($ (-388 |#1|)) 171 (|has| |#1| (-523))) (($ (-895 (-388 |#1|))) 170 (|has| |#1| (-523))) (($ (-388 (-895 (-388 |#1|)))) 169 (|has| |#1| (-523))) (($ (-388 (-895 |#1|))) 167 (|has| |#1| (-523))) (($ $) 138 (|has| |#1| (-523))) (($ (-895 |#1|)) 121 (|has| |#1| (-986))) (($ (-388 (-531))) 96 (-1435 (|has| |#1| (-523)) (-12 (|has| |#1| (-977 (-531))) (|has| |#1| (-523))) (|has| |#1| (-977 (-388 (-531)))))) (($ (-531)) 93 (-1435 (|has| |#1| (-986)) (|has| |#1| (-977 (-531)))))) (-2750 (((-3 $ "failed") $) 135 (|has| |#1| (-138)))) (-2284 (((-721)) 130 (|has| |#1| (-986)))) (-3504 (($ $) 53) (($ (-598 $)) 52)) (-3167 (((-110) (-112)) 41)) (-2587 (((-110) $ $) 142 (|has| |#1| (-523)))) (-2507 (($ (-1102) $) 199) (($ (-1102) $ $) 198) (($ (-1102) $ $ $) 197) (($ (-1102) $ $ $ $) 196) (($ (-1102) (-598 $)) 195)) (-3035 (($) 112 (|has| |#1| (-25)) CONST)) (-3050 (($) 100 (|has| |#1| (-1042)) CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 129 (|has| |#1| (-986))) (($ $ (-1102) (-721)) 128 (|has| |#1| (-986))) (($ $ (-598 (-1102))) 127 (|has| |#1| (-986))) (($ $ (-1102)) 126 (|has| |#1| (-986)))) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2263 (($ (-1054 |#1| (-571 $)) (-1054 |#1| (-571 $))) 172 (|has| |#1| (-523))) (($ $ $) 106 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523))))) (-2250 (($ $ $) 117 (|has| |#1| (-21))) (($ $) 116 (|has| |#1| (-21)))) (-2237 (($ $ $) 110 (|has| |#1| (-25)))) (** (($ $ (-531)) 107 (-1435 (|has| |#1| (-453)) (|has| |#1| (-523)))) (($ $ (-721)) 104 (|has| |#1| (-1042))) (($ $ (-864)) 99 (|has| |#1| (-1042)))) (* (($ (-388 (-531)) $) 164 (|has| |#1| (-523))) (($ $ (-388 (-531))) 163 (|has| |#1| (-523))) (($ |#1| $) 137 (|has| |#1| (-162))) (($ $ |#1|) 136 (|has| |#1| (-162))) (($ (-531) $) 118 (|has| |#1| (-21))) (($ (-721) $) 114 (|has| |#1| (-25))) (($ (-864) $) 111 (|has| |#1| (-25))) (($ $ $) 98 (|has| |#1| (-1042)))))
+(((-411 |#1|) (-133) (-797)) (T -411))
+((-2435 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-797)) (-5 *2 (-110)))) (-2448 (*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-797)) (-5 *2 (-598 (-1102))))) (-2507 (*1 *1 *2 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) (-2507 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) (-2507 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) (-2507 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))) (-2507 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-598 *1)) (-4 *1 (-411 *4)) (-4 *4 (-797)))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)) (-4 *3 (-573 (-507))))) (-4115 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-4 *1 (-411 *3)) (-4 *3 (-797)) (-4 *3 (-573 (-507))))) (-4115 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-573 (-507))))) (-4115 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-112)) (-5 *3 (-1102)) (-4 *1 (-411 *4)) (-4 *4 (-797)) (-4 *4 (-573 (-507))))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 *1)) (-5 *4 (-1102)) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-573 (-507))))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-411 *3)))) (-3448 (*1 *2 *1) (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-797)) (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) (-4 *1 (-411 *3)))) (-2077 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-411 *3)))) (-2124 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-797)) (-5 *2 (-2 (|:| -2005 (-531)) (|:| |var| (-571 *1)))) (-4 *1 (-411 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1054 *3 (-571 *1))) (-4 *3 (-986)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *3 (-797)) (-5 *2 (-1054 *3 (-571 *1))) (-4 *1 (-411 *3)))) (-3027 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-986)))) (-3448 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-4 *4 (-986)) (-4 *4 (-797)) (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) (-4 *1 (-411 *4)))) (-3448 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1102)) (-4 *4 (-986)) (-4 *4 (-797)) (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531)))) (-4 *1 (-411 *4)))) (-3058 (*1 *2 *1) (|partial| -12 (-4 *3 (-986)) (-4 *3 (-797)) (-5 *2 (-2 (|:| |val| *1) (|:| -1790 (-531)))) (-4 *1 (-411 *3)))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-721))) (-5 *4 (-598 (-1 *1 *1))) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-721))) (-5 *4 (-598 (-1 *1 (-598 *1)))) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *4 (-1 *1 (-598 *1))) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) (-4115 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *4 (-1 *1 *1)) (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-399 *1)) (-4 *1 (-411 *3)) (-4 *3 (-523)) (-4 *3 (-797)))) (-1853 (*1 *2 *1) (-12 (-4 *3 (-523)) (-4 *3 (-797)) (-5 *2 (-1054 *3 (-571 *1))) (-4 *1 (-411 *3)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-523)))) (-2263 (*1 *1 *2 *2) (-12 (-5 *2 (-1054 *3 (-571 *1))) (-4 *3 (-523)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-523)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-895 (-388 *3))) (-4 *3 (-523)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-388 *3)))) (-4 *3 (-523)) (-4 *3 (-797)) (-4 *1 (-411 *3)))) (-2516 (*1 *2 *1 *3) (-12 (-5 *3 (-571 *1)) (-4 *1 (-411 *4)) (-4 *4 (-797)) (-4 *4 (-523)) (-5 *2 (-388 (-1098 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-411 *3)) (-4 *3 (-797)) (-4 *3 (-1042)))))
+(-13 (-284) (-977 (-1102)) (-827 |t#1|) (-381 |t#1|) (-392 |t#1|) (-10 -8 (-15 -2435 ((-110) $)) (-15 -2448 (|t#1| $)) (-15 -2695 ((-598 (-1102)) $)) (-15 -2507 ($ (-1102) $)) (-15 -2507 ($ (-1102) $ $)) (-15 -2507 ($ (-1102) $ $ $)) (-15 -2507 ($ (-1102) $ $ $ $)) (-15 -2507 ($ (-1102) (-598 $))) (IF (|has| |t#1| (-573 (-507))) (PROGN (-6 (-573 (-507))) (-15 -4115 ($ $ (-1102))) (-15 -4115 ($ $ (-598 (-1102)))) (-15 -4115 ($ $)) (-15 -4115 ($ $ (-112) $ (-1102))) (-15 -4115 ($ $ (-598 (-112)) (-598 $) (-1102)))) |%noBranch|) (IF (|has| |t#1| (-1042)) (PROGN (-6 (-677)) (-15 ** ($ $ (-721))) (-15 -3443 ((-3 (-598 $) "failed") $)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-453)) (-6 (-453)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -2077 ((-3 (-598 $) "failed") $)) (-15 -2124 ((-3 (-2 (|:| -2005 (-531)) (|:| |var| (-571 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-986)) (PROGN (-6 (-986)) (-6 (-977 (-895 |t#1|))) (-6 (-843 (-1102))) (-6 (-358 |t#1|)) (-15 -2265 ($ (-1054 |t#1| (-571 $)))) (-15 -1840 ((-1054 |t#1| (-571 $)) $)) (-15 -3027 ($ $)) (-15 -3448 ((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-112))) (-15 -3448 ((-3 (-2 (|:| |var| (-571 $)) (|:| -1790 (-531))) "failed") $ (-1102))) (-15 -3058 ((-3 (-2 (|:| |val| $) (|:| -1790 (-531))) "failed") $)) (-15 -4115 ($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ $)))) (-15 -4115 ($ $ (-598 (-1102)) (-598 (-721)) (-598 (-1 $ (-598 $))))) (-15 -4115 ($ $ (-1102) (-721) (-1 $ (-598 $)))) (-15 -4115 ($ $ (-1102) (-721) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-344)) (-6 (-977 (-388 (-895 |t#1|)))) (-15 -3318 ($ (-399 $))) (-15 -1853 ((-1054 |t#1| (-571 $)) $)) (-15 -2842 ($ $)) (-15 -2263 ($ (-1054 |t#1| (-571 $)) (-1054 |t#1| (-571 $)))) (-15 -2265 ($ (-388 |t#1|))) (-15 -2265 ($ (-895 (-388 |t#1|)))) (-15 -2265 ($ (-388 (-895 (-388 |t#1|))))) (-15 -2516 ((-388 (-1098 $)) $ (-571 $))) (IF (|has| |t#1| (-977 (-531))) (-6 (-977 (-388 (-531)))) |%noBranch|)) |%noBranch|)))
+(((-21) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-23) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-37 #0=(-388 (-531))) |has| |#1| (-523)) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-523)) ((-109 |#1| |#1|) |has| |#1| (-162)) ((-109 $ $) |has| |#1| (-523)) ((-128) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138)) (|has| |#1| (-21))) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) |has| |#1| (-523)) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))) ((-226) |has| |#1| (-523)) ((-272) |has| |#1| (-523)) ((-289) |has| |#1| (-523)) ((-291 $) . T) ((-284) . T) ((-344) |has| |#1| (-523)) ((-358 |#1|) |has| |#1| (-986)) ((-381 |#1|) . T) ((-392 |#1|) . T) ((-432) |has| |#1| (-523)) ((-453) |has| |#1| (-453)) ((-492 (-571 $) $) . T) ((-492 $ $) . T) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-523)) ((-601 |#1|) |has| |#1| (-162)) ((-601 $) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-594 (-531)) -12 (|has| |#1| (-594 (-531))) (|has| |#1| (-986))) ((-594 |#1|) |has| |#1| (-986)) ((-668 #0#) |has| |#1| (-523)) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) -1435 (|has| |#1| (-1042)) (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-797) . T) ((-843 (-1102)) |has| |#1| (-986)) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-827 |#1|) . T) ((-863) |has| |#1| (-523)) ((-977 (-388 (-531))) -1435 (|has| |#1| (-977 (-388 (-531)))) (-12 (|has| |#1| (-523)) (|has| |#1| (-977 (-531))))) ((-977 (-388 (-895 |#1|))) |has| |#1| (-523)) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 (-571 $)) . T) ((-977 (-895 |#1|)) |has| |#1| (-986)) ((-977 (-1102)) . T) ((-977 |#1|) . T) ((-992 #0#) |has| |#1| (-523)) ((-992 |#1|) |has| |#1| (-162)) ((-992 $) |has| |#1| (-523)) ((-986) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-993) -1435 (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1042) -1435 (|has| |#1| (-1042)) (|has| |#1| (-986)) (|has| |#1| (-523)) (|has| |#1| (-453)) (|has| |#1| (-162)) (|has| |#1| (-140)) (|has| |#1| (-138))) ((-1030) . T) ((-1138) . T) ((-1142) |has| |#1| (-523)))
+((-1690 ((|#2| |#2| |#2|) 33)) (-3254 (((-112) (-112)) 44)) (-2063 ((|#2| |#2|) 66)) (-3299 ((|#2| |#2|) 69)) (-2188 ((|#2| |#2|) 32)) (-3031 ((|#2| |#2| |#2|) 35)) (-2143 ((|#2| |#2| |#2|) 37)) (-1702 ((|#2| |#2| |#2|) 34)) (-2081 ((|#2| |#2| |#2|) 36)) (-3167 (((-110) (-112)) 42)) (-3558 ((|#2| |#2|) 39)) (-2336 ((|#2| |#2|) 38)) (-1620 ((|#2| |#2|) 27)) (-3926 ((|#2| |#2| |#2|) 30) ((|#2| |#2|) 28)) (-1312 ((|#2| |#2| |#2|) 31)))
+(((-412 |#1| |#2|) (-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -1620 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3926 (|#2| |#2| |#2|)) (-15 -1312 (|#2| |#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -1690 (|#2| |#2| |#2|)) (-15 -1702 (|#2| |#2| |#2|)) (-15 -3031 (|#2| |#2| |#2|)) (-15 -2081 (|#2| |#2| |#2|)) (-15 -2143 (|#2| |#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -3558 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -2063 (|#2| |#2|))) (-13 (-797) (-523)) (-411 |#1|)) (T -412))
+((-2063 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3299 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3558 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2336 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2143 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2081 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3031 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1702 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1690 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-2188 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1312 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3926 (*1 *2 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3926 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-1620 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2)) (-4 *2 (-411 *3)))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *4)) (-4 *4 (-411 *3)))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4)))))
+(-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -1620 (|#2| |#2|)) (-15 -3926 (|#2| |#2|)) (-15 -3926 (|#2| |#2| |#2|)) (-15 -1312 (|#2| |#2| |#2|)) (-15 -2188 (|#2| |#2|)) (-15 -1690 (|#2| |#2| |#2|)) (-15 -1702 (|#2| |#2| |#2|)) (-15 -3031 (|#2| |#2| |#2|)) (-15 -2081 (|#2| |#2| |#2|)) (-15 -2143 (|#2| |#2| |#2|)) (-15 -2336 (|#2| |#2|)) (-15 -3558 (|#2| |#2|)) (-15 -3299 (|#2| |#2|)) (-15 -2063 (|#2| |#2|)))
+((-1806 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1098 |#2|)) (|:| |pol2| (-1098 |#2|)) (|:| |prim| (-1098 |#2|))) |#2| |#2|) 97 (|has| |#2| (-27))) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-598 (-1098 |#2|))) (|:| |prim| (-1098 |#2|))) (-598 |#2|)) 61)))
+(((-413 |#1| |#2|) (-10 -7 (-15 -1806 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-598 (-1098 |#2|))) (|:| |prim| (-1098 |#2|))) (-598 |#2|))) (IF (|has| |#2| (-27)) (-15 -1806 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1098 |#2|)) (|:| |pol2| (-1098 |#2|)) (|:| |prim| (-1098 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-523) (-797) (-140)) (-411 |#1|)) (T -413))
+((-1806 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-523) (-797) (-140))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1098 *3)) (|:| |pol2| (-1098 *3)) (|:| |prim| (-1098 *3)))) (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4)))) (-1806 (*1 *2 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-523) (-797) (-140))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-598 (-1098 *5))) (|:| |prim| (-1098 *5)))) (-5 *1 (-413 *4 *5)))))
+(-10 -7 (-15 -1806 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-598 (-1098 |#2|))) (|:| |prim| (-1098 |#2|))) (-598 |#2|))) (IF (|has| |#2| (-27)) (-15 -1806 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1098 |#2|)) (|:| |pol2| (-1098 |#2|)) (|:| |prim| (-1098 |#2|))) |#2| |#2|)) |%noBranch|))
+((-3658 (((-1189)) 19)) (-2325 (((-1098 (-388 (-531))) |#2| (-571 |#2|)) 41) (((-388 (-531)) |#2|) 25)))
+(((-414 |#1| |#2|) (-10 -7 (-15 -2325 ((-388 (-531)) |#2|)) (-15 -2325 ((-1098 (-388 (-531))) |#2| (-571 |#2|))) (-15 -3658 ((-1189)))) (-13 (-797) (-523) (-977 (-531))) (-411 |#1|)) (T -414))
+((-3658 (*1 *2) (-12 (-4 *3 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-1189)) (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))) (-2325 (*1 *2 *3 *4) (-12 (-5 *4 (-571 *3)) (-4 *3 (-411 *5)) (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-414 *5 *3)))) (-2325 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-388 (-531))) (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4)))))
+(-10 -7 (-15 -2325 ((-388 (-531)) |#2|)) (-15 -2325 ((-1098 (-388 (-531))) |#2| (-571 |#2|))) (-15 -3658 ((-1189))))
+((-4209 (((-110) $) 28)) (-1637 (((-110) $) 30)) (-1939 (((-110) $) 31)) (-1422 (((-110) $) 34)) (-1650 (((-110) $) 29)) (-3789 (((-110) $) 33)) (-2265 (((-806) $) 18) (($ (-1085)) 27) (($ (-1102)) 23) (((-1102) $) 22) (((-1034) $) 21)) (-2905 (((-110) $) 32)) (-2148 (((-110) $ $) 15)))
+(((-415) (-13 (-572 (-806)) (-10 -8 (-15 -2265 ($ (-1085))) (-15 -2265 ($ (-1102))) (-15 -2265 ((-1102) $)) (-15 -2265 ((-1034) $)) (-15 -4209 ((-110) $)) (-15 -1650 ((-110) $)) (-15 -1939 ((-110) $)) (-15 -3789 ((-110) $)) (-15 -1422 ((-110) $)) (-15 -2905 ((-110) $)) (-15 -1637 ((-110) $)) (-15 -2148 ((-110) $ $))))) (T -415))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-415)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-415)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-415)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-415)))) (-4209 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1650 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1939 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-3789 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1422 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2905 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-1637 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))) (-2148 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -2265 ($ (-1085))) (-15 -2265 ($ (-1102))) (-15 -2265 ((-1102) $)) (-15 -2265 ((-1034) $)) (-15 -4209 ((-110) $)) (-15 -1650 ((-110) $)) (-15 -1939 ((-110) $)) (-15 -3789 ((-110) $)) (-15 -1422 ((-110) $)) (-15 -2905 ((-110) $)) (-15 -1637 ((-110) $)) (-15 -2148 ((-110) $ $))))
+((-4127 (((-3 (-399 (-1098 (-388 (-531)))) "failed") |#3|) 70)) (-3737 (((-399 |#3|) |#3|) 34)) (-1701 (((-3 (-399 (-1098 (-47))) "failed") |#3|) 46 (|has| |#2| (-977 (-47))))) (-2813 (((-3 (|:| |overq| (-1098 (-388 (-531)))) (|:| |overan| (-1098 (-47))) (|:| -4062 (-110))) |#3|) 37)))
+(((-416 |#1| |#2| |#3|) (-10 -7 (-15 -3737 ((-399 |#3|) |#3|)) (-15 -4127 ((-3 (-399 (-1098 (-388 (-531)))) "failed") |#3|)) (-15 -2813 ((-3 (|:| |overq| (-1098 (-388 (-531)))) (|:| |overan| (-1098 (-47))) (|:| -4062 (-110))) |#3|)) (IF (|has| |#2| (-977 (-47))) (-15 -1701 ((-3 (-399 (-1098 (-47))) "failed") |#3|)) |%noBranch|)) (-13 (-523) (-797) (-977 (-531))) (-411 |#1|) (-1160 |#2|)) (T -416))
+((-1701 (*1 *2 *3) (|partial| -12 (-4 *5 (-977 (-47))) (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1098 (-47)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))) (-2813 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) (-5 *2 (-3 (|:| |overq| (-1098 (-388 (-531)))) (|:| |overan| (-1098 (-47))) (|:| -4062 (-110)))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))) (-4127 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) (-5 *2 (-399 (-1098 (-388 (-531))))) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))) (-3737 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4)) (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))))
+(-10 -7 (-15 -3737 ((-399 |#3|) |#3|)) (-15 -4127 ((-3 (-399 (-1098 (-388 (-531)))) "failed") |#3|)) (-15 -2813 ((-3 (|:| |overq| (-1098 (-388 (-531)))) (|:| |overan| (-1098 (-47))) (|:| -4062 (-110))) |#3|)) (IF (|has| |#2| (-977 (-47))) (-15 -1701 ((-3 (-399 (-1098 (-47))) "failed") |#3|)) |%noBranch|))
+((-2247 (((-110) $ $) NIL)) (-2618 (((-1085) $ (-1085)) NIL)) (-1743 (($ $ (-1085)) NIL)) (-3641 (((-1085) $) NIL)) (-3455 (((-369) (-369) (-369)) 17) (((-369) (-369)) 15)) (-1833 (($ (-369)) NIL) (($ (-369) (-1085)) NIL)) (-3955 (((-369) $) NIL)) (-1521 (((-1085) $) NIL)) (-3454 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2655 (((-1189) (-1085)) 9)) (-3457 (((-1189) (-1085)) 10)) (-3097 (((-1189)) 11)) (-2265 (((-806) $) NIL)) (-4074 (($ $) 35)) (-2148 (((-110) $ $) NIL)))
+(((-417) (-13 (-345 (-369) (-1085)) (-10 -7 (-15 -3455 ((-369) (-369) (-369))) (-15 -3455 ((-369) (-369))) (-15 -2655 ((-1189) (-1085))) (-15 -3457 ((-1189) (-1085))) (-15 -3097 ((-1189)))))) (T -417))
+((-3455 (*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-3455 (*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))) (-2655 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-417)))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-417)))) (-3097 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-417)))))
+(-13 (-345 (-369) (-1085)) (-10 -7 (-15 -3455 ((-369) (-369) (-369))) (-15 -3455 ((-369) (-369))) (-15 -2655 ((-1189) (-1085))) (-15 -3457 ((-1189) (-1085))) (-15 -3097 ((-1189)))))
+((-2247 (((-110) $ $) NIL)) (-2390 (((-3 (|:| |fst| (-415)) (|:| -2989 "void")) $) 11)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2326 (($) 32)) (-2998 (($) 38)) (-1293 (($) 34)) (-3079 (($) 36)) (-2439 (($) 33)) (-4185 (($) 35)) (-3880 (($) 37)) (-2186 (((-110) $) 8)) (-3794 (((-598 (-895 (-531))) $) 19)) (-2274 (($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-1102)) (-110)) 27) (($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-895 (-531))) (-110)) 28)) (-2265 (((-806) $) 23) (($ (-415)) 29)) (-2148 (((-110) $ $) NIL)))
+(((-418) (-13 (-1030) (-10 -8 (-15 -2265 ((-806) $)) (-15 -2265 ($ (-415))) (-15 -2390 ((-3 (|:| |fst| (-415)) (|:| -2989 "void")) $)) (-15 -3794 ((-598 (-895 (-531))) $)) (-15 -2186 ((-110) $)) (-15 -2274 ($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-1102)) (-110))) (-15 -2274 ($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-895 (-531))) (-110))) (-15 -2326 ($)) (-15 -2439 ($)) (-15 -1293 ($)) (-15 -2998 ($)) (-15 -4185 ($)) (-15 -3079 ($)) (-15 -3880 ($))))) (T -418))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-418)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-418)))) (-2390 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *1 (-418)))) (-3794 (*1 *2 *1) (-12 (-5 *2 (-598 (-895 (-531)))) (-5 *1 (-418)))) (-2186 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *3 (-598 (-1102))) (-5 *4 (-110)) (-5 *1 (-418)))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-110)) (-5 *1 (-418)))) (-2326 (*1 *1) (-5 *1 (-418))) (-2439 (*1 *1) (-5 *1 (-418))) (-1293 (*1 *1) (-5 *1 (-418))) (-2998 (*1 *1) (-5 *1 (-418))) (-4185 (*1 *1) (-5 *1 (-418))) (-3079 (*1 *1) (-5 *1 (-418))) (-3880 (*1 *1) (-5 *1 (-418))))
+(-13 (-1030) (-10 -8 (-15 -2265 ((-806) $)) (-15 -2265 ($ (-415))) (-15 -2390 ((-3 (|:| |fst| (-415)) (|:| -2989 "void")) $)) (-15 -3794 ((-598 (-895 (-531))) $)) (-15 -2186 ((-110) $)) (-15 -2274 ($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-1102)) (-110))) (-15 -2274 ($ (-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-598 (-895 (-531))) (-110))) (-15 -2326 ($)) (-15 -2439 ($)) (-15 -1293 ($)) (-15 -2998 ($)) (-15 -4185 ($)) (-15 -3079 ($)) (-15 -3880 ($))))
+((-2247 (((-110) $ $) NIL)) (-3955 (((-1102) $) 8)) (-1521 (((-1085) $) 16)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 13)))
+(((-419 |#1|) (-13 (-1030) (-10 -8 (-15 -3955 ((-1102) $)))) (-1102)) (T -419))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-419 *3)) (-14 *3 *2))))
+(-13 (-1030) (-10 -8 (-15 -3955 ((-1102) $))))
+((-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-1184 (-649))) 14) (($ (-598 (-311))) 13) (($ (-311)) 12) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 11)))
(((-420) (-133)) (T -420))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-647))) (-4 *1 (-420)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-420)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-420)))))
-(-13 (-376) (-10 -8 (-15 -2366 ($ (-1181 (-647)))) (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))))))
-(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-3139 (((-3 $ "failed") (-1181 (-297 (-360)))) 21) (((-3 $ "failed") (-1181 (-297 (-530)))) 19) (((-3 $ "failed") (-1181 (-893 (-360)))) 17) (((-3 $ "failed") (-1181 (-893 (-530)))) 15) (((-3 $ "failed") (-1181 (-388 (-893 (-360))))) 13) (((-3 $ "failed") (-1181 (-388 (-893 (-530))))) 11)) (-2585 (($ (-1181 (-297 (-360)))) 22) (($ (-1181 (-297 (-530)))) 20) (($ (-1181 (-893 (-360)))) 18) (($ (-1181 (-893 (-530)))) 16) (($ (-1181 (-388 (-893 (-360))))) 14) (($ (-1181 (-388 (-893 (-530))))) 12)) (-3176 (((-1186) $) 7)) (-2366 (((-804) $) 8) (($ (-597 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) 23)))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-649))) (-4 *1 (-420)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-420)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-420)))))
+(-13 (-376) (-10 -8 (-15 -2265 ($ (-1184 (-649)))) (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))))))
+(((-572 (-806)) . T) ((-376) . T) ((-1138) . T))
+((-3154 (((-3 $ "failed") (-1184 (-297 (-360)))) 21) (((-3 $ "failed") (-1184 (-297 (-531)))) 19) (((-3 $ "failed") (-1184 (-895 (-360)))) 17) (((-3 $ "failed") (-1184 (-895 (-531)))) 15) (((-3 $ "failed") (-1184 (-388 (-895 (-360))))) 13) (((-3 $ "failed") (-1184 (-388 (-895 (-531))))) 11)) (-2523 (($ (-1184 (-297 (-360)))) 22) (($ (-1184 (-297 (-531)))) 20) (($ (-1184 (-895 (-360)))) 18) (($ (-1184 (-895 (-531)))) 16) (($ (-1184 (-388 (-895 (-360))))) 14) (($ (-1184 (-388 (-895 (-531))))) 12)) (-3206 (((-1189) $) 7)) (-2265 (((-806) $) 8) (($ (-598 (-311))) 25) (($ (-311)) 24) (($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) 23)))
(((-421) (-133)) (T -421))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-421)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311))))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-297 (-360)))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-297 (-360)))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-297 (-530)))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-297 (-530)))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-893 (-360)))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-893 (-360)))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-893 (-530)))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-893 (-530)))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 (-360))))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-388 (-893 (-360))))) (-4 *1 (-421)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 (-530))))) (-4 *1 (-421)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-1181 (-388 (-893 (-530))))) (-4 *1 (-421)))))
-(-13 (-376) (-10 -8 (-15 -2366 ($ (-597 (-311)))) (-15 -2366 ($ (-311))) (-15 -2366 ($ (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))) (-15 -2585 ($ (-1181 (-297 (-360))))) (-15 -3139 ((-3 $ "failed") (-1181 (-297 (-360))))) (-15 -2585 ($ (-1181 (-297 (-530))))) (-15 -3139 ((-3 $ "failed") (-1181 (-297 (-530))))) (-15 -2585 ($ (-1181 (-893 (-360))))) (-15 -3139 ((-3 $ "failed") (-1181 (-893 (-360))))) (-15 -2585 ($ (-1181 (-893 (-530))))) (-15 -3139 ((-3 $ "failed") (-1181 (-893 (-530))))) (-15 -2585 ($ (-1181 (-388 (-893 (-360)))))) (-15 -3139 ((-3 $ "failed") (-1181 (-388 (-893 (-360)))))) (-15 -2585 ($ (-1181 (-388 (-893 (-530)))))) (-15 -3139 ((-3 $ "failed") (-1181 (-388 (-893 (-530))))))))
-(((-571 (-804)) . T) ((-376) . T) ((-1135) . T))
-((-1567 (((-110)) 17)) (-4039 (((-110) (-110)) 18)) (-2816 (((-110)) 13)) (-1409 (((-110) (-110)) 14)) (-2807 (((-110)) 15)) (-2357 (((-110) (-110)) 16)) (-3994 (((-862) (-862)) 21) (((-862)) 20)) (-3577 (((-719) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530))))) 42)) (-1363 (((-862) (-862)) 23) (((-862)) 22)) (-2024 (((-2 (|:| -4020 (-530)) (|:| -3721 (-597 |#1|))) |#1|) 62)) (-3764 (((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530))))))) 126)) (-4163 (((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110)) 152)) (-1550 (((-399 |#1|) |#1| (-719) (-719)) 165) (((-399 |#1|) |#1| (-597 (-719)) (-719)) 162) (((-399 |#1|) |#1| (-597 (-719))) 164) (((-399 |#1|) |#1| (-719)) 163) (((-399 |#1|) |#1|) 161)) (-1958 (((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110)) 167) (((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719)) 168) (((-3 |#1| "failed") (-862) |#1| (-597 (-719))) 170) (((-3 |#1| "failed") (-862) |#1| (-719)) 169) (((-3 |#1| "failed") (-862) |#1|) 171)) (-2611 (((-399 |#1|) |#1| (-719) (-719)) 160) (((-399 |#1|) |#1| (-597 (-719)) (-719)) 156) (((-399 |#1|) |#1| (-597 (-719))) 158) (((-399 |#1|) |#1| (-719)) 157) (((-399 |#1|) |#1|) 155)) (-4142 (((-110) |#1|) 37)) (-3332 (((-686 (-719)) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530))))) 67)) (-3328 (((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110) (-1029 (-719)) (-719)) 154)))
-(((-422 |#1|) (-10 -7 (-15 -3764 ((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))))) (-15 -3332 ((-686 (-719)) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))))) (-15 -1363 ((-862))) (-15 -1363 ((-862) (-862))) (-15 -3994 ((-862))) (-15 -3994 ((-862) (-862))) (-15 -3577 ((-719) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))))) (-15 -2024 ((-2 (|:| -4020 (-530)) (|:| -3721 (-597 |#1|))) |#1|)) (-15 -1567 ((-110))) (-15 -4039 ((-110) (-110))) (-15 -2816 ((-110))) (-15 -1409 ((-110) (-110))) (-15 -4142 ((-110) |#1|)) (-15 -2807 ((-110))) (-15 -2357 ((-110) (-110))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -2611 ((-399 |#1|) |#1| (-719))) (-15 -2611 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -2611 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -2611 ((-399 |#1|) |#1| (-719) (-719))) (-15 -1550 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1| (-719))) (-15 -1550 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -1550 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -1550 ((-399 |#1|) |#1| (-719) (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1|)) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110))) (-15 -4163 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110))) (-15 -3328 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110) (-1029 (-719)) (-719)))) (-1157 (-530))) (T -422))
-((-3328 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-1029 (-719))) (-5 *6 (-719)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530))))))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530))))))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1958 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1958 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1958 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1958 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-862)) (-5 *4 (-719)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1958 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-862)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530))))) (-1550 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2357 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2807 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-4142 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2816 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-4039 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1567 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-2024 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -4020 (-530)) (|:| -3721 (-597 *3)))) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-3577 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2611 *4) (|:| -1429 (-530))))) (-4 *4 (-1157 (-530))) (-5 *2 (-719)) (-5 *1 (-422 *4)))) (-3994 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-3994 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1363 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-1363 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2611 *4) (|:| -1429 (-530))))) (-4 *4 (-1157 (-530))) (-5 *2 (-686 (-719))) (-5 *1 (-422 *4)))) (-3764 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| *4) (|:| -2075 (-530))))))) (-4 *4 (-1157 (-530))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4)))))
-(-10 -7 (-15 -3764 ((-399 |#1|) (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))))) (-15 -3332 ((-686 (-719)) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))))) (-15 -1363 ((-862))) (-15 -1363 ((-862) (-862))) (-15 -3994 ((-862))) (-15 -3994 ((-862) (-862))) (-15 -3577 ((-719) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))))) (-15 -2024 ((-2 (|:| -4020 (-530)) (|:| -3721 (-597 |#1|))) |#1|)) (-15 -1567 ((-110))) (-15 -4039 ((-110) (-110))) (-15 -2816 ((-110))) (-15 -1409 ((-110) (-110))) (-15 -4142 ((-110) |#1|)) (-15 -2807 ((-110))) (-15 -2357 ((-110) (-110))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -2611 ((-399 |#1|) |#1| (-719))) (-15 -2611 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -2611 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -2611 ((-399 |#1|) |#1| (-719) (-719))) (-15 -1550 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1| (-719))) (-15 -1550 ((-399 |#1|) |#1| (-597 (-719)))) (-15 -1550 ((-399 |#1|) |#1| (-597 (-719)) (-719))) (-15 -1550 ((-399 |#1|) |#1| (-719) (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1|)) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719))) (-15 -1958 ((-3 |#1| "failed") (-862) |#1| (-597 (-719)) (-719) (-110))) (-15 -4163 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110))) (-15 -3328 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110) (-1029 (-719)) (-719))))
-((-2921 (((-530) |#2|) 48) (((-530) |#2| (-719)) 47)) (-4172 (((-530) |#2|) 55)) (-1590 ((|#3| |#2|) 25)) (-2376 ((|#3| |#2| (-862)) 14)) (-4109 ((|#3| |#2|) 15)) (-2542 ((|#3| |#2|) 9)) (-4156 ((|#3| |#2|) 10)) (-1450 ((|#3| |#2| (-862)) 62) ((|#3| |#2|) 30)) (-3065 (((-530) |#2|) 57)))
-(((-423 |#1| |#2| |#3|) (-10 -7 (-15 -3065 ((-530) |#2|)) (-15 -1450 (|#3| |#2|)) (-15 -1450 (|#3| |#2| (-862))) (-15 -4172 ((-530) |#2|)) (-15 -2921 ((-530) |#2| (-719))) (-15 -2921 ((-530) |#2|)) (-15 -2376 (|#3| |#2| (-862))) (-15 -1590 (|#3| |#2|)) (-15 -2542 (|#3| |#2|)) (-15 -4156 (|#3| |#2|)) (-15 -4109 (|#3| |#2|))) (-984) (-1157 |#1|) (-13 (-385) (-975 |#1|) (-344) (-1121) (-266))) (T -423))
-((-4109 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-4156 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2542 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-1590 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-2376 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-984)) (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-2921 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))) (-2921 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1157 *5)) (-4 *6 (-13 (-385) (-975 *5) (-344) (-1121) (-266))))) (-4172 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))) (-1450 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-984)) (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))) (-1450 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))) (-3065 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1157 *4)) (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
-(-10 -7 (-15 -3065 ((-530) |#2|)) (-15 -1450 (|#3| |#2|)) (-15 -1450 (|#3| |#2| (-862))) (-15 -4172 ((-530) |#2|)) (-15 -2921 ((-530) |#2| (-719))) (-15 -2921 ((-530) |#2|)) (-15 -2376 (|#3| |#2| (-862))) (-15 -1590 (|#3| |#2|)) (-15 -2542 (|#3| |#2|)) (-15 -4156 (|#3| |#2|)) (-15 -4109 (|#3| |#2|)))
-((-1377 ((|#2| (-1181 |#1|)) 36)) (-1617 ((|#2| |#2| |#1|) 49)) (-1828 ((|#2| |#2| |#1|) 41)) (-4106 ((|#2| |#2|) 38)) (-1841 (((-110) |#2|) 30)) (-1730 (((-597 |#2|) (-862) (-399 |#2|)) 17)) (-1958 ((|#2| (-862) (-399 |#2|)) 21)) (-3332 (((-686 (-719)) (-399 |#2|)) 25)))
-(((-424 |#1| |#2|) (-10 -7 (-15 -1841 ((-110) |#2|)) (-15 -1377 (|#2| (-1181 |#1|))) (-15 -4106 (|#2| |#2|)) (-15 -1828 (|#2| |#2| |#1|)) (-15 -1617 (|#2| |#2| |#1|)) (-15 -3332 ((-686 (-719)) (-399 |#2|))) (-15 -1958 (|#2| (-862) (-399 |#2|))) (-15 -1730 ((-597 |#2|) (-862) (-399 |#2|)))) (-984) (-1157 |#1|)) (T -424))
-((-1730 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-399 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-984)) (-5 *2 (-597 *6)) (-5 *1 (-424 *5 *6)))) (-1958 (*1 *2 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-399 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-424 *5 *2)) (-4 *5 (-984)))) (-3332 (*1 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-984)) (-5 *2 (-686 (-719))) (-5 *1 (-424 *4 *5)))) (-1617 (*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-1828 (*1 *2 *2 *3) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-4106 (*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))) (-1377 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-984)) (-4 *2 (-1157 *4)) (-5 *1 (-424 *4 *2)))) (-1841 (*1 *2 *3) (-12 (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -1841 ((-110) |#2|)) (-15 -1377 (|#2| (-1181 |#1|))) (-15 -4106 (|#2| |#2|)) (-15 -1828 (|#2| |#2| |#1|)) (-15 -1617 (|#2| |#2| |#1|)) (-15 -3332 ((-686 (-719)) (-399 |#2|))) (-15 -1958 (|#2| (-862) (-399 |#2|))) (-15 -1730 ((-597 |#2|) (-862) (-399 |#2|))))
-((-3875 (((-719)) 41)) (-3793 (((-719)) 23 (|has| |#1| (-385))) (((-719) (-719)) 22 (|has| |#1| (-385)))) (-4230 (((-530) |#1|) 18 (|has| |#1| (-385)))) (-2895 (((-530) |#1|) 20 (|has| |#1| (-385)))) (-1302 (((-719)) 40) (((-719) (-719)) 39)) (-3543 ((|#1| (-719) (-530)) 29)) (-3427 (((-1186)) 43)))
-(((-425 |#1|) (-10 -7 (-15 -3543 (|#1| (-719) (-530))) (-15 -1302 ((-719) (-719))) (-15 -1302 ((-719))) (-15 -3875 ((-719))) (-15 -3427 ((-1186))) (IF (|has| |#1| (-385)) (PROGN (-15 -2895 ((-530) |#1|)) (-15 -4230 ((-530) |#1|)) (-15 -3793 ((-719) (-719))) (-15 -3793 ((-719)))) |%noBranch|)) (-984)) (T -425))
-((-3793 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-3793 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-4230 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-2895 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))) (-3427 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-3875 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1302 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-1302 (*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))) (-3543 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-530)) (-5 *1 (-425 *2)) (-4 *2 (-984)))))
-(-10 -7 (-15 -3543 (|#1| (-719) (-530))) (-15 -1302 ((-719) (-719))) (-15 -1302 ((-719))) (-15 -3875 ((-719))) (-15 -3427 ((-1186))) (IF (|has| |#1| (-385)) (PROGN (-15 -2895 ((-530) |#1|)) (-15 -4230 ((-530) |#1|)) (-15 -3793 ((-719) (-719))) (-15 -3793 ((-719)))) |%noBranch|))
-((-3413 (((-597 (-530)) (-530)) 61)) (-3295 (((-110) (-159 (-530))) 65)) (-2611 (((-399 (-159 (-530))) (-159 (-530))) 60)))
-(((-426) (-10 -7 (-15 -2611 ((-399 (-159 (-530))) (-159 (-530)))) (-15 -3413 ((-597 (-530)) (-530))) (-15 -3295 ((-110) (-159 (-530)))))) (T -426))
-((-3295 (*1 *2 *3) (-12 (-5 *3 (-159 (-530))) (-5 *2 (-110)) (-5 *1 (-426)))) (-3413 (*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-426)) (-5 *3 (-530)))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 (-159 (-530)))) (-5 *1 (-426)) (-5 *3 (-159 (-530))))))
-(-10 -7 (-15 -2611 ((-399 (-159 (-530))) (-159 (-530)))) (-15 -3413 ((-597 (-530)) (-530))) (-15 -3295 ((-110) (-159 (-530)))))
-((-2850 ((|#4| |#4| (-597 |#4|)) 61)) (-1799 (((-597 |#4|) (-597 |#4|) (-1082) (-1082)) 17) (((-597 |#4|) (-597 |#4|) (-1082)) 16) (((-597 |#4|) (-597 |#4|)) 11)))
-(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2850 (|#4| |#4| (-597 |#4|))) (-15 -1799 ((-597 |#4|) (-597 |#4|))) (-15 -1799 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1799 ((-597 |#4|) (-597 |#4|) (-1082) (-1082)))) (-289) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -427))
-((-1799 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1799 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *7)))) (-1799 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-427 *3 *4 *5 *6)))) (-2850 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *2)))))
-(-10 -7 (-15 -2850 (|#4| |#4| (-597 |#4|))) (-15 -1799 ((-597 |#4|) (-597 |#4|))) (-15 -1799 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1799 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))))
-((-2685 (((-597 (-597 |#4|)) (-597 |#4|) (-110)) 73) (((-597 (-597 |#4|)) (-597 |#4|)) 72) (((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110)) 66) (((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|)) 67)) (-1844 (((-597 (-597 |#4|)) (-597 |#4|) (-110)) 42) (((-597 (-597 |#4|)) (-597 |#4|)) 63)))
-(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1844 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -1844 ((-597 (-597 |#4|)) (-597 |#4|) (-110))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-110)))) (-13 (-289) (-140)) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -428))
-((-2685 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-2685 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-2685 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-2685 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-1844 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))) (-1844 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(-10 -7 (-15 -1844 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -1844 ((-597 (-597 |#4|)) (-597 |#4|) (-110))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-597 |#4|) (-110))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|))) (-15 -2685 ((-597 (-597 |#4|)) (-597 |#4|) (-110))))
-((-3369 (((-719) |#4|) 12)) (-2443 (((-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|)))) 31)) (-4242 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-1866 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1525 ((|#4| |#4| (-597 |#4|)) 40)) (-3629 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|)) 70)) (-2852 (((-1186) |#4|) 42)) (-4134 (((-1186) (-597 |#4|)) 51)) (-2310 (((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530)) 48)) (-2692 (((-1186) (-530)) 79)) (-3711 (((-597 |#4|) (-597 |#4|)) 77)) (-3743 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|)) |#4| (-719)) 25)) (-3271 (((-530) |#4|) 78)) (-2066 ((|#4| |#4|) 29)) (-3158 (((-597 |#4|) (-597 |#4|) (-530) (-530)) 56)) (-1443 (((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530)) 89)) (-2327 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3024 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-4035 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1323 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1824 (((-110) |#2| |#2|) 57)) (-2958 (((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-3224 (((-110) |#2| |#2| |#2| |#2|) 60)) (-1850 ((|#4| |#4| (-597 |#4|)) 71)))
-(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1850 (|#4| |#4| (-597 |#4|))) (-15 -1525 (|#4| |#4| (-597 |#4|))) (-15 -3158 ((-597 |#4|) (-597 |#4|) (-530) (-530))) (-15 -3024 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1824 ((-110) |#2| |#2|)) (-15 -3224 ((-110) |#2| |#2| |#2| |#2|)) (-15 -2958 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1323 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4035 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3629 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|))) (-15 -2066 (|#4| |#4|)) (-15 -2443 ((-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))))) (-15 -1866 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4242 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3711 ((-597 |#4|) (-597 |#4|))) (-15 -3271 ((-530) |#4|)) (-15 -2852 ((-1186) |#4|)) (-15 -2310 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530))) (-15 -1443 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530))) (-15 -4134 ((-1186) (-597 |#4|))) (-15 -2692 ((-1186) (-530))) (-15 -2327 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3743 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|)) |#4| (-719))) (-15 -3369 ((-719) |#4|))) (-432) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -429))
-((-3369 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3743 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-719)) (|:| -3109 *4))) (-5 *5 (-719)) (-4 *4 (-890 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-429 *6 *7 *8 *4)))) (-2327 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-2692 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-4134 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1443 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *4)))) (-2310 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *4)))) (-2852 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3271 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-530)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3711 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-4242 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-1866 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-741)) (-4 *2 (-890 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2)) (-4 *4 (-432)) (-4 *6 (-795)))) (-2443 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 *3)))) (-5 *4 (-719)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *3)))) (-2066 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-3629 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-429 *5 *6 *7 *3)))) (-4035 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-741)) (-4 *6 (-890 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *4 *3 *5 *6)))) (-1323 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))) (-2958 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-741)) (-4 *3 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *3)))) (-3224 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))) (-1824 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))) (-3024 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-3158 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1525 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))) (-1850 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
-(-10 -7 (-15 -1850 (|#4| |#4| (-597 |#4|))) (-15 -1525 (|#4| |#4| (-597 |#4|))) (-15 -3158 ((-597 |#4|) (-597 |#4|) (-530) (-530))) (-15 -3024 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1824 ((-110) |#2| |#2|)) (-15 -3224 ((-110) |#2| |#2| |#2| |#2|)) (-15 -2958 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1323 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -4035 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3629 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-597 |#4|))) (-15 -2066 (|#4| |#4|)) (-15 -2443 ((-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))) |#4| (-719) (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|))))) (-15 -1866 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -4242 ((-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-597 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3711 ((-597 |#4|) (-597 |#4|))) (-15 -3271 ((-530) |#4|)) (-15 -2852 ((-1186) |#4|)) (-15 -2310 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530))) (-15 -1443 ((-530) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-530) (-530) (-530) (-530))) (-15 -4134 ((-1186) (-597 |#4|))) (-15 -2692 ((-1186) (-530))) (-15 -2327 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3743 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-719)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-719)) (|:| -3109 |#4|)) |#4| (-719))) (-15 -3369 ((-719) |#4|)))
-((-1427 ((|#4| |#4| (-597 |#4|)) 22 (|has| |#1| (-344)))) (-1241 (((-597 |#4|) (-597 |#4|) (-1082) (-1082)) 41) (((-597 |#4|) (-597 |#4|) (-1082)) 40) (((-597 |#4|) (-597 |#4|)) 35)))
-(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1241 ((-597 |#4|) (-597 |#4|))) (-15 -1241 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1241 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))) (IF (|has| |#1| (-344)) (-15 -1427 (|#4| |#4| (-597 |#4|))) |%noBranch|)) (-432) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -430))
-((-1427 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-344)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *2)))) (-1241 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *7)))) (-1241 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-430 *4 *5 *6 *7)))) (-1241 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1241 ((-597 |#4|) (-597 |#4|))) (-15 -1241 ((-597 |#4|) (-597 |#4|) (-1082))) (-15 -1241 ((-597 |#4|) (-597 |#4|) (-1082) (-1082))) (IF (|has| |#1| (-344)) (-15 -1427 (|#4| |#4| (-597 |#4|))) |%noBranch|))
-((-2170 (($ $ $) 14) (($ (-597 $)) 21)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 41)) (-2204 (($ $ $) NIL) (($ (-597 $)) 22)))
-(((-431 |#1|) (-10 -8 (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -2170 (|#1| (-597 |#1|))) (-15 -2170 (|#1| |#1| |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|))) (-432)) (T -431))
-NIL
-(-10 -8 (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -2170 (|#1| (-597 |#1|))) (-15 -2170 (|#1| |#1| |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2204 (|#1| |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-421)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311))))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-297 (-360)))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-297 (-360)))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-297 (-531)))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-297 (-531)))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-895 (-360)))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-895 (-360)))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-895 (-531)))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-895 (-531)))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 (-360))))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-388 (-895 (-360))))) (-4 *1 (-421)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 (-531))))) (-4 *1 (-421)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-1184 (-388 (-895 (-531))))) (-4 *1 (-421)))))
+(-13 (-376) (-10 -8 (-15 -2265 ($ (-598 (-311)))) (-15 -2265 ($ (-311))) (-15 -2265 ($ (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))) (-15 -2523 ($ (-1184 (-297 (-360))))) (-15 -3154 ((-3 $ "failed") (-1184 (-297 (-360))))) (-15 -2523 ($ (-1184 (-297 (-531))))) (-15 -3154 ((-3 $ "failed") (-1184 (-297 (-531))))) (-15 -2523 ($ (-1184 (-895 (-360))))) (-15 -3154 ((-3 $ "failed") (-1184 (-895 (-360))))) (-15 -2523 ($ (-1184 (-895 (-531))))) (-15 -3154 ((-3 $ "failed") (-1184 (-895 (-531))))) (-15 -2523 ($ (-1184 (-388 (-895 (-360)))))) (-15 -3154 ((-3 $ "failed") (-1184 (-388 (-895 (-360)))))) (-15 -2523 ($ (-1184 (-388 (-895 (-531)))))) (-15 -3154 ((-3 $ "failed") (-1184 (-388 (-895 (-531))))))))
+(((-572 (-806)) . T) ((-376) . T) ((-1138) . T))
+((-2223 (((-110)) 17)) (-3537 (((-110) (-110)) 18)) (-2770 (((-110)) 13)) (-1397 (((-110) (-110)) 14)) (-4018 (((-110)) 15)) (-3981 (((-110) (-110)) 16)) (-3572 (((-864) (-864)) 21) (((-864)) 20)) (-2688 (((-721) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531))))) 42)) (-3945 (((-864) (-864)) 23) (((-864)) 22)) (-1940 (((-2 (|:| -1658 (-531)) (|:| -2721 (-598 |#1|))) |#1|) 62)) (-1577 (((-399 |#1|) (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531))))))) 126)) (-3452 (((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110)) 152)) (-4184 (((-399 |#1|) |#1| (-721) (-721)) 165) (((-399 |#1|) |#1| (-598 (-721)) (-721)) 162) (((-399 |#1|) |#1| (-598 (-721))) 164) (((-399 |#1|) |#1| (-721)) 163) (((-399 |#1|) |#1|) 161)) (-3118 (((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721) (-110)) 167) (((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721)) 168) (((-3 |#1| "failed") (-864) |#1| (-598 (-721))) 170) (((-3 |#1| "failed") (-864) |#1| (-721)) 169) (((-3 |#1| "failed") (-864) |#1|) 171)) (-2552 (((-399 |#1|) |#1| (-721) (-721)) 160) (((-399 |#1|) |#1| (-598 (-721)) (-721)) 156) (((-399 |#1|) |#1| (-598 (-721))) 158) (((-399 |#1|) |#1| (-721)) 157) (((-399 |#1|) |#1|) 155)) (-2506 (((-110) |#1|) 37)) (-1696 (((-688 (-721)) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531))))) 67)) (-2058 (((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110) (-1032 (-721)) (-721)) 154)))
+(((-422 |#1|) (-10 -7 (-15 -1577 ((-399 |#1|) (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))))) (-15 -1696 ((-688 (-721)) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))))) (-15 -3945 ((-864))) (-15 -3945 ((-864) (-864))) (-15 -3572 ((-864))) (-15 -3572 ((-864) (-864))) (-15 -2688 ((-721) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))))) (-15 -1940 ((-2 (|:| -1658 (-531)) (|:| -2721 (-598 |#1|))) |#1|)) (-15 -2223 ((-110))) (-15 -3537 ((-110) (-110))) (-15 -2770 ((-110))) (-15 -1397 ((-110) (-110))) (-15 -2506 ((-110) |#1|)) (-15 -4018 ((-110))) (-15 -3981 ((-110) (-110))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2552 ((-399 |#1|) |#1| (-721))) (-15 -2552 ((-399 |#1|) |#1| (-598 (-721)))) (-15 -2552 ((-399 |#1|) |#1| (-598 (-721)) (-721))) (-15 -2552 ((-399 |#1|) |#1| (-721) (-721))) (-15 -4184 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1| (-721))) (-15 -4184 ((-399 |#1|) |#1| (-598 (-721)))) (-15 -4184 ((-399 |#1|) |#1| (-598 (-721)) (-721))) (-15 -4184 ((-399 |#1|) |#1| (-721) (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1|)) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721) (-110))) (-15 -3452 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110))) (-15 -2058 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110) (-1032 (-721)) (-721)))) (-1160 (-531))) (T -422))
+((-2058 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-110)) (-5 *5 (-1032 (-721))) (-5 *6 (-721)) (-5 *2 (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3118 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-3118 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-3118 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-3118 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-864)) (-5 *4 (-721)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-3118 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-864)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531))))) (-4184 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-721))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-721))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3981 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-4018 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2506 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-1397 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2770 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3537 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2223 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-1940 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1658 (-531)) (|:| -2721 (-598 *3)))) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2552 *4) (|:| -2012 (-531))))) (-4 *4 (-1160 (-531))) (-5 *2 (-721)) (-5 *1 (-422 *4)))) (-3572 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3572 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3945 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-3945 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2552 *4) (|:| -2012 (-531))))) (-4 *4 (-1160 (-531))) (-5 *2 (-688 (-721))) (-5 *1 (-422 *4)))) (-1577 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| *4) (|:| -2460 (-531))))))) (-4 *4 (-1160 (-531))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4)))))
+(-10 -7 (-15 -1577 ((-399 |#1|) (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))))) (-15 -1696 ((-688 (-721)) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))))) (-15 -3945 ((-864))) (-15 -3945 ((-864) (-864))) (-15 -3572 ((-864))) (-15 -3572 ((-864) (-864))) (-15 -2688 ((-721) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))))) (-15 -1940 ((-2 (|:| -1658 (-531)) (|:| -2721 (-598 |#1|))) |#1|)) (-15 -2223 ((-110))) (-15 -3537 ((-110) (-110))) (-15 -2770 ((-110))) (-15 -1397 ((-110) (-110))) (-15 -2506 ((-110) |#1|)) (-15 -4018 ((-110))) (-15 -3981 ((-110) (-110))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2552 ((-399 |#1|) |#1| (-721))) (-15 -2552 ((-399 |#1|) |#1| (-598 (-721)))) (-15 -2552 ((-399 |#1|) |#1| (-598 (-721)) (-721))) (-15 -2552 ((-399 |#1|) |#1| (-721) (-721))) (-15 -4184 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1| (-721))) (-15 -4184 ((-399 |#1|) |#1| (-598 (-721)))) (-15 -4184 ((-399 |#1|) |#1| (-598 (-721)) (-721))) (-15 -4184 ((-399 |#1|) |#1| (-721) (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1|)) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721))) (-15 -3118 ((-3 |#1| "failed") (-864) |#1| (-598 (-721)) (-721) (-110))) (-15 -3452 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110))) (-15 -2058 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110) (-1032 (-721)) (-721))))
+((-3358 (((-531) |#2|) 48) (((-531) |#2| (-721)) 47)) (-3677 (((-531) |#2|) 55)) (-1479 ((|#3| |#2|) 25)) (-1899 ((|#3| |#2| (-864)) 14)) (-2428 ((|#3| |#2|) 15)) (-3652 ((|#3| |#2|) 9)) (-4194 ((|#3| |#2|) 10)) (-1358 ((|#3| |#2| (-864)) 62) ((|#3| |#2|) 30)) (-3484 (((-531) |#2|) 57)))
+(((-423 |#1| |#2| |#3|) (-10 -7 (-15 -3484 ((-531) |#2|)) (-15 -1358 (|#3| |#2|)) (-15 -1358 (|#3| |#2| (-864))) (-15 -3677 ((-531) |#2|)) (-15 -3358 ((-531) |#2| (-721))) (-15 -3358 ((-531) |#2|)) (-15 -1899 (|#3| |#2| (-864))) (-15 -1479 (|#3| |#2|)) (-15 -3652 (|#3| |#2|)) (-15 -4194 (|#3| |#2|)) (-15 -2428 (|#3| |#2|))) (-986) (-1160 |#1|) (-13 (-385) (-977 |#1|) (-344) (-1124) (-266))) (T -423))
+((-2428 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-4194 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-3652 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-1479 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-1899 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *5 (-986)) (-4 *2 (-13 (-385) (-977 *5) (-344) (-1124) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1160 *5)))) (-3358 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1160 *4)) (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266))))) (-3358 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1160 *5)) (-4 *6 (-13 (-385) (-977 *5) (-344) (-1124) (-266))))) (-3677 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1160 *4)) (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266))))) (-1358 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *5 (-986)) (-4 *2 (-13 (-385) (-977 *5) (-344) (-1124) (-266))) (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1160 *5)))) (-1358 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266))) (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5)) (-4 *3 (-1160 *4)) (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266))))))
+(-10 -7 (-15 -3484 ((-531) |#2|)) (-15 -1358 (|#3| |#2|)) (-15 -1358 (|#3| |#2| (-864))) (-15 -3677 ((-531) |#2|)) (-15 -3358 ((-531) |#2| (-721))) (-15 -3358 ((-531) |#2|)) (-15 -1899 (|#3| |#2| (-864))) (-15 -1479 (|#3| |#2|)) (-15 -3652 (|#3| |#2|)) (-15 -4194 (|#3| |#2|)) (-15 -2428 (|#3| |#2|)))
+((-3461 ((|#2| (-1184 |#1|)) 36)) (-3041 ((|#2| |#2| |#1|) 49)) (-2233 ((|#2| |#2| |#1|) 41)) (-1828 ((|#2| |#2|) 38)) (-1448 (((-110) |#2|) 30)) (-3844 (((-598 |#2|) (-864) (-399 |#2|)) 17)) (-3118 ((|#2| (-864) (-399 |#2|)) 21)) (-1696 (((-688 (-721)) (-399 |#2|)) 25)))
+(((-424 |#1| |#2|) (-10 -7 (-15 -1448 ((-110) |#2|)) (-15 -3461 (|#2| (-1184 |#1|))) (-15 -1828 (|#2| |#2|)) (-15 -2233 (|#2| |#2| |#1|)) (-15 -3041 (|#2| |#2| |#1|)) (-15 -1696 ((-688 (-721)) (-399 |#2|))) (-15 -3118 (|#2| (-864) (-399 |#2|))) (-15 -3844 ((-598 |#2|) (-864) (-399 |#2|)))) (-986) (-1160 |#1|)) (T -424))
+((-3844 (*1 *2 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-399 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-986)) (-5 *2 (-598 *6)) (-5 *1 (-424 *5 *6)))) (-3118 (*1 *2 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-399 *2)) (-4 *2 (-1160 *5)) (-5 *1 (-424 *5 *2)) (-4 *5 (-986)))) (-1696 (*1 *2 *3) (-12 (-5 *3 (-399 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-986)) (-5 *2 (-688 (-721))) (-5 *1 (-424 *4 *5)))) (-3041 (*1 *2 *2 *3) (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))) (-2233 (*1 *2 *2 *3) (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))) (-1828 (*1 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))) (-3461 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-986)) (-4 *2 (-1160 *4)) (-5 *1 (-424 *4 *2)))) (-1448 (*1 *2 *3) (-12 (-4 *4 (-986)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -1448 ((-110) |#2|)) (-15 -3461 (|#2| (-1184 |#1|))) (-15 -1828 (|#2| |#2|)) (-15 -2233 (|#2| |#2| |#1|)) (-15 -3041 (|#2| |#2| |#1|)) (-15 -1696 ((-688 (-721)) (-399 |#2|))) (-15 -3118 (|#2| (-864) (-399 |#2|))) (-15 -3844 ((-598 |#2|) (-864) (-399 |#2|))))
+((-1675 (((-721)) 41)) (-3753 (((-721)) 23 (|has| |#1| (-385))) (((-721) (-721)) 22 (|has| |#1| (-385)))) (-2408 (((-531) |#1|) 18 (|has| |#1| (-385)))) (-3950 (((-531) |#1|) 20 (|has| |#1| (-385)))) (-2833 (((-721)) 40) (((-721) (-721)) 39)) (-1342 ((|#1| (-721) (-531)) 29)) (-2645 (((-1189)) 43)))
+(((-425 |#1|) (-10 -7 (-15 -1342 (|#1| (-721) (-531))) (-15 -2833 ((-721) (-721))) (-15 -2833 ((-721))) (-15 -1675 ((-721))) (-15 -2645 ((-1189))) (IF (|has| |#1| (-385)) (PROGN (-15 -3950 ((-531) |#1|)) (-15 -2408 ((-531) |#1|)) (-15 -3753 ((-721) (-721))) (-15 -3753 ((-721)))) |%noBranch|)) (-986)) (T -425))
+((-3753 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) (-3753 (*1 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) (-2408 (*1 *2 *3) (-12 (-5 *2 (-531)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) (-3950 (*1 *2 *3) (-12 (-5 *2 (-531)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))) (-2645 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) (-1675 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) (-2833 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) (-2833 (*1 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))) (-1342 (*1 *2 *3 *4) (-12 (-5 *3 (-721)) (-5 *4 (-531)) (-5 *1 (-425 *2)) (-4 *2 (-986)))))
+(-10 -7 (-15 -1342 (|#1| (-721) (-531))) (-15 -2833 ((-721) (-721))) (-15 -2833 ((-721))) (-15 -1675 ((-721))) (-15 -2645 ((-1189))) (IF (|has| |#1| (-385)) (PROGN (-15 -3950 ((-531) |#1|)) (-15 -2408 ((-531) |#1|)) (-15 -3753 ((-721) (-721))) (-15 -3753 ((-721)))) |%noBranch|))
+((-1968 (((-598 (-531)) (-531)) 61)) (-2534 (((-110) (-159 (-531))) 65)) (-2552 (((-399 (-159 (-531))) (-159 (-531))) 60)))
+(((-426) (-10 -7 (-15 -2552 ((-399 (-159 (-531))) (-159 (-531)))) (-15 -1968 ((-598 (-531)) (-531))) (-15 -2534 ((-110) (-159 (-531)))))) (T -426))
+((-2534 (*1 *2 *3) (-12 (-5 *3 (-159 (-531))) (-5 *2 (-110)) (-5 *1 (-426)))) (-1968 (*1 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-426)) (-5 *3 (-531)))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 (-159 (-531)))) (-5 *1 (-426)) (-5 *3 (-159 (-531))))))
+(-10 -7 (-15 -2552 ((-399 (-159 (-531))) (-159 (-531)))) (-15 -1968 ((-598 (-531)) (-531))) (-15 -2534 ((-110) (-159 (-531)))))
+((-3311 ((|#4| |#4| (-598 |#4|)) 61)) (-2496 (((-598 |#4|) (-598 |#4|) (-1085) (-1085)) 17) (((-598 |#4|) (-598 |#4|) (-1085)) 16) (((-598 |#4|) (-598 |#4|)) 11)))
+(((-427 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3311 (|#4| |#4| (-598 |#4|))) (-15 -2496 ((-598 |#4|) (-598 |#4|))) (-15 -2496 ((-598 |#4|) (-598 |#4|) (-1085))) (-15 -2496 ((-598 |#4|) (-598 |#4|) (-1085) (-1085)))) (-289) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -427))
+((-2496 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2496 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-427 *4 *5 *6 *7)))) (-2496 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-427 *3 *4 *5 *6)))) (-3311 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-427 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3311 (|#4| |#4| (-598 |#4|))) (-15 -2496 ((-598 |#4|) (-598 |#4|))) (-15 -2496 ((-598 |#4|) (-598 |#4|) (-1085))) (-15 -2496 ((-598 |#4|) (-598 |#4|) (-1085) (-1085))))
+((-2981 (((-598 (-598 |#4|)) (-598 |#4|) (-110)) 73) (((-598 (-598 |#4|)) (-598 |#4|)) 72) (((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|) (-110)) 66) (((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|)) 67)) (-3341 (((-598 (-598 |#4|)) (-598 |#4|) (-110)) 42) (((-598 (-598 |#4|)) (-598 |#4|)) 63)))
+(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3341 ((-598 (-598 |#4|)) (-598 |#4|))) (-15 -3341 ((-598 (-598 |#4|)) (-598 |#4|) (-110))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|) (-110))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-110)))) (-13 (-289) (-140)) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -428))
+((-2981 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))) (-2981 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-2981 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))) (-2981 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3341 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8))) (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))) (-3341 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7))) (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7)))))
+(-10 -7 (-15 -3341 ((-598 (-598 |#4|)) (-598 |#4|))) (-15 -3341 ((-598 (-598 |#4|)) (-598 |#4|) (-110))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-598 |#4|) (-110))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|))) (-15 -2981 ((-598 (-598 |#4|)) (-598 |#4|) (-110))))
+((-2896 (((-721) |#4|) 12)) (-1389 (((-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))) |#4| (-721) (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|)))) 31)) (-3363 (((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 38)) (-3554 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 39)) (-1757 ((|#4| |#4| (-598 |#4|)) 40)) (-3790 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-598 |#4|)) 70)) (-3250 (((-1189) |#4|) 42)) (-4141 (((-1189) (-598 |#4|)) 51)) (-4191 (((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531)) 48)) (-1793 (((-1189) (-531)) 79)) (-2900 (((-598 |#4|) (-598 |#4|)) 77)) (-1417 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|)) |#4| (-721)) 25)) (-1355 (((-531) |#4|) 78)) (-2737 ((|#4| |#4|) 29)) (-1827 (((-598 |#4|) (-598 |#4|) (-531) (-531)) 56)) (-3953 (((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531) (-531)) 89)) (-3647 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 16)) (-3419 (((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 59)) (-3464 (((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 58)) (-1277 (((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 36)) (-1264 (((-110) |#2| |#2|) 57)) (-3123 (((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 37)) (-2558 (((-110) |#2| |#2| |#2| |#2|) 60)) (-3070 ((|#4| |#4| (-598 |#4|)) 71)))
+(((-429 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3070 (|#4| |#4| (-598 |#4|))) (-15 -1757 (|#4| |#4| (-598 |#4|))) (-15 -1827 ((-598 |#4|) (-598 |#4|) (-531) (-531))) (-15 -3419 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1264 ((-110) |#2| |#2|)) (-15 -2558 ((-110) |#2| |#2| |#2| |#2|)) (-15 -3123 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1277 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3464 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3790 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-598 |#4|))) (-15 -2737 (|#4| |#4|)) (-15 -1389 ((-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))) |#4| (-721) (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))))) (-15 -3554 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3363 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2900 ((-598 |#4|) (-598 |#4|))) (-15 -1355 ((-531) |#4|)) (-15 -3250 ((-1189) |#4|)) (-15 -4191 ((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531))) (-15 -3953 ((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531) (-531))) (-15 -4141 ((-1189) (-598 |#4|))) (-15 -1793 ((-1189) (-531))) (-15 -3647 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1417 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|)) |#4| (-721))) (-15 -2896 ((-721) |#4|))) (-432) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -429))
+((-2896 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-721)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-1417 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-721)) (|:| -2451 *4))) (-5 *5 (-721)) (-4 *4 (-892 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-429 *6 *7 *8 *4)))) (-3647 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-743)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1793 (*1 *2 *3) (-12 (-5 *3 (-531)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) (-4141 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189)) (-5 *1 (-429 *4 *5 *6 *7)))) (-3953 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-721)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-743)) (-4 *4 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-797)) (-5 *1 (-429 *5 *6 *7 *4)))) (-4191 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-721)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-743)) (-4 *4 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-797)) (-5 *1 (-429 *5 *6 *7 *4)))) (-3250 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-531)) (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-2900 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *6)))) (-3363 (*1 *2 *2 *2) (-12 (-5 *2 (-598 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-721)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-743)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *6)))) (-3554 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-743)) (-4 *2 (-892 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2)) (-4 *4 (-432)) (-4 *6 (-797)))) (-1389 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 *3)))) (-5 *4 (-721)) (-4 *3 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-429 *5 *6 *7 *3)))) (-2737 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))) (-3790 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-429 *5 *6 *7 *3)))) (-3464 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-721)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-743)) (-4 *6 (-892 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-797)) (-5 *1 (-429 *4 *3 *5 *6)))) (-1277 (*1 *2 *2) (-12 (-5 *2 (-598 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-721)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-743)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *6)))) (-3123 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-743)) (-4 *3 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *3)))) (-2558 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-892 *4 *3 *5)))) (-1264 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *3 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-892 *4 *3 *5)))) (-3419 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-743)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1827 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-531)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *7)))) (-1757 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *2)))) (-3070 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *2)))))
+(-10 -7 (-15 -3070 (|#4| |#4| (-598 |#4|))) (-15 -1757 (|#4| |#4| (-598 |#4|))) (-15 -1827 ((-598 |#4|) (-598 |#4|) (-531) (-531))) (-15 -3419 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1264 ((-110) |#2| |#2|)) (-15 -2558 ((-110) |#2| |#2| |#2| |#2|)) (-15 -3123 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -1277 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3464 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -3790 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-598 |#4|))) (-15 -2737 (|#4| |#4|)) (-15 -1389 ((-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))) |#4| (-721) (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|))))) (-15 -3554 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -3363 ((-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-598 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2900 ((-598 |#4|) (-598 |#4|))) (-15 -1355 ((-531) |#4|)) (-15 -3250 ((-1189) |#4|)) (-15 -4191 ((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531))) (-15 -3953 ((-531) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-531) (-531) (-531) (-531))) (-15 -4141 ((-1189) (-598 |#4|))) (-15 -1793 ((-1189) (-531))) (-15 -3647 ((-110) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -1417 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-721)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-721)) (|:| -2451 |#4|)) |#4| (-721))) (-15 -2896 ((-721) |#4|)))
+((-2854 ((|#4| |#4| (-598 |#4|)) 22 (|has| |#1| (-344)))) (-3716 (((-598 |#4|) (-598 |#4|) (-1085) (-1085)) 41) (((-598 |#4|) (-598 |#4|) (-1085)) 40) (((-598 |#4|) (-598 |#4|)) 35)))
+(((-430 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3716 ((-598 |#4|) (-598 |#4|))) (-15 -3716 ((-598 |#4|) (-598 |#4|) (-1085))) (-15 -3716 ((-598 |#4|) (-598 |#4|) (-1085) (-1085))) (IF (|has| |#1| (-344)) (-15 -2854 (|#4| |#4| (-598 |#4|))) |%noBranch|)) (-432) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -430))
+((-2854 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-344)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-430 *4 *5 *6 *2)))) (-3716 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-430 *4 *5 *6 *7)))) (-3716 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-430 *4 *5 *6 *7)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-430 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3716 ((-598 |#4|) (-598 |#4|))) (-15 -3716 ((-598 |#4|) (-598 |#4|) (-1085))) (-15 -3716 ((-598 |#4|) (-598 |#4|) (-1085) (-1085))) (IF (|has| |#1| (-344)) (-15 -2854 (|#4| |#4| (-598 |#4|))) |%noBranch|))
+((-2078 (($ $ $) 14) (($ (-598 $)) 21)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 41)) (-2109 (($ $ $) NIL) (($ (-598 $)) 22)))
+(((-431 |#1|) (-10 -8 (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2078 (|#1| (-598 |#1|))) (-15 -2078 (|#1| |#1| |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|))) (-432)) (T -431))
+NIL
+(-10 -8 (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2078 (|#1| (-598 |#1|))) (-15 -2078 (|#1| |#1| |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2109 (|#1| |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-432) (-133)) (T -432))
-((-2204 (*1 *1 *1 *1) (-4 *1 (-432))) (-2204 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432)))) (-2170 (*1 *1 *1 *1) (-4 *1 (-432))) (-2170 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432)))) (-2569 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-432)))))
-(-13 (-522) (-10 -8 (-15 -2204 ($ $ $)) (-15 -2204 ($ (-597 $))) (-15 -2170 ($ $ $)) (-15 -2170 ($ (-597 $))) (-15 -2569 ((-1095 $) (-1095 $) (-1095 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 (-388 (-893 |#1|)))) (-1181 $)) NIL) (((-1181 (-637 (-388 (-893 |#1|))))) NIL)) (-3990 (((-1181 $)) NIL)) (-2350 (($) NIL T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL)) (-1383 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-2603 (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL) (((-637 (-388 (-893 |#1|)))) NIL)) (-2228 (((-388 (-893 |#1|)) $) NIL)) (-4209 (((-637 (-388 (-893 |#1|))) $ (-1181 $)) NIL) (((-637 (-388 (-893 |#1|))) $) NIL)) (-2635 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-3991 (((-1095 (-893 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-344))) (((-1095 (-388 (-893 |#1|)))) 84 (|has| |#1| (-522)))) (-2862 (($ $ (-862)) NIL)) (-4005 (((-388 (-893 |#1|)) $) NIL)) (-3581 (((-1095 (-388 (-893 |#1|))) $) 82 (|has| (-388 (-893 |#1|)) (-522)))) (-3988 (((-388 (-893 |#1|)) (-1181 $)) NIL) (((-388 (-893 |#1|))) NIL)) (-2670 (((-1095 (-388 (-893 |#1|))) $) NIL)) (-2662 (((-110)) NIL)) (-1574 (($ (-1181 (-388 (-893 |#1|))) (-1181 $)) 103) (($ (-1181 (-388 (-893 |#1|)))) NIL)) (-2707 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-2426 (((-862)) NIL)) (-3485 (((-110)) NIL)) (-1667 (($ $ (-862)) NIL)) (-3943 (((-110)) NIL)) (-3470 (((-110)) NIL)) (-2305 (((-110)) NIL)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL)) (-3832 (((-3 $ "failed")) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-1257 (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL) (((-637 (-388 (-893 |#1|)))) NIL)) (-2465 (((-388 (-893 |#1|)) $) NIL)) (-3846 (((-637 (-388 (-893 |#1|))) $ (-1181 $)) NIL) (((-637 (-388 (-893 |#1|))) $) NIL)) (-1232 (((-3 $ "failed") $) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-3342 (((-1095 (-893 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-344))) (((-1095 (-388 (-893 |#1|)))) 83 (|has| |#1| (-522)))) (-4138 (($ $ (-862)) NIL)) (-2602 (((-388 (-893 |#1|)) $) NIL)) (-2209 (((-1095 (-388 (-893 |#1|))) $) 77 (|has| (-388 (-893 |#1|)) (-522)))) (-2837 (((-388 (-893 |#1|)) (-1181 $)) NIL) (((-388 (-893 |#1|))) NIL)) (-2461 (((-1095 (-388 (-893 |#1|))) $) NIL)) (-1921 (((-110)) NIL)) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) NIL)) (-2561 (((-110)) NIL)) (-3766 (((-110)) NIL)) (-2624 (((-1046) $) NIL)) (-3400 (((-388 (-893 |#1|)) $ $) 71 (|has| |#1| (-522)))) (-2718 (((-388 (-893 |#1|)) $) 93 (|has| |#1| (-522)))) (-3160 (((-388 (-893 |#1|)) $) 95 (|has| |#1| (-522)))) (-2428 (((-1095 (-388 (-893 |#1|))) $) 88 (|has| |#1| (-522)))) (-3760 (((-388 (-893 |#1|))) 72 (|has| |#1| (-522)))) (-1660 (((-388 (-893 |#1|)) $ $) 64 (|has| |#1| (-522)))) (-1993 (((-388 (-893 |#1|)) $) 92 (|has| |#1| (-522)))) (-2385 (((-388 (-893 |#1|)) $) 94 (|has| |#1| (-522)))) (-1736 (((-1095 (-388 (-893 |#1|))) $) 87 (|has| |#1| (-522)))) (-1983 (((-388 (-893 |#1|))) 68 (|has| |#1| (-522)))) (-1936 (($) 101) (($ (-1099)) 107) (($ (-1181 (-1099))) 106) (($ (-1181 $)) 96) (($ (-1099) (-1181 $)) 105) (($ (-1181 (-1099)) (-1181 $)) 104)) (-3719 (((-110)) NIL)) (-1902 (((-388 (-893 |#1|)) $ (-530)) NIL)) (-2328 (((-1181 (-388 (-893 |#1|))) $ (-1181 $)) 98) (((-637 (-388 (-893 |#1|))) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 (-893 |#1|))) $) 40) (((-637 (-388 (-893 |#1|))) (-1181 $)) NIL)) (-3260 (((-1181 (-388 (-893 |#1|))) $) NIL) (($ (-1181 (-388 (-893 |#1|)))) 37)) (-3028 (((-597 (-893 (-388 (-893 |#1|)))) (-1181 $)) NIL) (((-597 (-893 (-388 (-893 |#1|))))) NIL) (((-597 (-893 |#1|)) (-1181 $)) 99 (|has| |#1| (-522))) (((-597 (-893 |#1|))) 100 (|has| |#1| (-522)))) (-2607 (($ $ $) NIL)) (-3675 (((-110)) NIL)) (-2366 (((-804) $) NIL) (($ (-1181 (-388 (-893 |#1|)))) NIL)) (-3220 (((-1181 $)) 60)) (-3758 (((-597 (-1181 (-388 (-893 |#1|))))) NIL (|has| (-388 (-893 |#1|)) (-522)))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) NIL)) (-3003 (($ (-637 (-388 (-893 |#1|))) $) NIL)) (-3980 (($ $ $) NIL)) (-2164 (((-110)) NIL)) (-3566 (((-110)) NIL)) (-1957 (((-110)) NIL)) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) 97)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 56) (($ $ (-388 (-893 |#1|))) NIL) (($ (-388 (-893 |#1|)) $) NIL) (($ (-1066 |#2| (-388 (-893 |#1|))) $) NIL)))
-(((-433 |#1| |#2| |#3| |#4|) (-13 (-398 (-388 (-893 |#1|))) (-599 (-1066 |#2| (-388 (-893 |#1|)))) (-10 -8 (-15 -2366 ($ (-1181 (-388 (-893 |#1|))))) (-15 -3357 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -1936 ($)) (-15 -1936 ($ (-1099))) (-15 -1936 ($ (-1181 (-1099)))) (-15 -1936 ($ (-1181 $))) (-15 -1936 ($ (-1099) (-1181 $))) (-15 -1936 ($ (-1181 (-1099)) (-1181 $))) (IF (|has| |#1| (-522)) (PROGN (-15 -3342 ((-1095 (-388 (-893 |#1|))))) (-15 -1736 ((-1095 (-388 (-893 |#1|))) $)) (-15 -1993 ((-388 (-893 |#1|)) $)) (-15 -2385 ((-388 (-893 |#1|)) $)) (-15 -3991 ((-1095 (-388 (-893 |#1|))))) (-15 -2428 ((-1095 (-388 (-893 |#1|))) $)) (-15 -2718 ((-388 (-893 |#1|)) $)) (-15 -3160 ((-388 (-893 |#1|)) $)) (-15 -1660 ((-388 (-893 |#1|)) $ $)) (-15 -1983 ((-388 (-893 |#1|)))) (-15 -3400 ((-388 (-893 |#1|)) $ $)) (-15 -3760 ((-388 (-893 |#1|)))) (-15 -3028 ((-597 (-893 |#1|)) (-1181 $))) (-15 -3028 ((-597 (-893 |#1|))))) |%noBranch|))) (-162) (-862) (-597 (-1099)) (-1181 (-637 |#1|))) (T -433))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 *3)))) (-4 *3 (-162)) (-14 *6 (-1181 (-637 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))))) (-3357 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3220 (-597 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3751 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3220 (-597 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1936 (*1 *1) (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-862)) (-14 *4 (-597 (-1099))) (-14 *5 (-1181 (-637 *2))))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 *2)) (-14 *6 (-1181 (-637 *3))))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-1181 (-1099))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-1181 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1936 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 *2)) (-14 *7 (-1181 (-637 *4))))) (-1936 (*1 *1 *2 *3) (-12 (-5 *2 (-1181 (-1099))) (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))) (-3342 (*1 *2) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1736 (*1 *2 *1) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1993 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2385 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3991 (*1 *2) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-2718 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3160 (*1 *2 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1660 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-1983 (*1 *2) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3400 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3760 (*1 *2) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))) (-3028 (*1 *2 *3) (-12 (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *2 (-597 (-893 *4))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *4 (-162)) (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))) (-3028 (*1 *2) (-12 (-5 *2 (-597 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(-13 (-398 (-388 (-893 |#1|))) (-599 (-1066 |#2| (-388 (-893 |#1|)))) (-10 -8 (-15 -2366 ($ (-1181 (-388 (-893 |#1|))))) (-15 -3357 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -3751 ((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed"))) (-15 -1936 ($)) (-15 -1936 ($ (-1099))) (-15 -1936 ($ (-1181 (-1099)))) (-15 -1936 ($ (-1181 $))) (-15 -1936 ($ (-1099) (-1181 $))) (-15 -1936 ($ (-1181 (-1099)) (-1181 $))) (IF (|has| |#1| (-522)) (PROGN (-15 -3342 ((-1095 (-388 (-893 |#1|))))) (-15 -1736 ((-1095 (-388 (-893 |#1|))) $)) (-15 -1993 ((-388 (-893 |#1|)) $)) (-15 -2385 ((-388 (-893 |#1|)) $)) (-15 -3991 ((-1095 (-388 (-893 |#1|))))) (-15 -2428 ((-1095 (-388 (-893 |#1|))) $)) (-15 -2718 ((-388 (-893 |#1|)) $)) (-15 -3160 ((-388 (-893 |#1|)) $)) (-15 -1660 ((-388 (-893 |#1|)) $ $)) (-15 -1983 ((-388 (-893 |#1|)))) (-15 -3400 ((-388 (-893 |#1|)) $ $)) (-15 -3760 ((-388 (-893 |#1|)))) (-15 -3028 ((-597 (-893 |#1|)) (-1181 $))) (-15 -3028 ((-597 (-893 |#1|))))) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 13)) (-2746 (((-597 (-806 |#1|)) $) 75)) (-2577 (((-1095 $) $ (-806 |#1|)) 46) (((-1095 |#2|) $) 118)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) 21) (((-719) $ (-597 (-806 |#1|))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) 44) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2585 ((|#2| $) 42) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-3388 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1282 (($ $ (-597 (-530))) 80)) (-2562 (($ $) 68)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| |#3| $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) 58)) (-2735 (($ (-1095 |#2|) (-806 |#1|)) 123) (($ (-1095 $) (-806 |#1|)) 52)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) 59)) (-2725 (($ |#2| |#3|) 28) (($ $ (-806 |#1|) (-719)) 30) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-806 |#1|)) NIL)) (-2944 ((|#3| $) NIL) (((-719) $ (-806 |#1|)) 50) (((-597 (-719)) $ (-597 (-806 |#1|))) 57)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 |#3| |#3|) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2040 (((-3 (-806 |#1|) "failed") $) 39)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) 41)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 40)) (-2505 ((|#2| $) 116)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) 128 (|has| |#2| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) 87) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) 90) (($ $ (-806 |#1|) $) 85) (($ $ (-597 (-806 |#1|)) (-597 $)) 106)) (-3060 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-806 |#1|)) 53) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1429 ((|#3| $) 67) (((-719) $ (-806 |#1|)) 37) (((-597 (-719)) $ (-597 (-806 |#1|))) 56)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) 125 (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) 145) (($ (-530)) NIL) (($ |#2|) 86) (($ (-806 |#1|)) 31) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ |#3|) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) 17 T CONST)) (-3093 (($) 25 T CONST)) (-3340 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) 64 (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 111)) (** (($ $ (-862)) NIL) (($ $ (-719)) 109)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 29) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
-(((-434 |#1| |#2| |#3|) (-13 (-890 |#2| |#3| (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984) (-221 (-2267 |#1|) (-719))) (T -434))
-((-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-14 *3 (-597 (-1099))) (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-984)) (-4 *5 (-221 (-2267 *3) (-719))))))
-(-13 (-890 |#2| |#3| (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530))))))
-((-3673 (((-110) |#1| (-597 |#2|)) 69)) (-1501 (((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|)) 78)) (-4087 (((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|))) 80)) (-1920 ((|#2| |#2| |#1|) 28)) (-3136 (((-719) |#2| (-597 |#2|)) 20)))
-(((-435 |#1| |#2|) (-10 -7 (-15 -1920 (|#2| |#2| |#1|)) (-15 -3136 ((-719) |#2| (-597 |#2|))) (-15 -1501 ((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|))) (-15 -4087 ((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|)))) (-15 -3673 ((-110) |#1| (-597 |#2|)))) (-289) (-1157 |#1|)) (T -435))
-((-3673 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-289)) (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))) (-4087 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1181 (-597 *3))) (-4 *4 (-289)) (-5 *2 (-597 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1157 *4)))) (-1501 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-289)) (-4 *6 (-1157 *4)) (-5 *2 (-1181 (-597 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-597 *6)))) (-3136 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-289)) (-5 *2 (-719)) (-5 *1 (-435 *5 *3)))) (-1920 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1157 *3)))))
-(-10 -7 (-15 -1920 (|#2| |#2| |#1|)) (-15 -3136 ((-719) |#2| (-597 |#2|))) (-15 -1501 ((-3 (-1181 (-597 |#2|)) "failed") (-719) |#1| (-597 |#2|))) (-15 -4087 ((-3 (-597 |#2|) "failed") |#2| |#1| (-1181 (-597 |#2|)))) (-15 -3673 ((-110) |#1| (-597 |#2|))))
-((-2611 (((-399 |#5|) |#5|) 24)))
-(((-436 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2611 ((-399 |#5|) |#5|))) (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099))))) (-741) (-522) (-522) (-890 |#4| |#2| |#1|)) (T -436))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-4 *5 (-741)) (-4 *7 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-522)) (-4 *3 (-890 *7 *5 *4)))))
-(-10 -7 (-15 -2611 ((-399 |#5|) |#5|)))
-((-2220 ((|#3|) 37)) (-2569 (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 33)))
-(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2569 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2220 (|#3|))) (-741) (-795) (-850) (-890 |#3| |#1| |#2|)) (T -437))
-((-2220 (*1 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850)) (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-890 *2 *3 *4)))) (-2569 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-850)) (-5 *1 (-437 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2569 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2220 (|#3|)))
-((-2611 (((-399 (-1095 |#1|)) (-1095 |#1|)) 43)))
-(((-438 |#1|) (-10 -7 (-15 -2611 ((-399 (-1095 |#1|)) (-1095 |#1|)))) (-289)) (T -438))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 (-1095 *4))) (-5 *1 (-438 *4)) (-5 *3 (-1095 *4)))))
-(-10 -7 (-15 -2611 ((-399 (-1095 |#1|)) (-1095 |#1|))))
-((-2805 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719))) 42) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719))) 41) (((-51) |#2| (-1099) (-276 |#2|)) 35) (((-51) (-1 |#2| (-530)) (-276 |#2|)) 28)) (-2460 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 80) (((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 79) (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530))) 78) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530))) 77) (((-51) |#2| (-1099) (-276 |#2|)) 72) (((-51) (-1 |#2| (-530)) (-276 |#2|)) 71)) (-2457 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 66) (((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))) 64)) (-2817 (((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530))) 48) (((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530))) 47)))
-(((-439 |#1| |#2|) (-10 -7 (-15 -2805 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2805 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2805 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719)))) (-15 -2805 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719)))) (-15 -2817 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2817 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2457 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2457 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2460 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2460 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2460 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530))))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -439))
-((-2460 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530)))) (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8))) (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-2460 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8)) (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530))) (-4 *8 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-2460 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2460 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2460 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-2460 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))) (-2457 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530)))) (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8))) (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-2457 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8)) (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530))) (-4 *8 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-2817 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2817 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2805 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-719))) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-719))) (-4 *7 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2805 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))))
-(-10 -7 (-15 -2805 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2805 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2805 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-719)))) (-15 -2805 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-719)))) (-15 -2817 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2817 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2457 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2457 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2460 ((-51) (-1 |#2| (-530)) (-276 |#2|))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|))) (-15 -2460 ((-51) (-1 |#2| (-530)) (-276 |#2|) (-1148 (-530)))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-530)))) (-15 -2460 ((-51) (-1 |#2| (-388 (-530))) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))) (-15 -2460 ((-51) |#2| (-1099) (-276 |#2|) (-1148 (-388 (-530))) (-388 (-530)))))
-((-1920 ((|#2| |#2| |#1|) 15)) (-1787 (((-597 |#2|) |#2| (-597 |#2|) |#1| (-862)) 69)) (-2117 (((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862)) 60)))
-(((-440 |#1| |#2|) (-10 -7 (-15 -2117 ((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862))) (-15 -1787 ((-597 |#2|) |#2| (-597 |#2|) |#1| (-862))) (-15 -1920 (|#2| |#2| |#1|))) (-289) (-1157 |#1|)) (T -440))
-((-1920 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1157 *3)))) (-1787 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-597 *3)) (-5 *5 (-862)) (-4 *3 (-1157 *4)) (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))) (-2117 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-862)) (-4 *5 (-289)) (-4 *3 (-1157 *5)) (-5 *2 (-2 (|:| |plist| (-597 *3)) (|:| |modulo| *5))) (-5 *1 (-440 *5 *3)) (-5 *4 (-597 *3)))))
-(-10 -7 (-15 -2117 ((-2 (|:| |plist| (-597 |#2|)) (|:| |modulo| |#1|)) |#2| (-597 |#2|) |#1| (-862))) (-15 -1787 ((-597 |#2|) |#2| (-597 |#2|) |#1| (-862))) (-15 -1920 (|#2| |#2| |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 28)) (-3930 (($ |#3|) 25)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) 32)) (-2833 (($ |#2| |#4| $) 33)) (-2725 (($ |#2| (-662 |#3| |#4| |#5|)) 24)) (-2521 (((-662 |#3| |#4| |#5|) $) 15)) (-3720 ((|#3| $) 19)) (-2695 ((|#4| $) 17)) (-2533 ((|#2| $) 29)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-2205 (($ |#2| |#3| |#4|) 26)) (-3080 (($) 36 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 34)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-441 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-666 |#6|) (-666 |#2|) (-10 -8 (-15 -2533 (|#2| $)) (-15 -2521 ((-662 |#3| |#4| |#5|) $)) (-15 -2695 (|#4| $)) (-15 -3720 (|#3| $)) (-15 -2562 ($ $)) (-15 -2725 ($ |#2| (-662 |#3| |#4| |#5|))) (-15 -3930 ($ |#3|)) (-15 -2205 ($ |#2| |#3| |#4|)) (-15 -2833 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-597 (-1099)) (-162) (-795) (-221 (-2267 |#1|) (-719)) (-1 (-110) (-2 (|:| -1986 |#3|) (|:| -3194 |#4|)) (-2 (|:| -1986 |#3|) (|:| -3194 |#4|))) (-890 |#2| |#4| (-806 |#1|))) (T -441))
-((* (*1 *1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *6 (-221 (-2267 *3) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6)) (-2 (|:| -1986 *5) (|:| -3194 *6)))) (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-795)) (-4 *2 (-890 *4 *6 (-806 *3))))) (-2533 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *5 (-221 (-2267 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *4) (|:| -3194 *5)) (-2 (|:| -1986 *4) (|:| -3194 *5)))) (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-795)) (-4 *7 (-890 *2 *5 (-806 *3))))) (-2521 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *6 (-221 (-2267 *3) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6)) (-2 (|:| -1986 *5) (|:| -3194 *6)))) (-5 *2 (-662 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8)) (-4 *5 (-795)) (-4 *8 (-890 *4 *6 (-806 *3))))) (-2695 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-14 *6 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *2)) (-2 (|:| -1986 *5) (|:| -3194 *2)))) (-4 *2 (-221 (-2267 *3) (-719))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7)) (-4 *5 (-795)) (-4 *7 (-890 *4 *2 (-806 *3))))) (-3720 (*1 *2 *1) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *5 (-221 (-2267 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *5)) (-2 (|:| -1986 *2) (|:| -3194 *5)))) (-4 *2 (-795)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *7 (-890 *4 *5 (-806 *3))))) (-2562 (*1 *1 *1) (-12 (-14 *2 (-597 (-1099))) (-4 *3 (-162)) (-4 *5 (-221 (-2267 *2) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *4) (|:| -3194 *5)) (-2 (|:| -1986 *4) (|:| -3194 *5)))) (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-795)) (-4 *7 (-890 *3 *5 (-806 *2))))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-662 *5 *6 *7)) (-4 *5 (-795)) (-4 *6 (-221 (-2267 *4) (-719))) (-14 *7 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6)) (-2 (|:| -1986 *5) (|:| -3194 *6)))) (-14 *4 (-597 (-1099))) (-4 *2 (-162)) (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-890 *2 *6 (-806 *4))))) (-3930 (*1 *1 *2) (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162)) (-4 *5 (-221 (-2267 *3) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *5)) (-2 (|:| -1986 *2) (|:| -3194 *5)))) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-795)) (-4 *7 (-890 *4 *5 (-806 *3))))) (-2205 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-597 (-1099))) (-4 *2 (-162)) (-4 *4 (-221 (-2267 *5) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *3) (|:| -3194 *4)) (-2 (|:| -1986 *3) (|:| -3194 *4)))) (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-795)) (-4 *7 (-890 *2 *4 (-806 *5))))) (-2833 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-597 (-1099))) (-4 *2 (-162)) (-4 *3 (-221 (-2267 *4) (-719))) (-14 *6 (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *3)) (-2 (|:| -1986 *5) (|:| -3194 *3)))) (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-795)) (-4 *7 (-890 *2 *3 (-806 *4))))))
-(-13 (-666 |#6|) (-666 |#2|) (-10 -8 (-15 -2533 (|#2| $)) (-15 -2521 ((-662 |#3| |#4| |#5|) $)) (-15 -2695 (|#4| $)) (-15 -3720 (|#3| $)) (-15 -2562 ($ $)) (-15 -2725 ($ |#2| (-662 |#3| |#4| |#5|))) (-15 -3930 ($ |#3|)) (-15 -2205 ($ |#2| |#3| |#4|)) (-15 -2833 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
-((-1335 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
-(((-442 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1335 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|) (-13 (-975 (-388 (-530))) (-344) (-10 -8 (-15 -2366 ($ |#4|)) (-15 -1918 (|#4| $)) (-15 -1928 (|#4| $))))) (T -442))
-((-1335 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-795)) (-4 *5 (-741)) (-4 *6 (-522)) (-4 *7 (-890 *6 *5 *3)) (-5 *1 (-442 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-975 (-388 (-530))) (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))))
-(-10 -7 (-15 -1335 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
-((-2352 (((-110) $ $) NIL)) (-2746 (((-597 |#3|) $) 41)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) NIL (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3588 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 47)) (-2585 (($ (-597 |#4|)) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269)))) (-3779 (((-597 |#4|) $) 18 (|has| $ (-6 -4269)))) (-3122 ((|#3| $) 45)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 14 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 26 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3583 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 21)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-2624 (((-1046) $) NIL)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 39)) (-3958 (($) 17)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) 16)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506)))) (($ (-597 |#4|)) 49)) (-2377 (($ (-597 |#4|)) 13)) (-1687 (($ $ |#3|) NIL)) (-1442 (($ $ |#3|) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) 38) (((-597 |#4|) $) 48)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 30)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-443 |#1| |#2| |#3| |#4|) (-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3260 ($ (-597 |#4|))) (-6 -4269) (-6 -4270))) (-984) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -443))
-((-3260 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-443 *3 *4 *5 *6)))))
-(-13 (-916 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3260 ($ (-597 |#4|))) (-6 -4269) (-6 -4270)))
-((-3080 (($) 11)) (-3093 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
-(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -3093 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3080 (|#1|))) (-445 |#2| |#3|) (-162) (-23)) (T -444))
-NIL
-(-10 -8 (-15 -3093 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3080 (|#1|)))
-((-2352 (((-110) $ $) 7)) (-3139 (((-3 |#1| "failed") $) 26)) (-2585 ((|#1| $) 25)) (-2801 (($ $ $) 23)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1429 ((|#2| $) 19)) (-2366 (((-804) $) 11) (($ |#1|) 27)) (-3080 (($) 18 T CONST)) (-3093 (($) 24 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 15) (($ $ $) 13)) (-2339 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-2109 (*1 *1 *1 *1) (-4 *1 (-432))) (-2109 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-432)))) (-2078 (*1 *1 *1 *1) (-4 *1 (-432))) (-2078 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-432)))) (-2993 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-432)))))
+(-13 (-523) (-10 -8 (-15 -2109 ($ $ $)) (-15 -2109 ($ (-598 $))) (-15 -2078 ($ $ $)) (-15 -2078 ($ (-598 $))) (-15 -2993 ((-1098 $) (-1098 $) (-1098 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 (-388 (-895 |#1|)))) (-1184 $)) NIL) (((-1184 (-639 (-388 (-895 |#1|))))) NIL)) (-2022 (((-1184 $)) NIL)) (-4082 (($) NIL T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL)) (-2783 (((-3 $ "failed")) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-3939 (((-639 (-388 (-895 |#1|))) (-1184 $)) NIL) (((-639 (-388 (-895 |#1|)))) NIL)) (-1668 (((-388 (-895 |#1|)) $) NIL)) (-2264 (((-639 (-388 (-895 |#1|))) $ (-1184 $)) NIL) (((-639 (-388 (-895 |#1|))) $) NIL)) (-1387 (((-3 $ "failed") $) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-3668 (((-1098 (-895 (-388 (-895 |#1|))))) NIL (|has| (-388 (-895 |#1|)) (-344))) (((-1098 (-388 (-895 |#1|)))) 84 (|has| |#1| (-523)))) (-1666 (($ $ (-864)) NIL)) (-2065 (((-388 (-895 |#1|)) $) NIL)) (-3415 (((-1098 (-388 (-895 |#1|))) $) 82 (|has| (-388 (-895 |#1|)) (-523)))) (-3960 (((-388 (-895 |#1|)) (-1184 $)) NIL) (((-388 (-895 |#1|))) NIL)) (-3586 (((-1098 (-388 (-895 |#1|))) $) NIL)) (-1437 (((-110)) NIL)) (-2767 (($ (-1184 (-388 (-895 |#1|))) (-1184 $)) 103) (($ (-1184 (-388 (-895 |#1|)))) NIL)) (-3622 (((-3 $ "failed") $) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-2277 (((-864)) NIL)) (-2629 (((-110)) NIL)) (-2083 (($ $ (-864)) NIL)) (-2790 (((-110)) NIL)) (-3769 (((-110)) NIL)) (-2298 (((-110)) NIL)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL)) (-2816 (((-3 $ "failed")) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-1950 (((-639 (-388 (-895 |#1|))) (-1184 $)) NIL) (((-639 (-388 (-895 |#1|)))) NIL)) (-1807 (((-388 (-895 |#1|)) $) NIL)) (-3405 (((-639 (-388 (-895 |#1|))) $ (-1184 $)) NIL) (((-639 (-388 (-895 |#1|))) $) NIL)) (-2234 (((-3 $ "failed") $) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-2280 (((-1098 (-895 (-388 (-895 |#1|))))) NIL (|has| (-388 (-895 |#1|)) (-344))) (((-1098 (-388 (-895 |#1|)))) 83 (|has| |#1| (-523)))) (-2585 (($ $ (-864)) NIL)) (-1288 (((-388 (-895 |#1|)) $) NIL)) (-1480 (((-1098 (-388 (-895 |#1|))) $) 77 (|has| (-388 (-895 |#1|)) (-523)))) (-3579 (((-388 (-895 |#1|)) (-1184 $)) NIL) (((-388 (-895 |#1|))) NIL)) (-1875 (((-1098 (-388 (-895 |#1|))) $) NIL)) (-2239 (((-110)) NIL)) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) NIL)) (-1561 (((-110)) NIL)) (-3036 (((-110)) NIL)) (-2529 (((-1049) $) NIL)) (-1894 (((-388 (-895 |#1|)) $ $) 71 (|has| |#1| (-523)))) (-1679 (((-388 (-895 |#1|)) $) 93 (|has| |#1| (-523)))) (-3410 (((-388 (-895 |#1|)) $) 95 (|has| |#1| (-523)))) (-3241 (((-1098 (-388 (-895 |#1|))) $) 88 (|has| |#1| (-523)))) (-3603 (((-388 (-895 |#1|))) 72 (|has| |#1| (-523)))) (-1638 (((-388 (-895 |#1|)) $ $) 64 (|has| |#1| (-523)))) (-1491 (((-388 (-895 |#1|)) $) 92 (|has| |#1| (-523)))) (-4206 (((-388 (-895 |#1|)) $) 94 (|has| |#1| (-523)))) (-3943 (((-1098 (-388 (-895 |#1|))) $) 87 (|has| |#1| (-523)))) (-2453 (((-388 (-895 |#1|))) 68 (|has| |#1| (-523)))) (-3741 (($) 101) (($ (-1102)) 107) (($ (-1184 (-1102))) 106) (($ (-1184 $)) 96) (($ (-1102) (-1184 $)) 105) (($ (-1184 (-1102)) (-1184 $)) 104)) (-1513 (((-110)) NIL)) (-1785 (((-388 (-895 |#1|)) $ (-531)) NIL)) (-3348 (((-1184 (-388 (-895 |#1|))) $ (-1184 $)) 98) (((-639 (-388 (-895 |#1|))) (-1184 $) (-1184 $)) NIL) (((-1184 (-388 (-895 |#1|))) $) 40) (((-639 (-388 (-895 |#1|))) (-1184 $)) NIL)) (-3318 (((-1184 (-388 (-895 |#1|))) $) NIL) (($ (-1184 (-388 (-895 |#1|)))) 37)) (-2570 (((-598 (-895 (-388 (-895 |#1|)))) (-1184 $)) NIL) (((-598 (-895 (-388 (-895 |#1|))))) NIL) (((-598 (-895 |#1|)) (-1184 $)) 99 (|has| |#1| (-523))) (((-598 (-895 |#1|))) 100 (|has| |#1| (-523)))) (-3214 (($ $ $) NIL)) (-1817 (((-110)) NIL)) (-2265 (((-806) $) NIL) (($ (-1184 (-388 (-895 |#1|)))) NIL)) (-3523 (((-1184 $)) 60)) (-2273 (((-598 (-1184 (-388 (-895 |#1|))))) NIL (|has| (-388 (-895 |#1|)) (-523)))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) NIL)) (-2979 (($ (-639 (-388 (-895 |#1|))) $) NIL)) (-1605 (($ $ $) NIL)) (-2578 (((-110)) NIL)) (-1964 (((-110)) NIL)) (-2819 (((-110)) NIL)) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) 97)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 56) (($ $ (-388 (-895 |#1|))) NIL) (($ (-388 (-895 |#1|)) $) NIL) (($ (-1069 |#2| (-388 (-895 |#1|))) $) NIL)))
+(((-433 |#1| |#2| |#3| |#4|) (-13 (-398 (-388 (-895 |#1|))) (-601 (-1069 |#2| (-388 (-895 |#1|)))) (-10 -8 (-15 -2265 ($ (-1184 (-388 (-895 |#1|))))) (-15 -4152 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3741 ($)) (-15 -3741 ($ (-1102))) (-15 -3741 ($ (-1184 (-1102)))) (-15 -3741 ($ (-1184 $))) (-15 -3741 ($ (-1102) (-1184 $))) (-15 -3741 ($ (-1184 (-1102)) (-1184 $))) (IF (|has| |#1| (-523)) (PROGN (-15 -2280 ((-1098 (-388 (-895 |#1|))))) (-15 -3943 ((-1098 (-388 (-895 |#1|))) $)) (-15 -1491 ((-388 (-895 |#1|)) $)) (-15 -4206 ((-388 (-895 |#1|)) $)) (-15 -3668 ((-1098 (-388 (-895 |#1|))))) (-15 -3241 ((-1098 (-388 (-895 |#1|))) $)) (-15 -1679 ((-388 (-895 |#1|)) $)) (-15 -3410 ((-388 (-895 |#1|)) $)) (-15 -1638 ((-388 (-895 |#1|)) $ $)) (-15 -2453 ((-388 (-895 |#1|)))) (-15 -1894 ((-388 (-895 |#1|)) $ $)) (-15 -3603 ((-388 (-895 |#1|)))) (-15 -2570 ((-598 (-895 |#1|)) (-1184 $))) (-15 -2570 ((-598 (-895 |#1|))))) |%noBranch|))) (-162) (-864) (-598 (-1102)) (-1184 (-639 |#1|))) (T -433))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 *3)))) (-4 *3 (-162)) (-14 *6 (-1184 (-639 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))))) (-4152 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3523 (-598 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3491 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-433 *3 *4 *5 *6)) (|:| -3523 (-598 (-433 *3 *4 *5 *6))))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3741 (*1 *1) (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-864)) (-14 *4 (-598 (-1102))) (-14 *5 (-1184 (-639 *2))))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 *2)) (-14 *6 (-1184 (-639 *3))))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-1184 (-1102))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3741 (*1 *1 *2) (-12 (-5 *2 (-1184 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3741 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-864)) (-14 *6 (-598 *2)) (-14 *7 (-1184 (-639 *4))))) (-3741 (*1 *1 *2 *3) (-12 (-5 *2 (-1184 (-1102))) (-5 *3 (-1184 (-433 *4 *5 *6 *7))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-864)) (-14 *6 (-598 (-1102))) (-14 *7 (-1184 (-639 *4))))) (-2280 (*1 *2) (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3943 (*1 *2 *1) (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-1491 (*1 *2 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-4206 (*1 *2 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3668 (*1 *2) (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-1638 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-2453 (*1 *2) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-1894 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-3603 (*1 *2) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))) (-2570 (*1 *2 *3) (-12 (-5 *3 (-1184 (-433 *4 *5 *6 *7))) (-5 *2 (-598 (-895 *4))) (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *4 (-162)) (-14 *5 (-864)) (-14 *6 (-598 (-1102))) (-14 *7 (-1184 (-639 *4))))) (-2570 (*1 *2) (-12 (-5 *2 (-598 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(-13 (-398 (-388 (-895 |#1|))) (-601 (-1069 |#2| (-388 (-895 |#1|)))) (-10 -8 (-15 -2265 ($ (-1184 (-388 (-895 |#1|))))) (-15 -4152 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3491 ((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed"))) (-15 -3741 ($)) (-15 -3741 ($ (-1102))) (-15 -3741 ($ (-1184 (-1102)))) (-15 -3741 ($ (-1184 $))) (-15 -3741 ($ (-1102) (-1184 $))) (-15 -3741 ($ (-1184 (-1102)) (-1184 $))) (IF (|has| |#1| (-523)) (PROGN (-15 -2280 ((-1098 (-388 (-895 |#1|))))) (-15 -3943 ((-1098 (-388 (-895 |#1|))) $)) (-15 -1491 ((-388 (-895 |#1|)) $)) (-15 -4206 ((-388 (-895 |#1|)) $)) (-15 -3668 ((-1098 (-388 (-895 |#1|))))) (-15 -3241 ((-1098 (-388 (-895 |#1|))) $)) (-15 -1679 ((-388 (-895 |#1|)) $)) (-15 -3410 ((-388 (-895 |#1|)) $)) (-15 -1638 ((-388 (-895 |#1|)) $ $)) (-15 -2453 ((-388 (-895 |#1|)))) (-15 -1894 ((-388 (-895 |#1|)) $ $)) (-15 -3603 ((-388 (-895 |#1|)))) (-15 -2570 ((-598 (-895 |#1|)) (-1184 $))) (-15 -2570 ((-598 (-895 |#1|))))) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 13)) (-2695 (((-598 (-808 |#1|)) $) 75)) (-2516 (((-1098 $) $ (-808 |#1|)) 46) (((-1098 |#2|) $) 118)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) 21) (((-721) $ (-598 (-808 |#1|))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) 44) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-808 |#1|) "failed") $) NIL)) (-2523 ((|#2| $) 42) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-808 |#1|) $) NIL)) (-3115 (($ $ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-2701 (($ $ (-598 (-531))) 80)) (-2500 (($ $) 68)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| |#3| $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) 58)) (-2682 (($ (-1098 |#2|) (-808 |#1|)) 123) (($ (-1098 $) (-808 |#1|)) 52)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) 59)) (-2669 (($ |#2| |#3|) 28) (($ $ (-808 |#1|) (-721)) 30) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-808 |#1|)) NIL)) (-3005 ((|#3| $) NIL) (((-721) $ (-808 |#1|)) 50) (((-598 (-721)) $ (-598 (-808 |#1|))) 57)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 |#3| |#3|) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3471 (((-3 (-808 |#1|) "failed") $) 39)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) 41)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-808 |#1|)) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 40)) (-2448 ((|#2| $) 116)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) 128 (|has| |#2| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-808 |#1|) |#2|) 87) (($ $ (-598 (-808 |#1|)) (-598 |#2|)) 90) (($ $ (-808 |#1|) $) 85) (($ $ (-598 (-808 |#1|)) (-598 $)) 106)) (-3176 (($ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-808 |#1|)) 53) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2012 ((|#3| $) 67) (((-721) $ (-808 |#1|)) 37) (((-598 (-721)) $ (-598 (-808 |#1|))) 56)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-808 |#1|) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) 125 (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) 145) (($ (-531)) NIL) (($ |#2|) 86) (($ (-808 |#1|)) 31) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#2| (-523)))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ |#3|) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) 17 T CONST)) (-3050 (($) 25 T CONST)) (-4020 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) 64 (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 111)) (** (($ $ (-864)) NIL) (($ $ (-721)) 109)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 29) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) 63) (($ $ |#2|) NIL)))
+(((-434 |#1| |#2| |#3|) (-13 (-892 |#2| |#3| (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) (-598 (-1102)) (-986) (-221 (-2167 |#1|) (-721))) (T -434))
+((-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-14 *3 (-598 (-1102))) (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-986)) (-4 *5 (-221 (-2167 *3) (-721))))))
+(-13 (-892 |#2| |#3| (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531))))))
+((-3864 (((-110) |#1| (-598 |#2|)) 69)) (-2983 (((-3 (-1184 (-598 |#2|)) "failed") (-721) |#1| (-598 |#2|)) 78)) (-3514 (((-3 (-598 |#2|) "failed") |#2| |#1| (-1184 (-598 |#2|))) 80)) (-3848 ((|#2| |#2| |#1|) 28)) (-2990 (((-721) |#2| (-598 |#2|)) 20)))
+(((-435 |#1| |#2|) (-10 -7 (-15 -3848 (|#2| |#2| |#1|)) (-15 -2990 ((-721) |#2| (-598 |#2|))) (-15 -2983 ((-3 (-1184 (-598 |#2|)) "failed") (-721) |#1| (-598 |#2|))) (-15 -3514 ((-3 (-598 |#2|) "failed") |#2| |#1| (-1184 (-598 |#2|)))) (-15 -3864 ((-110) |#1| (-598 |#2|)))) (-289) (-1160 |#1|)) (T -435))
+((-3864 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *5)) (-4 *5 (-1160 *3)) (-4 *3 (-289)) (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))) (-3514 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1184 (-598 *3))) (-4 *4 (-289)) (-5 *2 (-598 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1160 *4)))) (-2983 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-721)) (-4 *4 (-289)) (-4 *6 (-1160 *4)) (-5 *2 (-1184 (-598 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-598 *6)))) (-2990 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-289)) (-5 *2 (-721)) (-5 *1 (-435 *5 *3)))) (-3848 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1160 *3)))))
+(-10 -7 (-15 -3848 (|#2| |#2| |#1|)) (-15 -2990 ((-721) |#2| (-598 |#2|))) (-15 -2983 ((-3 (-1184 (-598 |#2|)) "failed") (-721) |#1| (-598 |#2|))) (-15 -3514 ((-3 (-598 |#2|) "failed") |#2| |#1| (-1184 (-598 |#2|)))) (-15 -3864 ((-110) |#1| (-598 |#2|))))
+((-2552 (((-399 |#5|) |#5|) 24)))
+(((-436 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2552 ((-399 |#5|) |#5|))) (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102))))) (-743) (-523) (-523) (-892 |#4| |#2| |#1|)) (T -436))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-4 *5 (-743)) (-4 *7 (-523)) (-5 *2 (-399 *3)) (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-523)) (-4 *3 (-892 *7 *5 *4)))))
+(-10 -7 (-15 -2552 ((-399 |#5|) |#5|)))
+((-3530 ((|#3|) 37)) (-2993 (((-1098 |#4|) (-1098 |#4|) (-1098 |#4|)) 33)))
+(((-437 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2993 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -3530 (|#3|))) (-743) (-797) (-852) (-892 |#3| |#1| |#2|)) (T -437))
+((-3530 (*1 *2) (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-852)) (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-892 *2 *3 *4)))) (-2993 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-852)) (-5 *1 (-437 *3 *4 *5 *6)))))
+(-10 -7 (-15 -2993 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -3530 (|#3|)))
+((-2552 (((-399 (-1098 |#1|)) (-1098 |#1|)) 43)))
+(((-438 |#1|) (-10 -7 (-15 -2552 ((-399 (-1098 |#1|)) (-1098 |#1|)))) (-289)) (T -438))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-289)) (-5 *2 (-399 (-1098 *4))) (-5 *1 (-438 *4)) (-5 *3 (-1098 *4)))))
+(-10 -7 (-15 -2552 ((-399 (-1098 |#1|)) (-1098 |#1|))))
+((-2373 (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-721))) 42) (((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-721))) 41) (((-51) |#2| (-1102) (-276 |#2|)) 35) (((-51) (-1 |#2| (-531)) (-276 |#2|)) 28)) (-4067 (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))) 80) (((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))) 79) (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531))) 78) (((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531))) 77) (((-51) |#2| (-1102) (-276 |#2|)) 72) (((-51) (-1 |#2| (-531)) (-276 |#2|)) 71)) (-2397 (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))) 66) (((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))) 64)) (-2385 (((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531))) 48) (((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531))) 47)))
+(((-439 |#1| |#2|) (-10 -7 (-15 -2373 ((-51) (-1 |#2| (-531)) (-276 |#2|))) (-15 -2373 ((-51) |#2| (-1102) (-276 |#2|))) (-15 -2373 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-721)))) (-15 -2373 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-721)))) (-15 -2385 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531)))) (-15 -2385 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531)))) (-15 -2397 ((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -2397 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -4067 ((-51) (-1 |#2| (-531)) (-276 |#2|))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|))) (-15 -4067 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531)))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531)))) (-15 -4067 ((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531))))) (-13 (-523) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -439))
+((-4067 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-388 (-531)))) (-5 *7 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *8))) (-4 *8 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-4067 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-531)))) (-5 *4 (-276 *8)) (-5 *5 (-1151 (-388 (-531)))) (-5 *6 (-388 (-531))) (-4 *8 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-4067 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-4067 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-531))) (-4 *7 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-4067 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-4067 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-531))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))) (-2397 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-388 (-531)))) (-5 *7 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *8))) (-4 *8 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *8 *3)))) (-2397 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-388 (-531)))) (-5 *4 (-276 *8)) (-5 *5 (-1151 (-388 (-531)))) (-5 *6 (-388 (-531))) (-4 *8 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *8)))) (-2385 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2385 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-531))) (-4 *7 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2373 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-721))) (-4 *3 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *7 *3)))) (-2373 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-721))) (-4 *7 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *7)))) (-2373 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *6 *3)))) (-2373 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-531))) (-5 *4 (-276 *6)) (-4 *6 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-51)) (-5 *1 (-439 *5 *6)))))
+(-10 -7 (-15 -2373 ((-51) (-1 |#2| (-531)) (-276 |#2|))) (-15 -2373 ((-51) |#2| (-1102) (-276 |#2|))) (-15 -2373 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-721)))) (-15 -2373 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-721)))) (-15 -2385 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531)))) (-15 -2385 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531)))) (-15 -2397 ((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -2397 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -4067 ((-51) (-1 |#2| (-531)) (-276 |#2|))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|))) (-15 -4067 ((-51) (-1 |#2| (-531)) (-276 |#2|) (-1151 (-531)))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-531)))) (-15 -4067 ((-51) (-1 |#2| (-388 (-531))) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))) (-15 -4067 ((-51) |#2| (-1102) (-276 |#2|) (-1151 (-388 (-531))) (-388 (-531)))))
+((-3848 ((|#2| |#2| |#1|) 15)) (-1253 (((-598 |#2|) |#2| (-598 |#2|) |#1| (-864)) 69)) (-2224 (((-2 (|:| |plist| (-598 |#2|)) (|:| |modulo| |#1|)) |#2| (-598 |#2|) |#1| (-864)) 60)))
+(((-440 |#1| |#2|) (-10 -7 (-15 -2224 ((-2 (|:| |plist| (-598 |#2|)) (|:| |modulo| |#1|)) |#2| (-598 |#2|) |#1| (-864))) (-15 -1253 ((-598 |#2|) |#2| (-598 |#2|) |#1| (-864))) (-15 -3848 (|#2| |#2| |#1|))) (-289) (-1160 |#1|)) (T -440))
+((-3848 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1160 *3)))) (-1253 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-598 *3)) (-5 *5 (-864)) (-4 *3 (-1160 *4)) (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))) (-2224 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-864)) (-4 *5 (-289)) (-4 *3 (-1160 *5)) (-5 *2 (-2 (|:| |plist| (-598 *3)) (|:| |modulo| *5))) (-5 *1 (-440 *5 *3)) (-5 *4 (-598 *3)))))
+(-10 -7 (-15 -2224 ((-2 (|:| |plist| (-598 |#2|)) (|:| |modulo| |#1|)) |#2| (-598 |#2|) |#1| (-864))) (-15 -1253 ((-598 |#2|) |#2| (-598 |#2|) |#1| (-864))) (-15 -3848 (|#2| |#2| |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 28)) (-1685 (($ |#3|) 25)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) 32)) (-2626 (($ |#2| |#4| $) 33)) (-2669 (($ |#2| (-664 |#3| |#4| |#5|)) 24)) (-2462 (((-664 |#3| |#4| |#5|) $) 15)) (-3103 ((|#3| $) 19)) (-3494 ((|#4| $) 17)) (-2475 ((|#2| $) 29)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-2370 (($ |#2| |#3| |#4|) 26)) (-3035 (($) 36 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 34)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#6| $) 40) (($ $ |#6|) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-441 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-668 |#6|) (-668 |#2|) (-10 -8 (-15 -2475 (|#2| $)) (-15 -2462 ((-664 |#3| |#4| |#5|) $)) (-15 -3494 (|#4| $)) (-15 -3103 (|#3| $)) (-15 -2500 ($ $)) (-15 -2669 ($ |#2| (-664 |#3| |#4| |#5|))) (-15 -1685 ($ |#3|)) (-15 -2370 ($ |#2| |#3| |#4|)) (-15 -2626 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-598 (-1102)) (-162) (-797) (-221 (-2167 |#1|) (-721)) (-1 (-110) (-2 (|:| -1889 |#3|) (|:| -1790 |#4|)) (-2 (|:| -1889 |#3|) (|:| -1790 |#4|))) (-892 |#2| |#4| (-808 |#1|))) (T -441))
+((* (*1 *1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-4 *6 (-221 (-2167 *3) (-721))) (-14 *7 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) (-2 (|:| -1889 *5) (|:| -1790 *6)))) (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-797)) (-4 *2 (-892 *4 *6 (-808 *3))))) (-2475 (*1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *5 (-221 (-2167 *3) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *4) (|:| -1790 *5)) (-2 (|:| -1889 *4) (|:| -1790 *5)))) (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-797)) (-4 *7 (-892 *2 *5 (-808 *3))))) (-2462 (*1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-4 *6 (-221 (-2167 *3) (-721))) (-14 *7 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) (-2 (|:| -1889 *5) (|:| -1790 *6)))) (-5 *2 (-664 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8)) (-4 *5 (-797)) (-4 *8 (-892 *4 *6 (-808 *3))))) (-3494 (*1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-14 *6 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *2)) (-2 (|:| -1889 *5) (|:| -1790 *2)))) (-4 *2 (-221 (-2167 *3) (-721))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7)) (-4 *5 (-797)) (-4 *7 (-892 *4 *2 (-808 *3))))) (-3103 (*1 *2 *1) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-4 *5 (-221 (-2167 *3) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *5)) (-2 (|:| -1889 *2) (|:| -1790 *5)))) (-4 *2 (-797)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *7 (-892 *4 *5 (-808 *3))))) (-2500 (*1 *1 *1) (-12 (-14 *2 (-598 (-1102))) (-4 *3 (-162)) (-4 *5 (-221 (-2167 *2) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *4) (|:| -1790 *5)) (-2 (|:| -1889 *4) (|:| -1790 *5)))) (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-797)) (-4 *7 (-892 *3 *5 (-808 *2))))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-664 *5 *6 *7)) (-4 *5 (-797)) (-4 *6 (-221 (-2167 *4) (-721))) (-14 *7 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6)) (-2 (|:| -1889 *5) (|:| -1790 *6)))) (-14 *4 (-598 (-1102))) (-4 *2 (-162)) (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-892 *2 *6 (-808 *4))))) (-1685 (*1 *1 *2) (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162)) (-4 *5 (-221 (-2167 *3) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *5)) (-2 (|:| -1889 *2) (|:| -1790 *5)))) (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-797)) (-4 *7 (-892 *4 *5 (-808 *3))))) (-2370 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-598 (-1102))) (-4 *2 (-162)) (-4 *4 (-221 (-2167 *5) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *3) (|:| -1790 *4)) (-2 (|:| -1889 *3) (|:| -1790 *4)))) (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-797)) (-4 *7 (-892 *2 *4 (-808 *5))))) (-2626 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-598 (-1102))) (-4 *2 (-162)) (-4 *3 (-221 (-2167 *4) (-721))) (-14 *6 (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *3)) (-2 (|:| -1889 *5) (|:| -1790 *3)))) (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-797)) (-4 *7 (-892 *2 *3 (-808 *4))))))
+(-13 (-668 |#6|) (-668 |#2|) (-10 -8 (-15 -2475 (|#2| $)) (-15 -2462 ((-664 |#3| |#4| |#5|) $)) (-15 -3494 (|#4| $)) (-15 -3103 (|#3| $)) (-15 -2500 ($ $)) (-15 -2669 ($ |#2| (-664 |#3| |#4| |#5|))) (-15 -1685 ($ |#3|)) (-15 -2370 ($ |#2| |#3| |#4|)) (-15 -2626 ($ |#2| |#4| $)) (-15 * ($ |#6| $))))
+((-1819 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 37)))
+(((-442 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1819 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-743) (-797) (-523) (-892 |#3| |#1| |#2|) (-13 (-977 (-388 (-531))) (-344) (-10 -8 (-15 -2265 ($ |#4|)) (-15 -1840 (|#4| $)) (-15 -1853 (|#4| $))))) (T -442))
+((-1819 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-797)) (-4 *5 (-743)) (-4 *6 (-523)) (-4 *7 (-892 *6 *5 *3)) (-5 *1 (-442 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-977 (-388 (-531))) (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))))
+(-10 -7 (-15 -1819 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|))))
+((-2247 (((-110) $ $) NIL)) (-2695 (((-598 |#3|) $) 41)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) NIL (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-2339 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 47)) (-2523 (($ (-598 |#4|)) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273)))) (-2227 (((-598 |#4|) $) 18 (|has| $ (-6 -4273)))) (-4075 ((|#3| $) 45)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 14 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 26 (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2680 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 21)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2529 (((-1049) $) NIL)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 39)) (-3781 (($) 17)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) 16)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507)))) (($ (-598 |#4|)) 49)) (-2274 (($ (-598 |#4|)) 13)) (-3382 (($ $ |#3|) NIL)) (-2021 (($ $ |#3|) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) 38) (((-598 |#4|) $) 48)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 30)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-443 |#1| |#2| |#3| |#4|) (-13 (-918 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3318 ($ (-598 |#4|))) (-6 -4273) (-6 -4274))) (-986) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -443))
+((-3318 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-443 *3 *4 *5 *6)))))
+(-13 (-918 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3318 ($ (-598 |#4|))) (-6 -4273) (-6 -4274)))
+((-3035 (($) 11)) (-3050 (($) 13)) (* (($ |#2| $) 15) (($ $ |#2|) 16)))
+(((-444 |#1| |#2| |#3|) (-10 -8 (-15 -3050 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3035 (|#1|))) (-445 |#2| |#3|) (-162) (-23)) (T -444))
+NIL
+(-10 -8 (-15 -3050 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3035 (|#1|)))
+((-2247 (((-110) $ $) 7)) (-3154 (((-3 |#1| "failed") $) 26)) (-2523 ((|#1| $) 25)) (-3488 (($ $ $) 23)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2012 ((|#2| $) 19)) (-2265 (((-806) $) 11) (($ |#1|) 27)) (-3035 (($) 18 T CONST)) (-3050 (($) 24 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 15) (($ $ $) 13)) (-2237 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-445 |#1| |#2|) (-133) (-162) (-23)) (T -445))
-((-3093 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2801 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
-(-13 (-450 |t#1| |t#2|) (-975 |t#1|) (-10 -8 (-15 (-3093) ($) -2708) (-15 -2801 ($ $ $))))
-(((-99) . T) ((-571 (-804)) . T) ((-450 |#1| |#2|) . T) ((-975 |#1|) . T) ((-1027) . T))
-((-2319 (((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862)) 18)) (-3056 (((-1181 (-1181 (-530))) (-862)) 16)))
-(((-446) (-10 -7 (-15 -2319 ((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862))) (-15 -3056 ((-1181 (-1181 (-530))) (-862))))) (T -446))
-((-3056 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 (-530)))) (-5 *1 (-446)))) (-2319 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 (-1181 (-530)))) (-5 *3 (-862)) (-5 *1 (-446)))))
-(-10 -7 (-15 -2319 ((-1181 (-1181 (-530))) (-1181 (-1181 (-530))) (-862))) (-15 -3056 ((-1181 (-1181 (-530))) (-862))))
-((-2470 (((-530) (-530)) 30) (((-530)) 22)) (-3841 (((-530) (-530)) 26) (((-530)) 18)) (-3191 (((-530) (-530)) 28) (((-530)) 20)) (-2728 (((-110) (-110)) 12) (((-110)) 10)) (-1353 (((-110) (-110)) 11) (((-110)) 9)) (-4178 (((-110) (-110)) 24) (((-110)) 15)))
-(((-447) (-10 -7 (-15 -1353 ((-110))) (-15 -2728 ((-110))) (-15 -1353 ((-110) (-110))) (-15 -2728 ((-110) (-110))) (-15 -4178 ((-110))) (-15 -3191 ((-530))) (-15 -3841 ((-530))) (-15 -2470 ((-530))) (-15 -4178 ((-110) (-110))) (-15 -3191 ((-530) (-530))) (-15 -3841 ((-530) (-530))) (-15 -2470 ((-530) (-530))))) (T -447))
-((-2470 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3841 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3191 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-4178 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2470 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3841 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-3191 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447)))) (-4178 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2728 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1353 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2728 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-1353 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
-(-10 -7 (-15 -1353 ((-110))) (-15 -2728 ((-110))) (-15 -1353 ((-110) (-110))) (-15 -2728 ((-110) (-110))) (-15 -4178 ((-110))) (-15 -3191 ((-530))) (-15 -3841 ((-530))) (-15 -2470 ((-530))) (-15 -4178 ((-110) (-110))) (-15 -3191 ((-530) (-530))) (-15 -3841 ((-530) (-530))) (-15 -2470 ((-530) (-530))))
-((-2352 (((-110) $ $) NIL)) (-1854 (((-597 (-360)) $) 28) (((-597 (-360)) $ (-597 (-360))) 96)) (-3694 (((-597 (-1022 (-360))) $) 16) (((-597 (-1022 (-360))) $ (-597 (-1022 (-360)))) 94)) (-1597 (((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815))) 45)) (-3486 (((-597 (-597 (-884 (-208)))) $) 90)) (-2422 (((-1186) $ (-884 (-208)) (-815)) 108)) (-3358 (($ $) 89) (($ (-597 (-597 (-884 (-208))))) 99) (($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862))) 98) (($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245))) 100)) (-1424 (((-1082) $) NIL)) (-3078 (((-530) $) 71)) (-2624 (((-1046) $) NIL)) (-3899 (($) 97)) (-2990 (((-597 (-208)) (-597 (-597 (-884 (-208))))) 56)) (-1278 (((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862)) 102) (((-1186) $ (-884 (-208))) 104) (((-1186) $ (-884 (-208)) (-815) (-815) (-862)) 103)) (-2366 (((-804) $) 114) (($ (-597 (-597 (-884 (-208))))) 109)) (-1391 (((-1186) $ (-884 (-208))) 107)) (-2248 (((-110) $ $) NIL)))
-(((-448) (-13 (-1027) (-10 -8 (-15 -3899 ($)) (-15 -3358 ($ $)) (-15 -3358 ($ (-597 (-597 (-884 (-208)))))) (-15 -3358 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)))) (-15 -3358 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245)))) (-15 -3486 ((-597 (-597 (-884 (-208)))) $)) (-15 -3078 ((-530) $)) (-15 -3694 ((-597 (-1022 (-360))) $)) (-15 -3694 ((-597 (-1022 (-360))) $ (-597 (-1022 (-360))))) (-15 -1854 ((-597 (-360)) $)) (-15 -1854 ((-597 (-360)) $ (-597 (-360)))) (-15 -1278 ((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862))) (-15 -1278 ((-1186) $ (-884 (-208)))) (-15 -1278 ((-1186) $ (-884 (-208)) (-815) (-815) (-862))) (-15 -1391 ((-1186) $ (-884 (-208)))) (-15 -2422 ((-1186) $ (-884 (-208)) (-815))) (-15 -2366 ($ (-597 (-597 (-884 (-208)))))) (-15 -2366 ((-804) $)) (-15 -1597 ((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815)))) (-15 -2990 ((-597 (-208)) (-597 (-597 (-884 (-208))))))))) (T -448))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-448)))) (-3899 (*1 *1) (-5 *1 (-448))) (-3358 (*1 *1 *1) (-5 *1 (-448))) (-3358 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-3358 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *4 (-597 (-862))) (-5 *1 (-448)))) (-3358 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *4 (-597 (-862))) (-5 *5 (-597 (-245))) (-5 *1 (-448)))) (-3486 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-448)))) (-3694 (*1 *2 *1) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))) (-3694 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))) (-1854 (*1 *2 *1) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448)))) (-1854 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448)))) (-1278 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1278 (*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1278 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-1391 (*1 *2 *1 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))) (-2422 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-448)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))) (-1597 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815))) (-5 *1 (-448)))) (-2990 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-208))) (-5 *1 (-448)))))
-(-13 (-1027) (-10 -8 (-15 -3899 ($)) (-15 -3358 ($ $)) (-15 -3358 ($ (-597 (-597 (-884 (-208)))))) (-15 -3358 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)))) (-15 -3358 ($ (-597 (-597 (-884 (-208)))) (-597 (-815)) (-597 (-815)) (-597 (-862)) (-597 (-245)))) (-15 -3486 ((-597 (-597 (-884 (-208)))) $)) (-15 -3078 ((-530) $)) (-15 -3694 ((-597 (-1022 (-360))) $)) (-15 -3694 ((-597 (-1022 (-360))) $ (-597 (-1022 (-360))))) (-15 -1854 ((-597 (-360)) $)) (-15 -1854 ((-597 (-360)) $ (-597 (-360)))) (-15 -1278 ((-1186) $ (-597 (-884 (-208))) (-815) (-815) (-862))) (-15 -1278 ((-1186) $ (-884 (-208)))) (-15 -1278 ((-1186) $ (-884 (-208)) (-815) (-815) (-862))) (-15 -1391 ((-1186) $ (-884 (-208)))) (-15 -2422 ((-1186) $ (-884 (-208)) (-815))) (-15 -2366 ($ (-597 (-597 (-884 (-208)))))) (-15 -2366 ((-804) $)) (-15 -1597 ((-597 (-597 (-884 (-208)))) (-597 (-597 (-884 (-208)))) (-597 (-815)))) (-15 -2990 ((-597 (-208)) (-597 (-597 (-884 (-208))))))))
-((-2351 (($ $) NIL) (($ $ $) 11)))
-(((-449 |#1| |#2| |#3|) (-10 -8 (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|))) (-450 |#2| |#3|) (-162) (-23)) (T -449))
-NIL
-(-10 -8 (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1429 ((|#2| $) 19)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 15) (($ $ $) 13)) (-2339 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
+((-3050 (*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-3488 (*1 *1 *1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
+(-13 (-450 |t#1| |t#2|) (-977 |t#1|) (-10 -8 (-15 (-3050) ($) -2651) (-15 -3488 ($ $ $))))
+(((-99) . T) ((-572 (-806)) . T) ((-450 |#1| |#2|) . T) ((-977 |#1|) . T) ((-1030) . T))
+((-1222 (((-1184 (-1184 (-531))) (-1184 (-1184 (-531))) (-864)) 18)) (-3133 (((-1184 (-1184 (-531))) (-864)) 16)))
+(((-446) (-10 -7 (-15 -1222 ((-1184 (-1184 (-531))) (-1184 (-1184 (-531))) (-864))) (-15 -3133 ((-1184 (-1184 (-531))) (-864))))) (T -446))
+((-3133 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 (-1184 (-531)))) (-5 *1 (-446)))) (-1222 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 (-1184 (-531)))) (-5 *3 (-864)) (-5 *1 (-446)))))
+(-10 -7 (-15 -1222 ((-1184 (-1184 (-531))) (-1184 (-1184 (-531))) (-864))) (-15 -3133 ((-1184 (-1184 (-531))) (-864))))
+((-3905 (((-531) (-531)) 30) (((-531)) 22)) (-3664 (((-531) (-531)) 26) (((-531)) 18)) (-2828 (((-531) (-531)) 28) (((-531)) 20)) (-2603 (((-110) (-110)) 12) (((-110)) 10)) (-2691 (((-110) (-110)) 11) (((-110)) 9)) (-3262 (((-110) (-110)) 24) (((-110)) 15)))
+(((-447) (-10 -7 (-15 -2691 ((-110))) (-15 -2603 ((-110))) (-15 -2691 ((-110) (-110))) (-15 -2603 ((-110) (-110))) (-15 -3262 ((-110))) (-15 -2828 ((-531))) (-15 -3664 ((-531))) (-15 -3905 ((-531))) (-15 -3262 ((-110) (-110))) (-15 -2828 ((-531) (-531))) (-15 -3664 ((-531) (-531))) (-15 -3905 ((-531) (-531))))) (T -447))
+((-3905 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-3664 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-2828 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-3262 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-3905 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-3664 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-2828 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447)))) (-3262 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2691 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2603 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))) (-2691 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(-10 -7 (-15 -2691 ((-110))) (-15 -2603 ((-110))) (-15 -2691 ((-110) (-110))) (-15 -2603 ((-110) (-110))) (-15 -3262 ((-110))) (-15 -2828 ((-531))) (-15 -3664 ((-531))) (-15 -3905 ((-531))) (-15 -3262 ((-110) (-110))) (-15 -2828 ((-531) (-531))) (-15 -3664 ((-531) (-531))) (-15 -3905 ((-531) (-531))))
+((-2247 (((-110) $ $) NIL)) (-1247 (((-598 (-360)) $) 28) (((-598 (-360)) $ (-598 (-360))) 96)) (-2652 (((-598 (-1025 (-360))) $) 16) (((-598 (-1025 (-360))) $ (-598 (-1025 (-360)))) 94)) (-2180 (((-598 (-598 (-886 (-208)))) (-598 (-598 (-886 (-208)))) (-598 (-817))) 45)) (-1267 (((-598 (-598 (-886 (-208)))) $) 90)) (-4042 (((-1189) $ (-886 (-208)) (-817)) 108)) (-3211 (($ $) 89) (($ (-598 (-598 (-886 (-208))))) 99) (($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864))) 98) (($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)) (-598 (-245))) 100)) (-1521 (((-1085) $) NIL)) (-3033 (((-531) $) 71)) (-2529 (((-1049) $) NIL)) (-4253 (($) 97)) (-3862 (((-598 (-208)) (-598 (-598 (-886 (-208))))) 56)) (-3430 (((-1189) $ (-598 (-886 (-208))) (-817) (-817) (-864)) 102) (((-1189) $ (-886 (-208))) 104) (((-1189) $ (-886 (-208)) (-817) (-817) (-864)) 103)) (-2265 (((-806) $) 114) (($ (-598 (-598 (-886 (-208))))) 109)) (-2482 (((-1189) $ (-886 (-208))) 107)) (-2148 (((-110) $ $) NIL)))
+(((-448) (-13 (-1030) (-10 -8 (-15 -4253 ($)) (-15 -3211 ($ $)) (-15 -3211 ($ (-598 (-598 (-886 (-208)))))) (-15 -3211 ($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)))) (-15 -3211 ($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)) (-598 (-245)))) (-15 -1267 ((-598 (-598 (-886 (-208)))) $)) (-15 -3033 ((-531) $)) (-15 -2652 ((-598 (-1025 (-360))) $)) (-15 -2652 ((-598 (-1025 (-360))) $ (-598 (-1025 (-360))))) (-15 -1247 ((-598 (-360)) $)) (-15 -1247 ((-598 (-360)) $ (-598 (-360)))) (-15 -3430 ((-1189) $ (-598 (-886 (-208))) (-817) (-817) (-864))) (-15 -3430 ((-1189) $ (-886 (-208)))) (-15 -3430 ((-1189) $ (-886 (-208)) (-817) (-817) (-864))) (-15 -2482 ((-1189) $ (-886 (-208)))) (-15 -4042 ((-1189) $ (-886 (-208)) (-817))) (-15 -2265 ($ (-598 (-598 (-886 (-208)))))) (-15 -2265 ((-806) $)) (-15 -2180 ((-598 (-598 (-886 (-208)))) (-598 (-598 (-886 (-208)))) (-598 (-817)))) (-15 -3862 ((-598 (-208)) (-598 (-598 (-886 (-208))))))))) (T -448))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-448)))) (-4253 (*1 *1) (-5 *1 (-448))) (-3211 (*1 *1 *1) (-5 *1 (-448))) (-3211 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))) (-3211 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) (-5 *4 (-598 (-864))) (-5 *1 (-448)))) (-3211 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) (-5 *4 (-598 (-864))) (-5 *5 (-598 (-245))) (-5 *1 (-448)))) (-1267 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-448)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-448)))) (-2652 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-448)))) (-1247 (*1 *2 *1) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-448)))) (-1247 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-448)))) (-3430 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *4 (-817)) (-5 *5 (-864)) (-5 *2 (-1189)) (-5 *1 (-448)))) (-3430 (*1 *2 *1 *3) (-12 (-5 *3 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-448)))) (-3430 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-886 (-208))) (-5 *4 (-817)) (-5 *5 (-864)) (-5 *2 (-1189)) (-5 *1 (-448)))) (-2482 (*1 *2 *1 *3) (-12 (-5 *3 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-448)))) (-4042 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-886 (-208))) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-448)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))) (-2180 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817))) (-5 *1 (-448)))) (-3862 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-598 (-208))) (-5 *1 (-448)))))
+(-13 (-1030) (-10 -8 (-15 -4253 ($)) (-15 -3211 ($ $)) (-15 -3211 ($ (-598 (-598 (-886 (-208)))))) (-15 -3211 ($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)))) (-15 -3211 ($ (-598 (-598 (-886 (-208)))) (-598 (-817)) (-598 (-817)) (-598 (-864)) (-598 (-245)))) (-15 -1267 ((-598 (-598 (-886 (-208)))) $)) (-15 -3033 ((-531) $)) (-15 -2652 ((-598 (-1025 (-360))) $)) (-15 -2652 ((-598 (-1025 (-360))) $ (-598 (-1025 (-360))))) (-15 -1247 ((-598 (-360)) $)) (-15 -1247 ((-598 (-360)) $ (-598 (-360)))) (-15 -3430 ((-1189) $ (-598 (-886 (-208))) (-817) (-817) (-864))) (-15 -3430 ((-1189) $ (-886 (-208)))) (-15 -3430 ((-1189) $ (-886 (-208)) (-817) (-817) (-864))) (-15 -2482 ((-1189) $ (-886 (-208)))) (-15 -4042 ((-1189) $ (-886 (-208)) (-817))) (-15 -2265 ($ (-598 (-598 (-886 (-208)))))) (-15 -2265 ((-806) $)) (-15 -2180 ((-598 (-598 (-886 (-208)))) (-598 (-598 (-886 (-208)))) (-598 (-817)))) (-15 -3862 ((-598 (-208)) (-598 (-598 (-886 (-208))))))))
+((-2250 (($ $) NIL) (($ $ $) 11)))
+(((-449 |#1| |#2| |#3|) (-10 -8 (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|))) (-450 |#2| |#3|) (-162) (-23)) (T -449))
+NIL
+(-10 -8 (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2012 ((|#2| $) 19)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 15) (($ $ $) 13)) (-2237 (($ $ $) 14)) (* (($ |#1| $) 17) (($ $ |#1|) 16)))
(((-450 |#1| |#2|) (-133) (-162) (-23)) (T -450))
-((-1429 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23)))) (-3080 (*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
-(-13 (-1027) (-10 -8 (-15 -1429 (|t#2| $)) (-15 (-3080) ($) -2708) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2351 ($ $)) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2486 (((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|))) 92)) (-2608 (((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))) 90)) (-2044 (((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))) 61)))
-(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -2608 ((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -2486 ((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -2044 ((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|))))) (-597 (-1099)) (-432) (-432)) (T -451))
-((-2044 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-2 (|:| |dpolys| (-597 (-230 *5 *6))) (|:| |coords| (-597 (-530))))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))) (-2486 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6)) (-4 *6 (-432)))) (-2608 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-597 (-597 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
-(-10 -7 (-15 -2608 ((-597 (-597 (-230 |#1| |#2|))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -2486 ((-3 (-597 (-460 |#1| |#2|)) "failed") (-597 (-460 |#1| |#2|)) (-597 (-806 |#1|)))) (-15 -2044 ((-2 (|:| |dpolys| (-597 (-230 |#1| |#2|))) (|:| |coords| (-597 (-530)))) (-597 (-230 |#1| |#2|)) (-597 (-806 |#1|)))))
-((-2707 (((-3 $ "failed") $) 11)) (-2555 (($ $ $) 18)) (-2607 (($ $ $) 19)) (-2364 (($ $ $) 9)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 17)))
-(((-452 |#1|) (-10 -8 (-15 -2607 (|#1| |#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2364 (|#1| |#1| |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862)))) (-453)) (T -452))
-NIL
-(-10 -8 (-15 -2607 (|#1| |#1| |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2364 (|#1| |#1| |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))))
-((-2352 (((-110) $ $) 7)) (-2350 (($) 18 T CONST)) (-2707 (((-3 $ "failed") $) 15)) (-2731 (((-110) $) 17)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 24)) (-2624 (((-1046) $) 10)) (-2555 (($ $ $) 21)) (-2607 (($ $ $) 20)) (-2366 (((-804) $) 11)) (-3093 (($) 19 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 23)) (** (($ $ (-862)) 13) (($ $ (-719)) 16) (($ $ (-530)) 22)) (* (($ $ $) 14)))
+((-2012 (*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23)))) (-3035 (*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2250 (*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))) (-2250 (*1 *1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23)))))
+(-13 (-1030) (-10 -8 (-15 -2012 (|t#2| $)) (-15 (-3035) ($) -2651) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -2250 ($ $)) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-3411 (((-3 (-598 (-460 |#1| |#2|)) "failed") (-598 (-460 |#1| |#2|)) (-598 (-808 |#1|))) 92)) (-1441 (((-598 (-598 (-230 |#1| |#2|))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|))) 90)) (-3268 (((-2 (|:| |dpolys| (-598 (-230 |#1| |#2|))) (|:| |coords| (-598 (-531)))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|))) 61)))
+(((-451 |#1| |#2| |#3|) (-10 -7 (-15 -1441 ((-598 (-598 (-230 |#1| |#2|))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|)))) (-15 -3411 ((-3 (-598 (-460 |#1| |#2|)) "failed") (-598 (-460 |#1| |#2|)) (-598 (-808 |#1|)))) (-15 -3268 ((-2 (|:| |dpolys| (-598 (-230 |#1| |#2|))) (|:| |coords| (-598 (-531)))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|))))) (-598 (-1102)) (-432) (-432)) (T -451))
+((-3268 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-808 *5))) (-14 *5 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-2 (|:| |dpolys| (-598 (-230 *5 *6))) (|:| |coords| (-598 (-531))))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-598 (-230 *5 *6))) (-4 *7 (-432)))) (-3411 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-460 *4 *5))) (-5 *3 (-598 (-808 *4))) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6)) (-4 *6 (-432)))) (-1441 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-808 *5))) (-14 *5 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-598 (-598 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-598 (-230 *5 *6))) (-4 *7 (-432)))))
+(-10 -7 (-15 -1441 ((-598 (-598 (-230 |#1| |#2|))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|)))) (-15 -3411 ((-3 (-598 (-460 |#1| |#2|)) "failed") (-598 (-460 |#1| |#2|)) (-598 (-808 |#1|)))) (-15 -3268 ((-2 (|:| |dpolys| (-598 (-230 |#1| |#2|))) (|:| |coords| (-598 (-531)))) (-598 (-230 |#1| |#2|)) (-598 (-808 |#1|)))))
+((-3622 (((-3 $ "failed") $) 11)) (-4164 (($ $ $) 18)) (-3214 (($ $ $) 19)) (-2263 (($ $ $) 9)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 17)))
+(((-452 |#1|) (-10 -8 (-15 -3214 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2263 (|#1| |#1| |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864)))) (-453)) (T -452))
+NIL
+(-10 -8 (-15 -3214 (|#1| |#1| |#1|)) (-15 -4164 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2263 (|#1| |#1| |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))))
+((-2247 (((-110) $ $) 7)) (-4082 (($) 18 T CONST)) (-3622 (((-3 $ "failed") $) 15)) (-3481 (((-110) $) 17)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 24)) (-2529 (((-1049) $) 10)) (-4164 (($ $ $) 21)) (-3214 (($ $ $) 20)) (-2265 (((-806) $) 11)) (-3050 (($) 19 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 23)) (** (($ $ (-864)) 13) (($ $ (-721)) 16) (($ $ (-531)) 22)) (* (($ $ $) 14)))
(((-453) (-133)) (T -453))
-((-2483 (*1 *1 *1) (-4 *1 (-453))) (-2364 (*1 *1 *1 *1) (-4 *1 (-453))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-530)))) (-2555 (*1 *1 *1 *1) (-4 *1 (-453))) (-2607 (*1 *1 *1 *1) (-4 *1 (-453))))
-(-13 (-675) (-10 -8 (-15 -2483 ($ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ (-530))) (-6 -4266) (-15 -2555 ($ $ $)) (-15 -2607 ($ $ $))))
-(((-99) . T) ((-571 (-804)) . T) ((-675) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 17)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) NIL) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 22)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 26 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 33 (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 27 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 25 (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 15)) (-1429 (((-388 (-530)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1177 |#2|)) NIL) (($ (-1166 |#1| |#2| |#3|)) 9) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 18)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) 24)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-454 |#1| |#2| |#3|) (-13 (-1162 |#1|) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -2366 ($ (-1166 |#1| |#2| |#3|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -454))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-454 *3 *4 *5)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1162 |#1|) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -2366 ($ (-1166 |#1| |#2| |#3|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) 18)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) 19)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 16)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-455 |#1| |#2| |#3| |#4|) (-1112 |#1| |#2|) (-1027) (-1027) (-1112 |#1| |#2|) |#2|) (T -455))
-NIL
-(-1112 |#1| |#2|)
-((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) NIL)) (-1512 (((-597 $) (-597 |#4|)) NIL)) (-2746 (((-597 |#3|) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1785 ((|#4| |#4| $) NIL)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) 26 (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3588 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2585 (($ (-597 |#4|)) NIL)) (-3057 (((-3 $ "failed") $) 39)) (-1622 ((|#4| |#4| $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) NIL)) (-3779 (((-597 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3122 ((|#3| $) 33)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 17 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3583 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 21)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-2407 (((-3 |#4| "failed") $) 37)) (-1543 (((-597 |#4|) $) NIL)) (-2559 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3482 ((|#4| |#4| $) NIL)) (-1406 (((-110) $ $) NIL)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2122 ((|#4| |#4| $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 |#4| "failed") $) 35)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1372 (((-3 $ "failed") $ |#4|) 47)) (-3168 (($ $ |#4|) NIL)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 15)) (-3958 (($) 13)) (-1429 (((-719) $) NIL)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) 12)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 20)) (-1687 (($ $ |#3|) 42)) (-1442 (($ $ |#3|) 44)) (-1871 (($ $) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2730 (((-719) $) NIL (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) NIL)) (-2856 (((-110) |#3| $) NIL)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-456 |#1| |#2| |#3| |#4|) (-1129 |#1| |#2| |#3| |#4|) (-522) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -456))
-NIL
-(-1129 |#1| |#2| |#3| |#4|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-1948 (($) 18)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3260 (((-360) $) 22) (((-208) $) 25) (((-388 (-1095 (-530))) $) 19) (((-506) $) 52)) (-2366 (((-804) $) 50) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (((-208) $) 24) (((-360) $) 21)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 36 T CONST)) (-3093 (($) 11 T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-457) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))) (-960) (-571 (-208)) (-571 (-360)) (-572 (-388 (-1095 (-530)))) (-572 (-506)) (-10 -8 (-15 -1948 ($))))) (T -457))
-((-1948 (*1 *1) (-5 *1 (-457))))
-(-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))) (-960) (-571 (-208)) (-571 (-360)) (-572 (-388 (-1095 (-530)))) (-572 (-506)) (-10 -8 (-15 -1948 ($))))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) 16)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) 20)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 18)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) 13)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 19)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 11 (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) 15 (|has| $ (-6 -4269)))))
-(((-458 |#1| |#2| |#3|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027) (-1082)) (T -458))
-NIL
-(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))
-((-3708 (((-530) (-530) (-530)) 7)) (-2565 (((-110) (-530) (-530) (-530) (-530)) 11)) (-2208 (((-1181 (-597 (-530))) (-719) (-719)) 23)))
-(((-459) (-10 -7 (-15 -3708 ((-530) (-530) (-530))) (-15 -2565 ((-110) (-530) (-530) (-530) (-530))) (-15 -2208 ((-1181 (-597 (-530))) (-719) (-719))))) (T -459))
-((-2208 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1181 (-597 (-530)))) (-5 *1 (-459)))) (-2565 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-459)))) (-3708 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-459)))))
-(-10 -7 (-15 -3708 ((-530) (-530) (-530))) (-15 -2565 ((-110) (-530) (-530) (-530) (-530))) (-15 -2208 ((-1181 (-597 (-530))) (-719) (-719))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-806 |#1|)) $) NIL)) (-2577 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-3388 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-1282 (($ $ (-597 (-530))) NIL)) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| (-461 (-2267 |#1|) (-719)) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#2| (-461 (-2267 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-806 |#1|)) NIL)) (-2944 (((-461 (-2267 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 (-461 (-2267 |#1|) (-719)) (-461 (-2267 |#1|) (-719))) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2040 (((-3 (-806 |#1|) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#2| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-3060 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1429 (((-461 (-2267 |#1|) (-719)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-461 (-2267 |#1|) (-719))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-460 |#1| |#2|) (-13 (-890 |#2| (-461 (-2267 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530)))))) (-597 (-1099)) (-984)) (T -460))
-((-1282 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-460 *3 *4)) (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
-(-13 (-890 |#2| (-461 (-2267 |#1|) (-719)) (-806 |#1|)) (-10 -8 (-15 -1282 ($ $ (-597 (-530))))))
-((-2352 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-1813 (((-110) $) NIL (|has| |#2| (-128)))) (-3930 (($ (-862)) NIL (|has| |#2| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#2| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#2| (-349)))) (-1867 (((-530) $) NIL (|has| |#2| (-793)))) (-2552 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1027)))) (-2585 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) NIL (|has| |#2| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-2707 (((-3 $ "failed") $) NIL (|has| |#2| (-675)))) (-1364 (($) NIL (|has| |#2| (-349)))) (-3592 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ (-530)) 11)) (-2514 (((-110) $) NIL (|has| |#2| (-793)))) (-3779 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (|has| |#2| (-675)))) (-2166 (((-110) $) NIL (|has| |#2| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#2| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#2| (-1027)))) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#2| (-349)))) (-2624 (((-1046) $) NIL (|has| |#2| (-1027)))) (-3048 ((|#2| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL)) (-3334 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2658 (($ (-1181 |#2|)) NIL)) (-2488 (((-130)) NIL (|has| |#2| (-344)))) (-3289 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#2|) $) NIL) (($ (-530)) NIL (-1461 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) NIL (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-3300 (((-719)) NIL (|has| |#2| (-984)))) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#2| (-793)))) (-3080 (($) NIL (|has| |#2| (-128)) CONST)) (-3093 (($) NIL (|has| |#2| (-675)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2248 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-2297 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2272 (((-110) $ $) 15 (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2339 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) NIL (|has| |#2| (-675))) (($ $ |#2|) NIL (|has| |#2| (-675))) (($ |#2| $) NIL (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-461 |#1| |#2|) (-221 |#1| |#2|) (-719) (-741)) (T -461))
+((-2422 (*1 *1 *1) (-4 *1 (-453))) (-2263 (*1 *1 *1 *1) (-4 *1 (-453))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-531)))) (-4164 (*1 *1 *1 *1) (-4 *1 (-453))) (-3214 (*1 *1 *1 *1) (-4 *1 (-453))))
+(-13 (-677) (-10 -8 (-15 -2422 ($ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ (-531))) (-6 -4270) (-15 -4164 ($ $ $)) (-15 -3214 ($ $ $))))
+(((-99) . T) ((-572 (-806)) . T) ((-677) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 17)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) NIL) (($ $ (-388 (-531)) (-388 (-531))) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) NIL) (((-388 (-531)) $ (-388 (-531))) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL) (($ $ (-388 (-531))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) NIL) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 22)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 26 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 33 (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 27 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) NIL) (($ $ $) NIL (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) 25 (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 13 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $ (-1180 |#2|)) 15)) (-2012 (((-388 (-531)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1180 |#2|)) NIL) (($ (-1169 |#1| |#2| |#3|)) 9) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 18)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) 24)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 23) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-454 |#1| |#2| |#3|) (-13 (-1165 |#1|) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -2265 ($ (-1169 |#1| |#2| |#3|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -454))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1169 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-454 *3 *4 *5)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))))
+(-13 (-1165 |#1|) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -2265 ($ (-1169 |#1| |#2| |#3|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|)))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) 18)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) 19)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 16)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) 13) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-455 |#1| |#2| |#3| |#4|) (-1115 |#1| |#2|) (-1030) (-1030) (-1115 |#1| |#2|) |#2|) (T -455))
+NIL
+(-1115 |#1| |#2|)
+((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) NIL)) (-2855 (((-598 $) (-598 |#4|)) NIL)) (-2695 (((-598 |#3|) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3911 ((|#4| |#4| $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) 26 (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2339 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) NIL)) (-2523 (($ (-598 |#4|)) NIL)) (-3062 (((-3 $ "failed") $) 39)) (-3785 ((|#4| |#4| $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2551 ((|#4| |#4| $) NIL)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) NIL)) (-2227 (((-598 |#4|) $) 16 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4075 ((|#3| $) 33)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 17 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2680 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 21)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2309 (((-3 |#4| "failed") $) 37)) (-1979 (((-598 |#4|) $) NIL)) (-2009 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1279 ((|#4| |#4| $) NIL)) (-1744 (((-110) $ $) NIL)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3044 ((|#4| |#4| $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 |#4| "failed") $) 35)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3032 (((-3 $ "failed") $ |#4|) 47)) (-1846 (($ $ |#4|) NIL)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 15)) (-3781 (($) 13)) (-2012 (((-721) $) NIL)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) 12)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 20)) (-3382 (($ $ |#3|) 42)) (-2021 (($ $ |#3|) 44)) (-2862 (($ $) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) 31) (((-598 |#4|) $) 40)) (-3873 (((-721) $) NIL (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) NIL)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) NIL)) (-1697 (((-110) |#3| $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-456 |#1| |#2| |#3| |#4|) (-1132 |#1| |#2| |#3| |#4|) (-523) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -456))
+NIL
+(-1132 |#1| |#2| |#3| |#4|)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1880 (($) 18)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3318 (((-360) $) 22) (((-208) $) 25) (((-388 (-1098 (-531))) $) 19) (((-507) $) 52)) (-2265 (((-806) $) 50) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (((-208) $) 24) (((-360) $) 21)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 36 T CONST)) (-3050 (($) 11 T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL)))
+(((-457) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))) (-962) (-572 (-208)) (-572 (-360)) (-573 (-388 (-1098 (-531)))) (-573 (-507)) (-10 -8 (-15 -1880 ($))))) (T -457))
+((-1880 (*1 *1) (-5 *1 (-457))))
+(-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))) (-962) (-572 (-208)) (-572 (-360)) (-573 (-388 (-1098 (-531)))) (-573 (-507)) (-10 -8 (-15 -1880 ($))))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) 16)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) 20)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 18)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) 13)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 19)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 11 (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) 15 (|has| $ (-6 -4273)))))
+(((-458 |#1| |#2| |#3|) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) (-1030) (-1030) (-1085)) (T -458))
+NIL
+(-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273)))
+((-3986 (((-531) (-531) (-531)) 7)) (-3047 (((-110) (-531) (-531) (-531) (-531)) 11)) (-2107 (((-1184 (-598 (-531))) (-721) (-721)) 23)))
+(((-459) (-10 -7 (-15 -3986 ((-531) (-531) (-531))) (-15 -3047 ((-110) (-531) (-531) (-531) (-531))) (-15 -2107 ((-1184 (-598 (-531))) (-721) (-721))))) (T -459))
+((-2107 (*1 *2 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1184 (-598 (-531)))) (-5 *1 (-459)))) (-3047 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-110)) (-5 *1 (-459)))) (-3986 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-459)))))
+(-10 -7 (-15 -3986 ((-531) (-531) (-531))) (-15 -3047 ((-110) (-531) (-531) (-531) (-531))) (-15 -2107 ((-1184 (-598 (-531))) (-721) (-721))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-808 |#1|)) $) NIL)) (-2516 (((-1098 $) $ (-808 |#1|)) NIL) (((-1098 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-808 |#1|))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-808 |#1|) "failed") $) NIL)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-808 |#1|) $) NIL)) (-3115 (($ $ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-2701 (($ $ (-598 (-531))) NIL)) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| (-461 (-2167 |#1|) (-721)) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#2|) (-808 |#1|)) NIL) (($ (-1098 $) (-808 |#1|)) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#2| (-461 (-2167 |#1|) (-721))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-808 |#1|)) NIL)) (-3005 (((-461 (-2167 |#1|) (-721)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 (-461 (-2167 |#1|) (-721)) (-461 (-2167 |#1|) (-721))) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3471 (((-3 (-808 |#1|) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-808 |#1|)) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#2| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-808 |#1|) |#2|) NIL) (($ $ (-598 (-808 |#1|)) (-598 |#2|)) NIL) (($ $ (-808 |#1|) $) NIL) (($ $ (-598 (-808 |#1|)) (-598 $)) NIL)) (-3176 (($ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2012 (((-461 (-2167 |#1|) (-721)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-808 |#1|) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-808 |#1|)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#2| (-523)))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-461 (-2167 |#1|) (-721))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-460 |#1| |#2|) (-13 (-892 |#2| (-461 (-2167 |#1|) (-721)) (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531)))))) (-598 (-1102)) (-986)) (T -460))
+((-2701 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-460 *3 *4)) (-14 *3 (-598 (-1102))) (-4 *4 (-986)))))
+(-13 (-892 |#2| (-461 (-2167 |#1|) (-721)) (-808 |#1|)) (-10 -8 (-15 -2701 ($ $ (-598 (-531))))))
+((-2247 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-3019 (((-110) $) NIL (|has| |#2| (-128)))) (-1685 (($ (-864)) NIL (|has| |#2| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#2| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#2| (-349)))) (-3459 (((-531) $) NIL (|has| |#2| (-795)))) (-2454 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1030)))) (-2523 (((-531) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) ((|#2| $) NIL (|has| |#2| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL (|has| |#2| (-986))) (((-639 |#2|) (-639 $)) NIL (|has| |#2| (-986)))) (-3622 (((-3 $ "failed") $) NIL (|has| |#2| (-677)))) (-1381 (($) NIL (|has| |#2| (-349)))) (-2693 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ (-531)) 11)) (-1599 (((-110) $) NIL (|has| |#2| (-795)))) (-2227 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (|has| |#2| (-677)))) (-2985 (((-110) $) NIL (|has| |#2| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#2| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#2| (-1030)))) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#2| (-349)))) (-2529 (((-1049) $) NIL (|has| |#2| (-1030)))) (-3046 ((|#2| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-531)) NIL)) (-3225 ((|#2| $ $) NIL (|has| |#2| (-986)))) (-2602 (($ (-1184 |#2|)) NIL)) (-2190 (((-130)) NIL (|has| |#2| (-344)))) (-3352 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#2|) $) NIL) (($ (-531)) NIL (-1435 (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (|has| |#2| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (($ |#2|) NIL (|has| |#2| (-1030))) (((-806) $) NIL (|has| |#2| (-572 (-806))))) (-2284 (((-721)) NIL (|has| |#2| (-986)))) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#2| (-795)))) (-3035 (($) NIL (|has| |#2| (-128)) CONST)) (-3050 (($) NIL (|has| |#2| (-677)) CONST)) (-4020 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2148 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-2195 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2174 (((-110) $ $) 15 (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $ $) NIL (|has| |#2| (-986))) (($ $) NIL (|has| |#2| (-986)))) (-2237 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-721)) NIL (|has| |#2| (-677))) (($ $ (-864)) NIL (|has| |#2| (-677)))) (* (($ (-531) $) NIL (|has| |#2| (-986))) (($ $ $) NIL (|has| |#2| (-677))) (($ $ |#2|) NIL (|has| |#2| (-677))) (($ |#2| $) NIL (|has| |#2| (-677))) (($ (-721) $) NIL (|has| |#2| (-128))) (($ (-864) $) NIL (|has| |#2| (-25)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-461 |#1| |#2|) (-221 |#1| |#2|) (-721) (-743)) (T -461))
NIL
(-221 |#1| |#2|)
-((-2352 (((-110) $ $) NIL)) (-3411 (((-597 (-1099)) $) 11)) (-3907 (((-1099) $) 10)) (-1424 (((-1082) $) NIL)) (-4130 (($ (-597 (-1099))) 9)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (((-1104) $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-462) (-13 (-91) (-10 -8 (-15 -4130 ($ (-597 (-1099)))) (-15 -3907 ((-1099) $)) (-15 -3411 ((-597 (-1099)) $))))) (T -462))
-((-4130 (*1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))) (-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-462)))) (-3411 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
-(-13 (-91) (-10 -8 (-15 -4130 ($ (-597 (-1099)))) (-15 -3907 ((-1099) $)) (-15 -3411 ((-597 (-1099)) $))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2090 (($ $ $) 32)) (-3683 (($ $ $) 31)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1817 ((|#1| $) 26)) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) 27)) (-2441 (($ |#1| $) 10)) (-2032 (($ (-597 |#1|)) 12)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2738 ((|#1| $) 23)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 9)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 29)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) 21 (|has| $ (-6 -4269)))))
-(((-463 |#1|) (-13 (-909 |#1|) (-10 -8 (-15 -2032 ($ (-597 |#1|))))) (-795)) (T -463))
-((-2032 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-463 *3)))))
-(-13 (-909 |#1|) (-10 -8 (-15 -2032 ($ (-597 |#1|)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2134 (($ $) 69)) (-1809 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-3046 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 44)) (-2624 (((-1046) $) NIL)) (-1974 (((-3 |#4| "failed") $) 107)) (-3041 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-530)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-3850 (((-2 (|:| -3509 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2366 (((-804) $) 102)) (-3080 (($) 33 T CONST)) (-2248 (((-110) $ $) 109)) (-2351 (($ $) 72) (($ $ $) NIL)) (-2339 (($ $ $) 70)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 73)))
-(((-464 |#1| |#2| |#3| |#4|) (-316 |#1| |#2| |#3| |#4|) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -464))
+((-2247 (((-110) $ $) NIL)) (-3185 (((-598 (-1102)) $) 11)) (-3955 (((-1102) $) 10)) (-1521 (((-1085) $) NIL)) (-3064 (($ (-598 (-1102))) 9)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (((-1107) $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-462) (-13 (-1015) (-10 -8 (-15 -3064 ($ (-598 (-1102)))) (-15 -3955 ((-1102) $)) (-15 -3185 ((-598 (-1102)) $))))) (T -462))
+((-3064 (*1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-462)))) (-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-462)))) (-3185 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-462)))))
+(-13 (-1015) (-10 -8 (-15 -3064 ($ (-598 (-1102)))) (-15 -3955 ((-1102) $)) (-15 -3185 ((-598 (-1102)) $))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3611 (($ $ $) 32)) (-3508 (($ $ $) 31)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1241 ((|#1| $) 26)) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) 27)) (-3944 (($ |#1| $) 10)) (-3501 (($ (-598 |#1|)) 12)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-4192 ((|#1| $) 23)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 9)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 29)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) 21 (|has| $ (-6 -4273)))))
+(((-463 |#1|) (-13 (-911 |#1|) (-10 -8 (-15 -3501 ($ (-598 |#1|))))) (-797)) (T -463))
+((-3501 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-463 *3)))))
+(-13 (-911 |#1|) (-10 -8 (-15 -3501 ($ (-598 |#1|)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1760 (($ $) 69)) (-3841 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-2003 (((-394 |#2| (-388 |#2|) |#3| |#4|) $) 44)) (-2529 (((-1049) $) NIL)) (-1861 (((-3 |#4| "failed") $) 107)) (-2535 (($ (-394 |#2| (-388 |#2|) |#3| |#4|)) 76) (($ |#4|) 32) (($ |#1| |#1|) 115) (($ |#1| |#1| (-531)) NIL) (($ |#4| |#2| |#2| |#2| |#1|) 127)) (-4044 (((-2 (|:| -2968 (-394 |#2| (-388 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 46)) (-2265 (((-806) $) 102)) (-3035 (($) 33 T CONST)) (-2148 (((-110) $ $) 109)) (-2250 (($ $) 72) (($ $ $) NIL)) (-2237 (($ $ $) 70)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 73)))
+(((-464 |#1| |#2| |#3| |#4|) (-316 |#1| |#2| |#3| |#4|) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -464))
NIL
(-316 |#1| |#2| |#3| |#4|)
-((-3652 (((-530) (-597 (-530))) 30)) (-3749 ((|#1| (-597 |#1|)) 56)) (-2069 (((-597 |#1|) (-597 |#1|)) 57)) (-3472 (((-597 |#1|) (-597 |#1|)) 59)) (-2204 ((|#1| (-597 |#1|)) 58)) (-3829 (((-597 (-530)) (-597 |#1|)) 33)))
-(((-465 |#1|) (-10 -7 (-15 -2204 (|#1| (-597 |#1|))) (-15 -3749 (|#1| (-597 |#1|))) (-15 -3472 ((-597 |#1|) (-597 |#1|))) (-15 -2069 ((-597 |#1|) (-597 |#1|))) (-15 -3829 ((-597 (-530)) (-597 |#1|))) (-15 -3652 ((-530) (-597 (-530))))) (-1157 (-530))) (T -465))
-((-3652 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-530)) (-5 *1 (-465 *4)) (-4 *4 (-1157 *2)))) (-3829 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1157 (-530))) (-5 *2 (-597 (-530))) (-5 *1 (-465 *4)))) (-2069 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))) (-3472 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))))
-(-10 -7 (-15 -2204 (|#1| (-597 |#1|))) (-15 -3749 (|#1| (-597 |#1|))) (-15 -3472 ((-597 |#1|) (-597 |#1|))) (-15 -2069 ((-597 |#1|) (-597 |#1|))) (-15 -3829 ((-597 (-530)) (-597 |#1|))) (-15 -3652 ((-530) (-597 (-530)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-530) $) NIL (|has| (-530) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-530) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-530) (-975 (-530))))) (-2585 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-530) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-530) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-530) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-2166 (((-110) $) NIL (|has| (-530) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-530) (-795)))) (-3217 (($ (-1 (-530) (-530)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-530) (-1075)) CONST)) (-3458 (($ (-388 (-530))) 9)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) NIL)) (-3175 (((-530) $) NIL (|has| (-530) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-530) $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 8) (($ (-530)) NIL) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL) (((-943 16) $) 10)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-530) $) NIL (|has| (-530) (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-530) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2364 (($ $ $) NIL) (($ (-530) (-530)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) NIL) (($ $ (-530)) NIL)))
-(((-466) (-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 16) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -3458 ($ (-388 (-530))))))) (T -466))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-943 16)) (-5 *1 (-466)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))) (-3458 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))))
-(-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -2366 ((-943 16) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -3458 ($ (-388 (-530))))))
-((-2395 (((-597 |#2|) $) 23)) (-4197 (((-110) |#2| $) 28)) (-1533 (((-110) (-1 (-110) |#2|) $) 21)) (-4098 (($ $ (-597 (-276 |#2|))) 13) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-597 |#2|) (-597 |#2|)) NIL)) (-2632 (((-719) (-1 (-110) |#2|) $) 22) (((-719) |#2| $) 26)) (-2366 (((-804) $) 37)) (-3889 (((-110) (-1 (-110) |#2|) $) 20)) (-2248 (((-110) $ $) 31)) (-2267 (((-719) $) 17)))
-(((-467 |#1| |#2|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2395 ((-597 |#2|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|))) (-468 |#2|) (-1135)) (T -467))
-NIL
-(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#2| |#2|)) (-15 -4098 (|#1| |#1| (-276 |#2|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#2|)))) (-15 -4197 ((-110) |#2| |#1|)) (-15 -2632 ((-719) |#2| |#1|)) (-15 -2395 ((-597 |#2|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#2|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-468 |#1|) (-133) (-1135)) (T -468))
-((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1135)))) (-3583 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *3)) (-4 *3 (-1135)))) (-3889 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-1533 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-2632 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4)) (-4 *4 (-1135)) (-5 *2 (-719)))) (-3779 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-2395 (*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-2632 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-719)))) (-4197 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(-13 (-33) (-10 -8 (IF (|has| |t#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |t#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |t#1| (-1027)) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4270)) (-15 -3583 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4269)) (PROGN (-15 -3889 ((-110) (-1 (-110) |t#1|) $)) (-15 -1533 ((-110) (-1 (-110) |t#1|) $)) (-15 -2632 ((-719) (-1 (-110) |t#1|) $)) (-15 -3779 ((-597 |t#1|) $)) (-15 -2395 ((-597 |t#1|) $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -2632 ((-719) |t#1| $)) (-15 -4197 ((-110) |t#1| $))) |%noBranch|)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2482 (($ (-1082)) 8)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 14) (((-1082) $) 11)) (-2248 (((-110) $ $) 10)))
-(((-469) (-13 (-1027) (-571 (-1082)) (-10 -8 (-15 -2482 ($ (-1082)))))) (T -469))
-((-2482 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-469)))))
-(-13 (-1027) (-571 (-1082)) (-10 -8 (-15 -2482 ($ (-1082)))))
-((-2386 (($ $) 15)) (-2360 (($ $) 24)) (-2409 (($ $) 12)) (-2421 (($ $) 10)) (-2398 (($ $) 17)) (-2373 (($ $) 22)))
-(((-470 |#1|) (-10 -8 (-15 -2373 (|#1| |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|))) (-471)) (T -470))
-NIL
-(-10 -8 (-15 -2373 (|#1| |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)))
-((-2386 (($ $) 11)) (-2360 (($ $) 10)) (-2409 (($ $) 9)) (-2421 (($ $) 8)) (-2398 (($ $) 7)) (-2373 (($ $) 6)))
+((-1232 (((-531) (-598 (-531))) 30)) (-3316 ((|#1| (-598 |#1|)) 56)) (-2402 (((-598 |#1|) (-598 |#1|)) 57)) (-3718 (((-598 |#1|) (-598 |#1|)) 59)) (-2109 ((|#1| (-598 |#1|)) 58)) (-1767 (((-598 (-531)) (-598 |#1|)) 33)))
+(((-465 |#1|) (-10 -7 (-15 -2109 (|#1| (-598 |#1|))) (-15 -3316 (|#1| (-598 |#1|))) (-15 -3718 ((-598 |#1|) (-598 |#1|))) (-15 -2402 ((-598 |#1|) (-598 |#1|))) (-15 -1767 ((-598 (-531)) (-598 |#1|))) (-15 -1232 ((-531) (-598 (-531))))) (-1160 (-531))) (T -465))
+((-1232 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-531)) (-5 *1 (-465 *4)) (-4 *4 (-1160 *2)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-1160 (-531))) (-5 *2 (-598 (-531))) (-5 *1 (-465 *4)))) (-2402 (*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1160 (-531))) (-5 *1 (-465 *3)))) (-3718 (*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1160 (-531))) (-5 *1 (-465 *3)))) (-3316 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1160 (-531))))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1160 (-531))))))
+(-10 -7 (-15 -2109 (|#1| (-598 |#1|))) (-15 -3316 (|#1| (-598 |#1|))) (-15 -3718 ((-598 |#1|) (-598 |#1|))) (-15 -2402 ((-598 |#1|) (-598 |#1|))) (-15 -1767 ((-598 (-531)) (-598 |#1|))) (-15 -1232 ((-531) (-598 (-531)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-531) $) NIL (|has| (-531) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-531) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-531) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-531) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-531) (-977 (-531))))) (-2523 (((-531) $) NIL) (((-1102) $) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-531) (-977 (-531)))) (((-531) $) NIL (|has| (-531) (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-531) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-531) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-531) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-531) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-531) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-531) (-1078)))) (-2985 (((-110) $) NIL (|has| (-531) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-531) (-797)))) (-3261 (($ (-1 (-531) (-531)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-531) (-1078)) CONST)) (-3792 (($ (-388 (-531))) 9)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-531) (-289))) (((-388 (-531)) $) NIL)) (-2943 (((-531) $) NIL (|has| (-531) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-531)) (-598 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-531) (-531)) NIL (|has| (-531) (-291 (-531)))) (($ $ (-276 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-276 (-531)))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-1102)) (-598 (-531))) NIL (|has| (-531) (-492 (-1102) (-531)))) (($ $ (-1102) (-531)) NIL (|has| (-531) (-492 (-1102) (-531))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-531)) NIL (|has| (-531) (-268 (-531) (-531))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-531) $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| (-531) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-531) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-531) (-573 (-507)))) (((-360) $) NIL (|has| (-531) (-962))) (((-208) $) NIL (|has| (-531) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-531) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 8) (($ (-531)) NIL) (($ (-1102)) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL) (((-945 16) $) 10)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-531) (-852))) (|has| (-531) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-531) $) NIL (|has| (-531) (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-531) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2263 (($ $ $) NIL) (($ (-531) (-531)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-531) $) NIL) (($ $ (-531)) NIL)))
+(((-466) (-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 16) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -3792 ($ (-388 (-531))))))) (T -466))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-945 16)) (-5 *1 (-466)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466)))) (-3792 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466)))))
+(-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2265 ((-945 16) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -3792 ($ (-388 (-531))))))
+((-2445 (((-598 |#2|) $) 23)) (-1883 (((-110) |#2| $) 28)) (-2294 (((-110) (-1 (-110) |#2|) $) 21)) (-4115 (($ $ (-598 (-276 |#2|))) 13) (($ $ (-276 |#2|)) NIL) (($ $ |#2| |#2|) NIL) (($ $ (-598 |#2|) (-598 |#2|)) NIL)) (-2539 (((-721) (-1 (-110) |#2|) $) 22) (((-721) |#2| $) 26)) (-2265 (((-806) $) 37)) (-2060 (((-110) (-1 (-110) |#2|) $) 20)) (-2148 (((-110) $ $) 31)) (-2167 (((-721) $) 17)))
+(((-467 |#1| |#2|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2445 ((-598 |#2|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|))) (-468 |#2|) (-1138)) (T -467))
+NIL
+(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#2| |#2|)) (-15 -4115 (|#1| |#1| (-276 |#2|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#2|)))) (-15 -1883 ((-110) |#2| |#1|)) (-15 -2539 ((-721) |#2| |#1|)) (-15 -2445 ((-598 |#2|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#2|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-468 |#1|) (-133) (-1138)) (T -468))
+((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1138)))) (-2680 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4274)) (-4 *1 (-468 *3)) (-4 *3 (-1138)))) (-2060 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) (-4 *4 (-1138)) (-5 *2 (-110)))) (-2294 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) (-4 *4 (-1138)) (-5 *2 (-110)))) (-2539 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4)) (-4 *4 (-1138)) (-5 *2 (-721)))) (-2227 (*1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) (-5 *2 (-598 *3)))) (-2445 (*1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) (-5 *2 (-598 *3)))) (-2539 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-721)))) (-1883 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110)))))
+(-13 (-33) (-10 -8 (IF (|has| |t#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (IF (|has| |t#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |t#1| (-1030)) (IF (|has| |t#1| (-291 |t#1|)) (-6 (-291 |t#1|)) |%noBranch|) |%noBranch|) (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4274)) (-15 -2680 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4273)) (PROGN (-15 -2060 ((-110) (-1 (-110) |t#1|) $)) (-15 -2294 ((-110) (-1 (-110) |t#1|) $)) (-15 -2539 ((-721) (-1 (-110) |t#1|) $)) (-15 -2227 ((-598 |t#1|) $)) (-15 -2445 ((-598 |t#1|) $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -2539 ((-721) |t#1| $)) (-15 -1883 ((-110) |t#1| $))) |%noBranch|)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-3353 (($ (-1085)) 8)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 14) (((-1085) $) 11)) (-2148 (((-110) $ $) 10)))
+(((-469) (-13 (-1030) (-572 (-1085)) (-10 -8 (-15 -3353 ($ (-1085)))))) (T -469))
+((-3353 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-469)))))
+(-13 (-1030) (-572 (-1085)) (-10 -8 (-15 -3353 ($ (-1085)))))
+((-2367 (($ $) 15)) (-2343 (($ $) 24)) (-2391 (($ $) 12)) (-2403 (($ $) 10)) (-2379 (($ $) 17)) (-2356 (($ $) 22)))
+(((-470 |#1|) (-10 -8 (-15 -2356 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|))) (-471)) (T -470))
+NIL
+(-10 -8 (-15 -2356 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)))
+((-2367 (($ $) 11)) (-2343 (($ $) 10)) (-2391 (($ $) 9)) (-2403 (($ $) 8)) (-2379 (($ $) 7)) (-2356 (($ $) 6)))
(((-471) (-133)) (T -471))
-((-2386 (*1 *1 *1) (-4 *1 (-471))) (-2360 (*1 *1 *1) (-4 *1 (-471))) (-2409 (*1 *1 *1) (-4 *1 (-471))) (-2421 (*1 *1 *1) (-4 *1 (-471))) (-2398 (*1 *1 *1) (-4 *1 (-471))) (-2373 (*1 *1 *1) (-4 *1 (-471))))
-(-13 (-10 -8 (-15 -2373 ($ $)) (-15 -2398 ($ $)) (-15 -2421 ($ $)) (-15 -2409 ($ $)) (-15 -2360 ($ $)) (-15 -2386 ($ $))))
-((-2611 (((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)) 42)))
-(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)))) (-344) (-1157 |#1|) (-13 (-344) (-140) (-673 |#1| |#2|)) (-1157 |#3|)) (T -472))
-((-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-4 *7 (-13 (-344) (-140) (-673 *5 *6))) (-5 *2 (-399 *3)) (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1157 *7)))))
-(-10 -7 (-15 -2611 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|))))
-((-2352 (((-110) $ $) NIL)) (-3460 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-4202 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-1813 (((-110) $) 39)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2230 (((-110) $ $) 64)) (-2473 (((-597 (-570 $)) $) 48)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1416 (($ $ (-276 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2933 (((-597 $) (-1095 $) (-1099)) NIL) (((-597 $) (-1095 $)) NIL) (((-597 $) (-893 $)) NIL)) (-1326 (($ (-1095 $) (-1099)) NIL) (($ (-1095 $)) NIL) (($ (-893 $)) NIL)) (-3139 (((-3 (-570 $) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL)) (-2585 (((-570 $) $) NIL) (((-530) $) NIL) (((-388 (-530)) $) 50)) (-3590 (($ $ $) NIL)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-388 (-530)))) (|:| |vec| (-1181 (-388 (-530))))) (-637 $) (-1181 $)) NIL) (((-637 (-388 (-530))) (-637 $)) NIL)) (-2134 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3324 (($ $) NIL) (($ (-597 $)) NIL)) (-2381 (((-597 (-112)) $) NIL)) (-4124 (((-112) (-112)) NIL)) (-2731 (((-110) $) 42)) (-3457 (((-110) $) NIL (|has| $ (-975 (-530))))) (-1918 (((-1051 (-530) (-570 $)) $) 37)) (-3741 (($ $ (-530)) NIL)) (-2376 (((-1095 $) (-1095 $) (-570 $)) 78) (((-1095 $) (-1095 $) (-597 (-570 $))) 55) (($ $ (-570 $)) 67) (($ $ (-597 (-570 $))) 68)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3210 (((-1095 $) (-570 $)) 65 (|has| $ (-984)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 $ $) (-570 $)) NIL)) (-3707 (((-3 (-570 $) "failed") $) NIL)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2560 (((-597 (-570 $)) $) NIL)) (-1990 (($ (-112) $) NIL) (($ (-112) (-597 $)) NIL)) (-1826 (((-110) $ (-112)) NIL) (((-110) $ (-1099)) NIL)) (-2483 (($ $) NIL)) (-4156 (((-719) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2861 (((-110) $ $) NIL) (((-110) $ (-1099)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL (|has| $ (-975 (-530))))) (-4098 (($ $ (-570 $) $) NIL) (($ $ (-597 (-570 $)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-1099)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-1099) (-1 $ (-597 $))) NIL) (($ $ (-1099) (-1 $ $)) NIL) (($ $ (-597 (-112)) (-597 (-1 $ $))) NIL) (($ $ (-597 (-112)) (-597 (-1 $ (-597 $)))) NIL) (($ $ (-112) (-1 $ (-597 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-2356 (((-719) $) NIL)) (-1902 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-597 $)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3313 (($ $) NIL) (($ $ $) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) 36)) (-1928 (((-1051 (-530) (-570 $)) $) 20)) (-1781 (($ $) NIL (|has| $ (-984)))) (-3260 (((-360) $) 92) (((-208) $) 100) (((-159 (-360)) $) 108)) (-2366 (((-804) $) NIL) (($ (-570 $)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-1051 (-530) (-570 $))) 21)) (-3300 (((-719)) NIL)) (-1678 (($ $) NIL) (($ (-597 $)) NIL)) (-4195 (((-110) (-112)) 84)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 10 T CONST)) (-3093 (($) 22 T CONST)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 24)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2364 (($ $ $) 44)) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-388 (-530))) NIL) (($ $ (-530)) 46) (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ $ $) 27) (($ (-530) $) NIL) (($ (-719) $) NIL) (($ (-862) $) NIL)))
-(((-473) (-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2366 ($ (-1051 (-530) (-570 $)))) (-15 -1918 ((-1051 (-530) (-570 $)) $)) (-15 -1928 ((-1051 (-530) (-570 $)) $)) (-15 -2134 ($ $)) (-15 -2230 ((-110) $ $)) (-15 -2376 ((-1095 $) (-1095 $) (-570 $))) (-15 -2376 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -2376 ($ $ (-570 $))) (-15 -2376 ($ $ (-597 (-570 $))))))) (T -473))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-1928 (*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473)))) (-2134 (*1 *1 *1) (-5 *1 (-473))) (-2230 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-570 (-473))) (-5 *1 (-473)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-597 (-570 (-473)))) (-5 *1 (-473)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-570 (-473))) (-5 *1 (-473)))) (-2376 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-473)))) (-5 *1 (-473)))))
-(-13 (-284) (-27) (-975 (-530)) (-975 (-388 (-530))) (-593 (-530)) (-960) (-593 (-388 (-530))) (-140) (-572 (-159 (-360))) (-216) (-10 -8 (-15 -2366 ($ (-1051 (-530) (-570 $)))) (-15 -1918 ((-1051 (-530) (-570 $)) $)) (-15 -1928 ((-1051 (-530) (-570 $)) $)) (-15 -2134 ($ $)) (-15 -2230 ((-110) $ $)) (-15 -2376 ((-1095 $) (-1095 $) (-570 $))) (-15 -2376 ((-1095 $) (-1095 $) (-597 (-570 $)))) (-15 -2376 ($ $ (-570 $))) (-15 -2376 ($ $ (-597 (-570 $))))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) 25 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 22 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 21)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 14)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 12 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) 23 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) 10 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 13)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 24) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 9 (|has| $ (-6 -4269)))))
-(((-474 |#1| |#2|) (-19 |#1|) (-1135) (-530)) (T -474))
+((-2367 (*1 *1 *1) (-4 *1 (-471))) (-2343 (*1 *1 *1) (-4 *1 (-471))) (-2391 (*1 *1 *1) (-4 *1 (-471))) (-2403 (*1 *1 *1) (-4 *1 (-471))) (-2379 (*1 *1 *1) (-4 *1 (-471))) (-2356 (*1 *1 *1) (-4 *1 (-471))))
+(-13 (-10 -8 (-15 -2356 ($ $)) (-15 -2379 ($ $)) (-15 -2403 ($ $)) (-15 -2391 ($ $)) (-15 -2343 ($ $)) (-15 -2367 ($ $))))
+((-2552 (((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)) 42)))
+(((-472 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|)))) (-344) (-1160 |#1|) (-13 (-344) (-140) (-675 |#1| |#2|)) (-1160 |#3|)) (T -472))
+((-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-4 *7 (-13 (-344) (-140) (-675 *5 *6))) (-5 *2 (-399 *3)) (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1160 *7)))))
+(-10 -7 (-15 -2552 ((-399 |#4|) |#4| (-1 (-399 |#2|) |#2|))))
+((-2247 (((-110) $ $) NIL)) (-2485 (((-598 $) (-1098 $) (-1102)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-895 $)) NIL)) (-2424 (($ (-1098 $) (-1102)) NIL) (($ (-1098 $)) NIL) (($ (-895 $)) NIL)) (-3019 (((-110) $) 39)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-3739 (((-110) $ $) 64)) (-2410 (((-598 (-571 $)) $) 48)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3184 (($ $ (-276 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3007 (((-598 $) (-1098 $) (-1102)) NIL) (((-598 $) (-1098 $)) NIL) (((-598 $) (-895 $)) NIL)) (-2738 (($ (-1098 $) (-1102)) NIL) (($ (-1098 $)) NIL) (($ (-895 $)) NIL)) (-3154 (((-3 (-571 $) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL)) (-2523 (((-571 $) $) NIL) (((-531) $) NIL) (((-388 (-531)) $) 50)) (-3650 (($ $ $) NIL)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-388 (-531)))) (|:| |vec| (-1184 (-388 (-531))))) (-639 $) (-1184 $)) NIL) (((-639 (-388 (-531))) (-639 $)) NIL)) (-1760 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1238 (($ $) NIL) (($ (-598 $)) NIL)) (-4051 (((-598 (-112)) $) NIL)) (-3254 (((-112) (-112)) NIL)) (-3481 (((-110) $) 42)) (-4250 (((-110) $) NIL (|has| $ (-977 (-531))))) (-1840 (((-1054 (-531) (-571 $)) $) 37)) (-2249 (($ $ (-531)) NIL)) (-1899 (((-1098 $) (-1098 $) (-571 $)) 78) (((-1098 $) (-1098 $) (-598 (-571 $))) 55) (($ $ (-571 $)) 67) (($ $ (-598 (-571 $))) 68)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2733 (((-1098 $) (-571 $)) 65 (|has| $ (-986)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 $ $) (-571 $)) NIL)) (-1302 (((-3 (-571 $) "failed") $) NIL)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2501 (((-598 (-571 $)) $) NIL)) (-1930 (($ (-112) $) NIL) (($ (-112) (-598 $)) NIL)) (-4247 (((-110) $ (-112)) NIL) (((-110) $ (-1102)) NIL)) (-2422 (($ $) NIL)) (-4194 (((-721) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-2781 (((-110) $ $) NIL) (((-110) $ (-1102)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL (|has| $ (-977 (-531))))) (-4115 (($ $ (-571 $) $) NIL) (($ $ (-598 (-571 $)) (-598 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-1102)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-1102) (-1 $ (-598 $))) NIL) (($ $ (-1102) (-1 $ $)) NIL) (($ $ (-598 (-112)) (-598 (-1 $ $))) NIL) (($ $ (-598 (-112)) (-598 (-1 $ (-598 $)))) NIL) (($ $ (-112) (-1 $ (-598 $))) NIL) (($ $ (-112) (-1 $ $)) NIL)) (-4100 (((-721) $) NIL)) (-1785 (($ (-112) $) NIL) (($ (-112) $ $) NIL) (($ (-112) $ $ $) NIL) (($ (-112) $ $ $ $) NIL) (($ (-112) (-598 $)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-1771 (($ $) NIL) (($ $ $) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) 36)) (-1853 (((-1054 (-531) (-571 $)) $) 20)) (-3608 (($ $) NIL (|has| $ (-986)))) (-3318 (((-360) $) 92) (((-208) $) 100) (((-159 (-360)) $) 108)) (-2265 (((-806) $) NIL) (($ (-571 $)) NIL) (($ (-388 (-531))) NIL) (($ $) NIL) (($ (-531)) NIL) (($ (-1054 (-531) (-571 $))) 21)) (-2284 (((-721)) NIL)) (-3504 (($ $) NIL) (($ (-598 $)) NIL)) (-3167 (((-110) (-112)) 84)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 10 T CONST)) (-3050 (($) 22 T CONST)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 24)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2263 (($ $ $) 44)) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-388 (-531))) NIL) (($ $ (-531)) 46) (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ $ $) 27) (($ (-531) $) NIL) (($ (-721) $) NIL) (($ (-864) $) NIL)))
+(((-473) (-13 (-284) (-27) (-977 (-531)) (-977 (-388 (-531))) (-594 (-531)) (-962) (-594 (-388 (-531))) (-140) (-573 (-159 (-360))) (-216) (-10 -8 (-15 -2265 ($ (-1054 (-531) (-571 $)))) (-15 -1840 ((-1054 (-531) (-571 $)) $)) (-15 -1853 ((-1054 (-531) (-571 $)) $)) (-15 -1760 ($ $)) (-15 -3739 ((-110) $ $)) (-15 -1899 ((-1098 $) (-1098 $) (-571 $))) (-15 -1899 ((-1098 $) (-1098 $) (-598 (-571 $)))) (-15 -1899 ($ $ (-571 $))) (-15 -1899 ($ $ (-598 (-571 $))))))) (T -473))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) (-1840 (*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) (-1853 (*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473)))) (-1760 (*1 *1 *1) (-5 *1 (-473))) (-3739 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 (-473))) (-5 *3 (-571 (-473))) (-5 *1 (-473)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 (-473))) (-5 *3 (-598 (-571 (-473)))) (-5 *1 (-473)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-571 (-473))) (-5 *1 (-473)))) (-1899 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-571 (-473)))) (-5 *1 (-473)))))
+(-13 (-284) (-27) (-977 (-531)) (-977 (-388 (-531))) (-594 (-531)) (-962) (-594 (-388 (-531))) (-140) (-573 (-159 (-360))) (-216) (-10 -8 (-15 -2265 ($ (-1054 (-531) (-571 $)))) (-15 -1840 ((-1054 (-531) (-571 $)) $)) (-15 -1853 ((-1054 (-531) (-571 $)) $)) (-15 -1760 ($ $)) (-15 -3739 ((-110) $ $)) (-15 -1899 ((-1098 $) (-1098 $) (-571 $))) (-15 -1899 ((-1098 $) (-1098 $) (-598 (-571 $)))) (-15 -1899 ($ $ (-571 $))) (-15 -1899 ($ $ (-598 (-571 $))))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) 25 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 22 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 21)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 14)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 12 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) 23 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 16 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 17) (($ (-1 |#1| |#1| |#1|) $ $) 19)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) 10 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 13)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) 24) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 9 (|has| $ (-6 -4273)))))
+(((-474 |#1| |#2|) (-19 |#1|) (-1138) (-531)) (T -474))
NIL
(-19 |#1|)
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL)) (-2626 (($ $ (-530) (-474 |#1| |#3|)) NIL)) (-3959 (($ $ (-530) (-474 |#1| |#2|)) NIL)) (-2350 (($) NIL T CONST)) (-1325 (((-474 |#1| |#3|) $ (-530)) NIL)) (-3592 ((|#1| $ (-530) (-530) |#1|) NIL)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1796 (((-719) $) NIL)) (-3538 (($ (-719) (-719) |#1|) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 (((-474 |#1| |#2|) $ (-530)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-475 |#1| |#2| |#3|) (-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) (-1135) (-530) (-530)) (T -475))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2398 (($ $ (-531) (-474 |#1| |#3|)) NIL)) (-3492 (($ $ (-531) (-474 |#1| |#2|)) NIL)) (-4082 (($) NIL T CONST)) (-4011 (((-474 |#1| |#3|) $ (-531)) NIL)) (-2693 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-1548 (((-721) $) NIL)) (-3010 (($ (-721) (-721) |#1|) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 (((-474 |#1| |#2|) $ (-531)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-475 |#1| |#2| |#3|) (-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|)) (-1138) (-531) (-531)) (T -475))
NIL
(-55 |#1| (-474 |#1| |#3|) (-474 |#1| |#2|))
-((-2740 (((-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719)) 27)) (-3859 (((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719)) 34)) (-4164 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719)) 85)))
-(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -3859 ((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719))) (-15 -2740 ((-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719))) (-15 -4164 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719)))) (-330) (-1157 |#1|) (-1157 |#2|)) (T -476))
-((-4164 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-2 (|:| -3220 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7))))) (-5 *5 (-719)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-330)) (-5 *2 (-2 (|:| -3220 (-637 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-637 *7)))) (-5 *1 (-476 *6 *7 *8)))) (-2740 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-719)) (-4 *5 (-330)) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3220 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-2 (|:| -3220 (-637 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-637 *6)))) (-4 *7 (-1157 *6)))) (-3859 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-719)) (-4 *3 (-330)) (-4 *5 (-1157 *3)) (-5 *2 (-597 (-1095 *3))) (-5 *1 (-476 *3 *5 *6)) (-4 *6 (-1157 *5)))))
-(-10 -7 (-15 -3859 ((-597 (-1095 |#1|)) |#1| (-719) (-719) (-719))) (-15 -2740 ((-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-719) (-719))) (-15 -4164 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) (-597 |#3|) (-597 (-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) (-719))))
-((-2883 (((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))) 62)) (-1693 ((|#1| (-637 |#1|) |#1| (-719)) 25)) (-3011 (((-719) (-719) (-719)) 30)) (-1233 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 42)) (-1488 (((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|) 50) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 47)) (-3189 ((|#1| (-637 |#1|) (-637 |#1|) |#1| (-530)) 29)) (-3896 ((|#1| (-637 |#1|)) 18)))
-(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -3896 (|#1| (-637 |#1|))) (-15 -1693 (|#1| (-637 |#1|) |#1| (-719))) (-15 -3189 (|#1| (-637 |#1|) (-637 |#1|) |#1| (-530))) (-15 -3011 ((-719) (-719) (-719))) (-15 -1488 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1488 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -1233 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2883 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|)))))) (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))) (-1157 |#1|) (-390 |#1| |#2|)) (T -477))
-((-2883 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1233 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1488 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-1488 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3011 (*1 *2 *2 *2) (-12 (-5 *2 (-719)) (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3189 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-530)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-1693 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-637 *2)) (-5 *4 (-719)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-637 *2)) (-4 *4 (-1157 *2)) (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $))))) (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4)))))
-(-10 -7 (-15 -3896 (|#1| (-637 |#1|))) (-15 -1693 (|#1| (-637 |#1|) |#1| (-719))) (-15 -3189 (|#1| (-637 |#1|) (-637 |#1|) |#1| (-530))) (-15 -3011 ((-719) (-719) (-719))) (-15 -1488 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1488 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -1233 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2883 ((-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))) (-2 (|:| -3220 (-637 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-637 |#1|))))))
-((-2352 (((-110) $ $) NIL)) (-2522 (($ $) NIL)) (-3085 (($ $ $) 35)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| (-110) (-795))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-110) (-795)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-1307 (($ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-110) $ (-1148 (-530)) (-110)) NIL (|has| $ (-6 -4270))) (((-110) $ (-530) (-110)) 36 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2383 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2134 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-3592 (((-110) $ (-530) (-110)) NIL (|has| $ (-6 -4270)))) (-3532 (((-110) $ (-530)) NIL)) (-2027 (((-530) (-110) $ (-530)) NIL (|has| (-110) (-1027))) (((-530) (-110) $) NIL (|has| (-110) (-1027))) (((-530) (-1 (-110) (-110)) $) NIL)) (-3779 (((-597 (-110)) $) NIL (|has| $ (-6 -4269)))) (-2813 (($ $ $) 33)) (-3676 (($ $) NIL)) (-1493 (($ $ $) NIL)) (-3538 (($ (-719) (-110)) 23)) (-4073 (($ $ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 8 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL)) (-3683 (($ $ $) NIL (|has| (-110) (-795))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2395 (((-597 (-110)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL)) (-3583 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-110) (-110) (-110)) $ $) 30) (($ (-1 (-110) (-110)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ (-110) $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-110) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-1522 (($ $ (-110)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-110)) (-597 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027)))) (($ $ (-597 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027))))) (-2261 (((-597 (-110)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 24)) (-1902 (($ $ (-1148 (-530))) NIL) (((-110) $ (-530)) 18) (((-110) $ (-530) (-110)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2632 (((-719) (-110) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-110) (-1027)))) (((-719) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) 25)) (-3260 (((-506) $) NIL (|has| (-110) (-572 (-506))))) (-2377 (($ (-597 (-110))) NIL)) (-3483 (($ (-597 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2366 (((-804) $) 22)) (-3889 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4269)))) (-3380 (($ $ $) 31)) (-1262 (($ $ $) NIL)) (-1547 (($ $ $) 39)) (-1559 (($ $) 37)) (-1536 (($ $ $) 38)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 26)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 27)) (-1253 (($ $ $) NIL)) (-2267 (((-719) $) 10 (|has| $ (-6 -4269)))))
-(((-478 |#1|) (-13 (-121) (-10 -8 (-15 -1559 ($ $)) (-15 -1547 ($ $ $)) (-15 -1536 ($ $ $)))) (-530)) (T -478))
-((-1559 (*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))) (-1547 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))) (-1536 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530)))))
-(-13 (-121) (-10 -8 (-15 -1559 ($ $)) (-15 -1547 ($ $ $)) (-15 -1536 ($ $ $))))
-((-1721 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|)) 35)) (-2127 (((-1095 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1095 |#4|)) 22)) (-1231 (((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|))) 46)) (-3928 (((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
-(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2127 (|#2| (-1 |#1| |#4|) (-1095 |#4|))) (-15 -2127 ((-1095 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1721 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|))) (-15 -1231 ((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|)))) (-15 -3928 ((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|))) (-984) (-1157 |#1|) (-1157 |#2|) (-984)) (T -479))
-((-3928 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *7))) (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1157 *6)))) (-1231 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-637 (-1095 *8))) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-1157 *5)) (-5 *2 (-637 *6)) (-5 *1 (-479 *5 *6 *7 *8)) (-4 *7 (-1157 *6)))) (-1721 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *4 (-1157 *5)) (-5 *2 (-1095 *7)) (-5 *1 (-479 *5 *4 *6 *7)) (-4 *6 (-1157 *4)))) (-2127 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))))
-(-10 -7 (-15 -2127 (|#2| (-1 |#1| |#4|) (-1095 |#4|))) (-15 -2127 ((-1095 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1721 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1095 |#4|))) (-15 -1231 ((-3 (-637 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-637 (-1095 |#4|)))) (-15 -3928 ((-1095 (-1095 |#4|)) (-1 |#4| |#1|) |#3|)))
-((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3595 (((-1186) $) 19)) (-1902 (((-1082) $ (-1099)) 23)) (-2388 (((-1186) $) 15)) (-2366 (((-804) $) 21) (($ (-1082)) 20)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 9)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 8)))
-(((-480) (-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $)) (-15 -2366 ($ (-1082)))))) (T -480))
-((-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1082)) (-5 *1 (-480)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))) (-3595 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-480)))))
-(-13 (-795) (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $)) (-15 -3595 ((-1186) $)) (-15 -2366 ($ (-1082)))))
-((-1912 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-3912 ((|#1| |#4|) 10)) (-2765 ((|#3| |#4|) 17)))
-(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3912 (|#1| |#4|)) (-15 -2765 (|#3| |#4|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-522) (-932 |#1|) (-354 |#1|) (-354 |#2|)) (T -481))
-((-1912 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5)))) (-2765 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-4 *2 (-354 *4)) (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5)))) (-3912 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-481 *2 *4 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-354 *4)))))
-(-10 -7 (-15 -3912 (|#1| |#4|)) (-15 -2765 (|#3| |#4|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
-((-2352 (((-110) $ $) NIL)) (-3322 (((-110) $ (-597 |#3|)) 105) (((-110) $) 106)) (-1813 (((-110) $) 149)) (-2330 (($ $ |#4|) 97) (($ $ |#4| (-597 |#3|)) 101)) (-1959 (((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|)) 142 (|has| |#3| (-572 (-1099))))) (-1324 (($ $ $) 91) (($ $ |#4|) 89)) (-2731 (((-110) $) 148)) (-1440 (($ $) 109)) (-1424 (((-1082) $) NIL)) (-4033 (($ $ $) 83) (($ (-597 $)) 85)) (-2969 (((-110) |#4| $) 108)) (-1332 (((-110) $ $) 72)) (-3046 (($ (-597 |#4|)) 90)) (-2624 (((-1046) $) NIL)) (-3437 (($ (-597 |#4|)) 146)) (-3752 (((-110) $) 147)) (-1241 (($ $) 74)) (-3478 (((-597 |#4|) $) 63)) (-2819 (((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|)) NIL)) (-4045 (((-110) |#4| $) 77)) (-2488 (((-530) $ (-597 |#3|)) 110) (((-530) $) 111)) (-2366 (((-804) $) 145) (($ (-597 |#4|)) 86)) (-4077 (($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $))) NIL)) (-2248 (((-110) $ $) 73)) (-2339 (($ $ $) 93)) (** (($ $ (-719)) 96)) (* (($ $ $) 95)))
-(((-482 |#1| |#2| |#3| |#4|) (-13 (-1027) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 -2339 ($ $ $)) (-15 -2731 ((-110) $)) (-15 -1813 ((-110) $)) (-15 -4045 ((-110) |#4| $)) (-15 -1332 ((-110) $ $)) (-15 -2969 ((-110) |#4| $)) (-15 -3322 ((-110) $ (-597 |#3|))) (-15 -3322 ((-110) $)) (-15 -4033 ($ $ $)) (-15 -4033 ($ (-597 $))) (-15 -1324 ($ $ $)) (-15 -1324 ($ $ |#4|)) (-15 -1241 ($ $)) (-15 -2819 ((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|))) (-15 -4077 ($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)))) (-15 -2488 ((-530) $ (-597 |#3|))) (-15 -2488 ((-530) $)) (-15 -1440 ($ $)) (-15 -3046 ($ (-597 |#4|))) (-15 -3437 ($ (-597 |#4|))) (-15 -3752 ((-110) $)) (-15 -3478 ((-597 |#4|) $)) (-15 -2366 ($ (-597 |#4|))) (-15 -2330 ($ $ |#4|)) (-15 -2330 ($ $ |#4| (-597 |#3|))) (IF (|has| |#3| (-572 (-1099))) (-15 -1959 ((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|))) |%noBranch|))) (-344) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -482))
-((* (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-2731 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1813 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-4045 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-1332 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2969 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))) (-3322 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-3322 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-4033 (*1 *1 *2) (-12 (-5 *2 (-597 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1324 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-1324 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-1241 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-2819 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-2 (|:| |mval| (-637 *4)) (|:| |invmval| (-637 *4)) (|:| |genIdeal| (-482 *4 *5 *6 *7)))) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-4077 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-637 *3)) (|:| |invmval| (-637 *3)) (|:| |genIdeal| (-482 *3 *4 *5 *6)))) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2488 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *2 (-530)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))) (-2488 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-1440 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-3046 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3752 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-3478 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *6)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))) (-2330 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))) (-2330 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741)) (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-890 *4 *5 *6)))) (-1959 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *6 (-572 (-1099))) (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1089 (-597 (-893 *4)) (-597 (-276 (-893 *4))))) (-5 *1 (-482 *4 *5 *6 *7)))))
-(-13 (-1027) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 -2339 ($ $ $)) (-15 -2731 ((-110) $)) (-15 -1813 ((-110) $)) (-15 -4045 ((-110) |#4| $)) (-15 -1332 ((-110) $ $)) (-15 -2969 ((-110) |#4| $)) (-15 -3322 ((-110) $ (-597 |#3|))) (-15 -3322 ((-110) $)) (-15 -4033 ($ $ $)) (-15 -4033 ($ (-597 $))) (-15 -1324 ($ $ $)) (-15 -1324 ($ $ |#4|)) (-15 -1241 ($ $)) (-15 -2819 ((-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)) $ (-597 |#3|))) (-15 -4077 ($ (-2 (|:| |mval| (-637 |#1|)) (|:| |invmval| (-637 |#1|)) (|:| |genIdeal| $)))) (-15 -2488 ((-530) $ (-597 |#3|))) (-15 -2488 ((-530) $)) (-15 -1440 ($ $)) (-15 -3046 ($ (-597 |#4|))) (-15 -3437 ($ (-597 |#4|))) (-15 -3752 ((-110) $)) (-15 -3478 ((-597 |#4|) $)) (-15 -2366 ($ (-597 |#4|))) (-15 -2330 ($ $ |#4|)) (-15 -2330 ($ $ |#4| (-597 |#3|))) (IF (|has| |#3| (-572 (-1099))) (-15 -1959 ((-1089 (-597 (-893 |#1|)) (-597 (-276 (-893 |#1|)))) (-597 |#4|))) |%noBranch|)))
-((-3640 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 150)) (-3114 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 151)) (-1932 (((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 108)) (-3295 (((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) NIL)) (-1395 (((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) 153)) (-1695 (((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|))) 165)))
-(((-483 |#1| |#2|) (-10 -7 (-15 -3640 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3114 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3295 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1932 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1395 ((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1695 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|))))) (-597 (-1099)) (-719)) (T -483))
-((-1695 (*1 *2 *2 *3) (-12 (-5 *2 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *1 (-483 *4 *5)))) (-1395 (*1 *2 *3) (-12 (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-597 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530)))))) (-5 *1 (-483 *4 *5)) (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))))) (-1932 (*1 *2 *2) (-12 (-5 *2 (-482 (-388 (-530)) (-223 *4 (-719)) (-806 *3) (-230 *3 (-388 (-530))))) (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-483 *3 *4)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4) (-230 *4 (-388 (-530))))) (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))))
-(-10 -7 (-15 -3640 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3114 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -3295 ((-110) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1932 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1395 ((-597 (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530))))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))))) (-15 -1695 ((-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-482 (-388 (-530)) (-223 |#2| (-719)) (-806 |#1|) (-230 |#1| (-388 (-530)))) (-597 (-806 |#1|)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) 12 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) 11) (($ $ $) 24)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 18)))
-(((-484 |#1| |#2|) (-13 (-21) (-486 |#1| |#2|)) (-21) (-795)) (T -484))
-NIL
-(-13 (-21) (-486 |#1| |#2|))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 12)) (-2350 (($) NIL T CONST)) (-2562 (($ $) 28)) (-2725 (($ |#1| |#2|) 25)) (-3217 (($ (-1 |#1| |#1|) $) 27)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) 29)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) 10 T CONST)) (-2248 (((-110) $ $) NIL)) (-2339 (($ $ $) 18)) (* (($ (-862) $) NIL) (($ (-719) $) 23)))
-(((-485 |#1| |#2|) (-13 (-23) (-486 |#1| |#2|)) (-23) (-795)) (T -485))
-NIL
-(-13 (-23) (-486 |#1| |#2|))
-((-2352 (((-110) $ $) 7)) (-2562 (($ $) 13)) (-2725 (($ |#1| |#2|) 16)) (-3217 (($ (-1 |#1| |#1|) $) 17)) (-4115 ((|#2| $) 14)) (-2533 ((|#1| $) 15)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
-(((-486 |#1| |#2|) (-133) (-1027) (-795)) (T -486))
-((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-486 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-795)))) (-2725 (*1 *1 *2 *3) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1027)))) (-4115 (*1 *2 *1) (-12 (-4 *1 (-486 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-795)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795)))))
-(-13 (-1027) (-10 -8 (-15 -3217 ($ (-1 |t#1| |t#1|) $)) (-15 -2725 ($ |t#1| |t#2|)) (-15 -2533 (|t#1| $)) (-15 -4115 (|t#2| $)) (-15 -2562 ($ $))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 13)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
-(((-487 |#1| |#2|) (-13 (-740) (-486 |#1| |#2|)) (-740) (-795)) (T -487))
-NIL
-(-13 (-740) (-486 |#1| |#2|))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3418 (($ $ $) 16)) (-1889 (((-3 $ "failed") $ $) 13)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-4115 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
-(((-488 |#1| |#2|) (-13 (-741) (-486 |#1| |#2|)) (-741) (-795)) (T -488))
-NIL
-(-13 (-741) (-486 |#1| |#2|))
-((-2352 (((-110) $ $) NIL)) (-2562 (($ $) 25)) (-2725 (($ |#1| |#2|) 22)) (-3217 (($ (-1 |#1| |#1|) $) 24)) (-4115 ((|#2| $) 27)) (-2533 ((|#1| $) 26)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 21)) (-2248 (((-110) $ $) 14)))
-(((-489 |#1| |#2|) (-486 |#1| |#2|) (-1027) (-795)) (T -489))
-NIL
-(-486 |#1| |#2|)
-((-4098 (($ $ (-597 |#2|) (-597 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
-(((-490 |#1| |#2| |#3|) (-10 -8 (-15 -4098 (|#1| |#1| |#2| |#3|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#3|)))) (-491 |#2| |#3|) (-1027) (-1135)) (T -490))
-NIL
-(-10 -8 (-15 -4098 (|#1| |#1| |#2| |#3|)) (-15 -4098 (|#1| |#1| (-597 |#2|) (-597 |#3|))))
-((-4098 (($ $ (-597 |#1|) (-597 |#2|)) 7) (($ $ |#1| |#2|) 6)))
-(((-491 |#1| |#2|) (-133) (-1027) (-1135)) (T -491))
-((-4098 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 *5)) (-4 *1 (-491 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1135)))) (-4098 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1135)))))
-(-13 (-10 -8 (-15 -4098 ($ $ |t#1| |t#2|)) (-15 -4098 ($ $ (-597 |t#1|) (-597 |t#2|)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 16)) (-3678 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $) 18)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-3519 ((|#1| $ (-530)) 23)) (-4016 ((|#2| $ (-530)) 21)) (-2580 (($ (-1 |#1| |#1|) $) 46)) (-1466 (($ (-1 |#2| |#2|) $) 43)) (-1424 (((-1082) $) NIL)) (-3613 (($ $ $) 53 (|has| |#2| (-740)))) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 42) (($ |#1|) NIL)) (-4085 ((|#2| |#1| $) 49)) (-3080 (($) 11 T CONST)) (-2248 (((-110) $ $) 29)) (-2339 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-862) $) NIL) (($ (-719) $) 36) (($ |#2| |#1|) 31)))
-(((-492 |#1| |#2| |#3|) (-304 |#1| |#2|) (-1027) (-128) |#2|) (T -492))
+((-3670 (((-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-721) (-721)) 27)) (-1292 (((-598 (-1098 |#1|)) |#1| (-721) (-721) (-721)) 34)) (-1850 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-598 |#3|) (-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-721)) 85)))
+(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -1292 ((-598 (-1098 |#1|)) |#1| (-721) (-721) (-721))) (-15 -3670 ((-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-721) (-721))) (-15 -1850 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-598 |#3|) (-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-721)))) (-330) (-1160 |#1|) (-1160 |#2|)) (T -476))
+((-1850 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-2 (|:| -3523 (-639 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-639 *7))))) (-5 *5 (-721)) (-4 *8 (-1160 *7)) (-4 *7 (-1160 *6)) (-4 *6 (-330)) (-5 *2 (-2 (|:| -3523 (-639 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-639 *7)))) (-5 *1 (-476 *6 *7 *8)))) (-3670 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-721)) (-4 *5 (-330)) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3523 (-639 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-639 *6))))) (-5 *1 (-476 *5 *6 *7)) (-5 *3 (-2 (|:| -3523 (-639 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-639 *6)))) (-4 *7 (-1160 *6)))) (-1292 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-721)) (-4 *3 (-330)) (-4 *5 (-1160 *3)) (-5 *2 (-598 (-1098 *3))) (-5 *1 (-476 *3 *5 *6)) (-4 *6 (-1160 *5)))))
+(-10 -7 (-15 -1292 ((-598 (-1098 |#1|)) |#1| (-721) (-721) (-721))) (-15 -3670 ((-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-721) (-721))) (-15 -1850 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) (-598 |#3|) (-598 (-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) (-721))))
+((-2086 (((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|)))) 62)) (-2386 ((|#1| (-639 |#1|) |#1| (-721)) 25)) (-2829 (((-721) (-721) (-721)) 30)) (-2001 (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 42)) (-3522 (((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|) 50) (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 47)) (-2082 ((|#1| (-639 |#1|) (-639 |#1|) |#1| (-531)) 29)) (-2806 ((|#1| (-639 |#1|)) 18)))
+(((-477 |#1| |#2| |#3|) (-10 -7 (-15 -2806 (|#1| (-639 |#1|))) (-15 -2386 (|#1| (-639 |#1|) |#1| (-721))) (-15 -2082 (|#1| (-639 |#1|) (-639 |#1|) |#1| (-531))) (-15 -2829 ((-721) (-721) (-721))) (-15 -3522 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -3522 ((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|)) (-15 -2001 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2086 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|)))))) (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))) (-1160 |#1|) (-390 |#1| |#2|)) (T -477))
+((-2086 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2001 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3522 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3522 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2829 (*1 *2 *2 *2) (-12 (-5 *2 (-721)) (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2082 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-639 *2)) (-5 *4 (-531)) (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *5 (-1160 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-2386 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-639 *2)) (-5 *4 (-721)) (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-4 *5 (-1160 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))) (-2806 (*1 *2 *3) (-12 (-5 *3 (-639 *2)) (-4 *4 (-1160 *2)) (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $))))) (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4)))))
+(-10 -7 (-15 -2806 (|#1| (-639 |#1|))) (-15 -2386 (|#1| (-639 |#1|) |#1| (-721))) (-15 -2082 (|#1| (-639 |#1|) (-639 |#1|) |#1| (-531))) (-15 -2829 ((-721) (-721) (-721))) (-15 -3522 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -3522 ((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|)) (-15 -2001 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2086 ((-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))) (-2 (|:| -3523 (-639 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-639 |#1|))))))
+((-2247 (((-110) $ $) NIL)) (-1813 (($ $) NIL)) (-3082 (($ $ $) 35)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| (-110) (-797))) (((-110) (-1 (-110) (-110) (-110)) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-110) (-797)))) (($ (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4274)))) (-1332 (($ $) NIL (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-110) $ (-1151 (-531)) (-110)) NIL (|has| $ (-6 -4274))) (((-110) $ (-531) (-110)) 36 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2283 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273))) (($ (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-1760 (((-110) (-1 (-110) (-110) (-110)) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110)) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-110) (-110)) $ (-110) (-110)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2693 (((-110) $ (-531) (-110)) NIL (|has| $ (-6 -4274)))) (-2627 (((-110) $ (-531)) NIL)) (-1976 (((-531) (-110) $ (-531)) NIL (|has| (-110) (-1030))) (((-531) (-110) $) NIL (|has| (-110) (-1030))) (((-531) (-1 (-110) (-110)) $) NIL)) (-2227 (((-598 (-110)) $) NIL (|has| $ (-6 -4273)))) (-2726 (($ $ $) 33)) (-3745 (($ $) NIL)) (-4178 (($ $ $) NIL)) (-3010 (($ (-721) (-110)) 23)) (-3232 (($ $ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 8 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL)) (-3508 (($ $ $) NIL (|has| (-110) (-797))) (($ (-1 (-110) (-110) (-110)) $ $) NIL)) (-2445 (((-598 (-110)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL)) (-2680 (($ (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-110) (-110) (-110)) $ $) 30) (($ (-1 (-110) (-110)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ (-110) $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-110) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-110) "failed") (-1 (-110) (-110)) $) NIL)) (-3742 (($ $ (-110)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-110)) (-598 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-110) (-110)) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-276 (-110))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030)))) (($ $ (-598 (-276 (-110)))) NIL (-12 (|has| (-110) (-291 (-110))) (|has| (-110) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030))))) (-3163 (((-598 (-110)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 24)) (-1785 (($ $ (-1151 (-531))) NIL) (((-110) $ (-531)) 18) (((-110) $ (-531) (-110)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2539 (((-721) (-110) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-110) (-1030)))) (((-721) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) 25)) (-3318 (((-507) $) NIL (|has| (-110) (-573 (-507))))) (-2274 (($ (-598 (-110))) NIL)) (-3536 (($ (-598 $)) NIL) (($ $ $) NIL) (($ (-110) $) NIL) (($ $ (-110)) NIL)) (-2265 (((-806) $) 22)) (-2060 (((-110) (-1 (-110) (-110)) $) NIL (|has| $ (-6 -4273)))) (-3427 (($ $ $) 31)) (-1868 (($ $ $) NIL)) (-4251 (($ $ $) 39)) (-1223 (($ $) 37)) (-4240 (($ $ $) 38)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 26)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 27)) (-1854 (($ $ $) NIL)) (-2167 (((-721) $) 10 (|has| $ (-6 -4273)))))
+(((-478 |#1|) (-13 (-121) (-10 -8 (-15 -1223 ($ $)) (-15 -4251 ($ $ $)) (-15 -4240 ($ $ $)))) (-531)) (T -478))
+((-1223 (*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531)))) (-4251 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531)))) (-4240 (*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531)))))
+(-13 (-121) (-10 -8 (-15 -1223 ($ $)) (-15 -4251 ($ $ $)) (-15 -4240 ($ $ $))))
+((-1560 (((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1098 |#4|)) 35)) (-3642 (((-1098 |#4|) (-1 |#4| |#1|) |#2|) 31) ((|#2| (-1 |#1| |#4|) (-1098 |#4|)) 22)) (-2972 (((-3 (-639 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-639 (-1098 |#4|))) 46)) (-1413 (((-1098 (-1098 |#4|)) (-1 |#4| |#1|) |#3|) 55)))
+(((-479 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3642 (|#2| (-1 |#1| |#4|) (-1098 |#4|))) (-15 -3642 ((-1098 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1560 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1098 |#4|))) (-15 -2972 ((-3 (-639 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-639 (-1098 |#4|)))) (-15 -1413 ((-1098 (-1098 |#4|)) (-1 |#4| |#1|) |#3|))) (-986) (-1160 |#1|) (-1160 |#2|) (-986)) (T -479))
+((-1413 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-986)) (-4 *7 (-986)) (-4 *6 (-1160 *5)) (-5 *2 (-1098 (-1098 *7))) (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1160 *6)))) (-2972 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-639 (-1098 *8))) (-4 *5 (-986)) (-4 *8 (-986)) (-4 *6 (-1160 *5)) (-5 *2 (-639 *6)) (-5 *1 (-479 *5 *6 *7 *8)) (-4 *7 (-1160 *6)))) (-1560 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1098 *7)) (-4 *5 (-986)) (-4 *7 (-986)) (-4 *2 (-1160 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1160 *2)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-986)) (-4 *7 (-986)) (-4 *4 (-1160 *5)) (-5 *2 (-1098 *7)) (-5 *1 (-479 *5 *4 *6 *7)) (-4 *6 (-1160 *4)))) (-3642 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1098 *7)) (-4 *5 (-986)) (-4 *7 (-986)) (-4 *2 (-1160 *5)) (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1160 *2)))))
+(-10 -7 (-15 -3642 (|#2| (-1 |#1| |#4|) (-1098 |#4|))) (-15 -3642 ((-1098 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -1560 ((-3 |#2| "failed") (-1 (-3 |#1| "failed") |#4|) (-1098 |#4|))) (-15 -2972 ((-3 (-639 |#2|) "failed") (-1 (-3 |#1| "failed") |#4|) (-639 (-1098 |#4|)))) (-15 -1413 ((-1098 (-1098 |#4|)) (-1 |#4| |#1|) |#3|)))
+((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3403 (((-1189) $) 19)) (-1785 (((-1085) $ (-1102)) 23)) (-2286 (((-1189) $) 15)) (-2265 (((-806) $) 21) (($ (-1085)) 20)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 9)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 8)))
+(((-480) (-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $)) (-15 -2265 ($ (-1085)))))) (T -480))
+((-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1085)) (-5 *1 (-480)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-480)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-480)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-480)))))
+(-13 (-797) (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $)) (-15 -3403 ((-1189) $)) (-15 -2265 ($ (-1085)))))
+((-1682 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19)) (-2807 ((|#1| |#4|) 10)) (-1349 ((|#3| |#4|) 17)))
+(((-481 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2807 (|#1| |#4|)) (-15 -1349 (|#3| |#4|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-523) (-934 |#1|) (-354 |#1|) (-354 |#2|)) (T -481))
+((-1682 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5)))) (-1349 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-4 *2 (-354 *4)) (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5)))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-481 *2 *4 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-354 *4)))))
+(-10 -7 (-15 -2807 (|#1| |#4|)) (-15 -1349 (|#3| |#4|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|)))
+((-2247 (((-110) $ $) NIL)) (-3017 (((-110) $ (-598 |#3|)) 105) (((-110) $) 106)) (-3019 (((-110) $) 149)) (-3136 (($ $ |#4|) 97) (($ $ |#4| (-598 |#3|)) 101)) (-3506 (((-1092 (-598 (-895 |#1|)) (-598 (-276 (-895 |#1|)))) (-598 |#4|)) 142 (|has| |#3| (-573 (-1102))))) (-2937 (($ $ $) 91) (($ $ |#4|) 89)) (-3481 (((-110) $) 148)) (-3533 (($ $) 109)) (-1521 (((-1085) $) NIL)) (-1301 (($ $ $) 83) (($ (-598 $)) 85)) (-4128 (((-110) |#4| $) 108)) (-1240 (((-110) $ $) 72)) (-2003 (($ (-598 |#4|)) 90)) (-2529 (((-1049) $) NIL)) (-3803 (($ (-598 |#4|)) 146)) (-3120 (((-110) $) 147)) (-3716 (($ $) 74)) (-3304 (((-598 |#4|) $) 63)) (-3048 (((-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)) $ (-598 |#3|)) NIL)) (-3166 (((-110) |#4| $) 77)) (-2190 (((-531) $ (-598 |#3|)) 110) (((-531) $) 111)) (-2265 (((-806) $) 145) (($ (-598 |#4|)) 86)) (-3119 (($ (-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $))) NIL)) (-2148 (((-110) $ $) 73)) (-2237 (($ $ $) 93)) (** (($ $ (-721)) 96)) (* (($ $ $) 95)))
+(((-482 |#1| |#2| |#3| |#4|) (-13 (-1030) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-721))) (-15 -2237 ($ $ $)) (-15 -3481 ((-110) $)) (-15 -3019 ((-110) $)) (-15 -3166 ((-110) |#4| $)) (-15 -1240 ((-110) $ $)) (-15 -4128 ((-110) |#4| $)) (-15 -3017 ((-110) $ (-598 |#3|))) (-15 -3017 ((-110) $)) (-15 -1301 ($ $ $)) (-15 -1301 ($ (-598 $))) (-15 -2937 ($ $ $)) (-15 -2937 ($ $ |#4|)) (-15 -3716 ($ $)) (-15 -3048 ((-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)) $ (-598 |#3|))) (-15 -3119 ($ (-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)))) (-15 -2190 ((-531) $ (-598 |#3|))) (-15 -2190 ((-531) $)) (-15 -3533 ($ $)) (-15 -2003 ($ (-598 |#4|))) (-15 -3803 ($ (-598 |#4|))) (-15 -3120 ((-110) $)) (-15 -3304 ((-598 |#4|) $)) (-15 -2265 ($ (-598 |#4|))) (-15 -3136 ($ $ |#4|)) (-15 -3136 ($ $ |#4| (-598 |#3|))) (IF (|has| |#3| (-573 (-1102))) (-15 -3506 ((-1092 (-598 (-895 |#1|)) (-598 (-276 (-895 |#1|)))) (-598 |#4|))) |%noBranch|))) (-344) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -482))
+((* (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-3481 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-3019 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-3166 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-1240 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-4128 (*1 *2 *3 *1) (-12 (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))) (-3017 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) (-3017 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-1301 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-1301 (*1 *1 *2) (-12 (-5 *2 (-598 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-2937 (*1 *1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-2937 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))) (-3716 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-3048 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) (-5 *2 (-2 (|:| |mval| (-639 *4)) (|:| |invmval| (-639 *4)) (|:| |genIdeal| (-482 *4 *5 *6 *7)))) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) (-3119 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-639 *3)) (|:| |invmval| (-639 *3)) (|:| |genIdeal| (-482 *3 *4 *5 *6)))) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-2190 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) (-5 *2 (-531)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))) (-2190 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-531)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-3533 (*1 *1 *1) (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797)) (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-2003 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3803 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3120 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-3304 (*1 *2 *1) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *6)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))) (-3136 (*1 *1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))) (-3136 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743)) (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-892 *4 *5 *6)))) (-3506 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *6 (-573 (-1102))) (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1092 (-598 (-895 *4)) (-598 (-276 (-895 *4))))) (-5 *1 (-482 *4 *5 *6 *7)))))
+(-13 (-1030) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-721))) (-15 -2237 ($ $ $)) (-15 -3481 ((-110) $)) (-15 -3019 ((-110) $)) (-15 -3166 ((-110) |#4| $)) (-15 -1240 ((-110) $ $)) (-15 -4128 ((-110) |#4| $)) (-15 -3017 ((-110) $ (-598 |#3|))) (-15 -3017 ((-110) $)) (-15 -1301 ($ $ $)) (-15 -1301 ($ (-598 $))) (-15 -2937 ($ $ $)) (-15 -2937 ($ $ |#4|)) (-15 -3716 ($ $)) (-15 -3048 ((-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)) $ (-598 |#3|))) (-15 -3119 ($ (-2 (|:| |mval| (-639 |#1|)) (|:| |invmval| (-639 |#1|)) (|:| |genIdeal| $)))) (-15 -2190 ((-531) $ (-598 |#3|))) (-15 -2190 ((-531) $)) (-15 -3533 ($ $)) (-15 -2003 ($ (-598 |#4|))) (-15 -3803 ($ (-598 |#4|))) (-15 -3120 ((-110) $)) (-15 -3304 ((-598 |#4|) $)) (-15 -2265 ($ (-598 |#4|))) (-15 -3136 ($ $ |#4|)) (-15 -3136 ($ $ |#4| (-598 |#3|))) (IF (|has| |#3| (-573 (-1102))) (-15 -3506 ((-1092 (-598 (-895 |#1|)) (-598 (-276 (-895 |#1|)))) (-598 |#4|))) |%noBranch|)))
+((-3400 (((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) 150)) (-2404 (((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) 151)) (-3547 (((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) 108)) (-2534 (((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) NIL)) (-1459 (((-598 (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) 153)) (-2994 (((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-598 (-808 |#1|))) 165)))
+(((-483 |#1| |#2|) (-10 -7 (-15 -3400 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2404 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2534 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -3547 ((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -1459 ((-598 (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2994 ((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-598 (-808 |#1|))))) (-598 (-1102)) (-721)) (T -483))
+((-2994 (*1 *2 *2 *3) (-12 (-5 *2 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))) (-5 *3 (-598 (-808 *4))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *1 (-483 *4 *5)))) (-1459 (*1 *2 *3) (-12 (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-598 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531)))))) (-5 *1 (-483 *4 *5)) (-5 *3 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))))) (-3547 (*1 *2 *2) (-12 (-5 *2 (-482 (-388 (-531)) (-223 *4 (-721)) (-808 *3) (-230 *3 (-388 (-531))))) (-14 *3 (-598 (-1102))) (-14 *4 (-721)) (-5 *1 (-483 *3 *4)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-2404 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))) (-3400 (*1 *2 *3) (-12 (-5 *3 (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4) (-230 *4 (-388 (-531))))) (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110)) (-5 *1 (-483 *4 *5)))))
+(-10 -7 (-15 -3400 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2404 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2534 ((-110) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -3547 ((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -1459 ((-598 (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531))))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))))) (-15 -2994 ((-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-482 (-388 (-531)) (-223 |#2| (-721)) (-808 |#1|) (-230 |#1| (-388 (-531)))) (-598 (-808 |#1|)))))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11) (((-1107) $) NIL) (((-1102) $) 8)) (-2148 (((-110) $ $) NIL)))
+(((-484) (-13 (-1015) (-572 (-1102)))) (T -484))
+NIL
+(-13 (-1015) (-572 (-1102)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) 12 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) 11) (($ $ $) 24)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 18)))
+(((-485 |#1| |#2|) (-13 (-21) (-487 |#1| |#2|)) (-21) (-797)) (T -485))
+NIL
+(-13 (-21) (-487 |#1| |#2|))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 12)) (-4082 (($) NIL T CONST)) (-2500 (($ $) 28)) (-2669 (($ |#1| |#2|) 25)) (-3261 (($ (-1 |#1| |#1|) $) 27)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) 29)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) 10 T CONST)) (-2148 (((-110) $ $) NIL)) (-2237 (($ $ $) 18)) (* (($ (-864) $) NIL) (($ (-721) $) 23)))
+(((-486 |#1| |#2|) (-13 (-23) (-487 |#1| |#2|)) (-23) (-797)) (T -486))
+NIL
+(-13 (-23) (-487 |#1| |#2|))
+((-2247 (((-110) $ $) 7)) (-2500 (($ $) 13)) (-2669 (($ |#1| |#2|) 16)) (-3261 (($ (-1 |#1| |#1|) $) 17)) (-1477 ((|#2| $) 14)) (-2475 ((|#1| $) 15)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)))
+(((-487 |#1| |#2|) (-133) (-1030) (-797)) (T -487))
+((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-797)))) (-2669 (*1 *1 *2 *3) (-12 (-4 *1 (-487 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-797)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-487 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1030)))) (-1477 (*1 *2 *1) (-12 (-4 *1 (-487 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-797)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-487 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-797)))))
+(-13 (-1030) (-10 -8 (-15 -3261 ($ (-1 |t#1| |t#1|) $)) (-15 -2669 ($ |t#1| |t#2|)) (-15 -2475 (|t#1| $)) (-15 -1477 (|t#2| $)) (-15 -2500 ($ $))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 13)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL)))
+(((-488 |#1| |#2|) (-13 (-742) (-487 |#1| |#2|)) (-742) (-797)) (T -488))
+NIL
+(-13 (-742) (-487 |#1| |#2|))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3818 (($ $ $) 16)) (-2128 (((-3 $ "failed") $ $) 13)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1477 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL)))
+(((-489 |#1| |#2|) (-13 (-743) (-487 |#1| |#2|)) (-743) (-797)) (T -489))
+NIL
+(-13 (-743) (-487 |#1| |#2|))
+((-2247 (((-110) $ $) NIL)) (-2500 (($ $) 25)) (-2669 (($ |#1| |#2|) 22)) (-3261 (($ (-1 |#1| |#1|) $) 24)) (-1477 ((|#2| $) 27)) (-2475 ((|#1| $) 26)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 21)) (-2148 (((-110) $ $) 14)))
+(((-490 |#1| |#2|) (-487 |#1| |#2|) (-1030) (-797)) (T -490))
+NIL
+(-487 |#1| |#2|)
+((-4115 (($ $ (-598 |#2|) (-598 |#3|)) NIL) (($ $ |#2| |#3|) 12)))
+(((-491 |#1| |#2| |#3|) (-10 -8 (-15 -4115 (|#1| |#1| |#2| |#3|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#3|)))) (-492 |#2| |#3|) (-1030) (-1138)) (T -491))
+NIL
+(-10 -8 (-15 -4115 (|#1| |#1| |#2| |#3|)) (-15 -4115 (|#1| |#1| (-598 |#2|) (-598 |#3|))))
+((-4115 (($ $ (-598 |#1|) (-598 |#2|)) 7) (($ $ |#1| |#2|) 6)))
+(((-492 |#1| |#2|) (-133) (-1030) (-1138)) (T -492))
+((-4115 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 *5)) (-4 *1 (-492 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1138)))) (-4115 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-492 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1138)))))
+(-13 (-10 -8 (-15 -4115 ($ $ |t#1| |t#2|)) (-15 -4115 ($ $ (-598 |t#1|) (-598 |t#2|)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 16)) (-4034 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $) 18)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3616 ((|#1| $ (-531)) 23)) (-2880 ((|#2| $ (-531)) 21)) (-2483 (($ (-1 |#1| |#1|) $) 46)) (-3762 (($ (-1 |#2| |#2|) $) 43)) (-1521 (((-1085) $) NIL)) (-3881 (($ $ $) 53 (|has| |#2| (-742)))) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 42) (($ |#1|) NIL)) (-3188 ((|#2| |#1| $) 49)) (-3035 (($) 11 T CONST)) (-2148 (((-110) $ $) 29)) (-2237 (($ $ $) 27) (($ |#1| $) 25)) (* (($ (-864) $) NIL) (($ (-721) $) 36) (($ |#2| |#1|) 31)))
+(((-493 |#1| |#2| |#3|) (-304 |#1| |#2|) (-1030) (-128) |#2|) (T -493))
NIL
(-304 |#1| |#2|)
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-1770 (((-110) (-110)) 25)) (-2552 ((|#1| $ (-530) |#1|) 28 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) 52)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-2287 (($ $) 56 (|has| |#1| (-1027)))) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) 44)) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3219 (($ $ (-530)) 13)) (-2871 (((-719) $) 11)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 23)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 21 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 35)) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) 20 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2441 (($ $ $ (-530)) 51) (($ |#1| $ (-530)) 37)) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2403 (($ (-597 |#1|)) 29)) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) 19 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 40)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 16)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 33) (($ $ (-1148 (-530))) NIL)) (-3715 (($ $ (-1148 (-530))) 50) (($ $ (-530)) 45)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) 41 (|has| $ (-6 -4270)))) (-2579 (($ $) 32)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-1328 (($ $ $) 42) (($ $ |#1|) 39)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 17 (|has| $ (-6 -4269)))))
-(((-493 |#1| |#2|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2403 ($ (-597 |#1|))) (-15 -2871 ((-719) $)) (-15 -3219 ($ $ (-530))) (-15 -1770 ((-110) (-110))))) (-1135) (-530)) (T -493))
-((-2403 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-493 *3 *4)) (-14 *4 (-530)))) (-2871 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 (-530)))) (-3219 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 *2))) (-1770 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 (-530)))))
-(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -2403 ($ (-597 |#1|))) (-15 -2871 ((-719) $)) (-15 -3219 ($ $ (-530))) (-15 -1770 ((-110) (-110)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (((-543 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-543 |#1|) (-349)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL (|has| (-543 |#1|) (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-543 |#1|) "failed") $) NIL)) (-2585 (((-543 |#1|) $) NIL)) (-1574 (($ (-1181 (-543 |#1|))) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-543 |#1|) (-349)))) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-543 |#1|) (-349)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL (|has| (-543 |#1|) (-349)))) (-2798 (((-110) $) NIL (|has| (-543 |#1|) (-349)))) (-3948 (($ $ (-719)) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349)))) (($ $) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-3295 (((-110) $) NIL)) (-2031 (((-862) $) NIL (|has| (-543 |#1|) (-349))) (((-781 (-862)) $) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| (-543 |#1|) (-349)))) (-1672 (((-110) $) NIL (|has| (-543 |#1|) (-349)))) (-2376 (((-543 |#1|) $) NIL) (($ $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-543 |#1|) (-349)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 (-543 |#1|)) $) NIL) (((-1095 $) $ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-1905 (((-862) $) NIL (|has| (-543 |#1|) (-349)))) (-3005 (((-1095 (-543 |#1|)) $) NIL (|has| (-543 |#1|) (-349)))) (-3396 (((-1095 (-543 |#1|)) $) NIL (|has| (-543 |#1|) (-349))) (((-3 (-1095 (-543 |#1|)) "failed") $ $) NIL (|has| (-543 |#1|) (-349)))) (-1658 (($ $ (-1095 (-543 |#1|))) NIL (|has| (-543 |#1|) (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-543 |#1|) (-349)) CONST)) (-1986 (($ (-862)) NIL (|has| (-543 |#1|) (-349)))) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL (|has| (-543 |#1|) (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-543 |#1|) (-349)))) (-2611 (((-399 $) $) NIL)) (-1415 (((-781 (-862))) NIL) (((-862)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-719) $) NIL (|has| (-543 |#1|) (-349))) (((-3 (-719) "failed") $ $) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-2488 (((-130)) NIL)) (-3289 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-1429 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-1781 (((-1095 (-543 |#1|))) NIL)) (-3406 (($) NIL (|has| (-543 |#1|) (-349)))) (-1698 (($) NIL (|has| (-543 |#1|) (-349)))) (-2328 (((-1181 (-543 |#1|)) $) NIL) (((-637 (-543 |#1|)) (-1181 $)) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-543 |#1|) (-349)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-543 |#1|)) NIL)) (-3251 (($ $) NIL (|has| (-543 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1461 (|has| (-543 |#1|) (-138)) (|has| (-543 |#1|) (-349))))) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL) (((-1181 $) (-862)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-3340 (($ $) NIL (|has| (-543 |#1|) (-349))) (($ $ (-719)) NIL (|has| (-543 |#1|) (-349)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL) (($ $ (-543 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-543 |#1|)) NIL) (($ (-543 |#1|) $) NIL)))
-(((-494 |#1| |#2|) (-310 (-543 |#1|)) (-862) (-862)) (T -494))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-1814 (((-110) (-110)) 25)) (-2454 ((|#1| $ (-531) |#1|) 28 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) 52)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-2705 (($ $) 56 (|has| |#1| (-1030)))) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) 44)) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2916 (($ $ (-531)) 13)) (-2912 (((-721) $) 11)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 23)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 21 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) 35)) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 36) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) 20 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3944 (($ $ $ (-531)) 51) (($ |#1| $ (-531)) 37)) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1404 (($ (-598 |#1|)) 29)) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) 19 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 40)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 16)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) 33) (($ $ (-1151 (-531))) NIL)) (-1551 (($ $ (-1151 (-531))) 50) (($ $ (-531)) 45)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) 41 (|has| $ (-6 -4274)))) (-2480 (($ $) 32)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-1818 (($ $ $) 42) (($ $ |#1|) 39)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) 38) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 17 (|has| $ (-6 -4273)))))
+(((-494 |#1| |#2|) (-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -1404 ($ (-598 |#1|))) (-15 -2912 ((-721) $)) (-15 -2916 ($ $ (-531))) (-15 -1814 ((-110) (-110))))) (-1138) (-531)) (T -494))
+((-1404 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-494 *3 *4)) (-14 *4 (-531)))) (-2912 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) (-14 *4 (-531)))) (-2916 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) (-14 *4 *2))) (-1814 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) (-14 *4 (-531)))))
+(-13 (-19 |#1|) (-264 |#1|) (-10 -8 (-15 -1404 ($ (-598 |#1|))) (-15 -2912 ((-721) $)) (-15 -2916 ($ $ (-531))) (-15 -1814 ((-110) (-110)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (((-544 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-544 |#1|) (-349)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-544 |#1|) (-349)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL (|has| (-544 |#1|) (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-544 |#1|) "failed") $) NIL)) (-2523 (((-544 |#1|) $) NIL)) (-2767 (($ (-1184 (-544 |#1|))) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-544 |#1|) (-349)))) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-544 |#1|) (-349)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL (|has| (-544 |#1|) (-349)))) (-1971 (((-110) $) NIL (|has| (-544 |#1|) (-349)))) (-3493 (($ $ (-721)) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349)))) (($ $) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349))))) (-2534 (((-110) $) NIL)) (-3617 (((-864) $) NIL (|has| (-544 |#1|) (-349))) (((-783 (-864)) $) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349))))) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| (-544 |#1|) (-349)))) (-3653 (((-110) $) NIL (|has| (-544 |#1|) (-349)))) (-1899 (((-544 |#1|) $) NIL) (($ $ (-864)) NIL (|has| (-544 |#1|) (-349)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-544 |#1|) (-349)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 (-544 |#1|)) $) NIL) (((-1098 $) $ (-864)) NIL (|has| (-544 |#1|) (-349)))) (-2211 (((-864) $) NIL (|has| (-544 |#1|) (-349)))) (-1832 (((-1098 (-544 |#1|)) $) NIL (|has| (-544 |#1|) (-349)))) (-1612 (((-1098 (-544 |#1|)) $) NIL (|has| (-544 |#1|) (-349))) (((-3 (-1098 (-544 |#1|)) "failed") $ $) NIL (|has| (-544 |#1|) (-349)))) (-3601 (($ $ (-1098 (-544 |#1|))) NIL (|has| (-544 |#1|) (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-544 |#1|) (-349)) CONST)) (-1889 (($ (-864)) NIL (|has| (-544 |#1|) (-349)))) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL (|has| (-544 |#1|) (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-544 |#1|) (-349)))) (-2552 (((-399 $) $) NIL)) (-3717 (((-783 (-864))) NIL) (((-864)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-721) $) NIL (|has| (-544 |#1|) (-349))) (((-3 (-721) "failed") $ $) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349))))) (-2190 (((-130)) NIL)) (-3352 (($ $) NIL (|has| (-544 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-544 |#1|) (-349)))) (-2012 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3608 (((-1098 (-544 |#1|))) NIL)) (-2498 (($) NIL (|has| (-544 |#1|) (-349)))) (-2389 (($) NIL (|has| (-544 |#1|) (-349)))) (-3348 (((-1184 (-544 |#1|)) $) NIL) (((-639 (-544 |#1|)) (-1184 $)) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-544 |#1|) (-349)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-544 |#1|)) NIL)) (-2750 (($ $) NIL (|has| (-544 |#1|) (-349))) (((-3 $ "failed") $) NIL (-1435 (|has| (-544 |#1|) (-138)) (|has| (-544 |#1|) (-349))))) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL) (((-1184 $) (-864)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $) NIL (|has| (-544 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-544 |#1|) (-349)))) (-4020 (($ $) NIL (|has| (-544 |#1|) (-349))) (($ $ (-721)) NIL (|has| (-544 |#1|) (-349)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL) (($ $ (-544 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-544 |#1|)) NIL) (($ (-544 |#1|) $) NIL)))
+(((-495 |#1| |#2|) (-310 (-544 |#1|)) (-864) (-864)) (T -495))
NIL
-(-310 (-543 |#1|))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) 35)) (-2626 (($ $ (-530) |#4|) NIL)) (-3959 (($ $ (-530) |#5|) NIL)) (-2350 (($) NIL T CONST)) (-1325 ((|#4| $ (-530)) NIL)) (-3592 ((|#1| $ (-530) (-530) |#1|) 34)) (-3532 ((|#1| $ (-530) (-530)) 32)) (-3779 (((-597 |#1|) $) NIL)) (-1796 (((-719) $) 28)) (-3538 (($ (-719) (-719) |#1|) 25)) (-1810 (((-719) $) 30)) (-4027 (((-110) $ (-719)) NIL)) (-3863 (((-530) $) 26)) (-3643 (((-530) $) 27)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) 29)) (-3909 (((-530) $) 31)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) 38 (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 14)) (-3958 (($) 16)) (-1902 ((|#1| $ (-530) (-530)) 33) ((|#1| $ (-530) (-530) |#1|) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 ((|#5| $ (-530)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-495 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1135) (-530) (-530) (-354 |#1|) (-354 |#1|)) (T -495))
+(-310 (-544 |#1|))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) 35)) (-2398 (($ $ (-531) |#4|) NIL)) (-3492 (($ $ (-531) |#5|) NIL)) (-4082 (($) NIL T CONST)) (-4011 ((|#4| $ (-531)) NIL)) (-2693 ((|#1| $ (-531) (-531) |#1|) 34)) (-2627 ((|#1| $ (-531) (-531)) 32)) (-2227 (((-598 |#1|) $) NIL)) (-1548 (((-721) $) 28)) (-3010 (($ (-721) (-721) |#1|) 25)) (-1557 (((-721) $) 30)) (-3280 (((-110) $ (-721)) NIL)) (-1271 (((-531) $) 26)) (-1665 (((-531) $) 27)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) 29)) (-2394 (((-531) $) 31)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) 38 (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 14)) (-3781 (($) 16)) (-1785 ((|#1| $ (-531) (-531)) 33) ((|#1| $ (-531) (-531) |#1|) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 ((|#5| $ (-531)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-496 |#1| |#2| |#3| |#4| |#5|) (-55 |#1| |#4| |#5|) (-1138) (-531) (-531) (-354 |#1|) (-354 |#1|)) (T -496))
NIL
(-55 |#1| |#4| |#5|)
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3254 ((|#1| $) NIL)) (-2133 (($ $) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 59 (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) 57 (|has| $ (-6 -4270)))) (-1307 (($ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) 23 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 21 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4270))) (($ $ "rest" $) 24 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3245 ((|#1| $) NIL)) (-2350 (($) NIL T CONST)) (-1337 (($ $) 28 (|has| $ (-6 -4270)))) (-4106 (($ $) 29)) (-3057 (($ $) 18) (($ $ (-719)) 32)) (-2287 (($ $) 55 (|has| |#1| (-1027)))) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2383 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-2027 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-3779 (((-597 |#1|) $) 27 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 31 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 58)) (-3683 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 53 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2939 (($ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) 51 (|has| |#1| (-1027)))) (-2407 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-2441 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) 13) (($ $ (-719)) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-4083 (((-110) $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 12)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) 17)) (-3958 (($) 16)) (-1902 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) NIL) ((|#1| $ (-530) |#1|) NIL)) (-2539 (((-530) $ $) NIL)) (-3715 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-4246 (((-110) $) 34)) (-3697 (($ $) NIL)) (-3301 (($ $) NIL (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) 36)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) 35)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 26)) (-1328 (($ $ $) 54) (($ $ |#1|) NIL)) (-3483 (($ $ $) NIL) (($ |#1| $) 10) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2366 (((-804) $) 46 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 48 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 9 (|has| $ (-6 -4269)))))
-(((-496 |#1| |#2|) (-617 |#1|) (-1135) (-530)) (T -496))
-NIL
-(-617 |#1|)
-((-1583 ((|#4| |#4|) 27)) (-2426 (((-719) |#4|) 32)) (-1791 (((-719) |#4|) 33)) (-2515 (((-597 |#3|) |#4|) 40 (|has| |#3| (-6 -4270)))) (-1991 (((-3 |#4| "failed") |#4|) 51)) (-3717 ((|#4| |#4|) 44)) (-2338 ((|#1| |#4|) 43)))
-(((-497 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1583 (|#4| |#4|)) (-15 -2426 ((-719) |#4|)) (-15 -1791 ((-719) |#4|)) (IF (|has| |#3| (-6 -4270)) (-15 -2515 ((-597 |#3|) |#4|)) |%noBranch|) (-15 -2338 (|#1| |#4|)) (-15 -3717 (|#4| |#4|)) (-15 -1991 ((-3 |#4| "failed") |#4|))) (-344) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -497))
-((-1991 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3717 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-2338 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344)) (-5 *1 (-497 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))) (-2515 (*1 *2 *3) (-12 (|has| *6 (-6 -4270)) (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1791 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(-10 -7 (-15 -1583 (|#4| |#4|)) (-15 -2426 ((-719) |#4|)) (-15 -1791 ((-719) |#4|)) (IF (|has| |#3| (-6 -4270)) (-15 -2515 ((-597 |#3|) |#4|)) |%noBranch|) (-15 -2338 (|#1| |#4|)) (-15 -3717 (|#4| |#4|)) (-15 -1991 ((-3 |#4| "failed") |#4|)))
-((-1583 ((|#8| |#4|) 20)) (-2515 (((-597 |#3|) |#4|) 29 (|has| |#7| (-6 -4270)))) (-1991 (((-3 |#8| "failed") |#4|) 23)))
-(((-498 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -1583 (|#8| |#4|)) (-15 -1991 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4270)) (-15 -2515 ((-597 |#3|) |#4|)) |%noBranch|)) (-522) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|) (-932 |#1|) (-354 |#5|) (-354 |#5|) (-635 |#5| |#6| |#7|)) (T -498))
-((-2515 (*1 *2 *3) (-12 (|has| *9 (-6 -4270)) (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)) (-5 *2 (-597 *6)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-635 *4 *5 *6)) (-4 *10 (-635 *7 *8 *9)))) (-1991 (*1 *2 *3) (|partial| -12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))) (-1583 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9)) (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))))
-(-10 -7 (-15 -1583 (|#8| |#4|)) (-15 -1991 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4270)) (-15 -2515 ((-597 |#3|) |#4|)) |%noBranch|))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719) (-719)) NIL)) (-3844 (($ $ $) NIL)) (-4114 (($ (-561 |#1| |#3|)) NIL) (($ $) NIL)) (-3053 (((-110) $) NIL)) (-1835 (($ $ (-530) (-530)) 12)) (-2277 (($ $ (-530) (-530)) NIL)) (-2744 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3904 (($ $) NIL)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3302 (($ $ (-530) (-530) $) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2626 (($ $ (-530) (-561 |#1| |#3|)) NIL)) (-3959 (($ $ (-530) (-561 |#1| |#2|)) NIL)) (-1570 (($ (-719) |#1|) NIL)) (-2350 (($) NIL T CONST)) (-1583 (($ $) 21 (|has| |#1| (-289)))) (-1325 (((-561 |#1| |#3|) $ (-530)) NIL)) (-2426 (((-719) $) 24 (|has| |#1| (-522)))) (-3592 ((|#1| $ (-530) (-530) |#1|) NIL)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1791 (((-719) $) 26 (|has| |#1| (-522)))) (-2515 (((-597 (-561 |#1| |#2|)) $) 29 (|has| |#1| (-522)))) (-1796 (((-719) $) NIL)) (-3538 (($ (-719) (-719) |#1|) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#1| $) 19 (|has| |#1| (-6 (-4271 "*"))))) (-3863 (((-530) $) 10)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) 11)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#1|))) NIL)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2654 (((-597 (-597 |#1|)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1991 (((-3 $ "failed") $) 33 (|has| |#1| (-344)))) (-1279 (($ $ $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2128 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL)) (-1362 (((-110) $) NIL)) (-2338 ((|#1| $) 17 (|has| |#1| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3350 (((-561 |#1| |#2|) $ (-530)) NIL)) (-2366 (($ (-561 |#1| |#2|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-561 |#1| |#2|) $ (-561 |#1| |#2|)) NIL) (((-561 |#1| |#3|) (-561 |#1| |#3|) $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-499 |#1| |#2| |#3|) (-635 |#1| (-561 |#1| |#3|) (-561 |#1| |#2|)) (-984) (-530) (-530)) (T -499))
-NIL
-(-635 |#1| (-561 |#1| |#3|) (-561 |#1| |#2|))
-((-1643 (((-1095 |#1|) (-719)) 76)) (-1367 (((-1181 |#1|) (-1181 |#1|) (-862)) 69)) (-3329 (((-1186) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) |#1|) 84)) (-2884 (((-1181 |#1|) (-1181 |#1|) (-719)) 36)) (-1364 (((-1181 |#1|) (-862)) 71)) (-3338 (((-1181 |#1|) (-1181 |#1|) (-530)) 24)) (-3109 (((-1095 |#1|) (-1181 |#1|)) 77)) (-2931 (((-1181 |#1|) (-862)) 95)) (-1672 (((-110) (-1181 |#1|)) 80)) (-2376 (((-1181 |#1|) (-1181 |#1|) (-862)) 62)) (-1359 (((-1095 |#1|) (-1181 |#1|)) 89)) (-1905 (((-862) (-1181 |#1|)) 59)) (-2483 (((-1181 |#1|) (-1181 |#1|)) 30)) (-1986 (((-1181 |#1|) (-862) (-862)) 97)) (-2370 (((-1181 |#1|) (-1181 |#1|) (-1046) (-1046)) 23)) (-3222 (((-1181 |#1|) (-1181 |#1|) (-719) (-1046)) 37)) (-3220 (((-1181 (-1181 |#1|)) (-862)) 94)) (-2364 (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 81)) (** (((-1181 |#1|) (-1181 |#1|) (-530)) 45)) (* (((-1181 |#1|) (-1181 |#1|) (-1181 |#1|)) 25)))
-(((-500 |#1|) (-10 -7 (-15 -3329 ((-1186) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) |#1|)) (-15 -1364 ((-1181 |#1|) (-862))) (-15 -1986 ((-1181 |#1|) (-862) (-862))) (-15 -3109 ((-1095 |#1|) (-1181 |#1|))) (-15 -1643 ((-1095 |#1|) (-719))) (-15 -3222 ((-1181 |#1|) (-1181 |#1|) (-719) (-1046))) (-15 -2884 ((-1181 |#1|) (-1181 |#1|) (-719))) (-15 -2370 ((-1181 |#1|) (-1181 |#1|) (-1046) (-1046))) (-15 -3338 ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 ** ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 * ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2364 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2376 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -1367 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -2483 ((-1181 |#1|) (-1181 |#1|))) (-15 -1905 ((-862) (-1181 |#1|))) (-15 -1672 ((-110) (-1181 |#1|))) (-15 -3220 ((-1181 (-1181 |#1|)) (-862))) (-15 -2931 ((-1181 |#1|) (-862))) (-15 -1359 ((-1095 |#1|) (-1181 |#1|)))) (-330)) (T -500))
-((-1359 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)))) (-2931 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3220 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-1672 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-500 *4)))) (-1905 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-862)) (-5 *1 (-500 *4)))) (-2483 (*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (-1367 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2376 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2364 (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-3338 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2370 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1046)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-2884 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-500 *4)))) (-3222 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1181 *5)) (-5 *3 (-719)) (-5 *4 (-1046)) (-4 *5 (-330)) (-5 *1 (-500 *5)))) (-1643 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4)))) (-1986 (*1 *2 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-1364 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4)) (-4 *4 (-330)))) (-3329 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))) (-4 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-500 *4)))))
-(-10 -7 (-15 -3329 ((-1186) (-1181 (-597 (-2 (|:| -3417 |#1|) (|:| -1986 (-1046))))) |#1|)) (-15 -1364 ((-1181 |#1|) (-862))) (-15 -1986 ((-1181 |#1|) (-862) (-862))) (-15 -3109 ((-1095 |#1|) (-1181 |#1|))) (-15 -1643 ((-1095 |#1|) (-719))) (-15 -3222 ((-1181 |#1|) (-1181 |#1|) (-719) (-1046))) (-15 -2884 ((-1181 |#1|) (-1181 |#1|) (-719))) (-15 -2370 ((-1181 |#1|) (-1181 |#1|) (-1046) (-1046))) (-15 -3338 ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 ** ((-1181 |#1|) (-1181 |#1|) (-530))) (-15 * ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2364 ((-1181 |#1|) (-1181 |#1|) (-1181 |#1|))) (-15 -2376 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -1367 ((-1181 |#1|) (-1181 |#1|) (-862))) (-15 -2483 ((-1181 |#1|) (-1181 |#1|))) (-15 -1905 ((-862) (-1181 |#1|))) (-15 -1672 ((-110) (-1181 |#1|))) (-15 -3220 ((-1181 (-1181 |#1|)) (-862))) (-15 -2931 ((-1181 |#1|) (-862))) (-15 -1359 ((-1095 |#1|) (-1181 |#1|))))
-((-2233 (((-1 |#1| |#1|) |#1|) 11)) (-4047 (((-1 |#1| |#1|)) 10)))
-(((-501 |#1|) (-10 -7 (-15 -4047 ((-1 |#1| |#1|))) (-15 -2233 ((-1 |#1| |#1|) |#1|))) (-13 (-675) (-25))) (T -501))
-((-2233 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))) (-4047 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
-(-10 -7 (-15 -4047 ((-1 |#1| |#1|))) (-15 -2233 ((-1 |#1| |#1|) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3418 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2725 (($ (-719) |#1|) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 (-719) (-719)) $) NIL)) (-4115 ((|#1| $) NIL)) (-2533 (((-719) $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 20)) (-3080 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL)))
-(((-502 |#1|) (-13 (-741) (-486 (-719) |#1|)) (-795)) (T -502))
-NIL
-(-13 (-741) (-486 (-719) |#1|))
-((-1386 (((-597 |#2|) (-1095 |#1|) |#3|) 83)) (-3112 (((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|))) 100)) (-2866 (((-1095 |#1|) (-637 |#1|)) 95)))
-(((-503 |#1| |#2| |#3|) (-10 -7 (-15 -2866 ((-1095 |#1|) (-637 |#1|))) (-15 -1386 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -3112 ((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|))))) (-344) (-344) (-13 (-344) (-793))) (T -503))
-((-3112 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *6)) (-5 *5 (-1 (-399 (-1095 *6)) (-1095 *6))) (-4 *6 (-344)) (-5 *2 (-597 (-2 (|:| |outval| *7) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 *7)))))) (-5 *1 (-503 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-793))))) (-1386 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *5)) (-4 *5 (-344)) (-5 *2 (-597 *6)) (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))) (-2866 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *2 (-1095 *4)) (-5 *1 (-503 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-793))))))
-(-10 -7 (-15 -2866 ((-1095 |#1|) (-637 |#1|))) (-15 -1386 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -3112 ((-597 (-2 (|:| |outval| |#2|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#2|))))) (-637 |#1|) |#3| (-1 (-399 (-1095 |#1|)) (-1095 |#1|)))))
-((-1477 (((-788 (-530))) 12)) (-1490 (((-788 (-530))) 14)) (-1960 (((-781 (-530))) 9)))
-(((-504) (-10 -7 (-15 -1960 ((-781 (-530)))) (-15 -1477 ((-788 (-530)))) (-15 -1490 ((-788 (-530)))))) (T -504))
-((-1490 (*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504)))) (-1477 (*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504)))) (-1960 (*1 *2) (-12 (-5 *2 (-781 (-530))) (-5 *1 (-504)))))
-(-10 -7 (-15 -1960 ((-781 (-530)))) (-15 -1477 ((-788 (-530)))) (-15 -1490 ((-788 (-530)))))
-((-3473 (((-506) (-1099)) 15)) (-3275 ((|#1| (-506)) 20)))
-(((-505 |#1|) (-10 -7 (-15 -3473 ((-506) (-1099))) (-15 -3275 (|#1| (-506)))) (-1135)) (T -505))
-((-3275 (*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *1 (-505 *2)) (-4 *2 (-1135)))) (-3473 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-506)) (-5 *1 (-505 *4)) (-4 *4 (-1135)))))
-(-10 -7 (-15 -3473 ((-506) (-1099))) (-15 -3275 (|#1| (-506))))
-((-2352 (((-110) $ $) NIL)) (-1865 (((-1082) $) 48)) (-4201 (((-110) $) 43)) (-3747 (((-1099) $) 44)) (-2872 (((-110) $) 41)) (-3166 (((-1082) $) 42)) (-2709 (((-110) $) NIL)) (-3815 (((-110) $) NIL)) (-1529 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-4166 (($ $ (-597 (-1099))) 20)) (-3275 (((-51) $) 22)) (-1298 (((-110) $) NIL)) (-3771 (((-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-2047 (($ $ (-597 (-1099)) (-1099)) 60)) (-2826 (((-110) $) NIL)) (-3018 (((-208) $) NIL)) (-4068 (($ $) 38)) (-3964 (((-804) $) NIL)) (-2776 (((-110) $ $) NIL)) (-1902 (($ $ (-530)) NIL) (($ $ (-597 (-530))) NIL)) (-2681 (((-597 $) $) 28)) (-2511 (((-1099) (-597 $)) 49)) (-3260 (($ (-597 $)) 53) (($ (-1082)) NIL) (($ (-1099)) 18) (($ (-530)) 8) (($ (-208)) 25) (($ (-804)) NIL) (((-1031) $) 11) (($ (-1031)) 12)) (-2229 (((-1099) (-1099) (-597 $)) 52)) (-2366 (((-804) $) 46)) (-2960 (($ $) 51)) (-2950 (($ $) 50)) (-1611 (($ $ (-597 $)) 57)) (-2181 (((-110) $) 27)) (-3080 (($) 9 T CONST)) (-3093 (($) 10 T CONST)) (-2248 (((-110) $ $) 61)) (-2364 (($ $ $) 66)) (-2339 (($ $ $) 62)) (** (($ $ (-719)) 65) (($ $ (-530)) 64)) (* (($ $ $) 63)) (-2267 (((-530) $) NIL)))
-(((-506) (-13 (-1030 (-1082) (-1099) (-530) (-208) (-804)) (-572 (-1031)) (-10 -8 (-15 -3275 ((-51) $)) (-15 -3260 ($ (-1031))) (-15 -1611 ($ $ (-597 $))) (-15 -2047 ($ $ (-597 (-1099)) (-1099))) (-15 -4166 ($ $ (-597 (-1099)))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ (-530))) (-15 0 ($) -2708) (-15 1 ($) -2708) (-15 -4068 ($ $)) (-15 -1865 ((-1082) $)) (-15 -2511 ((-1099) (-597 $))) (-15 -2229 ((-1099) (-1099) (-597 $)))))) (T -506))
-((-3275 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-506)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-506)))) (-1611 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-506))) (-5 *1 (-506)))) (-2047 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1099)) (-5 *1 (-506)))) (-4166 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-506)))) (-2339 (*1 *1 *1 *1) (-5 *1 (-506))) (* (*1 *1 *1 *1) (-5 *1 (-506))) (-2364 (*1 *1 *1 *1) (-5 *1 (-506))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-506)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-506)))) (-3080 (*1 *1) (-5 *1 (-506))) (-3093 (*1 *1) (-5 *1 (-506))) (-4068 (*1 *1 *1) (-5 *1 (-506))) (-1865 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-506)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-597 (-506))) (-5 *2 (-1099)) (-5 *1 (-506)))) (-2229 (*1 *2 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-506))) (-5 *1 (-506)))))
-(-13 (-1030 (-1082) (-1099) (-530) (-208) (-804)) (-572 (-1031)) (-10 -8 (-15 -3275 ((-51) $)) (-15 -3260 ($ (-1031))) (-15 -1611 ($ $ (-597 $))) (-15 -2047 ($ $ (-597 (-1099)) (-1099))) (-15 -4166 ($ $ (-597 (-1099)))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ (-530))) (-15 (-3080) ($) -2708) (-15 (-3093) ($) -2708) (-15 -4068 ($ $)) (-15 -1865 ((-1082) $)) (-15 -2511 ((-1099) (-597 $))) (-15 -2229 ((-1099) (-1099) (-597 $)))))
-((-1976 ((|#2| |#2|) 17)) (-1858 ((|#2| |#2|) 13)) (-1740 ((|#2| |#2| (-530) (-530)) 20)) (-3348 ((|#2| |#2|) 15)))
-(((-507 |#1| |#2|) (-10 -7 (-15 -1858 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -1740 (|#2| |#2| (-530) (-530)))) (-13 (-522) (-140)) (-1172 |#1|)) (T -507))
-((-1740 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-507 *4 *2)) (-4 *2 (-1172 *4)))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2)) (-4 *2 (-1172 *3)))))
-(-10 -7 (-15 -1858 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -1740 (|#2| |#2| (-530) (-530))))
-((-3442 (((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099))) 32)) (-2112 (((-597 |#2|) (-893 |#1|) |#3|) 53) (((-597 |#2|) (-1095 |#1|) |#3|) 52)) (-1887 (((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|) 91)))
-(((-508 |#1| |#2| |#3|) (-10 -7 (-15 -2112 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -2112 ((-597 |#2|) (-893 |#1|) |#3|)) (-15 -1887 ((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|)) (-15 -3442 ((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099))))) (-432) (-344) (-13 (-344) (-793))) (T -508))
-((-3442 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1099))) (-4 *6 (-344)) (-5 *2 (-597 (-276 (-893 *6)))) (-5 *1 (-508 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-13 (-344) (-793))))) (-1887 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-597 (-597 *7))) (-5 *1 (-508 *6 *7 *5)) (-4 *7 (-344)) (-4 *5 (-13 (-344) (-793))))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6)) (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))) (-2112 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6)) (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -2112 ((-597 |#2|) (-1095 |#1|) |#3|)) (-15 -2112 ((-597 |#2|) (-893 |#1|) |#3|)) (-15 -1887 ((-597 (-597 |#2|)) (-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)) |#3|)) (-15 -3442 ((-597 (-276 (-893 |#2|))) (-597 |#2|) (-597 (-1099)))))
-((-1920 ((|#2| |#2| |#1|) 17)) (-1939 ((|#2| (-597 |#2|)) 27)) (-1557 ((|#2| (-597 |#2|)) 46)))
-(((-509 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1939 (|#2| (-597 |#2|))) (-15 -1557 (|#2| (-597 |#2|))) (-15 -1920 (|#2| |#2| |#1|))) (-289) (-1157 |#1|) |#1| (-1 |#1| |#1| (-719))) (T -509))
-((-1920 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-719))) (-5 *1 (-509 *3 *2 *4 *5)) (-4 *2 (-1157 *3)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
-(-10 -7 (-15 -1939 (|#2| (-597 |#2|))) (-15 -1557 (|#2| (-597 |#2|))) (-15 -1920 (|#2| |#2| |#1|)))
-((-2611 (((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|))) 80) (((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|))) 169)))
-(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|))))) (-795) (-741) (-13 (-289) (-140)) (-890 |#3| |#2| |#1|)) (T -510))
-((-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1095 *7)) (-1095 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-890 *7 *6 *5)) (-5 *2 (-399 (-1095 *8))) (-5 *1 (-510 *5 *6 *7 *8)) (-5 *3 (-1095 *8)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1095 *7)) (-1095 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *2 (-399 *3)) (-5 *1 (-510 *5 *6 *7 *3)) (-4 *3 (-890 *7 *6 *5)))))
-(-10 -7 (-15 -2611 ((-399 |#4|) |#4| (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|) (-1 (-399 (-1095 |#3|)) (-1095 |#3|)))))
-((-1976 ((|#4| |#4|) 74)) (-1858 ((|#4| |#4|) 70)) (-1740 ((|#4| |#4| (-530) (-530)) 76)) (-3348 ((|#4| |#4|) 72)))
-(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1858 (|#4| |#4|)) (-15 -3348 (|#4| |#4|)) (-15 -1976 (|#4| |#4|)) (-15 -1740 (|#4| |#4| (-530) (-530)))) (-13 (-344) (-349) (-572 (-530))) (-1157 |#1|) (-673 |#1| |#2|) (-1172 |#3|)) (T -511))
-((-1740 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-4 *5 (-1157 *4)) (-4 *6 (-673 *4 *5)) (-5 *1 (-511 *4 *5 *6 *2)) (-4 *2 (-1172 *6)))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3)) (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5)))))
-(-10 -7 (-15 -1858 (|#4| |#4|)) (-15 -3348 (|#4| |#4|)) (-15 -1976 (|#4| |#4|)) (-15 -1740 (|#4| |#4| (-530) (-530))))
-((-1976 ((|#2| |#2|) 27)) (-1858 ((|#2| |#2|) 23)) (-1740 ((|#2| |#2| (-530) (-530)) 29)) (-3348 ((|#2| |#2|) 25)))
-(((-512 |#1| |#2|) (-10 -7 (-15 -1858 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -1740 (|#2| |#2| (-530) (-530)))) (-13 (-344) (-349) (-572 (-530))) (-1172 |#1|)) (T -512))
-((-1740 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3))) (-5 *1 (-512 *4 *2)) (-4 *2 (-1172 *4)))) (-1976 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))) (-3348 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))) (-1858 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2)) (-4 *2 (-1172 *3)))))
-(-10 -7 (-15 -1858 (|#2| |#2|)) (-15 -3348 (|#2| |#2|)) (-15 -1976 (|#2| |#2|)) (-15 -1740 (|#2| |#2| (-530) (-530))))
-((-1343 (((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|)) 14) (((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|)) 13) (((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|)) 26)))
-(((-513 |#1| |#2|) (-10 -7 (-15 -1343 ((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -1343 ((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -1343 ((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|)))) (-984) (-1157 |#1|)) (T -513))
-((-1343 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))) (-1343 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))) (-1343 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-530) "failed") *5)) (-4 *5 (-984)) (-5 *2 (-530)) (-5 *1 (-513 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -1343 ((-3 (-530) "failed") |#2| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -1343 ((-3 (-530) "failed") |#2| |#1| (-530) (-1 (-3 (-530) "failed") |#1|))) (-15 -1343 ((-3 (-530) "failed") |#2| |#1| (-1 (-3 (-530) "failed") |#1|))))
-((-2660 (($ $ $) 79)) (-3272 (((-399 $) $) 47)) (-3139 (((-3 (-530) "failed") $) 59)) (-2585 (((-530) $) 37)) (-2180 (((-3 (-388 (-530)) "failed") $) 74)) (-3016 (((-110) $) 24)) (-3370 (((-388 (-530)) $) 72)) (-3295 (((-110) $) 50)) (-3547 (($ $ $ $) 86)) (-2514 (((-110) $) 16)) (-2937 (($ $ $) 57)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 69)) (-2972 (((-3 $ "failed") $) 64)) (-3103 (($ $) 23)) (-3972 (($ $ $) 84)) (-3657 (($) 60)) (-1303 (($ $) 53)) (-2611 (((-399 $) $) 45)) (-1403 (((-110) $) 14)) (-2356 (((-719) $) 28)) (-3289 (($ $ (-719)) NIL) (($ $) 10)) (-2579 (($ $) 17)) (-3260 (((-530) $) NIL) (((-506) $) 36) (((-833 (-530)) $) 40) (((-360) $) 31) (((-208) $) 33)) (-3300 (((-719)) 8)) (-3918 (((-110) $ $) 20)) (-2947 (($ $ $) 55)))
-(((-514 |#1|) (-10 -8 (-15 -3972 (|#1| |#1| |#1|)) (-15 -3547 (|#1| |#1| |#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -2579 (|#1| |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -2660 (|#1| |#1| |#1|)) (-15 -3918 ((-110) |#1| |#1|)) (-15 -1403 ((-110) |#1|)) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2947 (|#1| |#1| |#1|)) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -3260 ((-530) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -2514 ((-110) |#1|)) (-15 -2356 ((-719) |#1|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3295 ((-110) |#1|)) (-15 -3300 ((-719)))) (-515)) (T -514))
-((-3300 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-514 *3)) (-4 *3 (-515)))))
-(-10 -8 (-15 -3972 (|#1| |#1| |#1|)) (-15 -3547 (|#1| |#1| |#1| |#1|)) (-15 -3103 (|#1| |#1|)) (-15 -2579 (|#1| |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -2660 (|#1| |#1| |#1|)) (-15 -3918 ((-110) |#1| |#1|)) (-15 -1403 ((-110) |#1|)) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -1303 (|#1| |#1|)) (-15 -2947 (|#1| |#1| |#1|)) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -3260 ((-530) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -2514 ((-110) |#1|)) (-15 -2356 ((-719) |#1|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3295 ((-110) |#1|)) (-15 -3300 ((-719))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2660 (($ $ $) 83)) (-1889 (((-3 $ "failed") $ $) 19)) (-1531 (($ $ $ $) 71)) (-3544 (($ $) 49)) (-3272 (((-399 $) $) 50)) (-1426 (((-110) $ $) 123)) (-1867 (((-530) $) 112)) (-4207 (($ $ $) 86)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 104)) (-2585 (((-530) $) 103)) (-3590 (($ $ $) 127)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 102) (((-637 (-530)) (-637 $)) 101)) (-2707 (((-3 $ "failed") $) 32)) (-2180 (((-3 (-388 (-530)) "failed") $) 80)) (-3016 (((-110) $) 82)) (-3370 (((-388 (-530)) $) 81)) (-1364 (($) 79) (($ $) 78)) (-3571 (($ $ $) 126)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 121)) (-3295 (((-110) $) 51)) (-3547 (($ $ $ $) 69)) (-2411 (($ $ $) 84)) (-2514 (((-110) $) 114)) (-2937 (($ $ $) 95)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 98)) (-2731 (((-110) $) 30)) (-3457 (((-110) $) 90)) (-2972 (((-3 $ "failed") $) 92)) (-2166 (((-110) $) 113)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 130)) (-1999 (($ $ $ $) 70)) (-2508 (($ $ $) 115)) (-1817 (($ $ $) 116)) (-3103 (($ $) 73)) (-4109 (($ $) 87)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-3972 (($ $ $) 68)) (-3657 (($) 91 T CONST)) (-3820 (($ $) 75)) (-2624 (((-1046) $) 10) (($ $) 77)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-1303 (($ $) 96)) (-2611 (((-399 $) $) 48)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 129) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 128)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 122)) (-1403 (((-110) $) 89)) (-2356 (((-719) $) 124)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 125)) (-3289 (($ $ (-719)) 109) (($ $) 107)) (-1725 (($ $) 74)) (-2579 (($ $) 76)) (-3260 (((-530) $) 106) (((-506) $) 100) (((-833 (-530)) $) 99) (((-360) $) 94) (((-208) $) 93)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-530)) 105)) (-3300 (((-719)) 28)) (-3918 (((-110) $ $) 85)) (-2947 (($ $ $) 97)) (-1510 (($) 88)) (-3944 (((-110) $ $) 37)) (-3998 (($ $ $ $) 72)) (-3934 (($ $) 111)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-719)) 110) (($ $) 108)) (-2306 (((-110) $ $) 118)) (-2284 (((-110) $ $) 119)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 117)) (-2272 (((-110) $ $) 120)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-515) (-133)) (T -515))
-((-3457 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-1403 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-1510 (*1 *1) (-4 *1 (-515))) (-4109 (*1 *1 *1) (-4 *1 (-515))) (-4207 (*1 *1 *1 *1) (-4 *1 (-515))) (-3918 (*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-2411 (*1 *1 *1 *1) (-4 *1 (-515))) (-2660 (*1 *1 *1 *1) (-4 *1 (-515))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-388 (-530))))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-515)) (-5 *2 (-388 (-530))))) (-1364 (*1 *1) (-4 *1 (-515))) (-1364 (*1 *1 *1) (-4 *1 (-515))) (-2624 (*1 *1 *1) (-4 *1 (-515))) (-2579 (*1 *1 *1) (-4 *1 (-515))) (-3820 (*1 *1 *1) (-4 *1 (-515))) (-1725 (*1 *1 *1) (-4 *1 (-515))) (-3103 (*1 *1 *1) (-4 *1 (-515))) (-3998 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-1531 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-1999 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-3547 (*1 *1 *1 *1 *1) (-4 *1 (-515))) (-3972 (*1 *1 *1 *1) (-4 *1 (-515))))
-(-13 (-1139) (-289) (-768) (-216) (-572 (-530)) (-975 (-530)) (-593 (-530)) (-572 (-506)) (-572 (-833 (-530))) (-827 (-530)) (-136) (-960) (-140) (-1075) (-10 -8 (-15 -3457 ((-110) $)) (-15 -1403 ((-110) $)) (-6 -4268) (-15 -1510 ($)) (-15 -4109 ($ $)) (-15 -4207 ($ $ $)) (-15 -3918 ((-110) $ $)) (-15 -2411 ($ $ $)) (-15 -2660 ($ $ $)) (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $)) (-15 -1364 ($)) (-15 -1364 ($ $)) (-15 -2624 ($ $)) (-15 -2579 ($ $)) (-15 -3820 ($ $)) (-15 -1725 ($ $)) (-15 -3103 ($ $)) (-15 -3998 ($ $ $ $)) (-15 -1531 ($ $ $ $)) (-15 -1999 ($ $ $ $)) (-15 -3547 ($ $ $ $)) (-15 -3972 ($ $ $)) (-6 -4267)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-136) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-360)) . T) ((-572 (-506)) . T) ((-572 (-530)) . T) ((-572 (-833 (-530))) . T) ((-216) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-593 (-530)) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-768) . T) ((-793) . T) ((-795) . T) ((-827 (-530)) . T) ((-861) . T) ((-960) . T) ((-975 (-530)) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) . T) ((-1139) . T))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) NIL)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-516 |#1| |#2| |#3|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))) (T -516))
-NIL
-(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))
-((-2674 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|))) 51)))
-(((-517 |#1| |#2|) (-10 -7 (-15 -2674 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|))))) (-13 (-795) (-522)) (-13 (-27) (-411 |#1|))) (T -517))
-((-2674 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-1 (-1095 *3) (-1095 *3))) (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-795) (-522))) (-5 *2 (-547 *3)) (-5 *1 (-517 *6 *3)))))
-(-10 -7 (-15 -2674 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-1 (-1095 |#2|) (-1095 |#2|)))))
-((-3372 (((-547 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-1953 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2252 (((-547 |#5|) |#5| (-1 |#3| |#3|)) 202)))
-(((-518 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2252 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3372 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1953 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-795) (-522) (-975 (-530))) (-13 (-27) (-411 |#1|)) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -518))
-((-1953 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-27) (-411 *4))) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-4 *7 (-1157 (-388 *6))) (-5 *1 (-518 *4 *5 *6 *7 *2)) (-4 *2 (-323 *5 *6 *7)))) (-3372 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7))) (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))) (-2252 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7))) (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))))
-(-10 -7 (-15 -2252 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3372 ((-547 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1953 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
-((-1786 (((-110) (-530) (-530)) 10)) (-3636 (((-530) (-530)) 7)) (-3440 (((-530) (-530) (-530)) 8)))
-(((-519) (-10 -7 (-15 -3636 ((-530) (-530))) (-15 -3440 ((-530) (-530) (-530))) (-15 -1786 ((-110) (-530) (-530))))) (T -519))
-((-1786 (*1 *2 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-519)))) (-3440 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))) (-3636 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
-(-10 -7 (-15 -3636 ((-530) (-530))) (-15 -3440 ((-530) (-530) (-530))) (-15 -1786 ((-110) (-530) (-530))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1447 ((|#1| $) 59)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2386 (($ $) 89)) (-2244 (($ $) 72)) (-3418 ((|#1| $) 60)) (-1889 (((-3 $ "failed") $ $) 19)) (-2625 (($ $) 71)) (-2360 (($ $) 88)) (-2219 (($ $) 73)) (-2409 (($ $) 87)) (-2269 (($ $) 74)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 67)) (-2585 (((-530) $) 66)) (-2707 (((-3 $ "failed") $) 32)) (-3184 (($ |#1| |#1|) 64)) (-2514 (((-110) $) 58)) (-1948 (($) 99)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 70)) (-2166 (((-110) $) 57)) (-2508 (($ $ $) 105)) (-1817 (($ $ $) 104)) (-2168 (($ $) 96)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2910 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-388 (-530))) 62)) (-1726 ((|#1| $) 61)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-3551 (((-3 $ "failed") $ $) 40)) (-2853 (($ $) 97)) (-2421 (($ $) 86)) (-2281 (($ $) 75)) (-2398 (($ $) 85)) (-2254 (($ $) 76)) (-2373 (($ $) 84)) (-2231 (($ $) 77)) (-4000 (((-110) $ |#1|) 56)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-530)) 68)) (-3300 (((-719)) 28)) (-2459 (($ $) 95)) (-2314 (($ $) 83)) (-3944 (((-110) $ $) 37)) (-2434 (($ $) 94)) (-2293 (($ $) 82)) (-2485 (($ $) 93)) (-2334 (($ $) 81)) (-3632 (($ $) 92)) (-2347 (($ $) 80)) (-2472 (($ $) 91)) (-2324 (($ $) 79)) (-2446 (($ $) 90)) (-2304 (($ $) 78)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 102)) (-2284 (((-110) $ $) 101)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 103)) (-2272 (((-110) $ $) 100)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ $) 98) (($ $ (-388 (-530))) 69)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-520 |#1|) (-133) (-13 (-385) (-1121))) (T -520))
-((-2910 (*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-3184 (*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2910 (*1 *1 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2910 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))))) (-1726 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-3418 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-1447 (*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))) (-2514 (*1 *2 *1) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))) (-4000 (*1 *2 *1 *3) (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))))
-(-13 (-432) (-795) (-1121) (-941) (-975 (-530)) (-10 -8 (-6 -4136) (-15 -2910 ($ |t#1| |t#1|)) (-15 -3184 ($ |t#1| |t#1|)) (-15 -2910 ($ |t#1|)) (-15 -2910 ($ (-388 (-530)))) (-15 -1726 (|t#1| $)) (-15 -3418 (|t#1| $)) (-15 -1447 (|t#1| $)) (-15 -2514 ((-110) $)) (-15 -2166 ((-110) $)) (-15 -4000 ((-110) $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-266) . T) ((-272) . T) ((-432) . T) ((-471) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-795) . T) ((-941) . T) ((-975 (-530)) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) . T) ((-1124) . T))
-((-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 9)) (-3446 (($ $) 11)) (-1276 (((-110) $) 18)) (-2707 (((-3 $ "failed") $) 16)) (-3944 (((-110) $ $) 20)))
-(((-521 |#1|) (-10 -8 (-15 -1276 ((-110) |#1|)) (-15 -3944 ((-110) |#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|))) (-522)) (T -521))
-NIL
-(-10 -8 (-15 -1276 ((-110) |#1|)) (-15 -3944 ((-110) |#1| |#1|)) (-15 -3446 (|#1| |#1|)) (-15 -2141 ((-2 (|:| -2291 |#1|) (|:| -4256 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-522) (-133)) (T -522))
-((-3551 (*1 *1 *1 *1) (|partial| -4 *1 (-522))) (-2141 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2291 *1) (|:| -4256 *1) (|:| |associate| *1))) (-4 *1 (-522)))) (-3446 (*1 *1 *1) (-4 *1 (-522))) (-3944 (*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))) (-1276 (*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
-(-13 (-162) (-37 $) (-272) (-10 -8 (-15 -3551 ((-3 $ "failed") $ $)) (-15 -2141 ((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $)) (-15 -3446 ($ $)) (-15 -3944 ((-110) $ $)) (-15 -1276 ((-110) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3503 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|)) 37)) (-3214 (((-547 |#2|) |#2| (-1099)) 62)) (-2076 (((-3 |#2| "failed") |#2| (-1099)) 152)) (-1877 (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|))) 155)) (-3819 (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|) 40)))
-(((-523 |#1| |#2|) (-10 -7 (-15 -3819 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|)) (-15 -3503 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|))) (-15 -2076 ((-3 |#2| "failed") |#2| (-1099))) (-15 -3214 ((-547 |#2|) |#2| (-1099))) (-15 -1877 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|))))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -523))
-((-1877 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1099)) (-5 *6 (-597 (-570 *3))) (-5 *5 (-570 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *7))) (-4 *7 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-523 *7 *3)))) (-3214 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-523 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2076 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-523 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3503 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-523 *6 *3)))) (-3819 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-523 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(-10 -7 (-15 -3819 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) |#2|)) (-15 -3503 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1099) (-597 |#2|))) (-15 -2076 ((-3 |#2| "failed") |#2| (-1099))) (-15 -3214 ((-547 |#2|) |#2| (-1099))) (-15 -1877 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1099) (-570 |#2|) (-597 (-570 |#2|)))))
-((-3272 (((-399 |#1|) |#1|) 18)) (-2611 (((-399 |#1|) |#1|) 33)) (-3449 (((-3 |#1| "failed") |#1|) 44)) (-1748 (((-399 |#1|) |#1|) 51)))
-(((-524 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -1748 ((-399 |#1|) |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1|))) (-515)) (T -524))
-((-3449 (*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-515)))) (-1748 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))) (-3272 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))))
-(-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -1748 ((-399 |#1|) |#1|)) (-15 -3449 ((-3 |#1| "failed") |#1|)))
-((-2137 (($) 9)) (-1365 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 35)) (-3282 (((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 32)) (-2441 (($ (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2825 (($ (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1874 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-2261 (((-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1480 (((-1186)) 12)))
-(((-525) (-10 -8 (-15 -2137 ($)) (-15 -1480 ((-1186))) (-15 -3282 ((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2825 ($ (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2441 ($ (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1365 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2261 ((-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1874 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -525))
-((-1874 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-525)))) (-2261 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-525)))) (-1365 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-525)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-525)))) (-2825 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-525)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-525)))) (-1480 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-525)))) (-2137 (*1 *1) (-5 *1 (-525))))
-(-10 -8 (-15 -2137 ($)) (-15 -1480 ((-1186))) (-15 -3282 ((-597 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2825 ($ (-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -2441 ($ (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1365 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2261 ((-597 (-2 (|:| -3078 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1874 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1080 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1300 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
-((-2577 (((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|)) 32)) (-1246 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|)) 110)) (-1558 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 80) (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|)) 52)) (-3536 (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|))) 87) (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|)) 109)) (-4079 (((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|)) 111)) (-2279 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))) 128 (|has| |#3| (-607 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|)) 127 (|has| |#3| (-607 |#2|)))) (-2735 ((|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|) 50)) (-2123 (((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|)) 31)))
-(((-526 |#1| |#2| |#3|) (-10 -7 (-15 -1558 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -1558 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3536 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|))) (-15 -3536 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -1246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|))) (-15 -1246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -2577 ((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|))) (-15 -2735 (|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|)) (-15 -2123 ((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|))) (IF (|has| |#3| (-607 |#2|)) (PROGN (-15 -2279 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -2279 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))) (-13 (-411 |#1|) (-27) (-1121)) (-1027)) (T -526))
-((-2279 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-388 (-1095 *4))) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-2279 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-1095 *4)) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-2123 (*1 *2 *3 *4) (-12 (-5 *4 (-570 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-1095 (-388 (-1095 *6)))) (-5 *1 (-526 *5 *6 *7)) (-5 *3 (-1095 *6)) (-4 *7 (-1027)))) (-2735 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1095 (-388 (-1095 *2)))) (-5 *4 (-570 *2)) (-4 *2 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *5 *2 *6)) (-4 *6 (-1027)))) (-2577 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-1095 (-388 (-1095 *3)))) (-5 *1 (-526 *6 *3 *7)) (-5 *5 (-1095 *3)) (-4 *7 (-1027)))) (-4079 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-388 (-1095 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))) (-4079 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-1095 *2)) (-4 *2 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))) (-1246 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))) (-1246 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-1095 *3)) (-4 *3 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))) (-3536 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-3536 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-1558 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))) (-1558 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
-(-10 -7 (-15 -1558 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -1558 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -3536 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| |#2| (-1095 |#2|))) (-15 -3536 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2| (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -1246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) |#2| (-1095 |#2|))) (-15 -1246 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) |#2| (-1095 |#2|))) (-15 -4079 ((-3 |#2| "failed") |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)) (-570 |#2|) |#2| (-388 (-1095 |#2|)))) (-15 -2577 ((-1095 (-388 (-1095 |#2|))) |#2| (-570 |#2|) (-570 |#2|) (-1095 |#2|))) (-15 -2735 (|#2| (-1095 (-388 (-1095 |#2|))) (-570 |#2|) |#2|)) (-15 -2123 ((-1095 (-388 (-1095 |#2|))) (-1095 |#2|) (-570 |#2|))) (IF (|has| |#3| (-607 |#2|)) (PROGN (-15 -2279 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) |#2| (-1095 |#2|))) (-15 -2279 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-570 |#2|) |#2| (-388 (-1095 |#2|))))) |%noBranch|))
-((-2693 (((-530) (-530) (-719)) 66)) (-3822 (((-530) (-530)) 65)) (-2851 (((-530) (-530)) 64)) (-3644 (((-530) (-530)) 69)) (-1387 (((-530) (-530) (-530)) 49)) (-1804 (((-530) (-530) (-530)) 46)) (-4036 (((-388 (-530)) (-530)) 20)) (-2439 (((-530) (-530)) 21)) (-1614 (((-530) (-530)) 58)) (-2067 (((-530) (-530)) 32)) (-2955 (((-597 (-530)) (-530)) 63)) (-4164 (((-530) (-530) (-530) (-530) (-530)) 44)) (-3190 (((-388 (-530)) (-530)) 41)))
-(((-527) (-10 -7 (-15 -3190 ((-388 (-530)) (-530))) (-15 -4164 ((-530) (-530) (-530) (-530) (-530))) (-15 -2955 ((-597 (-530)) (-530))) (-15 -2067 ((-530) (-530))) (-15 -1614 ((-530) (-530))) (-15 -2439 ((-530) (-530))) (-15 -4036 ((-388 (-530)) (-530))) (-15 -1804 ((-530) (-530) (-530))) (-15 -1387 ((-530) (-530) (-530))) (-15 -3644 ((-530) (-530))) (-15 -2851 ((-530) (-530))) (-15 -3822 ((-530) (-530))) (-15 -2693 ((-530) (-530) (-719))))) (T -527))
-((-2693 (*1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-719)) (-5 *1 (-527)))) (-3822 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-2851 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3644 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-1387 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-1804 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-4036 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))) (-2439 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-1614 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-2955 (*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))) (-4164 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))) (-3190 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
-(-10 -7 (-15 -3190 ((-388 (-530)) (-530))) (-15 -4164 ((-530) (-530) (-530) (-530) (-530))) (-15 -2955 ((-597 (-530)) (-530))) (-15 -2067 ((-530) (-530))) (-15 -1614 ((-530) (-530))) (-15 -2439 ((-530) (-530))) (-15 -4036 ((-388 (-530)) (-530))) (-15 -1804 ((-530) (-530) (-530))) (-15 -1387 ((-530) (-530) (-530))) (-15 -3644 ((-530) (-530))) (-15 -2851 ((-530) (-530))) (-15 -3822 ((-530) (-530))) (-15 -2693 ((-530) (-530) (-719))))
-((-1389 (((-2 (|:| |answer| |#4|) (|:| -3403 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
-(((-528 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1389 ((-2 (|:| |answer| |#4|) (|:| -3403 |#4|)) |#4| (-1 |#2| |#2|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -528))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -3403 *3))) (-5 *1 (-528 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7)))))
-(-10 -7 (-15 -1389 ((-2 (|:| |answer| |#4|) (|:| -3403 |#4|)) |#4| (-1 |#2| |#2|))))
-((-1389 (((-2 (|:| |answer| (-388 |#2|)) (|:| -3403 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 18)))
-(((-529 |#1| |#2|) (-10 -7 (-15 -1389 ((-2 (|:| |answer| (-388 |#2|)) (|:| -3403 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -529))
-((-1389 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| (-388 *6)) (|:| -3403 (-388 *6)) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-529 *5 *6)) (-5 *3 (-388 *6)))))
-(-10 -7 (-15 -1389 ((-2 (|:| |answer| (-388 |#2|)) (|:| -3403 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 25)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 87)) (-3446 (($ $) 88)) (-1276 (((-110) $) NIL)) (-2660 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1531 (($ $ $ $) 42)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-4207 (($ $ $) 81)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL)) (-2585 (((-530) $) NIL)) (-3590 (($ $ $) 80)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 61) (((-637 (-530)) (-637 $)) 57)) (-2707 (((-3 $ "failed") $) 84)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL)) (-3016 (((-110) $) NIL)) (-3370 (((-388 (-530)) $) NIL)) (-1364 (($) 63) (($ $) 64)) (-3571 (($ $ $) 79)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2411 (($ $ $) 54)) (-2514 (((-110) $) NIL)) (-2937 (($ $ $) NIL)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-2731 (((-110) $) 26)) (-3457 (((-110) $) 74)) (-2972 (((-3 $ "failed") $) NIL)) (-2166 (((-110) $) 34)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1999 (($ $ $ $) 43)) (-2508 (($ $ $) 76)) (-1817 (($ $ $) 75)) (-3103 (($ $) NIL)) (-4109 (($ $) 40)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) 53)) (-3972 (($ $ $) NIL)) (-3657 (($) NIL T CONST)) (-3820 (($ $) 31)) (-2624 (((-1046) $) NIL) (($ $) 33)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 118)) (-2204 (($ $ $) 85) (($ (-597 $)) NIL)) (-1303 (($ $) NIL)) (-2611 (((-399 $) $) 104)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) 83)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 78)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1725 (($ $) 32)) (-2579 (($ $) 30)) (-3260 (((-530) $) 39) (((-506) $) 51) (((-833 (-530)) $) NIL) (((-360) $) 46) (((-208) $) 48) (((-1082) $) 52)) (-2366 (((-804) $) 37) (($ (-530)) 38) (($ $) NIL) (($ (-530)) 38)) (-3300 (((-719)) NIL)) (-3918 (((-110) $ $) NIL)) (-2947 (($ $ $) NIL)) (-1510 (($) 29)) (-3944 (((-110) $ $) NIL)) (-3998 (($ $ $ $) 41)) (-3934 (($ $) 62)) (-3080 (($) 27 T CONST)) (-3093 (($) 28 T CONST)) (-3987 (((-1082) $) 20) (((-1082) $ (-110)) 22) (((-1186) (-770) $) 23) (((-1186) (-770) $ (-110)) 24)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 65)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 66)) (-2351 (($ $) 67) (($ $ $) 69)) (-2339 (($ $ $) 68)) (** (($ $ (-862)) NIL) (($ $ (-719)) 73)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 71) (($ $ $) 70)))
-(((-530) (-13 (-515) (-572 (-1082)) (-776) (-10 -8 (-15 -1364 ($ $)) (-6 -4256) (-6 -4261) (-6 -4257) (-6 -4251)))) (T -530))
-((-1364 (*1 *1 *1) (-5 *1 (-530))))
-(-13 (-515) (-572 (-1082)) (-776) (-10 -8 (-15 -1364 ($ $)) (-6 -4256) (-6 -4261) (-6 -4257) (-6 -4251)))
-((-2631 (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996)) 108) (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717)) 110)) (-1545 (((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099)) 172) (((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082)) 171) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996)) 176) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360)) 177) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360)) 178) (((-973) (-297 (-360)) (-597 (-1022 (-788 (-360))))) 179) (((-973) (-297 (-360)) (-1022 (-788 (-360)))) 167) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360)) 166) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360)) 162) (((-973) (-717)) 155) (((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996)) 161)))
-(((-531) (-10 -7 (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996))) (-15 -1545 ((-973) (-717))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996))) (-15 -1545 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082))) (-15 -1545 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099))))) (T -531))
-((-1545 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1020 (-788 (-360)))) (-5 *5 (-1099)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1020 (-788 (-360)))) (-5 *5 (-1082)) (-5 *2 (-973)) (-5 *1 (-531)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-717)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *1 (-531)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973)))) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *6 (-996)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360))))) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-973)) (-5 *1 (-531)))) (-1545 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360)))) (-5 *5 (-360)) (-5 *6 (-996)) (-5 *2 (-973)) (-5 *1 (-531)))))
-(-10 -7 (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360) (-996))) (-15 -1545 ((-973) (-717))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-1022 (-788 (-360))))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360))) (-15 -1545 ((-973) (-297 (-360)) (-597 (-1022 (-788 (-360)))) (-360) (-360) (-996))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))) (-717) (-996))) (-15 -1545 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1082))) (-15 -1545 ((-3 (-973) "failed") (-297 (-360)) (-1020 (-788 (-360))) (-1099))))
-((-2392 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|)) 184)) (-1244 (((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|)) 98)) (-2964 (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|) 180)) (-3878 (((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099))) 189)) (-1713 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099)) 197 (|has| |#3| (-607 |#2|)))))
-(((-532 |#1| |#2| |#3|) (-10 -7 (-15 -1244 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|))) (-15 -2964 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|)) (-15 -2392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|))) (-15 -3878 ((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)))) (IF (|has| |#3| (-607 |#2|)) (-15 -1713 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))) (-13 (-411 |#1|) (-27) (-1121)) (-1027)) (T -532))
-((-1713 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-570 *4)) (-5 *6 (-1099)) (-4 *4 (-13 (-411 *7) (-27) (-1121))) (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-532 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))) (-3878 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-570 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-4 *2 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *1 (-532 *5 *2 *6)) (-4 *6 (-1027)))) (-2392 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121))) (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-532 *6 *3 *7)) (-4 *7 (-1027)))) (-2964 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))) (-1244 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121))) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530)))) (-5 *2 (-547 *3)) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
-(-10 -7 (-15 -1244 ((-547 |#2|) |#2| (-570 |#2|) (-570 |#2|))) (-15 -2964 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-570 |#2|) (-570 |#2|) |#2|)) (-15 -2392 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-570 |#2|) (-570 |#2|) (-597 |#2|))) (-15 -3878 ((-3 |#2| "failed") |#2| |#2| |#2| (-570 |#2|) (-570 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1099)))) (IF (|has| |#3| (-607 |#2|)) (-15 -1713 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3220 (-597 |#2|))) |#3| |#2| (-570 |#2|) (-570 |#2|) (-1099))) |%noBranch|))
-((-3377 (((-2 (|:| -2259 |#2|) (|:| |nconst| |#2|)) |#2| (-1099)) 64)) (-1743 (((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|)) 164 (-12 (|has| |#2| (-1063)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)) 147 (-12 (|has| |#2| (-583)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530)))))) (-2155 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)) 148 (-12 (|has| |#2| (-583)) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-827 (-530)))))))
-(((-533 |#1| |#2|) (-10 -7 (-15 -3377 ((-2 (|:| -2259 |#2|) (|:| |nconst| |#2|)) |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (PROGN (IF (|has| |#2| (-583)) (PROGN (-15 -2155 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) (-15 -1743 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) (IF (|has| |#2| (-1063)) (-15 -1743 ((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-795) (-975 (-530)) (-432) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -533))
-((-1743 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1099)) (-5 *4 (-788 *2)) (-4 *2 (-1063)) (-4 *2 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *1 (-533 *5 *2)))) (-1743 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-583)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-2155 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530))) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-583)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-3377 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530)))) (-5 *2 (-2 (|:| -2259 *3) (|:| |nconst| *3))) (-5 *1 (-533 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(-10 -7 (-15 -3377 ((-2 (|:| -2259 |#2|) (|:| |nconst| |#2|)) |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (PROGN (IF (|has| |#2| (-583)) (PROGN (-15 -2155 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) (-15 -1743 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) (IF (|has| |#2| (-1063)) (-15 -1743 ((-3 |#2| "failed") |#2| (-1099) (-788 |#2|) (-788 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-4096 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|))) 41)) (-1545 (((-547 (-388 |#2|)) (-388 |#2|)) 28)) (-3515 (((-3 (-388 |#2|) "failed") (-388 |#2|)) 17)) (-2389 (((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|)) 48)))
-(((-534 |#1| |#2|) (-10 -7 (-15 -1545 ((-547 (-388 |#2|)) (-388 |#2|))) (-15 -3515 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2389 ((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -4096 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|))))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -534))
-((-4096 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-597 (-388 *6))) (-5 *3 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-534 *5 *6)))) (-2389 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2104 (-388 *5)) (|:| |coeff| (-388 *5)))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))) (-3515 (*1 *2 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140) (-975 (-530)))) (-5 *1 (-534 *3 *4)))) (-1545 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-547 (-388 *5))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))))
-(-10 -7 (-15 -1545 ((-547 (-388 |#2|)) (-388 |#2|))) (-15 -3515 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2389 ((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -4096 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-597 (-388 |#2|)))))
-((-2743 (((-3 (-530) "failed") |#1|) 14)) (-1298 (((-110) |#1|) 13)) (-3771 (((-530) |#1|) 9)))
-(((-535 |#1|) (-10 -7 (-15 -3771 ((-530) |#1|)) (-15 -1298 ((-110) |#1|)) (-15 -2743 ((-3 (-530) "failed") |#1|))) (-975 (-530))) (T -535))
-((-2743 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))) (-1298 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-535 *3)) (-4 *3 (-975 (-530))))) (-3771 (*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))))
-(-10 -7 (-15 -3771 ((-530) |#1|)) (-15 -1298 ((-110) |#1|)) (-15 -2743 ((-3 (-530) "failed") |#1|)))
-((-1839 (((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|)))) 48)) (-3631 (((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099)) 28)) (-3363 (((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099)) 23)) (-1714 (((-3 (-2 (|:| -2104 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))) 35)))
-(((-536 |#1|) (-10 -7 (-15 -3631 ((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3363 ((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|))))) (-15 -1714 ((-3 (-2 (|:| -2104 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))))) (-13 (-522) (-975 (-530)) (-140))) (T -536))
-((-1714 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-2 (|:| -2104 (-388 (-893 *5))) (|:| |coeff| (-388 (-893 *5))))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))) (-1839 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 (-388 (-893 *6)))) (-5 *3 (-388 (-893 *6))) (-4 *6 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-536 *6)))) (-3363 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-975 (-530)) (-140))) (-5 *1 (-536 *4)))) (-3631 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140))) (-5 *2 (-547 (-388 (-893 *5)))) (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))))
-(-10 -7 (-15 -3631 ((-547 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3363 ((-3 (-388 (-893 |#1|)) "failed") (-388 (-893 |#1|)) (-1099))) (-15 -1839 ((-3 (-2 (|:| |mainpart| (-388 (-893 |#1|))) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 (-893 |#1|))) (|:| |logand| (-388 (-893 |#1|))))))) "failed") (-388 (-893 |#1|)) (-1099) (-597 (-388 (-893 |#1|))))) (-15 -1714 ((-3 (-2 (|:| -2104 (-388 (-893 |#1|))) (|:| |coeff| (-388 (-893 |#1|)))) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))))
-((-2352 (((-110) $ $) 58)) (-1813 (((-110) $) 36)) (-1447 ((|#1| $) 30)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) 62)) (-2386 (($ $) 122)) (-2244 (($ $) 102)) (-3418 ((|#1| $) 28)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL)) (-2360 (($ $) 124)) (-2219 (($ $) 98)) (-2409 (($ $) 126)) (-2269 (($ $) 106)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) 77)) (-2585 (((-530) $) 79)) (-2707 (((-3 $ "failed") $) 61)) (-3184 (($ |#1| |#1|) 26)) (-2514 (((-110) $) 33)) (-1948 (($) 88)) (-2731 (((-110) $) 43)) (-3741 (($ $ (-530)) NIL)) (-2166 (((-110) $) 34)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-2168 (($ $) 90)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2910 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-388 (-530))) 76)) (-1726 ((|#1| $) 27)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) 64) (($ (-597 $)) NIL)) (-3551 (((-3 $ "failed") $ $) 63)) (-2853 (($ $) 92)) (-2421 (($ $) 130)) (-2281 (($ $) 104)) (-2398 (($ $) 132)) (-2254 (($ $) 108)) (-2373 (($ $) 128)) (-2231 (($ $) 100)) (-4000 (((-110) $ |#1|) 31)) (-2366 (((-804) $) 84) (($ (-530)) 66) (($ $) NIL) (($ (-530)) 66)) (-3300 (((-719)) 86)) (-2459 (($ $) 144)) (-2314 (($ $) 114)) (-3944 (((-110) $ $) NIL)) (-2434 (($ $) 142)) (-2293 (($ $) 110)) (-2485 (($ $) 140)) (-2334 (($ $) 120)) (-3632 (($ $) 138)) (-2347 (($ $) 118)) (-2472 (($ $) 136)) (-2324 (($ $) 116)) (-2446 (($ $) 134)) (-2304 (($ $) 112)) (-3080 (($) 21 T CONST)) (-3093 (($) 10 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 37)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 35)) (-2351 (($ $) 41) (($ $ $) 42)) (-2339 (($ $ $) 40)) (** (($ $ (-862)) 54) (($ $ (-719)) NIL) (($ $ $) 94) (($ $ (-388 (-530))) 146)) (* (($ (-862) $) 51) (($ (-719) $) NIL) (($ (-530) $) 50) (($ $ $) 48)))
-(((-537 |#1|) (-520 |#1|) (-13 (-385) (-1121))) (T -537))
-NIL
-(-520 |#1|)
-((-1708 (((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530))) 24)))
-(((-538) (-10 -7 (-15 -1708 ((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530)))))) (T -538))
-((-1708 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 (-530)))) (-5 *3 (-1095 (-530))) (-5 *1 (-538)))))
-(-10 -7 (-15 -1708 ((-3 (-597 (-1095 (-530))) "failed") (-597 (-1095 (-530))) (-1095 (-530)))))
-((-3423 (((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099)) 19)) (-2792 (((-597 (-570 |#2|)) (-597 |#2|) (-1099)) 23)) (-4204 (((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|))) 11)) (-1297 ((|#2| |#2| (-1099)) 54 (|has| |#1| (-522)))) (-2809 ((|#2| |#2| (-1099)) 78 (-12 (|has| |#2| (-266)) (|has| |#1| (-432))))) (-3956 (((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099)) 25)) (-1989 (((-570 |#2|) (-597 (-570 |#2|))) 24)) (-2331 (((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099))) 103 (-12 (|has| |#2| (-266)) (|has| |#2| (-583)) (|has| |#2| (-975 (-1099))) (|has| |#1| (-572 (-833 (-530)))) (|has| |#1| (-432)) (|has| |#1| (-827 (-530)))))))
-(((-539 |#1| |#2|) (-10 -7 (-15 -3423 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099))) (-15 -1989 ((-570 |#2|) (-597 (-570 |#2|)))) (-15 -3956 ((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099))) (-15 -4204 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|)))) (-15 -2792 ((-597 (-570 |#2|)) (-597 |#2|) (-1099))) (IF (|has| |#1| (-522)) (-15 -1297 (|#2| |#2| (-1099))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2809 (|#2| |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (IF (|has| |#2| (-583)) (IF (|has| |#2| (-975 (-1099))) (-15 -2331 ((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-795) (-411 |#1|)) (T -539))
-((-2331 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-547 *3) *3 (-1099))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1099))) (-4 *3 (-266)) (-4 *3 (-583)) (-4 *3 (-975 *4)) (-4 *3 (-411 *7)) (-5 *4 (-1099)) (-4 *7 (-572 (-833 (-530)))) (-4 *7 (-432)) (-4 *7 (-827 (-530))) (-4 *7 (-795)) (-5 *2 (-547 *3)) (-5 *1 (-539 *7 *3)))) (-2809 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-432)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))) (-1297 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-522)) (-4 *4 (-795)) (-5 *1 (-539 *4 *2)) (-4 *2 (-411 *4)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-1099)) (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *2 (-597 (-570 *6))) (-5 *1 (-539 *5 *6)))) (-4204 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-570 *4))) (-4 *4 (-411 *3)) (-4 *3 (-795)) (-5 *1 (-539 *3 *4)))) (-3956 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-570 *6))) (-5 *4 (-1099)) (-5 *2 (-570 *6)) (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *1 (-539 *5 *6)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-597 (-570 *5))) (-4 *4 (-795)) (-5 *2 (-570 *5)) (-5 *1 (-539 *4 *5)) (-4 *5 (-411 *4)))) (-3423 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-570 *5))) (-5 *3 (-1099)) (-4 *5 (-411 *4)) (-4 *4 (-795)) (-5 *1 (-539 *4 *5)))))
-(-10 -7 (-15 -3423 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-1099))) (-15 -1989 ((-570 |#2|) (-597 (-570 |#2|)))) (-15 -3956 ((-570 |#2|) (-570 |#2|) (-597 (-570 |#2|)) (-1099))) (-15 -4204 ((-597 (-570 |#2|)) (-597 (-570 |#2|)) (-597 (-570 |#2|)))) (-15 -2792 ((-597 (-570 |#2|)) (-597 |#2|) (-1099))) (IF (|has| |#1| (-522)) (-15 -1297 (|#2| |#2| (-1099))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2809 (|#2| |#2| (-1099))) (IF (|has| |#1| (-572 (-833 (-530)))) (IF (|has| |#1| (-827 (-530))) (IF (|has| |#2| (-583)) (IF (|has| |#2| (-975 (-1099))) (-15 -2331 ((-547 |#2|) |#2| (-1099) (-1 (-547 |#2|) |#2| (-1099)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1099)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
-((-2634 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|)) 172)) (-3335 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|))) 148)) (-3436 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|))) 145)) (-2029 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-1636 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-3821 (((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|)) 175)) (-2270 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|)) 178)) (-3351 (((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 84)) (-1901 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-2986 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|))) 152)) (-1727 (((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|)) 137)) (-4070 (((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|)) 162)) (-3795 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|)) 183)))
-(((-540 |#1| |#2|) (-10 -7 (-15 -1636 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4070 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -2634 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|))) (-15 -2270 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -3795 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|))) (-15 -3335 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|)))) (-15 -2986 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|)))) (-15 -3821 ((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -3436 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|)))) (-15 -2029 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1727 ((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -3351 ((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -1901 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -540))
-((-1901 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-540 *5 *3)))) (-3351 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |ir| (-547 (-388 *6))) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))) (-1727 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-578 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3638 *4) (|:| |sol?| (-110))) (-530) *4)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *1 (-540 *4 *5)))) (-2029 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-344)) (-5 *1 (-540 *4 *2)) (-4 *2 (-1157 *4)))) (-3436 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-597 (-388 *7))) (-4 *7 (-1157 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-540 *6 *7)))) (-3821 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -2104 (-388 *6)) (|:| |coeff| (-388 *6)))) (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))) (-2986 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3638 *7) (|:| |sol?| (-110))) (-530) *7)) (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-540 *7 *8)))) (-3335 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2104 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-540 *7 *8)))) (-3795 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3638 *6) (|:| |sol?| (-110))) (-530) *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2104 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2270 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2104 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2104 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-2634 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-597 *6) "failed") (-530) *6 *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-4070 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3638 *6) (|:| |sol?| (-110))) (-530) *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2104 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(-10 -7 (-15 -1636 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -4070 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -2634 ((-2 (|:| |answer| (-547 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-597 |#1|) "failed") (-530) |#1| |#1|))) (-15 -2270 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -3795 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-388 |#2|))) (-15 -3335 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-597 (-388 |#2|)))) (-15 -2986 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|) (-597 (-388 |#2|)))) (-15 -3821 ((-3 (-2 (|:| -2104 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -3436 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-597 (-388 |#2|)))) (-15 -2029 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -1727 ((-3 (-578 |#1| |#2|) "failed") (-578 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3638 |#1|) (|:| |sol?| (-110))) (-530) |#1|))) (-15 -3351 ((-2 (|:| |ir| (-547 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -1901 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
-((-1855 (((-3 |#2| "failed") |#2| (-1099) (-1099)) 10)))
-(((-541 |#1| |#2|) (-10 -7 (-15 -1855 ((-3 |#2| "failed") |#2| (-1099) (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-1063) (-29 |#1|))) (T -541))
-((-1855 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-541 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-1063) (-29 *4))))))
-(-10 -7 (-15 -1855 ((-3 |#2| "failed") |#2| (-1099) (-1099))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $ (-530)) 66)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3165 (($ (-1095 (-530)) (-530)) 72)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) 58)) (-2957 (($ $) 34)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-2031 (((-719) $) 15)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 (((-530)) 29)) (-1439 (((-530) $) 32)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3168 (($ $ (-530)) 21)) (-3551 (((-3 $ "failed") $ $) 59)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) 16)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 61)) (-2513 (((-1080 (-530)) $) 18)) (-4050 (($ $) 23)) (-2366 (((-804) $) 87) (($ (-530)) 52) (($ $) NIL)) (-3300 (((-719)) 14)) (-3944 (((-110) $ $) NIL)) (-4136 (((-530) $ (-530)) 36)) (-3080 (($) 35 T CONST)) (-3093 (($) 19 T CONST)) (-2248 (((-110) $ $) 39)) (-2351 (($ $) 51) (($ $ $) 37)) (-2339 (($ $ $) 50)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 54) (($ $ $) 55)))
-(((-542 |#1| |#2|) (-810 |#1|) (-530) (-110)) (T -542))
-NIL
-(-810 |#1|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 21)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-3143 (((-1109 (-862) (-719)) (-530)) 47)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 $ "failed") $) 75)) (-2585 (($ $) 74)) (-1574 (($ (-1181 $)) 73)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) 32)) (-1364 (($) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) 49)) (-2798 (((-110) $) NIL)) (-3948 (($ $) NIL) (($ $ (-719)) NIL)) (-3295 (((-110) $) NIL)) (-2031 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-2731 (((-110) $) NIL)) (-2931 (($) 37 (|has| $ (-349)))) (-1672 (((-110) $) NIL (|has| $ (-349)))) (-2376 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-2972 (((-3 $ "failed") $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 $) $ (-862)) NIL (|has| $ (-349))) (((-1095 $) $) 83)) (-1905 (((-862) $) 55)) (-3005 (((-1095 $) $) NIL (|has| $ (-349)))) (-3396 (((-3 (-1095 $) "failed") $ $) NIL (|has| $ (-349))) (((-1095 $) $) NIL (|has| $ (-349)))) (-1658 (($ $ (-1095 $)) NIL (|has| $ (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL T CONST)) (-1986 (($ (-862)) 48)) (-1655 (((-110) $) 67)) (-2624 (((-1046) $) NIL)) (-1974 (($) 19 (|has| $ (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 42)) (-2611 (((-399 $) $) NIL)) (-1415 (((-862)) 66) (((-781 (-862))) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-3 (-719) "failed") $ $) NIL) (((-719) $) NIL)) (-2488 (((-130)) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1429 (((-862) $) 65) (((-781 (-862)) $) NIL)) (-1781 (((-1095 $)) 82)) (-3406 (($) 54)) (-1698 (($) 38 (|has| $ (-349)))) (-2328 (((-637 $) (-1181 $)) NIL) (((-1181 $) $) 71)) (-3260 (((-530) $) 28)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) 30) (($ $) NIL) (($ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL) (($ $) 84)) (-3300 (((-719)) 39)) (-3220 (((-1181 $) (-862)) 77) (((-1181 $)) 76)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) 22 T CONST)) (-3093 (($) 18 T CONST)) (-3962 (($ $ (-719)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 26)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 61) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-543 |#1|) (-13 (-330) (-310 $) (-572 (-530))) (-862)) (T -543))
-NIL
-(-13 (-330) (-310 $) (-572 (-530)))
-((-2584 (((-1186) (-1082)) 10)))
-(((-544) (-10 -7 (-15 -2584 ((-1186) (-1082))))) (T -544))
-((-2584 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-544)))))
-(-10 -7 (-15 -2584 ((-1186) (-1082))))
-((-1489 (((-547 |#2|) (-547 |#2|)) 40)) (-2246 (((-597 |#2|) (-547 |#2|)) 42)) (-3637 ((|#2| (-547 |#2|)) 48)))
-(((-545 |#1| |#2|) (-10 -7 (-15 -1489 ((-547 |#2|) (-547 |#2|))) (-15 -2246 ((-597 |#2|) (-547 |#2|))) (-15 -3637 (|#2| (-547 |#2|)))) (-13 (-432) (-975 (-530)) (-795) (-593 (-530))) (-13 (-29 |#1|) (-1121))) (T -545))
-((-3637 (*1 *2 *3) (-12 (-5 *3 (-547 *2)) (-4 *2 (-13 (-29 *4) (-1121))) (-5 *1 (-545 *4 *2)) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-547 *5)) (-4 *5 (-13 (-29 *4) (-1121))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-597 *5)) (-5 *1 (-545 *4 *5)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-547 *4)) (-4 *4 (-13 (-29 *3) (-1121))) (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *1 (-545 *3 *4)))))
-(-10 -7 (-15 -1489 ((-547 |#2|) (-547 |#2|))) (-15 -2246 ((-597 |#2|) (-547 |#2|))) (-15 -3637 (|#2| (-547 |#2|))))
-((-3217 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|)) 30)))
-(((-546 |#1| |#2|) (-10 -7 (-15 -3217 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))) (-15 -3217 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3217 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3217 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-344) (-344)) (T -546))
-((-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-546 *5 *6)))) (-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-546 *5 *2)))) (-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2104 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -2104 *6) (|:| |coeff| *6))) (-5 *1 (-546 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-547 *6)) (-5 *1 (-546 *5 *6)))))
-(-10 -7 (-15 -3217 ((-547 |#2|) (-1 |#2| |#1|) (-547 |#1|))) (-15 -3217 ((-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2104 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3217 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3217 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 69)) (-2585 ((|#1| $) NIL)) (-2104 ((|#1| $) 26)) (-1659 (((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3978 (($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-3403 (((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $) 27)) (-1424 (((-1082) $) NIL)) (-1900 (($ |#1| |#1|) 33) (($ |#1| (-1099)) 44 (|has| |#1| (-975 (-1099))))) (-2624 (((-1046) $) NIL)) (-1861 (((-110) $) 30)) (-3289 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1099)) 82 (|has| |#1| (-841 (-1099))))) (-2366 (((-804) $) 96) (($ |#1|) 25)) (-3080 (($) 16 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) 15) (($ $ $) NIL)) (-2339 (($ $ $) 78)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 14) (($ (-388 (-530)) $) 36) (($ $ (-388 (-530))) NIL)))
-(((-547 |#1|) (-13 (-666 (-388 (-530))) (-975 |#1|) (-10 -8 (-15 -3978 ($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2104 (|#1| $)) (-15 -3403 ((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $)) (-15 -1659 ((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1861 ((-110) $)) (-15 -1900 ($ |#1| |#1|)) (-15 -3289 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-841 (-1099))) (-15 -3289 (|#1| $ (-1099))) |%noBranch|) (IF (|has| |#1| (-975 (-1099))) (-15 -1900 ($ |#1| (-1099))) |%noBranch|))) (-344)) (T -547))
-((-3978 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *2)) (|:| |logand| (-1095 *2))))) (-5 *4 (-597 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-344)) (-5 *1 (-547 *2)))) (-2104 (*1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-3403 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *3)) (|:| |logand| (-1095 *3))))) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-1659 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-1861 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-547 *3)) (-4 *3 (-344)))) (-1900 (*1 *1 *2 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-3289 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-547 *2)) (-4 *2 (-344)))) (-3289 (*1 *2 *1 *3) (-12 (-4 *2 (-344)) (-4 *2 (-841 *3)) (-5 *1 (-547 *2)) (-5 *3 (-1099)))) (-1900 (*1 *1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *1 (-547 *2)) (-4 *2 (-975 *3)) (-4 *2 (-344)))))
-(-13 (-666 (-388 (-530))) (-975 |#1|) (-10 -8 (-15 -3978 ($ |#1| (-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) (-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2104 (|#1| $)) (-15 -3403 ((-597 (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 |#1|)) (|:| |logand| (-1095 |#1|)))) $)) (-15 -1659 ((-597 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1861 ((-110) $)) (-15 -1900 ($ |#1| |#1|)) (-15 -3289 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-841 (-1099))) (-15 -3289 (|#1| $ (-1099))) |%noBranch|) (IF (|has| |#1| (-975 (-1099))) (-15 -1900 ($ |#1| (-1099))) |%noBranch|)))
-((-3647 (((-110) |#1|) 16)) (-2371 (((-3 |#1| "failed") |#1|) 14)) (-2375 (((-2 (|:| -1510 |#1|) (|:| -3194 (-719))) |#1|) 31) (((-3 |#1| "failed") |#1| (-719)) 18)) (-2622 (((-110) |#1| (-719)) 19)) (-1625 ((|#1| |#1|) 32)) (-3941 ((|#1| |#1| (-719)) 34)))
-(((-548 |#1|) (-10 -7 (-15 -2622 ((-110) |#1| (-719))) (-15 -2375 ((-3 |#1| "failed") |#1| (-719))) (-15 -2375 ((-2 (|:| -1510 |#1|) (|:| -3194 (-719))) |#1|)) (-15 -3941 (|#1| |#1| (-719))) (-15 -3647 ((-110) |#1|)) (-15 -2371 ((-3 |#1| "failed") |#1|)) (-15 -1625 (|#1| |#1|))) (-515)) (T -548))
-((-1625 (*1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2371 (*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-3647 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))) (-3941 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2375 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -1510 *3) (|:| -3194 (-719)))) (-5 *1 (-548 *3)) (-4 *3 (-515)))) (-2375 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))) (-2622 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
-(-10 -7 (-15 -2622 ((-110) |#1| (-719))) (-15 -2375 ((-3 |#1| "failed") |#1| (-719))) (-15 -2375 ((-2 (|:| -1510 |#1|) (|:| -3194 (-719))) |#1|)) (-15 -3941 (|#1| |#1| (-719))) (-15 -3647 ((-110) |#1|)) (-15 -2371 ((-3 |#1| "failed") |#1|)) (-15 -1625 (|#1| |#1|)))
-((-4189 (((-1095 |#1|) (-862)) 27)))
-(((-549 |#1|) (-10 -7 (-15 -4189 ((-1095 |#1|) (-862)))) (-330)) (T -549))
-((-4189 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-549 *4)) (-4 *4 (-330)))))
-(-10 -7 (-15 -4189 ((-1095 |#1|) (-862))))
-((-1489 (((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|)))) 27)) (-1545 (((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099)) 34 (|has| |#1| (-140)))) (-2246 (((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|)))) 19)) (-3280 (((-297 |#1|) (-388 (-893 |#1|)) (-1099)) 32 (|has| |#1| (-140)))) (-3637 (((-297 |#1|) (-547 (-388 (-893 |#1|)))) 21)))
-(((-550 |#1|) (-10 -7 (-15 -1489 ((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|))))) (-15 -2246 ((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|))))) (-15 -3637 ((-297 |#1|) (-547 (-388 (-893 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1545 ((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3280 ((-297 |#1|) (-388 (-893 |#1|)) (-1099)))) |%noBranch|)) (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (T -550))
-((-3280 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-297 *5)) (-5 *1 (-550 *5)))) (-1545 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-3 (-297 *5) (-597 (-297 *5)))) (-5 *1 (-550 *5)))) (-3637 (*1 *2 *3) (-12 (-5 *3 (-547 (-388 (-893 *4)))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-297 *4)) (-5 *1 (-550 *4)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-547 (-388 (-893 *4)))) (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *2 (-597 (-297 *4))) (-5 *1 (-550 *4)))) (-1489 (*1 *2 *2) (-12 (-5 *2 (-547 (-388 (-893 *3)))) (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530)))) (-5 *1 (-550 *3)))))
-(-10 -7 (-15 -1489 ((-547 (-388 (-893 |#1|))) (-547 (-388 (-893 |#1|))))) (-15 -2246 ((-597 (-297 |#1|)) (-547 (-388 (-893 |#1|))))) (-15 -3637 ((-297 |#1|) (-547 (-388 (-893 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1545 ((-3 (-297 |#1|) (-597 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -3280 ((-297 |#1|) (-388 (-893 |#1|)) (-1099)))) |%noBranch|))
-((-2479 (((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530)))) 46) (((-597 (-637 (-530))) (-597 (-530))) 47) (((-637 (-530)) (-597 (-530)) (-846 (-530))) 42)) (-2941 (((-719) (-597 (-530))) 40)))
-(((-551) (-10 -7 (-15 -2941 ((-719) (-597 (-530)))) (-15 -2479 ((-637 (-530)) (-597 (-530)) (-846 (-530)))) (-15 -2479 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -2479 ((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530))))))) (T -551))
-((-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-530))) (-5 *4 (-597 (-846 (-530)))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))) (-2479 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-530))) (-5 *4 (-846 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-551)))) (-2941 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-719)) (-5 *1 (-551)))))
-(-10 -7 (-15 -2941 ((-719) (-597 (-530)))) (-15 -2479 ((-637 (-530)) (-597 (-530)) (-846 (-530)))) (-15 -2479 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -2479 ((-597 (-637 (-530))) (-597 (-530)) (-597 (-846 (-530))))))
-((-3654 (((-597 |#5|) |#5| (-110)) 73)) (-1834 (((-110) |#5| (-597 |#5|)) 30)))
-(((-552 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3654 ((-597 |#5|) |#5| (-110))) (-15 -1834 ((-110) |#5| (-597 |#5|)))) (-13 (-289) (-140)) (-741) (-795) (-998 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -552))
-((-1834 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1036 *5 *6 *7 *8)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-552 *5 *6 *7 *8 *3)))) (-3654 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-597 *3)) (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-1036 *5 *6 *7 *8)))))
-(-10 -7 (-15 -3654 ((-597 |#5|) |#5| (-110))) (-15 -1834 ((-110) |#5| (-597 |#5|))))
-((-2352 (((-110) $ $) NIL (|has| (-137) (-1027)))) (-2289 (($ $) 34)) (-3910 (($ $) NIL)) (-2879 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3014 (((-110) $ $) 51)) (-2996 (((-110) $ $ (-530)) 46)) (-1489 (((-597 $) $ (-137)) 60) (((-597 $) $ (-134)) 61)) (-2741 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-795)))) (-1627 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-795))))) (-1307 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-137) $ (-530) (-137)) 45 (|has| $ (-6 -4270))) (((-137) $ (-1148 (-530)) (-137)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-2865 (($ $ (-137)) 64) (($ $ (-134)) 65)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3782 (($ $ (-1148 (-530)) $) 44)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2383 (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4270)))) (-3532 (((-137) $ (-530)) NIL)) (-3034 (((-110) $ $) 72)) (-2027 (((-530) (-1 (-110) (-137)) $) NIL) (((-530) (-137) $) NIL (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 48 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 47) (((-530) (-134) $ (-530)) 50)) (-3779 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-137)) 9)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 28 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| (-137) (-795)))) (-3683 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1549 (((-530) $) 42 (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-137) (-795)))) (-3754 (((-110) $ $ (-137)) 73)) (-2918 (((-719) $ $ (-137)) 70)) (-3583 (($ (-1 (-137) (-137)) $) 33 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-2794 (($ $) 37)) (-1502 (($ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-2875 (($ $ (-137)) 62) (($ $ (-134)) 63)) (-1424 (((-1082) $) 38 (|has| (-137) (-1027)))) (-4028 (($ (-137) $ (-530)) NIL) (($ $ $ (-530)) 23)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-530) $) 69) (((-1046) $) NIL (|has| (-137) (-1027)))) (-3048 (((-137) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1522 (($ $ (-137)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2261 (((-597 (-137)) $) NIL)) (-3250 (((-110) $) 12)) (-3958 (($) 10)) (-1902 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) 52) (($ $ (-1148 (-530))) 21) (($ $ $) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3121 (($ $ $ (-530)) 66 (|has| $ (-6 -4270)))) (-2579 (($ $) 17)) (-3260 (((-506) $) NIL (|has| (-137) (-572 (-506))))) (-2377 (($ (-597 (-137))) NIL)) (-3483 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) 16) (($ (-597 $)) 67)) (-2366 (($ (-137)) NIL) (((-804) $) 27 (|has| (-137) (-571 (-804))))) (-3889 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2248 (((-110) $ $) 14 (|has| (-137) (-1027)))) (-2297 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2272 (((-110) $ $) 15 (|has| (-137) (-795)))) (-2267 (((-719) $) 13 (|has| $ (-6 -4269)))))
-(((-553 |#1|) (-13 (-1068) (-10 -8 (-15 -2624 ((-530) $)))) (-530)) (T -553))
-((-2624 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-553 *3)) (-14 *3 *2))))
-(-13 (-1068) (-10 -8 (-15 -2624 ((-530) $))))
-((-3426 (((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|)) 32)))
-(((-554 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3426 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|))) (-15 -3426 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|)) (T -554))
-((-3426 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-530)))) (-5 *1 (-554 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))) (-3426 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1022 *3)) (-4 *3 (-890 *7 *6 *4)) (-4 *6 (-741)) (-4 *4 (-795)) (-4 *7 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-530)))) (-5 *1 (-554 *6 *4 *7 *3)))))
-(-10 -7 (-15 -3426 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2| (-1022 |#4|))) (-15 -3426 ((-2 (|:| |num| |#4|) (|:| |den| (-530))) |#4| |#2|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 63)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-530)) 54) (($ $ (-530) (-530)) 55)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 60)) (-2292 (($ $) 100)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1644 (((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530))) 224)) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 34)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3555 (((-110) $) NIL)) (-2031 (((-530) $) 58) (((-530) $ (-530)) 59)) (-2731 (((-110) $) NIL)) (-3081 (($ $ (-862)) 76)) (-4219 (($ (-1 |#1| (-530)) $) 73)) (-3668 (((-110) $) 25)) (-2725 (($ |#1| (-530)) 22) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 67)) (-3963 (($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 13)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-1545 (($ $) 150 (|has| |#1| (-37 (-388 (-530)))))) (-3803 (((-3 $ "failed") $ $ (-110)) 99)) (-2668 (($ $ $) 108)) (-2624 (((-1046) $) NIL)) (-2498 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 15)) (-1455 (((-964 (-788 (-530))) $) 14)) (-3168 (($ $ (-530)) 45)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530)))))) (-1902 ((|#1| $ (-530)) 57) (($ $ $) NIL (|has| (-530) (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-1429 (((-530) $) NIL)) (-4050 (($ $) 46)) (-2366 (((-804) $) NIL) (($ (-530)) 28) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 27 (|has| |#1| (-162)))) (-4085 ((|#1| $ (-530)) 56)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 37)) (-3705 ((|#1| $) NIL)) (-3557 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2811 (($ $) 158 (|has| |#1| (-37 (-388 (-530)))))) (-2547 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-1595 (($ $) 163 (|has| |#1| (-37 (-388 (-530)))))) (-2316 (($ $) 189 (|has| |#1| (-37 (-388 (-530)))))) (-1410 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-1483 (($ $ (-388 (-530))) 166 (|has| |#1| (-37 (-388 (-530)))))) (-1840 (($ $ |#1|) 146 (|has| |#1| (-37 (-388 (-530)))))) (-4192 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-3578 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-2669 (($ $) 191 (|has| |#1| (-37 (-388 (-530)))))) (-3040 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-3783 (($ $) 187 (|has| |#1| (-37 (-388 (-530)))))) (-4214 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-2300 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-2016 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-3540 (($ $) 197 (|has| |#1| (-37 (-388 (-530)))))) (-2774 (($ $) 173 (|has| |#1| (-37 (-388 (-530)))))) (-4099 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-3199 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-2091 (($ $) 201 (|has| |#1| (-37 (-388 (-530)))))) (-4181 (($ $) 177 (|has| |#1| (-37 (-388 (-530)))))) (-3409 (($ $) 203 (|has| |#1| (-37 (-388 (-530)))))) (-2644 (($ $) 179 (|has| |#1| (-37 (-388 (-530)))))) (-3768 (($ $) 199 (|has| |#1| (-37 (-388 (-530)))))) (-4001 (($ $) 175 (|has| |#1| (-37 (-388 (-530)))))) (-2025 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-1284 (($ $) 171 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-4136 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3080 (($) 29 T CONST)) (-3093 (($) 38 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-2248 (((-110) $ $) 65)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) 84) (($ $ $) 64)) (-2339 (($ $ $) 81)) (** (($ $ (-862)) NIL) (($ $ (-719)) 103)) (* (($ (-862) $) 89) (($ (-719) $) 87) (($ (-530) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-555 |#1|) (-13 (-1159 |#1| (-530)) (-10 -8 (-15 -3963 ($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -1455 ((-964 (-788 (-530))) $)) (-15 -2498 ((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $)) (-15 -2460 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -3668 ((-110) $)) (-15 -4219 ($ (-1 |#1| (-530)) $)) (-15 -3803 ((-3 $ "failed") $ $ (-110))) (-15 -2292 ($ $)) (-15 -2668 ($ $ $)) (-15 -1644 ((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (-15 -1840 ($ $ |#1|)) (-15 -1483 ($ $ (-388 (-530)))) (-15 -3578 ($ $)) (-15 -4192 ($ $)) (-15 -1595 ($ $)) (-15 -2016 ($ $)) (-15 -2811 ($ $)) (-15 -4214 ($ $)) (-15 -1410 ($ $)) (-15 -3040 ($ $)) (-15 -3199 ($ $)) (-15 -1284 ($ $)) (-15 -2774 ($ $)) (-15 -4001 ($ $)) (-15 -4181 ($ $)) (-15 -2644 ($ $)) (-15 -2547 ($ $)) (-15 -2300 ($ $)) (-15 -3557 ($ $)) (-15 -3783 ($ $)) (-15 -2316 ($ $)) (-15 -2669 ($ $)) (-15 -4099 ($ $)) (-15 -2025 ($ $)) (-15 -3540 ($ $)) (-15 -3768 ($ $)) (-15 -2091 ($ $)) (-15 -3409 ($ $))) |%noBranch|))) (-984)) (T -555))
-((-3668 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-3963 (*1 *1 *2 *3) (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *4)))) (-4 *4 (-984)) (-5 *1 (-555 *4)))) (-1455 (*1 *2 *1) (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2498 (*1 *2 *1) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-4 *3 (-984)) (-5 *1 (-555 *3)))) (-4219 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-555 *3)))) (-3803 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))) (-2292 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))) (-2668 (*1 *1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))) (-1644 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *6)))) (-5 *4 (-964 (-788 (-530)))) (-5 *5 (-1099)) (-5 *7 (-388 (-530))) (-4 *6 (-984)) (-5 *2 (-804)) (-5 *1 (-555 *6)))) (-1545 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1840 (*1 *1 *1 *2) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1483 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-555 *3)) (-4 *3 (-37 *2)) (-4 *3 (-984)))) (-3578 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4192 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1595 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2016 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2811 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4214 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1410 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3040 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3199 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-1284 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2774 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4001 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4181 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2644 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2547 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2300 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3557 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3783 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2316 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2669 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-4099 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2025 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3768 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-2091 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))) (-3409 (*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(-13 (-1159 |#1| (-530)) (-10 -8 (-15 -3963 ($ (-964 (-788 (-530))) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -1455 ((-964 (-788 (-530))) $)) (-15 -2498 ((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $)) (-15 -2460 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))))) (-15 -3668 ((-110) $)) (-15 -4219 ($ (-1 |#1| (-530)) $)) (-15 -3803 ((-3 $ "failed") $ $ (-110))) (-15 -2292 ($ $)) (-15 -2668 ($ $ $)) (-15 -1644 ((-804) (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) (-964 (-788 (-530))) (-1099) |#1| (-388 (-530)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (-15 -1840 ($ $ |#1|)) (-15 -1483 ($ $ (-388 (-530)))) (-15 -3578 ($ $)) (-15 -4192 ($ $)) (-15 -1595 ($ $)) (-15 -2016 ($ $)) (-15 -2811 ($ $)) (-15 -4214 ($ $)) (-15 -1410 ($ $)) (-15 -3040 ($ $)) (-15 -3199 ($ $)) (-15 -1284 ($ $)) (-15 -2774 ($ $)) (-15 -4001 ($ $)) (-15 -4181 ($ $)) (-15 -2644 ($ $)) (-15 -2547 ($ $)) (-15 -2300 ($ $)) (-15 -3557 ($ $)) (-15 -3783 ($ $)) (-15 -2316 ($ $)) (-15 -2669 ($ $)) (-15 -4099 ($ $)) (-15 -2025 ($ $)) (-15 -3540 ($ $)) (-15 -3768 ($ $)) (-15 -2091 ($ $)) (-15 -3409 ($ $))) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2460 (($ (-1080 |#1|)) 9)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) 42)) (-3555 (((-110) $) 52)) (-2031 (((-719) $) 55) (((-719) $ (-719)) 54)) (-2731 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ $) 44 (|has| |#1| (-522)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-1080 |#1|) $) 23)) (-3300 (((-719)) 51)) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 10 T CONST)) (-3093 (($) 14 T CONST)) (-2248 (((-110) $ $) 22)) (-2351 (($ $) 30) (($ $ $) 16)) (-2339 (($ $ $) 25)) (** (($ $ (-862)) NIL) (($ $ (-719)) 49)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-530)) 36)))
-(((-556 |#1|) (-13 (-984) (-10 -8 (-15 -3441 ((-1080 |#1|) $)) (-15 -2460 ($ (-1080 |#1|))) (-15 -3555 ((-110) $)) (-15 -2031 ((-719) $)) (-15 -2031 ((-719) $ (-719))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-530))) (IF (|has| |#1| (-522)) (-6 (-522)) |%noBranch|))) (-984)) (T -556))
-((-3441 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-556 *3)))) (-3555 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (-2031 (*1 *2 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-556 *3)) (-4 *3 (-984)))))
-(-13 (-984) (-10 -8 (-15 -3441 ((-1080 |#1|) $)) (-15 -2460 ($ (-1080 |#1|))) (-15 -3555 ((-110) $)) (-15 -2031 ((-719) $)) (-15 -2031 ((-719) $ (-719))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-530))) (IF (|has| |#1| (-522)) (-6 (-522)) |%noBranch|)))
-((-3217 (((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|)) 15)))
-(((-557 |#1| |#2|) (-10 -7 (-15 -3217 ((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|)))) (-1135) (-1135)) (T -557))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-560 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-560 *6)) (-5 *1 (-557 *5 *6)))))
-(-10 -7 (-15 -3217 ((-560 |#2|) (-1 |#2| |#1|) (-560 |#1|))))
-((-3217 (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|)) 20) (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|)) 19) (((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|)) 18)))
-(((-558 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|))) (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|))) (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|)))) (-1135) (-1135) (-1135)) (T -558))
-((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-1080 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-558 *6 *7 *8)))) (-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1080 *6)) (-5 *5 (-560 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-558 *6 *7 *8)))) (-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-560 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-560 *8)) (-5 *1 (-558 *6 *7 *8)))))
-(-10 -7 (-15 -3217 ((-560 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-560 |#2|))) (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-560 |#2|))) (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-560 |#1|) (-1080 |#2|))))
-((-2934 ((|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099))) 55)) (-3291 (((-159 |#2|) |#3|) 117)) (-3609 ((|#3| (-159 |#2|)) 44)) (-2132 ((|#2| |#3|) 19)) (-1795 ((|#3| |#2|) 33)))
-(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -3609 (|#3| (-159 |#2|))) (-15 -2132 (|#2| |#3|)) (-15 -1795 (|#3| |#2|)) (-15 -3291 ((-159 |#2|) |#3|)) (-15 -2934 (|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099))))) (-13 (-522) (-795)) (-13 (-411 |#1|) (-941) (-1121)) (-13 (-411 (-159 |#1|)) (-941) (-1121))) (T -559))
-((-2934 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-597 (-1099))) (-4 *2 (-13 (-411 (-159 *5)) (-941) (-1121))) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-559 *5 *6 *2)) (-4 *6 (-13 (-411 *5) (-941) (-1121))))) (-3291 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-5 *2 (-159 *5)) (-5 *1 (-559 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-941) (-1121))) (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))) (-1795 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121))) (-5 *1 (-559 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-941) (-1121))))) (-2132 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-5 *1 (-559 *4 *2 *3)) (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))) (-3609 (*1 *2 *3) (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))) (-4 *4 (-13 (-522) (-795))) (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121))) (-5 *1 (-559 *4 *5 *2)))))
-(-10 -7 (-15 -3609 (|#3| (-159 |#2|))) (-15 -2132 (|#2| |#3|)) (-15 -1795 (|#3| |#2|)) (-15 -3291 ((-159 |#2|) |#3|)) (-15 -2934 (|#3| |#3| (-597 (-570 |#3|)) (-597 (-1099)))))
-((-2283 (($ (-1 (-110) |#1|) $) 17)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2208 (($ (-1 |#1| |#1|) |#1|) 9)) (-2257 (($ (-1 (-110) |#1|) $) 13)) (-2271 (($ (-1 (-110) |#1|) $) 15)) (-2377 (((-1080 |#1|) $) 18)) (-2366 (((-804) $) NIL)))
-(((-560 |#1|) (-13 (-571 (-804)) (-10 -8 (-15 -3217 ($ (-1 |#1| |#1|) $)) (-15 -2257 ($ (-1 (-110) |#1|) $)) (-15 -2271 ($ (-1 (-110) |#1|) $)) (-15 -2283 ($ (-1 (-110) |#1|) $)) (-15 -2208 ($ (-1 |#1| |#1|) |#1|)) (-15 -2377 ((-1080 |#1|) $)))) (-1135)) (T -560))
-((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2271 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2208 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3)))) (-2377 (*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-560 *3)) (-4 *3 (-1135)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3217 ($ (-1 |#1| |#1|) $)) (-15 -2257 ($ (-1 (-110) |#1|) $)) (-15 -2271 ($ (-1 (-110) |#1|) $)) (-15 -2283 ($ (-1 (-110) |#1|) $)) (-15 -2208 ($ (-1 |#1| |#1|) |#1|)) (-15 -2377 ((-1080 |#1|) $))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719)) NIL (|has| |#1| (-23)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2337 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-2763 (((-110) $ (-719)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3334 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3691 (($ $ $) NIL (|has| |#1| (-984)))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2339 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-561 |#1| |#2|) (-1179 |#1|) (-1135) (-530)) (T -561))
-NIL
-(-1179 |#1|)
-((-2097 (((-1186) $ |#2| |#2|) 36)) (-4010 ((|#2| $) 23)) (-1549 ((|#2| $) 21)) (-3583 (($ (-1 |#3| |#3|) $) 32)) (-3217 (($ (-1 |#3| |#3|) $) 30)) (-3048 ((|#3| $) 26)) (-1522 (($ $ |#3|) 33)) (-4064 (((-110) |#3| $) 17)) (-2261 (((-597 |#3|) $) 15)) (-1902 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
-(((-562 |#1| |#2| |#3|) (-10 -8 (-15 -2097 ((-1186) |#1| |#2| |#2|)) (-15 -1522 (|#1| |#1| |#3|)) (-15 -3048 (|#3| |#1|)) (-15 -4010 (|#2| |#1|)) (-15 -1549 (|#2| |#1|)) (-15 -4064 ((-110) |#3| |#1|)) (-15 -2261 ((-597 |#3|) |#1|)) (-15 -1902 (|#3| |#1| |#2|)) (-15 -1902 (|#3| |#1| |#2| |#3|)) (-15 -3583 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3217 (|#1| (-1 |#3| |#3|) |#1|))) (-563 |#2| |#3|) (-1027) (-1135)) (T -562))
-NIL
-(-10 -8 (-15 -2097 ((-1186) |#1| |#2| |#2|)) (-15 -1522 (|#1| |#1| |#3|)) (-15 -3048 (|#3| |#1|)) (-15 -4010 (|#2| |#1|)) (-15 -1549 (|#2| |#1|)) (-15 -4064 ((-110) |#3| |#1|)) (-15 -2261 ((-597 |#3|) |#1|)) (-15 -1902 (|#3| |#1| |#2|)) (-15 -1902 (|#3| |#1| |#2| |#3|)) (-15 -3583 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3217 (|#1| (-1 |#3| |#3|) |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#2| (-1027)))) (-2097 (((-1186) $ |#1| |#1|) 40 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3592 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) 51)) (-3779 (((-597 |#2|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-4010 ((|#1| $) 43 (|has| |#1| (-795)))) (-2395 (((-597 |#2|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-1549 ((|#1| $) 44 (|has| |#1| (-795)))) (-3583 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#2| (-1027)))) (-3567 (((-597 |#1|) $) 46)) (-1927 (((-110) |#1| $) 47)) (-2624 (((-1046) $) 21 (|has| |#2| (-1027)))) (-3048 ((|#2| $) 42 (|has| |#1| (-795)))) (-1522 (($ $ |#2|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2632 (((-719) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4269))) (((-719) |#2| $) 28 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#2| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#2| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-563 |#1| |#2|) (-133) (-1027) (-1135)) (T -563))
-((-2261 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-597 *4)))) (-1927 (*1 *2 *3 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110)))) (-3567 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-597 *3)))) (-4064 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-563 *4 *3)) (-4 *4 (-1027)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-1549 (*1 *2 *1) (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-4010 (*1 *2 *1) (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027)) (-4 *2 (-795)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *3 (-795)) (-4 *2 (-1135)))) (-1522 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135)))) (-2097 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135)) (-5 *2 (-1186)))))
-(-13 (-468 |t#2|) (-270 |t#1| |t#2|) (-10 -8 (-15 -2261 ((-597 |t#2|) $)) (-15 -1927 ((-110) |t#1| $)) (-15 -3567 ((-597 |t#1|) $)) (IF (|has| |t#2| (-1027)) (IF (|has| $ (-6 -4269)) (-15 -4064 ((-110) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-795)) (PROGN (-15 -1549 (|t#1| $)) (-15 -4010 (|t#1| $)) (-15 -3048 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1522 ($ $ |t#2|)) (-15 -2097 ((-1186) $ |t#1| |t#1|))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#2| (-1027)) ((-571 (-804)) -1461 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804)))) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-468 |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-1027) |has| |#2| (-1027)) ((-1135) . T))
-((-2366 (((-804) $) 19) (((-127) $) 14) (($ (-127)) 13)))
-(((-564) (-13 (-571 (-804)) (-571 (-127)) (-10 -8 (-15 -2366 ($ (-127)))))) (T -564))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-564)))))
-(-13 (-571 (-804)) (-571 (-127)) (-10 -8 (-15 -2366 ($ (-127)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1181 (-637 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3990 (((-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2350 (($) NIL T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1383 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2603 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2228 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-4209 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2635 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3991 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-2862 (($ $ (-862)) NIL)) (-4005 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3581 (((-1095 |#1|) $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3988 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2670 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-2662 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1574 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2426 (((-862)) NIL (|has| |#2| (-348 |#1|)))) (-3485 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1667 (($ $ (-862)) NIL)) (-3943 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3470 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2305 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3832 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1257 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2465 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3846 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-1232 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3342 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-4138 (($ $ (-862)) NIL)) (-2602 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-2209 (((-1095 |#1|) $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2837 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2461 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1921 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2561 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3766 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2624 (((-1046) $) NIL)) (-3719 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1902 ((|#1| $ (-530)) NIL (|has| |#2| (-398 |#1|)))) (-2328 (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-348 |#1|))) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3260 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-3028 (((-597 (-893 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-597 (-893 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2607 (($ $ $) NIL)) (-3675 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2366 (((-804) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3220 (((-1181 $)) NIL (|has| |#2| (-398 |#1|)))) (-3758 (((-597 (-1181 |#1|))) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3003 (($ (-637 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-3980 (($ $ $) NIL)) (-2164 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3566 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1957 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) 24)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
-(((-565 |#1| |#2|) (-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2366 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-693 |#1|)) (T -565))
-((-2366 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-565 *3 *2)) (-4 *2 (-693 *3)))))
-(-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2366 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-3753 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) 33)) (-3527 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL) (($) NIL)) (-2097 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-1082) |#1|) 43)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#1| "failed") (-1082) $) 46)) (-2350 (($) NIL T CONST)) (-3102 (($ $ (-1082)) 24)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-1842 (((-3 |#1| "failed") (-1082) $) 47) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (|has| $ (-6 -4269)))) (-2383 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-2134 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-1214 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) 32)) (-3592 ((|#1| $ (-1082) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-1082)) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2453 (($ $) 48)) (-2551 (($ (-369)) 22) (($ (-369) (-1082)) 21)) (-3907 (((-369) $) 34)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269))) (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-1549 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-3282 (((-597 (-1082)) $) 39)) (-3718 (((-110) (-1082) $) NIL)) (-3816 (((-1082) $) 35)) (-1723 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-3567 (((-597 (-1082)) $) NIL)) (-1927 (((-110) (-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 ((|#1| $) NIL (|has| (-1082) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) "failed") (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-597 (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 37)) (-1902 ((|#1| $ (-1082) |#1|) NIL) ((|#1| $ (-1082)) 42)) (-1560 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL) (($) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-719) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (((-719) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-2366 (((-804) $) 20)) (-3422 (($ $) 25)) (-2242 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 19)) (-2267 (((-719) $) 41 (|has| $ (-6 -4269)))))
-(((-566 |#1|) (-13 (-345 (-369) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) (-1112 (-1082) |#1|) (-10 -8 (-6 -4269) (-15 -2453 ($ $)))) (-1027)) (T -566))
-((-2453 (*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1027)))))
-(-13 (-345 (-369) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) (-1112 (-1082) |#1|) (-10 -8 (-6 -4269) (-15 -2453 ($ $))))
-((-4197 (((-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 15)) (-3282 (((-597 |#2|) $) 19)) (-3718 (((-110) |#2| $) 12)))
-(((-567 |#1| |#2| |#3|) (-10 -8 (-15 -3282 ((-597 |#2|) |#1|)) (-15 -3718 ((-110) |#2| |#1|)) (-15 -4197 ((-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|))) (-568 |#2| |#3|) (-1027) (-1027)) (T -567))
-NIL
-(-10 -8 (-15 -3282 ((-597 |#2|) |#1|)) (-15 -3718 ((-110) |#2| |#1|)) (-15 -4197 ((-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)))
-((-2352 (((-110) $ $) 19 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 55 (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) 61)) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 62)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 54 (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 56 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-3282 (((-597 |#1|) $) 63)) (-3718 (((-110) |#1| $) 64)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 39)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 40)) (-2624 (((-1046) $) 21 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 51)) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 41)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) 26 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 25 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 24 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 23 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1560 (($) 49) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 48)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 50)) (-2366 (((-804) $) 18 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 42)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-568 |#1| |#2|) (-133) (-1027) (-1027)) (T -568))
-((-3718 (*1 *2 *3 *1) (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-110)))) (-3282 (*1 *2 *1) (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-5 *2 (-597 *3)))) (-1842 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-2767 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(-13 (-212 (-2 (|:| -3078 |t#1|) (|:| -1874 |t#2|))) (-10 -8 (-15 -3718 ((-110) |t#1| $)) (-15 -3282 ((-597 |t#1|) $)) (-15 -1842 ((-3 |t#2| "failed") |t#1| $)) (-15 -2767 ((-3 |t#2| "failed") |t#1| $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((-99) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) ((-571 (-804)) -1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))) ((-144 #0#) . T) ((-572 (-506)) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-291 #0#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-468 #0#) . T) ((-491 #0# #0#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-1027) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) ((-1135) . T))
-((-1509 (((-570 |#2|) |#1|) 15)) (-4154 (((-3 |#1| "failed") (-570 |#2|)) 19)))
-(((-569 |#1| |#2|) (-10 -7 (-15 -1509 ((-570 |#2|) |#1|)) (-15 -4154 ((-3 |#1| "failed") (-570 |#2|)))) (-795) (-795)) (T -569))
-((-4154 (*1 *2 *3) (|partial| -12 (-5 *3 (-570 *4)) (-4 *4 (-795)) (-4 *2 (-795)) (-5 *1 (-569 *2 *4)))) (-1509 (*1 *2 *3) (-12 (-5 *2 (-570 *4)) (-5 *1 (-569 *3 *4)) (-4 *3 (-795)) (-4 *4 (-795)))))
-(-10 -7 (-15 -1509 ((-570 |#2|) |#1|)) (-15 -4154 ((-3 |#1| "failed") (-570 |#2|))))
-((-2352 (((-110) $ $) NIL)) (-3401 (((-3 (-1099) "failed") $) 37)) (-1664 (((-1186) $ (-719)) 26)) (-2027 (((-719) $) 25)) (-4124 (((-112) $) 12)) (-3907 (((-1099) $) 20)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-1990 (($ (-112) (-597 |#1|) (-719)) 30) (($ (-1099)) 31)) (-1826 (((-110) $ (-112)) 18) (((-110) $ (-1099)) 16)) (-4156 (((-719) $) 22)) (-2624 (((-1046) $) NIL)) (-3260 (((-833 (-530)) $) 77 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 84 (|has| |#1| (-572 (-833 (-360))))) (((-506) $) 69 (|has| |#1| (-572 (-506))))) (-2366 (((-804) $) 55)) (-3117 (((-597 |#1|) $) 24)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 41)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 42)))
-(((-570 |#1|) (-13 (-129) (-825 |#1|) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -4124 ((-112) $)) (-15 -3117 ((-597 |#1|) $)) (-15 -4156 ((-719) $)) (-15 -1990 ($ (-112) (-597 |#1|) (-719))) (-15 -1990 ($ (-1099))) (-15 -3401 ((-3 (-1099) "failed") $)) (-15 -1826 ((-110) $ (-112))) (-15 -1826 ((-110) $ (-1099))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|))) (-795)) (T -570))
-((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-4124 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-3117 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-1990 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-112)) (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-795)) (-5 *1 (-570 *5)))) (-1990 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-3401 (*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))) (-1826 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795)))) (-1826 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795)))))
-(-13 (-129) (-825 |#1|) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -4124 ((-112) $)) (-15 -3117 ((-597 |#1|) $)) (-15 -4156 ((-719) $)) (-15 -1990 ($ (-112) (-597 |#1|) (-719))) (-15 -1990 ($ (-1099))) (-15 -3401 ((-3 (-1099) "failed") $)) (-15 -1826 ((-110) $ (-112))) (-15 -1826 ((-110) $ (-1099))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
-((-2366 ((|#1| $) 6)))
-(((-571 |#1|) (-133) (-1135)) (T -571))
-((-2366 (*1 *2 *1) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1135)))))
-(-13 (-10 -8 (-15 -2366 (|t#1| $))))
-((-3260 ((|#1| $) 6)))
-(((-572 |#1|) (-133) (-1135)) (T -572))
-((-3260 (*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1135)))))
-(-13 (-10 -8 (-15 -3260 (|t#1| $))))
-((-2606 (((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)) 15) (((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 16)))
-(((-573 |#1| |#2|) (-10 -7 (-15 -2606 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -2606 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)))) (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -573))
-((-2606 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-1095 (-388 *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-388 *6)))) (-2606 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-1095 (-388 *5))) (-5 *1 (-573 *4 *5)) (-5 *3 (-388 *5)))))
-(-10 -7 (-15 -2606 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -2606 ((-3 (-1095 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|))))
-((-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10)))
-(((-574 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-575 |#2|) (-984)) (T -574))
-NIL
-(-10 -8 (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 34)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
-(((-575 |#1|) (-133) (-984)) (T -575))
-((-2366 (*1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-984)))))
-(-13 (-984) (-599 |t#1|) (-10 -8 (-15 -2366 ($ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1867 (((-530) $) NIL (|has| |#1| (-793)))) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2514 (((-110) $) NIL (|has| |#1| (-793)))) (-2731 (((-110) $) NIL)) (-1918 ((|#1| $) 13)) (-2166 (((-110) $) NIL (|has| |#1| (-793)))) (-2508 (($ $ $) NIL (|has| |#1| (-793)))) (-1817 (($ $ $) NIL (|has| |#1| (-793)))) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1928 ((|#3| $) 15)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL)) (-3300 (((-719)) 20)) (-3934 (($ $) NIL (|has| |#1| (-793)))) (-3080 (($) NIL T CONST)) (-3093 (($) 12 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2364 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-576 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -2364 ($ $ |#3|)) (-15 -2364 ($ |#1| |#3|)) (-15 -1918 (|#1| $)) (-15 -1928 (|#3| $)))) (-37 |#2|) (-162) (|SubsetCategory| (-675) |#2|)) (T -576))
-((-2364 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-576 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-675) *4)))) (-2364 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-576 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-675) *4)))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-576 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-675) *3)))) (-1928 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4)) (-5 *1 (-576 *3 *4 *2)) (-4 *3 (-37 *4)))))
-(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (-15 -2364 ($ $ |#3|)) (-15 -2364 ($ |#1| |#3|)) (-15 -1918 (|#1| $)) (-15 -1928 (|#3| $))))
-((-1599 ((|#2| |#2| (-1099) (-1099)) 18)))
-(((-577 |#1| |#2|) (-10 -7 (-15 -1599 (|#2| |#2| (-1099) (-1099)))) (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-900) (-29 |#1|))) (T -577))
-((-1599 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530)))) (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-29 *4))))))
-(-10 -7 (-15 -1599 (|#2| |#2| (-1099) (-1099))))
-((-2352 (((-110) $ $) 56)) (-1813 (((-110) $) 52)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-4112 ((|#1| $) 49)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2026 (((-2 (|:| -2605 $) (|:| -1423 (-388 |#2|))) (-388 |#2|)) 97 (|has| |#1| (-344)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) 24)) (-2707 (((-3 $ "failed") $) 75)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-2031 (((-530) $) 19)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) 36)) (-2725 (($ |#1| (-530)) 21)) (-2533 ((|#1| $) 51)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) 87 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ $) 79)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2356 (((-719) $) 99 (|has| |#1| (-344)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 98 (|has| |#1| (-344)))) (-3289 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-1429 (((-530) $) 34)) (-3260 (((-388 |#2|) $) 42)) (-2366 (((-804) $) 62) (($ (-530)) 32) (($ $) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 31) (($ |#2|) 22)) (-4085 ((|#1| $ (-530)) 63)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 29)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 9 T CONST)) (-3093 (($) 12 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2248 (((-110) $ $) 17)) (-2351 (($ $) 46) (($ $ $) NIL)) (-2339 (($ $ $) 76)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 26) (($ $ $) 44)))
-(((-578 |#1| |#2|) (-13 (-214 |#2|) (-522) (-572 (-388 |#2|)) (-392 |#1|) (-975 |#2|) (-10 -8 (-15 -3668 ((-110) $)) (-15 -1429 ((-530) $)) (-15 -2031 ((-530) $)) (-15 -2562 ($ $)) (-15 -2533 (|#1| $)) (-15 -4112 (|#1| $)) (-15 -4085 (|#1| $ (-530))) (-15 -2725 ($ |#1| (-530))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -2026 ((-2 (|:| -2605 $) (|:| -1423 (-388 |#2|))) (-388 |#2|)))) |%noBranch|))) (-522) (-1157 |#1|)) (T -578))
-((-3668 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-110)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-1429 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-2031 (*1 *2 *1) (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4)) (-4 *4 (-1157 *3)))) (-2562 (*1 *1 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-2533 (*1 *2 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-4112 (*1 *2 *1) (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1157 *2)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4)) (-4 *4 (-1157 *2)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-522)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -2605 (-578 *4 *5)) (|:| -1423 (-388 *5)))) (-5 *1 (-578 *4 *5)) (-5 *3 (-388 *5)))))
-(-13 (-214 |#2|) (-522) (-572 (-388 |#2|)) (-392 |#1|) (-975 |#2|) (-10 -8 (-15 -3668 ((-110) $)) (-15 -1429 ((-530) $)) (-15 -2031 ((-530) $)) (-15 -2562 ($ $)) (-15 -2533 (|#1| $)) (-15 -4112 (|#1| $)) (-15 -4085 (|#1| $ (-530))) (-15 -2725 ($ |#1| (-530))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -2026 ((-2 (|:| -2605 $) (|:| -1423 (-388 |#2|))) (-388 |#2|)))) |%noBranch|)))
-((-1512 (((-597 |#6|) (-597 |#4|) (-110)) 47)) (-2769 ((|#6| |#6|) 40)))
-(((-579 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2769 (|#6| |#6|)) (-15 -1512 ((-597 |#6|) (-597 |#4|) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|) (-1036 |#1| |#2| |#3| |#4|)) (T -579))
-((-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *10)) (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *10 (-1036 *5 *6 *7 *8)))) (-2769 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *2 (-1036 *3 *4 *5 *6)))))
-(-10 -7 (-15 -2769 (|#6| |#6|)) (-15 -1512 ((-597 |#6|) (-597 |#4|) (-110))))
-((-1250 (((-110) |#3| (-719) (-597 |#3|)) 23)) (-3860 (((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3721 (-597 (-2 (|:| |irr| |#4|) (|:| -2075 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|)) 55)))
-(((-580 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1250 ((-110) |#3| (-719) (-597 |#3|))) (-15 -3860 ((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3721 (-597 (-2 (|:| |irr| |#4|) (|:| -2075 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|)))) (-795) (-741) (-289) (-890 |#3| |#2| |#1|)) (T -580))
-((-3860 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -3721 (-597 (-2 (|:| |irr| *10) (|:| -2075 (-530))))))) (-5 *6 (-597 *3)) (-5 *7 (-597 *8)) (-4 *8 (-795)) (-4 *3 (-289)) (-4 *10 (-890 *3 *9 *8)) (-4 *9 (-741)) (-5 *2 (-2 (|:| |polfac| (-597 *10)) (|:| |correct| *3) (|:| |corrfact| (-597 (-1095 *3))))) (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-597 (-1095 *3))))) (-1250 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-719)) (-5 *5 (-597 *3)) (-4 *3 (-289)) (-4 *6 (-795)) (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-580 *6 *7 *3 *8)) (-4 *8 (-890 *3 *7 *6)))))
-(-10 -7 (-15 -1250 ((-110) |#3| (-719) (-597 |#3|))) (-15 -3860 ((-3 (-2 (|:| |polfac| (-597 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-597 (-1095 |#3|)))) "failed") |#3| (-597 (-1095 |#3|)) (-2 (|:| |contp| |#3|) (|:| -3721 (-597 (-2 (|:| |irr| |#4|) (|:| -2075 (-530)))))) (-597 |#3|) (-597 |#1|) (-597 |#3|))))
-((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2627 (($ $) 67)) (-2168 (((-615 |#1| |#2|) $) 52)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 70)) (-3469 (((-597 (-276 |#2|)) $ $) 33)) (-2624 (((-1046) $) NIL)) (-2853 (($ (-615 |#1| |#2|)) 48)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 58) (((-1194 |#1| |#2|) $) NIL) (((-1199 |#1| |#2|) $) 66)) (-3093 (($) 53 T CONST)) (-3091 (((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $) 31)) (-1750 (((-597 (-615 |#1| |#2|)) (-597 |#1|)) 65)) (-1537 (((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $) 37)) (-2248 (((-110) $ $) 54)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 44)))
-(((-581 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2853 ($ (-615 |#1| |#2|))) (-15 -2168 ((-615 |#1| |#2|) $)) (-15 -1537 ((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $)) (-15 -2366 ((-1194 |#1| |#2|) $)) (-15 -2366 ((-1199 |#1| |#2|) $)) (-15 -2627 ($ $)) (-15 -3702 ((-597 |#1|) $)) (-15 -1750 ((-597 (-615 |#1| |#2|)) (-597 |#1|))) (-15 -3091 ((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $)) (-15 -3469 ((-597 (-276 |#2|)) $ $)))) (-795) (-13 (-162) (-666 (-388 (-530)))) (-862)) (T -581))
-((-2853 (*1 *1 *2) (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-5 *1 (-581 *3 *4 *5)) (-14 *5 (-862)))) (-2168 (*1 *2 *1) (-12 (-5 *2 (-615 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-834 *3)) (|:| |c| *4)))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-581 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-13 (-162) (-666 (-388 (-530))))) (-14 *4 (-862)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-615 *4 *5))) (-5 *1 (-581 *4 *5 *6)) (-4 *5 (-13 (-162) (-666 (-388 (-530))))) (-14 *6 (-862)))) (-3091 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-622 *3)) (|:| |c| *4)))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))) (-3469 (*1 *2 *1 *1) (-12 (-5 *2 (-597 (-276 *4))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
-(-13 (-453) (-10 -8 (-15 -2853 ($ (-615 |#1| |#2|))) (-15 -2168 ((-615 |#1| |#2|) $)) (-15 -1537 ((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $)) (-15 -2366 ((-1194 |#1| |#2|) $)) (-15 -2366 ((-1199 |#1| |#2|) $)) (-15 -2627 ($ $)) (-15 -3702 ((-597 |#1|) $)) (-15 -1750 ((-597 (-615 |#1| |#2|)) (-597 |#1|))) (-15 -3091 ((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $)) (-15 -3469 ((-597 (-276 |#2|)) $ $))))
-((-1512 (((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)) 72) (((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110)) 58)) (-3669 (((-110) (-597 (-728 |#1| (-806 |#2|)))) 23)) (-2750 (((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)) 71)) (-3971 (((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110)) 57)) (-1241 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|)))) 27)) (-2845 (((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|)))) 26)))
-(((-582 |#1| |#2|) (-10 -7 (-15 -3669 ((-110) (-597 (-728 |#1| (-806 |#2|))))) (-15 -2845 ((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|))))) (-15 -1241 ((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))))) (-15 -3971 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2750 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -1512 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -1512 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110)))) (-432) (-597 (-1099))) (T -582))
-((-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6))))) (-5 *1 (-582 *5 *6)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))) (-2750 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6))))) (-5 *1 (-582 *5 *6)))) (-3971 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-582 *5 *6)))) (-1241 (*1 *2 *2) (-12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432)) (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))) (-2845 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432)) (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))) (-3669 (*1 *2 *3) (-12 (-5 *3 (-597 (-728 *4 (-806 *5)))) (-4 *4 (-432)) (-14 *5 (-597 (-1099))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)))))
-(-10 -7 (-15 -3669 ((-110) (-597 (-728 |#1| (-806 |#2|))))) (-15 -2845 ((-3 (-597 (-728 |#1| (-806 |#2|))) "failed") (-597 (-728 |#1| (-806 |#2|))))) (-15 -1241 ((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))))) (-15 -3971 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -2750 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -1512 ((-597 (-981 |#1| |#2|)) (-597 (-728 |#1| (-806 |#2|))) (-110))) (-15 -1512 ((-597 (-1070 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|)))) (-597 (-728 |#1| (-806 |#2|))) (-110))))
-((-2386 (($ $) 38)) (-2244 (($ $) 21)) (-2360 (($ $) 37)) (-2219 (($ $) 22)) (-2409 (($ $) 36)) (-2269 (($ $) 23)) (-1948 (($) 48)) (-2168 (($ $) 45)) (-1890 (($ $) 17)) (-1900 (($ $ (-1020 $)) 7) (($ $ (-1099)) 6)) (-2853 (($ $) 46)) (-2172 (($ $) 15)) (-2206 (($ $) 16)) (-2421 (($ $) 35)) (-2281 (($ $) 24)) (-2398 (($ $) 34)) (-2254 (($ $) 25)) (-2373 (($ $) 33)) (-2231 (($ $) 26)) (-2459 (($ $) 44)) (-2314 (($ $) 32)) (-2434 (($ $) 43)) (-2293 (($ $) 31)) (-2485 (($ $) 42)) (-2334 (($ $) 30)) (-3632 (($ $) 41)) (-2347 (($ $) 29)) (-2472 (($ $) 40)) (-2324 (($ $) 28)) (-2446 (($ $) 39)) (-2304 (($ $) 27)) (-2318 (($ $) 19)) (-1870 (($ $) 20)) (-2703 (($ $) 18)) (** (($ $ $) 47)))
-(((-583) (-133)) (T -583))
-((-1870 (*1 *1 *1) (-4 *1 (-583))) (-2318 (*1 *1 *1) (-4 *1 (-583))) (-2703 (*1 *1 *1) (-4 *1 (-583))) (-1890 (*1 *1 *1) (-4 *1 (-583))) (-2206 (*1 *1 *1) (-4 *1 (-583))) (-2172 (*1 *1 *1) (-4 *1 (-583))))
-(-13 (-900) (-1121) (-10 -8 (-15 -1870 ($ $)) (-15 -2318 ($ $)) (-15 -2703 ($ $)) (-15 -1890 ($ $)) (-15 -2206 ($ $)) (-15 -2172 ($ $))))
-(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-900) . T) ((-1121) . T) ((-1124) . T))
-((-4124 (((-112) (-112)) 83)) (-1890 ((|#2| |#2|) 30)) (-1900 ((|#2| |#2| (-1020 |#2|)) 79) ((|#2| |#2| (-1099)) 52)) (-2172 ((|#2| |#2|) 29)) (-2206 ((|#2| |#2|) 31)) (-4195 (((-110) (-112)) 34)) (-2318 ((|#2| |#2|) 26)) (-1870 ((|#2| |#2|) 28)) (-2703 ((|#2| |#2|) 27)))
-(((-584 |#1| |#2|) (-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -1870 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2703 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -2172 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -1900 (|#2| |#2| (-1099))) (-15 -1900 (|#2| |#2| (-1020 |#2|)))) (-13 (-795) (-522)) (-13 (-411 |#1|) (-941) (-1121))) (T -584))
-((-1900 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2)))) (-1900 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121))))) (-2206 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2172 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-1890 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2703 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-2318 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-1870 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2)) (-4 *2 (-13 (-411 *3) (-941) (-1121))))) (-4124 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *4)) (-4 *4 (-13 (-411 *3) (-941) (-1121))))) (-4195 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-584 *4 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))))))
-(-10 -7 (-15 -4195 ((-110) (-112))) (-15 -4124 ((-112) (-112))) (-15 -1870 (|#2| |#2|)) (-15 -2318 (|#2| |#2|)) (-15 -2703 (|#2| |#2|)) (-15 -1890 (|#2| |#2|)) (-15 -2172 (|#2| |#2|)) (-15 -2206 (|#2| |#2|)) (-15 -1900 (|#2| |#2| (-1099))) (-15 -1900 (|#2| |#2| (-1020 |#2|))))
-((-3392 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 53)) (-1339 (((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 68)) (-1654 (((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|)) 70) (((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|)) 69)) (-3336 (((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|))) 108)) (-1908 (((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 83)) (-2987 (((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|))) 118)) (-3672 (((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|))) 58)) (-4227 (((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|))) 41)) (-1910 (((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|))) 50)) (-3069 (((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|))) 91)))
-(((-585 |#1| |#2|) (-10 -7 (-15 -3336 ((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|)))) (-15 -2987 ((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|)))) (-15 -1339 ((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1654 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -1654 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -4227 ((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -3672 ((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|)))) (-15 -3069 ((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -1908 ((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1910 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -3392 ((-460 |#1| |#2|) (-230 |#1| |#2|)))) (-597 (-1099)) (-432)) (T -585))
-((-3392 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-460 *4 *5)) (-5 *1 (-585 *4 *5)))) (-1910 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-230 *4 *5))) (-5 *2 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))) (-1908 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-806 *4)) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))) (-3069 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-230 *5 *6))) (-4 *6 (-432)) (-5 *2 (-230 *5 *6)) (-14 *5 (-597 (-1099))) (-5 *1 (-585 *5 *6)))) (-3672 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-460 *5 *6))) (-5 *3 (-460 *5 *6)) (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-1181 *6)) (-5 *1 (-585 *5 *6)))) (-4227 (*1 *2 *2) (-12 (-5 *2 (-597 (-460 *3 *4))) (-14 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-585 *3 *4)))) (-1654 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))) (-1654 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5)) (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6)) (-4 *6 (-432)))) (-1339 (*1 *2 *3) (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-597 (-230 *4 *5))) (-5 *1 (-585 *4 *5)))) (-2987 (*1 *2 *3) (-12 (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |glbase| (-597 (-230 *4 *5))) (|:| |glval| (-597 (-530))))) (-5 *1 (-585 *4 *5)) (-5 *3 (-597 (-230 *4 *5))))) (-3336 (*1 *2 *3) (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |gblist| (-597 (-230 *4 *5))) (|:| |gvlist| (-597 (-530))))) (-5 *1 (-585 *4 *5)))))
-(-10 -7 (-15 -3336 ((-2 (|:| |gblist| (-597 (-230 |#1| |#2|))) (|:| |gvlist| (-597 (-530)))) (-597 (-460 |#1| |#2|)))) (-15 -2987 ((-2 (|:| |glbase| (-597 (-230 |#1| |#2|))) (|:| |glval| (-597 (-530)))) (-597 (-230 |#1| |#2|)))) (-15 -1339 ((-597 (-230 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1654 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -1654 ((-460 |#1| |#2|) (-597 (-460 |#1| |#2|)) (-806 |#1|))) (-15 -4227 ((-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -3672 ((-1181 |#2|) (-460 |#1| |#2|) (-597 (-460 |#1| |#2|)))) (-15 -3069 ((-230 |#1| |#2|) (-597 |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -1908 ((-597 (-460 |#1| |#2|)) (-806 |#1|) (-597 (-460 |#1| |#2|)) (-597 (-460 |#1| |#2|)))) (-15 -1910 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-597 (-230 |#1| |#2|)))) (-15 -3392 ((-460 |#1| |#2|) (-230 |#1| |#2|))))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL)) (-2097 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-51) $ (-1082) (-51)) 16) (((-51) $ (-1099) (-51)) 17)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 (-51) "failed") (-1082) $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-1842 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-51) "failed") (-1082) $) NIL)) (-2383 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-51) $ (-1082) (-51)) NIL (|has| $ (-6 -4270)))) (-3532 (((-51) $ (-1082)) NIL)) (-3779 (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-2453 (($ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2395 (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-1549 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4243 (($ (-369)) 9)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-3282 (((-597 (-1082)) $) NIL)) (-3718 (((-110) (-1082) $) NIL)) (-1723 (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL)) (-3567 (((-597 (-1082)) $) NIL)) (-1927 (((-110) (-1082) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-3048 (((-51) $) NIL (|has| (-1082) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) "failed") (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL)) (-1522 (($ $ (-51)) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ $ (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-2261 (((-597 (-51)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-51) $ (-1082)) 14) (((-51) $ (-1082) (-51)) NIL) (((-51) $ (-1099)) 15)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 (-51))) (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-586) (-13 (-1112 (-1082) (-51)) (-10 -8 (-15 -4243 ($ (-369))) (-15 -2453 ($ $)) (-15 -1902 ((-51) $ (-1099))) (-15 -2552 ((-51) $ (-1099) (-51)))))) (T -586))
-((-4243 (*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-586)))) (-2453 (*1 *1 *1) (-5 *1 (-586))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-51)) (-5 *1 (-586)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1099)) (-5 *1 (-586)))))
-(-13 (-1112 (-1082) (-51)) (-10 -8 (-15 -4243 ($ (-369))) (-15 -2453 ($ $)) (-15 -1902 ((-51) $ (-1099))) (-15 -2552 ((-51) $ (-1099) (-51)))))
-((-2364 (($ $ |#2|) 10)))
-(((-587 |#1| |#2|) (-10 -8 (-15 -2364 (|#1| |#1| |#2|))) (-588 |#2|) (-162)) (T -587))
-NIL
-(-10 -8 (-15 -2364 (|#1| |#1| |#2|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2377 (($ $ $) 29)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 28 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-588 |#1|) (-133) (-162)) (T -588))
-((-2377 (*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-162)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
-(-13 (-666 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2377 ($ $ $)) (IF (|has| |t#1| (-344)) (-15 -2364 ($ $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1181 (-637 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3990 (((-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2350 (($) NIL T CONST)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1383 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2603 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2228 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-4209 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2635 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3991 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-2862 (($ $ (-862)) NIL)) (-4005 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3581 (((-1095 |#1|) $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3988 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2670 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-2662 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1574 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1181 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2426 (((-862)) NIL (|has| |#2| (-348 |#1|)))) (-3485 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1667 (($ $ (-862)) NIL)) (-3943 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3470 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2305 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3832 (((-3 $ "failed")) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-1257 (((-637 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2465 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3846 (((-637 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-1232 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-3342 (((-1095 (-893 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-4138 (($ $ (-862)) NIL)) (-2602 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-2209 (((-1095 |#1|) $) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2837 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2461 (((-1095 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1921 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2561 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3766 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2624 (((-1046) $) NIL)) (-3719 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1902 ((|#1| $ (-530)) NIL (|has| |#2| (-398 |#1|)))) (-2328 (((-637 |#1|) (-1181 $)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-637 |#1|) (-1181 $) (-1181 $)) NIL (|has| |#2| (-348 |#1|))) (((-1181 |#1|) $ (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-3260 (($ (-1181 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1181 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-3028 (((-597 (-893 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-597 (-893 |#1|)) (-1181 $)) NIL (|has| |#2| (-348 |#1|)))) (-2607 (($ $ $) NIL)) (-3675 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2366 (((-804) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3220 (((-1181 $)) NIL (|has| |#2| (-398 |#1|)))) (-3758 (((-597 (-1181 |#1|))) NIL (-1461 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-522))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-522)))))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3003 (($ (-637 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-3980 (($ $ $) NIL)) (-2164 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3566 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1957 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3080 (($) 15 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) 17)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-589 |#1| |#2|) (-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2366 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-693 |#1|)) (T -589))
-((-2366 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-589 *3 *2)) (-4 *2 (-693 *3)))))
-(-13 (-693 |#1|) (-571 |#2|) (-10 -8 (-15 -2366 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
-((-1492 (((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082)) 82) (((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|))) 104)) (-3129 (((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|))) 109)))
-(((-590 |#1| |#2|) (-10 -7 (-15 -1492 ((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|)))) (-15 -3129 ((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|)))) (-15 -1492 ((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082)))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -590))
-((-1492 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1082)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-788 *3)) (-5 *1 (-590 *6 *3)))) (-3129 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-276 (-781 *3))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-781 *3)) (-5 *1 (-590 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))) (-1492 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-788 *3))) (-4 *3 (-13 (-27) (-1121) (-411 *5))) (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-3 (-788 *3) (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed")) (|:| |rightHandLimit| (-3 (-788 *3) "failed"))) "failed")) (-5 *1 (-590 *5 *3)))))
-(-10 -7 (-15 -1492 ((-3 (-788 |#2|) (-2 (|:| |leftHandLimit| (-3 (-788 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-788 |#2|) "failed"))) "failed") |#2| (-276 (-788 |#2|)))) (-15 -3129 ((-3 (-781 |#2|) "failed") |#2| (-276 (-781 |#2|)))) (-15 -1492 ((-3 (-788 |#2|) "failed") |#2| (-276 |#2|) (-1082))))
-((-1492 (((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082)) 80) (((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 20) (((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|)))) 35)) (-3129 (((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 23) (((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|)))) 43)))
-(((-591 |#1|) (-10 -7 (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|))))) (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -3129 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|))))) (-15 -3129 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082)))) (-432)) (T -591))
-((-1492 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 (-388 (-893 *6)))) (-5 *5 (-1082)) (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-788 *3)) (-5 *1 (-591 *6)))) (-3129 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-432)) (-5 *2 (-781 *3)) (-5 *1 (-591 *5)))) (-3129 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-781 (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-781 (-388 (-893 *5)))) (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5))))) (-1492 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-432)) (-5 *2 (-3 (-788 *3) (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed")) (|:| |rightHandLimit| (-3 (-788 *3) "failed"))) "failed")) (-5 *1 (-591 *5)))) (-1492 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-788 (-893 *5)))) (-4 *5 (-432)) (-5 *2 (-3 (-788 (-388 (-893 *5))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 *5))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 *5))) "failed"))) "failed")) (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5))))))
-(-10 -7 (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-788 (-893 |#1|))))) (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-788 (-388 (-893 |#1|))) "failed"))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -3129 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-781 (-893 |#1|))))) (-15 -3129 ((-781 (-388 (-893 |#1|))) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -1492 ((-3 (-788 (-388 (-893 |#1|))) "failed") (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))) (-1082))))
-((-3951 (((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|) 57 (-3676 (|has| |#1| (-344)))) (((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|) 42 (|has| |#1| (-344)))) (-3523 (((-110) (-1181 |#2|)) 30)) (-2295 (((-3 (-1181 |#1|) "failed") (-1181 |#2|)) 33)))
-(((-592 |#1| |#2|) (-10 -7 (-15 -3523 ((-110) (-1181 |#2|))) (-15 -2295 ((-3 (-1181 |#1|) "failed") (-1181 |#2|))) (IF (|has| |#1| (-344)) (-15 -3951 ((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|)) (-15 -3951 ((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|)))) (-522) (-593 |#1|)) (T -592))
-((-3951 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-3676 (-4 *5 (-344))) (-4 *5 (-522)) (-5 *2 (-1181 (-388 *5))) (-5 *1 (-592 *5 *4)))) (-3951 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-4 *5 (-344)) (-4 *5 (-522)) (-5 *2 (-1181 *5)) (-5 *1 (-592 *5 *4)))) (-2295 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522)) (-5 *2 (-1181 *4)) (-5 *1 (-592 *4 *5)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522)) (-5 *2 (-110)) (-5 *1 (-592 *4 *5)))))
-(-10 -7 (-15 -3523 ((-110) (-1181 |#2|))) (-15 -2295 ((-3 (-1181 |#1|) "failed") (-1181 |#2|))) (IF (|has| |#1| (-344)) (-15 -3951 ((-3 (-1181 |#1|) "failed") (-1181 |#2|) |#2|)) (-15 -3951 ((-3 (-1181 (-388 |#1|)) "failed") (-1181 |#2|) |#2|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2329 (((-637 |#1|) (-637 $)) 34) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 33)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-593 |#1|) (-133) (-984)) (T -593))
-((-2329 (*1 *2 *3) (-12 (-5 *3 (-637 *1)) (-4 *1 (-593 *4)) (-4 *4 (-984)) (-5 *2 (-637 *4)))) (-2329 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-593 *5)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -2030 (-637 *5)) (|:| |vec| (-1181 *5)))))))
-(-13 (-984) (-10 -8 (-15 -2329 ((-637 |t#1|) (-637 $))) (-15 -2329 ((-2 (|:| -2030 (-637 |t#1|)) (|:| |vec| (-1181 |t#1|))) (-637 $) (-1181 $)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2918 ((|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|) 17) ((|#2| (-597 |#1|) (-597 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|)) 12)))
-(((-594 |#1| |#2|) (-10 -7 (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|))) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1|)) (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|)) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|)) (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|))) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|)))) (-1027) (-1135)) (T -594))
-((-2918 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2918 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-597 *5)) (-5 *4 (-597 *6)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *1 (-594 *5 *6)))) (-2918 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 *5)) (-4 *6 (-1027)) (-4 *5 (-1135)) (-5 *2 (-1 *5 *6)) (-5 *1 (-594 *6 *5)))) (-2918 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2)))) (-2918 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *6)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-594 *5 *6)))))
-(-10 -7 (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|))) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1|)) (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) |#2|)) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1| |#2|)) (-15 -2918 ((-1 |#2| |#1|) (-597 |#1|) (-597 |#2|) (-1 |#2| |#1|))) (-15 -2918 (|#2| (-597 |#1|) (-597 |#2|) |#1| (-1 |#2| |#1|))))
-((-2753 (((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|) 16)) (-2134 ((|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|) 18)) (-3217 (((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)) 13)))
-(((-595 |#1| |#2|) (-10 -7 (-15 -2753 ((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -3217 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|)))) (-1135) (-1135)) (T -595))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-597 *6)) (-5 *1 (-595 *5 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-597 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-595 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-597 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-597 *5)) (-5 *1 (-595 *6 *5)))))
-(-10 -7 (-15 -2753 ((-597 |#2|) (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-597 |#1|) |#2|)) (-15 -3217 ((-597 |#2|) (-1 |#2| |#1|) (-597 |#1|))))
-((-3217 (((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|)) 13)))
-(((-596 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|)))) (-1135) (-1135) (-1135)) (T -596))
-((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-597 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-597 *8)) (-5 *1 (-596 *6 *7 *8)))))
-(-10 -7 (-15 -3217 ((-597 |#3|) (-1 |#3| |#1| |#2|) (-597 |#1|) (-597 |#2|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3254 ((|#1| $) NIL)) (-2133 (($ $) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) $) NIL (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-1627 (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-1307 (($ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) NIL (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "rest" $) NIL (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2992 (($ $ $) 32 (|has| |#1| (-1027)))) (-2982 (($ $ $) 34 (|has| |#1| (-1027)))) (-2971 (($ $ $) 37 (|has| |#1| (-1027)))) (-2901 (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3245 ((|#1| $) NIL)) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3057 (($ $) NIL) (($ $ (-719)) NIL)) (-2287 (($ $) NIL (|has| |#1| (-1027)))) (-3077 (($ $) 31 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) NIL (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) NIL)) (-2383 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-2027 (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027))) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3059 (((-110) $) 9)) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4100 (($) 7)) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-2090 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3683 (($ $ $) NIL (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 33 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2939 (($ |#1|) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2407 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-2441 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-4083 (((-110) $) NIL)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) 36) ((|#1| $ (-530) |#1|) NIL)) (-2539 (((-530) $ $) NIL)) (-3715 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-4246 (((-110) $) NIL)) (-3697 (($ $) NIL)) (-3301 (($ $) NIL (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 45 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-1640 (($ |#1| $) 10)) (-1328 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3483 (($ $ $) 30) (($ |#1| $) NIL) (($ (-597 $)) NIL) (($ $ |#1|) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2192 (($ $ $) 11)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3987 (((-1082) $) 26 (|has| |#1| (-776))) (((-1082) $ (-110)) 27 (|has| |#1| (-776))) (((-1186) (-770) $) 28 (|has| |#1| (-776))) (((-1186) (-770) $ (-110)) 29 (|has| |#1| (-776)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-597 |#1|) (-13 (-617 |#1|) (-10 -8 (-15 -4100 ($)) (-15 -3059 ((-110) $)) (-15 -1640 ($ |#1| $)) (-15 -2192 ($ $ $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2992 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2971 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|))) (-1135)) (T -597))
-((-4100 (*1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-3059 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-597 *3)) (-4 *3 (-1135)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-2192 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))) (-2992 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))) (-2982 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))) (-2971 (*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
-(-13 (-617 |#1|) (-10 -8 (-15 -4100 ($)) (-15 -3059 ((-110) $)) (-15 -1640 ($ |#1| $)) (-15 -2192 ($ $ $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2992 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2971 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-776)) (-6 (-776)) |%noBranch|)))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3068 (($ |#1| |#1| $) 43)) (-3186 (((-110) $ (-719)) NIL)) (-2901 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-2287 (($ $) 45)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) 52 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 9 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 37)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) 46)) (-2441 (($ |#1| $) 26) (($ |#1| $ (-719)) 42)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2738 ((|#1| $) 48)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 21)) (-3958 (($) 25)) (-2761 (((-110) $) 50)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 59)) (-1560 (($) 23) (($ (-597 |#1|)) 18)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) 56 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 19)) (-3260 (((-506) $) 34 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-2366 (((-804) $) 14 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 22)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 61 (|has| |#1| (-1027)))) (-2267 (((-719) $) 16 (|has| $ (-6 -4269)))))
-(((-598 |#1|) (-13 (-643 |#1|) (-10 -8 (-6 -4269) (-15 -2761 ((-110) $)) (-15 -3068 ($ |#1| |#1| $)))) (-1027)) (T -598))
-((-2761 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1027)))) (-3068 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1027)))))
-(-13 (-643 |#1|) (-10 -8 (-6 -4269) (-15 -2761 ((-110) $)) (-15 -3068 ($ |#1| |#1| $))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23)))
-(((-599 |#1|) (-133) (-991)) (T -599))
-((* (*1 *1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-991)))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-3308 ((|#1| $) NIL)) (-2072 (($ $) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 59 (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| |#1| (-797))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797)))) (($ (-1 (-110) |#1| |#1|) $) 57 (|has| $ (-6 -4274)))) (-1332 (($ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) 23 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 21 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 22 (|has| $ (-6 -4274))) (($ $ "rest" $) 24 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) NIL)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-3297 ((|#1| $) NIL)) (-4082 (($) NIL T CONST)) (-4106 (($ $) 28 (|has| $ (-6 -4274)))) (-1828 (($ $) 29)) (-3062 (($ $) 18) (($ $ (-721)) 32)) (-2705 (($ $) 55 (|has| |#1| (-1030)))) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-1976 (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030))) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) (-1 (-110) |#1|) $) NIL)) (-2227 (((-598 |#1|) $) 27 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 31 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) 58)) (-3508 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 53 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2907 (($ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) 51 (|has| |#1| (-1030)))) (-2309 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-3944 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) 13) (($ $ (-721)) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2765 (((-110) $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 12)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) 17)) (-3781 (($) 16)) (-1785 ((|#1| $ "value") NIL) ((|#1| $ "first") 15) (($ $ "rest") 20) ((|#1| $ "last") NIL) (($ $ (-1151 (-531))) NIL) ((|#1| $ (-531)) NIL) ((|#1| $ (-531) |#1|) NIL)) (-2357 (((-531) $ $) NIL)) (-1551 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2930 (((-110) $) 34)) (-1958 (($ $) NIL)) (-2980 (($ $) NIL (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) 36)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) 35)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 26)) (-1818 (($ $ $) 54) (($ $ |#1|) NIL)) (-3536 (($ $ $) NIL) (($ |#1| $) 10) (($ (-598 $)) NIL) (($ $ |#1|) NIL)) (-2265 (((-806) $) 46 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 48 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 9 (|has| $ (-6 -4273)))))
+(((-497 |#1| |#2|) (-619 |#1|) (-1138) (-531)) (T -497))
+NIL
+(-619 |#1|)
+((-2800 ((|#4| |#4|) 27)) (-2277 (((-721) |#4|) 32)) (-4091 (((-721) |#4|) 33)) (-3001 (((-598 |#3|) |#4|) 40 (|has| |#3| (-6 -4274)))) (-2147 (((-3 |#4| "failed") |#4|) 51)) (-3298 ((|#4| |#4|) 44)) (-3253 ((|#1| |#4|) 43)))
+(((-498 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2800 (|#4| |#4|)) (-15 -2277 ((-721) |#4|)) (-15 -4091 ((-721) |#4|)) (IF (|has| |#3| (-6 -4274)) (-15 -3001 ((-598 |#3|) |#4|)) |%noBranch|) (-15 -3253 (|#1| |#4|)) (-15 -3298 (|#4| |#4|)) (-15 -2147 ((-3 |#4| "failed") |#4|))) (-344) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|)) (T -498))
+((-2147 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-3298 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344)) (-5 *1 (-498 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5)))) (-3001 (*1 *2 *3) (-12 (|has| *6 (-6 -4274)) (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-598 *6)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-4091 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-2277 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))))
+(-10 -7 (-15 -2800 (|#4| |#4|)) (-15 -2277 ((-721) |#4|)) (-15 -4091 ((-721) |#4|)) (IF (|has| |#3| (-6 -4274)) (-15 -3001 ((-598 |#3|) |#4|)) |%noBranch|) (-15 -3253 (|#1| |#4|)) (-15 -3298 (|#4| |#4|)) (-15 -2147 ((-3 |#4| "failed") |#4|)))
+((-2800 ((|#8| |#4|) 20)) (-3001 (((-598 |#3|) |#4|) 29 (|has| |#7| (-6 -4274)))) (-2147 (((-3 |#8| "failed") |#4|) 23)))
+(((-499 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -2800 (|#8| |#4|)) (-15 -2147 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4274)) (-15 -3001 ((-598 |#3|) |#4|)) |%noBranch|)) (-523) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|) (-934 |#1|) (-354 |#5|) (-354 |#5|) (-637 |#5| |#6| |#7|)) (T -499))
+((-3001 (*1 *2 *3) (-12 (|has| *9 (-6 -4274)) (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-934 *4)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)) (-5 *2 (-598 *6)) (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-637 *4 *5 *6)) (-4 *10 (-637 *7 *8 *9)))) (-2147 (*1 *2 *3) (|partial| -12 (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-934 *4)) (-4 *2 (-637 *7 *8 *9)) (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-637 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))) (-2800 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-4 *7 (-934 *4)) (-4 *2 (-637 *7 *8 *9)) (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-637 *4 *5 *6)) (-4 *8 (-354 *7)) (-4 *9 (-354 *7)))))
+(-10 -7 (-15 -2800 (|#8| |#4|)) (-15 -2147 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4274)) (-15 -3001 ((-598 |#3|) |#4|)) |%noBranch|))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721) (-721)) NIL)) (-1761 (($ $ $) NIL)) (-2096 (($ (-562 |#1| |#3|)) NIL) (($ $) NIL)) (-2719 (((-110) $) NIL)) (-3034 (($ $ (-531) (-531)) 12)) (-1987 (($ $ (-531) (-531)) NIL)) (-2159 (($ $ (-531) (-531) (-531) (-531)) NIL)) (-2870 (($ $) NIL)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3680 (($ $ (-531) (-531) $) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531)) $) NIL)) (-2398 (($ $ (-531) (-562 |#1| |#3|)) NIL)) (-3492 (($ $ (-531) (-562 |#1| |#2|)) NIL)) (-3264 (($ (-721) |#1|) NIL)) (-4082 (($) NIL T CONST)) (-2800 (($ $) 21 (|has| |#1| (-289)))) (-4011 (((-562 |#1| |#3|) $ (-531)) NIL)) (-2277 (((-721) $) 24 (|has| |#1| (-523)))) (-2693 ((|#1| $ (-531) (-531) |#1|) NIL)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-4091 (((-721) $) 26 (|has| |#1| (-523)))) (-3001 (((-598 (-562 |#1| |#2|)) $) 29 (|has| |#1| (-523)))) (-1548 (((-721) $) NIL)) (-3010 (($ (-721) (-721) |#1|) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#1| $) 19 (|has| |#1| (-6 (-4275 "*"))))) (-1271 (((-531) $) 10)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) 11)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#1|))) NIL)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3924 (((-598 (-598 |#1|)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2147 (((-3 $ "failed") $) 33 (|has| |#1| (-344)))) (-2069 (($ $ $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531))) NIL)) (-3223 (($ (-598 |#1|)) NIL) (($ (-598 $)) NIL)) (-1439 (((-110) $) NIL)) (-3253 ((|#1| $) 17 (|has| |#1| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3431 (((-562 |#1| |#2|) $ (-531)) NIL)) (-2265 (($ (-562 |#1| |#2|)) NIL) (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-531) $) NIL) (((-562 |#1| |#2|) $ (-562 |#1| |#2|)) NIL) (((-562 |#1| |#3|) (-562 |#1| |#3|) $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-500 |#1| |#2| |#3|) (-637 |#1| (-562 |#1| |#3|) (-562 |#1| |#2|)) (-986) (-531) (-531)) (T -500))
+NIL
+(-637 |#1| (-562 |#1| |#3|) (-562 |#1| |#2|))
+((-3796 (((-1098 |#1|) (-721)) 76)) (-1354 (((-1184 |#1|) (-1184 |#1|) (-864)) 69)) (-1558 (((-1189) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) |#1|) 84)) (-3727 (((-1184 |#1|) (-1184 |#1|) (-721)) 36)) (-1381 (((-1184 |#1|) (-864)) 71)) (-2044 (((-1184 |#1|) (-1184 |#1|) (-531)) 24)) (-2451 (((-1098 |#1|) (-1184 |#1|)) 77)) (-3323 (((-1184 |#1|) (-864)) 95)) (-3653 (((-110) (-1184 |#1|)) 80)) (-1899 (((-1184 |#1|) (-1184 |#1|) (-864)) 62)) (-1233 (((-1098 |#1|) (-1184 |#1|)) 89)) (-2211 (((-864) (-1184 |#1|)) 59)) (-2422 (((-1184 |#1|) (-1184 |#1|)) 30)) (-1889 (((-1184 |#1|) (-864) (-864)) 97)) (-4090 (((-1184 |#1|) (-1184 |#1|) (-1049) (-1049)) 23)) (-1887 (((-1184 |#1|) (-1184 |#1|) (-721) (-1049)) 37)) (-3523 (((-1184 (-1184 |#1|)) (-864)) 94)) (-2263 (((-1184 |#1|) (-1184 |#1|) (-1184 |#1|)) 81)) (** (((-1184 |#1|) (-1184 |#1|) (-531)) 45)) (* (((-1184 |#1|) (-1184 |#1|) (-1184 |#1|)) 25)))
+(((-501 |#1|) (-10 -7 (-15 -1558 ((-1189) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) |#1|)) (-15 -1381 ((-1184 |#1|) (-864))) (-15 -1889 ((-1184 |#1|) (-864) (-864))) (-15 -2451 ((-1098 |#1|) (-1184 |#1|))) (-15 -3796 ((-1098 |#1|) (-721))) (-15 -1887 ((-1184 |#1|) (-1184 |#1|) (-721) (-1049))) (-15 -3727 ((-1184 |#1|) (-1184 |#1|) (-721))) (-15 -4090 ((-1184 |#1|) (-1184 |#1|) (-1049) (-1049))) (-15 -2044 ((-1184 |#1|) (-1184 |#1|) (-531))) (-15 ** ((-1184 |#1|) (-1184 |#1|) (-531))) (-15 * ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2263 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -1899 ((-1184 |#1|) (-1184 |#1|) (-864))) (-15 -1354 ((-1184 |#1|) (-1184 |#1|) (-864))) (-15 -2422 ((-1184 |#1|) (-1184 |#1|))) (-15 -2211 ((-864) (-1184 |#1|))) (-15 -3653 ((-110) (-1184 |#1|))) (-15 -3523 ((-1184 (-1184 |#1|)) (-864))) (-15 -3323 ((-1184 |#1|) (-864))) (-15 -1233 ((-1098 |#1|) (-1184 |#1|)))) (-330)) (T -501))
+((-1233 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-1098 *4)) (-5 *1 (-501 *4)))) (-3323 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-3523 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 (-1184 *4))) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-3653 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-501 *4)))) (-2211 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-864)) (-5 *1 (-501 *4)))) (-2422 (*1 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) (-1354 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-864)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-1899 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-864)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-2263 (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-531)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-2044 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-531)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-4090 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1049)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-3727 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-501 *4)))) (-1887 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1184 *5)) (-5 *3 (-721)) (-5 *4 (-1049)) (-4 *5 (-330)) (-5 *1 (-501 *5)))) (-3796 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1098 *4)) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-2451 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-1098 *4)) (-5 *1 (-501 *4)))) (-1889 (*1 *2 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-1381 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4)) (-4 *4 (-330)))) (-1558 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))) (-4 *4 (-330)) (-5 *2 (-1189)) (-5 *1 (-501 *4)))))
+(-10 -7 (-15 -1558 ((-1189) (-1184 (-598 (-2 (|:| -3482 |#1|) (|:| -1889 (-1049))))) |#1|)) (-15 -1381 ((-1184 |#1|) (-864))) (-15 -1889 ((-1184 |#1|) (-864) (-864))) (-15 -2451 ((-1098 |#1|) (-1184 |#1|))) (-15 -3796 ((-1098 |#1|) (-721))) (-15 -1887 ((-1184 |#1|) (-1184 |#1|) (-721) (-1049))) (-15 -3727 ((-1184 |#1|) (-1184 |#1|) (-721))) (-15 -4090 ((-1184 |#1|) (-1184 |#1|) (-1049) (-1049))) (-15 -2044 ((-1184 |#1|) (-1184 |#1|) (-531))) (-15 ** ((-1184 |#1|) (-1184 |#1|) (-531))) (-15 * ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -2263 ((-1184 |#1|) (-1184 |#1|) (-1184 |#1|))) (-15 -1899 ((-1184 |#1|) (-1184 |#1|) (-864))) (-15 -1354 ((-1184 |#1|) (-1184 |#1|) (-864))) (-15 -2422 ((-1184 |#1|) (-1184 |#1|))) (-15 -2211 ((-864) (-1184 |#1|))) (-15 -3653 ((-110) (-1184 |#1|))) (-15 -3523 ((-1184 (-1184 |#1|)) (-864))) (-15 -3323 ((-1184 |#1|) (-864))) (-15 -1233 ((-1098 |#1|) (-1184 |#1|))))
+((-2130 (((-1 |#1| |#1|) |#1|) 11)) (-1607 (((-1 |#1| |#1|)) 10)))
+(((-502 |#1|) (-10 -7 (-15 -1607 ((-1 |#1| |#1|))) (-15 -2130 ((-1 |#1| |#1|) |#1|))) (-13 (-677) (-25))) (T -502))
+((-2130 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-502 *3)) (-4 *3 (-13 (-677) (-25))))) (-1607 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-502 *3)) (-4 *3 (-13 (-677) (-25))))))
+(-10 -7 (-15 -1607 ((-1 |#1| |#1|))) (-15 -2130 ((-1 |#1| |#1|) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3818 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-2669 (($ (-721) |#1|) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 (-721) (-721)) $) NIL)) (-1477 ((|#1| $) NIL)) (-2475 (((-721) $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 20)) (-3035 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL)))
+(((-503 |#1|) (-13 (-743) (-487 (-721) |#1|)) (-797)) (T -503))
+NIL
+(-13 (-743) (-487 (-721) |#1|))
+((-3057 (((-598 |#2|) (-1098 |#1|) |#3|) 83)) (-3760 (((-598 (-2 (|:| |outval| |#2|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#2|))))) (-639 |#1|) |#3| (-1 (-399 (-1098 |#1|)) (-1098 |#1|))) 100)) (-1392 (((-1098 |#1|) (-639 |#1|)) 95)))
+(((-504 |#1| |#2| |#3|) (-10 -7 (-15 -1392 ((-1098 |#1|) (-639 |#1|))) (-15 -3057 ((-598 |#2|) (-1098 |#1|) |#3|)) (-15 -3760 ((-598 (-2 (|:| |outval| |#2|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#2|))))) (-639 |#1|) |#3| (-1 (-399 (-1098 |#1|)) (-1098 |#1|))))) (-344) (-344) (-13 (-344) (-795))) (T -504))
+((-3760 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *6)) (-5 *5 (-1 (-399 (-1098 *6)) (-1098 *6))) (-4 *6 (-344)) (-5 *2 (-598 (-2 (|:| |outval| *7) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 *7)))))) (-5 *1 (-504 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-795))))) (-3057 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *5)) (-4 *5 (-344)) (-5 *2 (-598 *6)) (-5 *1 (-504 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795))))) (-1392 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-344)) (-5 *2 (-1098 *4)) (-5 *1 (-504 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-795))))))
+(-10 -7 (-15 -1392 ((-1098 |#1|) (-639 |#1|))) (-15 -3057 ((-598 |#2|) (-1098 |#1|) |#3|)) (-15 -3760 ((-598 (-2 (|:| |outval| |#2|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#2|))))) (-639 |#1|) |#3| (-1 (-399 (-1098 |#1|)) (-1098 |#1|)))))
+((-1447 (((-790 (-531))) 12)) (-1458 (((-790 (-531))) 14)) (-1893 (((-783 (-531))) 9)))
+(((-505) (-10 -7 (-15 -1893 ((-783 (-531)))) (-15 -1447 ((-790 (-531)))) (-15 -1458 ((-790 (-531)))))) (T -505))
+((-1458 (*1 *2) (-12 (-5 *2 (-790 (-531))) (-5 *1 (-505)))) (-1447 (*1 *2) (-12 (-5 *2 (-790 (-531))) (-5 *1 (-505)))) (-1893 (*1 *2) (-12 (-5 *2 (-783 (-531))) (-5 *1 (-505)))))
+(-10 -7 (-15 -1893 ((-783 (-531)))) (-15 -1447 ((-790 (-531)))) (-15 -1458 ((-790 (-531)))))
+((-2314 (((-507) (-1102)) 15)) (-3338 ((|#1| (-507)) 20)))
+(((-506 |#1|) (-10 -7 (-15 -2314 ((-507) (-1102))) (-15 -3338 (|#1| (-507)))) (-1138)) (T -506))
+((-3338 (*1 *2 *3) (-12 (-5 *3 (-507)) (-5 *1 (-506 *2)) (-4 *2 (-1138)))) (-2314 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-507)) (-5 *1 (-506 *4)) (-4 *4 (-1138)))))
+(-10 -7 (-15 -2314 ((-507) (-1102))) (-15 -3338 (|#1| (-507))))
+((-2247 (((-110) $ $) NIL)) (-1869 (((-1085) $) 48)) (-1660 (((-110) $) 43)) (-3287 (((-1102) $) 44)) (-1700 (((-110) $) 41)) (-3149 (((-1085) $) 42)) (-3342 (((-110) $) NIL)) (-3922 (((-110) $) NIL)) (-2169 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-3829 (($ $ (-598 (-1102))) 20)) (-3338 (((-51) $) 22)) (-1939 (((-110) $) NIL)) (-3310 (((-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-1956 (($ $ (-598 (-1102)) (-1102)) 60)) (-1298 (((-110) $) NIL)) (-2947 (((-208) $) NIL)) (-4118 (($ $) 38)) (-3486 (((-806) $) NIL)) (-2723 (((-110) $ $) NIL)) (-1785 (($ $ (-531)) NIL) (($ $ (-598 (-531))) NIL)) (-2625 (((-598 $) $) 28)) (-2455 (((-1102) (-598 $)) 49)) (-3318 (($ (-598 $)) 53) (($ (-1085)) NIL) (($ (-1102)) 18) (($ (-531)) 8) (($ (-208)) 25) (($ (-806)) NIL) (((-1034) $) 11) (($ (-1034)) 12)) (-2166 (((-1102) (-1102) (-598 $)) 52)) (-2265 (((-806) $) 46)) (-2929 (($ $) 51)) (-2919 (($ $) 50)) (-1608 (($ $ (-598 $)) 57)) (-1331 (((-110) $) 27)) (-3035 (($) 9 T CONST)) (-3050 (($) 10 T CONST)) (-2148 (((-110) $ $) 61)) (-2263 (($ $ $) 66)) (-2237 (($ $ $) 62)) (** (($ $ (-721)) 65) (($ $ (-531)) 64)) (* (($ $ $) 63)) (-2167 (((-531) $) NIL)))
+(((-507) (-13 (-1033 (-1085) (-1102) (-531) (-208) (-806)) (-573 (-1034)) (-10 -8 (-15 -3338 ((-51) $)) (-15 -3318 ($ (-1034))) (-15 -1608 ($ $ (-598 $))) (-15 -1956 ($ $ (-598 (-1102)) (-1102))) (-15 -3829 ($ $ (-598 (-1102)))) (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ (-721))) (-15 ** ($ $ (-531))) (-15 0 ($) -2651) (-15 1 ($) -2651) (-15 -4118 ($ $)) (-15 -1869 ((-1085) $)) (-15 -2455 ((-1102) (-598 $))) (-15 -2166 ((-1102) (-1102) (-598 $)))))) (T -507))
+((-3338 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-507)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-507)))) (-1608 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-507))) (-5 *1 (-507)))) (-1956 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-1102)) (-5 *1 (-507)))) (-3829 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-507)))) (-2237 (*1 *1 *1 *1) (-5 *1 (-507))) (* (*1 *1 *1 *1) (-5 *1 (-507))) (-2263 (*1 *1 *1 *1) (-5 *1 (-507))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-507)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-507)))) (-3035 (*1 *1) (-5 *1 (-507))) (-3050 (*1 *1) (-5 *1 (-507))) (-4118 (*1 *1 *1) (-5 *1 (-507))) (-1869 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-507)))) (-2455 (*1 *2 *3) (-12 (-5 *3 (-598 (-507))) (-5 *2 (-1102)) (-5 *1 (-507)))) (-2166 (*1 *2 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-507))) (-5 *1 (-507)))))
+(-13 (-1033 (-1085) (-1102) (-531) (-208) (-806)) (-573 (-1034)) (-10 -8 (-15 -3338 ((-51) $)) (-15 -3318 ($ (-1034))) (-15 -1608 ($ $ (-598 $))) (-15 -1956 ($ $ (-598 (-1102)) (-1102))) (-15 -3829 ($ $ (-598 (-1102)))) (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ (-721))) (-15 ** ($ $ (-531))) (-15 (-3035) ($) -2651) (-15 (-3050) ($) -2651) (-15 -4118 ($ $)) (-15 -1869 ((-1085) $)) (-15 -2455 ((-1102) (-598 $))) (-15 -2166 ((-1102) (-1102) (-598 $)))))
+((-1792 ((|#2| |#2|) 17)) (-1283 ((|#2| |#2|) 13)) (-4244 ((|#2| |#2| (-531) (-531)) 20)) (-3350 ((|#2| |#2|) 15)))
+(((-508 |#1| |#2|) (-10 -7 (-15 -1283 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -4244 (|#2| |#2| (-531) (-531)))) (-13 (-523) (-140)) (-1175 |#1|)) (T -508))
+((-4244 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-531)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-508 *4 *2)) (-4 *2 (-1175 *4)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) (-4 *2 (-1175 *3)))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) (-4 *2 (-1175 *3)))) (-1283 (*1 *2 *2) (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2)) (-4 *2 (-1175 *3)))))
+(-10 -7 (-15 -1283 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -4244 (|#2| |#2| (-531) (-531))))
+((-4208 (((-598 (-276 (-895 |#2|))) (-598 |#2|) (-598 (-1102))) 32)) (-3921 (((-598 |#2|) (-895 |#1|) |#3|) 53) (((-598 |#2|) (-1098 |#1|) |#3|) 52)) (-3899 (((-598 (-598 |#2|)) (-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)) |#3|) 91)))
+(((-509 |#1| |#2| |#3|) (-10 -7 (-15 -3921 ((-598 |#2|) (-1098 |#1|) |#3|)) (-15 -3921 ((-598 |#2|) (-895 |#1|) |#3|)) (-15 -3899 ((-598 (-598 |#2|)) (-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)) |#3|)) (-15 -4208 ((-598 (-276 (-895 |#2|))) (-598 |#2|) (-598 (-1102))))) (-432) (-344) (-13 (-344) (-795))) (T -509))
+((-4208 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-1102))) (-4 *6 (-344)) (-5 *2 (-598 (-276 (-895 *6)))) (-5 *1 (-509 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-13 (-344) (-795))))) (-3899 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-598 (-598 *7))) (-5 *1 (-509 *6 *7 *5)) (-4 *7 (-344)) (-4 *5 (-13 (-344) (-795))))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-4 *5 (-432)) (-5 *2 (-598 *6)) (-5 *1 (-509 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795))))) (-3921 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *5)) (-4 *5 (-432)) (-5 *2 (-598 *6)) (-5 *1 (-509 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795))))))
+(-10 -7 (-15 -3921 ((-598 |#2|) (-1098 |#1|) |#3|)) (-15 -3921 ((-598 |#2|) (-895 |#1|) |#3|)) (-15 -3899 ((-598 (-598 |#2|)) (-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)) |#3|)) (-15 -4208 ((-598 (-276 (-895 |#2|))) (-598 |#2|) (-598 (-1102)))))
+((-3848 ((|#2| |#2| |#1|) 17)) (-1596 ((|#2| (-598 |#2|)) 27)) (-1797 ((|#2| (-598 |#2|)) 46)))
+(((-510 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1596 (|#2| (-598 |#2|))) (-15 -1797 (|#2| (-598 |#2|))) (-15 -3848 (|#2| |#2| |#1|))) (-289) (-1160 |#1|) |#1| (-1 |#1| |#1| (-721))) (T -510))
+((-3848 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-721))) (-5 *1 (-510 *3 *2 *4 *5)) (-4 *2 (-1160 *3)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-510 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-721))))) (-1596 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-510 *4 *2 *5 *6)) (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-721))))))
+(-10 -7 (-15 -1596 (|#2| (-598 |#2|))) (-15 -1797 (|#2| (-598 |#2|))) (-15 -3848 (|#2| |#2| |#1|)))
+((-2552 (((-399 (-1098 |#4|)) (-1098 |#4|) (-1 (-399 (-1098 |#3|)) (-1098 |#3|))) 80) (((-399 |#4|) |#4| (-1 (-399 (-1098 |#3|)) (-1098 |#3|))) 169)))
+(((-511 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4| (-1 (-399 (-1098 |#3|)) (-1098 |#3|)))) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|) (-1 (-399 (-1098 |#3|)) (-1098 |#3|))))) (-797) (-743) (-13 (-289) (-140)) (-892 |#3| |#2| |#1|)) (T -511))
+((-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1098 *7)) (-1098 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-797)) (-4 *6 (-743)) (-4 *8 (-892 *7 *6 *5)) (-5 *2 (-399 (-1098 *8))) (-5 *1 (-511 *5 *6 *7 *8)) (-5 *3 (-1098 *8)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 (-1098 *7)) (-1098 *7))) (-4 *7 (-13 (-289) (-140))) (-4 *5 (-797)) (-4 *6 (-743)) (-5 *2 (-399 *3)) (-5 *1 (-511 *5 *6 *7 *3)) (-4 *3 (-892 *7 *6 *5)))))
+(-10 -7 (-15 -2552 ((-399 |#4|) |#4| (-1 (-399 (-1098 |#3|)) (-1098 |#3|)))) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|) (-1 (-399 (-1098 |#3|)) (-1098 |#3|)))))
+((-1792 ((|#4| |#4|) 74)) (-1283 ((|#4| |#4|) 70)) (-4244 ((|#4| |#4| (-531) (-531)) 76)) (-3350 ((|#4| |#4|) 72)))
+(((-512 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1283 (|#4| |#4|)) (-15 -3350 (|#4| |#4|)) (-15 -1792 (|#4| |#4|)) (-15 -4244 (|#4| |#4| (-531) (-531)))) (-13 (-344) (-349) (-573 (-531))) (-1160 |#1|) (-675 |#1| |#2|) (-1175 |#3|)) (T -512))
+((-4244 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-531)) (-4 *4 (-13 (-344) (-349) (-573 *3))) (-4 *5 (-1160 *4)) (-4 *6 (-675 *4 *5)) (-5 *1 (-512 *4 *5 *6 *2)) (-4 *2 (-1175 *6)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5)))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5)))) (-1283 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3)) (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5)))))
+(-10 -7 (-15 -1283 (|#4| |#4|)) (-15 -3350 (|#4| |#4|)) (-15 -1792 (|#4| |#4|)) (-15 -4244 (|#4| |#4| (-531) (-531))))
+((-1792 ((|#2| |#2|) 27)) (-1283 ((|#2| |#2|) 23)) (-4244 ((|#2| |#2| (-531) (-531)) 29)) (-3350 ((|#2| |#2|) 25)))
+(((-513 |#1| |#2|) (-10 -7 (-15 -1283 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -4244 (|#2| |#2| (-531) (-531)))) (-13 (-344) (-349) (-573 (-531))) (-1175 |#1|)) (T -513))
+((-4244 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-531)) (-4 *4 (-13 (-344) (-349) (-573 *3))) (-5 *1 (-513 *4 *2)) (-4 *2 (-1175 *4)))) (-1792 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) (-4 *2 (-1175 *3)))) (-3350 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) (-4 *2 (-1175 *3)))) (-1283 (*1 *2 *2) (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2)) (-4 *2 (-1175 *3)))))
+(-10 -7 (-15 -1283 (|#2| |#2|)) (-15 -3350 (|#2| |#2|)) (-15 -1792 (|#2| |#2|)) (-15 -4244 (|#2| |#2| (-531) (-531))))
+((-1499 (((-3 (-531) "failed") |#2| |#1| (-1 (-3 (-531) "failed") |#1|)) 14) (((-3 (-531) "failed") |#2| |#1| (-531) (-1 (-3 (-531) "failed") |#1|)) 13) (((-3 (-531) "failed") |#2| (-531) (-1 (-3 (-531) "failed") |#1|)) 26)))
+(((-514 |#1| |#2|) (-10 -7 (-15 -1499 ((-3 (-531) "failed") |#2| (-531) (-1 (-3 (-531) "failed") |#1|))) (-15 -1499 ((-3 (-531) "failed") |#2| |#1| (-531) (-1 (-3 (-531) "failed") |#1|))) (-15 -1499 ((-3 (-531) "failed") |#2| |#1| (-1 (-3 (-531) "failed") |#1|)))) (-986) (-1160 |#1|)) (T -514))
+((-1499 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-531) "failed") *4)) (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-514 *4 *3)) (-4 *3 (-1160 *4)))) (-1499 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-531) "failed") *4)) (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-514 *4 *3)) (-4 *3 (-1160 *4)))) (-1499 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-531) "failed") *5)) (-4 *5 (-986)) (-5 *2 (-531)) (-5 *1 (-514 *5 *3)) (-4 *3 (-1160 *5)))))
+(-10 -7 (-15 -1499 ((-3 (-531) "failed") |#2| (-531) (-1 (-3 (-531) "failed") |#1|))) (-15 -1499 ((-3 (-531) "failed") |#2| |#1| (-531) (-1 (-3 (-531) "failed") |#1|))) (-15 -1499 ((-3 (-531) "failed") |#2| |#1| (-1 (-3 (-531) "failed") |#1|))))
+((-2464 (($ $ $) 79)) (-2956 (((-399 $) $) 47)) (-3154 (((-3 (-531) "failed") $) 59)) (-2523 (((-531) $) 37)) (-1609 (((-3 (-388 (-531)) "failed") $) 74)) (-3004 (((-110) $) 24)) (-2727 (((-388 (-531)) $) 72)) (-2534 (((-110) $) 50)) (-3013 (($ $ $ $) 86)) (-1599 (((-110) $) 16)) (-2555 (($ $ $) 57)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 69)) (-2342 (((-3 $ "failed") $) 64)) (-3107 (($ $) 23)) (-4098 (($ $ $) 84)) (-3788 (($) 60)) (-1569 (($ $) 53)) (-2552 (((-399 $) $) 45)) (-1787 (((-110) $) 14)) (-4100 (((-721) $) 28)) (-3352 (($ $ (-721)) NIL) (($ $) 10)) (-2480 (($ $) 17)) (-3318 (((-531) $) NIL) (((-507) $) 36) (((-835 (-531)) $) 40) (((-360) $) 31) (((-208) $) 33)) (-2284 (((-721)) 8)) (-2070 (((-110) $ $) 20)) (-2589 (($ $ $) 55)))
+(((-515 |#1|) (-10 -8 (-15 -4098 (|#1| |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -2464 (|#1| |#1| |#1|)) (-15 -2070 ((-110) |#1| |#1|)) (-15 -1787 ((-110) |#1|)) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -3318 ((-531) |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -1599 ((-110) |#1|)) (-15 -4100 ((-721) |#1|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2534 ((-110) |#1|)) (-15 -2284 ((-721)))) (-516)) (T -515))
+((-2284 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-515 *3)) (-4 *3 (-516)))))
+(-10 -8 (-15 -4098 (|#1| |#1| |#1|)) (-15 -3013 (|#1| |#1| |#1| |#1|)) (-15 -3107 (|#1| |#1|)) (-15 -2480 (|#1| |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -2464 (|#1| |#1| |#1|)) (-15 -2070 ((-110) |#1| |#1|)) (-15 -1787 ((-110) |#1|)) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -2555 (|#1| |#1| |#1|)) (-15 -1569 (|#1| |#1|)) (-15 -2589 (|#1| |#1| |#1|)) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -3318 ((-531) |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -1599 ((-110) |#1|)) (-15 -4100 ((-721) |#1|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2534 ((-110) |#1|)) (-15 -2284 ((-721))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2464 (($ $ $) 83)) (-2128 (((-3 $ "failed") $ $) 19)) (-2377 (($ $ $ $) 71)) (-3240 (($ $) 49)) (-2956 (((-399 $) $) 50)) (-2760 (((-110) $ $) 123)) (-3459 (((-531) $) 112)) (-3709 (($ $ $) 86)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 104)) (-2523 (((-531) $) 103)) (-3650 (($ $ $) 127)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 102) (((-639 (-531)) (-639 $)) 101)) (-3622 (((-3 $ "failed") $) 32)) (-1609 (((-3 (-388 (-531)) "failed") $) 80)) (-3004 (((-110) $) 82)) (-2727 (((-388 (-531)) $) 81)) (-1381 (($) 79) (($ $) 78)) (-3630 (($ $ $) 126)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 121)) (-2534 (((-110) $) 51)) (-3013 (($ $ $ $) 69)) (-2033 (($ $ $) 84)) (-1599 (((-110) $) 114)) (-2555 (($ $ $) 95)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 98)) (-3481 (((-110) $) 30)) (-4250 (((-110) $) 90)) (-2342 (((-3 $ "failed") $) 92)) (-2985 (((-110) $) 113)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 130)) (-3233 (($ $ $ $) 70)) (-4103 (($ $ $) 115)) (-1241 (($ $ $) 116)) (-3107 (($ $) 73)) (-2428 (($ $) 87)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-4098 (($ $ $) 68)) (-3788 (($) 91 T CONST)) (-3906 (($ $) 75)) (-2529 (((-1049) $) 10) (($ $) 77)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-1569 (($ $) 96)) (-2552 (((-399 $) $) 48)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 129) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 128)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 122)) (-1787 (((-110) $) 89)) (-4100 (((-721) $) 124)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 125)) (-3352 (($ $ (-721)) 109) (($ $) 107)) (-1651 (($ $) 74)) (-2480 (($ $) 76)) (-3318 (((-531) $) 106) (((-507) $) 100) (((-835 (-531)) $) 99) (((-360) $) 94) (((-208) $) 93)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-531)) 105)) (-2284 (((-721)) 28)) (-2070 (((-110) $ $) 85)) (-2589 (($ $ $) 97)) (-3276 (($) 88)) (-2587 (((-110) $ $) 37)) (-2392 (($ $ $ $) 72)) (-1620 (($ $) 111)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-721)) 110) (($ $) 108)) (-2207 (((-110) $ $) 118)) (-2184 (((-110) $ $) 119)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 117)) (-2174 (((-110) $ $) 120)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-516) (-133)) (T -516))
+((-4250 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) (-3276 (*1 *1) (-4 *1 (-516))) (-2428 (*1 *1 *1) (-4 *1 (-516))) (-3709 (*1 *1 *1 *1) (-4 *1 (-516))) (-2070 (*1 *2 *1 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) (-2033 (*1 *1 *1 *1) (-4 *1 (-516))) (-2464 (*1 *1 *1 *1) (-4 *1 (-516))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-388 (-531))))) (-1609 (*1 *2 *1) (|partial| -12 (-4 *1 (-516)) (-5 *2 (-388 (-531))))) (-1381 (*1 *1) (-4 *1 (-516))) (-1381 (*1 *1 *1) (-4 *1 (-516))) (-2529 (*1 *1 *1) (-4 *1 (-516))) (-2480 (*1 *1 *1) (-4 *1 (-516))) (-3906 (*1 *1 *1) (-4 *1 (-516))) (-1651 (*1 *1 *1) (-4 *1 (-516))) (-3107 (*1 *1 *1) (-4 *1 (-516))) (-2392 (*1 *1 *1 *1 *1) (-4 *1 (-516))) (-2377 (*1 *1 *1 *1 *1) (-4 *1 (-516))) (-3233 (*1 *1 *1 *1 *1) (-4 *1 (-516))) (-3013 (*1 *1 *1 *1 *1) (-4 *1 (-516))) (-4098 (*1 *1 *1 *1) (-4 *1 (-516))))
+(-13 (-1142) (-289) (-770) (-216) (-573 (-531)) (-977 (-531)) (-594 (-531)) (-573 (-507)) (-573 (-835 (-531))) (-829 (-531)) (-136) (-962) (-140) (-1078) (-10 -8 (-15 -4250 ((-110) $)) (-15 -1787 ((-110) $)) (-6 -4272) (-15 -3276 ($)) (-15 -2428 ($ $)) (-15 -3709 ($ $ $)) (-15 -2070 ((-110) $ $)) (-15 -2033 ($ $ $)) (-15 -2464 ($ $ $)) (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $)) (-15 -1381 ($)) (-15 -1381 ($ $)) (-15 -2529 ($ $)) (-15 -2480 ($ $)) (-15 -3906 ($ $)) (-15 -1651 ($ $)) (-15 -3107 ($ $)) (-15 -2392 ($ $ $ $)) (-15 -2377 ($ $ $ $)) (-15 -3233 ($ $ $ $)) (-15 -3013 ($ $ $ $)) (-15 -4098 ($ $ $)) (-6 -4271)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-136) . T) ((-162) . T) ((-573 (-208)) . T) ((-573 (-360)) . T) ((-573 (-507)) . T) ((-573 (-531)) . T) ((-573 (-835 (-531))) . T) ((-216) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-594 (-531)) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-770) . T) ((-795) . T) ((-797) . T) ((-829 (-531)) . T) ((-863) . T) ((-962) . T) ((-977 (-531)) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) . T) ((-1142) . T))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) NIL)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-517 |#1| |#2| |#3|) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) (-1030) (-1030) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273)))) (T -517))
+NIL
+(-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273)))
+((-3373 (((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-1 (-1098 |#2|) (-1098 |#2|))) 51)))
+(((-518 |#1| |#2|) (-10 -7 (-15 -3373 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-1 (-1098 |#2|) (-1098 |#2|))))) (-13 (-797) (-523)) (-13 (-27) (-411 |#1|))) (T -518))
+((-3373 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-571 *3)) (-5 *5 (-1 (-1098 *3) (-1098 *3))) (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-797) (-523))) (-5 *2 (-548 *3)) (-5 *1 (-518 *6 *3)))))
+(-10 -7 (-15 -3373 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-1 (-1098 |#2|) (-1098 |#2|)))))
+((-1955 (((-548 |#5|) |#5| (-1 |#3| |#3|)) 199)) (-3892 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 195)) (-2360 (((-548 |#5|) |#5| (-1 |#3| |#3|)) 202)))
+(((-519 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2360 ((-548 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1955 ((-548 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3892 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-797) (-523) (-977 (-531))) (-13 (-27) (-411 |#1|)) (-1160 |#2|) (-1160 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -519))
+((-3892 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-27) (-411 *4))) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-4 *7 (-1160 (-388 *6))) (-5 *1 (-519 *4 *5 *6 *7 *2)) (-4 *2 (-323 *5 *6 *7)))) (-1955 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1160 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-4 *8 (-1160 (-388 *7))) (-5 *2 (-548 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))) (-2360 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1160 *6)) (-4 *6 (-13 (-27) (-411 *5))) (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-4 *8 (-1160 (-388 *7))) (-5 *2 (-548 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3)) (-4 *3 (-323 *6 *7 *8)))))
+(-10 -7 (-15 -2360 ((-548 |#5|) |#5| (-1 |#3| |#3|))) (-15 -1955 ((-548 |#5|) |#5| (-1 |#3| |#3|))) (-15 -3892 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|))))
+((-2844 (((-110) (-531) (-531)) 10)) (-2414 (((-531) (-531)) 7)) (-4025 (((-531) (-531) (-531)) 8)))
+(((-520) (-10 -7 (-15 -2414 ((-531) (-531))) (-15 -4025 ((-531) (-531) (-531))) (-15 -2844 ((-110) (-531) (-531))))) (T -520))
+((-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-110)) (-5 *1 (-520)))) (-4025 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-520)))) (-2414 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-520)))))
+(-10 -7 (-15 -2414 ((-531) (-531))) (-15 -4025 ((-531) (-531) (-531))) (-15 -2844 ((-110) (-531) (-531))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1463 ((|#1| $) 59)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2367 (($ $) 89)) (-2218 (($ $) 72)) (-3818 ((|#1| $) 60)) (-2128 (((-3 $ "failed") $ $) 19)) (-2563 (($ $) 71)) (-2343 (($ $) 88)) (-2198 (($ $) 73)) (-2391 (($ $) 87)) (-2241 (($ $) 74)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 67)) (-2523 (((-531) $) 66)) (-3622 (((-3 $ "failed") $) 32)) (-2151 (($ |#1| |#1|) 64)) (-1599 (((-110) $) 58)) (-1880 (($) 99)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 70)) (-2985 (((-110) $) 57)) (-4103 (($ $ $) 105)) (-1241 (($ $ $) 104)) (-2076 (($ $) 96)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-3470 (($ |#1| |#1|) 65) (($ |#1|) 63) (($ (-388 (-531))) 62)) (-4137 ((|#1| $) 61)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-3609 (((-3 $ "failed") $ $) 40)) (-2798 (($ $) 97)) (-2403 (($ $) 86)) (-2253 (($ $) 75)) (-2379 (($ $) 85)) (-2229 (($ $) 76)) (-2356 (($ $) 84)) (-2210 (($ $) 77)) (-3858 (((-110) $ |#1|) 56)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-531)) 68)) (-2284 (((-721)) 28)) (-2442 (($ $) 95)) (-2292 (($ $) 83)) (-2587 (((-110) $ $) 37)) (-2416 (($ $) 94)) (-2266 (($ $) 82)) (-2468 (($ $) 93)) (-2318 (($ $) 81)) (-2753 (($ $) 92)) (-2331 (($ $) 80)) (-2456 (($ $) 91)) (-2305 (($ $) 79)) (-2429 (($ $) 90)) (-2279 (($ $) 78)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 102)) (-2184 (((-110) $ $) 101)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 103)) (-2174 (((-110) $ $) 100)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ $) 98) (($ $ (-388 (-531))) 69)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-521 |#1|) (-133) (-13 (-385) (-1124))) (T -521))
+((-3470 (*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-2151 (*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-3470 (*1 *1 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-3470 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))))) (-4137 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-3818 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-1463 (*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))) (-1599 (*1 *2 *1) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110)))) (-3858 (*1 *2 *1 *3) (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110)))))
+(-13 (-432) (-797) (-1124) (-943) (-977 (-531)) (-10 -8 (-6 -4148) (-15 -3470 ($ |t#1| |t#1|)) (-15 -2151 ($ |t#1| |t#1|)) (-15 -3470 ($ |t#1|)) (-15 -3470 ($ (-388 (-531)))) (-15 -4137 (|t#1| $)) (-15 -3818 (|t#1| $)) (-15 -1463 (|t#1| $)) (-15 -1599 ((-110) $)) (-15 -2985 ((-110) $)) (-15 -3858 ((-110) $ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-34) . T) ((-93) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-266) . T) ((-272) . T) ((-432) . T) ((-471) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-797) . T) ((-943) . T) ((-977 (-531)) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) . T) ((-1127) . T))
+((-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 9)) (-3258 (($ $) 11)) (-2921 (((-110) $) 18)) (-3622 (((-3 $ "failed") $) 16)) (-2587 (((-110) $ $) 20)))
+(((-522 |#1|) (-10 -8 (-15 -2921 ((-110) |#1|)) (-15 -2587 ((-110) |#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|))) (-523)) (T -522))
+NIL
+(-10 -8 (-15 -2921 ((-110) |#1|)) (-15 -2587 ((-110) |#1| |#1|)) (-15 -3258 (|#1| |#1|)) (-15 -3543 ((-2 (|:| -3887 |#1|) (|:| -4260 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-523) (-133)) (T -523))
+((-3609 (*1 *1 *1 *1) (|partial| -4 *1 (-523))) (-3543 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3887 *1) (|:| -4260 *1) (|:| |associate| *1))) (-4 *1 (-523)))) (-3258 (*1 *1 *1) (-4 *1 (-523))) (-2587 (*1 *2 *1 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))) (-2921 (*1 *2 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))))
+(-13 (-162) (-37 $) (-272) (-10 -8 (-15 -3609 ((-3 $ "failed") $ $)) (-15 -3543 ((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $)) (-15 -3258 ($ $)) (-15 -2587 ((-110) $ $)) (-15 -2921 ((-110) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3497 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1102) (-598 |#2|)) 37)) (-2991 (((-548 |#2|) |#2| (-1102)) 62)) (-2080 (((-3 |#2| "failed") |#2| (-1102)) 152)) (-2035 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) (-571 |#2|) (-598 (-571 |#2|))) 155)) (-1539 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) |#2|) 40)))
+(((-524 |#1| |#2|) (-10 -7 (-15 -1539 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) |#2|)) (-15 -3497 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1102) (-598 |#2|))) (-15 -2080 ((-3 |#2| "failed") |#2| (-1102))) (-15 -2991 ((-548 |#2|) |#2| (-1102))) (-15 -2035 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) (-571 |#2|) (-598 (-571 |#2|))))) (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -524))
+((-2035 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1102)) (-5 *6 (-598 (-571 *3))) (-5 *5 (-571 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *7))) (-4 *7 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-524 *7 *3)))) (-2991 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-524 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2080 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *1 (-524 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-3497 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-524 *6 *3)))) (-1539 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-524 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))))
+(-10 -7 (-15 -1539 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) |#2|)) (-15 -3497 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-1102) (-598 |#2|))) (-15 -2080 ((-3 |#2| "failed") |#2| (-1102))) (-15 -2991 ((-548 |#2|) |#2| (-1102))) (-15 -2035 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-1102) (-571 |#2|) (-598 (-571 |#2|)))))
+((-2956 (((-399 |#1|) |#1|) 18)) (-2552 (((-399 |#1|) |#1|) 33)) (-2031 (((-3 |#1| "failed") |#1|) 44)) (-2624 (((-399 |#1|) |#1|) 51)))
+(((-525 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2624 ((-399 |#1|) |#1|)) (-15 -2031 ((-3 |#1| "failed") |#1|))) (-516)) (T -525))
+((-2031 (*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-516)))) (-2624 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516)))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516)))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516)))))
+(-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -2624 ((-399 |#1|) |#1|)) (-15 -2031 ((-3 |#1| "failed") |#1|)))
+((-2242 (($) 9)) (-1353 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 35)) (-3345 (((-598 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 32)) (-3944 (($ (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) 29)) (-2778 (($ (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) 27)) (-1798 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 39)) (-3163 (((-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $) 37)) (-1436 (((-1189)) 12)))
+(((-526) (-10 -8 (-15 -2242 ($)) (-15 -1436 ((-1189))) (-15 -3345 ((-598 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2778 ($ (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3944 ($ (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1353 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3163 ((-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1798 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -526))
+((-1798 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-526)))) (-3163 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-526)))) (-1353 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *1 (-526)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-526)))) (-2778 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-526)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-526)))) (-1436 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-526)))) (-2242 (*1 *1) (-5 *1 (-526))))
+(-10 -8 (-15 -2242 ($)) (-15 -1436 ((-1189))) (-15 -3345 ((-598 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2778 ($ (-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))))) (-15 -3944 ($ (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-15 -1353 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3163 ((-598 (-2 (|:| -3033 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) $)) (-15 -1798 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1083 (-208))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -2368 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-2516 (((-1098 (-388 (-1098 |#2|))) |#2| (-571 |#2|) (-571 |#2|) (-1098 |#2|)) 32)) (-3912 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))) 100) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) |#2| (-1098 |#2|)) 110)) (-3909 (((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))) 80) (((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|)) 52)) (-2032 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| (-571 |#2|) |#2| (-388 (-1098 |#2|))) 87) (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| |#2| (-1098 |#2|)) 109)) (-4143 (((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) (-571 |#2|) |#2| (-388 (-1098 |#2|))) 105) (((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) |#2| (-1098 |#2|)) 111)) (-2302 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))) 128 (|has| |#3| (-609 |#2|))) (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|)) 127 (|has| |#3| (-609 |#2|)))) (-2682 ((|#2| (-1098 (-388 (-1098 |#2|))) (-571 |#2|) |#2|) 50)) (-1749 (((-1098 (-388 (-1098 |#2|))) (-1098 |#2|) (-571 |#2|)) 31)))
+(((-527 |#1| |#2| |#3|) (-10 -7 (-15 -3909 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|))) (-15 -3909 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -2032 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| |#2| (-1098 |#2|))) (-15 -2032 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -3912 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) |#2| (-1098 |#2|))) (-15 -3912 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) |#2| (-1098 |#2|))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -2516 ((-1098 (-388 (-1098 |#2|))) |#2| (-571 |#2|) (-571 |#2|) (-1098 |#2|))) (-15 -2682 (|#2| (-1098 (-388 (-1098 |#2|))) (-571 |#2|) |#2|)) (-15 -1749 ((-1098 (-388 (-1098 |#2|))) (-1098 |#2|) (-571 |#2|))) (IF (|has| |#3| (-609 |#2|)) (PROGN (-15 -2302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|))) (-15 -2302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))))) |%noBranch|)) (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))) (-13 (-411 |#1|) (-27) (-1124)) (-1030)) (T -527))
+((-2302 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-571 *4)) (-5 *6 (-388 (-1098 *4))) (-4 *4 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))) (-2302 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-571 *4)) (-5 *6 (-1098 *4)) (-4 *4 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *4 (-571 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-1098 (-388 (-1098 *6)))) (-5 *1 (-527 *5 *6 *7)) (-5 *3 (-1098 *6)) (-4 *7 (-1030)))) (-2682 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1098 (-388 (-1098 *2)))) (-5 *4 (-571 *2)) (-4 *2 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1030)))) (-2516 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-1098 (-388 (-1098 *3)))) (-5 *1 (-527 *6 *3 *7)) (-5 *5 (-1098 *3)) (-4 *7 (-1030)))) (-4143 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-571 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) (-5 *5 (-388 (-1098 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1030)))) (-4143 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-571 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) (-5 *5 (-1098 *2)) (-4 *2 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1030)))) (-3912 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) (-5 *6 (-388 (-1098 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1030)))) (-3912 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) (-5 *6 (-1098 *3)) (-4 *3 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1030)))) (-2032 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-388 (-1098 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))) (-2032 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-1098 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))) (-3909 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-571 *3)) (-5 *5 (-388 (-1098 *3))) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))) (-3909 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-571 *3)) (-5 *5 (-1098 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))))
+(-10 -7 (-15 -3909 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|))) (-15 -3909 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -2032 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| |#2| (-1098 |#2|))) (-15 -2032 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2| (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -3912 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) |#2| (-1098 |#2|))) (-15 -3912 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) |#2| (-1098 |#2|))) (-15 -4143 ((-3 |#2| "failed") |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)) (-571 |#2|) |#2| (-388 (-1098 |#2|)))) (-15 -2516 ((-1098 (-388 (-1098 |#2|))) |#2| (-571 |#2|) (-571 |#2|) (-1098 |#2|))) (-15 -2682 (|#2| (-1098 (-388 (-1098 |#2|))) (-571 |#2|) |#2|)) (-15 -1749 ((-1098 (-388 (-1098 |#2|))) (-1098 |#2|) (-571 |#2|))) (IF (|has| |#3| (-609 |#2|)) (PROGN (-15 -2302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) |#2| (-1098 |#2|))) (-15 -2302 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-571 |#2|) |#2| (-388 (-1098 |#2|))))) |%noBranch|))
+((-3705 (((-531) (-531) (-721)) 66)) (-3025 (((-531) (-531)) 65)) (-2008 (((-531) (-531)) 64)) (-1410 (((-531) (-531)) 69)) (-3270 (((-531) (-531) (-531)) 49)) (-4181 (((-531) (-531) (-531)) 46)) (-2525 (((-388 (-531)) (-531)) 20)) (-2530 (((-531) (-531)) 21)) (-2619 (((-531) (-531)) 58)) (-2135 (((-531) (-531)) 32)) (-2466 (((-598 (-531)) (-531)) 63)) (-1850 (((-531) (-531) (-531) (-531) (-531)) 44)) (-2349 (((-388 (-531)) (-531)) 41)))
+(((-528) (-10 -7 (-15 -2349 ((-388 (-531)) (-531))) (-15 -1850 ((-531) (-531) (-531) (-531) (-531))) (-15 -2466 ((-598 (-531)) (-531))) (-15 -2135 ((-531) (-531))) (-15 -2619 ((-531) (-531))) (-15 -2530 ((-531) (-531))) (-15 -2525 ((-388 (-531)) (-531))) (-15 -4181 ((-531) (-531) (-531))) (-15 -3270 ((-531) (-531) (-531))) (-15 -1410 ((-531) (-531))) (-15 -2008 ((-531) (-531))) (-15 -3025 ((-531) (-531))) (-15 -3705 ((-531) (-531) (-721))))) (T -528))
+((-3705 (*1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-721)) (-5 *1 (-528)))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2008 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-1410 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-3270 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-4181 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2525 (*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-528)) (-5 *3 (-531)))) (-2530 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2619 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2135 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2466 (*1 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-528)) (-5 *3 (-531)))) (-1850 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))) (-2349 (*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-528)) (-5 *3 (-531)))))
+(-10 -7 (-15 -2349 ((-388 (-531)) (-531))) (-15 -1850 ((-531) (-531) (-531) (-531) (-531))) (-15 -2466 ((-598 (-531)) (-531))) (-15 -2135 ((-531) (-531))) (-15 -2619 ((-531) (-531))) (-15 -2530 ((-531) (-531))) (-15 -2525 ((-388 (-531)) (-531))) (-15 -4181 ((-531) (-531) (-531))) (-15 -3270 ((-531) (-531) (-531))) (-15 -1410 ((-531) (-531))) (-15 -2008 ((-531) (-531))) (-15 -3025 ((-531) (-531))) (-15 -3705 ((-531) (-531) (-721))))
+((-1800 (((-2 (|:| |answer| |#4|) (|:| -1913 |#4|)) |#4| (-1 |#2| |#2|)) 52)))
+(((-529 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1800 ((-2 (|:| |answer| |#4|) (|:| -1913 |#4|)) |#4| (-1 |#2| |#2|)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -529))
+((-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-4 *7 (-1160 (-388 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -1913 *3))) (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7)))))
+(-10 -7 (-15 -1800 ((-2 (|:| |answer| |#4|) (|:| -1913 |#4|)) |#4| (-1 |#2| |#2|))))
+((-1800 (((-2 (|:| |answer| (-388 |#2|)) (|:| -1913 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 18)))
+(((-530 |#1| |#2|) (-10 -7 (-15 -1800 ((-2 (|:| |answer| (-388 |#2|)) (|:| -1913 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1160 |#1|)) (T -530))
+((-1800 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| (-388 *6)) (|:| -1913 (-388 *6)) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-530 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -1800 ((-2 (|:| |answer| (-388 |#2|)) (|:| -1913 (-388 |#2|)) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 25)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 87)) (-3258 (($ $) 88)) (-2921 (((-110) $) NIL)) (-2464 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $ $ $) 42)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-3709 (($ $ $) 81)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL)) (-2523 (((-531) $) NIL)) (-3650 (($ $ $) 80)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 61) (((-639 (-531)) (-639 $)) 57)) (-3622 (((-3 $ "failed") $) 84)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL)) (-3004 (((-110) $) NIL)) (-2727 (((-388 (-531)) $) NIL)) (-1381 (($) 63) (($ $) 64)) (-3630 (($ $ $) 79)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3013 (($ $ $ $) NIL)) (-2033 (($ $ $) 54)) (-1599 (((-110) $) NIL)) (-2555 (($ $ $) NIL)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL)) (-3481 (((-110) $) 26)) (-4250 (((-110) $) 74)) (-2342 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) 34)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-3233 (($ $ $ $) 43)) (-4103 (($ $ $) 76)) (-1241 (($ $ $) 75)) (-3107 (($ $) NIL)) (-2428 (($ $) 40)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) 53)) (-4098 (($ $ $) NIL)) (-3788 (($) NIL T CONST)) (-3906 (($ $) 31)) (-2529 (((-1049) $) NIL) (($ $) 33)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 118)) (-2109 (($ $ $) 85) (($ (-598 $)) NIL)) (-1569 (($ $) NIL)) (-2552 (((-399 $) $) 104)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) 83)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 78)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-1651 (($ $) 32)) (-2480 (($ $) 30)) (-3318 (((-531) $) 39) (((-507) $) 51) (((-835 (-531)) $) NIL) (((-360) $) 46) (((-208) $) 48) (((-1085) $) 52)) (-2265 (((-806) $) 37) (($ (-531)) 38) (($ $) NIL) (($ (-531)) 38)) (-2284 (((-721)) NIL)) (-2070 (((-110) $ $) NIL)) (-2589 (($ $ $) NIL)) (-3276 (($) 29)) (-2587 (((-110) $ $) NIL)) (-2392 (($ $ $ $) 41)) (-1620 (($ $) 62)) (-3035 (($) 27 T CONST)) (-3050 (($) 28 T CONST)) (-4231 (((-1085) $) 20) (((-1085) $ (-110)) 22) (((-1189) (-772) $) 23) (((-1189) (-772) $ (-110)) 24)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 65)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 66)) (-2250 (($ $) 67) (($ $ $) 69)) (-2237 (($ $ $) 68)) (** (($ $ (-864)) NIL) (($ $ (-721)) 73)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 71) (($ $ $) 70)))
+(((-531) (-13 (-516) (-573 (-1085)) (-778) (-10 -8 (-15 -1381 ($ $)) (-6 -4260) (-6 -4265) (-6 -4261) (-6 -4255)))) (T -531))
+((-1381 (*1 *1 *1) (-5 *1 (-531))))
+(-13 (-516) (-573 (-1085)) (-778) (-10 -8 (-15 -1381 ($ $)) (-6 -4260) (-6 -4265) (-6 -4261) (-6 -4255)))
+((-3582 (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719) (-998)) 108) (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719)) 110)) (-1788 (((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1102)) 172) (((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1085)) 171) (((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360) (-998)) 176) (((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360)) 177) (((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360)) 178) (((-975) (-297 (-360)) (-598 (-1025 (-790 (-360))))) 179) (((-975) (-297 (-360)) (-1025 (-790 (-360)))) 167) (((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360)) 166) (((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360)) 162) (((-975) (-719)) 155) (((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360) (-998)) 161)))
+(((-532) (-10 -7 (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360) (-998))) (-15 -1788 ((-975) (-719))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360) (-998))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719) (-998))) (-15 -1788 ((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1085))) (-15 -1788 ((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1102))))) (T -532))
+((-1788 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1023 (-790 (-360)))) (-5 *5 (-1102)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1023 (-790 (-360)))) (-5 *5 (-1085)) (-5 *2 (-975)) (-5 *1 (-532)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-998)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) (-5 *1 (-532)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975)))) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) (-5 *5 (-360)) (-5 *6 (-998)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360))))) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-975)) (-5 *1 (-532)))) (-1788 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360)))) (-5 *5 (-360)) (-5 *6 (-998)) (-5 *2 (-975)) (-5 *1 (-532)))))
+(-10 -7 (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360) (-998))) (-15 -1788 ((-975) (-719))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-1025 (-790 (-360))))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360))) (-15 -1788 ((-975) (-297 (-360)) (-598 (-1025 (-790 (-360)))) (-360) (-360) (-998))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))) (-719) (-998))) (-15 -1788 ((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1085))) (-15 -1788 ((-3 (-975) "failed") (-297 (-360)) (-1023 (-790 (-360))) (-1102))))
+((-1627 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|)) 184)) (-2029 (((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|)) 98)) (-1228 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2|) 180)) (-2042 (((-3 |#2| "failed") |#2| |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102))) 189)) (-4050 (((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-1102)) 197 (|has| |#3| (-609 |#2|)))))
+(((-533 |#1| |#2| |#3|) (-10 -7 (-15 -2029 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|))) (-15 -1228 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2|)) (-15 -1627 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|))) (-15 -2042 ((-3 |#2| "failed") |#2| |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)))) (IF (|has| |#3| (-609 |#2|)) (-15 -4050 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-1102))) |%noBranch|)) (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))) (-13 (-411 |#1|) (-27) (-1124)) (-1030)) (T -533))
+((-4050 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-571 *4)) (-5 *6 (-1102)) (-4 *4 (-13 (-411 *7) (-27) (-1124))) (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))) (-2042 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-571 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) (-4 *2 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *1 (-533 *5 *2 *6)) (-4 *6 (-1030)))) (-1627 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124))) (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1030)))) (-1228 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-533 *5 *3 *6)) (-4 *6 (-1030)))) (-2029 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1124))) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531)))) (-5 *2 (-548 *3)) (-5 *1 (-533 *5 *3 *6)) (-4 *6 (-1030)))))
+(-10 -7 (-15 -2029 ((-548 |#2|) |#2| (-571 |#2|) (-571 |#2|))) (-15 -1228 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| (-571 |#2|) (-571 |#2|) |#2|)) (-15 -1627 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-571 |#2|) (-571 |#2|) (-598 |#2|))) (-15 -2042 ((-3 |#2| "failed") |#2| |#2| |#2| (-571 |#2|) (-571 |#2|) (-1 (-3 |#2| "failed") |#2| |#2| (-1102)))) (IF (|has| |#3| (-609 |#2|)) (-15 -4050 ((-2 (|:| |particular| (-3 |#2| "failed")) (|:| -3523 (-598 |#2|))) |#3| |#2| (-571 |#2|) (-571 |#2|) (-1102))) |%noBranch|))
+((-3845 (((-2 (|:| -3267 |#2|) (|:| |nconst| |#2|)) |#2| (-1102)) 64)) (-1781 (((-3 |#2| "failed") |#2| (-1102) (-790 |#2|) (-790 |#2|)) 164 (-12 (|has| |#2| (-1066)) (|has| |#1| (-573 (-835 (-531)))) (|has| |#1| (-829 (-531))))) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)) 147 (-12 (|has| |#2| (-584)) (|has| |#1| (-573 (-835 (-531)))) (|has| |#1| (-829 (-531)))))) (-4235 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)) 148 (-12 (|has| |#2| (-584)) (|has| |#1| (-573 (-835 (-531)))) (|has| |#1| (-829 (-531)))))))
+(((-534 |#1| |#2|) (-10 -7 (-15 -3845 ((-2 (|:| -3267 |#2|) (|:| |nconst| |#2|)) |#2| (-1102))) (IF (|has| |#1| (-573 (-835 (-531)))) (IF (|has| |#1| (-829 (-531))) (PROGN (IF (|has| |#2| (-584)) (PROGN (-15 -4235 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102))) (-15 -1781 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)))) |%noBranch|) (IF (|has| |#2| (-1066)) (-15 -1781 ((-3 |#2| "failed") |#2| (-1102) (-790 |#2|) (-790 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-797) (-977 (-531)) (-432) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -534))
+((-1781 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1102)) (-5 *4 (-790 *2)) (-4 *2 (-1066)) (-4 *2 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-573 (-835 (-531)))) (-4 *5 (-829 (-531))) (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) (-5 *1 (-534 *5 *2)))) (-1781 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-573 (-835 (-531)))) (-4 *5 (-829 (-531))) (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-534 *5 *3)) (-4 *3 (-584)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-4235 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-573 (-835 (-531)))) (-4 *5 (-829 (-531))) (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-534 *5 *3)) (-4 *3 (-584)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-3845 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531)))) (-5 *2 (-2 (|:| -3267 *3) (|:| |nconst| *3))) (-5 *1 (-534 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))))
+(-10 -7 (-15 -3845 ((-2 (|:| -3267 |#2|) (|:| |nconst| |#2|)) |#2| (-1102))) (IF (|has| |#1| (-573 (-835 (-531)))) (IF (|has| |#1| (-829 (-531))) (PROGN (IF (|has| |#2| (-584)) (PROGN (-15 -4235 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102))) (-15 -1781 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)))) |%noBranch|) (IF (|has| |#2| (-1066)) (-15 -1781 ((-3 |#2| "failed") |#2| (-1102) (-790 |#2|) (-790 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1429 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-598 (-388 |#2|))) 41)) (-1788 (((-548 (-388 |#2|)) (-388 |#2|)) 28)) (-3325 (((-3 (-388 |#2|) "failed") (-388 |#2|)) 17)) (-2323 (((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|)) 48)))
+(((-535 |#1| |#2|) (-10 -7 (-15 -1788 ((-548 (-388 |#2|)) (-388 |#2|))) (-15 -3325 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2323 ((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -1429 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-598 (-388 |#2|))))) (-13 (-344) (-140) (-977 (-531))) (-1160 |#1|)) (T -535))
+((-1429 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-598 (-388 *6))) (-5 *3 (-388 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-535 *5 *6)))) (-2323 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -2351 (-388 *5)) (|:| |coeff| (-388 *5)))) (-5 *1 (-535 *4 *5)) (-5 *3 (-388 *5)))) (-3325 (*1 *2 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140) (-977 (-531)))) (-5 *1 (-535 *3 *4)))) (-1788 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) (-5 *2 (-548 (-388 *5))) (-5 *1 (-535 *4 *5)) (-5 *3 (-388 *5)))))
+(-10 -7 (-15 -1788 ((-548 (-388 |#2|)) (-388 |#2|))) (-15 -3325 ((-3 (-388 |#2|) "failed") (-388 |#2|))) (-15 -2323 ((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-388 |#2|))) (-15 -1429 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-598 (-388 |#2|)))))
+((-3868 (((-3 (-531) "failed") |#1|) 14)) (-1939 (((-110) |#1|) 13)) (-3310 (((-531) |#1|) 9)))
+(((-536 |#1|) (-10 -7 (-15 -3310 ((-531) |#1|)) (-15 -1939 ((-110) |#1|)) (-15 -3868 ((-3 (-531) "failed") |#1|))) (-977 (-531))) (T -536))
+((-3868 (*1 *2 *3) (|partial| -12 (-5 *2 (-531)) (-5 *1 (-536 *3)) (-4 *3 (-977 *2)))) (-1939 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-536 *3)) (-4 *3 (-977 (-531))))) (-3310 (*1 *2 *3) (-12 (-5 *2 (-531)) (-5 *1 (-536 *3)) (-4 *3 (-977 *2)))))
+(-10 -7 (-15 -3310 ((-531) |#1|)) (-15 -1939 ((-110) |#1|)) (-15 -3868 ((-3 (-531) "failed") |#1|)))
+((-3090 (((-3 (-2 (|:| |mainpart| (-388 (-895 |#1|))) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 (-895 |#1|))) (|:| |logand| (-388 (-895 |#1|))))))) "failed") (-388 (-895 |#1|)) (-1102) (-598 (-388 (-895 |#1|)))) 48)) (-2987 (((-548 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-1102)) 28)) (-3946 (((-3 (-388 (-895 |#1|)) "failed") (-388 (-895 |#1|)) (-1102)) 23)) (-3815 (((-3 (-2 (|:| -2351 (-388 (-895 |#1|))) (|:| |coeff| (-388 (-895 |#1|)))) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|))) 35)))
+(((-537 |#1|) (-10 -7 (-15 -2987 ((-548 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -3946 ((-3 (-388 (-895 |#1|)) "failed") (-388 (-895 |#1|)) (-1102))) (-15 -3090 ((-3 (-2 (|:| |mainpart| (-388 (-895 |#1|))) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 (-895 |#1|))) (|:| |logand| (-388 (-895 |#1|))))))) "failed") (-388 (-895 |#1|)) (-1102) (-598 (-388 (-895 |#1|))))) (-15 -3815 ((-3 (-2 (|:| -2351 (-388 (-895 |#1|))) (|:| |coeff| (-388 (-895 |#1|)))) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|))))) (-13 (-523) (-977 (-531)) (-140))) (T -537))
+((-3815 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-977 (-531)) (-140))) (-5 *2 (-2 (|:| -2351 (-388 (-895 *5))) (|:| |coeff| (-388 (-895 *5))))) (-5 *1 (-537 *5)) (-5 *3 (-388 (-895 *5))))) (-3090 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 (-388 (-895 *6)))) (-5 *3 (-388 (-895 *6))) (-4 *6 (-13 (-523) (-977 (-531)) (-140))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-537 *6)))) (-3946 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-388 (-895 *4))) (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-977 (-531)) (-140))) (-5 *1 (-537 *4)))) (-2987 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-977 (-531)) (-140))) (-5 *2 (-548 (-388 (-895 *5)))) (-5 *1 (-537 *5)) (-5 *3 (-388 (-895 *5))))))
+(-10 -7 (-15 -2987 ((-548 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -3946 ((-3 (-388 (-895 |#1|)) "failed") (-388 (-895 |#1|)) (-1102))) (-15 -3090 ((-3 (-2 (|:| |mainpart| (-388 (-895 |#1|))) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 (-895 |#1|))) (|:| |logand| (-388 (-895 |#1|))))))) "failed") (-388 (-895 |#1|)) (-1102) (-598 (-388 (-895 |#1|))))) (-15 -3815 ((-3 (-2 (|:| -2351 (-388 (-895 |#1|))) (|:| |coeff| (-388 (-895 |#1|)))) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)))))
+((-2247 (((-110) $ $) 58)) (-3019 (((-110) $) 36)) (-1463 ((|#1| $) 30)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) 62)) (-2367 (($ $) 122)) (-2218 (($ $) 102)) (-3818 ((|#1| $) 28)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL)) (-2343 (($ $) 124)) (-2198 (($ $) 98)) (-2391 (($ $) 126)) (-2241 (($ $) 106)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) 77)) (-2523 (((-531) $) 79)) (-3622 (((-3 $ "failed") $) 61)) (-2151 (($ |#1| |#1|) 26)) (-1599 (((-110) $) 33)) (-1880 (($) 88)) (-3481 (((-110) $) 43)) (-2249 (($ $ (-531)) NIL)) (-2985 (((-110) $) 34)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2076 (($ $) 90)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-3470 (($ |#1| |#1|) 20) (($ |#1|) 25) (($ (-388 (-531))) 76)) (-4137 ((|#1| $) 27)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) 64) (($ (-598 $)) NIL)) (-3609 (((-3 $ "failed") $ $) 63)) (-2798 (($ $) 92)) (-2403 (($ $) 130)) (-2253 (($ $) 104)) (-2379 (($ $) 132)) (-2229 (($ $) 108)) (-2356 (($ $) 128)) (-2210 (($ $) 100)) (-3858 (((-110) $ |#1|) 31)) (-2265 (((-806) $) 84) (($ (-531)) 66) (($ $) NIL) (($ (-531)) 66)) (-2284 (((-721)) 86)) (-2442 (($ $) 144)) (-2292 (($ $) 114)) (-2587 (((-110) $ $) NIL)) (-2416 (($ $) 142)) (-2266 (($ $) 110)) (-2468 (($ $) 140)) (-2318 (($ $) 120)) (-2753 (($ $) 138)) (-2331 (($ $) 118)) (-2456 (($ $) 136)) (-2305 (($ $) 116)) (-2429 (($ $) 134)) (-2279 (($ $) 112)) (-3035 (($) 21 T CONST)) (-3050 (($) 10 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 37)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 35)) (-2250 (($ $) 41) (($ $ $) 42)) (-2237 (($ $ $) 40)) (** (($ $ (-864)) 54) (($ $ (-721)) NIL) (($ $ $) 94) (($ $ (-388 (-531))) 146)) (* (($ (-864) $) 51) (($ (-721) $) NIL) (($ (-531) $) 50) (($ $ $) 48)))
+(((-538 |#1|) (-521 |#1|) (-13 (-385) (-1124))) (T -538))
+NIL
+(-521 |#1|)
+((-4197 (((-3 (-598 (-1098 (-531))) "failed") (-598 (-1098 (-531))) (-1098 (-531))) 24)))
+(((-539) (-10 -7 (-15 -4197 ((-3 (-598 (-1098 (-531))) "failed") (-598 (-1098 (-531))) (-1098 (-531)))))) (T -539))
+((-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 (-531)))) (-5 *3 (-1098 (-531))) (-5 *1 (-539)))))
+(-10 -7 (-15 -4197 ((-3 (-598 (-1098 (-531))) "failed") (-598 (-1098 (-531))) (-1098 (-531)))))
+((-2537 (((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-1102)) 19)) (-3999 (((-598 (-571 |#2|)) (-598 |#2|) (-1102)) 23)) (-4210 (((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-598 (-571 |#2|))) 11)) (-3893 ((|#2| |#2| (-1102)) 54 (|has| |#1| (-523)))) (-2101 ((|#2| |#2| (-1102)) 78 (-12 (|has| |#2| (-266)) (|has| |#1| (-432))))) (-2217 (((-571 |#2|) (-571 |#2|) (-598 (-571 |#2|)) (-1102)) 25)) (-3756 (((-571 |#2|) (-598 (-571 |#2|))) 24)) (-3937 (((-548 |#2|) |#2| (-1102) (-1 (-548 |#2|) |#2| (-1102)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102))) 103 (-12 (|has| |#2| (-266)) (|has| |#2| (-584)) (|has| |#2| (-977 (-1102))) (|has| |#1| (-573 (-835 (-531)))) (|has| |#1| (-432)) (|has| |#1| (-829 (-531)))))))
+(((-540 |#1| |#2|) (-10 -7 (-15 -2537 ((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-1102))) (-15 -3756 ((-571 |#2|) (-598 (-571 |#2|)))) (-15 -2217 ((-571 |#2|) (-571 |#2|) (-598 (-571 |#2|)) (-1102))) (-15 -4210 ((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-598 (-571 |#2|)))) (-15 -3999 ((-598 (-571 |#2|)) (-598 |#2|) (-1102))) (IF (|has| |#1| (-523)) (-15 -3893 (|#2| |#2| (-1102))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2101 (|#2| |#2| (-1102))) (IF (|has| |#1| (-573 (-835 (-531)))) (IF (|has| |#1| (-829 (-531))) (IF (|has| |#2| (-584)) (IF (|has| |#2| (-977 (-1102))) (-15 -3937 ((-548 |#2|) |#2| (-1102) (-1 (-548 |#2|) |#2| (-1102)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-797) (-411 |#1|)) (T -540))
+((-3937 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-548 *3) *3 (-1102))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1102))) (-4 *3 (-266)) (-4 *3 (-584)) (-4 *3 (-977 *4)) (-4 *3 (-411 *7)) (-5 *4 (-1102)) (-4 *7 (-573 (-835 (-531)))) (-4 *7 (-432)) (-4 *7 (-829 (-531))) (-4 *7 (-797)) (-5 *2 (-548 *3)) (-5 *1 (-540 *7 *3)))) (-2101 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-432)) (-4 *4 (-797)) (-5 *1 (-540 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))) (-3893 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-523)) (-4 *4 (-797)) (-5 *1 (-540 *4 *2)) (-4 *2 (-411 *4)))) (-3999 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-1102)) (-4 *6 (-411 *5)) (-4 *5 (-797)) (-5 *2 (-598 (-571 *6))) (-5 *1 (-540 *5 *6)))) (-4210 (*1 *2 *2 *2) (-12 (-5 *2 (-598 (-571 *4))) (-4 *4 (-411 *3)) (-4 *3 (-797)) (-5 *1 (-540 *3 *4)))) (-2217 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-598 (-571 *6))) (-5 *4 (-1102)) (-5 *2 (-571 *6)) (-4 *6 (-411 *5)) (-4 *5 (-797)) (-5 *1 (-540 *5 *6)))) (-3756 (*1 *2 *3) (-12 (-5 *3 (-598 (-571 *5))) (-4 *4 (-797)) (-5 *2 (-571 *5)) (-5 *1 (-540 *4 *5)) (-4 *5 (-411 *4)))) (-2537 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-571 *5))) (-5 *3 (-1102)) (-4 *5 (-411 *4)) (-4 *4 (-797)) (-5 *1 (-540 *4 *5)))))
+(-10 -7 (-15 -2537 ((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-1102))) (-15 -3756 ((-571 |#2|) (-598 (-571 |#2|)))) (-15 -2217 ((-571 |#2|) (-571 |#2|) (-598 (-571 |#2|)) (-1102))) (-15 -4210 ((-598 (-571 |#2|)) (-598 (-571 |#2|)) (-598 (-571 |#2|)))) (-15 -3999 ((-598 (-571 |#2|)) (-598 |#2|) (-1102))) (IF (|has| |#1| (-523)) (-15 -3893 (|#2| |#2| (-1102))) |%noBranch|) (IF (|has| |#1| (-432)) (IF (|has| |#2| (-266)) (PROGN (-15 -2101 (|#2| |#2| (-1102))) (IF (|has| |#1| (-573 (-835 (-531)))) (IF (|has| |#1| (-829 (-531))) (IF (|has| |#2| (-584)) (IF (|has| |#2| (-977 (-1102))) (-15 -3937 ((-548 |#2|) |#2| (-1102) (-1 (-548 |#2|) |#2| (-1102)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1102)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|))
+((-1628 (((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-598 |#1|) "failed") (-531) |#1| |#1|)) 172)) (-2588 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-598 (-388 |#2|))) 148)) (-1303 (((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-598 (-388 |#2|))) 145)) (-3228 (((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|) 133)) (-4198 (((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|)) 158)) (-4116 (((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|)) 175)) (-3248 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|)) 178)) (-1661 (((-2 (|:| |ir| (-548 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|)) 84)) (-2915 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 90)) (-3553 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-598 (-388 |#2|))) 152)) (-3961 (((-3 (-579 |#1| |#2|) "failed") (-579 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|)) 137)) (-2191 (((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|)) 162)) (-1892 (((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-388 |#2|)) 183)))
+(((-541 |#1| |#2|) (-10 -7 (-15 -4198 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2191 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|))) (-15 -1628 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-598 |#1|) "failed") (-531) |#1| |#1|))) (-15 -3248 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -1892 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-388 |#2|))) (-15 -2588 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-598 (-388 |#2|)))) (-15 -3553 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-598 (-388 |#2|)))) (-15 -4116 ((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -1303 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-598 (-388 |#2|)))) (-15 -3228 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3961 ((-3 (-579 |#1| |#2|) "failed") (-579 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|))) (-15 -1661 ((-2 (|:| |ir| (-548 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2915 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-344) (-1160 |#1|)) (T -541))
+((-2915 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-541 *5 *3)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |ir| (-548 (-388 *6))) (|:| |specpart| (-388 *6)) (|:| |polypart| *6))) (-5 *1 (-541 *5 *6)) (-5 *3 (-388 *6)))) (-3961 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-579 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3157 *4) (|:| |sol?| (-110))) (-531) *4)) (-4 *4 (-344)) (-4 *5 (-1160 *4)) (-5 *1 (-541 *4 *5)))) (-3228 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4)) (-4 *4 (-344)) (-5 *1 (-541 *4 *2)) (-4 *2 (-1160 *4)))) (-1303 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-598 (-388 *7))) (-4 *7 (-1160 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-541 *6 *7)))) (-4116 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -2351 (-388 *6)) (|:| |coeff| (-388 *6)))) (-5 *1 (-541 *5 *6)) (-5 *3 (-388 *6)))) (-3553 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3157 *7) (|:| |sol?| (-110))) (-531) *7)) (-5 *6 (-598 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1160 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-541 *7 *8)))) (-2588 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *7) (|:| |coeff| *7)) "failed") *7)) (-5 *6 (-598 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1160 *7)) (-5 *3 (-388 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-541 *7 *8)))) (-1892 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3157 *6) (|:| |sol?| (-110))) (-531) *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2351 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))) (-3248 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6)) (-2 (|:| -2351 (-388 *7)) (|:| |coeff| (-388 *7))) "failed")) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))) (-1628 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-598 *6) "failed") (-531) *6 *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))) (-2191 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3157 *6) (|:| |sol?| (-110))) (-531) *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))) (-4198 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6))) (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))))
+(-10 -7 (-15 -4198 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|))) (-15 -2191 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|))) (-15 -1628 ((-2 (|:| |answer| (-548 (-388 |#2|))) (|:| |a0| |#1|)) (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-598 |#1|) "failed") (-531) |#1| |#1|))) (-15 -3248 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-388 |#2|))) (-15 -1892 ((-3 (-2 (|:| |answer| (-388 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-388 |#2|))) (-15 -2588 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) (-598 (-388 |#2|)))) (-15 -3553 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|))))))) (|:| |a0| |#1|)) "failed") (-388 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|) (-598 (-388 |#2|)))) (-15 -4116 ((-3 (-2 (|:| -2351 (-388 |#2|)) (|:| |coeff| (-388 |#2|))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-388 |#2|))) (-15 -1303 ((-3 (-2 (|:| |mainpart| (-388 |#2|)) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| (-388 |#2|)) (|:| |logand| (-388 |#2|)))))) "failed") (-388 |#2|) (-1 |#2| |#2|) (-598 (-388 |#2|)))) (-15 -3228 ((-3 |#2| "failed") |#2| (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed") |#1|) |#1|)) (-15 -3961 ((-3 (-579 |#1| |#2|) "failed") (-579 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3157 |#1|) (|:| |sol?| (-110))) (-531) |#1|))) (-15 -1661 ((-2 (|:| |ir| (-548 (-388 |#2|))) (|:| |specpart| (-388 |#2|)) (|:| |polypart| |#2|)) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2915 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|))))
+((-3793 (((-3 |#2| "failed") |#2| (-1102) (-1102)) 10)))
+(((-542 |#1| |#2|) (-10 -7 (-15 -3793 ((-3 |#2| "failed") |#2| (-1102) (-1102)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-902) (-1066) (-29 |#1|))) (T -542))
+((-3793 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1102)) (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *1 (-542 *4 *2)) (-4 *2 (-13 (-1124) (-902) (-1066) (-29 *4))))))
+(-10 -7 (-15 -3793 ((-3 |#2| "failed") |#2| (-1102) (-1102))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $ (-531)) 66)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3071 (($ (-1098 (-531)) (-531)) 72)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) 58)) (-3649 (($ $) 34)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-3617 (((-721) $) 15)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 (((-531)) 29)) (-3045 (((-531) $) 32)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1846 (($ $ (-531)) 21)) (-3609 (((-3 $ "failed") $ $) 59)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) 16)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 61)) (-2890 (((-1083 (-531)) $) 18)) (-3437 (($ $) 23)) (-2265 (((-806) $) 87) (($ (-531)) 52) (($ $) NIL)) (-2284 (((-721)) 14)) (-2587 (((-110) $ $) NIL)) (-4148 (((-531) $ (-531)) 36)) (-3035 (($) 35 T CONST)) (-3050 (($) 19 T CONST)) (-2148 (((-110) $ $) 39)) (-2250 (($ $) 51) (($ $ $) 37)) (-2237 (($ $ $) 50)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 54) (($ $ $) 55)))
+(((-543 |#1| |#2|) (-812 |#1|) (-531) (-110)) (T -543))
+NIL
+(-812 |#1|)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 21)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (($ $ (-864)) NIL (|has| $ (-349))) (($ $) NIL)) (-3646 (((-1112 (-864) (-721)) (-531)) 47)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 $ "failed") $) 75)) (-2523 (($ $) 74)) (-2767 (($ (-1184 $)) 73)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 44)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) 32)) (-1381 (($) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) 49)) (-1971 (((-110) $) NIL)) (-3493 (($ $) NIL) (($ $ (-721)) NIL)) (-2534 (((-110) $) NIL)) (-3617 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3481 (((-110) $) NIL)) (-3323 (($) 37 (|has| $ (-349)))) (-3653 (((-110) $) NIL (|has| $ (-349)))) (-1899 (($ $ (-864)) NIL (|has| $ (-349))) (($ $) NIL)) (-2342 (((-3 $ "failed") $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 $) $ (-864)) NIL (|has| $ (-349))) (((-1098 $) $) 83)) (-2211 (((-864) $) 55)) (-1832 (((-1098 $) $) NIL (|has| $ (-349)))) (-1612 (((-3 (-1098 $) "failed") $ $) NIL (|has| $ (-349))) (((-1098 $) $) NIL (|has| $ (-349)))) (-3601 (($ $ (-1098 $)) NIL (|has| $ (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL T CONST)) (-1889 (($ (-864)) 48)) (-3693 (((-110) $) 67)) (-2529 (((-1049) $) NIL)) (-1861 (($) 19 (|has| $ (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 42)) (-2552 (((-399 $) $) NIL)) (-3717 (((-864)) 66) (((-783 (-864))) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-3 (-721) "failed") $ $) NIL) (((-721) $) NIL)) (-2190 (((-130)) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-2012 (((-864) $) 65) (((-783 (-864)) $) NIL)) (-3608 (((-1098 $)) 82)) (-2498 (($) 54)) (-2389 (($) 38 (|has| $ (-349)))) (-3348 (((-639 $) (-1184 $)) NIL) (((-1184 $) $) 71)) (-3318 (((-531) $) 28)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) 30) (($ $) NIL) (($ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL) (($ $) 84)) (-2284 (((-721)) 39)) (-3523 (((-1184 $) (-864)) 77) (((-1184 $)) 76)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) 22 T CONST)) (-3050 (($) 18 T CONST)) (-2730 (($ $ (-721)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 26)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 61) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL)))
+(((-544 |#1|) (-13 (-330) (-310 $) (-573 (-531))) (-864)) (T -544))
+NIL
+(-13 (-330) (-310 $) (-573 (-531)))
+((-3028 (((-1189) (-1085)) 10)))
+(((-545) (-10 -7 (-15 -3028 ((-1189) (-1085))))) (T -545))
+((-3028 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-545)))))
+(-10 -7 (-15 -3028 ((-1189) (-1085))))
+((-2040 (((-548 |#2|) (-548 |#2|)) 40)) (-2140 (((-598 |#2|) (-548 |#2|)) 42)) (-2139 ((|#2| (-548 |#2|)) 48)))
+(((-546 |#1| |#2|) (-10 -7 (-15 -2040 ((-548 |#2|) (-548 |#2|))) (-15 -2140 ((-598 |#2|) (-548 |#2|))) (-15 -2139 (|#2| (-548 |#2|)))) (-13 (-432) (-977 (-531)) (-797) (-594 (-531))) (-13 (-29 |#1|) (-1124))) (T -546))
+((-2139 (*1 *2 *3) (-12 (-5 *3 (-548 *2)) (-4 *2 (-13 (-29 *4) (-1124))) (-5 *1 (-546 *4 *2)) (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-548 *5)) (-4 *5 (-13 (-29 *4) (-1124))) (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-598 *5)) (-5 *1 (-546 *4 *5)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-548 *4)) (-4 *4 (-13 (-29 *3) (-1124))) (-4 *3 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *1 (-546 *3 *4)))))
+(-10 -7 (-15 -2040 ((-548 |#2|) (-548 |#2|))) (-15 -2140 ((-598 |#2|) (-548 |#2|))) (-15 -2139 (|#2| (-548 |#2|))))
+((-3261 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) 44) (((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed")) 11) (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed")) 35) (((-548 |#2|) (-1 |#2| |#1|) (-548 |#1|)) 30)))
+(((-547 |#1| |#2|) (-10 -7 (-15 -3261 ((-548 |#2|) (-1 |#2| |#1|) (-548 |#1|))) (-15 -3261 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3261 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3261 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")))) (-344) (-344)) (T -547))
+((-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-547 *5 *6)))) (-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-547 *5 *2)))) (-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2351 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-2 (|:| -2351 *6) (|:| |coeff| *6))) (-5 *1 (-547 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-548 *5)) (-4 *5 (-344)) (-4 *6 (-344)) (-5 *2 (-548 *6)) (-5 *1 (-547 *5 *6)))))
+(-10 -7 (-15 -3261 ((-548 |#2|) (-1 |#2| |#1|) (-548 |#1|))) (-15 -3261 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) "failed"))) (-15 -3261 ((-3 |#2| "failed") (-1 |#2| |#1|) (-3 |#1| "failed"))) (-15 -3261 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed"))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 69)) (-2523 ((|#1| $) NIL)) (-2351 ((|#1| $) 26)) (-3354 (((-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 28)) (-3109 (($ |#1| (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) (-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 24)) (-1913 (((-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) $) 27)) (-1521 (((-1085) $) NIL)) (-2974 (($ |#1| |#1|) 33) (($ |#1| (-1102)) 44 (|has| |#1| (-977 (-1102))))) (-2529 (((-1049) $) NIL)) (-1414 (((-110) $) 30)) (-3352 ((|#1| $ (-1 |#1| |#1|)) 81) ((|#1| $ (-1102)) 82 (|has| |#1| (-843 (-1102))))) (-2265 (((-806) $) 96) (($ |#1|) 25)) (-3035 (($) 16 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) 15) (($ $ $) NIL)) (-2237 (($ $ $) 78)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 14) (($ (-388 (-531)) $) 36) (($ $ (-388 (-531))) NIL)))
+(((-548 |#1|) (-13 (-668 (-388 (-531))) (-977 |#1|) (-10 -8 (-15 -3109 ($ |#1| (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) (-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2351 (|#1| $)) (-15 -1913 ((-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) $)) (-15 -3354 ((-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1414 ((-110) $)) (-15 -2974 ($ |#1| |#1|)) (-15 -3352 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-843 (-1102))) (-15 -3352 (|#1| $ (-1102))) |%noBranch|) (IF (|has| |#1| (-977 (-1102))) (-15 -2974 ($ |#1| (-1102))) |%noBranch|))) (-344)) (T -548))
+((-3109 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 *2)) (|:| |logand| (-1098 *2))))) (-5 *4 (-598 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-344)) (-5 *1 (-548 *2)))) (-2351 (*1 *2 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-344)))) (-1913 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 *3)) (|:| |logand| (-1098 *3))))) (-5 *1 (-548 *3)) (-4 *3 (-344)))) (-3354 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-548 *3)) (-4 *3 (-344)))) (-1414 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-344)))) (-2974 (*1 *1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-344)))) (-3352 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-548 *2)) (-4 *2 (-344)))) (-3352 (*1 *2 *1 *3) (-12 (-4 *2 (-344)) (-4 *2 (-843 *3)) (-5 *1 (-548 *2)) (-5 *3 (-1102)))) (-2974 (*1 *1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *1 (-548 *2)) (-4 *2 (-977 *3)) (-4 *2 (-344)))))
+(-13 (-668 (-388 (-531))) (-977 |#1|) (-10 -8 (-15 -3109 ($ |#1| (-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) (-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2351 (|#1| $)) (-15 -1913 ((-598 (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 |#1|)) (|:| |logand| (-1098 |#1|)))) $)) (-15 -3354 ((-598 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -1414 ((-110) $)) (-15 -2974 ($ |#1| |#1|)) (-15 -3352 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-843 (-1102))) (-15 -3352 (|#1| $ (-1102))) |%noBranch|) (IF (|has| |#1| (-977 (-1102))) (-15 -2974 ($ |#1| (-1102))) |%noBranch|)))
+((-4176 (((-110) |#1|) 16)) (-4047 (((-3 |#1| "failed") |#1|) 14)) (-3164 (((-2 (|:| -3276 |#1|) (|:| -1790 (-721))) |#1|) 31) (((-3 |#1| "failed") |#1| (-721)) 18)) (-2757 (((-110) |#1| (-721)) 19)) (-1452 ((|#1| |#1|) 32)) (-4159 ((|#1| |#1| (-721)) 34)))
+(((-549 |#1|) (-10 -7 (-15 -2757 ((-110) |#1| (-721))) (-15 -3164 ((-3 |#1| "failed") |#1| (-721))) (-15 -3164 ((-2 (|:| -3276 |#1|) (|:| -1790 (-721))) |#1|)) (-15 -4159 (|#1| |#1| (-721))) (-15 -4176 ((-110) |#1|)) (-15 -4047 ((-3 |#1| "failed") |#1|)) (-15 -1452 (|#1| |#1|))) (-516)) (T -549))
+((-1452 (*1 *2 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-516)))) (-4047 (*1 *2 *2) (|partial| -12 (-5 *1 (-549 *2)) (-4 *2 (-516)))) (-4176 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-549 *3)) (-4 *3 (-516)))) (-4159 (*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-549 *2)) (-4 *2 (-516)))) (-3164 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3276 *3) (|:| -1790 (-721)))) (-5 *1 (-549 *3)) (-4 *3 (-516)))) (-3164 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-721)) (-5 *1 (-549 *2)) (-4 *2 (-516)))) (-2757 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-5 *2 (-110)) (-5 *1 (-549 *3)) (-4 *3 (-516)))))
+(-10 -7 (-15 -2757 ((-110) |#1| (-721))) (-15 -3164 ((-3 |#1| "failed") |#1| (-721))) (-15 -3164 ((-2 (|:| -3276 |#1|) (|:| -1790 (-721))) |#1|)) (-15 -4159 (|#1| |#1| (-721))) (-15 -4176 ((-110) |#1|)) (-15 -4047 ((-3 |#1| "failed") |#1|)) (-15 -1452 (|#1| |#1|)))
+((-3000 (((-1098 |#1|) (-864)) 27)))
+(((-550 |#1|) (-10 -7 (-15 -3000 ((-1098 |#1|) (-864)))) (-330)) (T -550))
+((-3000 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-550 *4)) (-4 *4 (-330)))))
+(-10 -7 (-15 -3000 ((-1098 |#1|) (-864))))
+((-2040 (((-548 (-388 (-895 |#1|))) (-548 (-388 (-895 |#1|)))) 27)) (-1788 (((-3 (-297 |#1|) (-598 (-297 |#1|))) (-388 (-895 |#1|)) (-1102)) 34 (|has| |#1| (-140)))) (-2140 (((-598 (-297 |#1|)) (-548 (-388 (-895 |#1|)))) 19)) (-1578 (((-297 |#1|) (-388 (-895 |#1|)) (-1102)) 32 (|has| |#1| (-140)))) (-2139 (((-297 |#1|) (-548 (-388 (-895 |#1|)))) 21)))
+(((-551 |#1|) (-10 -7 (-15 -2040 ((-548 (-388 (-895 |#1|))) (-548 (-388 (-895 |#1|))))) (-15 -2140 ((-598 (-297 |#1|)) (-548 (-388 (-895 |#1|))))) (-15 -2139 ((-297 |#1|) (-548 (-388 (-895 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1788 ((-3 (-297 |#1|) (-598 (-297 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -1578 ((-297 |#1|) (-388 (-895 |#1|)) (-1102)))) |%noBranch|)) (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (T -551))
+((-1578 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-297 *5)) (-5 *1 (-551 *5)))) (-1788 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-140)) (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-3 (-297 *5) (-598 (-297 *5)))) (-5 *1 (-551 *5)))) (-2139 (*1 *2 *3) (-12 (-5 *3 (-548 (-388 (-895 *4)))) (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-297 *4)) (-5 *1 (-551 *4)))) (-2140 (*1 *2 *3) (-12 (-5 *3 (-548 (-388 (-895 *4)))) (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *2 (-598 (-297 *4))) (-5 *1 (-551 *4)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-548 (-388 (-895 *3)))) (-4 *3 (-13 (-432) (-977 (-531)) (-797) (-594 (-531)))) (-5 *1 (-551 *3)))))
+(-10 -7 (-15 -2040 ((-548 (-388 (-895 |#1|))) (-548 (-388 (-895 |#1|))))) (-15 -2140 ((-598 (-297 |#1|)) (-548 (-388 (-895 |#1|))))) (-15 -2139 ((-297 |#1|) (-548 (-388 (-895 |#1|))))) (IF (|has| |#1| (-140)) (PROGN (-15 -1788 ((-3 (-297 |#1|) (-598 (-297 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -1578 ((-297 |#1|) (-388 (-895 |#1|)) (-1102)))) |%noBranch|))
+((-2634 (((-598 (-639 (-531))) (-598 (-531)) (-598 (-848 (-531)))) 46) (((-598 (-639 (-531))) (-598 (-531))) 47) (((-639 (-531)) (-598 (-531)) (-848 (-531))) 42)) (-3326 (((-721) (-598 (-531))) 40)))
+(((-552) (-10 -7 (-15 -3326 ((-721) (-598 (-531)))) (-15 -2634 ((-639 (-531)) (-598 (-531)) (-848 (-531)))) (-15 -2634 ((-598 (-639 (-531))) (-598 (-531)))) (-15 -2634 ((-598 (-639 (-531))) (-598 (-531)) (-598 (-848 (-531))))))) (T -552))
+((-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-531))) (-5 *4 (-598 (-848 (-531)))) (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-552)))) (-2634 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-552)))) (-2634 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-531))) (-5 *4 (-848 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-552)))) (-3326 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-721)) (-5 *1 (-552)))))
+(-10 -7 (-15 -3326 ((-721) (-598 (-531)))) (-15 -2634 ((-639 (-531)) (-598 (-531)) (-848 (-531)))) (-15 -2634 ((-598 (-639 (-531))) (-598 (-531)))) (-15 -2634 ((-598 (-639 (-531))) (-598 (-531)) (-598 (-848 (-531))))))
+((-2660 (((-598 |#5|) |#5| (-110)) 73)) (-1629 (((-110) |#5| (-598 |#5|)) 30)))
+(((-553 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2660 ((-598 |#5|) |#5| (-110))) (-15 -1629 ((-110) |#5| (-598 |#5|)))) (-13 (-289) (-140)) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1039 |#1| |#2| |#3| |#4|)) (T -553))
+((-1629 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1039 *5 *6 *7 *8)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-553 *5 *6 *7 *8 *3)))) (-2660 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-598 *3)) (-5 *1 (-553 *5 *6 *7 *8 *3)) (-4 *3 (-1039 *5 *6 *7 *8)))))
+(-10 -7 (-15 -2660 ((-598 |#5|) |#5| (-110))) (-15 -1629 ((-110) |#5| (-598 |#5|))))
+((-2247 (((-110) $ $) NIL (|has| (-137) (-1030)))) (-2815 (($ $) 34)) (-4102 (($ $) NIL)) (-3634 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2982 (((-110) $ $) 51)) (-2955 (((-110) $ $ (-531)) 46)) (-2040 (((-598 $) $ (-137)) 60) (((-598 $) $ (-134)) 61)) (-3202 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-797)))) (-2375 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-137) (-797))))) (-1332 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-137) $ (-531) (-137)) 45 (|has| $ (-6 -4274))) (((-137) $ (-1151 (-531)) (-137)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-2810 (($ $ (-137)) 64) (($ $ (-134)) 65)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-2407 (($ $ (-1151 (-531)) $) 44)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2283 (($ (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-137) $ (-531) (-137)) NIL (|has| $ (-6 -4274)))) (-2627 (((-137) $ (-531)) NIL)) (-3009 (((-110) $ $) 72)) (-1976 (((-531) (-1 (-110) (-137)) $) NIL) (((-531) (-137) $) NIL (|has| (-137) (-1030))) (((-531) (-137) $ (-531)) 48 (|has| (-137) (-1030))) (((-531) $ $ (-531)) 47) (((-531) (-134) $ (-531)) 50)) (-2227 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-137)) 9)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 28 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| (-137) (-797)))) (-3508 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2327 (((-531) $) 42 (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-137) (-797)))) (-3816 (((-110) $ $ (-137)) 73)) (-2869 (((-721) $ $ (-137)) 70)) (-2680 (($ (-1 (-137) (-137)) $) 33 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-1659 (($ $) 37)) (-2559 (($ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2821 (($ $ (-137)) 62) (($ $ (-134)) 63)) (-1521 (((-1085) $) 38 (|has| (-137) (-1030)))) (-4059 (($ (-137) $ (-531)) NIL) (($ $ $ (-531)) 23)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-531) $) 69) (((-1049) $) NIL (|has| (-137) (-1030)))) (-3046 (((-137) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-3742 (($ $ (-137)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-137)) (-598 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-3163 (((-598 (-137)) $) NIL)) (-1589 (((-110) $) 12)) (-3781 (($) 10)) (-1785 (((-137) $ (-531) (-137)) NIL) (((-137) $ (-531)) 52) (($ $ (-1151 (-531))) 21) (($ $ $) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273))) (((-721) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2162 (($ $ $ (-531)) 66 (|has| $ (-6 -4274)))) (-2480 (($ $) 17)) (-3318 (((-507) $) NIL (|has| (-137) (-573 (-507))))) (-2274 (($ (-598 (-137))) NIL)) (-3536 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) 16) (($ (-598 $)) 67)) (-2265 (($ (-137)) NIL) (((-806) $) 27 (|has| (-137) (-572 (-806))))) (-2060 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2148 (((-110) $ $) 14 (|has| (-137) (-1030)))) (-2195 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2174 (((-110) $ $) 15 (|has| (-137) (-797)))) (-2167 (((-721) $) 13 (|has| $ (-6 -4273)))))
+(((-554 |#1|) (-13 (-1071) (-10 -8 (-15 -2529 ((-531) $)))) (-531)) (T -554))
+((-2529 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-554 *3)) (-14 *3 *2))))
+(-13 (-1071) (-10 -8 (-15 -2529 ((-531) $))))
+((-3539 (((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2|) 23) (((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2| (-1025 |#4|)) 32)))
+(((-555 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2| (-1025 |#4|))) (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2|))) (-743) (-797) (-523) (-892 |#3| |#1| |#2|)) (T -555))
+((-3539 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-531)))) (-5 *1 (-555 *5 *4 *6 *3)) (-4 *3 (-892 *6 *5 *4)))) (-3539 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1025 *3)) (-4 *3 (-892 *7 *6 *4)) (-4 *6 (-743)) (-4 *4 (-797)) (-4 *7 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-531)))) (-5 *1 (-555 *6 *4 *7 *3)))))
+(-10 -7 (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2| (-1025 |#4|))) (-15 -3539 ((-2 (|:| |num| |#4|) (|:| |den| (-531))) |#4| |#2|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 63)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-531)) 54) (($ $ (-531) (-531)) 55)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 60)) (-2158 (($ $) 100)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3509 (((-806) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) (-966 (-790 (-531))) (-1102) |#1| (-388 (-531))) 224)) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 34)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3201 (((-110) $) NIL)) (-3617 (((-531) $) 58) (((-531) $ (-531)) 59)) (-3481 (((-110) $) NIL)) (-3688 (($ $ (-864)) 76)) (-3192 (($ (-1 |#1| (-531)) $) 73)) (-3380 (((-110) $) 25)) (-2669 (($ |#1| (-531)) 22) (($ $ (-1014) (-531)) NIL) (($ $ (-598 (-1014)) (-598 (-531))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 67)) (-1446 (($ (-966 (-790 (-531))) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 13)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1788 (($ $) 150 (|has| |#1| (-37 (-388 (-531)))))) (-3673 (((-3 $ "failed") $ $ (-110)) 99)) (-2556 (($ $ $) 108)) (-2529 (((-1049) $) NIL)) (-3474 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 15)) (-1990 (((-966 (-790 (-531))) $) 14)) (-1846 (($ $ (-531)) 45)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-531)))))) (-1785 ((|#1| $ (-531)) 57) (($ $ $) NIL (|has| (-531) (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-531) |#1|)))) (($ $) 70 (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (-2012 (((-531) $) NIL)) (-3437 (($ $) 46)) (-2265 (((-806) $) NIL) (($ (-531)) 28) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 27 (|has| |#1| (-162)))) (-3188 ((|#1| $ (-531)) 56)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 37)) (-3840 ((|#1| $) NIL)) (-2609 (($ $) 186 (|has| |#1| (-37 (-388 (-531)))))) (-1314 (($ $) 158 (|has| |#1| (-37 (-388 (-531)))))) (-3125 (($ $) 190 (|has| |#1| (-37 (-388 (-531)))))) (-3141 (($ $) 163 (|has| |#1| (-37 (-388 (-531)))))) (-3838 (($ $) 189 (|has| |#1| (-37 (-388 (-531)))))) (-3116 (($ $) 162 (|has| |#1| (-37 (-388 (-531)))))) (-3728 (($ $ (-388 (-531))) 166 (|has| |#1| (-37 (-388 (-531)))))) (-1562 (($ $ |#1|) 146 (|has| |#1| (-37 (-388 (-531)))))) (-3604 (($ $) 192 (|has| |#1| (-37 (-388 (-531)))))) (-3564 (($ $) 149 (|has| |#1| (-37 (-388 (-531)))))) (-2073 (($ $) 191 (|has| |#1| (-37 (-388 (-531)))))) (-2996 (($ $) 164 (|has| |#1| (-37 (-388 (-531)))))) (-2282 (($ $) 187 (|has| |#1| (-37 (-388 (-531)))))) (-2181 (($ $) 160 (|has| |#1| (-37 (-388 (-531)))))) (-3442 (($ $) 188 (|has| |#1| (-37 (-388 (-531)))))) (-1344 (($ $) 161 (|has| |#1| (-37 (-388 (-531)))))) (-1991 (($ $) 197 (|has| |#1| (-37 (-388 (-531)))))) (-3129 (($ $) 173 (|has| |#1| (-37 (-388 (-531)))))) (-2549 (($ $) 194 (|has| |#1| (-37 (-388 (-531)))))) (-3654 (($ $) 168 (|has| |#1| (-37 (-388 (-531)))))) (-3317 (($ $) 201 (|has| |#1| (-37 (-388 (-531)))))) (-3734 (($ $) 177 (|has| |#1| (-37 (-388 (-531)))))) (-2948 (($ $) 203 (|has| |#1| (-37 (-388 (-531)))))) (-1652 (($ $) 179 (|has| |#1| (-37 (-388 (-531)))))) (-1974 (($ $) 199 (|has| |#1| (-37 (-388 (-531)))))) (-3266 (($ $) 175 (|has| |#1| (-37 (-388 (-531)))))) (-3628 (($ $) 196 (|has| |#1| (-37 (-388 (-531)))))) (-1444 (($ $) 171 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-4148 ((|#1| $ (-531)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-3035 (($) 29 T CONST)) (-3050 (($) 38 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-531) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (-2148 (((-110) $ $) 65)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) 84) (($ $ $) 64)) (-2237 (($ $ $) 81)) (** (($ $ (-864)) NIL) (($ $ (-721)) 103)) (* (($ (-864) $) 89) (($ (-721) $) 87) (($ (-531) $) 85) (($ $ $) 95) (($ $ |#1|) NIL) (($ |#1| $) 115) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-556 |#1|) (-13 (-1162 |#1| (-531)) (-10 -8 (-15 -1446 ($ (-966 (-790 (-531))) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))))) (-15 -1990 ((-966 (-790 (-531))) $)) (-15 -3474 ((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $)) (-15 -4067 ($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))))) (-15 -3380 ((-110) $)) (-15 -3192 ($ (-1 |#1| (-531)) $)) (-15 -3673 ((-3 $ "failed") $ $ (-110))) (-15 -2158 ($ $)) (-15 -2556 ($ $ $)) (-15 -3509 ((-806) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) (-966 (-790 (-531))) (-1102) |#1| (-388 (-531)))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (-15 -1562 ($ $ |#1|)) (-15 -3728 ($ $ (-388 (-531)))) (-15 -3564 ($ $)) (-15 -3604 ($ $)) (-15 -3141 ($ $)) (-15 -1344 ($ $)) (-15 -1314 ($ $)) (-15 -2181 ($ $)) (-15 -3116 ($ $)) (-15 -2996 ($ $)) (-15 -3654 ($ $)) (-15 -1444 ($ $)) (-15 -3129 ($ $)) (-15 -3266 ($ $)) (-15 -3734 ($ $)) (-15 -1652 ($ $)) (-15 -3125 ($ $)) (-15 -3442 ($ $)) (-15 -2609 ($ $)) (-15 -2282 ($ $)) (-15 -3838 ($ $)) (-15 -2073 ($ $)) (-15 -2549 ($ $)) (-15 -3628 ($ $)) (-15 -1991 ($ $)) (-15 -1974 ($ $)) (-15 -3317 ($ $)) (-15 -2948 ($ $))) |%noBranch|))) (-986)) (T -556))
+((-3380 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-986)))) (-1446 (*1 *1 *2 *3) (-12 (-5 *2 (-966 (-790 (-531)))) (-5 *3 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *4)))) (-4 *4 (-986)) (-5 *1 (-556 *4)))) (-1990 (*1 *2 *1) (-12 (-5 *2 (-966 (-790 (-531)))) (-5 *1 (-556 *3)) (-4 *3 (-986)))) (-3474 (*1 *2 *1) (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) (-5 *1 (-556 *3)) (-4 *3 (-986)))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) (-4 *3 (-986)) (-5 *1 (-556 *3)))) (-3192 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-531))) (-4 *3 (-986)) (-5 *1 (-556 *3)))) (-3673 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-986)))) (-2158 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-986)))) (-2556 (*1 *1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-986)))) (-3509 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *6)))) (-5 *4 (-966 (-790 (-531)))) (-5 *5 (-1102)) (-5 *7 (-388 (-531))) (-4 *6 (-986)) (-5 *2 (-806)) (-5 *1 (-556 *6)))) (-1788 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1562 (*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3728 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-556 *3)) (-4 *3 (-37 *2)) (-4 *3 (-986)))) (-3564 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3604 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3141 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1344 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1314 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2181 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3116 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2996 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3654 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1444 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3129 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3266 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3734 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1652 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3125 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3442 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2609 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2282 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3838 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2073 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2549 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1991 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-1974 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-3317 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))) (-2948 (*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(-13 (-1162 |#1| (-531)) (-10 -8 (-15 -1446 ($ (-966 (-790 (-531))) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))))) (-15 -1990 ((-966 (-790 (-531))) $)) (-15 -3474 ((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $)) (-15 -4067 ($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))))) (-15 -3380 ((-110) $)) (-15 -3192 ($ (-1 |#1| (-531)) $)) (-15 -3673 ((-3 $ "failed") $ $ (-110))) (-15 -2158 ($ $)) (-15 -2556 ($ $ $)) (-15 -3509 ((-806) (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) (-966 (-790 (-531))) (-1102) |#1| (-388 (-531)))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (-15 -1562 ($ $ |#1|)) (-15 -3728 ($ $ (-388 (-531)))) (-15 -3564 ($ $)) (-15 -3604 ($ $)) (-15 -3141 ($ $)) (-15 -1344 ($ $)) (-15 -1314 ($ $)) (-15 -2181 ($ $)) (-15 -3116 ($ $)) (-15 -2996 ($ $)) (-15 -3654 ($ $)) (-15 -1444 ($ $)) (-15 -3129 ($ $)) (-15 -3266 ($ $)) (-15 -3734 ($ $)) (-15 -1652 ($ $)) (-15 -3125 ($ $)) (-15 -3442 ($ $)) (-15 -2609 ($ $)) (-15 -2282 ($ $)) (-15 -3838 ($ $)) (-15 -2073 ($ $)) (-15 -2549 ($ $)) (-15 -3628 ($ $)) (-15 -1991 ($ $)) (-15 -1974 ($ $)) (-15 -3317 ($ $)) (-15 -2948 ($ $))) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4067 (($ (-1083 |#1|)) 9)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) 42)) (-3201 (((-110) $) 52)) (-3617 (((-721) $) 55) (((-721) $ (-721)) 54)) (-3481 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ $) 44 (|has| |#1| (-523)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-1083 |#1|) $) 23)) (-2284 (((-721)) 51)) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 10 T CONST)) (-3050 (($) 14 T CONST)) (-2148 (((-110) $ $) 22)) (-2250 (($ $) 30) (($ $ $) 16)) (-2237 (($ $ $) 25)) (** (($ $ (-864)) NIL) (($ $ (-721)) 49)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 34) (($ $ $) 28) (($ |#1| $) 37) (($ $ |#1|) 38) (($ $ (-531)) 36)))
+(((-557 |#1|) (-13 (-986) (-10 -8 (-15 -2708 ((-1083 |#1|) $)) (-15 -4067 ($ (-1083 |#1|))) (-15 -3201 ((-110) $)) (-15 -3617 ((-721) $)) (-15 -3617 ((-721) $ (-721))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-531))) (IF (|has| |#1| (-523)) (-6 (-523)) |%noBranch|))) (-986)) (T -557))
+((-2708 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-557 *3)))) (-3201 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) (-3617 (*1 *2 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-557 *3)) (-4 *3 (-986)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-557 *2)) (-4 *2 (-986)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-557 *2)) (-4 *2 (-986)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-557 *3)) (-4 *3 (-986)))))
+(-13 (-986) (-10 -8 (-15 -2708 ((-1083 |#1|) $)) (-15 -4067 ($ (-1083 |#1|))) (-15 -3201 ((-110) $)) (-15 -3617 ((-721) $)) (-15 -3617 ((-721) $ (-721))) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 * ($ $ (-531))) (IF (|has| |#1| (-523)) (-6 (-523)) |%noBranch|)))
+((-3261 (((-561 |#2|) (-1 |#2| |#1|) (-561 |#1|)) 15)))
+(((-558 |#1| |#2|) (-10 -7 (-15 -3261 ((-561 |#2|) (-1 |#2| |#1|) (-561 |#1|)))) (-1138) (-1138)) (T -558))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-561 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-561 *6)) (-5 *1 (-558 *5 *6)))))
+(-10 -7 (-15 -3261 ((-561 |#2|) (-1 |#2| |#1|) (-561 |#1|))))
+((-3261 (((-1083 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-1083 |#2|)) 20) (((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-561 |#2|)) 19) (((-561 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-561 |#2|)) 18)))
+(((-559 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-561 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-561 |#2|))) (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-561 |#2|))) (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-1083 |#2|)))) (-1138) (-1138) (-1138)) (T -559))
+((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-561 *6)) (-5 *5 (-1083 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) (-5 *1 (-559 *6 *7 *8)))) (-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1083 *6)) (-5 *5 (-561 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) (-5 *1 (-559 *6 *7 *8)))) (-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-561 *6)) (-5 *5 (-561 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-561 *8)) (-5 *1 (-559 *6 *7 *8)))))
+(-10 -7 (-15 -3261 ((-561 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-561 |#2|))) (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-561 |#2|))) (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-561 |#1|) (-1083 |#2|))))
+((-2768 ((|#3| |#3| (-598 (-571 |#3|)) (-598 (-1102))) 55)) (-3962 (((-159 |#2|) |#3|) 117)) (-1415 ((|#3| (-159 |#2|)) 44)) (-4004 ((|#2| |#3|) 19)) (-1782 ((|#3| |#2|) 33)))
+(((-560 |#1| |#2| |#3|) (-10 -7 (-15 -1415 (|#3| (-159 |#2|))) (-15 -4004 (|#2| |#3|)) (-15 -1782 (|#3| |#2|)) (-15 -3962 ((-159 |#2|) |#3|)) (-15 -2768 (|#3| |#3| (-598 (-571 |#3|)) (-598 (-1102))))) (-13 (-523) (-797)) (-13 (-411 |#1|) (-943) (-1124)) (-13 (-411 (-159 |#1|)) (-943) (-1124))) (T -560))
+((-2768 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-598 (-571 *2))) (-5 *4 (-598 (-1102))) (-4 *2 (-13 (-411 (-159 *5)) (-943) (-1124))) (-4 *5 (-13 (-523) (-797))) (-5 *1 (-560 *5 *6 *2)) (-4 *6 (-13 (-411 *5) (-943) (-1124))))) (-3962 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797))) (-5 *2 (-159 *5)) (-5 *1 (-560 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-943) (-1124))) (-4 *3 (-13 (-411 (-159 *4)) (-943) (-1124))))) (-1782 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797))) (-4 *2 (-13 (-411 (-159 *4)) (-943) (-1124))) (-5 *1 (-560 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-943) (-1124))))) (-4004 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-797))) (-4 *2 (-13 (-411 *4) (-943) (-1124))) (-5 *1 (-560 *4 *2 *3)) (-4 *3 (-13 (-411 (-159 *4)) (-943) (-1124))))) (-1415 (*1 *2 *3) (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-943) (-1124))) (-4 *4 (-13 (-523) (-797))) (-4 *2 (-13 (-411 (-159 *4)) (-943) (-1124))) (-5 *1 (-560 *4 *5 *2)))))
+(-10 -7 (-15 -1415 (|#3| (-159 |#2|))) (-15 -4004 (|#2| |#3|)) (-15 -1782 (|#3| |#2|)) (-15 -3962 ((-159 |#2|) |#3|)) (-15 -2768 (|#3| |#3| (-598 (-571 |#3|)) (-598 (-1102)))))
+((-2177 (($ (-1 (-110) |#1|) $) 17)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2107 (($ (-1 |#1| |#1|) |#1|) 9)) (-2153 (($ (-1 (-110) |#1|) $) 13)) (-2164 (($ (-1 (-110) |#1|) $) 15)) (-2274 (((-1083 |#1|) $) 18)) (-2265 (((-806) $) NIL)))
+(((-561 |#1|) (-13 (-572 (-806)) (-10 -8 (-15 -3261 ($ (-1 |#1| |#1|) $)) (-15 -2153 ($ (-1 (-110) |#1|) $)) (-15 -2164 ($ (-1 (-110) |#1|) $)) (-15 -2177 ($ (-1 (-110) |#1|) $)) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2274 ((-1083 |#1|) $)))) (-1138)) (T -561))
+((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2153 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2177 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2107 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3)))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-561 *3)) (-4 *3 (-1138)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -3261 ($ (-1 |#1| |#1|) $)) (-15 -2153 ($ (-1 (-110) |#1|) $)) (-15 -2164 ($ (-1 (-110) |#1|) $)) (-15 -2177 ($ (-1 (-110) |#1|) $)) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2274 ((-1083 |#1|) $))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721)) NIL (|has| |#1| (-23)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) NIL (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1408 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-3332 (((-110) $ (-721)) NIL)) (-2428 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-3225 ((|#1| $ $) NIL (|has| |#1| (-986)))) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2261 (($ $ $) NIL (|has| |#1| (-986)))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2237 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-531) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-677))) (($ $ |#1|) NIL (|has| |#1| (-677)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-562 |#1| |#2|) (-1182 |#1|) (-1138) (-531)) (T -562))
+NIL
+(-1182 |#1|)
+((-3137 (((-1189) $ |#2| |#2|) 36)) (-3804 ((|#2| $) 23)) (-2327 ((|#2| $) 21)) (-2680 (($ (-1 |#3| |#3|) $) 32)) (-3261 (($ (-1 |#3| |#3|) $) 30)) (-3046 ((|#3| $) 26)) (-3742 (($ $ |#3|) 33)) (-1545 (((-110) |#3| $) 17)) (-3163 (((-598 |#3|) $) 15)) (-1785 ((|#3| $ |#2| |#3|) 12) ((|#3| $ |#2|) NIL)))
+(((-563 |#1| |#2| |#3|) (-10 -8 (-15 -3137 ((-1189) |#1| |#2| |#2|)) (-15 -3742 (|#1| |#1| |#3|)) (-15 -3046 (|#3| |#1|)) (-15 -3804 (|#2| |#1|)) (-15 -2327 (|#2| |#1|)) (-15 -1545 ((-110) |#3| |#1|)) (-15 -3163 ((-598 |#3|) |#1|)) (-15 -1785 (|#3| |#1| |#2|)) (-15 -1785 (|#3| |#1| |#2| |#3|)) (-15 -2680 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3261 (|#1| (-1 |#3| |#3|) |#1|))) (-564 |#2| |#3|) (-1030) (-1138)) (T -563))
+NIL
+(-10 -8 (-15 -3137 ((-1189) |#1| |#2| |#2|)) (-15 -3742 (|#1| |#1| |#3|)) (-15 -3046 (|#3| |#1|)) (-15 -3804 (|#2| |#1|)) (-15 -2327 (|#2| |#1|)) (-15 -1545 ((-110) |#3| |#1|)) (-15 -3163 ((-598 |#3|) |#1|)) (-15 -1785 (|#3| |#1| |#2|)) (-15 -1785 (|#3| |#1| |#2| |#3|)) (-15 -2680 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3261 (|#1| (-1 |#3| |#3|) |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#2| (-1030)))) (-3137 (((-1189) $ |#1| |#1|) 40 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#2| $ |#1| |#2|) 52 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-2693 ((|#2| $ |#1| |#2|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) 51)) (-2227 (((-598 |#2|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-3804 ((|#1| $) 43 (|has| |#1| (-797)))) (-2445 (((-598 |#2|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) 27 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2327 ((|#1| $) 44 (|has| |#1| (-797)))) (-2680 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#2| (-1030)))) (-3765 (((-598 |#1|) $) 46)) (-3059 (((-110) |#1| $) 47)) (-2529 (((-1049) $) 21 (|has| |#2| (-1030)))) (-3046 ((|#2| $) 42 (|has| |#1| (-797)))) (-3742 (($ $ |#2|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) 26 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 25 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 23 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#2| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#2| $ |#1| |#2|) 50) ((|#2| $ |#1|) 49)) (-2539 (((-721) (-1 (-110) |#2|) $) 31 (|has| $ (-6 -4273))) (((-721) |#2| $) 28 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#2| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#2|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#2| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-564 |#1| |#2|) (-133) (-1030) (-1138)) (T -564))
+((-3163 (*1 *2 *1) (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) (-5 *2 (-598 *4)))) (-3059 (*1 *2 *3 *1) (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) (-5 *2 (-110)))) (-3765 (*1 *2 *1) (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) (-5 *2 (-598 *3)))) (-1545 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-564 *4 *3)) (-4 *4 (-1030)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-2327 (*1 *2 *1) (-12 (-4 *1 (-564 *2 *3)) (-4 *3 (-1138)) (-4 *2 (-1030)) (-4 *2 (-797)))) (-3804 (*1 *2 *1) (-12 (-4 *1 (-564 *2 *3)) (-4 *3 (-1138)) (-4 *2 (-1030)) (-4 *2 (-797)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-564 *3 *2)) (-4 *3 (-1030)) (-4 *3 (-797)) (-4 *2 (-1138)))) (-3742 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-564 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138)))) (-3137 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138)) (-5 *2 (-1189)))))
+(-13 (-468 |t#2|) (-270 |t#1| |t#2|) (-10 -8 (-15 -3163 ((-598 |t#2|) $)) (-15 -3059 ((-110) |t#1| $)) (-15 -3765 ((-598 |t#1|) $)) (IF (|has| |t#2| (-1030)) (IF (|has| $ (-6 -4273)) (-15 -1545 ((-110) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-797)) (PROGN (-15 -2327 (|t#1| $)) (-15 -3804 (|t#1| $)) (-15 -3046 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4274)) (PROGN (-15 -3742 ($ $ |t#2|)) (-15 -3137 ((-1189) $ |t#1| |t#1|))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#2| (-1030)) ((-572 (-806)) -1435 (|has| |#2| (-1030)) (|has| |#2| (-572 (-806)))) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-468 |#2|) . T) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-1030) |has| |#2| (-1030)) ((-1138) . T))
+((-2265 (((-806) $) 19) (((-127) $) 14) (($ (-127)) 13)))
+(((-565) (-13 (-572 (-806)) (-572 (-127)) (-10 -8 (-15 -2265 ($ (-127)))))) (T -565))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-565)))))
+(-13 (-572 (-806)) (-572 (-127)) (-10 -8 (-15 -2265 ($ (-127)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1184 (-639 |#1|)) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-2022 (((-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-4082 (($) NIL T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2783 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3939 (((-639 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1668 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-2264 (((-639 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1387 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3668 (((-1098 (-895 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-1666 (($ $ (-864)) NIL)) (-2065 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3415 (((-1098 |#1|) $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3960 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3586 (((-1098 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1437 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2767 (($ (-1184 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1184 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2277 (((-864)) NIL (|has| |#2| (-348 |#1|)))) (-2629 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2083 (($ $ (-864)) NIL)) (-2790 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3769 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2298 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2816 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-1950 (((-639 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1807 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3405 (((-639 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-2234 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2280 (((-1098 (-895 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-2585 (($ $ (-864)) NIL)) (-1288 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1480 (((-1098 |#1|) $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3579 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1875 (((-1098 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-2239 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1561 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3036 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2529 (((-1049) $) NIL)) (-1513 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1785 ((|#1| $ (-531)) NIL (|has| |#2| (-398 |#1|)))) (-3348 (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-398 |#1|))) (((-1184 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $) (-1184 $)) NIL (|has| |#2| (-348 |#1|))) (((-1184 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3318 (($ (-1184 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1184 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-2570 (((-598 (-895 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-598 (-895 |#1|)) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3214 (($ $ $) NIL)) (-1817 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2265 (((-806) $) NIL) ((|#2| $) 21) (($ |#2|) 22)) (-3523 (((-1184 $)) NIL (|has| |#2| (-398 |#1|)))) (-2273 (((-598 (-1184 |#1|))) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2979 (($ (-639 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-1605 (($ $ $) NIL)) (-2578 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1964 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2819 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) 24)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 20) (($ $ |#1|) 19) (($ |#1| $) NIL)))
+(((-566 |#1| |#2|) (-13 (-695 |#1|) (-572 |#2|) (-10 -8 (-15 -2265 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-695 |#1|)) (T -566))
+((-2265 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-566 *3 *2)) (-4 *2 (-695 *3)))))
+(-13 (-695 |#1|) (-572 |#2|) (-10 -8 (-15 -2265 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-2618 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) 33)) (-2995 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL) (($) NIL)) (-3137 (((-1189) $ (-1085) (-1085)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-1085) |#1|) 43)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#1| "failed") (-1085) $) 46)) (-4082 (($) NIL T CONST)) (-1743 (($ $ (-1085)) 24)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-2717 (((-3 |#1| "failed") (-1085) $) 47) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (|has| $ (-6 -4273)))) (-2283 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-1760 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-3641 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) 32)) (-2693 ((|#1| $ (-1085) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-1085)) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-1411 (($ $) 48)) (-1833 (($ (-369)) 22) (($ (-369) (-1085)) 21)) (-3955 (((-369) $) 34)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273))) (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (((-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-2327 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-3345 (((-598 (-1085)) $) 39)) (-1727 (((-110) (-1085) $) NIL)) (-3454 (((-1085) $) 35)) (-3540 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-3765 (((-598 (-1085)) $) NIL)) (-3059 (((-110) (-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 ((|#1| $) NIL (|has| (-1085) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) "failed") (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-598 (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 37)) (-1785 ((|#1| $ (-1085) |#1|) NIL) ((|#1| $ (-1085)) 42)) (-2543 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL) (($) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (((-721) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (((-721) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2265 (((-806) $) 20)) (-4074 (($ $) 25)) (-2524 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 19)) (-2167 (((-721) $) 41 (|has| $ (-6 -4273)))))
+(((-567 |#1|) (-13 (-345 (-369) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) (-1115 (-1085) |#1|) (-10 -8 (-6 -4273) (-15 -1411 ($ $)))) (-1030)) (T -567))
+((-1411 (*1 *1 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1030)))))
+(-13 (-345 (-369) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) (-1115 (-1085) |#1|) (-10 -8 (-6 -4273) (-15 -1411 ($ $))))
+((-1883 (((-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 15)) (-3345 (((-598 |#2|) $) 19)) (-1727 (((-110) |#2| $) 12)))
+(((-568 |#1| |#2| |#3|) (-10 -8 (-15 -3345 ((-598 |#2|) |#1|)) (-15 -1727 ((-110) |#2| |#1|)) (-15 -1883 ((-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|))) (-569 |#2| |#3|) (-1030) (-1030)) (T -568))
+NIL
+(-10 -8 (-15 -3345 ((-598 |#2|) |#1|)) (-15 -1727 ((-110) |#2| |#1|)) (-15 -1883 ((-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)))
+((-2247 (((-110) $ $) 19 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 55 (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) 61)) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 46 (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 62)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 54 (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 56 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 53 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-3345 (((-598 |#1|) $) 63)) (-1727 (((-110) |#1| $) 64)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 39)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 40)) (-2529 (((-1049) $) 21 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 51)) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 41)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) 26 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 25 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 24 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 23 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2543 (($) 49) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 48)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 31 (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 50)) (-2265 (((-806) $) 18 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 42)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-569 |#1| |#2|) (-133) (-1030) (-1030)) (T -569))
+((-1727 (*1 *2 *3 *1) (-12 (-4 *1 (-569 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-5 *2 (-110)))) (-3345 (*1 *2 *1) (-12 (-4 *1 (-569 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-5 *2 (-598 *3)))) (-2717 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-569 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-2714 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-569 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))))
+(-13 (-212 (-2 (|:| -3033 |t#1|) (|:| -1798 |t#2|))) (-10 -8 (-15 -1727 ((-110) |t#1| $)) (-15 -3345 ((-598 |t#1|) $)) (-15 -2717 ((-3 |t#2| "failed") |t#1| $)) (-15 -2714 ((-3 |t#2| "failed") |t#1| $))))
+(((-33) . T) ((-104 #0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((-99) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) ((-572 (-806)) -1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))) ((-144 #0#) . T) ((-573 (-507)) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))) ((-212 #0#) . T) ((-218 #0#) . T) ((-291 #0#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-468 #0#) . T) ((-492 #0# #0#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-1030) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) ((-1138) . T))
+((-1567 (((-571 |#2|) |#1|) 15)) (-2341 (((-3 |#1| "failed") (-571 |#2|)) 19)))
+(((-570 |#1| |#2|) (-10 -7 (-15 -1567 ((-571 |#2|) |#1|)) (-15 -2341 ((-3 |#1| "failed") (-571 |#2|)))) (-797) (-797)) (T -570))
+((-2341 (*1 *2 *3) (|partial| -12 (-5 *3 (-571 *4)) (-4 *4 (-797)) (-4 *2 (-797)) (-5 *1 (-570 *2 *4)))) (-1567 (*1 *2 *3) (-12 (-5 *2 (-571 *4)) (-5 *1 (-570 *3 *4)) (-4 *3 (-797)) (-4 *4 (-797)))))
+(-10 -7 (-15 -1567 ((-571 |#2|) |#1|)) (-15 -2341 ((-3 |#1| "failed") (-571 |#2|))))
+((-2247 (((-110) $ $) NIL)) (-3900 (((-3 (-1102) "failed") $) 37)) (-2310 (((-1189) $ (-721)) 26)) (-1976 (((-721) $) 25)) (-3254 (((-112) $) 12)) (-3955 (((-1102) $) 20)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-1930 (($ (-112) (-598 |#1|) (-721)) 30) (($ (-1102)) 31)) (-4247 (((-110) $ (-112)) 18) (((-110) $ (-1102)) 16)) (-4194 (((-721) $) 22)) (-2529 (((-1049) $) NIL)) (-3318 (((-835 (-531)) $) 77 (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) 84 (|has| |#1| (-573 (-835 (-360))))) (((-507) $) 69 (|has| |#1| (-573 (-507))))) (-2265 (((-806) $) 55)) (-3662 (((-598 |#1|) $) 24)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 41)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 42)))
+(((-571 |#1|) (-13 (-129) (-827 |#1|) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -3254 ((-112) $)) (-15 -3662 ((-598 |#1|) $)) (-15 -4194 ((-721) $)) (-15 -1930 ($ (-112) (-598 |#1|) (-721))) (-15 -1930 ($ (-1102))) (-15 -3900 ((-3 (-1102) "failed") $)) (-15 -4247 ((-110) $ (-112))) (-15 -4247 ((-110) $ (-1102))) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|))) (-797)) (T -571))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-3254 (*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-1930 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-112)) (-5 *3 (-598 *5)) (-5 *4 (-721)) (-4 *5 (-797)) (-5 *1 (-571 *5)))) (-1930 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-3900 (*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))) (-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-571 *4)) (-4 *4 (-797)))) (-4247 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-110)) (-5 *1 (-571 *4)) (-4 *4 (-797)))))
+(-13 (-129) (-827 |#1|) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -3254 ((-112) $)) (-15 -3662 ((-598 |#1|) $)) (-15 -4194 ((-721) $)) (-15 -1930 ($ (-112) (-598 |#1|) (-721))) (-15 -1930 ($ (-1102))) (-15 -3900 ((-3 (-1102) "failed") $)) (-15 -4247 ((-110) $ (-112))) (-15 -4247 ((-110) $ (-1102))) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|)))
+((-2265 ((|#1| $) 6)))
+(((-572 |#1|) (-133) (-1138)) (T -572))
+((-2265 (*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1138)))))
+(-13 (-10 -8 (-15 -2265 (|t#1| $))))
+((-3318 ((|#1| $) 6)))
+(((-573 |#1|) (-133) (-1138)) (T -573))
+((-3318 (*1 *2 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-1138)))))
+(-13 (-10 -8 (-15 -3318 (|t#1| $))))
+((-3596 (((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)) 15) (((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 16)))
+(((-574 |#1| |#2|) (-10 -7 (-15 -3596 ((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -3596 ((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|)))) (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|)) (T -574))
+((-3596 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-1098 (-388 *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-388 *6)))) (-3596 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-1098 (-388 *5))) (-5 *1 (-574 *4 *5)) (-5 *3 (-388 *5)))))
+(-10 -7 (-15 -3596 ((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))) (-15 -3596 ((-3 (-1098 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 (-399 |#2|) |#2|))))
+((-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) 10)))
+(((-575 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-576 |#2|) (-986)) (T -575))
+NIL
+(-10 -8 (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 34)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ |#1| $) 35)))
+(((-576 |#1|) (-133) (-986)) (T -576))
+((-2265 (*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-986)))))
+(-13 (-986) (-601 |t#1|) (-10 -8 (-15 -2265 ($ |t#1|))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3459 (((-531) $) NIL (|has| |#1| (-795)))) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-1599 (((-110) $) NIL (|has| |#1| (-795)))) (-3481 (((-110) $) NIL)) (-1840 ((|#1| $) 13)) (-2985 (((-110) $) NIL (|has| |#1| (-795)))) (-4103 (($ $ $) NIL (|has| |#1| (-795)))) (-1241 (($ $ $) NIL (|has| |#1| (-795)))) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1853 ((|#3| $) 15)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL)) (-2284 (((-721)) 20)) (-1620 (($ $) NIL (|has| |#1| (-795)))) (-3035 (($) NIL T CONST)) (-3050 (($) 12 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2263 (($ $ |#3|) NIL) (($ |#1| |#3|) 11)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 17) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-577 |#1| |#2| |#3|) (-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (-15 -2263 ($ $ |#3|)) (-15 -2263 ($ |#1| |#3|)) (-15 -1840 (|#1| $)) (-15 -1853 (|#3| $)))) (-37 |#2|) (-162) (|SubsetCategory| (-677) |#2|)) (T -577))
+((-2263 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-577 *3 *4 *2)) (-4 *3 (-37 *4)) (-4 *2 (|SubsetCategory| (-677) *4)))) (-2263 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-577 *2 *4 *3)) (-4 *2 (-37 *4)) (-4 *3 (|SubsetCategory| (-677) *4)))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-577 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-677) *3)))) (-1853 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-677) *4)) (-5 *1 (-577 *3 *4 *2)) (-4 *3 (-37 *4)))))
+(-13 (-37 |#2|) (-10 -8 (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (-15 -2263 ($ $ |#3|)) (-15 -2263 ($ |#1| |#3|)) (-15 -1840 (|#1| $)) (-15 -1853 (|#3| $))))
+((-4036 ((|#2| |#2| (-1102) (-1102)) 18)))
+(((-578 |#1| |#2|) (-10 -7 (-15 -4036 (|#2| |#2| (-1102) (-1102)))) (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-902) (-29 |#1|))) (T -578))
+((-4036 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531)))) (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1124) (-902) (-29 *4))))))
+(-10 -7 (-15 -4036 (|#2| |#2| (-1102) (-1102))))
+((-2247 (((-110) $ $) 56)) (-3019 (((-110) $) 52)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2917 ((|#1| $) 49)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3245 (((-2 (|:| -1994 $) (|:| -1764 (-388 |#2|))) (-388 |#2|)) 97 (|has| |#1| (-344)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 85) (((-3 |#2| "failed") $) 81)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL) ((|#2| $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) 24)) (-3622 (((-3 $ "failed") $) 75)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-3617 (((-531) $) 19)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) 36)) (-2669 (($ |#1| (-531)) 21)) (-2475 ((|#1| $) 51)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) 87 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 100 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ $) 79)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4100 (((-721) $) 99 (|has| |#1| (-344)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 98 (|has| |#1| (-344)))) (-3352 (($ $ (-1 |#2| |#2|)) 66) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2012 (((-531) $) 34)) (-3318 (((-388 |#2|) $) 42)) (-2265 (((-806) $) 62) (($ (-531)) 32) (($ $) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 31) (($ |#2|) 22)) (-3188 ((|#1| $ (-531)) 63)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 29)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 9 T CONST)) (-3050 (($) 12 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) 17)) (-2250 (($ $) 46) (($ $ $) NIL)) (-2237 (($ $ $) 76)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 26) (($ $ $) 44)))
+(((-579 |#1| |#2|) (-13 (-214 |#2|) (-523) (-573 (-388 |#2|)) (-392 |#1|) (-977 |#2|) (-10 -8 (-15 -3380 ((-110) $)) (-15 -2012 ((-531) $)) (-15 -3617 ((-531) $)) (-15 -2500 ($ $)) (-15 -2475 (|#1| $)) (-15 -2917 (|#1| $)) (-15 -3188 (|#1| $ (-531))) (-15 -2669 ($ |#1| (-531))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -3245 ((-2 (|:| -1994 $) (|:| -1764 (-388 |#2|))) (-388 |#2|)))) |%noBranch|))) (-523) (-1160 |#1|)) (T -579))
+((-3380 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-110)) (-5 *1 (-579 *3 *4)) (-4 *4 (-1160 *3)))) (-2012 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-531)) (-5 *1 (-579 *3 *4)) (-4 *4 (-1160 *3)))) (-3617 (*1 *2 *1) (-12 (-4 *3 (-523)) (-5 *2 (-531)) (-5 *1 (-579 *3 *4)) (-4 *4 (-1160 *3)))) (-2500 (*1 *1 *1) (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))) (-2475 (*1 *2 *1) (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))) (-2917 (*1 *2 *1) (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *2 (-523)) (-5 *1 (-579 *2 *4)) (-4 *4 (-1160 *2)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-4 *2 (-523)) (-5 *1 (-579 *2 *4)) (-4 *4 (-1160 *2)))) (-3245 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-523)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -1994 (-579 *4 *5)) (|:| -1764 (-388 *5)))) (-5 *1 (-579 *4 *5)) (-5 *3 (-388 *5)))))
+(-13 (-214 |#2|) (-523) (-573 (-388 |#2|)) (-392 |#1|) (-977 |#2|) (-10 -8 (-15 -3380 ((-110) $)) (-15 -2012 ((-531) $)) (-15 -3617 ((-531) $)) (-15 -2500 ($ $)) (-15 -2475 (|#1| $)) (-15 -2917 (|#1| $)) (-15 -3188 (|#1| $ (-531))) (-15 -2669 ($ |#1| (-531))) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-6 (-289)) (-15 -3245 ((-2 (|:| -1994 $) (|:| -1764 (-388 |#2|))) (-388 |#2|)))) |%noBranch|)))
+((-2855 (((-598 |#6|) (-598 |#4|) (-110)) 47)) (-3806 ((|#6| |#6|) 40)))
+(((-580 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3806 (|#6| |#6|)) (-15 -2855 ((-598 |#6|) (-598 |#4|) (-110)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|) (-1039 |#1| |#2| |#3| |#4|)) (T -580))
+((-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 *10)) (-5 *1 (-580 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *10 (-1039 *5 *6 *7 *8)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-580 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *2 (-1039 *3 *4 *5 *6)))))
+(-10 -7 (-15 -3806 (|#6| |#6|)) (-15 -2855 ((-598 |#6|) (-598 |#4|) (-110))))
+((-1662 (((-110) |#3| (-721) (-598 |#3|)) 23)) (-2875 (((-3 (-2 (|:| |polfac| (-598 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-598 (-1098 |#3|)))) "failed") |#3| (-598 (-1098 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2721 (-598 (-2 (|:| |irr| |#4|) (|:| -2460 (-531)))))) (-598 |#3|) (-598 |#1|) (-598 |#3|)) 55)))
+(((-581 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1662 ((-110) |#3| (-721) (-598 |#3|))) (-15 -2875 ((-3 (-2 (|:| |polfac| (-598 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-598 (-1098 |#3|)))) "failed") |#3| (-598 (-1098 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2721 (-598 (-2 (|:| |irr| |#4|) (|:| -2460 (-531)))))) (-598 |#3|) (-598 |#1|) (-598 |#3|)))) (-797) (-743) (-289) (-892 |#3| |#2| |#1|)) (T -581))
+((-2875 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -2721 (-598 (-2 (|:| |irr| *10) (|:| -2460 (-531))))))) (-5 *6 (-598 *3)) (-5 *7 (-598 *8)) (-4 *8 (-797)) (-4 *3 (-289)) (-4 *10 (-892 *3 *9 *8)) (-4 *9 (-743)) (-5 *2 (-2 (|:| |polfac| (-598 *10)) (|:| |correct| *3) (|:| |corrfact| (-598 (-1098 *3))))) (-5 *1 (-581 *8 *9 *3 *10)) (-5 *4 (-598 (-1098 *3))))) (-1662 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-721)) (-5 *5 (-598 *3)) (-4 *3 (-289)) (-4 *6 (-797)) (-4 *7 (-743)) (-5 *2 (-110)) (-5 *1 (-581 *6 *7 *3 *8)) (-4 *8 (-892 *3 *7 *6)))))
+(-10 -7 (-15 -1662 ((-110) |#3| (-721) (-598 |#3|))) (-15 -2875 ((-3 (-2 (|:| |polfac| (-598 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-598 (-1098 |#3|)))) "failed") |#3| (-598 (-1098 |#3|)) (-2 (|:| |contp| |#3|) (|:| -2721 (-598 (-2 (|:| |irr| |#4|) (|:| -2460 (-531)))))) (-598 |#3|) (-598 |#1|) (-598 |#3|))))
+((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-4104 (($ $) 67)) (-2076 (((-617 |#1| |#2|) $) 52)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 70)) (-4237 (((-598 (-276 |#2|)) $ $) 33)) (-2529 (((-1049) $) NIL)) (-2798 (($ (-617 |#1| |#2|)) 48)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 58) (((-1197 |#1| |#2|) $) NIL) (((-1202 |#1| |#2|) $) 66)) (-3050 (($) 53 T CONST)) (-2773 (((-598 (-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|))) $) 31)) (-3242 (((-598 (-617 |#1| |#2|)) (-598 |#1|)) 65)) (-2400 (((-598 (-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|))) $) 37)) (-2148 (((-110) $ $) 54)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ $ $) 44)))
+(((-582 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -2798 ($ (-617 |#1| |#2|))) (-15 -2076 ((-617 |#1| |#2|) $)) (-15 -2400 ((-598 (-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|))) $)) (-15 -2265 ((-1197 |#1| |#2|) $)) (-15 -2265 ((-1202 |#1| |#2|) $)) (-15 -4104 ($ $)) (-15 -3798 ((-598 |#1|) $)) (-15 -3242 ((-598 (-617 |#1| |#2|)) (-598 |#1|))) (-15 -2773 ((-598 (-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|))) $)) (-15 -4237 ((-598 (-276 |#2|)) $ $)))) (-797) (-13 (-162) (-668 (-388 (-531)))) (-864)) (T -582))
+((-2798 (*1 *1 *2) (-12 (-5 *2 (-617 *3 *4)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-5 *1 (-582 *3 *4 *5)) (-14 *5 (-864)))) (-2076 (*1 *2 *1) (-12 (-5 *2 (-617 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |k| (-836 *3)) (|:| |c| *4)))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-582 *2 *3 *4)) (-4 *2 (-797)) (-4 *3 (-13 (-162) (-668 (-388 (-531))))) (-14 *4 (-864)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-3242 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-797)) (-5 *2 (-598 (-617 *4 *5))) (-5 *1 (-582 *4 *5 *6)) (-4 *5 (-13 (-162) (-668 (-388 (-531))))) (-14 *6 (-864)))) (-2773 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |k| (-624 *3)) (|:| |c| *4)))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))) (-4237 (*1 *2 *1 *1) (-12 (-5 *2 (-598 (-276 *4))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))))
+(-13 (-453) (-10 -8 (-15 -2798 ($ (-617 |#1| |#2|))) (-15 -2076 ((-617 |#1| |#2|) $)) (-15 -2400 ((-598 (-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|))) $)) (-15 -2265 ((-1197 |#1| |#2|) $)) (-15 -2265 ((-1202 |#1| |#2|) $)) (-15 -4104 ($ $)) (-15 -3798 ((-598 |#1|) $)) (-15 -3242 ((-598 (-617 |#1| |#2|)) (-598 |#1|))) (-15 -2773 ((-598 (-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|))) $)) (-15 -4237 ((-598 (-276 |#2|)) $ $))))
+((-2855 (((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110)) 72) (((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110)) 58)) (-3598 (((-110) (-598 (-730 |#1| (-808 |#2|)))) 23)) (-1669 (((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110)) 71)) (-1348 (((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110)) 57)) (-3716 (((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|)))) 27)) (-3134 (((-3 (-598 (-730 |#1| (-808 |#2|))) "failed") (-598 (-730 |#1| (-808 |#2|)))) 26)))
+(((-583 |#1| |#2|) (-10 -7 (-15 -3598 ((-110) (-598 (-730 |#1| (-808 |#2|))))) (-15 -3134 ((-3 (-598 (-730 |#1| (-808 |#2|))) "failed") (-598 (-730 |#1| (-808 |#2|))))) (-15 -3716 ((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))))) (-15 -1348 ((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -1669 ((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -2855 ((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -2855 ((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110)))) (-432) (-598 (-1102))) (T -583))
+((-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-1073 *5 (-503 (-808 *6)) (-808 *6) (-730 *5 (-808 *6))))) (-5 *1 (-583 *5 *6)))) (-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-583 *5 *6)))) (-1669 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-1073 *5 (-503 (-808 *6)) (-808 *6) (-730 *5 (-808 *6))))) (-5 *1 (-583 *5 *6)))) (-1348 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-583 *5 *6)))) (-3716 (*1 *2 *2) (-12 (-5 *2 (-598 (-730 *3 (-808 *4)))) (-4 *3 (-432)) (-14 *4 (-598 (-1102))) (-5 *1 (-583 *3 *4)))) (-3134 (*1 *2 *2) (|partial| -12 (-5 *2 (-598 (-730 *3 (-808 *4)))) (-4 *3 (-432)) (-14 *4 (-598 (-1102))) (-5 *1 (-583 *3 *4)))) (-3598 (*1 *2 *3) (-12 (-5 *3 (-598 (-730 *4 (-808 *5)))) (-4 *4 (-432)) (-14 *5 (-598 (-1102))) (-5 *2 (-110)) (-5 *1 (-583 *4 *5)))))
+(-10 -7 (-15 -3598 ((-110) (-598 (-730 |#1| (-808 |#2|))))) (-15 -3134 ((-3 (-598 (-730 |#1| (-808 |#2|))) "failed") (-598 (-730 |#1| (-808 |#2|))))) (-15 -3716 ((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))))) (-15 -1348 ((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -1669 ((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -2855 ((-598 (-983 |#1| |#2|)) (-598 (-730 |#1| (-808 |#2|))) (-110))) (-15 -2855 ((-598 (-1073 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|)))) (-598 (-730 |#1| (-808 |#2|))) (-110))))
+((-2367 (($ $) 38)) (-2218 (($ $) 21)) (-2343 (($ $) 37)) (-2198 (($ $) 22)) (-2391 (($ $) 36)) (-2241 (($ $) 23)) (-1880 (($) 48)) (-2076 (($ $) 45)) (-1805 (($ $) 17)) (-2974 (($ $ (-1023 $)) 7) (($ $ (-1102)) 6)) (-2798 (($ $) 46)) (-2152 (($ $) 15)) (-2187 (($ $) 16)) (-2403 (($ $) 35)) (-2253 (($ $) 24)) (-2379 (($ $) 34)) (-2229 (($ $) 25)) (-2356 (($ $) 33)) (-2210 (($ $) 26)) (-2442 (($ $) 44)) (-2292 (($ $) 32)) (-2416 (($ $) 43)) (-2266 (($ $) 31)) (-2468 (($ $) 42)) (-2318 (($ $) 30)) (-2753 (($ $) 41)) (-2331 (($ $) 29)) (-2456 (($ $) 40)) (-2305 (($ $) 28)) (-2429 (($ $) 39)) (-2279 (($ $) 27)) (-1677 (($ $) 19)) (-1400 (($ $) 20)) (-3510 (($ $) 18)) (** (($ $ $) 47)))
+(((-584) (-133)) (T -584))
+((-1400 (*1 *1 *1) (-4 *1 (-584))) (-1677 (*1 *1 *1) (-4 *1 (-584))) (-3510 (*1 *1 *1) (-4 *1 (-584))) (-1805 (*1 *1 *1) (-4 *1 (-584))) (-2187 (*1 *1 *1) (-4 *1 (-584))) (-2152 (*1 *1 *1) (-4 *1 (-584))))
+(-13 (-902) (-1124) (-10 -8 (-15 -1400 ($ $)) (-15 -1677 ($ $)) (-15 -3510 ($ $)) (-15 -1805 ($ $)) (-15 -2187 ($ $)) (-15 -2152 ($ $))))
+(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-902) . T) ((-1124) . T) ((-1127) . T))
+((-3254 (((-112) (-112)) 83)) (-1805 ((|#2| |#2|) 30)) (-2974 ((|#2| |#2| (-1023 |#2|)) 79) ((|#2| |#2| (-1102)) 52)) (-2152 ((|#2| |#2|) 29)) (-2187 ((|#2| |#2|) 31)) (-3167 (((-110) (-112)) 34)) (-1677 ((|#2| |#2|) 26)) (-1400 ((|#2| |#2|) 28)) (-3510 ((|#2| |#2|) 27)))
+(((-585 |#1| |#2|) (-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -1400 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -2152 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -2974 (|#2| |#2| (-1102))) (-15 -2974 (|#2| |#2| (-1023 |#2|)))) (-13 (-797) (-523)) (-13 (-411 |#1|) (-943) (-1124))) (T -585))
+((-2974 (*1 *2 *2 *3) (-12 (-5 *3 (-1023 *2)) (-4 *2 (-13 (-411 *4) (-943) (-1124))) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-585 *4 *2)))) (-2974 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-585 *4 *2)) (-4 *2 (-13 (-411 *4) (-943) (-1124))))) (-2187 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-2152 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-1805 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-3510 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-1400 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2)) (-4 *2 (-13 (-411 *3) (-943) (-1124))))) (-3254 (*1 *2 *2) (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *4)) (-4 *4 (-13 (-411 *3) (-943) (-1124))))) (-3167 (*1 *2 *3) (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-585 *4 *5)) (-4 *5 (-13 (-411 *4) (-943) (-1124))))))
+(-10 -7 (-15 -3167 ((-110) (-112))) (-15 -3254 ((-112) (-112))) (-15 -1400 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -3510 (|#2| |#2|)) (-15 -1805 (|#2| |#2|)) (-15 -2152 (|#2| |#2|)) (-15 -2187 (|#2| |#2|)) (-15 -2974 (|#2| |#2| (-1102))) (-15 -2974 (|#2| |#2| (-1023 |#2|))))
+((-1579 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 53)) (-3426 (((-598 (-230 |#1| |#2|)) (-598 (-460 |#1| |#2|))) 68)) (-1740 (((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-808 |#1|)) 70) (((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)) (-808 |#1|)) 69)) (-2704 (((-2 (|:| |gblist| (-598 (-230 |#1| |#2|))) (|:| |gvlist| (-598 (-531)))) (-598 (-460 |#1| |#2|))) 108)) (-1664 (((-598 (-460 |#1| |#2|)) (-808 |#1|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|))) 83)) (-3072 (((-2 (|:| |glbase| (-598 (-230 |#1| |#2|))) (|:| |glval| (-598 (-531)))) (-598 (-230 |#1| |#2|))) 118)) (-4096 (((-1184 |#2|) (-460 |#1| |#2|) (-598 (-460 |#1| |#2|))) 58)) (-3735 (((-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|))) 41)) (-3174 (((-230 |#1| |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|))) 50)) (-4219 (((-230 |#1| |#2|) (-598 |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|))) 91)))
+(((-586 |#1| |#2|) (-10 -7 (-15 -2704 ((-2 (|:| |gblist| (-598 (-230 |#1| |#2|))) (|:| |gvlist| (-598 (-531)))) (-598 (-460 |#1| |#2|)))) (-15 -3072 ((-2 (|:| |glbase| (-598 (-230 |#1| |#2|))) (|:| |glval| (-598 (-531)))) (-598 (-230 |#1| |#2|)))) (-15 -3426 ((-598 (-230 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -1740 ((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)) (-808 |#1|))) (-15 -1740 ((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-808 |#1|))) (-15 -3735 ((-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -4096 ((-1184 |#2|) (-460 |#1| |#2|) (-598 (-460 |#1| |#2|)))) (-15 -4219 ((-230 |#1| |#2|) (-598 |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|)))) (-15 -1664 ((-598 (-460 |#1| |#2|)) (-808 |#1|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -3174 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|)))) (-15 -1579 ((-460 |#1| |#2|) (-230 |#1| |#2|)))) (-598 (-1102)) (-432)) (T -586))
+((-1579 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *2 (-460 *4 *5)) (-5 *1 (-586 *4 *5)))) (-3174 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-230 *4 *5))) (-5 *2 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-586 *4 *5)))) (-1664 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-598 (-460 *4 *5))) (-5 *3 (-808 *4)) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-586 *4 *5)))) (-4219 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-230 *5 *6))) (-4 *6 (-432)) (-5 *2 (-230 *5 *6)) (-14 *5 (-598 (-1102))) (-5 *1 (-586 *5 *6)))) (-4096 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-460 *5 *6))) (-5 *3 (-460 *5 *6)) (-14 *5 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-1184 *6)) (-5 *1 (-586 *5 *6)))) (-3735 (*1 *2 *2) (-12 (-5 *2 (-598 (-460 *3 *4))) (-14 *3 (-598 (-1102))) (-4 *4 (-432)) (-5 *1 (-586 *3 *4)))) (-1740 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-460 *5 *6))) (-5 *4 (-808 *5)) (-14 *5 (-598 (-1102))) (-5 *2 (-460 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-432)))) (-1740 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-598 (-460 *5 *6))) (-5 *4 (-808 *5)) (-14 *5 (-598 (-1102))) (-5 *2 (-460 *5 *6)) (-5 *1 (-586 *5 *6)) (-4 *6 (-432)))) (-3426 (*1 *2 *3) (-12 (-5 *3 (-598 (-460 *4 *5))) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *2 (-598 (-230 *4 *5))) (-5 *1 (-586 *4 *5)))) (-3072 (*1 *2 *3) (-12 (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |glbase| (-598 (-230 *4 *5))) (|:| |glval| (-598 (-531))))) (-5 *1 (-586 *4 *5)) (-5 *3 (-598 (-230 *4 *5))))) (-2704 (*1 *2 *3) (-12 (-5 *3 (-598 (-460 *4 *5))) (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *2 (-2 (|:| |gblist| (-598 (-230 *4 *5))) (|:| |gvlist| (-598 (-531))))) (-5 *1 (-586 *4 *5)))))
+(-10 -7 (-15 -2704 ((-2 (|:| |gblist| (-598 (-230 |#1| |#2|))) (|:| |gvlist| (-598 (-531)))) (-598 (-460 |#1| |#2|)))) (-15 -3072 ((-2 (|:| |glbase| (-598 (-230 |#1| |#2|))) (|:| |glval| (-598 (-531)))) (-598 (-230 |#1| |#2|)))) (-15 -3426 ((-598 (-230 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -1740 ((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)) (-808 |#1|))) (-15 -1740 ((-460 |#1| |#2|) (-598 (-460 |#1| |#2|)) (-808 |#1|))) (-15 -3735 ((-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -4096 ((-1184 |#2|) (-460 |#1| |#2|) (-598 (-460 |#1| |#2|)))) (-15 -4219 ((-230 |#1| |#2|) (-598 |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|)))) (-15 -1664 ((-598 (-460 |#1| |#2|)) (-808 |#1|) (-598 (-460 |#1| |#2|)) (-598 (-460 |#1| |#2|)))) (-15 -3174 ((-230 |#1| |#2|) (-230 |#1| |#2|) (-598 (-230 |#1| |#2|)))) (-15 -1579 ((-460 |#1| |#2|) (-230 |#1| |#2|))))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL)) (-3137 (((-1189) $ (-1085) (-1085)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-51) $ (-1085) (-51)) 16) (((-51) $ (-1102) (-51)) 17)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 (-51) "failed") (-1085) $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-2717 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-3 (-51) "failed") (-1085) $) NIL)) (-2283 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-51) $ (-1085) (-51)) NIL (|has| $ (-6 -4274)))) (-2627 (((-51) $ (-1085)) NIL)) (-2227 (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-1411 (($ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2445 (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-2327 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-4245 (($ (-369)) 9)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-3345 (((-598 (-1085)) $) NIL)) (-1727 (((-110) (-1085) $) NIL)) (-3540 (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL)) (-3765 (((-598 (-1085)) $) NIL)) (-3059 (((-110) (-1085) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-3046 (((-51) $) NIL (|has| (-1085) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) "failed") (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL)) (-3742 (($ $ (-51)) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ $ (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-51)) (-598 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-598 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-3163 (((-598 (-51)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-51) $ (-1085)) 14) (((-51) $ (-1085) (-51)) NIL) (((-51) $ (-1102)) 15)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030)))) (((-721) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030)))) (((-721) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-51) (-572 (-806))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 (-51))) (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-587) (-13 (-1115 (-1085) (-51)) (-10 -8 (-15 -4245 ($ (-369))) (-15 -1411 ($ $)) (-15 -1785 ((-51) $ (-1102))) (-15 -2454 ((-51) $ (-1102) (-51)))))) (T -587))
+((-4245 (*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-587)))) (-1411 (*1 *1 *1) (-5 *1 (-587))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-51)) (-5 *1 (-587)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1102)) (-5 *1 (-587)))))
+(-13 (-1115 (-1085) (-51)) (-10 -8 (-15 -4245 ($ (-369))) (-15 -1411 ($ $)) (-15 -1785 ((-51) $ (-1102))) (-15 -2454 ((-51) $ (-1102) (-51)))))
+((-2263 (($ $ |#2|) 10)))
+(((-588 |#1| |#2|) (-10 -8 (-15 -2263 (|#1| |#1| |#2|))) (-589 |#2|) (-162)) (T -588))
+NIL
+(-10 -8 (-15 -2263 (|#1| |#1| |#2|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2274 (($ $ $) 29)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 28 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-589 |#1|) (-133) (-162)) (T -589))
+((-2274 (*1 *1 *1 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
+(-13 (-668 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -2274 ($ $ $)) (IF (|has| |t#1| (-344)) (-15 -2263 ($ $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-992 |#1|) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-1184 (-639 |#1|)) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-2022 (((-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-4082 (($) NIL T CONST)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2783 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3939 (((-639 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1668 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-2264 (((-639 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1387 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3668 (((-1098 (-895 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-1666 (($ $ (-864)) NIL)) (-2065 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3415 (((-1098 |#1|) $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3960 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3586 (((-1098 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-1437 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2767 (($ (-1184 |#1|)) NIL (|has| |#2| (-398 |#1|))) (($ (-1184 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2277 (((-864)) NIL (|has| |#2| (-348 |#1|)))) (-2629 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2083 (($ $ (-864)) NIL)) (-2790 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3769 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2298 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2816 (((-3 $ "failed")) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-1950 (((-639 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1807 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-3405 (((-639 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-2234 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2280 (((-1098 (-895 |#1|))) NIL (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-344))))) (-2585 (($ $ (-864)) NIL)) (-1288 ((|#1| $) NIL (|has| |#2| (-348 |#1|)))) (-1480 (((-1098 |#1|) $) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-3579 ((|#1|) NIL (|has| |#2| (-398 |#1|))) ((|#1| (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-1875 (((-1098 |#1|) $) NIL (|has| |#2| (-348 |#1|)))) (-2239 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1561 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3036 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2529 (((-1049) $) NIL)) (-1513 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1785 ((|#1| $ (-531)) NIL (|has| |#2| (-398 |#1|)))) (-3348 (((-639 |#1|) (-1184 $)) NIL (|has| |#2| (-398 |#1|))) (((-1184 |#1|) $) NIL (|has| |#2| (-398 |#1|))) (((-639 |#1|) (-1184 $) (-1184 $)) NIL (|has| |#2| (-348 |#1|))) (((-1184 |#1|) $ (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3318 (($ (-1184 |#1|)) NIL (|has| |#2| (-398 |#1|))) (((-1184 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-2570 (((-598 (-895 |#1|))) NIL (|has| |#2| (-398 |#1|))) (((-598 (-895 |#1|)) (-1184 $)) NIL (|has| |#2| (-348 |#1|)))) (-3214 (($ $ $) NIL)) (-1817 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2265 (((-806) $) NIL) ((|#2| $) 12) (($ |#2|) 13)) (-3523 (((-1184 $)) NIL (|has| |#2| (-398 |#1|)))) (-2273 (((-598 (-1184 |#1|))) NIL (-1435 (-12 (|has| |#2| (-348 |#1|)) (|has| |#1| (-523))) (-12 (|has| |#2| (-398 |#1|)) (|has| |#1| (-523)))))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2979 (($ (-639 |#1|) $) NIL (|has| |#2| (-398 |#1|)))) (-1605 (($ $ $) NIL)) (-2578 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-1964 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-2819 (((-110)) NIL (|has| |#2| (-348 |#1|)))) (-3035 (($) 15 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) 17)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 11) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-590 |#1| |#2|) (-13 (-695 |#1|) (-572 |#2|) (-10 -8 (-15 -2265 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|))) (-162) (-695 |#1|)) (T -590))
+((-2265 (*1 *1 *2) (-12 (-4 *3 (-162)) (-5 *1 (-590 *3 *2)) (-4 *2 (-695 *3)))))
+(-13 (-695 |#1|) (-572 |#2|) (-10 -8 (-15 -2265 ($ |#2|)) (IF (|has| |#2| (-398 |#1|)) (-6 (-398 |#1|)) |%noBranch|) (IF (|has| |#2| (-348 |#1|)) (-6 (-348 |#1|)) |%noBranch|)))
+((-2657 (((-3 (-790 |#2|) "failed") |#2| (-276 |#2|) (-1085)) 82) (((-3 (-790 |#2|) (-2 (|:| |leftHandLimit| (-3 (-790 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-790 |#2|) "failed"))) "failed") |#2| (-276 (-790 |#2|))) 104)) (-2840 (((-3 (-783 |#2|) "failed") |#2| (-276 (-783 |#2|))) 109)))
+(((-591 |#1| |#2|) (-10 -7 (-15 -2657 ((-3 (-790 |#2|) (-2 (|:| |leftHandLimit| (-3 (-790 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-790 |#2|) "failed"))) "failed") |#2| (-276 (-790 |#2|)))) (-15 -2840 ((-3 (-783 |#2|) "failed") |#2| (-276 (-783 |#2|)))) (-15 -2657 ((-3 (-790 |#2|) "failed") |#2| (-276 |#2|) (-1085)))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -591))
+((-2657 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1085)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-790 *3)) (-5 *1 (-591 *6 *3)))) (-2840 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-276 (-783 *3))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-783 *3)) (-5 *1 (-591 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-790 *3))) (-4 *3 (-13 (-27) (-1124) (-411 *5))) (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-3 (-790 *3) (-2 (|:| |leftHandLimit| (-3 (-790 *3) "failed")) (|:| |rightHandLimit| (-3 (-790 *3) "failed"))) "failed")) (-5 *1 (-591 *5 *3)))))
+(-10 -7 (-15 -2657 ((-3 (-790 |#2|) (-2 (|:| |leftHandLimit| (-3 (-790 |#2|) "failed")) (|:| |rightHandLimit| (-3 (-790 |#2|) "failed"))) "failed") |#2| (-276 (-790 |#2|)))) (-15 -2840 ((-3 (-783 |#2|) "failed") |#2| (-276 (-783 |#2|)))) (-15 -2657 ((-3 (-790 |#2|) "failed") |#2| (-276 |#2|) (-1085))))
+((-2657 (((-3 (-790 (-388 (-895 |#1|))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))) (-1085)) 80) (((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|)))) 20) (((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-790 (-895 |#1|)))) 35)) (-2840 (((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|)))) 23) (((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-783 (-895 |#1|)))) 43)))
+(((-592 |#1|) (-10 -7 (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-790 (-895 |#1|))))) (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -2840 ((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-783 (-895 |#1|))))) (-15 -2840 ((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))) (-1085)))) (-432)) (T -592))
+((-2657 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-276 (-388 (-895 *6)))) (-5 *5 (-1085)) (-5 *3 (-388 (-895 *6))) (-4 *6 (-432)) (-5 *2 (-790 *3)) (-5 *1 (-592 *6)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) (-4 *5 (-432)) (-5 *2 (-783 *3)) (-5 *1 (-592 *5)))) (-2840 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-783 (-895 *5)))) (-4 *5 (-432)) (-5 *2 (-783 (-388 (-895 *5)))) (-5 *1 (-592 *5)) (-5 *3 (-388 (-895 *5))))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) (-4 *5 (-432)) (-5 *2 (-3 (-790 *3) (-2 (|:| |leftHandLimit| (-3 (-790 *3) "failed")) (|:| |rightHandLimit| (-3 (-790 *3) "failed"))) "failed")) (-5 *1 (-592 *5)))) (-2657 (*1 *2 *3 *4) (-12 (-5 *4 (-276 (-790 (-895 *5)))) (-4 *5 (-432)) (-5 *2 (-3 (-790 (-388 (-895 *5))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 *5))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 *5))) "failed"))) "failed")) (-5 *1 (-592 *5)) (-5 *3 (-388 (-895 *5))))))
+(-10 -7 (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-790 (-895 |#1|))))) (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed")) (|:| |rightHandLimit| (-3 (-790 (-388 (-895 |#1|))) "failed"))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -2840 ((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-783 (-895 |#1|))))) (-15 -2840 ((-783 (-388 (-895 |#1|))) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -2657 ((-3 (-790 (-388 (-895 |#1|))) "failed") (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))) (-1085))))
+((-3516 (((-3 (-1184 (-388 |#1|)) "failed") (-1184 |#2|) |#2|) 57 (-3745 (|has| |#1| (-344)))) (((-3 (-1184 |#1|) "failed") (-1184 |#2|) |#2|) 42 (|has| |#1| (-344)))) (-3797 (((-110) (-1184 |#2|)) 30)) (-3548 (((-3 (-1184 |#1|) "failed") (-1184 |#2|)) 33)))
+(((-593 |#1| |#2|) (-10 -7 (-15 -3797 ((-110) (-1184 |#2|))) (-15 -3548 ((-3 (-1184 |#1|) "failed") (-1184 |#2|))) (IF (|has| |#1| (-344)) (-15 -3516 ((-3 (-1184 |#1|) "failed") (-1184 |#2|) |#2|)) (-15 -3516 ((-3 (-1184 (-388 |#1|)) "failed") (-1184 |#2|) |#2|)))) (-523) (-594 |#1|)) (T -593))
+((-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 *5)) (-3745 (-4 *5 (-344))) (-4 *5 (-523)) (-5 *2 (-1184 (-388 *5))) (-5 *1 (-593 *5 *4)))) (-3516 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 *5)) (-4 *5 (-344)) (-4 *5 (-523)) (-5 *2 (-1184 *5)) (-5 *1 (-593 *5 *4)))) (-3548 (*1 *2 *3) (|partial| -12 (-5 *3 (-1184 *5)) (-4 *5 (-594 *4)) (-4 *4 (-523)) (-5 *2 (-1184 *4)) (-5 *1 (-593 *4 *5)))) (-3797 (*1 *2 *3) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-594 *4)) (-4 *4 (-523)) (-5 *2 (-110)) (-5 *1 (-593 *4 *5)))))
+(-10 -7 (-15 -3797 ((-110) (-1184 |#2|))) (-15 -3548 ((-3 (-1184 |#1|) "failed") (-1184 |#2|))) (IF (|has| |#1| (-344)) (-15 -3516 ((-3 (-1184 |#1|) "failed") (-1184 |#2|) |#2|)) (-15 -3516 ((-3 (-1184 (-388 |#1|)) "failed") (-1184 |#2|) |#2|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3073 (((-639 |#1|) (-639 $)) 34) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 33)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-594 |#1|) (-133) (-986)) (T -594))
+((-3073 (*1 *2 *3) (-12 (-5 *3 (-639 *1)) (-4 *1 (-594 *4)) (-4 *4 (-986)) (-5 *2 (-639 *4)))) (-3073 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *1)) (-5 *4 (-1184 *1)) (-4 *1 (-594 *5)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -1751 (-639 *5)) (|:| |vec| (-1184 *5)))))))
+(-13 (-986) (-10 -8 (-15 -3073 ((-639 |t#1|) (-639 $))) (-15 -3073 ((-2 (|:| -1751 (-639 |t#1|)) (|:| |vec| (-1184 |t#1|))) (-639 $) (-1184 $)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2869 ((|#2| (-598 |#1|) (-598 |#2|) |#1| (-1 |#2| |#1|)) 18) (((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) (-1 |#2| |#1|)) 19) ((|#2| (-598 |#1|) (-598 |#2|) |#1| |#2|) 16) (((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) |#2|) 17) ((|#2| (-598 |#1|) (-598 |#2|) |#1|) 10) (((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|)) 12)))
+(((-595 |#1| |#2|) (-10 -7 (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|))) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1|)) (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) |#2|)) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1| |#2|)) (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) (-1 |#2| |#1|))) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1| (-1 |#2| |#1|)))) (-1030) (-1138)) (T -595))
+((-2869 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1030)) (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) (-2869 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-598 *5)) (-5 *4 (-598 *6)) (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *1 (-595 *5 *6)))) (-2869 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-4 *5 (-1030)) (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) (-2869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 *5)) (-4 *6 (-1030)) (-4 *5 (-1138)) (-5 *2 (-1 *5 *6)) (-5 *1 (-595 *6 *5)))) (-2869 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-4 *5 (-1030)) (-4 *2 (-1138)) (-5 *1 (-595 *5 *2)))) (-2869 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *6)) (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *2 (-1 *6 *5)) (-5 *1 (-595 *5 *6)))))
+(-10 -7 (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|))) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1|)) (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) |#2|)) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1| |#2|)) (-15 -2869 ((-1 |#2| |#1|) (-598 |#1|) (-598 |#2|) (-1 |#2| |#1|))) (-15 -2869 (|#2| (-598 |#1|) (-598 |#2|) |#1| (-1 |#2| |#1|))))
+((-3203 (((-598 |#2|) (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|) 16)) (-1760 ((|#2| (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|) 18)) (-3261 (((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)) 13)))
+(((-596 |#1| |#2|) (-10 -7 (-15 -3203 ((-598 |#2|) (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|)) (-15 -3261 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|)))) (-1138) (-1138)) (T -596))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-598 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-596 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-598 *6)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-5 *2 (-598 *5)) (-5 *1 (-596 *6 *5)))))
+(-10 -7 (-15 -3203 ((-598 |#2|) (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-598 |#1|) |#2|)) (-15 -3261 ((-598 |#2|) (-1 |#2| |#1|) (-598 |#1|))))
+((-3261 (((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)) 13)))
+(((-597 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|)))) (-1138) (-1138) (-1138)) (T -597))
+((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-598 *8)) (-5 *1 (-597 *6 *7 *8)))))
+(-10 -7 (-15 -3261 ((-598 |#3|) (-1 |#3| |#1| |#2|) (-598 |#1|) (-598 |#2|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-3308 ((|#1| $) NIL)) (-2072 (($ $) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) $) NIL (|has| |#1| (-797))) (((-110) (-1 (-110) |#1| |#1|) $) NIL)) (-2375 (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797)))) (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-1332 (($ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) NIL (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "rest" $) NIL (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2965 (($ $ $) 32 (|has| |#1| (-1030)))) (-2951 (($ $ $) 34 (|has| |#1| (-1030)))) (-2938 (($ $ $) 37 (|has| |#1| (-1030)))) (-2245 (($ (-1 (-110) |#1|) $) NIL)) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-3297 ((|#1| $) NIL)) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3062 (($ $) NIL) (($ $ (-721)) NIL)) (-2705 (($ $) NIL (|has| |#1| (-1030)))) (-3086 (($ $) 31 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) NIL (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) NIL)) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-1976 (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030))) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) (-1 (-110) |#1|) $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3008 (((-110) $) 9)) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4120 (($) 7)) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3611 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-3508 (($ $ $) NIL (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 33 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2907 (($ |#1|) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2309 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-3944 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2765 (((-110) $) NIL)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1151 (-531))) NIL) ((|#1| $ (-531)) 36) ((|#1| $ (-531) |#1|) NIL)) (-2357 (((-531) $ $) NIL)) (-1551 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2930 (((-110) $) NIL)) (-1958 (($ $) NIL)) (-2980 (($ $) NIL (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 45 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-1566 (($ |#1| $) 10)) (-1818 (($ $ $) NIL) (($ $ |#1|) NIL)) (-3536 (($ $ $) 30) (($ |#1| $) NIL) (($ (-598 $)) NIL) (($ $ |#1|) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2097 (($ $ $) 11)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4231 (((-1085) $) 26 (|has| |#1| (-778))) (((-1085) $ (-110)) 27 (|has| |#1| (-778))) (((-1189) (-772) $) 28 (|has| |#1| (-778))) (((-1189) (-772) $ (-110)) 29 (|has| |#1| (-778)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-598 |#1|) (-13 (-619 |#1|) (-10 -8 (-15 -4120 ($)) (-15 -3008 ((-110) $)) (-15 -1566 ($ |#1| $)) (-15 -2097 ($ $ $)) (IF (|has| |#1| (-1030)) (PROGN (-15 -2965 ($ $ $)) (-15 -2951 ($ $ $)) (-15 -2938 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|))) (-1138)) (T -598))
+((-4120 (*1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))) (-3008 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1138)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))) (-2097 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))) (-2965 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)))) (-2951 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)))) (-2938 (*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)))))
+(-13 (-619 |#1|) (-10 -8 (-15 -4120 ($)) (-15 -3008 ((-110) $)) (-15 -1566 ($ |#1| $)) (-15 -2097 ($ $ $)) (IF (|has| |#1| (-1030)) (PROGN (-15 -2965 ($ $ $)) (-15 -2951 ($ $ $)) (-15 -2938 ($ $ $))) |%noBranch|) (IF (|has| |#1| (-778)) (-6 (-778)) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11) (((-1107) $) NIL) ((|#1| $) 8)) (-2148 (((-110) $ $) NIL)))
+(((-599 |#1|) (-13 (-1015) (-572 |#1|)) (-1030)) (T -599))
+NIL
+(-13 (-1015) (-572 |#1|))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3074 (($ |#1| |#1| $) 43)) (-4058 (((-110) $ (-721)) NIL)) (-2245 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-2705 (($ $) 45)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) 52 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 9 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 37)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) 46)) (-3944 (($ |#1| $) 26) (($ |#1| $ (-721)) 42)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-4192 ((|#1| $) 48)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 21)) (-3781 (($) 25)) (-1707 (((-110) $) 50)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 59)) (-2543 (($) 23) (($ (-598 |#1|)) 18)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) 56 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 19)) (-3318 (((-507) $) 34 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-2265 (((-806) $) 14 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 22)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 61 (|has| |#1| (-1030)))) (-2167 (((-721) $) 16 (|has| $ (-6 -4273)))))
+(((-600 |#1|) (-13 (-645 |#1|) (-10 -8 (-6 -4273) (-15 -1707 ((-110) $)) (-15 -3074 ($ |#1| |#1| $)))) (-1030)) (T -600))
+((-1707 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-600 *3)) (-4 *3 (-1030)))) (-3074 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1030)))))
+(-13 (-645 |#1|) (-10 -8 (-6 -4273) (-15 -1707 ((-110) $)) (-15 -3074 ($ |#1| |#1| $))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23)))
+(((-601 |#1|) (-133) (-993)) (T -601))
+((* (*1 *1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-993)))))
(-13 (-21) (-10 -8 (-15 * ($ |t#1| $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-3023 (((-719) $) 15)) (-1933 (($ $ |#1|) 56)) (-1337 (($ $) 32)) (-4106 (($ $) 31)) (-3139 (((-3 |#1| "failed") $) 48)) (-2585 ((|#1| $) NIL)) (-3849 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-2589 (((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530)) 46)) (-3519 ((|#1| $ (-530)) 30)) (-2033 ((|#2| $ (-530)) 29)) (-2580 (($ (-1 |#1| |#1|) $) 34)) (-3999 (($ (-1 |#2| |#2|) $) 38)) (-2810 (($) 10)) (-3098 (($ |#1| |#2|) 22)) (-4226 (($ (-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|)))) 23)) (-1856 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $) 13)) (-3286 (($ |#1| $) 57)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1532 (((-110) $ $) 60)) (-2366 (((-804) $) 19) (($ |#1|) 16)) (-2248 (((-110) $ $) 25)))
-(((-600 |#1| |#2| |#3|) (-13 (-1027) (-975 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530))) (-15 -1856 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $)) (-15 -3098 ($ |#1| |#2|)) (-15 -4226 ($ (-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))))) (-15 -2033 (|#2| $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -4106 ($ $)) (-15 -1337 ($ $)) (-15 -3023 ((-719) $)) (-15 -2810 ($)) (-15 -1933 ($ $ |#1|)) (-15 -3286 ($ |#1| $)) (-15 -3849 ($ |#1| |#2| $)) (-15 -3849 ($ $ $)) (-15 -1532 ((-110) $ $)) (-15 -3999 ($ (-1 |#2| |#2|) $)) (-15 -2580 ($ (-1 |#1| |#1|) $)))) (-1027) (-23) |#2|) (T -600))
-((-2589 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-804) (-804) (-804))) (-5 *4 (-530)) (-5 *2 (-804)) (-5 *1 (-600 *5 *6 *7)) (-4 *5 (-1027)) (-4 *6 (-23)) (-14 *7 *6))) (-1856 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4)))) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-3098 (*1 *1 *2 *3) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-4226 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4)))) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)))) (-2033 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-23)) (-5 *1 (-600 *4 *2 *5)) (-4 *4 (-1027)) (-14 *5 *2))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *2 (-1027)) (-5 *1 (-600 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1337 (*1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-2810 (*1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1933 (*1 *1 *1 *2) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3286 (*1 *1 *2 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3849 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-3849 (*1 *1 *1 *1) (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23)) (-14 *4 *3))) (-1532 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))) (-3999 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)))) (-2580 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-600 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
-(-13 (-1027) (-975 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-1 (-804) (-804) (-804)) (-1 (-804) (-804) (-804)) (-530))) (-15 -1856 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))) $)) (-15 -3098 ($ |#1| |#2|)) (-15 -4226 ($ (-597 (-2 (|:| |gen| |#1|) (|:| -2853 |#2|))))) (-15 -2033 (|#2| $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -4106 ($ $)) (-15 -1337 ($ $)) (-15 -3023 ((-719) $)) (-15 -2810 ($)) (-15 -1933 ($ $ |#1|)) (-15 -3286 ($ |#1| $)) (-15 -3849 ($ |#1| |#2| $)) (-15 -3849 ($ $ $)) (-15 -1532 ((-110) $ $)) (-15 -3999 ($ (-1 |#2| |#2|) $)) (-15 -2580 ($ (-1 |#1| |#1|) $))))
-((-1549 (((-530) $) 24)) (-4028 (($ |#2| $ (-530)) 22) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) 12)) (-1927 (((-110) (-530) $) 15)) (-3483 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-597 $)) NIL)))
-(((-601 |#1| |#2|) (-10 -8 (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -1549 ((-530) |#1|)) (-15 -3567 ((-597 (-530)) |#1|)) (-15 -1927 ((-110) (-530) |#1|))) (-602 |#2|) (-1135)) (T -601))
-NIL
-(-10 -8 (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -3483 (|#1| (-597 |#1|))) (-15 -3483 (|#1| |#1| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -1549 ((-530) |#1|)) (-15 -3567 ((-597 (-530)) |#1|)) (-15 -1927 ((-110) (-530) |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-602 |#1|) (-133) (-1135)) (T -602))
-((-3538 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-3483 (*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3483 (*1 *1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3483 (*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-3483 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-3217 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1843 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-1843 (*1 *1 *1 *2) (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-4028 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-602 *2)) (-4 *2 (-1135)))) (-4028 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1148 (-530))) (|has| *1 (-6 -4270)) (-4 *1 (-602 *2)) (-4 *2 (-1135)))))
-(-13 (-563 (-530) |t#1|) (-144 |t#1|) (-10 -8 (-15 -3538 ($ (-719) |t#1|)) (-15 -3483 ($ $ |t#1|)) (-15 -3483 ($ |t#1| $)) (-15 -3483 ($ $ $)) (-15 -3483 ($ (-597 $))) (-15 -3217 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1902 ($ $ (-1148 (-530)))) (-15 -1843 ($ $ (-530))) (-15 -1843 ($ $ (-1148 (-530)))) (-15 -4028 ($ |t#1| $ (-530))) (-15 -4028 ($ $ $ (-530))) (IF (|has| $ (-6 -4270)) (-15 -2552 (|t#1| $ (-1148 (-530)) |t#1|)) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2688 (((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) "failed") |#3| |#2| (-1099)) 44)))
-(((-603 |#1| |#2| |#3|) (-10 -7 (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) "failed") |#3| |#2| (-1099))) (-15 -2688 ((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900)) (-607 |#2|)) (T -603))
-((-2688 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-603 *6 *2 *3)) (-4 *3 (-607 *2)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-4 *4 (-13 (-29 *6) (-1121) (-900))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3220 (-597 *4)))) (-5 *1 (-603 *6 *4 *3)) (-4 *3 (-607 *4)))))
-(-10 -7 (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) "failed") |#3| |#2| (-1099))) (-15 -2688 ((-3 |#2| "failed") |#3| |#2| (-1099) |#2| (-597 |#2|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3443 (($ $) NIL (|has| |#1| (-344)))) (-4167 (($ $ $) NIL (|has| |#1| (-344)))) (-2857 (($ $ (-719)) NIL (|has| |#1| (-344)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#1| (-344)))) (-3973 (($ $ $) NIL (|has| |#1| (-344)))) (-2640 (($ $ $) NIL (|has| |#1| (-344)))) (-3174 (($ $ $) NIL (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2731 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#1| (-344)))) (-3140 (($ $ $) NIL (|has| |#1| (-344)))) (-2615 (($ $ $) NIL (|has| |#1| (-344)))) (-4132 (($ $ $) NIL (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1902 ((|#1| $ |#1|) NIL)) (-1330 (($ $ $) NIL (|has| |#1| (-344)))) (-1429 (((-719) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#1| $ |#1| |#1|) NIL)) (-1803 (($ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($) NIL)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-604 |#1|) (-607 |#1|) (-216)) (T -604))
-NIL
-(-607 |#1|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3443 (($ $) NIL (|has| |#1| (-344)))) (-4167 (($ $ $) NIL (|has| |#1| (-344)))) (-2857 (($ $ (-719)) NIL (|has| |#1| (-344)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#1| (-344)))) (-3973 (($ $ $) NIL (|has| |#1| (-344)))) (-2640 (($ $ $) NIL (|has| |#1| (-344)))) (-3174 (($ $ $) NIL (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2731 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#1| (-344)))) (-3140 (($ $ $) NIL (|has| |#1| (-344)))) (-2615 (($ $ $) NIL (|has| |#1| (-344)))) (-4132 (($ $ $) NIL (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1902 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-1330 (($ $ $) NIL (|has| |#1| (-344)))) (-1429 (((-719) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#1| $ |#1| |#1|) NIL)) (-1803 (($ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($) NIL)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-605 |#1| |#2|) (-13 (-607 |#1|) (-268 |#2| |#2|)) (-216) (-13 (-599 |#1|) (-10 -8 (-15 -3289 ($ $))))) (T -605))
-NIL
-(-13 (-607 |#1|) (-268 |#2| |#2|))
-((-3443 (($ $) 26)) (-1803 (($ $) 24)) (-3340 (($) 12)))
-(((-606 |#1| |#2|) (-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -3340 (|#1|))) (-607 |#2|) (-984)) (T -606))
-NIL
-(-10 -8 (-15 -3443 (|#1| |#1|)) (-15 -1803 (|#1| |#1|)) (-15 -3340 (|#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3443 (($ $) 80 (|has| |#1| (-344)))) (-4167 (($ $ $) 82 (|has| |#1| (-344)))) (-2857 (($ $ (-719)) 81 (|has| |#1| (-344)))) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1261 (($ $ $) 43 (|has| |#1| (-344)))) (-3973 (($ $ $) 44 (|has| |#1| (-344)))) (-2640 (($ $ $) 46 (|has| |#1| (-344)))) (-3174 (($ $ $) 41 (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 40 (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) 42 (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 45 (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) 72 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 70 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 67)) (-2585 (((-530) $) 73 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 71 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 66)) (-2562 (($ $) 62)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 53 (|has| |#1| (-432)))) (-2731 (((-110) $) 30)) (-2725 (($ |#1| (-719)) 60)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55 (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 56 (|has| |#1| (-522)))) (-2944 (((-719) $) 64)) (-1396 (($ $ $) 50 (|has| |#1| (-344)))) (-3140 (($ $ $) 51 (|has| |#1| (-344)))) (-2615 (($ $ $) 39 (|has| |#1| (-344)))) (-4132 (($ $ $) 48 (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 47 (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) 49 (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 52 (|has| |#1| (-344)))) (-2533 ((|#1| $) 63)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-522)))) (-1902 ((|#1| $ |#1|) 85)) (-1330 (($ $ $) 79 (|has| |#1| (-344)))) (-1429 (((-719) $) 65)) (-3829 ((|#1| $) 54 (|has| |#1| (-432)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 69 (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 68)) (-3441 (((-597 |#1|) $) 59)) (-4085 ((|#1| $ (-719)) 61)) (-3300 (((-719)) 28)) (-3003 ((|#1| $ |#1| |#1|) 58)) (-1803 (($ $) 83)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($) 84)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
-(((-607 |#1|) (-133) (-984)) (T -607))
-((-3340 (*1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)))) (-1803 (*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)))) (-4167 (*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2857 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-607 *3)) (-4 *3 (-984)) (-4 *3 (-344)))) (-3443 (*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1330 (*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(-13 (-797 |t#1|) (-268 |t#1| |t#1|) (-10 -8 (-15 -3340 ($)) (-15 -1803 ($ $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -4167 ($ $ $)) (-15 -2857 ($ $ (-719))) (-15 -3443 ($ $)) (-15 -1330 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-268 |#1| |#1|) . T) ((-392 |#1|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-797 |#1|) . T))
-((-1454 (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))) 74 (|has| |#1| (-27)))) (-2611 (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))) 73 (|has| |#1| (-27))) (((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 17)))
-(((-608 |#1| |#2|) (-10 -7 (-15 -2611 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2611 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)))) (-15 -1454 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))))) |%noBranch|)) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -608))
-((-1454 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5)))) (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5)))) (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-604 (-388 *6)))) (-5 *1 (-608 *5 *6)) (-5 *3 (-604 (-388 *6))))))
-(-10 -7 (-15 -2611 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2611 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|)))) (-15 -1454 ((-597 (-604 (-388 |#2|))) (-604 (-388 |#2|))))) |%noBranch|))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3443 (($ $) NIL (|has| |#1| (-344)))) (-4167 (($ $ $) 28 (|has| |#1| (-344)))) (-2857 (($ $ (-719)) 31 (|has| |#1| (-344)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#1| (-344)))) (-3973 (($ $ $) NIL (|has| |#1| (-344)))) (-2640 (($ $ $) NIL (|has| |#1| (-344)))) (-3174 (($ $ $) NIL (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2731 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#1| (-344)))) (-3140 (($ $ $) NIL (|has| |#1| (-344)))) (-2615 (($ $ $) NIL (|has| |#1| (-344)))) (-4132 (($ $ $) NIL (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1902 ((|#1| $ |#1|) 24)) (-1330 (($ $ $) 33 (|has| |#1| (-344)))) (-1429 (((-719) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) 20) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#1| $ |#1| |#1|) 23)) (-1803 (($ $) NIL)) (-3080 (($) 21 T CONST)) (-3093 (($) 8 T CONST)) (-3340 (($) NIL)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-609 |#1| |#2|) (-607 |#1|) (-984) (-1 |#1| |#1|)) (T -609))
-NIL
-(-607 |#1|)
-((-4167 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-2857 ((|#2| |#2| (-719) (-1 |#1| |#1|)) 40)) (-1330 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
-(((-610 |#1| |#2|) (-10 -7 (-15 -4167 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2857 (|#2| |#2| (-719) (-1 |#1| |#1|))) (-15 -1330 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-344) (-607 |#1|)) (T -610))
-((-1330 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2)) (-4 *2 (-607 *4)))) (-2857 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-610 *5 *2)) (-4 *2 (-607 *5)))) (-4167 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2)) (-4 *2 (-607 *4)))))
-(-10 -7 (-15 -4167 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2857 (|#2| |#2| (-719) (-1 |#1| |#1|))) (-15 -1330 (|#2| |#2| |#2| (-1 |#1| |#1|))))
-((-1262 (($ $ $) 9)))
-(((-611 |#1|) (-10 -8 (-15 -1262 (|#1| |#1| |#1|))) (-612)) (T -611))
-NIL
-(-10 -8 (-15 -1262 (|#1| |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-2522 (($ $) 10)) (-1262 (($ $ $) 8)) (-2248 (((-110) $ $) 6)) (-1253 (($ $ $) 9)))
-(((-612) (-133)) (T -612))
-((-2522 (*1 *1 *1) (-4 *1 (-612))) (-1253 (*1 *1 *1 *1) (-4 *1 (-612))) (-1262 (*1 *1 *1 *1) (-4 *1 (-612))))
-(-13 (-99) (-10 -8 (-15 -2522 ($ $)) (-15 -1253 ($ $ $)) (-15 -1262 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3006 (((-721) $) 15)) (-3392 (($ $ |#1|) 56)) (-4106 (($ $) 32)) (-1828 (($ $) 31)) (-3154 (((-3 |#1| "failed") $) 48)) (-2523 ((|#1| $) NIL)) (-3930 (($ |#1| |#2| $) 63) (($ $ $) 64)) (-1362 (((-806) $ (-1 (-806) (-806) (-806)) (-1 (-806) (-806) (-806)) (-531)) 46)) (-3616 ((|#1| $ (-531)) 30)) (-4173 ((|#2| $ (-531)) 29)) (-2483 (($ (-1 |#1| |#1|) $) 34)) (-3080 (($ (-1 |#2| |#2|) $) 38)) (-4080 (($) 10)) (-1905 (($ |#1| |#2|) 22)) (-1962 (($ (-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|)))) 23)) (-2621 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $) 13)) (-2683 (($ |#1| $) 57)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2105 (((-110) $ $) 60)) (-2265 (((-806) $) 19) (($ |#1|) 16)) (-2148 (((-110) $ $) 25)))
+(((-602 |#1| |#2| |#3|) (-13 (-1030) (-977 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-1 (-806) (-806) (-806)) (-1 (-806) (-806) (-806)) (-531))) (-15 -2621 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $)) (-15 -1905 ($ |#1| |#2|)) (-15 -1962 ($ (-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))))) (-15 -4173 (|#2| $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -1828 ($ $)) (-15 -4106 ($ $)) (-15 -3006 ((-721) $)) (-15 -4080 ($)) (-15 -3392 ($ $ |#1|)) (-15 -2683 ($ |#1| $)) (-15 -3930 ($ |#1| |#2| $)) (-15 -3930 ($ $ $)) (-15 -2105 ((-110) $ $)) (-15 -3080 ($ (-1 |#2| |#2|) $)) (-15 -2483 ($ (-1 |#1| |#1|) $)))) (-1030) (-23) |#2|) (T -602))
+((-1362 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-806) (-806) (-806))) (-5 *4 (-531)) (-5 *2 (-806)) (-5 *1 (-602 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-23)) (-14 *7 *6))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4))) (-1905 (*1 *1 *2 *3) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-1962 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4)))) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-602 *3 *4 *5)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *2 (-23)) (-5 *1 (-602 *4 *2 *5)) (-4 *4 (-1030)) (-14 *5 *2))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *2 (-1030)) (-5 *1 (-602 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-1828 (*1 *1 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-4106 (*1 *1 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4))) (-4080 (*1 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-3392 (*1 *1 *1 *2) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-2683 (*1 *1 *2 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-3930 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-3930 (*1 *1 *1 *1) (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23)) (-14 *4 *3))) (-2105 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4))) (-3080 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)))) (-2483 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-602 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))))
+(-13 (-1030) (-977 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-1 (-806) (-806) (-806)) (-1 (-806) (-806) (-806)) (-531))) (-15 -2621 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))) $)) (-15 -1905 ($ |#1| |#2|)) (-15 -1962 ($ (-598 (-2 (|:| |gen| |#1|) (|:| -2798 |#2|))))) (-15 -4173 (|#2| $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -1828 ($ $)) (-15 -4106 ($ $)) (-15 -3006 ((-721) $)) (-15 -4080 ($)) (-15 -3392 ($ $ |#1|)) (-15 -2683 ($ |#1| $)) (-15 -3930 ($ |#1| |#2| $)) (-15 -3930 ($ $ $)) (-15 -2105 ((-110) $ $)) (-15 -3080 ($ (-1 |#2| |#2|) $)) (-15 -2483 ($ (-1 |#1| |#1|) $))))
+((-2327 (((-531) $) 24)) (-4059 (($ |#2| $ (-531)) 22) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) 12)) (-3059 (((-110) (-531) $) 15)) (-3536 (($ $ |#2|) 19) (($ |#2| $) 20) (($ $ $) NIL) (($ (-598 $)) NIL)))
+(((-603 |#1| |#2|) (-10 -8 (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2327 ((-531) |#1|)) (-15 -3765 ((-598 (-531)) |#1|)) (-15 -3059 ((-110) (-531) |#1|))) (-604 |#2|) (-1138)) (T -603))
+NIL
+(-10 -8 (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -3536 (|#1| (-598 |#1|))) (-15 -3536 (|#1| |#1| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -2327 ((-531) |#1|)) (-15 -3765 ((-598 (-531)) |#1|)) (-15 -3059 ((-110) (-531) |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-604 |#1|) (-133) (-1138)) (T -604))
+((-3010 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-3536 (*1 *1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) (-3536 (*1 *1 *2 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) (-3536 (*1 *1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138)))) (-3536 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-1723 (*1 *1 *1 *2) (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-4059 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-604 *2)) (-4 *2 (-1138)))) (-4059 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1151 (-531))) (|has| *1 (-6 -4274)) (-4 *1 (-604 *2)) (-4 *2 (-1138)))))
+(-13 (-564 (-531) |t#1|) (-144 |t#1|) (-10 -8 (-15 -3010 ($ (-721) |t#1|)) (-15 -3536 ($ $ |t#1|)) (-15 -3536 ($ |t#1| $)) (-15 -3536 ($ $ $)) (-15 -3536 ($ (-598 $))) (-15 -3261 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -1785 ($ $ (-1151 (-531)))) (-15 -1723 ($ $ (-531))) (-15 -1723 ($ $ (-1151 (-531)))) (-15 -4059 ($ |t#1| $ (-531))) (-15 -4059 ($ $ $ (-531))) (IF (|has| $ (-6 -4274)) (-15 -2454 (|t#1| $ (-1151 (-531)) |t#1|)) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-1871 (((-3 |#2| "failed") |#3| |#2| (-1102) |#2| (-598 |#2|)) 160) (((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) "failed") |#3| |#2| (-1102)) 44)))
+(((-605 |#1| |#2| |#3|) (-10 -7 (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) "failed") |#3| |#2| (-1102))) (-15 -1871 ((-3 |#2| "failed") |#3| |#2| (-1102) |#2| (-598 |#2|)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902)) (-609 |#2|)) (T -605))
+((-1871 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 *2)) (-4 *2 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-605 *6 *2 *3)) (-4 *3 (-609 *2)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1102)) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-4 *4 (-13 (-29 *6) (-1124) (-902))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3523 (-598 *4)))) (-5 *1 (-605 *6 *4 *3)) (-4 *3 (-609 *4)))))
+(-10 -7 (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) "failed") |#3| |#2| (-1102))) (-15 -1871 ((-3 |#2| "failed") |#3| |#2| (-1102) |#2| (-598 |#2|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3723 (($ $) NIL (|has| |#1| (-344)))) (-3243 (($ $ $) NIL (|has| |#1| (-344)))) (-1496 (($ $ (-721)) NIL (|has| |#1| (-344)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-344)))) (-2643 (($ $ $) NIL (|has| |#1| (-344)))) (-1866 (($ $ $) NIL (|has| |#1| (-344)))) (-3812 (($ $ $) NIL (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-3481 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#1| (-344)))) (-3351 (($ $ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-1884 (($ $ $) NIL (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-1785 ((|#1| $ |#1|) NIL)) (-4239 (($ $ $) NIL (|has| |#1| (-344)))) (-2012 (((-721) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#1| $ |#1| |#1|) NIL)) (-2661 (($ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-606 |#1|) (-609 |#1|) (-216)) (T -606))
+NIL
+(-609 |#1|)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3723 (($ $) NIL (|has| |#1| (-344)))) (-3243 (($ $ $) NIL (|has| |#1| (-344)))) (-1496 (($ $ (-721)) NIL (|has| |#1| (-344)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-344)))) (-2643 (($ $ $) NIL (|has| |#1| (-344)))) (-1866 (($ $ $) NIL (|has| |#1| (-344)))) (-3812 (($ $ $) NIL (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-3481 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#1| (-344)))) (-3351 (($ $ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-1884 (($ $ $) NIL (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-1785 ((|#1| $ |#1|) NIL) ((|#2| $ |#2|) 13)) (-4239 (($ $ $) NIL (|has| |#1| (-344)))) (-2012 (((-721) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#1| $ |#1| |#1|) NIL)) (-2661 (($ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-607 |#1| |#2|) (-13 (-609 |#1|) (-268 |#2| |#2|)) (-216) (-13 (-601 |#1|) (-10 -8 (-15 -3352 ($ $))))) (T -607))
+NIL
+(-13 (-609 |#1|) (-268 |#2| |#2|))
+((-3723 (($ $) 26)) (-2661 (($ $) 24)) (-4020 (($) 12)))
+(((-608 |#1| |#2|) (-10 -8 (-15 -3723 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -4020 (|#1|))) (-609 |#2|) (-986)) (T -608))
+NIL
+(-10 -8 (-15 -3723 (|#1| |#1|)) (-15 -2661 (|#1| |#1|)) (-15 -4020 (|#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3723 (($ $) 80 (|has| |#1| (-344)))) (-3243 (($ $ $) 82 (|has| |#1| (-344)))) (-1496 (($ $ (-721)) 81 (|has| |#1| (-344)))) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2089 (($ $ $) 43 (|has| |#1| (-344)))) (-2643 (($ $ $) 44 (|has| |#1| (-344)))) (-1866 (($ $ $) 46 (|has| |#1| (-344)))) (-3812 (($ $ $) 41 (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 40 (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) 42 (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 45 (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) 72 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 70 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 67)) (-2523 (((-531) $) 73 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 71 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 66)) (-2500 (($ $) 62)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 53 (|has| |#1| (-432)))) (-3481 (((-110) $) 30)) (-2669 (($ |#1| (-721)) 60)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55 (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 56 (|has| |#1| (-523)))) (-3005 (((-721) $) 64)) (-3215 (($ $ $) 50 (|has| |#1| (-344)))) (-3351 (($ $ $) 51 (|has| |#1| (-344)))) (-2321 (($ $ $) 39 (|has| |#1| (-344)))) (-1884 (($ $ $) 48 (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 47 (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) 49 (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 52 (|has| |#1| (-344)))) (-2475 ((|#1| $) 63)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-523)))) (-1785 ((|#1| $ |#1|) 85)) (-4239 (($ $ $) 79 (|has| |#1| (-344)))) (-2012 (((-721) $) 65)) (-1767 ((|#1| $) 54 (|has| |#1| (-432)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 69 (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 68)) (-2708 (((-598 |#1|) $) 59)) (-3188 ((|#1| $ (-721)) 61)) (-2284 (((-721)) 28)) (-2979 ((|#1| $ |#1| |#1|) 58)) (-2661 (($ $) 83)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($) 84)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
+(((-609 |#1|) (-133) (-986)) (T -609))
+((-4020 (*1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)))) (-2661 (*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)))) (-3243 (*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-1496 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-609 *3)) (-4 *3 (-986)) (-4 *3 (-344)))) (-3723 (*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-4239 (*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(-13 (-799 |t#1|) (-268 |t#1| |t#1|) (-10 -8 (-15 -4020 ($)) (-15 -2661 ($ $)) (IF (|has| |t#1| (-344)) (PROGN (-15 -3243 ($ $ $)) (-15 -1496 ($ $ (-721))) (-15 -3723 ($ $)) (-15 -4239 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-268 |#1| |#1|) . T) ((-392 |#1|) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) |has| |#1| (-162)) ((-677) . T) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-799 |#1|) . T))
+((-2371 (((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|))) 74 (|has| |#1| (-27)))) (-2552 (((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|))) 73 (|has| |#1| (-27))) (((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|)) 17)))
+(((-610 |#1| |#2|) (-10 -7 (-15 -2552 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2552 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)))) (-15 -2371 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|))))) |%noBranch|)) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|)) (T -610))
+((-2371 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-606 (-388 *5)))) (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5))))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-606 (-388 *5)))) (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5))))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-606 (-388 *6)))) (-5 *1 (-610 *5 *6)) (-5 *3 (-606 (-388 *6))))))
+(-10 -7 (-15 -2552 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2552 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|)))) (-15 -2371 ((-598 (-606 (-388 |#2|))) (-606 (-388 |#2|))))) |%noBranch|))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3723 (($ $) NIL (|has| |#1| (-344)))) (-3243 (($ $ $) 28 (|has| |#1| (-344)))) (-1496 (($ $ (-721)) 31 (|has| |#1| (-344)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-344)))) (-2643 (($ $ $) NIL (|has| |#1| (-344)))) (-1866 (($ $ $) NIL (|has| |#1| (-344)))) (-3812 (($ $ $) NIL (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-3481 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#1| (-344)))) (-3351 (($ $ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-1884 (($ $ $) NIL (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-1785 ((|#1| $ |#1|) 24)) (-4239 (($ $ $) 33 (|has| |#1| (-344)))) (-2012 (((-721) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) 20) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#1| $ |#1| |#1|) 23)) (-2661 (($ $) NIL)) (-3035 (($) 21 T CONST)) (-3050 (($) 8 T CONST)) (-4020 (($) NIL)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-611 |#1| |#2|) (-609 |#1|) (-986) (-1 |#1| |#1|)) (T -611))
+NIL
+(-609 |#1|)
+((-3243 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 59)) (-1496 ((|#2| |#2| (-721) (-1 |#1| |#1|)) 40)) (-4239 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 61)))
+(((-612 |#1| |#2|) (-10 -7 (-15 -3243 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1496 (|#2| |#2| (-721) (-1 |#1| |#1|))) (-15 -4239 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-344) (-609 |#1|)) (T -612))
+((-4239 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-612 *4 *2)) (-4 *2 (-609 *4)))) (-1496 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-721)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-612 *5 *2)) (-4 *2 (-609 *5)))) (-3243 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-612 *4 *2)) (-4 *2 (-609 *4)))))
+(-10 -7 (-15 -3243 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -1496 (|#2| |#2| (-721) (-1 |#1| |#1|))) (-15 -4239 (|#2| |#2| |#2| (-1 |#1| |#1|))))
+((-1868 (($ $ $) 9)))
+(((-613 |#1|) (-10 -8 (-15 -1868 (|#1| |#1| |#1|))) (-614)) (T -613))
+NIL
+(-10 -8 (-15 -1868 (|#1| |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-1813 (($ $) 10)) (-1868 (($ $ $) 8)) (-2148 (((-110) $ $) 6)) (-1854 (($ $ $) 9)))
+(((-614) (-133)) (T -614))
+((-1813 (*1 *1 *1) (-4 *1 (-614))) (-1854 (*1 *1 *1 *1) (-4 *1 (-614))) (-1868 (*1 *1 *1 *1) (-4 *1 (-614))))
+(-13 (-99) (-10 -8 (-15 -1813 ($ $)) (-15 -1854 ($ $ $)) (-15 -1868 ($ $ $))))
(((-99) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 15)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1918 ((|#1| $) 21)) (-2508 (($ $ $) NIL (|has| |#1| (-739)))) (-1817 (($ $ $) NIL (|has| |#1| (-739)))) (-1424 (((-1082) $) 46)) (-2624 (((-1046) $) NIL)) (-1928 ((|#3| $) 22)) (-2366 (((-804) $) 42)) (-3080 (($) 10 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2248 (((-110) $ $) 20)) (-2297 (((-110) $ $) NIL (|has| |#1| (-739)))) (-2272 (((-110) $ $) 24 (|has| |#1| (-739)))) (-2364 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2351 (($ $) 17) (($ $ $) NIL)) (-2339 (($ $ $) 27)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
-(((-613 |#1| |#2| |#3|) (-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-739)) (-6 (-739)) |%noBranch|) (-15 -2364 ($ $ |#3|)) (-15 -2364 ($ |#1| |#3|)) (-15 -1918 (|#1| $)) (-15 -1928 (|#3| $)))) (-666 |#2|) (-162) (|SubsetCategory| (-675) |#2|)) (T -613))
-((-2364 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4)) (-4 *2 (|SubsetCategory| (-675) *4)))) (-2364 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-666 *4)) (-4 *3 (|SubsetCategory| (-675) *4)))) (-1918 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-666 *3)) (-5 *1 (-613 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-675) *3)))) (-1928 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4)))))
-(-13 (-666 |#2|) (-10 -8 (IF (|has| |#1| (-739)) (-6 (-739)) |%noBranch|) (-15 -2364 ($ $ |#3|)) (-15 -2364 ($ |#1| |#3|)) (-15 -1918 (|#1| $)) (-15 -1928 (|#3| $))))
-((-4152 (((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|)) 33)))
-(((-614 |#1|) (-10 -7 (-15 -4152 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|)))) (-850)) (T -614))
-((-4152 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *4))) (-5 *3 (-1095 *4)) (-4 *4 (-850)) (-5 *1 (-614 *4)))))
-(-10 -7 (-15 -4152 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3702 (((-597 |#1|) $) 82)) (-1911 (($ $ (-719)) 90)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3575 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 48)) (-3139 (((-3 (-622 |#1|) "failed") $) NIL)) (-2585 (((-622 |#1|) $) NIL)) (-2562 (($ $) 89)) (-3579 (((-719) $) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-622 |#1|) |#2|) 68)) (-2627 (($ $) 86)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2448 (((-1203 |#1| |#2|) (-1203 |#1| |#2|) $) 47)) (-3477 (((-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2521 (((-622 |#1|) $) NIL)) (-2533 ((|#2| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-4098 (($ $ |#1| $) 30) (($ $ (-597 |#1|) (-597 $)) 32)) (-1429 (((-719) $) 88)) (-2377 (($ $ $) 20) (($ (-622 |#1|) (-622 |#1|)) 77) (($ (-622 |#1|) $) 75) (($ $ (-622 |#1|)) 76)) (-2366 (((-804) $) NIL) (($ |#1|) 74) (((-1194 |#1| |#2|) $) 58) (((-1203 |#1| |#2|) $) 41) (($ (-622 |#1|)) 25)) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-622 |#1|)) NIL)) (-2065 ((|#2| (-1203 |#1| |#2|) $) 43)) (-3080 (($) 23 T CONST)) (-1537 (((-597 (-2 (|:| |k| (-622 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1352 (((-3 $ "failed") (-1194 |#1| |#2|)) 60)) (-2288 (($ (-622 |#1|)) 14)) (-2248 (((-110) $ $) 44)) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) 66) (($ $ $) NIL)) (-2339 (($ $ $) 29)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-622 |#1|)) NIL)))
-(((-615 |#1| |#2|) (-13 (-355 |#1| |#2|) (-363 |#2| (-622 |#1|)) (-10 -8 (-15 -1352 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -2377 ($ (-622 |#1|) (-622 |#1|))) (-15 -2377 ($ (-622 |#1|) $)) (-15 -2377 ($ $ (-622 |#1|))))) (-795) (-162)) (T -615))
-((-1352 (*1 *1 *2) (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *1 (-615 *3 *4)))) (-2377 (*1 *1 *2 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))) (-2377 (*1 *1 *2 *1) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))) (-2377 (*1 *1 *1 *2) (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4)) (-4 *4 (-162)))))
-(-13 (-355 |#1| |#2|) (-363 |#2| (-622 |#1|)) (-10 -8 (-15 -1352 ((-3 $ "failed") (-1194 |#1| |#2|))) (-15 -2377 ($ (-622 |#1|) (-622 |#1|))) (-15 -2377 ($ (-622 |#1|) $)) (-15 -2377 ($ $ (-622 |#1|)))))
-((-2741 (((-110) $) NIL) (((-110) (-1 (-110) |#2| |#2|) $) 50)) (-1627 (($ $) NIL) (($ (-1 (-110) |#2| |#2|) $) 12)) (-2901 (($ (-1 (-110) |#2|) $) 28)) (-1337 (($ $) 56)) (-2287 (($ $) 64)) (-1842 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 37)) (-2134 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-2027 (((-530) |#2| $ (-530)) 61) (((-530) |#2| $) NIL) (((-530) (-1 (-110) |#2|) $) 47)) (-3538 (($ (-719) |#2|) 54)) (-2090 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 30)) (-3683 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 24)) (-3217 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2939 (($ |#2|) 15)) (-2441 (($ $ $ (-530)) 36) (($ |#2| $ (-530)) 34)) (-1437 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 46)) (-3715 (($ $ (-1148 (-530))) 44) (($ $ (-530)) 38)) (-3121 (($ $ $ (-530)) 60)) (-2579 (($ $) 58)) (-2272 (((-110) $ $) 66)))
-(((-616 |#1| |#2|) (-10 -8 (-15 -2939 (|#1| |#2|)) (-15 -3715 (|#1| |#1| (-530))) (-15 -3715 (|#1| |#1| (-1148 (-530)))) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2441 (|#1| |#2| |#1| (-530))) (-15 -2441 (|#1| |#1| |#1| (-530))) (-15 -2090 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2901 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2090 (|#1| |#1| |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2741 ((-110) |#1|)) (-15 -3121 (|#1| |#1| |#1| (-530))) (-15 -1337 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3538 (|#1| (-719) |#2|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1|))) (-617 |#2|) (-1135)) (T -616))
-NIL
-(-10 -8 (-15 -2939 (|#1| |#2|)) (-15 -3715 (|#1| |#1| (-530))) (-15 -3715 (|#1| |#1| (-1148 (-530)))) (-15 -1842 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2441 (|#1| |#2| |#1| (-530))) (-15 -2441 (|#1| |#1| |#1| (-530))) (-15 -2090 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2901 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -1842 (|#1| |#2| |#1|)) (-15 -2287 (|#1| |#1|)) (-15 -2090 (|#1| |#1| |#1|)) (-15 -3683 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2741 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -2027 ((-530) (-1 (-110) |#2|) |#1|)) (-15 -2027 ((-530) |#2| |#1|)) (-15 -2027 ((-530) |#2| |#1| (-530))) (-15 -3683 (|#1| |#1| |#1|)) (-15 -2741 ((-110) |#1|)) (-15 -3121 (|#1| |#1| |#1| (-530))) (-15 -1337 (|#1| |#1|)) (-15 -1627 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -1627 (|#1| |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -2134 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1437 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3538 (|#1| (-719) |#2|)) (-15 -3217 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2579 (|#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3254 ((|#1| $) 65)) (-2133 (($ $) 67)) (-2097 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 52 (|has| $ (-6 -4270)))) (-2741 (((-110) $) 142 (|has| |#1| (-795))) (((-110) (-1 (-110) |#1| |#1|) $) 136)) (-1627 (($ $) 146 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270)))) (($ (-1 (-110) |#1| |#1|) $) 145 (|has| $ (-6 -4270)))) (-1307 (($ $) 141 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $) 135)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 56 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2901 (($ (-1 (-110) |#1|) $) 129)) (-2283 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4269)))) (-3245 ((|#1| $) 66)) (-2350 (($) 7 T CONST)) (-1337 (($ $) 144 (|has| $ (-6 -4270)))) (-4106 (($ $) 134)) (-3057 (($ $) 73) (($ $ (-719)) 71)) (-2287 (($ $) 131 (|has| |#1| (-1027)))) (-3077 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 130 (|has| |#1| (-1027))) (($ (-1 (-110) |#1|) $) 125)) (-2383 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4269))) (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3592 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 87)) (-1230 (((-110) $) 83)) (-2027 (((-530) |#1| $ (-530)) 139 (|has| |#1| (-1027))) (((-530) |#1| $) 138 (|has| |#1| (-1027))) (((-530) (-1 (-110) |#1|) $) 137)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) 108)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 95 (|has| (-530) (-795)))) (-2508 (($ $ $) 147 (|has| |#1| (-795)))) (-2090 (($ $ $) 132 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 128)) (-3683 (($ $ $) 140 (|has| |#1| (-795))) (($ (-1 (-110) |#1| |#1|) $ $) 133)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 94 (|has| (-530) (-795)))) (-1817 (($ $ $) 148 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2939 (($ |#1|) 122)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 70) (($ $ (-719)) 68)) (-2441 (($ $ $ (-530)) 127) (($ |#1| $ (-530)) 126)) (-4028 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-3567 (((-597 (-530)) $) 92)) (-1927 (((-110) (-530) $) 91)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 76) (($ $ (-719)) 74)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1522 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-4083 (((-110) $) 84)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 90)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-2539 (((-530) $ $) 44)) (-3715 (($ $ (-1148 (-530))) 124) (($ $ (-530)) 123)) (-1843 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-4246 (((-110) $) 46)) (-3697 (($ $) 62)) (-3301 (($ $) 59 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 63)) (-2004 (($ $) 64)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 143 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 107)) (-1328 (($ $ $) 61) (($ $ |#1|) 60)) (-3483 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 150 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 151 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 149 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 152 (|has| |#1| (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-617 |#1|) (-133) (-1135)) (T -617))
-((-2939 (*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1135)))))
-(-13 (-1073 |t#1|) (-354 |t#1|) (-264 |t#1|) (-10 -8 (-15 -2939 ($ |t#1|))))
-(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-264 |#1|) . T) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-795) |has| |#1| (-795)) ((-949 |#1|) . T) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1073 |#1|) . T) ((-1135) . T) ((-1169 |#1|) . T))
-((-2688 (((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|))) 22) (((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)) 14)) (-2426 (((-719) (-637 |#1|) (-1181 |#1|)) 30)) (-2057 (((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|)) 24)) (-2301 (((-110) (-637 |#1|) (-1181 |#1|)) 27)))
-(((-618 |#1|) (-10 -7 (-15 -2688 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))) (-15 -2688 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|))) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|)))) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|)))) (-15 -2057 ((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|))) (-15 -2301 ((-110) (-637 |#1|) (-1181 |#1|))) (-15 -2426 ((-719) (-637 |#1|) (-1181 |#1|)))) (-344)) (T -618))
-((-2426 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-5 *2 (-719)) (-5 *1 (-618 *5)))) (-2301 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-5 *2 (-110)) (-5 *1 (-618 *5)))) (-2057 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *1 (-618 *4)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3220 (-597 (-1181 *5)))))) (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3220 (-597 (-1181 *5)))))) (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3220 (-597 (-1181 *5))))) (-5 *1 (-618 *5)) (-5 *4 (-1181 *5)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *5) "failed")) (|:| -3220 (-597 (-1181 *5))))) (-5 *1 (-618 *5)) (-5 *4 (-1181 *5)))))
-(-10 -7 (-15 -2688 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))) (-15 -2688 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-597 (-597 |#1|)) (-1181 |#1|))) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-637 |#1|) (-597 (-1181 |#1|)))) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|))))) (-597 (-597 |#1|)) (-597 (-1181 |#1|)))) (-15 -2057 ((-3 (-1181 |#1|) "failed") (-637 |#1|) (-1181 |#1|))) (-15 -2301 ((-110) (-637 |#1|) (-1181 |#1|))) (-15 -2426 ((-719) (-637 |#1|) (-1181 |#1|))))
-((-2688 (((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|)))) |#4| (-597 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|) 45)) (-2426 (((-719) |#4| |#3|) 17)) (-2057 (((-3 |#3| "failed") |#4| |#3|) 20)) (-2301 (((-110) |#4| |#3|) 13)))
-(((-619 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2688 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|)) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|)))) |#4| (-597 |#3|))) (-15 -2057 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2301 ((-110) |#4| |#3|)) (-15 -2426 ((-719) |#4| |#3|))) (-344) (-13 (-354 |#1|) (-10 -7 (-6 -4270))) (-13 (-354 |#1|) (-10 -7 (-6 -4270))) (-635 |#1| |#2| |#3|)) (T -619))
-((-2426 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-719)) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-2301 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-110)) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-2057 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4270)))) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))) (-5 *1 (-619 *4 *5 *2 *3)) (-4 *3 (-635 *4 *5 *2)))) (-2688 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-597 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3220 (-597 *7))))) (-5 *1 (-619 *5 *6 *7 *3)) (-5 *4 (-597 *7)) (-4 *3 (-635 *5 *6 *7)))) (-2688 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
-(-10 -7 (-15 -2688 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|)) (-15 -2688 ((-597 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|)))) |#4| (-597 |#3|))) (-15 -2057 ((-3 |#3| "failed") |#4| |#3|)) (-15 -2301 ((-110) |#4| |#3|)) (-15 -2426 ((-719) |#4| |#3|)))
-((-4244 (((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3220 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|)) 45)))
-(((-620 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4244 ((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3220 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|)))) (-522) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -620))
-((-4244 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *7)) (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 (-388 *8)) "failed")) (|:| -3220 (-597 (-1181 (-388 *8)))))) (-5 *1 (-620 *5 *6 *7 *8)))))
-(-10 -7 (-15 -4244 ((-2 (|:| |particular| (-3 (-1181 (-388 |#4|)) "failed")) (|:| -3220 (-597 (-1181 (-388 |#4|))))) (-597 |#4|) (-597 |#3|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2291 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-1367 ((|#2| $) NIL)) (-3053 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3365 (((-1181 (-637 |#2|))) NIL) (((-1181 (-637 |#2|)) (-1181 $)) NIL)) (-4040 (((-110) $) NIL)) (-3990 (((-1181 $)) 37)) (-3186 (((-110) $ (-719)) NIL)) (-1570 (($ |#2|) NIL)) (-2350 (($) NIL T CONST)) (-1583 (($ $) NIL (|has| |#2| (-289)))) (-1325 (((-223 |#1| |#2|) $ (-530)) NIL)) (-3751 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (|has| |#2| (-522)))) (-1383 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-2603 (((-637 |#2|)) NIL) (((-637 |#2|) (-1181 $)) NIL)) (-2228 ((|#2| $) NIL)) (-4209 (((-637 |#2|) $) NIL) (((-637 |#2|) $ (-1181 $)) NIL)) (-2635 (((-3 $ "failed") $) NIL (|has| |#2| (-522)))) (-3991 (((-1095 (-893 |#2|))) NIL (|has| |#2| (-344)))) (-2862 (($ $ (-862)) NIL)) (-4005 ((|#2| $) NIL)) (-3581 (((-1095 |#2|) $) NIL (|has| |#2| (-522)))) (-3988 ((|#2|) NIL) ((|#2| (-1181 $)) NIL)) (-2670 (((-1095 |#2|) $) NIL)) (-2662 (((-110)) NIL)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-1574 (($ (-1181 |#2|)) NIL) (($ (-1181 |#2|) (-1181 $)) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2426 (((-719) $) NIL (|has| |#2| (-522))) (((-862)) 38)) (-3532 ((|#2| $ (-530) (-530)) NIL)) (-3485 (((-110)) NIL)) (-1667 (($ $ (-862)) NIL)) (-3779 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL)) (-1791 (((-719) $) NIL (|has| |#2| (-522)))) (-2515 (((-597 (-223 |#1| |#2|)) $) NIL (|has| |#2| (-522)))) (-1796 (((-719) $) NIL)) (-3943 (((-110)) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#2| $) NIL (|has| |#2| (-6 (-4271 "*"))))) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#2|))) NIL)) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2654 (((-597 (-597 |#2|)) $) NIL)) (-3470 (((-110)) NIL)) (-2305 (((-110)) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3357 (((-3 (-2 (|:| |particular| $) (|:| -3220 (-597 $))) "failed")) NIL (|has| |#2| (-522)))) (-3832 (((-3 $ "failed")) NIL (|has| |#2| (-522)))) (-1257 (((-637 |#2|)) NIL) (((-637 |#2|) (-1181 $)) NIL)) (-2465 ((|#2| $) NIL)) (-3846 (((-637 |#2|) $) NIL) (((-637 |#2|) $ (-1181 $)) NIL)) (-1232 (((-3 $ "failed") $) NIL (|has| |#2| (-522)))) (-3342 (((-1095 (-893 |#2|))) NIL (|has| |#2| (-344)))) (-4138 (($ $ (-862)) NIL)) (-2602 ((|#2| $) NIL)) (-2209 (((-1095 |#2|) $) NIL (|has| |#2| (-522)))) (-2837 ((|#2|) NIL) ((|#2| (-1181 $)) NIL)) (-2461 (((-1095 |#2|) $) NIL)) (-1921 (((-110)) NIL)) (-1424 (((-1082) $) NIL)) (-3123 (((-110)) NIL)) (-2561 (((-110)) NIL)) (-3766 (((-110)) NIL)) (-1991 (((-3 $ "failed") $) NIL (|has| |#2| (-344)))) (-2624 (((-1046) $) NIL)) (-3719 (((-110)) NIL)) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-1533 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) (-530) |#2|) NIL) ((|#2| $ (-530) (-530)) 22) ((|#2| $ (-530)) NIL)) (-3289 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3896 ((|#2| $) NIL)) (-2128 (($ (-597 |#2|)) NIL)) (-1362 (((-110) $) NIL)) (-3614 (((-223 |#1| |#2|) $) NIL)) (-2338 ((|#2| $) NIL (|has| |#2| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-2328 (((-637 |#2|) (-1181 $)) NIL) (((-1181 |#2|) $) NIL) (((-637 |#2|) (-1181 $) (-1181 $)) NIL) (((-1181 |#2|) $ (-1181 $)) 25)) (-3260 (($ (-1181 |#2|)) NIL) (((-1181 |#2|) $) NIL)) (-3028 (((-597 (-893 |#2|))) NIL) (((-597 (-893 |#2|)) (-1181 $)) NIL)) (-2607 (($ $ $) NIL)) (-3675 (((-110)) NIL)) (-3350 (((-223 |#1| |#2|) $ (-530)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (((-637 |#2|) $) NIL)) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) 36)) (-3758 (((-597 (-1181 |#2|))) NIL (|has| |#2| (-522)))) (-2346 (($ $ $ $) NIL)) (-3439 (((-110)) NIL)) (-3003 (($ (-637 |#2|) $) NIL)) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-3980 (($ $ $) NIL)) (-2164 (((-110)) NIL)) (-3566 (((-110)) NIL)) (-1957 (((-110)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) NIL) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-621 |#1| |#2|) (-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-398 |#2|)) (-862) (-162)) (T -621))
-NIL
-(-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-398 |#2|))
-((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) NIL)) (-3638 (($ $) 52)) (-3038 (((-110) $) NIL)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1459 (((-3 $ "failed") (-767 |#1|)) 23)) (-1247 (((-110) (-767 |#1|)) 15)) (-3218 (($ (-767 |#1|)) 24)) (-3847 (((-110) $ $) 30)) (-4109 (((-862) $) 37)) (-3628 (($ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2611 (((-597 $) (-767 |#1|)) 17)) (-2366 (((-804) $) 43) (($ |#1|) 34) (((-767 |#1|) $) 39) (((-626 |#1|) $) 44)) (-2935 (((-57 (-597 $)) (-597 |#1|) (-862)) 57)) (-3466 (((-597 $) (-597 |#1|) (-862)) 60)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 53)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 38)))
-(((-622 |#1|) (-13 (-795) (-975 |#1|) (-10 -8 (-15 -3038 ((-110) $)) (-15 -3628 ($ $)) (-15 -3638 ($ $)) (-15 -4109 ((-862) $)) (-15 -3847 ((-110) $ $)) (-15 -2366 ((-767 |#1|) $)) (-15 -2366 ((-626 |#1|) $)) (-15 -2611 ((-597 $) (-767 |#1|))) (-15 -1247 ((-110) (-767 |#1|))) (-15 -3218 ($ (-767 |#1|))) (-15 -1459 ((-3 $ "failed") (-767 |#1|))) (-15 -3702 ((-597 |#1|) $)) (-15 -2935 ((-57 (-597 $)) (-597 |#1|) (-862))) (-15 -3466 ((-597 $) (-597 |#1|) (-862))))) (-795)) (T -622))
-((-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795)))) (-3638 (*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-3847 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-622 *4))) (-5 *1 (-622 *4)))) (-1247 (*1 *2 *3) (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-110)) (-5 *1 (-622 *4)))) (-3218 (*1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))) (-1459 (*1 *1 *2) (|partial| -12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795)))) (-2935 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795)) (-5 *2 (-57 (-597 (-622 *5)))) (-5 *1 (-622 *5)))) (-3466 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795)) (-5 *2 (-597 (-622 *5))) (-5 *1 (-622 *5)))))
-(-13 (-795) (-975 |#1|) (-10 -8 (-15 -3038 ((-110) $)) (-15 -3628 ($ $)) (-15 -3638 ($ $)) (-15 -4109 ((-862) $)) (-15 -3847 ((-110) $ $)) (-15 -2366 ((-767 |#1|) $)) (-15 -2366 ((-626 |#1|) $)) (-15 -2611 ((-597 $) (-767 |#1|))) (-15 -1247 ((-110) (-767 |#1|))) (-15 -3218 ($ (-767 |#1|))) (-15 -1459 ((-3 $ "failed") (-767 |#1|))) (-15 -3702 ((-597 |#1|) $)) (-15 -2935 ((-57 (-597 $)) (-597 |#1|) (-862))) (-15 -3466 ((-597 $) (-597 |#1|) (-862)))))
-((-3417 ((|#2| $) 76)) (-2133 (($ $) 96)) (-3186 (((-110) $ (-719)) 26)) (-3057 (($ $) 85) (($ $ (-719)) 88)) (-1230 (((-110) $) 97)) (-2011 (((-597 $) $) 72)) (-1646 (((-110) $ $) 71)) (-4027 (((-110) $ (-719)) 24)) (-4010 (((-530) $) 46)) (-1549 (((-530) $) 45)) (-2763 (((-110) $ (-719)) 22)) (-3615 (((-110) $) 74)) (-2407 ((|#2| $) 89) (($ $ (-719)) 92)) (-4028 (($ $ $ (-530)) 62) (($ |#2| $ (-530)) 61)) (-3567 (((-597 (-530)) $) 44)) (-1927 (((-110) (-530) $) 42)) (-3048 ((|#2| $) NIL) (($ $ (-719)) 84)) (-3168 (($ $ (-530)) 100)) (-4083 (((-110) $) 99)) (-1533 (((-110) (-1 (-110) |#2|) $) 32)) (-2261 (((-597 |#2|) $) 33)) (-1902 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1148 (-530))) 58) ((|#2| $ (-530)) 40) ((|#2| $ (-530) |#2|) 41)) (-2539 (((-530) $ $) 70)) (-1843 (($ $ (-1148 (-530))) 57) (($ $ (-530)) 51)) (-4246 (((-110) $) 66)) (-3697 (($ $) 81)) (-2754 (((-719) $) 80)) (-2004 (($ $) 79)) (-2377 (($ (-597 |#2|)) 37)) (-4050 (($ $) 101)) (-2557 (((-597 $) $) 69)) (-4153 (((-110) $ $) 68)) (-3889 (((-110) (-1 (-110) |#2|) $) 31)) (-2248 (((-110) $ $) 18)) (-2267 (((-719) $) 29)))
-(((-623 |#1| |#2|) (-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -3168 (|#1| |#1| (-530))) (-15 -1230 ((-110) |#1|)) (-15 -4083 ((-110) |#1|)) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -2261 ((-597 |#2|) |#1|)) (-15 -1927 ((-110) (-530) |#1|)) (-15 -3567 ((-597 (-530)) |#1|)) (-15 -1549 ((-530) |#1|)) (-15 -4010 ((-530) |#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -3697 (|#1| |#1|)) (-15 -2754 ((-719) |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "last")) (-15 -2407 (|#2| |#1|)) (-15 -3057 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| "rest")) (-15 -3057 (|#1| |#1|)) (-15 -3048 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "first")) (-15 -3048 (|#2| |#1|)) (-15 -1646 ((-110) |#1| |#1|)) (-15 -4153 ((-110) |#1| |#1|)) (-15 -2539 ((-530) |#1| |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3417 (|#2| |#1|)) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719)))) (-624 |#2|) (-1135)) (T -623))
-NIL
-(-10 -8 (-15 -4050 (|#1| |#1|)) (-15 -3168 (|#1| |#1| (-530))) (-15 -1230 ((-110) |#1|)) (-15 -4083 ((-110) |#1|)) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -2261 ((-597 |#2|) |#1|)) (-15 -1927 ((-110) (-530) |#1|)) (-15 -3567 ((-597 (-530)) |#1|)) (-15 -1549 ((-530) |#1|)) (-15 -4010 ((-530) |#1|)) (-15 -2377 (|#1| (-597 |#2|))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -1843 (|#1| |#1| (-530))) (-15 -1843 (|#1| |#1| (-1148 (-530)))) (-15 -4028 (|#1| |#2| |#1| (-530))) (-15 -4028 (|#1| |#1| |#1| (-530))) (-15 -3697 (|#1| |#1|)) (-15 -2754 ((-719) |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "last")) (-15 -2407 (|#2| |#1|)) (-15 -3057 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| "rest")) (-15 -3057 (|#1| |#1|)) (-15 -3048 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "first")) (-15 -3048 (|#2| |#1|)) (-15 -1646 ((-110) |#1| |#1|)) (-15 -4153 ((-110) |#1| |#1|)) (-15 -2539 ((-530) |#1| |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3417 (|#2| |#1|)) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -1533 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3254 ((|#1| $) 65)) (-2133 (($ $) 67)) (-2097 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 52 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 56 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 102)) (-3245 ((|#1| $) 66)) (-2350 (($) 7 T CONST)) (-3552 (($ $) 124)) (-3057 (($ $) 73) (($ $ (-719)) 71)) (-3077 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 103)) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3592 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 87)) (-1230 (((-110) $) 83)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-3811 (((-719) $) 123)) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) 108)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 95 (|has| (-530) (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 94 (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-3746 (($ $) 126)) (-3504 (((-110) $) 127)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 70) (($ $ (-719)) 68)) (-4028 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-3567 (((-597 (-530)) $) 92)) (-1927 (((-110) (-530) $) 91)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2195 ((|#1| $) 125)) (-3048 ((|#1| $) 76) (($ $ (-719)) 74)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1522 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-3168 (($ $ (-530)) 122)) (-4083 (((-110) $) 84)) (-2002 (((-110) $) 128)) (-1296 (((-110) $) 129)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 90)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-2539 (((-530) $ $) 44)) (-1843 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-4246 (((-110) $) 46)) (-3697 (($ $) 62)) (-3301 (($ $) 59 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 63)) (-2004 (($ $) 64)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 107)) (-1328 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-3483 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-4050 (($ $) 121)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-624 |#1|) (-133) (-1135)) (T -624))
-((-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-1296 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-2002 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3504 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3746 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-3552 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))) (-3811 (*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-624 *3)) (-4 *3 (-1135)))) (-4050 (*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
-(-13 (-1073 |t#1|) (-10 -8 (-15 -2383 ($ (-1 (-110) |t#1|) $)) (-15 -2283 ($ (-1 (-110) |t#1|) $)) (-15 -1296 ((-110) $)) (-15 -2002 ((-110) $)) (-15 -3504 ((-110) $)) (-15 -3746 ($ $)) (-15 -2195 (|t#1| $)) (-15 -3552 ($ $)) (-15 -3811 ((-719) $)) (-15 -3168 ($ $ (-530))) (-15 -4050 ($ $))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1073 |#1|) . T) ((-1135) . T) ((-1169 |#1|) . T))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1883 (($ (-719) (-719) (-719)) 33 (|has| |#1| (-984)))) (-3186 (((-110) $ (-719)) NIL)) (-3227 ((|#1| $ (-719) (-719) (-719) |#1|) 27)) (-2350 (($) NIL T CONST)) (-3849 (($ $ $) 37 (|has| |#1| (-984)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3957 (((-1181 (-719)) $) 9)) (-1688 (($ (-1099) $ $) 22)) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2881 (($ (-719)) 35 (|has| |#1| (-984)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-719) (-719) (-719)) 25)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2377 (($ (-597 (-597 (-597 |#1|)))) 44)) (-2366 (($ (-899 (-899 (-899 |#1|)))) 15) (((-899 (-899 (-899 |#1|))) $) 12) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-625 |#1|) (-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-984)) (PROGN (-15 -1883 ($ (-719) (-719) (-719))) (-15 -2881 ($ (-719))) (-15 -3849 ($ $ $))) |%noBranch|) (-15 -2377 ($ (-597 (-597 (-597 |#1|))))) (-15 -1902 (|#1| $ (-719) (-719) (-719))) (-15 -3227 (|#1| $ (-719) (-719) (-719) |#1|)) (-15 -2366 ($ (-899 (-899 (-899 |#1|))))) (-15 -2366 ((-899 (-899 (-899 |#1|))) $)) (-15 -1688 ($ (-1099) $ $)) (-15 -3957 ((-1181 (-719)) $)))) (-1027)) (T -625))
-((-1883 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))) (-2881 (*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))) (-3849 (*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-984)) (-4 *2 (-1027)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-597 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3)))) (-1902 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))) (-3227 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-4 *3 (-1027)) (-5 *1 (-625 *3)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))) (-1688 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-625 *3)) (-4 *3 (-1027)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1181 (-719))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
-(-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-984)) (PROGN (-15 -1883 ($ (-719) (-719) (-719))) (-15 -2881 ($ (-719))) (-15 -3849 ($ $ $))) |%noBranch|) (-15 -2377 ($ (-597 (-597 (-597 |#1|))))) (-15 -1902 (|#1| $ (-719) (-719) (-719))) (-15 -3227 (|#1| $ (-719) (-719) (-719) |#1|)) (-15 -2366 ($ (-899 (-899 (-899 |#1|))))) (-15 -2366 ((-899 (-899 (-899 |#1|))) $)) (-15 -1688 ($ (-1099) $ $)) (-15 -3957 ((-1181 (-719)) $))))
-((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) 14)) (-3638 (($ $) 18)) (-3038 (((-110) $) 19)) (-3139 (((-3 |#1| "failed") $) 22)) (-2585 ((|#1| $) 20)) (-3057 (($ $) 36)) (-2627 (($ $) 24)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3847 (((-110) $ $) 42)) (-4109 (((-862) $) 38)) (-3628 (($ $) 17)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 ((|#1| $) 35)) (-2366 (((-804) $) 31) (($ |#1|) 23) (((-767 |#1|) $) 27)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 12)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 40)) (* (($ $ $) 34)))
-(((-626 |#1|) (-13 (-795) (-975 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2366 ((-767 |#1|) $)) (-15 -3048 (|#1| $)) (-15 -3628 ($ $)) (-15 -4109 ((-862) $)) (-15 -3847 ((-110) $ $)) (-15 -2627 ($ $)) (-15 -3057 ($ $)) (-15 -3038 ((-110) $)) (-15 -3638 ($ $)) (-15 -3702 ((-597 |#1|) $)))) (-795)) (T -626))
-((* (*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3048 (*1 *2 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3628 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3847 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3057 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795)))) (-3638 (*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795)))))
-(-13 (-795) (-975 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2366 ((-767 |#1|) $)) (-15 -3048 (|#1| $)) (-15 -3628 ($ $)) (-15 -4109 ((-862) $)) (-15 -3847 ((-110) $ $)) (-15 -2627 ($ $)) (-15 -3057 ($ $)) (-15 -3038 ((-110) $)) (-15 -3638 ($ $)) (-15 -3702 ((-597 |#1|) $))))
-((-2623 ((|#1| (-1 |#1| (-719) |#1|) (-719) |#1|) 11)) (-2785 ((|#1| (-1 |#1| |#1|) (-719) |#1|) 9)))
-(((-627 |#1|) (-10 -7 (-15 -2785 (|#1| (-1 |#1| |#1|) (-719) |#1|)) (-15 -2623 (|#1| (-1 |#1| (-719) |#1|) (-719) |#1|))) (-1027)) (T -627))
-((-2623 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-719) *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))) (-2785 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-719)) (-4 *2 (-1027)) (-5 *1 (-627 *2)))))
-(-10 -7 (-15 -2785 (|#1| (-1 |#1| |#1|) (-719) |#1|)) (-15 -2623 (|#1| (-1 |#1| (-719) |#1|) (-719) |#1|)))
-((-3979 ((|#2| |#1| |#2|) 9)) (-3966 ((|#1| |#1| |#2|) 8)))
-(((-628 |#1| |#2|) (-10 -7 (-15 -3966 (|#1| |#1| |#2|)) (-15 -3979 (|#2| |#1| |#2|))) (-1027) (-1027)) (T -628))
-((-3979 (*1 *2 *3 *2) (-12 (-5 *1 (-628 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3966 (*1 *2 *2 *3) (-12 (-5 *1 (-628 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -3966 (|#1| |#1| |#2|)) (-15 -3979 (|#2| |#1| |#2|)))
-((-1837 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
-(((-629 |#1| |#2| |#3|) (-10 -7 (-15 -1837 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1027) (-1027) (-1027)) (T -629))
-((-1837 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)) (-5 *1 (-629 *5 *6 *2)))))
-(-10 -7 (-15 -1837 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
-((-2623 (((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|)) 23)) (-1505 (((-1 |#1|) |#1|) 8)) (-3509 ((|#1| |#1|) 16)) (-4179 (((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2366 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-719)) 20)))
-(((-630 |#1|) (-10 -7 (-15 -1505 ((-1 |#1|) |#1|)) (-15 -2366 ((-1 |#1|) |#1|)) (-15 -4179 (|#1| (-1 |#1| |#1|))) (-15 -4179 ((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530))) (-15 -3509 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-719))) (-15 -2623 ((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|)))) (-1027)) (T -630))
-((-2623 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-719) *3)) (-4 *3 (-1027)) (-5 *1 (-630 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *4 (-1027)) (-5 *1 (-630 *4)))) (-3509 (*1 *2 *2) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1027)))) (-4179 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-597 *5) (-597 *5))) (-5 *4 (-530)) (-5 *2 (-597 *5)) (-5 *1 (-630 *5)) (-4 *5 (-1027)))) (-4179 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-630 *2)) (-4 *2 (-1027)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))) (-1505 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -1505 ((-1 |#1|) |#1|)) (-15 -2366 ((-1 |#1|) |#1|)) (-15 -4179 (|#1| (-1 |#1| |#1|))) (-15 -4179 ((-597 |#1|) (-1 (-597 |#1|) (-597 |#1|)) (-530))) (-15 -3509 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-719))) (-15 -2623 ((-1 |#1| (-719) |#1|) (-1 |#1| (-719) |#1|))))
-((-3318 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-1888 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2708 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-2259 (((-1 |#2| |#1|) |#2|) 11)))
-(((-631 |#1| |#2|) (-10 -7 (-15 -2259 ((-1 |#2| |#1|) |#2|)) (-15 -1888 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2708 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3318 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1027) (-1027)) (T -631))
-((-3318 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)) (-4 *4 (-1027)))) (-1888 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-5 *2 (-1 *5)) (-5 *1 (-631 *4 *5)))) (-2259 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-631 *4 *3)) (-4 *4 (-1027)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -2259 ((-1 |#2| |#1|) |#2|)) (-15 -1888 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2708 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -3318 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
-((-1807 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2820 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1753 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-3116 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-2143 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
-(((-632 |#1| |#2| |#3|) (-10 -7 (-15 -2820 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1753 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3116 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2143 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1807 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1027) (-1027) (-1027)) (T -632))
-((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-1 *7 *5)) (-5 *1 (-632 *5 *6 *7)))) (-1807 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-632 *4 *5 *6)))) (-2143 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *4 (-1027)))) (-3116 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-1027)))) (-1753 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *4 *5 *6)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1027)) (-4 *4 (-1027)) (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *4 *6)))))
-(-10 -7 (-15 -2820 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1753 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -3116 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2143 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -1807 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
-((-2134 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3217 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
-(((-633 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3217 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3217 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2134 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-984) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|) (-984) (-354 |#5|) (-354 |#5|) (-635 |#5| |#6| |#7|)) (T -633))
-((-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-984)) (-4 *2 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2)) (-4 *9 (-354 *2)) (-5 *1 (-633 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-635 *5 *6 *7)) (-4 *10 (-635 *2 *8 *9)))) (-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-635 *8 *9 *10)) (-5 *1 (-633 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-635 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-984)) (-4 *8 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-635 *8 *9 *10)) (-5 *1 (-633 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-635 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))))
-(-10 -7 (-15 -3217 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3217 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -2134 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
-((-1511 (($ (-719) (-719)) 33)) (-3844 (($ $ $) 56)) (-4114 (($ |#3|) 52) (($ $) 53)) (-3053 (((-110) $) 28)) (-1835 (($ $ (-530) (-530)) 58)) (-2277 (($ $ (-530) (-530)) 59)) (-2744 (($ $ (-530) (-530) (-530) (-530)) 63)) (-3904 (($ $) 54)) (-4040 (((-110) $) 14)) (-3302 (($ $ (-530) (-530) $) 64)) (-2552 ((|#2| $ (-530) (-530) |#2|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) 62)) (-1570 (($ (-719) |#2|) 39)) (-2263 (($ (-597 (-597 |#2|))) 37)) (-2654 (((-597 (-597 |#2|)) $) 57)) (-1279 (($ $ $) 55)) (-3551 (((-3 $ "failed") $ |#2|) 91)) (-1902 ((|#2| $ (-530) (-530)) NIL) ((|#2| $ (-530) (-530) |#2|) NIL) (($ $ (-597 (-530)) (-597 (-530))) 61)) (-2128 (($ (-597 |#2|)) 40) (($ (-597 $)) 42)) (-1362 (((-110) $) 24)) (-2366 (($ |#4|) 47) (((-804) $) NIL)) (-3589 (((-110) $) 30)) (-2364 (($ $ |#2|) 93)) (-2351 (($ $ $) 68) (($ $) 71)) (-2339 (($ $ $) 66)) (** (($ $ (-719)) 80) (($ $ (-530)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-530) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
-(((-634 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2364 (|#1| |#1| |#2|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -3302 (|#1| |#1| (-530) (-530) |#1|)) (-15 -2744 (|#1| |#1| (-530) (-530) (-530) (-530))) (-15 -2277 (|#1| |#1| (-530) (-530))) (-15 -1835 (|#1| |#1| (-530) (-530))) (-15 -2552 (|#1| |#1| (-597 (-530)) (-597 (-530)) |#1|)) (-15 -1902 (|#1| |#1| (-597 (-530)) (-597 (-530)))) (-15 -2654 ((-597 (-597 |#2|)) |#1|)) (-15 -3844 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4114 (|#1| |#3|)) (-15 -2366 (|#1| |#4|)) (-15 -2128 (|#1| (-597 |#1|))) (-15 -2128 (|#1| (-597 |#2|))) (-15 -1570 (|#1| (-719) |#2|)) (-15 -2263 (|#1| (-597 (-597 |#2|)))) (-15 -1511 (|#1| (-719) (-719))) (-15 -3589 ((-110) |#1|)) (-15 -3053 ((-110) |#1|)) (-15 -1362 ((-110) |#1|)) (-15 -4040 ((-110) |#1|)) (-15 -2552 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530)))) (-635 |#2| |#3| |#4|) (-984) (-354 |#2|) (-354 |#2|)) (T -634))
-NIL
-(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -2364 (|#1| |#1| |#2|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-719))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -3302 (|#1| |#1| (-530) (-530) |#1|)) (-15 -2744 (|#1| |#1| (-530) (-530) (-530) (-530))) (-15 -2277 (|#1| |#1| (-530) (-530))) (-15 -1835 (|#1| |#1| (-530) (-530))) (-15 -2552 (|#1| |#1| (-597 (-530)) (-597 (-530)) |#1|)) (-15 -1902 (|#1| |#1| (-597 (-530)) (-597 (-530)))) (-15 -2654 ((-597 (-597 |#2|)) |#1|)) (-15 -3844 (|#1| |#1| |#1|)) (-15 -1279 (|#1| |#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4114 (|#1| |#3|)) (-15 -2366 (|#1| |#4|)) (-15 -2128 (|#1| (-597 |#1|))) (-15 -2128 (|#1| (-597 |#2|))) (-15 -1570 (|#1| (-719) |#2|)) (-15 -2263 (|#1| (-597 (-597 |#2|)))) (-15 -1511 (|#1| (-719) (-719))) (-15 -3589 ((-110) |#1|)) (-15 -3053 ((-110) |#1|)) (-15 -1362 ((-110) |#1|)) (-15 -4040 ((-110) |#1|)) (-15 -2552 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) (-530))))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1511 (($ (-719) (-719)) 97)) (-3844 (($ $ $) 87)) (-4114 (($ |#2|) 91) (($ $) 90)) (-3053 (((-110) $) 99)) (-1835 (($ $ (-530) (-530)) 83)) (-2277 (($ $ (-530) (-530)) 82)) (-2744 (($ $ (-530) (-530) (-530) (-530)) 81)) (-3904 (($ $) 89)) (-4040 (((-110) $) 101)) (-3186 (((-110) $ (-719)) 8)) (-3302 (($ $ (-530) (-530) $) 80)) (-2552 ((|#1| $ (-530) (-530) |#1|) 44) (($ $ (-597 (-530)) (-597 (-530)) $) 84)) (-2626 (($ $ (-530) |#2|) 42)) (-3959 (($ $ (-530) |#3|) 41)) (-1570 (($ (-719) |#1|) 95)) (-2350 (($) 7 T CONST)) (-1583 (($ $) 67 (|has| |#1| (-289)))) (-1325 ((|#2| $ (-530)) 46)) (-2426 (((-719) $) 66 (|has| |#1| (-522)))) (-3592 ((|#1| $ (-530) (-530) |#1|) 43)) (-3532 ((|#1| $ (-530) (-530)) 48)) (-3779 (((-597 |#1|) $) 30)) (-1791 (((-719) $) 65 (|has| |#1| (-522)))) (-2515 (((-597 |#3|) $) 64 (|has| |#1| (-522)))) (-1796 (((-719) $) 51)) (-3538 (($ (-719) (-719) |#1|) 57)) (-1810 (((-719) $) 50)) (-4027 (((-110) $ (-719)) 9)) (-2714 ((|#1| $) 62 (|has| |#1| (-6 (-4271 "*"))))) (-3863 (((-530) $) 55)) (-3643 (((-530) $) 53)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2307 (((-530) $) 54)) (-3909 (((-530) $) 52)) (-2263 (($ (-597 (-597 |#1|))) 96)) (-3583 (($ (-1 |#1| |#1|) $) 34)) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-2654 (((-597 (-597 |#1|)) $) 86)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1991 (((-3 $ "failed") $) 61 (|has| |#1| (-344)))) (-1279 (($ $ $) 88)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) 56)) (-3551 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-522)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) (-530)) 49) ((|#1| $ (-530) (-530) |#1|) 47) (($ $ (-597 (-530)) (-597 (-530))) 85)) (-2128 (($ (-597 |#1|)) 94) (($ (-597 $)) 93)) (-1362 (((-110) $) 100)) (-2338 ((|#1| $) 63 (|has| |#1| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3350 ((|#3| $ (-530)) 45)) (-2366 (($ |#3|) 92) (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-3589 (((-110) $) 98)) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) 68 (|has| |#1| (-344)))) (-2351 (($ $ $) 78) (($ $) 77)) (-2339 (($ $ $) 79)) (** (($ $ (-719)) 70) (($ $ (-530)) 60 (|has| |#1| (-344)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-530) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-635 |#1| |#2| |#3|) (-133) (-984) (-354 |t#1|) (-354 |t#1|)) (T -635))
-((-4040 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1511 (*1 *1 *2 *2) (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1570 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *2)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (-4114 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *2 *4)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (-4114 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3904 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-1279 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3844 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-597 (-597 *3))))) (-1902 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2552 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1835 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2277 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2744 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3302 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-635 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-635 *3 *2 *4)) (-4 *3 (-984)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-522)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-289)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-597 *5)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))) (-1991 (*1 *1 *1) (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-344)))))
-(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4270) (-6 -4269) (-15 -4040 ((-110) $)) (-15 -1362 ((-110) $)) (-15 -3053 ((-110) $)) (-15 -3589 ((-110) $)) (-15 -1511 ($ (-719) (-719))) (-15 -2263 ($ (-597 (-597 |t#1|)))) (-15 -1570 ($ (-719) |t#1|)) (-15 -2128 ($ (-597 |t#1|))) (-15 -2128 ($ (-597 $))) (-15 -2366 ($ |t#3|)) (-15 -4114 ($ |t#2|)) (-15 -4114 ($ $)) (-15 -3904 ($ $)) (-15 -1279 ($ $ $)) (-15 -3844 ($ $ $)) (-15 -2654 ((-597 (-597 |t#1|)) $)) (-15 -1902 ($ $ (-597 (-530)) (-597 (-530)))) (-15 -2552 ($ $ (-597 (-530)) (-597 (-530)) $)) (-15 -1835 ($ $ (-530) (-530))) (-15 -2277 ($ $ (-530) (-530))) (-15 -2744 ($ $ (-530) (-530) (-530) (-530))) (-15 -3302 ($ $ (-530) (-530) $)) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2351 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-530) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-719))) (IF (|has| |t#1| (-522)) (-15 -3551 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2364 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-289)) (-15 -1583 ($ $)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -2426 ((-719) $)) (-15 -1791 ((-719) $)) (-15 -2515 ((-597 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4271 "*"))) (PROGN (-15 -2338 (|t#1| $)) (-15 -2714 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -1991 ((-3 $ "failed") $)) (-15 ** ($ $ (-530)))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-55 |#1| |#2| |#3|) . T) ((-1135) . T))
-((-1583 ((|#4| |#4|) 72 (|has| |#1| (-289)))) (-2426 (((-719) |#4|) 99 (|has| |#1| (-522)))) (-1791 (((-719) |#4|) 76 (|has| |#1| (-522)))) (-2515 (((-597 |#3|) |#4|) 83 (|has| |#1| (-522)))) (-3297 (((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|) 111 (|has| |#1| (-289)))) (-2714 ((|#1| |#4|) 35)) (-2588 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-522)))) (-1991 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-344)))) (-3933 ((|#4| |#4|) 68 (|has| |#1| (-522)))) (-1937 ((|#4| |#4| |#1| (-530) (-530)) 43)) (-3501 ((|#4| |#4| (-530) (-530)) 38)) (-1468 ((|#4| |#4| |#1| (-530) (-530)) 48)) (-2338 ((|#1| |#4|) 78)) (-1803 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-522)))))
-(((-636 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2338 (|#1| |#4|)) (-15 -2714 (|#1| |#4|)) (-15 -3501 (|#4| |#4| (-530) (-530))) (-15 -1937 (|#4| |#4| |#1| (-530) (-530))) (-15 -1468 (|#4| |#4| |#1| (-530) (-530))) (IF (|has| |#1| (-522)) (PROGN (-15 -2426 ((-719) |#4|)) (-15 -1791 ((-719) |#4|)) (-15 -2515 ((-597 |#3|) |#4|)) (-15 -3933 (|#4| |#4|)) (-15 -2588 ((-3 |#4| "failed") |#4|)) (-15 -1803 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -1583 (|#4| |#4|)) (-15 -3297 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -1991 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-162) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -636))
-((-1991 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3297 (*1 *2 *3 *3) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-636 *3 *4 *5 *6)) (-4 *6 (-635 *3 *4 *5)))) (-1583 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-1803 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2588 (*1 *2 *2) (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3933 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-2515 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1791 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2426 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-1468 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-635 *3 *5 *6)))) (-1937 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2)) (-4 *2 (-635 *3 *5 *6)))) (-3501 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-530)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *1 (-636 *4 *5 *6 *2)) (-4 *2 (-635 *4 *5 *6)))) (-2714 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))) (-2338 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5)))))
-(-10 -7 (-15 -2338 (|#1| |#4|)) (-15 -2714 (|#1| |#4|)) (-15 -3501 (|#4| |#4| (-530) (-530))) (-15 -1937 (|#4| |#4| |#1| (-530) (-530))) (-15 -1468 (|#4| |#4| |#1| (-530) (-530))) (IF (|has| |#1| (-522)) (PROGN (-15 -2426 ((-719) |#4|)) (-15 -1791 ((-719) |#4|)) (-15 -2515 ((-597 |#3|) |#4|)) (-15 -3933 (|#4| |#4|)) (-15 -2588 ((-3 |#4| "failed") |#4|)) (-15 -1803 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -1583 (|#4| |#4|)) (-15 -3297 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -1991 ((-3 |#4| "failed") |#4|)) |%noBranch|))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719) (-719)) 47)) (-3844 (($ $ $) NIL)) (-4114 (($ (-1181 |#1|)) NIL) (($ $) NIL)) (-3053 (((-110) $) NIL)) (-1835 (($ $ (-530) (-530)) 12)) (-2277 (($ $ (-530) (-530)) NIL)) (-2744 (($ $ (-530) (-530) (-530) (-530)) NIL)) (-3904 (($ $) NIL)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-3302 (($ $ (-530) (-530) $) NIL)) (-2552 ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530)) $) NIL)) (-2626 (($ $ (-530) (-1181 |#1|)) NIL)) (-3959 (($ $ (-530) (-1181 |#1|)) NIL)) (-1570 (($ (-719) |#1|) 22)) (-2350 (($) NIL T CONST)) (-1583 (($ $) 31 (|has| |#1| (-289)))) (-1325 (((-1181 |#1|) $ (-530)) NIL)) (-2426 (((-719) $) 33 (|has| |#1| (-522)))) (-3592 ((|#1| $ (-530) (-530) |#1|) 51)) (-3532 ((|#1| $ (-530) (-530)) NIL)) (-3779 (((-597 |#1|) $) NIL)) (-1791 (((-719) $) 35 (|has| |#1| (-522)))) (-2515 (((-597 (-1181 |#1|)) $) 38 (|has| |#1| (-522)))) (-1796 (((-719) $) 20)) (-3538 (($ (-719) (-719) |#1|) 16)) (-1810 (((-719) $) 21)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#1| $) 29 (|has| |#1| (-6 (-4271 "*"))))) (-3863 (((-530) $) 9)) (-3643 (((-530) $) 10)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2307 (((-530) $) 11)) (-3909 (((-530) $) 48)) (-2263 (($ (-597 (-597 |#1|))) NIL)) (-3583 (($ (-1 |#1| |#1|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-2654 (((-597 (-597 |#1|)) $) 60)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1991 (((-3 $ "failed") $) 45 (|has| |#1| (-344)))) (-1279 (($ $ $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1522 (($ $ |#1|) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) (-530)) NIL) ((|#1| $ (-530) (-530) |#1|) NIL) (($ $ (-597 (-530)) (-597 (-530))) NIL)) (-2128 (($ (-597 |#1|)) NIL) (($ (-597 $)) NIL) (($ (-1181 |#1|)) 52)) (-1362 (((-110) $) NIL)) (-2338 ((|#1| $) 27 (|has| |#1| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 64 (|has| |#1| (-572 (-506))))) (-3350 (((-1181 |#1|) $ (-530)) NIL)) (-2366 (($ (-1181 |#1|)) NIL) (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $ $) NIL) (($ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) 23) (($ $ (-530)) 46 (|has| |#1| (-344)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-530) $) NIL) (((-1181 |#1|) $ (-1181 |#1|)) NIL) (((-1181 |#1|) (-1181 |#1|) $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-637 |#1|) (-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 -2128 ($ (-1181 |#1|))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -1991 ((-3 $ "failed") $)) |%noBranch|))) (-984)) (T -637))
-((-1991 (*1 *1 *1) (|partial| -12 (-5 *1 (-637 *2)) (-4 *2 (-344)) (-4 *2 (-984)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-637 *3)))))
-(-13 (-635 |#1| (-1181 |#1|) (-1181 |#1|)) (-10 -8 (-15 -2128 ($ (-1181 |#1|))) (IF (|has| |#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -1991 ((-3 $ "failed") $)) |%noBranch|)))
-((-2679 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 25)) (-4037 (((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|) 21)) (-2423 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719)) 26)) (-3862 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 14)) (-3549 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|)) 18) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 16)) (-1961 (((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|)) 20)) (-2336 (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 12)) (** (((-637 |#1|) (-637 |#1|) (-719)) 30)))
-(((-638 |#1|) (-10 -7 (-15 -2336 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3862 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3549 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3549 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1961 ((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|))) (-15 -4037 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -2679 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2423 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719))) (-15 ** ((-637 |#1|) (-637 |#1|) (-719)))) (-984)) (T -638))
-((** (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))) (-2423 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-638 *4)))) (-2679 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-4037 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-1961 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3549 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3549 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-3862 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))) (-2336 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(-10 -7 (-15 -2336 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3862 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3549 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -3549 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -1961 ((-637 |#1|) (-637 |#1|) |#1| (-637 |#1|))) (-15 -4037 ((-637 |#1|) (-637 |#1|) (-637 |#1|) |#1|)) (-15 -2679 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2423 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-637 |#1|) (-719))) (-15 ** ((-637 |#1|) (-637 |#1|) (-719))))
-((-2099 (($) 8 T CONST)) (-2366 (((-804) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3071 (((-110) $ (|[\|\|]| |#1|)) 14) (((-110) $ (|[\|\|]| -2099)) 16)) (-2612 ((|#1| $) 11)))
-(((-639 |#1|) (-13 (-1176) (-571 (-804)) (-10 -8 (-15 -3071 ((-110) $ (|[\|\|]| |#1|))) (-15 -3071 ((-110) $ (|[\|\|]| -2099))) (-15 -2366 ($ |#1|)) (-15 -2366 (|#1| $)) (-15 -2612 (|#1| $)) (-15 -2099 ($) -2708))) (-571 (-804))) (T -639))
-((-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-571 (-804))) (-5 *2 (-110)) (-5 *1 (-639 *4)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2099)) (-5 *2 (-110)) (-5 *1 (-639 *4)) (-4 *4 (-571 (-804))))) (-2366 (*1 *1 *2) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2366 (*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2612 (*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))) (-2099 (*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))))
-(-13 (-1176) (-571 (-804)) (-10 -8 (-15 -3071 ((-110) $ (|[\|\|]| |#1|))) (-15 -3071 ((-110) $ (|[\|\|]| -2099))) (-15 -2366 ($ |#1|)) (-15 -2366 (|#1| $)) (-15 -2612 (|#1| $)) (-15 -2099 ($) -2708)))
-((-2074 ((|#2| |#2| |#4|) 25)) (-2028 (((-637 |#2|) |#3| |#4|) 31)) (-3824 (((-637 |#2|) |#2| |#4|) 30)) (-3872 (((-1181 |#2|) |#2| |#4|) 16)) (-3568 ((|#2| |#3| |#4|) 24)) (-3661 (((-637 |#2|) |#3| |#4| (-719) (-719)) 38)) (-2777 (((-637 |#2|) |#2| |#4| (-719)) 37)))
-(((-640 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3872 ((-1181 |#2|) |#2| |#4|)) (-15 -3568 (|#2| |#3| |#4|)) (-15 -2074 (|#2| |#2| |#4|)) (-15 -3824 ((-637 |#2|) |#2| |#4|)) (-15 -2777 ((-637 |#2|) |#2| |#4| (-719))) (-15 -2028 ((-637 |#2|) |#3| |#4|)) (-15 -3661 ((-637 |#2|) |#3| |#4| (-719) (-719)))) (-1027) (-841 |#1|) (-354 |#2|) (-13 (-354 |#1|) (-10 -7 (-6 -4269)))) (T -640))
-((-3661 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *7 (-841 *6)) (-5 *2 (-637 *7)) (-5 *1 (-640 *6 *7 *3 *4)) (-4 *3 (-354 *7)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4269)))))) (-2028 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *6 (-841 *5)) (-5 *2 (-637 *6)) (-5 *1 (-640 *5 *6 *3 *4)) (-4 *3 (-354 *6)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))) (-2777 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *3 (-841 *6)) (-5 *2 (-637 *3)) (-5 *1 (-640 *6 *3 *7 *4)) (-4 *7 (-354 *3)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4269)))))) (-3824 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-637 *3)) (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))) (-2074 (*1 *2 *2 *3) (-12 (-4 *4 (-1027)) (-4 *2 (-841 *4)) (-5 *1 (-640 *4 *2 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4269)))))) (-3568 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *2 (-841 *5)) (-5 *1 (-640 *5 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))) (-3872 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-1181 *3)) (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
-(-10 -7 (-15 -3872 ((-1181 |#2|) |#2| |#4|)) (-15 -3568 (|#2| |#3| |#4|)) (-15 -2074 (|#2| |#2| |#4|)) (-15 -3824 ((-637 |#2|) |#2| |#4|)) (-15 -2777 ((-637 |#2|) |#2| |#4| (-719))) (-15 -2028 ((-637 |#2|) |#3| |#4|)) (-15 -3661 ((-637 |#2|) |#3| |#4| (-719) (-719))))
-((-1912 (((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|)) 20)) (-3912 ((|#1| (-637 |#2|)) 9)) (-2765 (((-637 |#1|) (-637 |#2|)) 18)))
-(((-641 |#1| |#2|) (-10 -7 (-15 -3912 (|#1| (-637 |#2|))) (-15 -2765 ((-637 |#1|) (-637 |#2|))) (-15 -1912 ((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|)))) (-522) (-932 |#1|)) (T -641))
-((-1912 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |num| (-637 *4)) (|:| |den| *4))) (-5 *1 (-641 *4 *5)))) (-2765 (*1 *2 *3) (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522)) (-5 *2 (-637 *4)) (-5 *1 (-641 *4 *5)))) (-3912 (*1 *2 *3) (-12 (-5 *3 (-637 *4)) (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-641 *2 *4)))))
-(-10 -7 (-15 -3912 (|#1| (-637 |#2|))) (-15 -2765 ((-637 |#1|) (-637 |#2|))) (-15 -1912 ((-2 (|:| |num| (-637 |#1|)) (|:| |den| |#1|)) (-637 |#2|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1863 (((-637 (-647))) NIL) (((-637 (-647)) (-1181 $)) NIL)) (-1367 (((-647) $) NIL)) (-2386 (($ $) NIL (|has| (-647) (-1121)))) (-2244 (($ $) NIL (|has| (-647) (-1121)))) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-647) (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-3544 (($ $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-3272 (((-399 $) $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-2625 (($ $) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-1426 (((-110) $ $) NIL (|has| (-647) (-289)))) (-3023 (((-719)) NIL (|has| (-647) (-349)))) (-2360 (($ $) NIL (|has| (-647) (-1121)))) (-2219 (($ $) NIL (|has| (-647) (-1121)))) (-2409 (($ $) NIL (|has| (-647) (-1121)))) (-2269 (($ $) NIL (|has| (-647) (-1121)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-647) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-647) (-975 (-388 (-530)))))) (-2585 (((-530) $) NIL) (((-647) $) NIL) (((-388 (-530)) $) NIL (|has| (-647) (-975 (-388 (-530)))))) (-1574 (($ (-1181 (-647))) NIL) (($ (-1181 (-647)) (-1181 $)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-647) (-330)))) (-3590 (($ $ $) NIL (|has| (-647) (-289)))) (-1984 (((-637 (-647)) $) NIL) (((-637 (-647)) $ (-1181 $)) NIL)) (-2329 (((-637 (-647)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-647))) (|:| |vec| (-1181 (-647)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-647) (-593 (-530)))) (((-637 (-530)) (-637 $)) NIL (|has| (-647) (-593 (-530))))) (-2134 (((-3 $ "failed") (-388 (-1095 (-647)))) NIL (|has| (-647) (-344))) (($ (-1095 (-647))) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2637 (((-647) $) 29)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL (|has| (-647) (-515)))) (-3016 (((-110) $) NIL (|has| (-647) (-515)))) (-3370 (((-388 (-530)) $) NIL (|has| (-647) (-515)))) (-2426 (((-862)) NIL)) (-1364 (($) NIL (|has| (-647) (-349)))) (-3571 (($ $ $) NIL (|has| (-647) (-289)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| (-647) (-289)))) (-1677 (($) NIL (|has| (-647) (-330)))) (-2798 (((-110) $) NIL (|has| (-647) (-330)))) (-3948 (($ $) NIL (|has| (-647) (-330))) (($ $ (-719)) NIL (|has| (-647) (-330)))) (-3295 (((-110) $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-3284 (((-2 (|:| |r| (-647)) (|:| |phi| (-647))) $) NIL (-12 (|has| (-647) (-993)) (|has| (-647) (-1121))))) (-1948 (($) NIL (|has| (-647) (-1121)))) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-647) (-827 (-360)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-647) (-827 (-530))))) (-2031 (((-781 (-862)) $) NIL (|has| (-647) (-330))) (((-862) $) NIL (|has| (-647) (-330)))) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121))))) (-2376 (((-647) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-647) (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-647) (-289)))) (-1359 (((-1095 (-647)) $) NIL (|has| (-647) (-344)))) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3217 (($ (-1 (-647) (-647)) $) NIL)) (-1905 (((-862) $) NIL (|has| (-647) (-349)))) (-2168 (($ $) NIL (|has| (-647) (-1121)))) (-2123 (((-1095 (-647)) $) NIL)) (-2170 (($ (-597 $)) NIL (|has| (-647) (-289))) (($ $ $) NIL (|has| (-647) (-289)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| (-647) (-344)))) (-3657 (($) NIL (|has| (-647) (-330)) CONST)) (-1986 (($ (-862)) NIL (|has| (-647) (-349)))) (-1254 (($) NIL)) (-2649 (((-647) $) 31)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-647) (-289)))) (-2204 (($ (-597 $)) NIL (|has| (-647) (-289))) (($ $ $) NIL (|has| (-647) (-289)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-647) (-330)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-647) (-289)) (|has| (-647) (-850))))) (-2611 (((-399 $) $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| (-647) (-850))) (|has| (-647) (-344))))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-647) (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| (-647) (-289)))) (-3551 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-647)) NIL (|has| (-647) (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-647) (-289)))) (-2853 (($ $) NIL (|has| (-647) (-1121)))) (-4098 (($ $ (-1099) (-647)) NIL (|has| (-647) (-491 (-1099) (-647)))) (($ $ (-597 (-1099)) (-597 (-647))) NIL (|has| (-647) (-491 (-1099) (-647)))) (($ $ (-597 (-276 (-647)))) NIL (|has| (-647) (-291 (-647)))) (($ $ (-276 (-647))) NIL (|has| (-647) (-291 (-647)))) (($ $ (-647) (-647)) NIL (|has| (-647) (-291 (-647)))) (($ $ (-597 (-647)) (-597 (-647))) NIL (|has| (-647) (-291 (-647))))) (-2356 (((-719) $) NIL (|has| (-647) (-289)))) (-1902 (($ $ (-647)) NIL (|has| (-647) (-268 (-647) (-647))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| (-647) (-289)))) (-3060 (((-647)) NIL) (((-647) (-1181 $)) NIL)) (-1823 (((-3 (-719) "failed") $ $) NIL (|has| (-647) (-330))) (((-719) $) NIL (|has| (-647) (-330)))) (-3289 (($ $ (-1 (-647) (-647))) NIL) (($ $ (-1 (-647) (-647)) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-719)) NIL (|has| (-647) (-216))) (($ $) NIL (|has| (-647) (-216)))) (-1542 (((-637 (-647)) (-1181 $) (-1 (-647) (-647))) NIL (|has| (-647) (-344)))) (-1781 (((-1095 (-647))) NIL)) (-2421 (($ $) NIL (|has| (-647) (-1121)))) (-2281 (($ $) NIL (|has| (-647) (-1121)))) (-3406 (($) NIL (|has| (-647) (-330)))) (-2398 (($ $) NIL (|has| (-647) (-1121)))) (-2254 (($ $) NIL (|has| (-647) (-1121)))) (-2373 (($ $) NIL (|has| (-647) (-1121)))) (-2231 (($ $) NIL (|has| (-647) (-1121)))) (-2328 (((-637 (-647)) (-1181 $)) NIL) (((-1181 (-647)) $) NIL) (((-637 (-647)) (-1181 $) (-1181 $)) NIL) (((-1181 (-647)) $ (-1181 $)) NIL)) (-3260 (((-506) $) NIL (|has| (-647) (-572 (-506)))) (((-159 (-208)) $) NIL (|has| (-647) (-960))) (((-159 (-360)) $) NIL (|has| (-647) (-960))) (((-833 (-360)) $) NIL (|has| (-647) (-572 (-833 (-360))))) (((-833 (-530)) $) NIL (|has| (-647) (-572 (-833 (-530))))) (($ (-1095 (-647))) NIL) (((-1095 (-647)) $) NIL) (($ (-1181 (-647))) NIL) (((-1181 (-647)) $) NIL)) (-2555 (($ $) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| $ (-138)) (|has| (-647) (-850))) (|has| (-647) (-330))))) (-4146 (($ (-647) (-647)) 12)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-530)) NIL) (($ (-647)) NIL) (($ (-159 (-360))) 13) (($ (-159 (-530))) 19) (($ (-159 (-647))) 28) (($ (-159 (-649))) 25) (((-159 (-360)) $) 33) (($ (-388 (-530))) NIL (-1461 (|has| (-647) (-975 (-388 (-530)))) (|has| (-647) (-344))))) (-3251 (($ $) NIL (|has| (-647) (-330))) (((-3 $ "failed") $) NIL (-1461 (-12 (|has| (-647) (-289)) (|has| $ (-138)) (|has| (-647) (-850))) (|has| (-647) (-138))))) (-1814 (((-1095 (-647)) $) NIL)) (-3300 (((-719)) NIL)) (-3220 (((-1181 $)) NIL)) (-2459 (($ $) NIL (|has| (-647) (-1121)))) (-2314 (($ $) NIL (|has| (-647) (-1121)))) (-3944 (((-110) $ $) NIL)) (-2434 (($ $) NIL (|has| (-647) (-1121)))) (-2293 (($ $) NIL (|has| (-647) (-1121)))) (-2485 (($ $) NIL (|has| (-647) (-1121)))) (-2334 (($ $) NIL (|has| (-647) (-1121)))) (-3117 (((-647) $) NIL (|has| (-647) (-1121)))) (-3632 (($ $) NIL (|has| (-647) (-1121)))) (-2347 (($ $) NIL (|has| (-647) (-1121)))) (-2472 (($ $) NIL (|has| (-647) (-1121)))) (-2324 (($ $) NIL (|has| (-647) (-1121)))) (-2446 (($ $) NIL (|has| (-647) (-1121)))) (-2304 (($ $) NIL (|has| (-647) (-1121)))) (-3934 (($ $) NIL (|has| (-647) (-993)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1 (-647) (-647))) NIL) (($ $ (-1 (-647) (-647)) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-1099)) NIL (|has| (-647) (-841 (-1099)))) (($ $ (-719)) NIL (|has| (-647) (-216))) (($ $) NIL (|has| (-647) (-216)))) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL (|has| (-647) (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ $) NIL (|has| (-647) (-1121))) (($ $ (-388 (-530))) NIL (-12 (|has| (-647) (-941)) (|has| (-647) (-1121)))) (($ $ (-530)) NIL (|has| (-647) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ (-647) $) NIL) (($ $ (-647)) NIL) (($ (-388 (-530)) $) NIL (|has| (-647) (-344))) (($ $ (-388 (-530))) NIL (|has| (-647) (-344)))))
-(((-642) (-13 (-368) (-156 (-647)) (-10 -8 (-15 -2366 ($ (-159 (-360)))) (-15 -2366 ($ (-159 (-530)))) (-15 -2366 ($ (-159 (-647)))) (-15 -2366 ($ (-159 (-649)))) (-15 -2366 ((-159 (-360)) $))))) (T -642))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-642)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-159 (-530))) (-5 *1 (-642)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-159 (-647))) (-5 *1 (-642)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-159 (-649))) (-5 *1 (-642)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-642)))))
-(-13 (-368) (-156 (-647)) (-10 -8 (-15 -2366 ($ (-159 (-360)))) (-15 -2366 ($ (-159 (-530)))) (-15 -2366 ($ (-159 (-647)))) (-15 -2366 ($ (-159 (-649)))) (-15 -2366 ((-159 (-360)) $))))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2287 (($ $) 62)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 61)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-643 |#1|) (-133) (-1027)) (T -643))
-((-2441 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-643 *2)) (-4 *2 (-1027)))) (-2287 (*1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1027)))) (-2413 (*1 *2 *1) (-12 (-4 *1 (-643 *3)) (-4 *3 (-1027)) (-5 *2 (-597 (-2 (|:| -1874 *3) (|:| -2632 (-719))))))))
-(-13 (-218 |t#1|) (-10 -8 (-15 -2441 ($ |t#1| $ (-719))) (-15 -2287 ($ $)) (-15 -2413 ((-597 (-2 (|:| -1874 |t#1|) (|:| -2632 (-719)))) $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-1311 (((-597 |#1|) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) (-530)) 47)) (-3774 ((|#1| |#1| (-530)) 46)) (-2204 ((|#1| |#1| |#1| (-530)) 36)) (-2611 (((-597 |#1|) |#1| (-530)) 39)) (-4120 ((|#1| |#1| (-530) |#1| (-530)) 32)) (-2827 (((-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) |#1| (-530)) 45)))
-(((-644 |#1|) (-10 -7 (-15 -2204 (|#1| |#1| |#1| (-530))) (-15 -3774 (|#1| |#1| (-530))) (-15 -2611 ((-597 |#1|) |#1| (-530))) (-15 -2827 ((-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) |#1| (-530))) (-15 -1311 ((-597 |#1|) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) (-530))) (-15 -4120 (|#1| |#1| (-530) |#1| (-530)))) (-1157 (-530))) (T -644))
-((-4120 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))) (-1311 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| -2611 *5) (|:| -1429 (-530))))) (-5 *4 (-530)) (-4 *5 (-1157 *4)) (-5 *2 (-597 *5)) (-5 *1 (-644 *5)))) (-2827 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-597 (-2 (|:| -2611 *3) (|:| -1429 *4)))) (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))) (-2611 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-597 *3)) (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))) (-2204 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
-(-10 -7 (-15 -2204 (|#1| |#1| |#1| (-530))) (-15 -3774 (|#1| |#1| (-530))) (-15 -2611 ((-597 |#1|) |#1| (-530))) (-15 -2827 ((-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) |#1| (-530))) (-15 -1311 ((-597 |#1|) (-597 (-2 (|:| -2611 |#1|) (|:| -1429 (-530)))) (-530))) (-15 -4120 (|#1| |#1| (-530) |#1| (-530))))
-((-4072 (((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 17)) (-2719 (((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 40) (((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 42) (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 44)) (-3761 (((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245))) NIL)) (-2343 (((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245))) 45)))
-(((-645) (-10 -7 (-15 -2719 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2719 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2719 ((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2343 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3761 ((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -4072 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -645))
-((-4072 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1 (-208) (-208) (-208) (-208))) (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *1 (-645)))) (-3761 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-2343 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-2719 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *1 (-645)))) (-2719 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))) (-2719 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645)))))
-(-10 -7 (-15 -2719 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2719 ((-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2719 ((-1059 (-208)) (-1059 (-208)) (-1 (-884 (-208)) (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -2343 ((-1059 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1022 (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -3761 ((-1059 (-208)) (-297 (-530)) (-297 (-530)) (-297 (-530)) (-1 (-208) (-208)) (-1022 (-208)) (-597 (-245)))) (-15 -4072 ((-1 (-884 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
-((-2611 (((-399 (-1095 |#4|)) (-1095 |#4|)) 73) (((-399 |#4|) |#4|) 221)))
-(((-646 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4|)) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|)))) (-795) (-741) (-330) (-890 |#3| |#2| |#1|)) (T -646))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-330)) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-646 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
-(-10 -7 (-15 -2611 ((-399 |#4|) |#4|)) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 84)) (-1612 (((-530) $) 30)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1951 (($ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-2350 (($) NIL T CONST)) (-2963 (($ $) NIL)) (-3139 (((-3 (-530) "failed") $) 73) (((-3 (-388 (-530)) "failed") $) 26) (((-3 (-360) "failed") $) 70)) (-2585 (((-530) $) 75) (((-388 (-530)) $) 67) (((-360) $) 68)) (-3590 (($ $ $) 96)) (-2707 (((-3 $ "failed") $) 87)) (-3571 (($ $ $) 95)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2582 (((-862)) 77) (((-862) (-862)) 76)) (-2514 (((-110) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL)) (-2031 (((-530) $) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL)) (-2376 (($ $) NIL)) (-2166 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1737 (((-530) (-530)) 81) (((-530)) 82)) (-2508 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-3192 (((-530) (-530)) 79) (((-530)) 80)) (-1817 (($ $ $) NIL) (($) NIL (-12 (-3676 (|has| $ (-6 -4252))) (-3676 (|has| $ (-6 -4260)))))) (-3208 (((-530) $) 16)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 91)) (-2887 (((-862) (-530)) NIL (|has| $ (-6 -4260)))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL)) (-3175 (($ $) NIL)) (-3018 (($ (-530) (-530)) NIL) (($ (-530) (-530) (-862)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) 92)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-3194 (((-530) $) 22)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 94)) (-2513 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-1764 (((-862) (-530)) NIL (|has| $ (-6 -4260)))) (-3260 (((-360) $) NIL) (((-208) $) NIL) (((-833 (-360)) $) NIL)) (-2366 (((-804) $) 52) (($ (-530)) 63) (($ $) NIL) (($ (-388 (-530))) 66) (($ (-530)) 63) (($ (-388 (-530))) 66) (($ (-360)) 60) (((-360) $) 50) (($ (-649)) 55)) (-3300 (((-719)) 103)) (-2899 (($ (-530) (-530) (-862)) 44)) (-2748 (($ $) NIL)) (-1711 (((-862)) NIL) (((-862) (-862)) NIL (|has| $ (-6 -4260)))) (-1510 (((-862)) 35) (((-862) (-862)) 78)) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL)) (-3080 (($) 32 T CONST)) (-3093 (($) 17 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 83)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 101)) (-2364 (($ $ $) 65)) (-2351 (($ $) 99) (($ $ $) 100)) (-2339 (($ $ $) 98)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) 90)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 97) (($ $ $) 88) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-647) (-13 (-385) (-368) (-344) (-975 (-360)) (-975 (-388 (-530))) (-140) (-10 -8 (-15 -2582 ((-862) (-862))) (-15 -2582 ((-862))) (-15 -1510 ((-862) (-862))) (-15 -1510 ((-862))) (-15 -3192 ((-530) (-530))) (-15 -3192 ((-530))) (-15 -1737 ((-530) (-530))) (-15 -1737 ((-530))) (-15 -2366 ((-360) $)) (-15 -2366 ($ (-649))) (-15 -3208 ((-530) $)) (-15 -3194 ((-530) $)) (-15 -2899 ($ (-530) (-530) (-862)))))) (T -647))
-((-1510 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-3194 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-3208 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-2582 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-2582 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))) (-3192 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-3192 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-1737 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-1737 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-360)) (-5 *1 (-647)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-649)) (-5 *1 (-647)))) (-2899 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-5 *1 (-647)))))
-(-13 (-385) (-368) (-344) (-975 (-360)) (-975 (-388 (-530))) (-140) (-10 -8 (-15 -2582 ((-862) (-862))) (-15 -2582 ((-862))) (-15 -1510 ((-862) (-862))) (-15 -1510 ((-862))) (-15 -3192 ((-530) (-530))) (-15 -3192 ((-530))) (-15 -1737 ((-530) (-530))) (-15 -1737 ((-530))) (-15 -2366 ((-360) $)) (-15 -2366 ($ (-649))) (-15 -3208 ((-530) $)) (-15 -3194 ((-530) $)) (-15 -2899 ($ (-530) (-530) (-862)))))
-((-3685 (((-637 |#1|) (-637 |#1|) |#1| |#1|) 65)) (-1583 (((-637 |#1|) (-637 |#1|) |#1|) 48)) (-2354 (((-637 |#1|) (-637 |#1|) |#1|) 66)) (-2841 (((-637 |#1|) (-637 |#1|)) 49)) (-3297 (((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|) 64)))
-(((-648 |#1|) (-10 -7 (-15 -2841 ((-637 |#1|) (-637 |#1|))) (-15 -1583 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -2354 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -3685 ((-637 |#1|) (-637 |#1|) |#1| |#1|)) (-15 -3297 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|))) (-289)) (T -648))
-((-3297 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-648 *3)) (-4 *3 (-289)))) (-3685 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-2354 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-1583 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))) (-2841 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
-(-10 -7 (-15 -2841 ((-637 |#1|) (-637 |#1|))) (-15 -1583 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -2354 ((-637 |#1|) (-637 |#1|) |#1|)) (-15 -3685 ((-637 |#1|) (-637 |#1|) |#1| |#1|)) (-15 -3297 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2660 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1531 (($ $ $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-4207 (($ $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) 27)) (-2585 (((-530) $) 25)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL)) (-3016 (((-110) $) NIL)) (-3370 (((-388 (-530)) $) NIL)) (-1364 (($ $) NIL) (($) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2411 (($ $ $) NIL)) (-2514 (((-110) $) NIL)) (-2937 (($ $ $) NIL)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-2731 (((-110) $) NIL)) (-3457 (((-110) $) NIL)) (-2972 (((-3 $ "failed") $) NIL)) (-2166 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1999 (($ $ $ $) NIL)) (-2508 (($ $ $) NIL)) (-3087 (((-862) (-862)) 10) (((-862)) 9)) (-1817 (($ $ $) NIL)) (-3103 (($ $) NIL)) (-4109 (($ $) NIL)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-3972 (($ $ $) NIL)) (-3657 (($) NIL T CONST)) (-3820 (($ $) NIL)) (-2624 (((-1046) $) NIL) (($ $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1303 (($ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL) (($ $ (-719)) NIL)) (-1725 (($ $) NIL)) (-2579 (($ $) NIL)) (-3260 (((-208) $) NIL) (((-360) $) NIL) (((-833 (-530)) $) NIL) (((-506) $) NIL) (((-530) $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) 24) (($ $) NIL) (($ (-530)) 24) (((-297 $) (-297 (-530))) 18)) (-3300 (((-719)) NIL)) (-3918 (((-110) $ $) NIL)) (-2947 (($ $ $) NIL)) (-1510 (($) NIL)) (-3944 (((-110) $ $) NIL)) (-3998 (($ $ $ $) NIL)) (-3934 (($ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL) (($ $ (-719)) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
-(((-649) (-13 (-368) (-515) (-10 -8 (-15 -3087 ((-862) (-862))) (-15 -3087 ((-862))) (-15 -2366 ((-297 $) (-297 (-530))))))) (T -649))
-((-3087 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))) (-3087 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-297 (-530))) (-5 *2 (-297 (-649))) (-5 *1 (-649)))))
-(-13 (-368) (-515) (-10 -8 (-15 -3087 ((-862) (-862))) (-15 -3087 ((-862))) (-15 -2366 ((-297 $) (-297 (-530))))))
-((-1484 (((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099)) 19)) (-1738 (((-1 |#4| |#2| |#3|) (-1099)) 12)))
-(((-650 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1738 ((-1 |#4| |#2| |#3|) (-1099))) (-15 -1484 ((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099)))) (-572 (-506)) (-1135) (-1135) (-1135)) (T -650))
-((-1484 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *3 *5 *6 *7)) (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *7 (-1135)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *4 *5 *6 *7)) (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)) (-4 *7 (-1135)))))
-(-10 -7 (-15 -1738 ((-1 |#4| |#2| |#3|) (-1099))) (-15 -1484 ((-1 |#4| |#2| |#3|) |#1| (-1099) (-1099))))
-((-2352 (((-110) $ $) NIL)) (-1664 (((-1186) $ (-719)) 14)) (-2027 (((-719) $) 12)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 25)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 24)))
-(((-651 |#1|) (-13 (-129) (-571 |#1|) (-10 -8 (-15 -2366 ($ |#1|)))) (-1027)) (T -651))
-((-2366 (*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1027)))))
-(-13 (-129) (-571 |#1|) (-10 -8 (-15 -2366 ($ |#1|))))
-((-3354 (((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099)) 34) (((-1 (-208) (-208)) |#1| (-1099)) 39)))
-(((-652 |#1|) (-10 -7 (-15 -3354 ((-1 (-208) (-208)) |#1| (-1099))) (-15 -3354 ((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099)))) (-572 (-506))) (T -652))
-((-3354 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))) (-3354 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))))
-(-10 -7 (-15 -3354 ((-1 (-208) (-208)) |#1| (-1099))) (-15 -3354 ((-1 (-208) (-208) (-208)) |#1| (-1099) (-1099))))
-((-2047 (((-1099) |#1| (-1099) (-597 (-1099))) 9) (((-1099) |#1| (-1099) (-1099) (-1099)) 12) (((-1099) |#1| (-1099) (-1099)) 11) (((-1099) |#1| (-1099)) 10)))
-(((-653 |#1|) (-10 -7 (-15 -2047 ((-1099) |#1| (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-1099) (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-597 (-1099))))) (-572 (-506))) (T -653))
-((-2047 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-2047 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-2047 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))) (-2047 (*1 *2 *3 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506))))))
-(-10 -7 (-15 -2047 ((-1099) |#1| (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-1099) (-1099))) (-15 -2047 ((-1099) |#1| (-1099) (-597 (-1099)))))
-((-2348 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
-(((-654 |#1| |#2|) (-10 -7 (-15 -2348 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1135) (-1135)) (T -654))
-((-2348 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-654 *3 *4)) (-4 *3 (-1135)) (-4 *4 (-1135)))))
-(-10 -7 (-15 -2348 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
-((-3084 (((-1 |#3| |#2|) (-1099)) 11)) (-1484 (((-1 |#3| |#2|) |#1| (-1099)) 21)))
-(((-655 |#1| |#2| |#3|) (-10 -7 (-15 -3084 ((-1 |#3| |#2|) (-1099))) (-15 -1484 ((-1 |#3| |#2|) |#1| (-1099)))) (-572 (-506)) (-1135) (-1135)) (T -655))
-((-1484 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *3 *5 *6)) (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))) (-3084 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *4 *5 *6)) (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
-(-10 -7 (-15 -3084 ((-1 |#3| |#2|) (-1099))) (-15 -1484 ((-1 |#3| |#2|) |#1| (-1099))))
-((-4128 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|) 62)) (-1309 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|) 75)) (-2734 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|) 34)))
-(((-656 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2734 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|)) (-15 -1309 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|)) (-15 -4128 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -656))
-((-4128 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-597 (-1095 *13))) (-5 *3 (-1095 *13)) (-5 *4 (-597 *12)) (-5 *5 (-597 *10)) (-5 *6 (-597 *13)) (-5 *7 (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| *13))))) (-5 *8 (-597 (-719))) (-5 *9 (-1181 (-597 (-1095 *10)))) (-4 *12 (-795)) (-4 *10 (-289)) (-4 *13 (-890 *10 *11 *12)) (-4 *11 (-741)) (-5 *1 (-656 *11 *12 *10 *13)))) (-1309 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-597 *11)) (-5 *5 (-597 (-1095 *9))) (-5 *6 (-597 *9)) (-5 *7 (-597 *12)) (-5 *8 (-597 (-719))) (-4 *11 (-795)) (-4 *9 (-289)) (-4 *12 (-890 *9 *10 *11)) (-4 *10 (-741)) (-5 *2 (-597 (-1095 *12))) (-5 *1 (-656 *10 *11 *9 *12)) (-5 *3 (-1095 *12)))) (-2734 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-597 (-1095 *11))) (-5 *3 (-1095 *11)) (-5 *4 (-597 *10)) (-5 *5 (-597 *8)) (-5 *6 (-597 (-719))) (-5 *7 (-1181 (-597 (-1095 *8)))) (-4 *10 (-795)) (-4 *8 (-289)) (-4 *11 (-890 *8 *9 *10)) (-4 *9 (-741)) (-5 *1 (-656 *9 *10 *8 *11)))))
-(-10 -7 (-15 -2734 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 |#3|) (-597 (-719)) (-597 (-1095 |#4|)) (-1181 (-597 (-1095 |#3|))) |#3|)) (-15 -1309 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#3|)) (-597 |#3|) (-597 |#4|) (-597 (-719)) |#3|)) (-15 -4128 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-597 |#2|) (-597 (-1095 |#4|)) (-597 |#3|) (-597 |#4|) (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#4|)))) (-597 (-719)) (-1181 (-597 (-1095 |#3|))) |#3|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2562 (($ $) 39)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-2725 (($ |#1| (-719)) 37)) (-2944 (((-719) $) 41)) (-2533 ((|#1| $) 40)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1429 (((-719) $) 42)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 36 (|has| |#1| (-162)))) (-4085 ((|#1| $ (-719)) 38)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
-(((-657 |#1|) (-133) (-984)) (T -657))
-((-1429 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984)))))
-(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -1429 ((-719) $)) (-15 -2944 ((-719) $)) (-15 -2533 (|t#1| $)) (-15 -2562 ($ $)) (-15 -4085 (|t#1| $ (-719))) (-15 -2725 ($ |t#1| (-719)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3217 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
-(((-658 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3217 (|#6| (-1 |#4| |#1|) |#3|))) (-522) (-1157 |#1|) (-1157 (-388 |#2|)) (-522) (-1157 |#4|) (-1157 (-388 |#5|))) (T -658))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-522)) (-4 *7 (-522)) (-4 *6 (-1157 *5)) (-4 *2 (-1157 (-388 *8))) (-5 *1 (-658 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1157 (-388 *6))) (-4 *8 (-1157 *7)))))
-(-10 -7 (-15 -3217 (|#6| (-1 |#4| |#1|) |#3|)))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2799 (((-1082) (-804)) 31)) (-2388 (((-1186) (-1082)) 28)) (-3679 (((-1082) (-804)) 24)) (-1237 (((-1082) (-804)) 25)) (-2366 (((-804) $) NIL) (((-1082) (-804)) 23)) (-2248 (((-110) $ $) NIL)))
-(((-659) (-13 (-1027) (-10 -7 (-15 -2366 ((-1082) (-804))) (-15 -3679 ((-1082) (-804))) (-15 -1237 ((-1082) (-804))) (-15 -2799 ((-1082) (-804))) (-15 -2388 ((-1186) (-1082)))))) (T -659))
-((-2366 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-3679 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-1237 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-2799 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))) (-2388 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-659)))))
-(-13 (-1027) (-10 -7 (-15 -2366 ((-1082) (-804))) (-15 -3679 ((-1082) (-804))) (-15 -1237 ((-1082) (-804))) (-15 -2799 ((-1082) (-804))) (-15 -2388 ((-1186) (-1082)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL)) (-2134 (($ |#1| |#2|) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 ((|#2| $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2943 (((-3 $ "failed") $ $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) ((|#1| $) NIL)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-660 |#1| |#2| |#3| |#4| |#5|) (-13 (-344) (-10 -8 (-15 -4076 (|#2| $)) (-15 -2366 (|#1| $)) (-15 -2134 ($ |#1| |#2|)) (-15 -2943 ((-3 $ "failed") $ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -660))
-((-4076 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-660 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2366 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2134 (*1 *1 *2 *3) (-12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2943 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-344) (-10 -8 (-15 -4076 (|#2| $)) (-15 -2366 (|#1| $)) (-15 -2134 ($ |#1| |#2|)) (-15 -2943 ((-3 $ "failed") $ $))))
-((-2352 (((-110) $ $) 78)) (-1813 (((-110) $) 30)) (-1825 (((-1181 |#1|) $ (-719)) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-1370 (($ (-1095 |#1|)) NIL)) (-2577 (((-1095 $) $ (-1012)) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3950 (($ $ $) NIL (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3023 (((-719)) 47 (|has| |#1| (-349)))) (-3269 (($ $ (-719)) NIL)) (-3778 (($ $ (-719)) NIL)) (-1476 ((|#2| |#2|) 44)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL)) (-3388 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) NIL (|has| |#1| (-162)))) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) 34)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2134 (($ |#2|) 42)) (-2707 (((-3 $ "failed") $) 86)) (-1364 (($) 51 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-1350 (($ $ $) NIL)) (-1903 (($ $ $) NIL (|has| |#1| (-522)))) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2075 (((-899 $)) 80)) (-2410 (($ $ |#1| (-719) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ $) NIL (|has| |#1| (-522)))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2735 (($ (-1095 |#1|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-3081 (($ $ (-719)) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) 77) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) NIL) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-4076 ((|#2|) 45)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2609 (((-1095 |#1|) $) NIL)) (-2040 (((-3 (-1012) "failed") $) NIL)) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-2123 ((|#2| $) 41)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) 28)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (|has| |#1| (-1075)) CONST)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-2914 (($ $) 79 (|has| |#1| (-330)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 87 (|has| |#1| (-344)))) (-3060 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1429 (((-719) $) 32) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-3558 (((-899 $)) 36)) (-1331 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2366 (((-804) $) 61) (($ (-530)) NIL) (($ |#1|) 58) (($ (-1012)) NIL) (($ |#2|) 68) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) 63) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 20 T CONST)) (-2859 (((-1181 |#1|) $) 75)) (-4080 (($ (-1181 |#1|)) 50)) (-3093 (($) 8 T CONST)) (-3340 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-1706 (((-1181 |#1|) $) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 69)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) 72) (($ $ $) NIL)) (-2339 (($ $ $) 33)) (** (($ $ (-862)) NIL) (($ $ (-719)) 81)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 57) (($ $ $) 74) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
-(((-661 |#1| |#2|) (-13 (-1157 |#1|) (-10 -8 (-15 -1476 (|#2| |#2|)) (-15 -4076 (|#2|)) (-15 -2134 ($ |#2|)) (-15 -2123 (|#2| $)) (-15 -2366 ($ |#2|)) (-15 -2859 ((-1181 |#1|) $)) (-15 -4080 ($ (-1181 |#1|))) (-15 -1706 ((-1181 |#1|) $)) (-15 -2075 ((-899 $))) (-15 -3558 ((-899 $))) (IF (|has| |#1| (-330)) (-15 -2914 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|))) (-984) (-1157 |#1|)) (T -661))
-((-1476 (*1 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-4076 (*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984)))) (-2134 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-2123 (*1 *2 *1) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))) (-2859 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-4080 (*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-1706 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-2075 (*1 *2) (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-3558 (*1 *2) (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4)) (-4 *4 (-1157 *3)))) (-2914 (*1 *1 *1) (-12 (-4 *2 (-330)) (-4 *2 (-984)) (-5 *1 (-661 *2 *3)) (-4 *3 (-1157 *2)))))
-(-13 (-1157 |#1|) (-10 -8 (-15 -1476 (|#2| |#2|)) (-15 -4076 (|#2|)) (-15 -2134 ($ |#2|)) (-15 -2123 (|#2| $)) (-15 -2366 ($ |#2|)) (-15 -2859 ((-1181 |#1|) $)) (-15 -4080 ($ (-1181 |#1|))) (-15 -1706 ((-1181 |#1|) $)) (-15 -2075 ((-899 $))) (-15 -3558 ((-899 $))) (IF (|has| |#1| (-330)) (-15 -2914 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-1986 ((|#1| $) 13)) (-2624 (((-1046) $) NIL)) (-3194 ((|#2| $) 12)) (-2377 (($ |#1| |#2|) 16)) (-2366 (((-804) $) NIL) (($ (-2 (|:| -1986 |#1|) (|:| -3194 |#2|))) 15) (((-2 (|:| -1986 |#1|) (|:| -3194 |#2|)) $) 14)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 11)))
-(((-662 |#1| |#2| |#3|) (-13 (-795) (-10 -8 (-15 -3194 (|#2| $)) (-15 -1986 (|#1| $)) (-15 -2366 ($ (-2 (|:| -1986 |#1|) (|:| -3194 |#2|)))) (-15 -2366 ((-2 (|:| -1986 |#1|) (|:| -3194 |#2|)) $)) (-15 -2377 ($ |#1| |#2|)))) (-795) (-1027) (-1 (-110) (-2 (|:| -1986 |#1|) (|:| -3194 |#2|)) (-2 (|:| -1986 |#1|) (|:| -3194 |#2|)))) (T -662))
-((-3194 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-662 *3 *2 *4)) (-4 *3 (-795)) (-14 *4 (-1 (-110) (-2 (|:| -1986 *3) (|:| -3194 *2)) (-2 (|:| -1986 *3) (|:| -3194 *2)))))) (-1986 (*1 *2 *1) (-12 (-4 *2 (-795)) (-5 *1 (-662 *2 *3 *4)) (-4 *3 (-1027)) (-14 *4 (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *3)) (-2 (|:| -1986 *2) (|:| -3194 *3)))))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1986 *3) (|:| -3194 *4))) (-4 *3 (-795)) (-4 *4 (-1027)) (-5 *1 (-662 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1986 *3) (|:| -3194 *4))) (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-1027)) (-14 *5 (-1 (-110) *2 *2)))) (-2377 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-1027)) (-14 *4 (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *3)) (-2 (|:| -1986 *2) (|:| -3194 *3)))))))
-(-13 (-795) (-10 -8 (-15 -3194 (|#2| $)) (-15 -1986 (|#1| $)) (-15 -2366 ($ (-2 (|:| -1986 |#1|) (|:| -3194 |#2|)))) (-15 -2366 ((-2 (|:| -1986 |#1|) (|:| -3194 |#2|)) $)) (-15 -2377 ($ |#1| |#2|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 59)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 89) (((-3 (-112) "failed") $) 95)) (-2585 ((|#1| $) NIL) (((-112) $) 39)) (-2707 (((-3 $ "failed") $) 90)) (-1347 ((|#2| (-112) |#2|) 82)) (-2731 (((-110) $) NIL)) (-2868 (($ |#1| (-342 (-112))) 14)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-4155 (($ $ (-1 |#2| |#2|)) 58)) (-2755 (($ $ (-1 |#2| |#2|)) 44)) (-1902 ((|#2| $ |#2|) 33)) (-1306 ((|#1| |#1|) 105 (|has| |#1| (-162)))) (-2366 (((-804) $) 66) (($ (-530)) 18) (($ |#1|) 17) (($ (-112)) 23)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 37)) (-1803 (($ $) 99 (|has| |#1| (-162))) (($ $ $) 103 (|has| |#1| (-162)))) (-3080 (($) 21 T CONST)) (-3093 (($) 9 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) 48) (($ $ $) NIL)) (-2339 (($ $ $) 73)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ (-112) (-530)) NIL) (($ $ (-530)) 57)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-162))) (($ $ |#1|) 97 (|has| |#1| (-162)))))
-(((-663 |#1| |#2|) (-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -1803 ($ $)) (-15 -1803 ($ $ $)) (-15 -1306 (|#1| |#1|))) |%noBranch|) (-15 -2755 ($ $ (-1 |#2| |#2|))) (-15 -4155 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -1347 (|#2| (-112) |#2|)) (-15 -2868 ($ |#1| (-342 (-112)))))) (-984) (-599 |#1|)) (T -663))
-((-1803 (*1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-1803 (*1 *1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-1306 (*1 *2 *2) (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3)) (-4 *3 (-599 *2)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-663 *4 *5)) (-4 *5 (-599 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4)) (-4 *4 (-599 *3)))) (-1347 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-4 *4 (-984)) (-5 *1 (-663 *4 *2)) (-4 *2 (-599 *4)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-4 *2 (-984)) (-5 *1 (-663 *2 *4)) (-4 *4 (-599 *2)))))
-(-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -1803 ($ $)) (-15 -1803 ($ $ $)) (-15 -1306 (|#1| |#1|))) |%noBranch|) (-15 -2755 ($ $ (-1 |#2| |#2|))) (-15 -4155 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -1347 (|#2| (-112) |#2|)) (-15 -2868 ($ |#1| (-342 (-112))))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 33)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2134 (($ |#1| |#2|) 25)) (-2707 (((-3 $ "failed") $) 48)) (-2731 (((-110) $) 35)) (-4076 ((|#2| $) 12)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 49)) (-2624 (((-1046) $) NIL)) (-2943 (((-3 $ "failed") $ $) 47)) (-2366 (((-804) $) 24) (($ (-530)) 19) ((|#1| $) 13)) (-3300 (((-719)) 28)) (-3080 (($) 16 T CONST)) (-3093 (($) 30 T CONST)) (-2248 (((-110) $ $) 38)) (-2351 (($ $) 43) (($ $ $) 37)) (-2339 (($ $ $) 40)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 21) (($ $ $) 20)))
-(((-664 |#1| |#2| |#3| |#4| |#5|) (-13 (-984) (-10 -8 (-15 -4076 (|#2| $)) (-15 -2366 (|#1| $)) (-15 -2134 ($ |#1| |#2|)) (-15 -2943 ((-3 $ "failed") $ $)) (-15 -2707 ((-3 $ "failed") $)) (-15 -2483 ($ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -664))
-((-2707 (*1 *1 *1) (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-4076 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-664 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2366 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2134 (*1 *1 *2 *3) (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2943 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2483 (*1 *1 *1) (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(-13 (-984) (-10 -8 (-15 -4076 (|#2| $)) (-15 -2366 (|#1| $)) (-15 -2134 ($ |#1| |#2|)) (-15 -2943 ((-3 $ "failed") $ $)) (-15 -2707 ((-3 $ "failed") $)) (-15 -2483 ($ $))))
-((* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
-(((-665 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-666 |#2|) (-162)) (T -665))
-NIL
-(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-666 |#1|) (-133) (-162)) (T -666))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 15)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1840 ((|#1| $) 21)) (-4103 (($ $ $) NIL (|has| |#1| (-741)))) (-1241 (($ $ $) NIL (|has| |#1| (-741)))) (-1521 (((-1085) $) 46)) (-2529 (((-1049) $) NIL)) (-1853 ((|#3| $) 22)) (-2265 (((-806) $) 42)) (-3035 (($) 10 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-741)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-741)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL (|has| |#1| (-741)))) (-2174 (((-110) $ $) 24 (|has| |#1| (-741)))) (-2263 (($ $ |#3|) 34) (($ |#1| |#3|) 35)) (-2250 (($ $) 17) (($ $ $) NIL)) (-2237 (($ $ $) 27)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 30) (($ |#2| $) 32) (($ $ |#2|) NIL)))
+(((-615 |#1| |#2| |#3|) (-13 (-668 |#2|) (-10 -8 (IF (|has| |#1| (-741)) (-6 (-741)) |%noBranch|) (-15 -2263 ($ $ |#3|)) (-15 -2263 ($ |#1| |#3|)) (-15 -1840 (|#1| $)) (-15 -1853 (|#3| $)))) (-668 |#2|) (-162) (|SubsetCategory| (-677) |#2|)) (T -615))
+((-2263 (*1 *1 *1 *2) (-12 (-4 *4 (-162)) (-5 *1 (-615 *3 *4 *2)) (-4 *3 (-668 *4)) (-4 *2 (|SubsetCategory| (-677) *4)))) (-2263 (*1 *1 *2 *3) (-12 (-4 *4 (-162)) (-5 *1 (-615 *2 *4 *3)) (-4 *2 (-668 *4)) (-4 *3 (|SubsetCategory| (-677) *4)))) (-1840 (*1 *2 *1) (-12 (-4 *3 (-162)) (-4 *2 (-668 *3)) (-5 *1 (-615 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-677) *3)))) (-1853 (*1 *2 *1) (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-677) *4)) (-5 *1 (-615 *3 *4 *2)) (-4 *3 (-668 *4)))))
+(-13 (-668 |#2|) (-10 -8 (IF (|has| |#1| (-741)) (-6 (-741)) |%noBranch|) (-15 -2263 ($ $ |#3|)) (-15 -2263 ($ |#1| |#3|)) (-15 -1840 (|#1| $)) (-15 -1853 (|#3| $))))
+((-4248 (((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|)) 33)))
+(((-616 |#1|) (-10 -7 (-15 -4248 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|)))) (-852)) (T -616))
+((-4248 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *4))) (-5 *3 (-1098 *4)) (-4 *4 (-852)) (-5 *1 (-616 *4)))))
+(-10 -7 (-15 -4248 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3798 (((-598 |#1|) $) 82)) (-2879 (($ $ (-721)) 90)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2489 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 48)) (-3154 (((-3 (-624 |#1|) "failed") $) NIL)) (-2523 (((-624 |#1|) $) NIL)) (-2500 (($ $) 89)) (-3517 (((-721) $) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-624 |#1|) |#2|) 68)) (-4104 (($ $) 86)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2931 (((-1206 |#1| |#2|) (-1206 |#1| |#2|) $) 47)) (-3226 (((-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2462 (((-624 |#1|) $) NIL)) (-2475 ((|#2| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-4115 (($ $ |#1| $) 30) (($ $ (-598 |#1|) (-598 $)) 32)) (-2012 (((-721) $) 88)) (-2274 (($ $ $) 20) (($ (-624 |#1|) (-624 |#1|)) 77) (($ (-624 |#1|) $) 75) (($ $ (-624 |#1|)) 76)) (-2265 (((-806) $) NIL) (($ |#1|) 74) (((-1197 |#1| |#2|) $) 58) (((-1206 |#1| |#2|) $) 41) (($ (-624 |#1|)) 25)) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-624 |#1|)) NIL)) (-2005 ((|#2| (-1206 |#1| |#2|) $) 43)) (-3035 (($) 23 T CONST)) (-2400 (((-598 (-2 (|:| |k| (-624 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2802 (((-3 $ "failed") (-1197 |#1| |#2|)) 60)) (-2043 (($ (-624 |#1|)) 14)) (-2148 (((-110) $ $) 44)) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) 66) (($ $ $) NIL)) (-2237 (($ $ $) 29)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#2| $) 28) (($ $ |#2|) NIL) (($ |#2| (-624 |#1|)) NIL)))
+(((-617 |#1| |#2|) (-13 (-355 |#1| |#2|) (-363 |#2| (-624 |#1|)) (-10 -8 (-15 -2802 ((-3 $ "failed") (-1197 |#1| |#2|))) (-15 -2274 ($ (-624 |#1|) (-624 |#1|))) (-15 -2274 ($ (-624 |#1|) $)) (-15 -2274 ($ $ (-624 |#1|))))) (-797) (-162)) (T -617))
+((-2802 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *1 (-617 *3 *4)))) (-2274 (*1 *1 *2 *2) (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) (-4 *4 (-162)))) (-2274 (*1 *1 *2 *1) (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) (-4 *4 (-162)))) (-2274 (*1 *1 *1 *2) (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4)) (-4 *4 (-162)))))
+(-13 (-355 |#1| |#2|) (-363 |#2| (-624 |#1|)) (-10 -8 (-15 -2802 ((-3 $ "failed") (-1197 |#1| |#2|))) (-15 -2274 ($ (-624 |#1|) (-624 |#1|))) (-15 -2274 ($ (-624 |#1|) $)) (-15 -2274 ($ $ (-624 |#1|)))))
+((-3202 (((-110) $) NIL) (((-110) (-1 (-110) |#2| |#2|) $) 50)) (-2375 (($ $) NIL) (($ (-1 (-110) |#2| |#2|) $) 12)) (-2245 (($ (-1 (-110) |#2|) $) 28)) (-4106 (($ $) 56)) (-2705 (($ $) 64)) (-2717 (($ |#2| $) NIL) (($ (-1 (-110) |#2|) $) 37)) (-1760 ((|#2| (-1 |#2| |#2| |#2|) $) 21) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 51) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 53)) (-1976 (((-531) |#2| $ (-531)) 61) (((-531) |#2| $) NIL) (((-531) (-1 (-110) |#2|) $) 47)) (-3010 (($ (-721) |#2|) 54)) (-3611 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 30)) (-3508 (($ $ $) NIL) (($ (-1 (-110) |#2| |#2|) $ $) 24)) (-3261 (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) 55)) (-2907 (($ |#2|) 15)) (-3944 (($ $ $ (-531)) 36) (($ |#2| $ (-531)) 34)) (-4190 (((-3 |#2| "failed") (-1 (-110) |#2|) $) 46)) (-1551 (($ $ (-1151 (-531))) 44) (($ $ (-531)) 38)) (-2162 (($ $ $ (-531)) 60)) (-2480 (($ $) 58)) (-2174 (((-110) $ $) 66)))
+(((-618 |#1| |#2|) (-10 -8 (-15 -2907 (|#1| |#2|)) (-15 -1551 (|#1| |#1| (-531))) (-15 -1551 (|#1| |#1| (-1151 (-531)))) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3944 (|#1| |#2| |#1| (-531))) (-15 -3944 (|#1| |#1| |#1| (-531))) (-15 -3611 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2245 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -3611 (|#1| |#1| |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3202 ((-110) |#1|)) (-15 -2162 (|#1| |#1| |#1| (-531))) (-15 -4106 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3010 (|#1| (-721) |#2|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1|))) (-619 |#2|) (-1138)) (T -618))
+NIL
+(-10 -8 (-15 -2907 (|#1| |#2|)) (-15 -1551 (|#1| |#1| (-531))) (-15 -1551 (|#1| |#1| (-1151 (-531)))) (-15 -2717 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -3944 (|#1| |#2| |#1| (-531))) (-15 -3944 (|#1| |#1| |#1| (-531))) (-15 -3611 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -2245 (|#1| (-1 (-110) |#2|) |#1|)) (-15 -2717 (|#1| |#2| |#1|)) (-15 -2705 (|#1| |#1|)) (-15 -3611 (|#1| |#1| |#1|)) (-15 -3508 (|#1| (-1 (-110) |#2| |#2|) |#1| |#1|)) (-15 -3202 ((-110) (-1 (-110) |#2| |#2|) |#1|)) (-15 -1976 ((-531) (-1 (-110) |#2|) |#1|)) (-15 -1976 ((-531) |#2| |#1|)) (-15 -1976 ((-531) |#2| |#1| (-531))) (-15 -3508 (|#1| |#1| |#1|)) (-15 -3202 ((-110) |#1|)) (-15 -2162 (|#1| |#1| |#1| (-531))) (-15 -4106 (|#1| |#1|)) (-15 -2375 (|#1| (-1 (-110) |#2| |#2|) |#1|)) (-15 -2375 (|#1| |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -1760 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4190 ((-3 |#2| "failed") (-1 (-110) |#2|) |#1|)) (-15 -3010 (|#1| (-721) |#2|)) (-15 -3261 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2480 (|#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-3308 ((|#1| $) 65)) (-2072 (($ $) 67)) (-3137 (((-1189) $ (-531) (-531)) 97 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 52 (|has| $ (-6 -4274)))) (-3202 (((-110) $) 142 (|has| |#1| (-797))) (((-110) (-1 (-110) |#1| |#1|) $) 136)) (-2375 (($ $) 146 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274)))) (($ (-1 (-110) |#1| |#1|) $) 145 (|has| $ (-6 -4274)))) (-1332 (($ $) 141 (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $) 135)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 56 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) 54 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 58 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4274))) (($ $ "rest" $) 55 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 117 (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) 86 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-2245 (($ (-1 (-110) |#1|) $) 129)) (-2177 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4273)))) (-3297 ((|#1| $) 66)) (-4082 (($) 7 T CONST)) (-4106 (($ $) 144 (|has| $ (-6 -4274)))) (-1828 (($ $) 134)) (-3062 (($ $) 73) (($ $ (-721)) 71)) (-2705 (($ $) 131 (|has| |#1| (-1030)))) (-3086 (($ $) 99 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 130 (|has| |#1| (-1030))) (($ (-1 (-110) |#1|) $) 125)) (-2283 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4273))) (($ |#1| $) 100 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2693 ((|#1| $ (-531) |#1|) 85 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 87)) (-2141 (((-110) $) 83)) (-1976 (((-531) |#1| $ (-531)) 139 (|has| |#1| (-1030))) (((-531) |#1| $) 138 (|has| |#1| (-1030))) (((-531) (-1 (-110) |#1|) $) 137)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) 108)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 95 (|has| (-531) (-797)))) (-4103 (($ $ $) 147 (|has| |#1| (-797)))) (-3611 (($ $ $) 132 (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) 128)) (-3508 (($ $ $) 140 (|has| |#1| (-797))) (($ (-1 (-110) |#1| |#1|) $ $) 133)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 94 (|has| (-531) (-797)))) (-1241 (($ $ $) 148 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2907 (($ |#1|) 122)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 70) (($ $ (-721)) 68)) (-3944 (($ $ $ (-531)) 127) (($ |#1| $ (-531)) 126)) (-4059 (($ $ $ (-531)) 116) (($ |#1| $ (-531)) 115)) (-3765 (((-598 (-531)) $) 92)) (-3059 (((-110) (-531) $) 91)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 76) (($ $ (-721)) 74)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-3742 (($ $ |#1|) 96 (|has| $ (-6 -4274)))) (-2765 (((-110) $) 84)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 90)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1151 (-531))) 112) ((|#1| $ (-531)) 89) ((|#1| $ (-531) |#1|) 88)) (-2357 (((-531) $ $) 44)) (-1551 (($ $ (-1151 (-531))) 124) (($ $ (-531)) 123)) (-1723 (($ $ (-1151 (-531))) 114) (($ $ (-531)) 113)) (-2930 (((-110) $) 46)) (-1958 (($ $) 62)) (-2980 (($ $) 59 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 63)) (-2874 (($ $) 64)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 143 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 98 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 107)) (-1818 (($ $ $) 61) (($ $ |#1|) 60)) (-3536 (($ $ $) 78) (($ |#1| $) 77) (($ (-598 $)) 110) (($ $ |#1|) 109)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 150 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 151 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 149 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 152 (|has| |#1| (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-619 |#1|) (-133) (-1138)) (T -619))
+((-2907 (*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1138)))))
+(-13 (-1076 |t#1|) (-354 |t#1|) (-264 |t#1|) (-10 -8 (-15 -2907 ($ |t#1|))))
+(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-264 |#1|) . T) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-797) |has| |#1| (-797)) ((-951 |#1|) . T) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1076 |#1|) . T) ((-1138) . T) ((-1172 |#1|) . T))
+((-1871 (((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-598 (-598 |#1|)) (-598 (-1184 |#1|))) 22) (((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-639 |#1|) (-598 (-1184 |#1|))) 21) (((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-598 (-598 |#1|)) (-1184 |#1|)) 18) (((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|)) 14)) (-2277 (((-721) (-639 |#1|) (-1184 |#1|)) 30)) (-2197 (((-3 (-1184 |#1|) "failed") (-639 |#1|) (-1184 |#1|)) 24)) (-1753 (((-110) (-639 |#1|) (-1184 |#1|)) 27)))
+(((-620 |#1|) (-10 -7 (-15 -1871 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|))) (-15 -1871 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-598 (-598 |#1|)) (-1184 |#1|))) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-639 |#1|) (-598 (-1184 |#1|)))) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-598 (-598 |#1|)) (-598 (-1184 |#1|)))) (-15 -2197 ((-3 (-1184 |#1|) "failed") (-639 |#1|) (-1184 |#1|))) (-15 -1753 ((-110) (-639 |#1|) (-1184 |#1|))) (-15 -2277 ((-721) (-639 |#1|) (-1184 |#1|)))) (-344)) (T -620))
+((-2277 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-344)) (-5 *2 (-721)) (-5 *1 (-620 *5)))) (-1753 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-344)) (-5 *2 (-110)) (-5 *1 (-620 *5)))) (-2197 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1184 *4)) (-5 *3 (-639 *4)) (-4 *4 (-344)) (-5 *1 (-620 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 *5))) (-4 *5 (-344)) (-5 *2 (-598 (-2 (|:| |particular| (-3 (-1184 *5) "failed")) (|:| -3523 (-598 (-1184 *5)))))) (-5 *1 (-620 *5)) (-5 *4 (-598 (-1184 *5))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-4 *5 (-344)) (-5 *2 (-598 (-2 (|:| |particular| (-3 (-1184 *5) "failed")) (|:| -3523 (-598 (-1184 *5)))))) (-5 *1 (-620 *5)) (-5 *4 (-598 (-1184 *5))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 *5))) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1184 *5) "failed")) (|:| -3523 (-598 (-1184 *5))))) (-5 *1 (-620 *5)) (-5 *4 (-1184 *5)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |particular| (-3 (-1184 *5) "failed")) (|:| -3523 (-598 (-1184 *5))))) (-5 *1 (-620 *5)) (-5 *4 (-1184 *5)))))
+(-10 -7 (-15 -1871 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|))) (-15 -1871 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-598 (-598 |#1|)) (-1184 |#1|))) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-639 |#1|) (-598 (-1184 |#1|)))) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|))))) (-598 (-598 |#1|)) (-598 (-1184 |#1|)))) (-15 -2197 ((-3 (-1184 |#1|) "failed") (-639 |#1|) (-1184 |#1|))) (-15 -1753 ((-110) (-639 |#1|) (-1184 |#1|))) (-15 -2277 ((-721) (-639 |#1|) (-1184 |#1|))))
+((-1871 (((-598 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|)))) |#4| (-598 |#3|)) 47) (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|) 45)) (-2277 (((-721) |#4| |#3|) 17)) (-2197 (((-3 |#3| "failed") |#4| |#3|) 20)) (-1753 (((-110) |#4| |#3|) 13)))
+(((-621 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1871 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|)) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|)))) |#4| (-598 |#3|))) (-15 -2197 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1753 ((-110) |#4| |#3|)) (-15 -2277 ((-721) |#4| |#3|))) (-344) (-13 (-354 |#1|) (-10 -7 (-6 -4274))) (-13 (-354 |#1|) (-10 -7 (-6 -4274))) (-637 |#1| |#2| |#3|)) (T -621))
+((-2277 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-721)) (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))) (-1753 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-110)) (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))) (-2197 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-344)) (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4274)))) (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))) (-5 *1 (-621 *4 *5 *2 *3)) (-4 *3 (-637 *4 *5 *2)))) (-1871 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-598 (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3523 (-598 *7))))) (-5 *1 (-621 *5 *6 *7 *3)) (-5 *4 (-598 *7)) (-4 *3 (-637 *5 *6 *7)))) (-1871 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))))
+(-10 -7 (-15 -1871 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|)) (-15 -1871 ((-598 (-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|)))) |#4| (-598 |#3|))) (-15 -2197 ((-3 |#3| "failed") |#4| |#3|)) (-15 -1753 ((-110) |#4| |#3|)) (-15 -2277 ((-721) |#4| |#3|)))
+((-4113 (((-2 (|:| |particular| (-3 (-1184 (-388 |#4|)) "failed")) (|:| -3523 (-598 (-1184 (-388 |#4|))))) (-598 |#4|) (-598 |#3|)) 45)))
+(((-622 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4113 ((-2 (|:| |particular| (-3 (-1184 (-388 |#4|)) "failed")) (|:| -3523 (-598 (-1184 (-388 |#4|))))) (-598 |#4|) (-598 |#3|)))) (-523) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -622))
+((-4113 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *7)) (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-5 *2 (-2 (|:| |particular| (-3 (-1184 (-388 *8)) "failed")) (|:| -3523 (-598 (-1184 (-388 *8)))))) (-5 *1 (-622 *5 *6 *7 *8)))))
+(-10 -7 (-15 -4113 ((-2 (|:| |particular| (-3 (-1184 (-388 |#4|)) "failed")) (|:| -3523 (-598 (-1184 (-388 |#4|))))) (-598 |#4|) (-598 |#3|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3887 (((-3 $ "failed")) NIL (|has| |#2| (-523)))) (-1354 ((|#2| $) NIL)) (-2719 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2550 (((-1184 (-639 |#2|))) NIL) (((-1184 (-639 |#2|)) (-1184 $)) NIL)) (-1878 (((-110) $) NIL)) (-2022 (((-1184 $)) 37)) (-4058 (((-110) $ (-721)) NIL)) (-3264 (($ |#2|) NIL)) (-4082 (($) NIL T CONST)) (-2800 (($ $) NIL (|has| |#2| (-289)))) (-4011 (((-223 |#1| |#2|) $ (-531)) NIL)) (-3491 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (|has| |#2| (-523)))) (-2783 (((-3 $ "failed")) NIL (|has| |#2| (-523)))) (-3939 (((-639 |#2|)) NIL) (((-639 |#2|) (-1184 $)) NIL)) (-1668 ((|#2| $) NIL)) (-2264 (((-639 |#2|) $) NIL) (((-639 |#2|) $ (-1184 $)) NIL)) (-1387 (((-3 $ "failed") $) NIL (|has| |#2| (-523)))) (-3668 (((-1098 (-895 |#2|))) NIL (|has| |#2| (-344)))) (-1666 (($ $ (-864)) NIL)) (-2065 ((|#2| $) NIL)) (-3415 (((-1098 |#2|) $) NIL (|has| |#2| (-523)))) (-3960 ((|#2|) NIL) ((|#2| (-1184 $)) NIL)) (-3586 (((-1098 |#2|) $) NIL)) (-1437 (((-110)) NIL)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 |#2| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) ((|#2| $) NIL)) (-2767 (($ (-1184 |#2|)) NIL) (($ (-1184 |#2|) (-1184 $)) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2277 (((-721) $) NIL (|has| |#2| (-523))) (((-864)) 38)) (-2627 ((|#2| $ (-531) (-531)) NIL)) (-2629 (((-110)) NIL)) (-2083 (($ $ (-864)) NIL)) (-2227 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL)) (-4091 (((-721) $) NIL (|has| |#2| (-523)))) (-3001 (((-598 (-223 |#1| |#2|)) $) NIL (|has| |#2| (-523)))) (-1548 (((-721) $) NIL)) (-2790 (((-110)) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#2| $) NIL (|has| |#2| (-6 (-4275 "*"))))) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#2|))) NIL)) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3924 (((-598 (-598 |#2|)) $) NIL)) (-3769 (((-110)) NIL)) (-2298 (((-110)) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-4152 (((-3 (-2 (|:| |particular| $) (|:| -3523 (-598 $))) "failed")) NIL (|has| |#2| (-523)))) (-2816 (((-3 $ "failed")) NIL (|has| |#2| (-523)))) (-1950 (((-639 |#2|)) NIL) (((-639 |#2|) (-1184 $)) NIL)) (-1807 ((|#2| $) NIL)) (-3405 (((-639 |#2|) $) NIL) (((-639 |#2|) $ (-1184 $)) NIL)) (-2234 (((-3 $ "failed") $) NIL (|has| |#2| (-523)))) (-2280 (((-1098 (-895 |#2|))) NIL (|has| |#2| (-344)))) (-2585 (($ $ (-864)) NIL)) (-1288 ((|#2| $) NIL)) (-1480 (((-1098 |#2|) $) NIL (|has| |#2| (-523)))) (-3579 ((|#2|) NIL) ((|#2| (-1184 $)) NIL)) (-1875 (((-1098 |#2|) $) NIL)) (-2239 (((-110)) NIL)) (-1521 (((-1085) $) NIL)) (-4223 (((-110)) NIL)) (-1561 (((-110)) NIL)) (-3036 (((-110)) NIL)) (-2147 (((-3 $ "failed") $) NIL (|has| |#2| (-344)))) (-2529 (((-1049) $) NIL)) (-1513 (((-110)) NIL)) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523)))) (-2294 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) (-531) |#2|) NIL) ((|#2| $ (-531) (-531)) 22) ((|#2| $ (-531)) NIL)) (-3352 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2806 ((|#2| $) NIL)) (-3223 (($ (-598 |#2|)) NIL)) (-1439 (((-110) $) NIL)) (-2823 (((-223 |#1| |#2|) $) NIL)) (-3253 ((|#2| $) NIL (|has| |#2| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-3348 (((-639 |#2|) (-1184 $)) NIL) (((-1184 |#2|) $) NIL) (((-639 |#2|) (-1184 $) (-1184 $)) NIL) (((-1184 |#2|) $ (-1184 $)) 25)) (-3318 (($ (-1184 |#2|)) NIL) (((-1184 |#2|) $) NIL)) (-2570 (((-598 (-895 |#2|))) NIL) (((-598 (-895 |#2|)) (-1184 $)) NIL)) (-3214 (($ $ $) NIL)) (-1817 (((-110)) NIL)) (-3431 (((-223 |#1| |#2|) $ (-531)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#2| (-977 (-388 (-531))))) (($ |#2|) NIL) (((-639 |#2|) $) NIL)) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) 36)) (-2273 (((-598 (-1184 |#2|))) NIL (|has| |#2| (-523)))) (-2801 (($ $ $ $) NIL)) (-1431 (((-110)) NIL)) (-2979 (($ (-639 |#2|) $) NIL)) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-1605 (($ $ $) NIL)) (-2578 (((-110)) NIL)) (-1964 (((-110)) NIL)) (-2819 (((-110)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#2| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) NIL) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-623 |#1| |#2|) (-13 (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-572 (-639 |#2|)) (-398 |#2|)) (-864) (-162)) (T -623))
+NIL
+(-13 (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-572 (-639 |#2|)) (-398 |#2|))
+((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) NIL)) (-3157 (($ $) 52)) (-1922 (((-110) $) NIL)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2268 (((-3 $ "failed") (-769 |#1|)) 23)) (-2393 (((-110) (-769 |#1|)) 15)) (-3037 (($ (-769 |#1|)) 24)) (-4122 (((-110) $ $) 30)) (-2428 (((-864) $) 37)) (-3144 (($ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2552 (((-598 $) (-769 |#1|)) 17)) (-2265 (((-806) $) 43) (($ |#1|) 34) (((-769 |#1|) $) 39) (((-628 |#1|) $) 44)) (-1399 (((-57 (-598 $)) (-598 |#1|) (-864)) 57)) (-1315 (((-598 $) (-598 |#1|) (-864)) 60)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 53)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 38)))
+(((-624 |#1|) (-13 (-797) (-977 |#1|) (-10 -8 (-15 -1922 ((-110) $)) (-15 -3144 ($ $)) (-15 -3157 ($ $)) (-15 -2428 ((-864) $)) (-15 -4122 ((-110) $ $)) (-15 -2265 ((-769 |#1|) $)) (-15 -2265 ((-628 |#1|) $)) (-15 -2552 ((-598 $) (-769 |#1|))) (-15 -2393 ((-110) (-769 |#1|))) (-15 -3037 ($ (-769 |#1|))) (-15 -2268 ((-3 $ "failed") (-769 |#1|))) (-15 -3798 ((-598 |#1|) $)) (-15 -1399 ((-57 (-598 $)) (-598 |#1|) (-864))) (-15 -1315 ((-598 $) (-598 |#1|) (-864))))) (-797)) (T -624))
+((-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-3144 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-797)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-797)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-628 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-2552 (*1 *2 *3) (-12 (-5 *3 (-769 *4)) (-4 *4 (-797)) (-5 *2 (-598 (-624 *4))) (-5 *1 (-624 *4)))) (-2393 (*1 *2 *3) (-12 (-5 *3 (-769 *4)) (-4 *4 (-797)) (-5 *2 (-110)) (-5 *1 (-624 *4)))) (-3037 (*1 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *3 (-797)) (-5 *1 (-624 *3)))) (-2268 (*1 *1 *2) (|partial| -12 (-5 *2 (-769 *3)) (-4 *3 (-797)) (-5 *1 (-624 *3)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797)))) (-1399 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-864)) (-4 *5 (-797)) (-5 *2 (-57 (-598 (-624 *5)))) (-5 *1 (-624 *5)))) (-1315 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-864)) (-4 *5 (-797)) (-5 *2 (-598 (-624 *5))) (-5 *1 (-624 *5)))))
+(-13 (-797) (-977 |#1|) (-10 -8 (-15 -1922 ((-110) $)) (-15 -3144 ($ $)) (-15 -3157 ($ $)) (-15 -2428 ((-864) $)) (-15 -4122 ((-110) $ $)) (-15 -2265 ((-769 |#1|) $)) (-15 -2265 ((-628 |#1|) $)) (-15 -2552 ((-598 $) (-769 |#1|))) (-15 -2393 ((-110) (-769 |#1|))) (-15 -3037 ($ (-769 |#1|))) (-15 -2268 ((-3 $ "failed") (-769 |#1|))) (-15 -3798 ((-598 |#1|) $)) (-15 -1399 ((-57 (-598 $)) (-598 |#1|) (-864))) (-15 -1315 ((-598 $) (-598 |#1|) (-864)))))
+((-3482 ((|#2| $) 76)) (-2072 (($ $) 96)) (-4058 (((-110) $ (-721)) 26)) (-3062 (($ $) 85) (($ $ (-721)) 88)) (-2141 (((-110) $) 97)) (-1555 (((-598 $) $) 72)) (-1478 (((-110) $ $) 71)) (-3280 (((-110) $ (-721)) 24)) (-3804 (((-531) $) 46)) (-2327 (((-531) $) 45)) (-3332 (((-110) $ (-721)) 22)) (-2672 (((-110) $) 74)) (-2309 ((|#2| $) 89) (($ $ (-721)) 92)) (-4059 (($ $ $ (-531)) 62) (($ |#2| $ (-531)) 61)) (-3765 (((-598 (-531)) $) 44)) (-3059 (((-110) (-531) $) 42)) (-3046 ((|#2| $) NIL) (($ $ (-721)) 84)) (-1846 (($ $ (-531)) 100)) (-2765 (((-110) $) 99)) (-2294 (((-110) (-1 (-110) |#2|) $) 32)) (-3163 (((-598 |#2|) $) 33)) (-1785 ((|#2| $ "value") NIL) ((|#2| $ "first") 83) (($ $ "rest") 87) ((|#2| $ "last") 95) (($ $ (-1151 (-531))) 58) ((|#2| $ (-531)) 40) ((|#2| $ (-531) |#2|) 41)) (-2357 (((-531) $ $) 70)) (-1723 (($ $ (-1151 (-531))) 57) (($ $ (-531)) 51)) (-2930 (((-110) $) 66)) (-1958 (($ $) 81)) (-3124 (((-721) $) 80)) (-2874 (($ $) 79)) (-2274 (($ (-598 |#2|)) 37)) (-3437 (($ $) 101)) (-3495 (((-598 $) $) 69)) (-2910 (((-110) $ $) 68)) (-2060 (((-110) (-1 (-110) |#2|) $) 31)) (-2148 (((-110) $ $) 18)) (-2167 (((-721) $) 29)))
+(((-625 |#1| |#2|) (-10 -8 (-15 -3437 (|#1| |#1|)) (-15 -1846 (|#1| |#1| (-531))) (-15 -2141 ((-110) |#1|)) (-15 -2765 ((-110) |#1|)) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -3163 ((-598 |#2|) |#1|)) (-15 -3059 ((-110) (-531) |#1|)) (-15 -3765 ((-598 (-531)) |#1|)) (-15 -2327 ((-531) |#1|)) (-15 -3804 ((-531) |#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -1958 (|#1| |#1|)) (-15 -3124 ((-721) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "last")) (-15 -2309 (|#2| |#1|)) (-15 -3062 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| "rest")) (-15 -3062 (|#1| |#1|)) (-15 -3046 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "first")) (-15 -3046 (|#2| |#1|)) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2910 ((-110) |#1| |#1|)) (-15 -2357 ((-531) |#1| |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -3482 (|#2| |#1|)) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721)))) (-626 |#2|) (-1138)) (T -625))
+NIL
+(-10 -8 (-15 -3437 (|#1| |#1|)) (-15 -1846 (|#1| |#1| (-531))) (-15 -2141 ((-110) |#1|)) (-15 -2765 ((-110) |#1|)) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -3163 ((-598 |#2|) |#1|)) (-15 -3059 ((-110) (-531) |#1|)) (-15 -3765 ((-598 (-531)) |#1|)) (-15 -2327 ((-531) |#1|)) (-15 -3804 ((-531) |#1|)) (-15 -2274 (|#1| (-598 |#2|))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -1723 (|#1| |#1| (-531))) (-15 -1723 (|#1| |#1| (-1151 (-531)))) (-15 -4059 (|#1| |#2| |#1| (-531))) (-15 -4059 (|#1| |#1| |#1| (-531))) (-15 -1958 (|#1| |#1|)) (-15 -3124 ((-721) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "last")) (-15 -2309 (|#2| |#1|)) (-15 -3062 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| "rest")) (-15 -3062 (|#1| |#1|)) (-15 -3046 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "first")) (-15 -3046 (|#2| |#1|)) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2910 ((-110) |#1| |#1|)) (-15 -2357 ((-531) |#1| |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -3482 (|#2| |#1|)) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2294 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#2|) |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-3308 ((|#1| $) 65)) (-2072 (($ $) 67)) (-3137 (((-1189) $ (-531) (-531)) 97 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 52 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 56 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) 54 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 58 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4274))) (($ $ "rest" $) 55 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 117 (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) 86 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 102)) (-3297 ((|#1| $) 66)) (-4082 (($) 7 T CONST)) (-1969 (($ $) 124)) (-3062 (($ $) 73) (($ $ (-721)) 71)) (-3086 (($ $) 99 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 100 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 103)) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2693 ((|#1| $ (-531) |#1|) 85 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 87)) (-2141 (((-110) $) 83)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3971 (((-721) $) 123)) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) 108)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 95 (|has| (-531) (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 94 (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1630 (($ $) 126)) (-2952 (((-110) $) 127)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 70) (($ $ (-721)) 68)) (-4059 (($ $ $ (-531)) 116) (($ |#1| $ (-531)) 115)) (-3765 (((-598 (-531)) $) 92)) (-3059 (((-110) (-531) $) 91)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-1366 ((|#1| $) 125)) (-3046 ((|#1| $) 76) (($ $ (-721)) 74)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-3742 (($ $ |#1|) 96 (|has| $ (-6 -4274)))) (-1846 (($ $ (-531)) 122)) (-2765 (((-110) $) 84)) (-3339 (((-110) $) 128)) (-1643 (((-110) $) 129)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 90)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1151 (-531))) 112) ((|#1| $ (-531)) 89) ((|#1| $ (-531) |#1|) 88)) (-2357 (((-531) $ $) 44)) (-1723 (($ $ (-1151 (-531))) 114) (($ $ (-531)) 113)) (-2930 (((-110) $) 46)) (-1958 (($ $) 62)) (-2980 (($ $) 59 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 63)) (-2874 (($ $) 64)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 98 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 107)) (-1818 (($ $ $) 61 (|has| $ (-6 -4274))) (($ $ |#1|) 60 (|has| $ (-6 -4274)))) (-3536 (($ $ $) 78) (($ |#1| $) 77) (($ (-598 $)) 110) (($ $ |#1|) 109)) (-3437 (($ $) 121)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-626 |#1|) (-133) (-1138)) (T -626))
+((-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) (-2177 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) (-1643 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-3339 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-2952 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-1630 (*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))) (-1366 (*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))) (-1969 (*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))) (-3971 (*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-626 *3)) (-4 *3 (-1138)))) (-3437 (*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))))
+(-13 (-1076 |t#1|) (-10 -8 (-15 -2283 ($ (-1 (-110) |t#1|) $)) (-15 -2177 ($ (-1 (-110) |t#1|) $)) (-15 -1643 ((-110) $)) (-15 -3339 ((-110) $)) (-15 -2952 ((-110) $)) (-15 -1630 ($ $)) (-15 -1366 (|t#1| $)) (-15 -1969 ($ $)) (-15 -3971 ((-721) $)) (-15 -1846 ($ $ (-531))) (-15 -3437 ($ $))))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1076 |#1|) . T) ((-1138) . T) ((-1172 |#1|) . T))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1266 (($ (-721) (-721) (-721)) 33 (|has| |#1| (-986)))) (-4058 (((-110) $ (-721)) NIL)) (-1773 ((|#1| $ (-721) (-721) (-721) |#1|) 27)) (-4082 (($) NIL T CONST)) (-3930 (($ $ $) 37 (|has| |#1| (-986)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1959 (((-1184 (-721)) $) 9)) (-1791 (($ (-1102) $ $) 22)) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-1951 (($ (-721)) 35 (|has| |#1| (-986)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-721) (-721) (-721)) 25)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2274 (($ (-598 (-598 (-598 |#1|)))) 44)) (-2265 (($ (-901 (-901 (-901 |#1|)))) 15) (((-901 (-901 (-901 |#1|))) $) 12) (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-627 |#1|) (-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-986)) (PROGN (-15 -1266 ($ (-721) (-721) (-721))) (-15 -1951 ($ (-721))) (-15 -3930 ($ $ $))) |%noBranch|) (-15 -2274 ($ (-598 (-598 (-598 |#1|))))) (-15 -1785 (|#1| $ (-721) (-721) (-721))) (-15 -1773 (|#1| $ (-721) (-721) (-721) |#1|)) (-15 -2265 ($ (-901 (-901 (-901 |#1|))))) (-15 -2265 ((-901 (-901 (-901 |#1|))) $)) (-15 -1791 ($ (-1102) $ $)) (-15 -1959 ((-1184 (-721)) $)))) (-1030)) (T -627))
+((-1266 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-627 *3)) (-4 *3 (-986)) (-4 *3 (-1030)))) (-1951 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-627 *3)) (-4 *3 (-986)) (-4 *3 (-1030)))) (-3930 (*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-986)) (-4 *2 (-1030)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-598 *3)))) (-4 *3 (-1030)) (-5 *1 (-627 *3)))) (-1785 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-721)) (-5 *1 (-627 *2)) (-4 *2 (-1030)))) (-1773 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-627 *2)) (-4 *2 (-1030)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-901 (-901 (-901 *3)))) (-4 *3 (-1030)) (-5 *1 (-627 *3)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-901 (-901 (-901 *3)))) (-5 *1 (-627 *3)) (-4 *3 (-1030)))) (-1791 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-627 *3)) (-4 *3 (-1030)))) (-1959 (*1 *2 *1) (-12 (-5 *2 (-1184 (-721))) (-5 *1 (-627 *3)) (-4 *3 (-1030)))))
+(-13 (-468 |#1|) (-10 -8 (IF (|has| |#1| (-986)) (PROGN (-15 -1266 ($ (-721) (-721) (-721))) (-15 -1951 ($ (-721))) (-15 -3930 ($ $ $))) |%noBranch|) (-15 -2274 ($ (-598 (-598 (-598 |#1|))))) (-15 -1785 (|#1| $ (-721) (-721) (-721))) (-15 -1773 (|#1| $ (-721) (-721) (-721) |#1|)) (-15 -2265 ($ (-901 (-901 (-901 |#1|))))) (-15 -2265 ((-901 (-901 (-901 |#1|))) $)) (-15 -1791 ($ (-1102) $ $)) (-15 -1959 ((-1184 (-721)) $))))
+((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) 14)) (-3157 (($ $) 18)) (-1922 (((-110) $) 19)) (-3154 (((-3 |#1| "failed") $) 22)) (-2523 ((|#1| $) 20)) (-3062 (($ $) 36)) (-4104 (($ $) 24)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-4122 (((-110) $ $) 42)) (-2428 (((-864) $) 38)) (-3144 (($ $) 17)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 ((|#1| $) 35)) (-2265 (((-806) $) 31) (($ |#1|) 23) (((-769 |#1|) $) 27)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 12)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 40)) (* (($ $ $) 34)))
+(((-628 |#1|) (-13 (-797) (-977 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2265 ((-769 |#1|) $)) (-15 -3046 (|#1| $)) (-15 -3144 ($ $)) (-15 -2428 ((-864) $)) (-15 -4122 ((-110) $ $)) (-15 -4104 ($ $)) (-15 -3062 ($ $)) (-15 -1922 ((-110) $)) (-15 -3157 ($ $)) (-15 -3798 ((-598 |#1|) $)))) (-797)) (T -628))
+((* (*1 *1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) (-3046 (*1 *2 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-3144 (*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) (-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-628 *3)) (-4 *3 (-797)))) (-3157 (*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-628 *3)) (-4 *3 (-797)))))
+(-13 (-797) (-977 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -2265 ((-769 |#1|) $)) (-15 -3046 (|#1| $)) (-15 -3144 ($ $)) (-15 -2428 ((-864) $)) (-15 -4122 ((-110) $ $)) (-15 -4104 ($ $)) (-15 -3062 ($ $)) (-15 -1922 ((-110) $)) (-15 -3157 ($ $)) (-15 -3798 ((-598 |#1|) $))))
+((-2848 ((|#1| (-1 |#1| (-721) |#1|) (-721) |#1|) 11)) (-2735 ((|#1| (-1 |#1| |#1|) (-721) |#1|) 9)))
+(((-629 |#1|) (-10 -7 (-15 -2735 (|#1| (-1 |#1| |#1|) (-721) |#1|)) (-15 -2848 (|#1| (-1 |#1| (-721) |#1|) (-721) |#1|))) (-1030)) (T -629))
+((-2848 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-721) *2)) (-5 *4 (-721)) (-4 *2 (-1030)) (-5 *1 (-629 *2)))) (-2735 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-721)) (-4 *2 (-1030)) (-5 *1 (-629 *2)))))
+(-10 -7 (-15 -2735 (|#1| (-1 |#1| |#1|) (-721) |#1|)) (-15 -2848 (|#1| (-1 |#1| (-721) |#1|) (-721) |#1|)))
+((-2838 ((|#2| |#1| |#2|) 9)) (-2826 ((|#1| |#1| |#2|) 8)))
+(((-630 |#1| |#2|) (-10 -7 (-15 -2826 (|#1| |#1| |#2|)) (-15 -2838 (|#2| |#1| |#2|))) (-1030) (-1030)) (T -630))
+((-2838 (*1 *2 *3 *2) (-12 (-5 *1 (-630 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-2826 (*1 *2 *2 *3) (-12 (-5 *1 (-630 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))))
+(-10 -7 (-15 -2826 (|#1| |#1| |#2|)) (-15 -2838 (|#2| |#1| |#2|)))
+((-1759 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11)))
+(((-631 |#1| |#2| |#3|) (-10 -7 (-15 -1759 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1030) (-1030) (-1030)) (T -631))
+((-1759 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)) (-5 *1 (-631 *5 *6 *2)))))
+(-10 -7 (-15 -1759 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|)))
+((-2848 (((-1 |#1| (-721) |#1|) (-1 |#1| (-721) |#1|)) 23)) (-2658 (((-1 |#1|) |#1|) 8)) (-2968 ((|#1| |#1|) 16)) (-2567 (((-598 |#1|) (-1 (-598 |#1|) (-598 |#1|)) (-531)) 15) ((|#1| (-1 |#1| |#1|)) 11)) (-2265 (((-1 |#1|) |#1|) 9)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-721)) 20)))
+(((-632 |#1|) (-10 -7 (-15 -2658 ((-1 |#1|) |#1|)) (-15 -2265 ((-1 |#1|) |#1|)) (-15 -2567 (|#1| (-1 |#1| |#1|))) (-15 -2567 ((-598 |#1|) (-1 (-598 |#1|) (-598 |#1|)) (-531))) (-15 -2968 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-721))) (-15 -2848 ((-1 |#1| (-721) |#1|) (-1 |#1| (-721) |#1|)))) (-1030)) (T -632))
+((-2848 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-721) *3)) (-4 *3 (-1030)) (-5 *1 (-632 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *4 (-1030)) (-5 *1 (-632 *4)))) (-2968 (*1 *2 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-1030)))) (-2567 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-598 *5) (-598 *5))) (-5 *4 (-531)) (-5 *2 (-598 *5)) (-5 *1 (-632 *5)) (-4 *5 (-1030)))) (-2567 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-632 *2)) (-4 *2 (-1030)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1030)))) (-2658 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1030)))))
+(-10 -7 (-15 -2658 ((-1 |#1|) |#1|)) (-15 -2265 ((-1 |#1|) |#1|)) (-15 -2567 (|#1| (-1 |#1| |#1|))) (-15 -2567 ((-598 |#1|) (-1 (-598 |#1|) (-598 |#1|)) (-531))) (-15 -2968 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-721))) (-15 -2848 ((-1 |#1| (-721) |#1|) (-1 |#1| (-721) |#1|))))
+((-2755 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16)) (-2415 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13)) (-2651 (((-1 |#2| |#1|) (-1 |#2|)) 14)) (-3267 (((-1 |#2| |#1|) |#2|) 11)))
+(((-633 |#1| |#2|) (-10 -7 (-15 -3267 ((-1 |#2| |#1|) |#2|)) (-15 -2415 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2651 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2755 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1030) (-1030)) (T -633))
+((-2755 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-5 *2 (-1 *5 *4)) (-5 *1 (-633 *4 *5)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1030)) (-5 *2 (-1 *5 *4)) (-5 *1 (-633 *4 *5)) (-4 *4 (-1030)))) (-2415 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-5 *2 (-1 *5)) (-5 *1 (-633 *4 *5)))) (-3267 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-633 *4 *3)) (-4 *4 (-1030)) (-4 *3 (-1030)))))
+(-10 -7 (-15 -3267 ((-1 |#2| |#1|) |#2|)) (-15 -2415 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -2651 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2755 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|))))
+((-2137 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17)) (-2011 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11)) (-1368 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13)) (-2016 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14)) (-1635 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21)))
+(((-634 |#1| |#2| |#3|) (-10 -7 (-15 -2011 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1368 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2016 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1635 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2137 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1030) (-1030) (-1030)) (T -634))
+((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-1 *7 *5)) (-5 *1 (-634 *5 *6 *7)))) (-2137 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-634 *4 *5 *6)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-634 *4 *5 *6)) (-4 *4 (-1030)))) (-2016 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-634 *4 *5 *6)) (-4 *5 (-1030)))) (-1368 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *5)) (-5 *1 (-634 *4 *5 *6)))) (-2011 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1030)) (-4 *4 (-1030)) (-4 *6 (-1030)) (-5 *2 (-1 *6 *5)) (-5 *1 (-634 *5 *4 *6)))))
+(-10 -7 (-15 -2011 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -1368 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2016 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -1635 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2137 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|))))
+((-1760 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39)) (-3261 (((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|) 37) ((|#8| (-1 |#5| |#1|) |#4|) 31)))
+(((-635 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3261 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3261 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1760 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-986) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|) (-986) (-354 |#5|) (-354 |#5|) (-637 |#5| |#6| |#7|)) (T -635))
+((-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-986)) (-4 *2 (-986)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2)) (-4 *9 (-354 *2)) (-5 *1 (-635 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-637 *5 *6 *7)) (-4 *10 (-637 *2 *8 *9)))) (-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-986)) (-4 *8 (-986)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-637 *8 *9 *10)) (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-637 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-986)) (-4 *8 (-986)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-637 *8 *9 *10)) (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-637 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8)))))
+(-10 -7 (-15 -3261 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -3261 ((-3 |#8| "failed") (-1 (-3 |#5| "failed") |#1|) |#4|)) (-15 -1760 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|)))
+((-4222 (($ (-721) (-721)) 33)) (-1761 (($ $ $) 56)) (-2096 (($ |#3|) 52) (($ $) 53)) (-2719 (((-110) $) 28)) (-3034 (($ $ (-531) (-531)) 58)) (-1987 (($ $ (-531) (-531)) 59)) (-2159 (($ $ (-531) (-531) (-531) (-531)) 63)) (-2870 (($ $) 54)) (-1878 (((-110) $) 14)) (-3680 (($ $ (-531) (-531) $) 64)) (-2454 ((|#2| $ (-531) (-531) |#2|) NIL) (($ $ (-598 (-531)) (-598 (-531)) $) 62)) (-3264 (($ (-721) |#2|) 39)) (-2200 (($ (-598 (-598 |#2|))) 37)) (-3924 (((-598 (-598 |#2|)) $) 57)) (-2069 (($ $ $) 55)) (-3609 (((-3 $ "failed") $ |#2|) 91)) (-1785 ((|#2| $ (-531) (-531)) NIL) ((|#2| $ (-531) (-531) |#2|) NIL) (($ $ (-598 (-531)) (-598 (-531))) 61)) (-3223 (($ (-598 |#2|)) 40) (($ (-598 $)) 42)) (-1439 (((-110) $) 24)) (-2265 (($ |#4|) 47) (((-806) $) NIL)) (-2116 (((-110) $) 30)) (-2263 (($ $ |#2|) 93)) (-2250 (($ $ $) 68) (($ $) 71)) (-2237 (($ $ $) 66)) (** (($ $ (-721)) 80) (($ $ (-531)) 96)) (* (($ $ $) 77) (($ |#2| $) 73) (($ $ |#2|) 74) (($ (-531) $) 76) ((|#4| $ |#4|) 84) ((|#3| |#3| $) 88)))
+(((-636 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2263 (|#1| |#1| |#2|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-721))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -3680 (|#1| |#1| (-531) (-531) |#1|)) (-15 -2159 (|#1| |#1| (-531) (-531) (-531) (-531))) (-15 -1987 (|#1| |#1| (-531) (-531))) (-15 -3034 (|#1| |#1| (-531) (-531))) (-15 -2454 (|#1| |#1| (-598 (-531)) (-598 (-531)) |#1|)) (-15 -1785 (|#1| |#1| (-598 (-531)) (-598 (-531)))) (-15 -3924 ((-598 (-598 |#2|)) |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -2096 (|#1| |#1|)) (-15 -2096 (|#1| |#3|)) (-15 -2265 (|#1| |#4|)) (-15 -3223 (|#1| (-598 |#1|))) (-15 -3223 (|#1| (-598 |#2|))) (-15 -3264 (|#1| (-721) |#2|)) (-15 -2200 (|#1| (-598 (-598 |#2|)))) (-15 -4222 (|#1| (-721) (-721))) (-15 -2116 ((-110) |#1|)) (-15 -2719 ((-110) |#1|)) (-15 -1439 ((-110) |#1|)) (-15 -1878 ((-110) |#1|)) (-15 -2454 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531)))) (-637 |#2| |#3| |#4|) (-986) (-354 |#2|) (-354 |#2|)) (T -636))
+NIL
+(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2263 (|#1| |#1| |#2|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-721))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -3680 (|#1| |#1| (-531) (-531) |#1|)) (-15 -2159 (|#1| |#1| (-531) (-531) (-531) (-531))) (-15 -1987 (|#1| |#1| (-531) (-531))) (-15 -3034 (|#1| |#1| (-531) (-531))) (-15 -2454 (|#1| |#1| (-598 (-531)) (-598 (-531)) |#1|)) (-15 -1785 (|#1| |#1| (-598 (-531)) (-598 (-531)))) (-15 -3924 ((-598 (-598 |#2|)) |#1|)) (-15 -1761 (|#1| |#1| |#1|)) (-15 -2069 (|#1| |#1| |#1|)) (-15 -2870 (|#1| |#1|)) (-15 -2096 (|#1| |#1|)) (-15 -2096 (|#1| |#3|)) (-15 -2265 (|#1| |#4|)) (-15 -3223 (|#1| (-598 |#1|))) (-15 -3223 (|#1| (-598 |#2|))) (-15 -3264 (|#1| (-721) |#2|)) (-15 -2200 (|#1| (-598 (-598 |#2|)))) (-15 -4222 (|#1| (-721) (-721))) (-15 -2116 ((-110) |#1|)) (-15 -2719 ((-110) |#1|)) (-15 -1439 ((-110) |#1|)) (-15 -1878 ((-110) |#1|)) (-15 -2454 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) (-531))))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4222 (($ (-721) (-721)) 97)) (-1761 (($ $ $) 87)) (-2096 (($ |#2|) 91) (($ $) 90)) (-2719 (((-110) $) 99)) (-3034 (($ $ (-531) (-531)) 83)) (-1987 (($ $ (-531) (-531)) 82)) (-2159 (($ $ (-531) (-531) (-531) (-531)) 81)) (-2870 (($ $) 89)) (-1878 (((-110) $) 101)) (-4058 (((-110) $ (-721)) 8)) (-3680 (($ $ (-531) (-531) $) 80)) (-2454 ((|#1| $ (-531) (-531) |#1|) 44) (($ $ (-598 (-531)) (-598 (-531)) $) 84)) (-2398 (($ $ (-531) |#2|) 42)) (-3492 (($ $ (-531) |#3|) 41)) (-3264 (($ (-721) |#1|) 95)) (-4082 (($) 7 T CONST)) (-2800 (($ $) 67 (|has| |#1| (-289)))) (-4011 ((|#2| $ (-531)) 46)) (-2277 (((-721) $) 66 (|has| |#1| (-523)))) (-2693 ((|#1| $ (-531) (-531) |#1|) 43)) (-2627 ((|#1| $ (-531) (-531)) 48)) (-2227 (((-598 |#1|) $) 30)) (-4091 (((-721) $) 65 (|has| |#1| (-523)))) (-3001 (((-598 |#3|) $) 64 (|has| |#1| (-523)))) (-1548 (((-721) $) 51)) (-3010 (($ (-721) (-721) |#1|) 57)) (-1557 (((-721) $) 50)) (-3280 (((-110) $ (-721)) 9)) (-2803 ((|#1| $) 62 (|has| |#1| (-6 (-4275 "*"))))) (-1271 (((-531) $) 55)) (-1665 (((-531) $) 53)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2527 (((-531) $) 54)) (-2394 (((-531) $) 52)) (-2200 (($ (-598 (-598 |#1|))) 96)) (-2680 (($ (-1 |#1| |#1|) $) 34)) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 40) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 39)) (-3924 (((-598 (-598 |#1|)) $) 86)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2147 (((-3 $ "failed") $) 61 (|has| |#1| (-344)))) (-2069 (($ $ $) 88)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) 56)) (-3609 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-523)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) (-531)) 49) ((|#1| $ (-531) (-531) |#1|) 47) (($ $ (-598 (-531)) (-598 (-531))) 85)) (-3223 (($ (-598 |#1|)) 94) (($ (-598 $)) 93)) (-1439 (((-110) $) 100)) (-3253 ((|#1| $) 63 (|has| |#1| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3431 ((|#3| $ (-531)) 45)) (-2265 (($ |#3|) 92) (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2116 (((-110) $) 98)) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) 68 (|has| |#1| (-344)))) (-2250 (($ $ $) 78) (($ $) 77)) (-2237 (($ $ $) 79)) (** (($ $ (-721)) 70) (($ $ (-531)) 60 (|has| |#1| (-344)))) (* (($ $ $) 76) (($ |#1| $) 75) (($ $ |#1|) 74) (($ (-531) $) 73) ((|#3| $ |#3|) 72) ((|#2| |#2| $) 71)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-637 |#1| |#2| |#3|) (-133) (-986) (-354 |t#1|) (-354 |t#1|)) (T -637))
+((-1878 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-110)))) (-4222 (*1 *1 *2 *2) (-12 (-5 *2 (-721)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3264 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *2)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (-2096 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *1 (-637 *3 *2 *4)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (-2096 (*1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2870 (*1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2069 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-1761 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-598 (-598 *3))))) (-1785 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-598 (-531))) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2454 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-598 (-531))) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3034 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-1987 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2159 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3680 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2250 (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (-2250 (*1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-637 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *2 (-354 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-637 *3 *2 *4)) (-4 *3 (-986)) (-4 *2 (-354 *3)) (-4 *4 (-354 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-523)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (-2800 (*1 *1 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-289)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-721)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-721)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-598 *5)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) (-2147 (*1 *1 *1) (|partial| -12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-344)))))
+(-13 (-55 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4274) (-6 -4273) (-15 -1878 ((-110) $)) (-15 -1439 ((-110) $)) (-15 -2719 ((-110) $)) (-15 -2116 ((-110) $)) (-15 -4222 ($ (-721) (-721))) (-15 -2200 ($ (-598 (-598 |t#1|)))) (-15 -3264 ($ (-721) |t#1|)) (-15 -3223 ($ (-598 |t#1|))) (-15 -3223 ($ (-598 $))) (-15 -2265 ($ |t#3|)) (-15 -2096 ($ |t#2|)) (-15 -2096 ($ $)) (-15 -2870 ($ $)) (-15 -2069 ($ $ $)) (-15 -1761 ($ $ $)) (-15 -3924 ((-598 (-598 |t#1|)) $)) (-15 -1785 ($ $ (-598 (-531)) (-598 (-531)))) (-15 -2454 ($ $ (-598 (-531)) (-598 (-531)) $)) (-15 -3034 ($ $ (-531) (-531))) (-15 -1987 ($ $ (-531) (-531))) (-15 -2159 ($ $ (-531) (-531) (-531) (-531))) (-15 -3680 ($ $ (-531) (-531) $)) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2250 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-531) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-721))) (IF (|has| |t#1| (-523)) (-15 -3609 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2263 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-289)) (-15 -2800 ($ $)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -2277 ((-721) $)) (-15 -4091 ((-721) $)) (-15 -3001 ((-598 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4275 "*"))) (PROGN (-15 -3253 (|t#1| $)) (-15 -2803 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -2147 ((-3 $ "failed") $)) (-15 ** ($ $ (-531)))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-55 |#1| |#2| |#3|) . T) ((-1138) . T))
+((-2800 ((|#4| |#4|) 72 (|has| |#1| (-289)))) (-2277 (((-721) |#4|) 99 (|has| |#1| (-523)))) (-4091 (((-721) |#4|) 76 (|has| |#1| (-523)))) (-3001 (((-598 |#3|) |#4|) 83 (|has| |#1| (-523)))) (-3795 (((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|) 111 (|has| |#1| (-289)))) (-2803 ((|#1| |#4|) 35)) (-2344 (((-3 |#4| "failed") |#4|) 64 (|has| |#1| (-523)))) (-2147 (((-3 |#4| "failed") |#4|) 80 (|has| |#1| (-344)))) (-2888 ((|#4| |#4|) 68 (|has| |#1| (-523)))) (-3368 ((|#4| |#4| |#1| (-531) (-531)) 43)) (-3923 ((|#4| |#4| (-531) (-531)) 38)) (-3525 ((|#4| |#4| |#1| (-531) (-531)) 48)) (-3253 ((|#1| |#4|) 78)) (-2661 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 69 (|has| |#1| (-523)))))
+(((-638 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3253 (|#1| |#4|)) (-15 -2803 (|#1| |#4|)) (-15 -3923 (|#4| |#4| (-531) (-531))) (-15 -3368 (|#4| |#4| |#1| (-531) (-531))) (-15 -3525 (|#4| |#4| |#1| (-531) (-531))) (IF (|has| |#1| (-523)) (PROGN (-15 -2277 ((-721) |#4|)) (-15 -4091 ((-721) |#4|)) (-15 -3001 ((-598 |#3|) |#4|)) (-15 -2888 (|#4| |#4|)) (-15 -2344 ((-3 |#4| "failed") |#4|)) (-15 -2661 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -2800 (|#4| |#4|)) (-15 -3795 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -2147 ((-3 |#4| "failed") |#4|)) |%noBranch|)) (-162) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|)) (T -638))
+((-2147 (*1 *2 *2) (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-3795 (*1 *2 *3 *3) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-638 *3 *4 *5 *6)) (-4 *6 (-637 *3 *4 *5)))) (-2800 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-2661 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-2344 (*1 *2 *2) (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-2888 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-598 *6)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-4091 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-2277 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-3525 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-531)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-638 *3 *5 *6 *2)) (-4 *2 (-637 *3 *5 *6)))) (-3368 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-531)) (-4 *3 (-162)) (-4 *5 (-354 *3)) (-4 *6 (-354 *3)) (-5 *1 (-638 *3 *5 *6 *2)) (-4 *2 (-637 *3 *5 *6)))) (-3923 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-531)) (-4 *4 (-162)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *1 (-638 *4 *5 *6 *2)) (-4 *2 (-637 *4 *5 *6)))) (-2803 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-638 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5)))) (-3253 (*1 *2 *3) (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162)) (-5 *1 (-638 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5)))))
+(-10 -7 (-15 -3253 (|#1| |#4|)) (-15 -2803 (|#1| |#4|)) (-15 -3923 (|#4| |#4| (-531) (-531))) (-15 -3368 (|#4| |#4| |#1| (-531) (-531))) (-15 -3525 (|#4| |#4| |#1| (-531) (-531))) (IF (|has| |#1| (-523)) (PROGN (-15 -2277 ((-721) |#4|)) (-15 -4091 ((-721) |#4|)) (-15 -3001 ((-598 |#3|) |#4|)) (-15 -2888 (|#4| |#4|)) (-15 -2344 ((-3 |#4| "failed") |#4|)) (-15 -2661 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-289)) (PROGN (-15 -2800 (|#4| |#4|)) (-15 -3795 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -2147 ((-3 |#4| "failed") |#4|)) |%noBranch|))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721) (-721)) 47)) (-1761 (($ $ $) NIL)) (-2096 (($ (-1184 |#1|)) NIL) (($ $) NIL)) (-2719 (((-110) $) NIL)) (-3034 (($ $ (-531) (-531)) 12)) (-1987 (($ $ (-531) (-531)) NIL)) (-2159 (($ $ (-531) (-531) (-531) (-531)) NIL)) (-2870 (($ $) NIL)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3680 (($ $ (-531) (-531) $) NIL)) (-2454 ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531)) $) NIL)) (-2398 (($ $ (-531) (-1184 |#1|)) NIL)) (-3492 (($ $ (-531) (-1184 |#1|)) NIL)) (-3264 (($ (-721) |#1|) 22)) (-4082 (($) NIL T CONST)) (-2800 (($ $) 31 (|has| |#1| (-289)))) (-4011 (((-1184 |#1|) $ (-531)) NIL)) (-2277 (((-721) $) 33 (|has| |#1| (-523)))) (-2693 ((|#1| $ (-531) (-531) |#1|) 51)) (-2627 ((|#1| $ (-531) (-531)) NIL)) (-2227 (((-598 |#1|) $) NIL)) (-4091 (((-721) $) 35 (|has| |#1| (-523)))) (-3001 (((-598 (-1184 |#1|)) $) 38 (|has| |#1| (-523)))) (-1548 (((-721) $) 20)) (-3010 (($ (-721) (-721) |#1|) 16)) (-1557 (((-721) $) 21)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#1| $) 29 (|has| |#1| (-6 (-4275 "*"))))) (-1271 (((-531) $) 9)) (-1665 (((-531) $) 10)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2527 (((-531) $) 11)) (-2394 (((-531) $) 48)) (-2200 (($ (-598 (-598 |#1|))) NIL)) (-2680 (($ (-1 |#1| |#1|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL)) (-3924 (((-598 (-598 |#1|)) $) 60)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2147 (((-3 $ "failed") $) 45 (|has| |#1| (-344)))) (-2069 (($ $ $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3742 (($ $ |#1|) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) (-531)) NIL) ((|#1| $ (-531) (-531) |#1|) NIL) (($ $ (-598 (-531)) (-598 (-531))) NIL)) (-3223 (($ (-598 |#1|)) NIL) (($ (-598 $)) NIL) (($ (-1184 |#1|)) 52)) (-1439 (((-110) $) NIL)) (-3253 ((|#1| $) 27 (|has| |#1| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 64 (|has| |#1| (-573 (-507))))) (-3431 (((-1184 |#1|) $ (-531)) NIL)) (-2265 (($ (-1184 |#1|)) NIL) (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $ $) NIL) (($ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) 23) (($ $ (-531)) 46 (|has| |#1| (-344)))) (* (($ $ $) 13) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-531) $) NIL) (((-1184 |#1|) $ (-1184 |#1|)) NIL) (((-1184 |#1|) (-1184 |#1|) $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-639 |#1|) (-13 (-637 |#1| (-1184 |#1|) (-1184 |#1|)) (-10 -8 (-15 -3223 ($ (-1184 |#1|))) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -2147 ((-3 $ "failed") $)) |%noBranch|))) (-986)) (T -639))
+((-2147 (*1 *1 *1) (|partial| -12 (-5 *1 (-639 *2)) (-4 *2 (-344)) (-4 *2 (-986)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-986)) (-5 *1 (-639 *3)))))
+(-13 (-637 |#1| (-1184 |#1|) (-1184 |#1|)) (-10 -8 (-15 -3223 ($ (-1184 |#1|))) (IF (|has| |#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |#1| (-344)) (-15 -2147 ((-3 $ "failed") $)) |%noBranch|)))
+((-3462 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|)) 25)) (-4214 (((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|) 21)) (-2877 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-721)) 26)) (-2725 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|)) 14)) (-2716 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|)) 18) (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 16)) (-2988 (((-639 |#1|) (-639 |#1|) |#1| (-639 |#1|)) 20)) (-2528 (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 12)) (** (((-639 |#1|) (-639 |#1|) (-721)) 30)))
+(((-640 |#1|) (-10 -7 (-15 -2528 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2725 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2716 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2716 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2988 ((-639 |#1|) (-639 |#1|) |#1| (-639 |#1|))) (-15 -4214 ((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|)) (-15 -3462 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2877 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-721))) (-15 ** ((-639 |#1|) (-639 |#1|) (-721)))) (-986)) (T -640))
+((** (*1 *2 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-721)) (-4 *4 (-986)) (-5 *1 (-640 *4)))) (-2877 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-721)) (-4 *4 (-986)) (-5 *1 (-640 *4)))) (-3462 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-4214 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2988 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2716 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2716 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2725 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))) (-2528 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))))
+(-10 -7 (-15 -2528 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2725 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2716 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2716 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2988 ((-639 |#1|) (-639 |#1|) |#1| (-639 |#1|))) (-15 -4214 ((-639 |#1|) (-639 |#1|) (-639 |#1|) |#1|)) (-15 -3462 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -2877 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-639 |#1|) (-721))) (-15 ** ((-639 |#1|) (-639 |#1|) (-721))))
+((-1473 (($) 8 T CONST)) (-2265 (((-806) $) 21) (($ |#1|) 9) ((|#1| $) 10)) (-3022 (((-110) $ (|[\|\|]| |#1|)) 14) (((-110) $ (|[\|\|]| -1473)) 16)) (-2520 ((|#1| $) 11)))
+(((-641 |#1|) (-13 (-1179) (-572 (-806)) (-10 -8 (-15 -3022 ((-110) $ (|[\|\|]| |#1|))) (-15 -3022 ((-110) $ (|[\|\|]| -1473))) (-15 -2265 ($ |#1|)) (-15 -2265 (|#1| $)) (-15 -2520 (|#1| $)) (-15 -1473 ($) -2651))) (-572 (-806))) (T -641))
+((-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-572 (-806))) (-5 *2 (-110)) (-5 *1 (-641 *4)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -1473)) (-5 *2 (-110)) (-5 *1 (-641 *4)) (-4 *4 (-572 (-806))))) (-2265 (*1 *1 *2) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) (-2265 (*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) (-2520 (*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))) (-1473 (*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))))
+(-13 (-1179) (-572 (-806)) (-10 -8 (-15 -3022 ((-110) $ (|[\|\|]| |#1|))) (-15 -3022 ((-110) $ (|[\|\|]| -1473))) (-15 -2265 ($ |#1|)) (-15 -2265 (|#1| $)) (-15 -2520 (|#1| $)) (-15 -1473 ($) -2651)))
+((-4099 ((|#2| |#2| |#4|) 25)) (-1487 (((-639 |#2|) |#3| |#4|) 31)) (-2183 (((-639 |#2|) |#2| |#4|) 30)) (-1613 (((-1184 |#2|) |#2| |#4|) 16)) (-3469 ((|#2| |#3| |#4|) 24)) (-1663 (((-639 |#2|) |#3| |#4| (-721) (-721)) 38)) (-3259 (((-639 |#2|) |#2| |#4| (-721)) 37)))
+(((-642 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1613 ((-1184 |#2|) |#2| |#4|)) (-15 -3469 (|#2| |#3| |#4|)) (-15 -4099 (|#2| |#2| |#4|)) (-15 -2183 ((-639 |#2|) |#2| |#4|)) (-15 -3259 ((-639 |#2|) |#2| |#4| (-721))) (-15 -1487 ((-639 |#2|) |#3| |#4|)) (-15 -1663 ((-639 |#2|) |#3| |#4| (-721) (-721)))) (-1030) (-843 |#1|) (-354 |#2|) (-13 (-354 |#1|) (-10 -7 (-6 -4273)))) (T -642))
+((-1663 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-721)) (-4 *6 (-1030)) (-4 *7 (-843 *6)) (-5 *2 (-639 *7)) (-5 *1 (-642 *6 *7 *3 *4)) (-4 *3 (-354 *7)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4273)))))) (-1487 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *6 (-843 *5)) (-5 *2 (-639 *6)) (-5 *1 (-642 *5 *6 *3 *4)) (-4 *3 (-354 *6)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))) (-3259 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-1030)) (-4 *3 (-843 *6)) (-5 *2 (-639 *3)) (-5 *1 (-642 *6 *3 *7 *4)) (-4 *7 (-354 *3)) (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4273)))))) (-2183 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *3 (-843 *5)) (-5 *2 (-639 *3)) (-5 *1 (-642 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))) (-4099 (*1 *2 *2 *3) (-12 (-4 *4 (-1030)) (-4 *2 (-843 *4)) (-5 *1 (-642 *4 *2 *5 *3)) (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4273)))))) (-3469 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *2 (-843 *5)) (-5 *1 (-642 *5 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))) (-1613 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *3 (-843 *5)) (-5 *2 (-1184 *3)) (-5 *1 (-642 *5 *3 *6 *4)) (-4 *6 (-354 *3)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))))
+(-10 -7 (-15 -1613 ((-1184 |#2|) |#2| |#4|)) (-15 -3469 (|#2| |#3| |#4|)) (-15 -4099 (|#2| |#2| |#4|)) (-15 -2183 ((-639 |#2|) |#2| |#4|)) (-15 -3259 ((-639 |#2|) |#2| |#4| (-721))) (-15 -1487 ((-639 |#2|) |#3| |#4|)) (-15 -1663 ((-639 |#2|) |#3| |#4| (-721) (-721))))
+((-1682 (((-2 (|:| |num| (-639 |#1|)) (|:| |den| |#1|)) (-639 |#2|)) 20)) (-2807 ((|#1| (-639 |#2|)) 9)) (-1349 (((-639 |#1|) (-639 |#2|)) 18)))
+(((-643 |#1| |#2|) (-10 -7 (-15 -2807 (|#1| (-639 |#2|))) (-15 -1349 ((-639 |#1|) (-639 |#2|))) (-15 -1682 ((-2 (|:| |num| (-639 |#1|)) (|:| |den| |#1|)) (-639 |#2|)))) (-523) (-934 |#1|)) (T -643))
+((-1682 (*1 *2 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-934 *4)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |num| (-639 *4)) (|:| |den| *4))) (-5 *1 (-643 *4 *5)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-639 *5)) (-4 *5 (-934 *4)) (-4 *4 (-523)) (-5 *2 (-639 *4)) (-5 *1 (-643 *4 *5)))) (-2807 (*1 *2 *3) (-12 (-5 *3 (-639 *4)) (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-643 *2 *4)))))
+(-10 -7 (-15 -2807 (|#1| (-639 |#2|))) (-15 -1349 ((-639 |#1|) (-639 |#2|))) (-15 -1682 ((-2 (|:| |num| (-639 |#1|)) (|:| |den| |#1|)) (-639 |#2|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-1849 (((-639 (-649))) NIL) (((-639 (-649)) (-1184 $)) NIL)) (-1354 (((-649) $) NIL)) (-2367 (($ $) NIL (|has| (-649) (-1124)))) (-2218 (($ $) NIL (|has| (-649) (-1124)))) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-649) (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-649) (-289)) (|has| (-649) (-852))))) (-3240 (($ $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| (-649) (-852))) (|has| (-649) (-344))))) (-2956 (((-399 $) $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| (-649) (-852))) (|has| (-649) (-344))))) (-2563 (($ $) NIL (-12 (|has| (-649) (-943)) (|has| (-649) (-1124))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-649) (-289)) (|has| (-649) (-852))))) (-2760 (((-110) $ $) NIL (|has| (-649) (-289)))) (-3006 (((-721)) NIL (|has| (-649) (-349)))) (-2343 (($ $) NIL (|has| (-649) (-1124)))) (-2198 (($ $) NIL (|has| (-649) (-1124)))) (-2391 (($ $) NIL (|has| (-649) (-1124)))) (-2241 (($ $) NIL (|has| (-649) (-1124)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-649) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-649) (-977 (-388 (-531)))))) (-2523 (((-531) $) NIL) (((-649) $) NIL) (((-388 (-531)) $) NIL (|has| (-649) (-977 (-388 (-531)))))) (-2767 (($ (-1184 (-649))) NIL) (($ (-1184 (-649)) (-1184 $)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-649) (-330)))) (-3650 (($ $ $) NIL (|has| (-649) (-289)))) (-1982 (((-639 (-649)) $) NIL) (((-639 (-649)) $ (-1184 $)) NIL)) (-3073 (((-639 (-649)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-649))) (|:| |vec| (-1184 (-649)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-649) (-594 (-531)))) (((-639 (-531)) (-639 $)) NIL (|has| (-649) (-594 (-531))))) (-1760 (((-3 $ "failed") (-388 (-1098 (-649)))) NIL (|has| (-649) (-344))) (($ (-1098 (-649))) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2577 (((-649) $) 29)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL (|has| (-649) (-516)))) (-3004 (((-110) $) NIL (|has| (-649) (-516)))) (-2727 (((-388 (-531)) $) NIL (|has| (-649) (-516)))) (-2277 (((-864)) NIL)) (-1381 (($) NIL (|has| (-649) (-349)))) (-3630 (($ $ $) NIL (|has| (-649) (-289)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| (-649) (-289)))) (-1806 (($) NIL (|has| (-649) (-330)))) (-1971 (((-110) $) NIL (|has| (-649) (-330)))) (-3493 (($ $) NIL (|has| (-649) (-330))) (($ $ (-721)) NIL (|has| (-649) (-330)))) (-2534 (((-110) $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| (-649) (-852))) (|has| (-649) (-344))))) (-3389 (((-2 (|:| |r| (-649)) (|:| |phi| (-649))) $) NIL (-12 (|has| (-649) (-995)) (|has| (-649) (-1124))))) (-1880 (($) NIL (|has| (-649) (-1124)))) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-649) (-829 (-360)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-649) (-829 (-531))))) (-3617 (((-783 (-864)) $) NIL (|has| (-649) (-330))) (((-864) $) NIL (|has| (-649) (-330)))) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (-12 (|has| (-649) (-943)) (|has| (-649) (-1124))))) (-1899 (((-649) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-649) (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-649) (-289)))) (-1233 (((-1098 (-649)) $) NIL (|has| (-649) (-344)))) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3261 (($ (-1 (-649) (-649)) $) NIL)) (-2211 (((-864) $) NIL (|has| (-649) (-349)))) (-2076 (($ $) NIL (|has| (-649) (-1124)))) (-1749 (((-1098 (-649)) $) NIL)) (-2078 (($ (-598 $)) NIL (|has| (-649) (-289))) (($ $ $) NIL (|has| (-649) (-289)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| (-649) (-344)))) (-3788 (($) NIL (|has| (-649) (-330)) CONST)) (-1889 (($ (-864)) NIL (|has| (-649) (-349)))) (-2215 (($) NIL)) (-2590 (((-649) $) 31)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| (-649) (-289)))) (-2109 (($ (-598 $)) NIL (|has| (-649) (-289))) (($ $ $) NIL (|has| (-649) (-289)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-649) (-330)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-649) (-289)) (|has| (-649) (-852))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-649) (-289)) (|has| (-649) (-852))))) (-2552 (((-399 $) $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| (-649) (-852))) (|has| (-649) (-344))))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-649) (-289))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| (-649) (-289)))) (-3609 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ (-649)) NIL (|has| (-649) (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-649) (-289)))) (-2798 (($ $) NIL (|has| (-649) (-1124)))) (-4115 (($ $ (-1102) (-649)) NIL (|has| (-649) (-492 (-1102) (-649)))) (($ $ (-598 (-1102)) (-598 (-649))) NIL (|has| (-649) (-492 (-1102) (-649)))) (($ $ (-598 (-276 (-649)))) NIL (|has| (-649) (-291 (-649)))) (($ $ (-276 (-649))) NIL (|has| (-649) (-291 (-649)))) (($ $ (-649) (-649)) NIL (|has| (-649) (-291 (-649)))) (($ $ (-598 (-649)) (-598 (-649))) NIL (|has| (-649) (-291 (-649))))) (-4100 (((-721) $) NIL (|has| (-649) (-289)))) (-1785 (($ $ (-649)) NIL (|has| (-649) (-268 (-649) (-649))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| (-649) (-289)))) (-3176 (((-649)) NIL) (((-649) (-1184 $)) NIL)) (-2350 (((-3 (-721) "failed") $ $) NIL (|has| (-649) (-330))) (((-721) $) NIL (|has| (-649) (-330)))) (-3352 (($ $ (-1 (-649) (-649))) NIL) (($ $ (-1 (-649) (-649)) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-1102)) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-721)) NIL (|has| (-649) (-216))) (($ $) NIL (|has| (-649) (-216)))) (-3381 (((-639 (-649)) (-1184 $) (-1 (-649) (-649))) NIL (|has| (-649) (-344)))) (-3608 (((-1098 (-649))) NIL)) (-2403 (($ $) NIL (|has| (-649) (-1124)))) (-2253 (($ $) NIL (|has| (-649) (-1124)))) (-2498 (($) NIL (|has| (-649) (-330)))) (-2379 (($ $) NIL (|has| (-649) (-1124)))) (-2229 (($ $) NIL (|has| (-649) (-1124)))) (-2356 (($ $) NIL (|has| (-649) (-1124)))) (-2210 (($ $) NIL (|has| (-649) (-1124)))) (-3348 (((-639 (-649)) (-1184 $)) NIL) (((-1184 (-649)) $) NIL) (((-639 (-649)) (-1184 $) (-1184 $)) NIL) (((-1184 (-649)) $ (-1184 $)) NIL)) (-3318 (((-507) $) NIL (|has| (-649) (-573 (-507)))) (((-159 (-208)) $) NIL (|has| (-649) (-962))) (((-159 (-360)) $) NIL (|has| (-649) (-962))) (((-835 (-360)) $) NIL (|has| (-649) (-573 (-835 (-360))))) (((-835 (-531)) $) NIL (|has| (-649) (-573 (-835 (-531))))) (($ (-1098 (-649))) NIL) (((-1098 (-649)) $) NIL) (($ (-1184 (-649))) NIL) (((-1184 (-649)) $) NIL)) (-4164 (($ $) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| $ (-138)) (|has| (-649) (-852))) (|has| (-649) (-330))))) (-4157 (($ (-649) (-649)) 12)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-531)) NIL) (($ (-649)) NIL) (($ (-159 (-360))) 13) (($ (-159 (-531))) 19) (($ (-159 (-649))) 28) (($ (-159 (-651))) 25) (((-159 (-360)) $) 33) (($ (-388 (-531))) NIL (-1435 (|has| (-649) (-977 (-388 (-531)))) (|has| (-649) (-344))))) (-2750 (($ $) NIL (|has| (-649) (-330))) (((-3 $ "failed") $) NIL (-1435 (-12 (|has| (-649) (-289)) (|has| $ (-138)) (|has| (-649) (-852))) (|has| (-649) (-138))))) (-3369 (((-1098 (-649)) $) NIL)) (-2284 (((-721)) NIL)) (-3523 (((-1184 $)) NIL)) (-2442 (($ $) NIL (|has| (-649) (-1124)))) (-2292 (($ $) NIL (|has| (-649) (-1124)))) (-2587 (((-110) $ $) NIL)) (-2416 (($ $) NIL (|has| (-649) (-1124)))) (-2266 (($ $) NIL (|has| (-649) (-1124)))) (-2468 (($ $) NIL (|has| (-649) (-1124)))) (-2318 (($ $) NIL (|has| (-649) (-1124)))) (-3662 (((-649) $) NIL (|has| (-649) (-1124)))) (-2753 (($ $) NIL (|has| (-649) (-1124)))) (-2331 (($ $) NIL (|has| (-649) (-1124)))) (-2456 (($ $) NIL (|has| (-649) (-1124)))) (-2305 (($ $) NIL (|has| (-649) (-1124)))) (-2429 (($ $) NIL (|has| (-649) (-1124)))) (-2279 (($ $) NIL (|has| (-649) (-1124)))) (-1620 (($ $) NIL (|has| (-649) (-995)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1 (-649) (-649))) NIL) (($ $ (-1 (-649) (-649)) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-1102)) NIL (|has| (-649) (-843 (-1102)))) (($ $ (-721)) NIL (|has| (-649) (-216))) (($ $) NIL (|has| (-649) (-216)))) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL (|has| (-649) (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ $) NIL (|has| (-649) (-1124))) (($ $ (-388 (-531))) NIL (-12 (|has| (-649) (-943)) (|has| (-649) (-1124)))) (($ $ (-531)) NIL (|has| (-649) (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ (-649) $) NIL) (($ $ (-649)) NIL) (($ (-388 (-531)) $) NIL (|has| (-649) (-344))) (($ $ (-388 (-531))) NIL (|has| (-649) (-344)))))
+(((-644) (-13 (-368) (-156 (-649)) (-10 -8 (-15 -2265 ($ (-159 (-360)))) (-15 -2265 ($ (-159 (-531)))) (-15 -2265 ($ (-159 (-649)))) (-15 -2265 ($ (-159 (-651)))) (-15 -2265 ((-159 (-360)) $))))) (T -644))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-644)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-159 (-531))) (-5 *1 (-644)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-159 (-649))) (-5 *1 (-644)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-159 (-651))) (-5 *1 (-644)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-644)))))
+(-13 (-368) (-156 (-649)) (-10 -8 (-15 -2265 ($ (-159 (-360)))) (-15 -2265 ($ (-159 (-531)))) (-15 -2265 ($ (-159 (-649)))) (-15 -2265 ($ (-159 (-651)))) (-15 -2265 ((-159 (-360)) $))))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2705 (($ $) 62)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40) (($ |#1| $ (-721)) 63)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 61)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-645 |#1|) (-133) (-1030)) (T -645))
+((-3944 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-645 *2)) (-4 *2 (-1030)))) (-2705 (*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1030)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-645 *3)) (-4 *3 (-1030)) (-5 *2 (-598 (-2 (|:| -1798 *3) (|:| -2539 (-721))))))))
+(-13 (-218 |t#1|) (-10 -8 (-15 -3944 ($ |t#1| $ (-721))) (-15 -2705 ($ $)) (-15 -3555 ((-598 (-2 (|:| -1798 |t#1|) (|:| -2539 (-721)))) $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-4215 (((-598 |#1|) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) (-531)) 47)) (-3697 ((|#1| |#1| (-531)) 46)) (-2109 ((|#1| |#1| |#1| (-531)) 36)) (-2552 (((-598 |#1|) |#1| (-531)) 39)) (-3180 ((|#1| |#1| (-531) |#1| (-531)) 32)) (-3091 (((-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) |#1| (-531)) 45)))
+(((-646 |#1|) (-10 -7 (-15 -2109 (|#1| |#1| |#1| (-531))) (-15 -3697 (|#1| |#1| (-531))) (-15 -2552 ((-598 |#1|) |#1| (-531))) (-15 -3091 ((-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) |#1| (-531))) (-15 -4215 ((-598 |#1|) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) (-531))) (-15 -3180 (|#1| |#1| (-531) |#1| (-531)))) (-1160 (-531))) (T -646))
+((-3180 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3)))) (-4215 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| -2552 *5) (|:| -2012 (-531))))) (-5 *4 (-531)) (-4 *5 (-1160 *4)) (-5 *2 (-598 *5)) (-5 *1 (-646 *5)))) (-3091 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-5 *2 (-598 (-2 (|:| -2552 *3) (|:| -2012 *4)))) (-5 *1 (-646 *3)) (-4 *3 (-1160 *4)))) (-2552 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-5 *2 (-598 *3)) (-5 *1 (-646 *3)) (-4 *3 (-1160 *4)))) (-3697 (*1 *2 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3)))) (-2109 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3)))))
+(-10 -7 (-15 -2109 (|#1| |#1| |#1| (-531))) (-15 -3697 (|#1| |#1| (-531))) (-15 -2552 ((-598 |#1|) |#1| (-531))) (-15 -3091 ((-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) |#1| (-531))) (-15 -4215 ((-598 |#1|) (-598 (-2 (|:| -2552 |#1|) (|:| -2012 (-531)))) (-531))) (-15 -3180 (|#1| |#1| (-531) |#1| (-531))))
+((-3541 (((-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208))) 17)) (-3839 (((-1062 (-208)) (-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245))) 40) (((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245))) 42) (((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245))) 44)) (-3485 (((-1062 (-208)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-598 (-245))) NIL)) (-4153 (((-1062 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245))) 45)))
+(((-647) (-10 -7 (-15 -3839 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3839 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3839 ((-1062 (-208)) (-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -4153 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3485 ((-1062 (-208)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3541 ((-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))) (T -647))
+((-3541 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1 (-208) (-208) (-208) (-208))) (-5 *2 (-1 (-886 (-208)) (-208) (-208))) (-5 *1 (-647)))) (-3485 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208))) (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647)))) (-4153 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647)))) (-3839 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-208))) (-5 *5 (-598 (-245))) (-5 *1 (-647)))) (-3839 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-208))) (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647)))) (-3839 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined")) (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647)))))
+(-10 -7 (-15 -3839 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3839 ((-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3839 ((-1062 (-208)) (-1062 (-208)) (-1 (-886 (-208)) (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -4153 ((-1062 (-208)) (-1 (-208) (-208) (-208)) (-3 (-1 (-208) (-208) (-208) (-208)) "undefined") (-1025 (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3485 ((-1062 (-208)) (-297 (-531)) (-297 (-531)) (-297 (-531)) (-1 (-208) (-208)) (-1025 (-208)) (-598 (-245)))) (-15 -3541 ((-1 (-886 (-208)) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208)) (-1 (-208) (-208) (-208) (-208)))))
+((-2552 (((-399 (-1098 |#4|)) (-1098 |#4|)) 73) (((-399 |#4|) |#4|) 221)))
+(((-648 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4|)) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|)))) (-797) (-743) (-330) (-892 |#3| |#2| |#1|)) (T -648))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-330)) (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-648 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4)))))
+(-10 -7 (-15 -2552 ((-399 |#4|) |#4|)) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 84)) (-1317 (((-531) $) 30)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2796 (($ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-4082 (($) NIL T CONST)) (-1694 (($ $) NIL)) (-3154 (((-3 (-531) "failed") $) 73) (((-3 (-388 (-531)) "failed") $) 26) (((-3 (-360) "failed") $) 70)) (-2523 (((-531) $) 75) (((-388 (-531)) $) 67) (((-360) $) 68)) (-3650 (($ $ $) 96)) (-3622 (((-3 $ "failed") $) 87)) (-3630 (($ $ $) 95)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3963 (((-864)) 77) (((-864) (-864)) 76)) (-1599 (((-110) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL)) (-3617 (((-531) $) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL)) (-1899 (($ $) NIL)) (-2985 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2232 (((-531) (-531)) 81) (((-531)) 82)) (-4103 (($ $ $) NIL) (($) NIL (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-3440 (((-531) (-531)) 79) (((-531)) 80)) (-1241 (($ $ $) NIL) (($) NIL (-12 (-3745 (|has| $ (-6 -4256))) (-3745 (|has| $ (-6 -4264)))))) (-2580 (((-531) $) 16)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 91)) (-3704 (((-864) (-531)) NIL (|has| $ (-6 -4264)))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL)) (-2943 (($ $) NIL)) (-2947 (($ (-531) (-531)) NIL) (($ (-531) (-531) (-864)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) 92)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1790 (((-531) $) 22)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 94)) (-2890 (((-864)) NIL) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-3529 (((-864) (-531)) NIL (|has| $ (-6 -4264)))) (-3318 (((-360) $) NIL) (((-208) $) NIL) (((-835 (-360)) $) NIL)) (-2265 (((-806) $) 52) (($ (-531)) 63) (($ $) NIL) (($ (-388 (-531))) 66) (($ (-531)) 63) (($ (-388 (-531))) 66) (($ (-360)) 60) (((-360) $) 50) (($ (-651)) 55)) (-2284 (((-721)) 103)) (-2772 (($ (-531) (-531) (-864)) 44)) (-3831 (($ $) NIL)) (-2138 (((-864)) NIL) (((-864) (-864)) NIL (|has| $ (-6 -4264)))) (-3276 (((-864)) 35) (((-864) (-864)) 78)) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL)) (-3035 (($) 32 T CONST)) (-3050 (($) 17 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 83)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 101)) (-2263 (($ $ $) 65)) (-2250 (($ $) 99) (($ $ $) 100)) (-2237 (($ $ $) 98)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL) (($ $ (-388 (-531))) 90)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 97) (($ $ $) 88) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL)))
+(((-649) (-13 (-385) (-368) (-344) (-977 (-360)) (-977 (-388 (-531))) (-140) (-10 -8 (-15 -3963 ((-864) (-864))) (-15 -3963 ((-864))) (-15 -3276 ((-864) (-864))) (-15 -3276 ((-864))) (-15 -3440 ((-531) (-531))) (-15 -3440 ((-531))) (-15 -2232 ((-531) (-531))) (-15 -2232 ((-531))) (-15 -2265 ((-360) $)) (-15 -2265 ($ (-651))) (-15 -2580 ((-531) $)) (-15 -1790 ((-531) $)) (-15 -2772 ($ (-531) (-531) (-864)))))) (T -649))
+((-3276 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-2580 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-3963 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) (-3963 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) (-3276 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))) (-3440 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-3440 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-2232 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-2232 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-360)) (-5 *1 (-649)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-651)) (-5 *1 (-649)))) (-2772 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-864)) (-5 *1 (-649)))))
+(-13 (-385) (-368) (-344) (-977 (-360)) (-977 (-388 (-531))) (-140) (-10 -8 (-15 -3963 ((-864) (-864))) (-15 -3963 ((-864))) (-15 -3276 ((-864) (-864))) (-15 -3276 ((-864))) (-15 -3440 ((-531) (-531))) (-15 -3440 ((-531))) (-15 -2232 ((-531) (-531))) (-15 -2232 ((-531))) (-15 -2265 ((-360) $)) (-15 -2265 ($ (-651))) (-15 -2580 ((-531) $)) (-15 -1790 ((-531) $)) (-15 -2772 ($ (-531) (-531) (-864)))))
+((-2684 (((-639 |#1|) (-639 |#1|) |#1| |#1|) 65)) (-2800 (((-639 |#1|) (-639 |#1|) |#1|) 48)) (-3444 (((-639 |#1|) (-639 |#1|) |#1|) 66)) (-2087 (((-639 |#1|) (-639 |#1|)) 49)) (-3795 (((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|) 64)))
+(((-650 |#1|) (-10 -7 (-15 -2087 ((-639 |#1|) (-639 |#1|))) (-15 -2800 ((-639 |#1|) (-639 |#1|) |#1|)) (-15 -3444 ((-639 |#1|) (-639 |#1|) |#1|)) (-15 -2684 ((-639 |#1|) (-639 |#1|) |#1| |#1|)) (-15 -3795 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|))) (-289)) (T -650))
+((-3795 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-650 *3)) (-4 *3 (-289)))) (-2684 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))) (-3444 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))) (-2800 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))) (-2087 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))))
+(-10 -7 (-15 -2087 ((-639 |#1|) (-639 |#1|))) (-15 -2800 ((-639 |#1|) (-639 |#1|) |#1|)) (-15 -3444 ((-639 |#1|) (-639 |#1|) |#1|)) (-15 -2684 ((-639 |#1|) (-639 |#1|) |#1| |#1|)) (-15 -3795 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2464 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $ $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-3709 (($ $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) 27)) (-2523 (((-531) $) 25)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL)) (-3004 (((-110) $) NIL)) (-2727 (((-388 (-531)) $) NIL)) (-1381 (($ $) NIL) (($) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3013 (($ $ $ $) NIL)) (-2033 (($ $ $) NIL)) (-1599 (((-110) $) NIL)) (-2555 (($ $ $) NIL)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL)) (-3481 (((-110) $) NIL)) (-4250 (((-110) $) NIL)) (-2342 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-3233 (($ $ $ $) NIL)) (-4103 (($ $ $) NIL)) (-1300 (((-864) (-864)) 10) (((-864)) 9)) (-1241 (($ $ $) NIL)) (-3107 (($ $) NIL)) (-2428 (($ $) NIL)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-4098 (($ $ $) NIL)) (-3788 (($) NIL T CONST)) (-3906 (($ $) NIL)) (-2529 (((-1049) $) NIL) (($ $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1569 (($ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL) (($ $ (-721)) NIL)) (-1651 (($ $) NIL)) (-2480 (($ $) NIL)) (-3318 (((-208) $) NIL) (((-360) $) NIL) (((-835 (-531)) $) NIL) (((-507) $) NIL) (((-531) $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) 24) (($ $) NIL) (($ (-531)) 24) (((-297 $) (-297 (-531))) 18)) (-2284 (((-721)) NIL)) (-2070 (((-110) $ $) NIL)) (-2589 (($ $ $) NIL)) (-3276 (($) NIL)) (-2587 (((-110) $ $) NIL)) (-2392 (($ $ $ $) NIL)) (-1620 (($ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL) (($ $ (-721)) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL)))
+(((-651) (-13 (-368) (-516) (-10 -8 (-15 -1300 ((-864) (-864))) (-15 -1300 ((-864))) (-15 -2265 ((-297 $) (-297 (-531))))))) (T -651))
+((-1300 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-651)))) (-1300 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-651)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-297 (-531))) (-5 *2 (-297 (-651))) (-5 *1 (-651)))))
+(-13 (-368) (-516) (-10 -8 (-15 -1300 ((-864) (-864))) (-15 -1300 ((-864))) (-15 -2265 ((-297 $) (-297 (-531))))))
+((-3538 (((-1 |#4| |#2| |#3|) |#1| (-1102) (-1102)) 19)) (-1830 (((-1 |#4| |#2| |#3|) (-1102)) 12)))
+(((-652 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1830 ((-1 |#4| |#2| |#3|) (-1102))) (-15 -3538 ((-1 |#4| |#2| |#3|) |#1| (-1102) (-1102)))) (-573 (-507)) (-1138) (-1138) (-1138)) (T -652))
+((-3538 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-652 *3 *5 *6 *7)) (-4 *3 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)) (-4 *7 (-1138)))) (-1830 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-652 *4 *5 *6 *7)) (-4 *4 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)) (-4 *7 (-1138)))))
+(-10 -7 (-15 -1830 ((-1 |#4| |#2| |#3|) (-1102))) (-15 -3538 ((-1 |#4| |#2| |#3|) |#1| (-1102) (-1102))))
+((-2247 (((-110) $ $) NIL)) (-2310 (((-1189) $ (-721)) 14)) (-1976 (((-721) $) 12)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 18) ((|#1| $) 15) (($ |#1|) 23)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 25)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 24)))
+(((-653 |#1|) (-13 (-129) (-572 |#1|) (-10 -8 (-15 -2265 ($ |#1|)))) (-1030)) (T -653))
+((-2265 (*1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1030)))))
+(-13 (-129) (-572 |#1|) (-10 -8 (-15 -2265 ($ |#1|))))
+((-2711 (((-1 (-208) (-208) (-208)) |#1| (-1102) (-1102)) 34) (((-1 (-208) (-208)) |#1| (-1102)) 39)))
+(((-654 |#1|) (-10 -7 (-15 -2711 ((-1 (-208) (-208)) |#1| (-1102))) (-15 -2711 ((-1 (-208) (-208) (-208)) |#1| (-1102) (-1102)))) (-573 (-507))) (T -654))
+((-2711 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-654 *3)) (-4 *3 (-573 (-507))))) (-2711 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-654 *3)) (-4 *3 (-573 (-507))))))
+(-10 -7 (-15 -2711 ((-1 (-208) (-208)) |#1| (-1102))) (-15 -2711 ((-1 (-208) (-208) (-208)) |#1| (-1102) (-1102))))
+((-1956 (((-1102) |#1| (-1102) (-598 (-1102))) 9) (((-1102) |#1| (-1102) (-1102) (-1102)) 12) (((-1102) |#1| (-1102) (-1102)) 11) (((-1102) |#1| (-1102)) 10)))
+(((-655 |#1|) (-10 -7 (-15 -1956 ((-1102) |#1| (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-1102) (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-598 (-1102))))) (-573 (-507))) (T -655))
+((-1956 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-598 (-1102))) (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) (-1956 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) (-1956 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))) (-1956 (*1 *2 *3 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507))))))
+(-10 -7 (-15 -1956 ((-1102) |#1| (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-1102) (-1102))) (-15 -1956 ((-1102) |#1| (-1102) (-598 (-1102)))))
+((-2240 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9)))
+(((-656 |#1| |#2|) (-10 -7 (-15 -2240 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1138) (-1138)) (T -656))
+((-2240 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-656 *3 *4)) (-4 *3 (-1138)) (-4 *4 (-1138)))))
+(-10 -7 (-15 -2240 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|)))
+((-2975 (((-1 |#3| |#2|) (-1102)) 11)) (-3538 (((-1 |#3| |#2|) |#1| (-1102)) 21)))
+(((-657 |#1| |#2| |#3|) (-10 -7 (-15 -2975 ((-1 |#3| |#2|) (-1102))) (-15 -3538 ((-1 |#3| |#2|) |#1| (-1102)))) (-573 (-507)) (-1138) (-1138)) (T -657))
+((-3538 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *3 *5 *6)) (-4 *3 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)))) (-2975 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *4 *5 *6)) (-4 *4 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)))))
+(-10 -7 (-15 -2975 ((-1 |#3| |#2|) (-1102))) (-15 -3538 ((-1 |#3| |#2|) |#1| (-1102))))
+((-3755 (((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#4|)) (-598 |#3|) (-598 |#4|) (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#4|)))) (-598 (-721)) (-1184 (-598 (-1098 |#3|))) |#3|) 62)) (-3997 (((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#3|)) (-598 |#3|) (-598 |#4|) (-598 (-721)) |#3|) 75)) (-3757 (((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 |#3|) (-598 (-721)) (-598 (-1098 |#4|)) (-1184 (-598 (-1098 |#3|))) |#3|) 34)))
+(((-658 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3757 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 |#3|) (-598 (-721)) (-598 (-1098 |#4|)) (-1184 (-598 (-1098 |#3|))) |#3|)) (-15 -3997 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#3|)) (-598 |#3|) (-598 |#4|) (-598 (-721)) |#3|)) (-15 -3755 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#4|)) (-598 |#3|) (-598 |#4|) (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#4|)))) (-598 (-721)) (-1184 (-598 (-1098 |#3|))) |#3|))) (-743) (-797) (-289) (-892 |#3| |#1| |#2|)) (T -658))
+((-3755 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-598 (-1098 *13))) (-5 *3 (-1098 *13)) (-5 *4 (-598 *12)) (-5 *5 (-598 *10)) (-5 *6 (-598 *13)) (-5 *7 (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| *13))))) (-5 *8 (-598 (-721))) (-5 *9 (-1184 (-598 (-1098 *10)))) (-4 *12 (-797)) (-4 *10 (-289)) (-4 *13 (-892 *10 *11 *12)) (-4 *11 (-743)) (-5 *1 (-658 *11 *12 *10 *13)))) (-3997 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-598 *11)) (-5 *5 (-598 (-1098 *9))) (-5 *6 (-598 *9)) (-5 *7 (-598 *12)) (-5 *8 (-598 (-721))) (-4 *11 (-797)) (-4 *9 (-289)) (-4 *12 (-892 *9 *10 *11)) (-4 *10 (-743)) (-5 *2 (-598 (-1098 *12))) (-5 *1 (-658 *10 *11 *9 *12)) (-5 *3 (-1098 *12)))) (-3757 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-598 (-1098 *11))) (-5 *3 (-1098 *11)) (-5 *4 (-598 *10)) (-5 *5 (-598 *8)) (-5 *6 (-598 (-721))) (-5 *7 (-1184 (-598 (-1098 *8)))) (-4 *10 (-797)) (-4 *8 (-289)) (-4 *11 (-892 *8 *9 *10)) (-4 *9 (-743)) (-5 *1 (-658 *9 *10 *8 *11)))))
+(-10 -7 (-15 -3757 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 |#3|) (-598 (-721)) (-598 (-1098 |#4|)) (-1184 (-598 (-1098 |#3|))) |#3|)) (-15 -3997 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#3|)) (-598 |#3|) (-598 |#4|) (-598 (-721)) |#3|)) (-15 -3755 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-598 |#2|) (-598 (-1098 |#4|)) (-598 |#3|) (-598 |#4|) (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#4|)))) (-598 (-721)) (-1184 (-598 (-1098 |#3|))) |#3|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2500 (($ $) 39)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-2669 (($ |#1| (-721)) 37)) (-3005 (((-721) $) 41)) (-2475 ((|#1| $) 40)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2012 (((-721) $) 42)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 36 (|has| |#1| (-162)))) (-3188 ((|#1| $ (-721)) 38)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 44) (($ |#1| $) 43)))
+(((-659 |#1|) (-133) (-986)) (T -659))
+((-2012 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-986)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-986)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-659 *2)) (-4 *2 (-986)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-659 *2)) (-4 *2 (-986)))))
+(-13 (-986) (-109 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (-15 -2012 ((-721) $)) (-15 -3005 ((-721) $)) (-15 -2475 (|t#1| $)) (-15 -2500 ($ $)) (-15 -3188 (|t#1| $ (-721))) (-15 -2669 ($ |t#1| (-721)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) |has| |#1| (-162)) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3261 ((|#6| (-1 |#4| |#1|) |#3|) 23)))
+(((-660 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3261 (|#6| (-1 |#4| |#1|) |#3|))) (-523) (-1160 |#1|) (-1160 (-388 |#2|)) (-523) (-1160 |#4|) (-1160 (-388 |#5|))) (T -660))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-523)) (-4 *7 (-523)) (-4 *6 (-1160 *5)) (-4 *2 (-1160 (-388 *8))) (-5 *1 (-660 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1160 (-388 *6))) (-4 *8 (-1160 *7)))))
+(-10 -7 (-15 -3261 (|#6| (-1 |#4| |#1|) |#3|)))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3648 (((-1085) (-806)) 31)) (-2286 (((-1189) (-1085)) 28)) (-2354 (((-1085) (-806)) 24)) (-3105 (((-1085) (-806)) 25)) (-2265 (((-806) $) NIL) (((-1085) (-806)) 23)) (-2148 (((-110) $ $) NIL)))
+(((-661) (-13 (-1030) (-10 -7 (-15 -2265 ((-1085) (-806))) (-15 -2354 ((-1085) (-806))) (-15 -3105 ((-1085) (-806))) (-15 -3648 ((-1085) (-806))) (-15 -2286 ((-1189) (-1085)))))) (T -661))
+((-2265 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) (-2354 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) (-3105 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) (-3648 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))) (-2286 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-661)))))
+(-13 (-1030) (-10 -7 (-15 -2265 ((-1085) (-806))) (-15 -2354 ((-1085) (-806))) (-15 -3105 ((-1085) (-806))) (-15 -3648 ((-1085) (-806))) (-15 -2286 ((-1189) (-1085)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL)) (-1760 (($ |#1| |#2|) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 ((|#2| $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2966 (((-3 $ "failed") $ $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) ((|#1| $) NIL)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL)))
+(((-662 |#1| |#2| |#3| |#4| |#5|) (-13 (-344) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2265 (|#1| $)) (-15 -1760 ($ |#1| |#2|)) (-15 -2966 ((-3 $ "failed") $ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -662))
+((-1406 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-662 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1760 (*1 *1 *2 *3) (-12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2966 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-344) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2265 (|#1| $)) (-15 -1760 ($ |#1| |#2|)) (-15 -2966 ((-3 $ "failed") $ $))))
+((-2247 (((-110) $ $) 78)) (-3019 (((-110) $) 30)) (-3191 (((-1184 |#1|) $ (-721)) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-1310 (($ (-1098 |#1|)) NIL)) (-2516 (((-1098 $) $ (-1014)) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3720 (($ $ $) NIL (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3006 (((-721)) 47 (|has| |#1| (-349)))) (-3767 (($ $ (-721)) NIL)) (-3441 (($ $ (-721)) NIL)) (-3016 ((|#2| |#2|) 44)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1014) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1014) $) NIL)) (-3115 (($ $ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $ $) NIL (|has| |#1| (-162)))) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) 34)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-1760 (($ |#2|) 42)) (-3622 (((-3 $ "failed") $) 86)) (-1381 (($) 51 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-1376 (($ $ $) NIL)) (-1570 (($ $ $) NIL (|has| |#1| (-523)))) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2460 (((-901 $)) 80)) (-2490 (($ $ |#1| (-721) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ $) NIL (|has| |#1| (-523)))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-1078)))) (-2682 (($ (-1098 |#1|) (-1014)) NIL) (($ (-1098 $) (-1014)) NIL)) (-3688 (($ $ (-721)) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) 77) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) NIL) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-1406 ((|#2|) 45)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3294 (((-1098 |#1|) $) NIL)) (-3471 (((-3 (-1014) "failed") $) NIL)) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1749 ((|#2| $) 41)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) 28)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (|has| |#1| (-1078)) CONST)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4147 (($ $) 79 (|has| |#1| (-330)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 85 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#1|) NIL) (($ $ (-598 (-1014)) (-598 |#1|)) NIL) (($ $ (-1014) $) NIL) (($ $ (-598 (-1014)) (-598 $)) NIL)) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 87 (|has| |#1| (-344)))) (-3176 (($ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2012 (((-721) $) 32) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-1917 (((-901 $)) 36)) (-2960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-523)))) (-2265 (((-806) $) 61) (($ (-531)) NIL) (($ |#1|) 58) (($ (-1014)) NIL) (($ |#2|) 68) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) 63) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 20 T CONST)) (-1598 (((-1184 |#1|) $) 75)) (-4107 (($ (-1184 |#1|)) 50)) (-3050 (($) 8 T CONST)) (-4020 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3347 (((-1184 |#1|) $) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 69)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) 72) (($ $ $) NIL)) (-2237 (($ $ $) 33)) (** (($ $ (-864)) NIL) (($ $ (-721)) 81)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 57) (($ $ $) 74) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 55) (($ $ |#1|) NIL)))
+(((-663 |#1| |#2|) (-13 (-1160 |#1|) (-10 -8 (-15 -3016 (|#2| |#2|)) (-15 -1406 (|#2|)) (-15 -1760 ($ |#2|)) (-15 -1749 (|#2| $)) (-15 -2265 ($ |#2|)) (-15 -1598 ((-1184 |#1|) $)) (-15 -4107 ($ (-1184 |#1|))) (-15 -3347 ((-1184 |#1|) $)) (-15 -2460 ((-901 $))) (-15 -1917 ((-901 $))) (IF (|has| |#1| (-330)) (-15 -4147 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|))) (-986) (-1160 |#1|)) (T -663))
+((-3016 (*1 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))) (-1406 (*1 *2) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-663 *3 *2)) (-4 *3 (-986)))) (-1760 (*1 *1 *2) (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))) (-1749 (*1 *2 *1) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-663 *3 *2)) (-4 *3 (-986)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))) (-1598 (*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-1184 *3)) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-4107 (*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-986)) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-3347 (*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-1184 *3)) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-2460 (*1 *2) (-12 (-4 *3 (-986)) (-5 *2 (-901 (-663 *3 *4))) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-1917 (*1 *2) (-12 (-4 *3 (-986)) (-5 *2 (-901 (-663 *3 *4))) (-5 *1 (-663 *3 *4)) (-4 *4 (-1160 *3)))) (-4147 (*1 *1 *1) (-12 (-4 *2 (-330)) (-4 *2 (-986)) (-5 *1 (-663 *2 *3)) (-4 *3 (-1160 *2)))))
+(-13 (-1160 |#1|) (-10 -8 (-15 -3016 (|#2| |#2|)) (-15 -1406 (|#2|)) (-15 -1760 ($ |#2|)) (-15 -1749 (|#2| $)) (-15 -2265 ($ |#2|)) (-15 -1598 ((-1184 |#1|) $)) (-15 -4107 ($ (-1184 |#1|))) (-15 -3347 ((-1184 |#1|) $)) (-15 -2460 ((-901 $))) (-15 -1917 ((-901 $))) (IF (|has| |#1| (-330)) (-15 -4147 ($ $)) |%noBranch|) (IF (|has| |#1| (-349)) (-6 (-349)) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-1889 ((|#1| $) 13)) (-2529 (((-1049) $) NIL)) (-1790 ((|#2| $) 12)) (-2274 (($ |#1| |#2|) 16)) (-2265 (((-806) $) NIL) (($ (-2 (|:| -1889 |#1|) (|:| -1790 |#2|))) 15) (((-2 (|:| -1889 |#1|) (|:| -1790 |#2|)) $) 14)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 11)))
+(((-664 |#1| |#2| |#3|) (-13 (-797) (-10 -8 (-15 -1790 (|#2| $)) (-15 -1889 (|#1| $)) (-15 -2265 ($ (-2 (|:| -1889 |#1|) (|:| -1790 |#2|)))) (-15 -2265 ((-2 (|:| -1889 |#1|) (|:| -1790 |#2|)) $)) (-15 -2274 ($ |#1| |#2|)))) (-797) (-1030) (-1 (-110) (-2 (|:| -1889 |#1|) (|:| -1790 |#2|)) (-2 (|:| -1889 |#1|) (|:| -1790 |#2|)))) (T -664))
+((-1790 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-664 *3 *2 *4)) (-4 *3 (-797)) (-14 *4 (-1 (-110) (-2 (|:| -1889 *3) (|:| -1790 *2)) (-2 (|:| -1889 *3) (|:| -1790 *2)))))) (-1889 (*1 *2 *1) (-12 (-4 *2 (-797)) (-5 *1 (-664 *2 *3 *4)) (-4 *3 (-1030)) (-14 *4 (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *3)) (-2 (|:| -1889 *2) (|:| -1790 *3)))))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -1889 *3) (|:| -1790 *4))) (-4 *3 (-797)) (-4 *4 (-1030)) (-5 *1 (-664 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1889 *3) (|:| -1790 *4))) (-5 *1 (-664 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-1030)) (-14 *5 (-1 (-110) *2 *2)))) (-2274 (*1 *1 *2 *3) (-12 (-5 *1 (-664 *2 *3 *4)) (-4 *2 (-797)) (-4 *3 (-1030)) (-14 *4 (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *3)) (-2 (|:| -1889 *2) (|:| -1790 *3)))))))
+(-13 (-797) (-10 -8 (-15 -1790 (|#2| $)) (-15 -1889 (|#1| $)) (-15 -2265 ($ (-2 (|:| -1889 |#1|) (|:| -1790 |#2|)))) (-15 -2265 ((-2 (|:| -1889 |#1|) (|:| -1790 |#2|)) $)) (-15 -2274 ($ |#1| |#2|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 59)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 89) (((-3 (-112) "failed") $) 95)) (-2523 ((|#1| $) NIL) (((-112) $) 39)) (-3622 (((-3 $ "failed") $) 90)) (-4168 ((|#2| (-112) |#2|) 82)) (-3481 (((-110) $) NIL)) (-1611 (($ |#1| (-342 (-112))) 14)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3087 (($ $ (-1 |#2| |#2|)) 58)) (-2678 (($ $ (-1 |#2| |#2|)) 44)) (-1785 ((|#2| $ |#2|) 33)) (-2650 ((|#1| |#1|) 105 (|has| |#1| (-162)))) (-2265 (((-806) $) 66) (($ (-531)) 18) (($ |#1|) 17) (($ (-112)) 23)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 37)) (-2661 (($ $) 99 (|has| |#1| (-162))) (($ $ $) 103 (|has| |#1| (-162)))) (-3035 (($) 21 T CONST)) (-3050 (($) 9 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) 48) (($ $ $) NIL)) (-2237 (($ $ $) 73)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ (-112) (-531)) NIL) (($ $ (-531)) 57)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 98) (($ $ $) 50) (($ |#1| $) 96 (|has| |#1| (-162))) (($ $ |#1|) 97 (|has| |#1| (-162)))))
+(((-665 |#1| |#2|) (-13 (-986) (-977 |#1|) (-977 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2661 ($ $)) (-15 -2661 ($ $ $)) (-15 -2650 (|#1| |#1|))) |%noBranch|) (-15 -2678 ($ $ (-1 |#2| |#2|))) (-15 -3087 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-531))) (-15 ** ($ $ (-531))) (-15 -4168 (|#2| (-112) |#2|)) (-15 -1611 ($ |#1| (-342 (-112)))))) (-986) (-601 |#1|)) (T -665))
+((-2661 (*1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) (-4 *3 (-601 *2)))) (-2661 (*1 *1 *1 *1) (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) (-4 *3 (-601 *2)))) (-2650 (*1 *2 *2) (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3)) (-4 *3 (-601 *2)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-601 *3)) (-4 *3 (-986)) (-5 *1 (-665 *3 *4)))) (-3087 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-601 *3)) (-4 *3 (-986)) (-5 *1 (-665 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-531)) (-4 *4 (-986)) (-5 *1 (-665 *4 *5)) (-4 *5 (-601 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *3 (-986)) (-5 *1 (-665 *3 *4)) (-4 *4 (-601 *3)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-4 *4 (-986)) (-5 *1 (-665 *4 *2)) (-4 *2 (-601 *4)))) (-1611 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-4 *2 (-986)) (-5 *1 (-665 *2 *4)) (-4 *4 (-601 *2)))))
+(-13 (-986) (-977 |#1|) (-977 (-112)) (-268 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2661 ($ $)) (-15 -2661 ($ $ $)) (-15 -2650 (|#1| |#1|))) |%noBranch|) (-15 -2678 ($ $ (-1 |#2| |#2|))) (-15 -3087 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-112) (-531))) (-15 ** ($ $ (-531))) (-15 -4168 (|#2| (-112) |#2|)) (-15 -1611 ($ |#1| (-342 (-112))))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 33)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1760 (($ |#1| |#2|) 25)) (-3622 (((-3 $ "failed") $) 48)) (-3481 (((-110) $) 35)) (-1406 ((|#2| $) 12)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 49)) (-2529 (((-1049) $) NIL)) (-2966 (((-3 $ "failed") $ $) 47)) (-2265 (((-806) $) 24) (($ (-531)) 19) ((|#1| $) 13)) (-2284 (((-721)) 28)) (-3035 (($) 16 T CONST)) (-3050 (($) 30 T CONST)) (-2148 (((-110) $ $) 38)) (-2250 (($ $) 43) (($ $ $) 37)) (-2237 (($ $ $) 40)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 21) (($ $ $) 20)))
+(((-666 |#1| |#2| |#3| |#4| |#5|) (-13 (-986) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2265 (|#1| $)) (-15 -1760 ($ |#1| |#2|)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3622 ((-3 $ "failed") $)) (-15 -2422 ($ $)))) (-162) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| "failed") |#2| |#2|) (-1 (-3 |#1| "failed") |#1| |#1| |#2|)) (T -666))
+((-3622 (*1 *1 *1) (|partial| -12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1406 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-666 *3 *2 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-162)) (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-1760 (*1 *1 *2 *3) (-12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2966 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) (-2422 (*1 *1 *1) (-12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
+(-13 (-986) (-10 -8 (-15 -1406 (|#2| $)) (-15 -2265 (|#1| $)) (-15 -1760 ($ |#1| |#2|)) (-15 -2966 ((-3 $ "failed") $ $)) (-15 -3622 ((-3 $ "failed") $)) (-15 -2422 ($ $))))
+((* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#2| $) NIL) (($ $ |#2|) 9)))
+(((-667 |#1| |#2|) (-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-668 |#2|) (-162)) (T -667))
+NIL
+(-10 -8 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-668 |#1|) (-133) (-162)) (T -668))
NIL
(-13 (-109 |t#1| |t#1|))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-4207 (($ |#1|) 17) (($ $ |#1|) 20)) (-1573 (($ |#1|) 18) (($ $ |#1|) 21)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-2731 (((-110) $) NIL)) (-1340 (($ |#1| |#1| |#1| |#1|) 8)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 16)) (-2624 (((-1046) $) NIL)) (-4098 ((|#1| $ |#1|) 24) (((-781 |#1|) $ (-781 |#1|)) 32)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-2366 (((-804) $) 39)) (-3093 (($) 9 T CONST)) (-2248 (((-110) $ $) 44)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 14)))
-(((-667 |#1|) (-13 (-453) (-10 -8 (-15 -1340 ($ |#1| |#1| |#1| |#1|)) (-15 -4207 ($ |#1|)) (-15 -1573 ($ |#1|)) (-15 -2707 ($)) (-15 -4207 ($ $ |#1|)) (-15 -1573 ($ $ |#1|)) (-15 -2707 ($ $)) (-15 -4098 (|#1| $ |#1|)) (-15 -4098 ((-781 |#1|) $ (-781 |#1|))))) (-344)) (T -667))
-((-1340 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4207 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-1573 (*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-2707 (*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-1573 (*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-2707 (*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4098 (*1 *2 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))) (-4098 (*1 *2 *1 *2) (-12 (-5 *2 (-781 *3)) (-4 *3 (-344)) (-5 *1 (-667 *3)))))
-(-13 (-453) (-10 -8 (-15 -1340 ($ |#1| |#1| |#1| |#1|)) (-15 -4207 ($ |#1|)) (-15 -1573 ($ |#1|)) (-15 -2707 ($)) (-15 -4207 ($ $ |#1|)) (-15 -1573 ($ $ |#1|)) (-15 -2707 ($ $)) (-15 -4098 (|#1| $ |#1|)) (-15 -4098 ((-781 |#1|) $ (-781 |#1|)))))
-((-2862 (($ $ (-862)) 12)) (-4138 (($ $ (-862)) 13)) (** (($ $ (-862)) 10)))
-(((-668 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-862))) (-15 -4138 (|#1| |#1| (-862))) (-15 -2862 (|#1| |#1| (-862)))) (-669)) (T -668))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-862))) (-15 -4138 (|#1| |#1| (-862))) (-15 -2862 (|#1| |#1| (-862))))
-((-2352 (((-110) $ $) 7)) (-2862 (($ $ (-862)) 15)) (-4138 (($ $ (-862)) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)) (** (($ $ (-862)) 13)) (* (($ $ $) 16)))
-(((-669) (-133)) (T -669))
-((* (*1 *1 *1 *1) (-4 *1 (-669))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))) (-4138 (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862)))))
-(-13 (-1027) (-10 -8 (-15 * ($ $ $)) (-15 -2862 ($ $ (-862))) (-15 -4138 ($ $ (-862))) (-15 ** ($ $ (-862)))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2862 (($ $ (-862)) NIL) (($ $ (-719)) 17)) (-2731 (((-110) $) 10)) (-4138 (($ $ (-862)) NIL) (($ $ (-719)) 18)) (** (($ $ (-862)) NIL) (($ $ (-719)) 15)))
-(((-670 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-719))) (-15 -4138 (|#1| |#1| (-719))) (-15 -2862 (|#1| |#1| (-719))) (-15 -2731 ((-110) |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 -4138 (|#1| |#1| (-862))) (-15 -2862 (|#1| |#1| (-862)))) (-671)) (T -670))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-719))) (-15 -4138 (|#1| |#1| (-719))) (-15 -2862 (|#1| |#1| (-719))) (-15 -2731 ((-110) |#1|)) (-15 ** (|#1| |#1| (-862))) (-15 -4138 (|#1| |#1| (-862))) (-15 -2862 (|#1| |#1| (-862))))
-((-2352 (((-110) $ $) 7)) (-2635 (((-3 $ "failed") $) 17)) (-2862 (($ $ (-862)) 15) (($ $ (-719)) 22)) (-2707 (((-3 $ "failed") $) 19)) (-2731 (((-110) $) 23)) (-1232 (((-3 $ "failed") $) 18)) (-4138 (($ $ (-862)) 14) (($ $ (-719)) 21)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3093 (($) 24 T CONST)) (-2248 (((-110) $ $) 6)) (** (($ $ (-862)) 13) (($ $ (-719)) 20)) (* (($ $ $) 16)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-992 |#1|) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3709 (($ |#1|) 17) (($ $ |#1|) 20)) (-3030 (($ |#1|) 18) (($ $ |#1|) 21)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL) (($) 19) (($ $) 22)) (-3481 (((-110) $) NIL)) (-1571 (($ |#1| |#1| |#1| |#1|) 8)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 16)) (-2529 (((-1049) $) NIL)) (-4115 ((|#1| $ |#1|) 24) (((-783 |#1|) $ (-783 |#1|)) 32)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2265 (((-806) $) 39)) (-3050 (($) 9 T CONST)) (-2148 (((-110) $ $) 44)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ $ $) 14)))
+(((-669 |#1|) (-13 (-453) (-10 -8 (-15 -1571 ($ |#1| |#1| |#1| |#1|)) (-15 -3709 ($ |#1|)) (-15 -3030 ($ |#1|)) (-15 -3622 ($)) (-15 -3709 ($ $ |#1|)) (-15 -3030 ($ $ |#1|)) (-15 -3622 ($ $)) (-15 -4115 (|#1| $ |#1|)) (-15 -4115 ((-783 |#1|) $ (-783 |#1|))))) (-344)) (T -669))
+((-1571 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3709 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3030 (*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3622 (*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3709 (*1 *1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3030 (*1 *1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-3622 (*1 *1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-4115 (*1 *2 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))) (-4115 (*1 *2 *1 *2) (-12 (-5 *2 (-783 *3)) (-4 *3 (-344)) (-5 *1 (-669 *3)))))
+(-13 (-453) (-10 -8 (-15 -1571 ($ |#1| |#1| |#1| |#1|)) (-15 -3709 ($ |#1|)) (-15 -3030 ($ |#1|)) (-15 -3622 ($)) (-15 -3709 ($ $ |#1|)) (-15 -3030 ($ $ |#1|)) (-15 -3622 ($ $)) (-15 -4115 (|#1| $ |#1|)) (-15 -4115 ((-783 |#1|) $ (-783 |#1|)))))
+((-1666 (($ $ (-864)) 12)) (-2585 (($ $ (-864)) 13)) (** (($ $ (-864)) 10)))
+(((-670 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-864))) (-15 -2585 (|#1| |#1| (-864))) (-15 -1666 (|#1| |#1| (-864)))) (-671)) (T -670))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-864))) (-15 -2585 (|#1| |#1| (-864))) (-15 -1666 (|#1| |#1| (-864))))
+((-2247 (((-110) $ $) 7)) (-1666 (($ $ (-864)) 15)) (-2585 (($ $ (-864)) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)) (** (($ $ (-864)) 13)) (* (($ $ $) 16)))
(((-671) (-133)) (T -671))
-((-3093 (*1 *1) (-4 *1 (-671))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-671)) (-5 *2 (-110)))) (-2862 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (-4138 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))) (-2707 (*1 *1 *1) (|partial| -4 *1 (-671))) (-1232 (*1 *1 *1) (|partial| -4 *1 (-671))) (-2635 (*1 *1 *1) (|partial| -4 *1 (-671))))
-(-13 (-669) (-10 -8 (-15 (-3093) ($) -2708) (-15 -2731 ((-110) $)) (-15 -2862 ($ $ (-719))) (-15 -4138 ($ $ (-719))) (-15 ** ($ $ (-719))) (-15 -2707 ((-3 $ "failed") $)) (-15 -1232 ((-3 $ "failed") $)) (-15 -2635 ((-3 $ "failed") $))))
-(((-99) . T) ((-571 (-804)) . T) ((-669) . T) ((-1027) . T))
-((-3023 (((-719)) 34)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 22)) (-2134 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) 44)) (-2707 (((-3 $ "failed") $) 64)) (-1364 (($) 38)) (-2376 ((|#2| $) 20)) (-1974 (($) 17)) (-3289 (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-1542 (((-637 |#2|) (-1181 $) (-1 |#2| |#2|)) 59)) (-3260 (((-1181 |#2|) $) NIL) (($ (-1181 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-1814 ((|#3| $) 32)) (-3220 (((-1181 $)) 29)))
-(((-672 |#1| |#2| |#3|) (-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1364 (|#1|)) (-15 -3023 ((-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -1542 ((-637 |#2|) (-1181 |#1|) (-1 |#2| |#2|))) (-15 -2134 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3260 (|#1| |#3|)) (-15 -2134 (|#1| |#3|)) (-15 -1974 (|#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 (|#3| |#1|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -3220 ((-1181 |#1|))) (-15 -1814 (|#3| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|))) (-673 |#2| |#3|) (-162) (-1157 |#2|)) (T -672))
-((-3023 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-719)) (-5 *1 (-672 *3 *4 *5)) (-4 *3 (-673 *4 *5)))))
-(-10 -8 (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -1364 (|#1|)) (-15 -3023 ((-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -1542 ((-637 |#2|) (-1181 |#1|) (-1 |#2| |#2|))) (-15 -2134 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3260 (|#1| |#3|)) (-15 -2134 (|#1| |#3|)) (-15 -1974 (|#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3260 (|#3| |#1|)) (-15 -3260 (|#1| (-1181 |#2|))) (-15 -3260 ((-1181 |#2|) |#1|)) (-15 -3220 ((-1181 |#1|))) (-15 -1814 (|#3| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2707 ((-3 |#1| "failed") |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 91 (|has| |#1| (-344)))) (-3446 (($ $) 92 (|has| |#1| (-344)))) (-1276 (((-110) $) 94 (|has| |#1| (-344)))) (-1863 (((-637 |#1|) (-1181 $)) 44) (((-637 |#1|)) 59)) (-1367 ((|#1| $) 50)) (-3143 (((-1109 (-862) (-719)) (-530)) 144 (|has| |#1| (-330)))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 111 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 112 (|has| |#1| (-344)))) (-1426 (((-110) $ $) 102 (|has| |#1| (-344)))) (-3023 (((-719)) 85 (|has| |#1| (-349)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 166 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 164 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 163)) (-2585 (((-530) $) 167 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 165 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 162)) (-1574 (($ (-1181 |#1|) (-1181 $)) 46) (($ (-1181 |#1|)) 62)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-330)))) (-3590 (($ $ $) 106 (|has| |#1| (-344)))) (-1984 (((-637 |#1|) $ (-1181 $)) 51) (((-637 |#1|) $) 57)) (-2329 (((-637 (-530)) (-637 $)) 161 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 160 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 159) (((-637 |#1|) (-637 $)) 158)) (-2134 (($ |#2|) 155) (((-3 $ "failed") (-388 |#2|)) 152 (|has| |#1| (-344)))) (-2707 (((-3 $ "failed") $) 32)) (-2426 (((-862)) 52)) (-1364 (($) 88 (|has| |#1| (-349)))) (-3571 (($ $ $) 105 (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 100 (|has| |#1| (-344)))) (-1677 (($) 146 (|has| |#1| (-330)))) (-2798 (((-110) $) 147 (|has| |#1| (-330)))) (-3948 (($ $ (-719)) 138 (|has| |#1| (-330))) (($ $) 137 (|has| |#1| (-330)))) (-3295 (((-110) $) 113 (|has| |#1| (-344)))) (-2031 (((-862) $) 149 (|has| |#1| (-330))) (((-781 (-862)) $) 135 (|has| |#1| (-330)))) (-2731 (((-110) $) 30)) (-2376 ((|#1| $) 49)) (-2972 (((-3 $ "failed") $) 139 (|has| |#1| (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 109 (|has| |#1| (-344)))) (-1359 ((|#2| $) 42 (|has| |#1| (-344)))) (-1905 (((-862) $) 87 (|has| |#1| (-349)))) (-2123 ((|#2| $) 153)) (-2170 (($ (-597 $)) 98 (|has| |#1| (-344))) (($ $ $) 97 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 114 (|has| |#1| (-344)))) (-3657 (($) 140 (|has| |#1| (-330)) CONST)) (-1986 (($ (-862)) 86 (|has| |#1| (-349)))) (-2624 (((-1046) $) 10)) (-1974 (($) 157)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 99 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 96 (|has| |#1| (-344))) (($ $ $) 95 (|has| |#1| (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) 143 (|has| |#1| (-330)))) (-2611 (((-399 $) $) 110 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 107 (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ $) 90 (|has| |#1| (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 101 (|has| |#1| (-344)))) (-2356 (((-719) $) 103 (|has| |#1| (-344)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 104 (|has| |#1| (-344)))) (-3060 ((|#1| (-1181 $)) 45) ((|#1|) 58)) (-1823 (((-719) $) 148 (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) 136 (|has| |#1| (-330)))) (-3289 (($ $) 134 (-1461 (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) 132 (-1461 (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) 130 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099))) 129 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1099) (-719)) 128 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-719))) 127 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-719)) 120 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-344)))) (-1542 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-344)))) (-1781 ((|#2|) 156)) (-3406 (($) 145 (|has| |#1| (-330)))) (-2328 (((-1181 |#1|) $ (-1181 $)) 48) (((-637 |#1|) (-1181 $) (-1181 $)) 47) (((-1181 |#1|) $) 64) (((-637 |#1|) (-1181 $)) 63)) (-3260 (((-1181 |#1|) $) 61) (($ (-1181 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 142 (|has| |#1| (-330)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-344))) (($ (-388 (-530))) 84 (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (($ $) 141 (|has| |#1| (-330))) (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-1814 ((|#2| $) 43)) (-3300 (((-719)) 28)) (-3220 (((-1181 $)) 65)) (-3944 (((-110) $ $) 93 (|has| |#1| (-344)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $) 133 (-1461 (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) 131 (-1461 (-3380 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) 126 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099))) 125 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1099) (-719)) 124 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-719))) 123 (-3380 (|has| |#1| (-841 (-1099))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-719)) 122 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-344)))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 118 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 115 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-388 (-530)) $) 117 (|has| |#1| (-344))) (($ $ (-388 (-530))) 116 (|has| |#1| (-344)))))
-(((-673 |#1| |#2|) (-133) (-162) (-1157 |t#1|)) (T -673))
-((-1974 (*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-673 *2 *3)) (-4 *3 (-1157 *2)))) (-1781 (*1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-2134 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3)))) (-3260 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3)))) (-2123 (*1 *2 *1) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3)))) (-2134 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-344)) (-4 *3 (-162)) (-4 *1 (-673 *3 *4)))) (-1542 (*1 *2 *3 *4) (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-4 *1 (-673 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1157 *5)) (-5 *2 (-637 *5)))))
-(-13 (-390 |t#1| |t#2|) (-162) (-572 |t#2|) (-392 |t#1|) (-358 |t#1|) (-10 -8 (-15 -1974 ($)) (-15 -1781 (|t#2|)) (-15 -2134 ($ |t#2|)) (-15 -3260 ($ |t#2|)) (-15 -2123 (|t#2| $)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-6 (-214 |t#1|)) (-15 -2134 ((-3 $ "failed") (-388 |t#2|))) (-15 -1542 ((-637 |t#1|) (-1181 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-330)) (-6 (-330)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-99) . T) ((-109 #0# #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 |#2|) . T) ((-214 |#1|) |has| |#1| (-344)) ((-216) -1461 (|has| |#1| (-330)) (-12 (|has| |#1| (-216)) (|has| |#1| (-344)))) ((-226) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-272) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-289) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-344) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1461 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| |#2|) . T) ((-390 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-522) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-666 |#1|) . T) ((-666 $) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099)))) ((-861) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-330)) ((-1139) -1461 (|has| |#1| (-330)) (|has| |#1| (-344))))
-((-2350 (($) 11)) (-2707 (((-3 $ "failed") $) 13)) (-2731 (((-110) $) 10)) (** (($ $ (-862)) NIL) (($ $ (-719)) 18)))
-(((-674 |#1|) (-10 -8 (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 -2731 ((-110) |#1|)) (-15 -2350 (|#1|)) (-15 ** (|#1| |#1| (-862)))) (-675)) (T -674))
-NIL
-(-10 -8 (-15 -2707 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-719))) (-15 -2731 ((-110) |#1|)) (-15 -2350 (|#1|)) (-15 ** (|#1| |#1| (-862))))
-((-2352 (((-110) $ $) 7)) (-2350 (($) 18 T CONST)) (-2707 (((-3 $ "failed") $) 15)) (-2731 (((-110) $) 17)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3093 (($) 19 T CONST)) (-2248 (((-110) $ $) 6)) (** (($ $ (-862)) 13) (($ $ (-719)) 16)) (* (($ $ $) 14)))
-(((-675) (-133)) (T -675))
-((-3093 (*1 *1) (-4 *1 (-675))) (-2350 (*1 *1) (-4 *1 (-675))) (-2731 (*1 *2 *1) (-12 (-4 *1 (-675)) (-5 *2 (-110)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719)))) (-2707 (*1 *1 *1) (|partial| -4 *1 (-675))))
-(-13 (-1039) (-10 -8 (-15 (-3093) ($) -2708) (-15 -2350 ($) -2708) (-15 -2731 ((-110) $)) (-15 ** ($ $ (-719))) (-15 -2707 ((-3 $ "failed") $))))
-(((-99) . T) ((-571 (-804)) . T) ((-1039) . T) ((-1027) . T))
-((-2218 (((-2 (|:| -4182 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-1489 (((-2 (|:| -4182 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-4063 ((|#2| (-388 |#2|) (-1 |#2| |#2|)) 13)) (-3850 (((-2 (|:| |poly| |#2|) (|:| -4182 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)) 47)))
-(((-676 |#1| |#2|) (-10 -7 (-15 -1489 ((-2 (|:| -4182 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2218 ((-2 (|:| -4182 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4063 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -3850 ((-2 (|:| |poly| |#2|) (|:| -4182 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1157 |#1|)) (T -676))
-((-3850 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4182 (-388 *6)) (|:| |special| (-388 *6)))) (-5 *1 (-676 *5 *6)) (-5 *3 (-388 *6)))) (-4063 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-676 *5 *2)) (-4 *5 (-344)))) (-2218 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4182 (-399 *3)) (|:| |special| (-399 *3)))) (-5 *1 (-676 *5 *3)))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4182 *3) (|:| |special| *3))) (-5 *1 (-676 *5 *3)))))
-(-10 -7 (-15 -1489 ((-2 (|:| -4182 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2218 ((-2 (|:| -4182 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -4063 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -3850 ((-2 (|:| |poly| |#2|) (|:| -4182 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|))))
-((-3153 ((|#7| (-597 |#5|) |#6|) NIL)) (-3217 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
-(((-677 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3217 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3153 (|#7| (-597 |#5|) |#6|))) (-795) (-741) (-741) (-984) (-984) (-890 |#4| |#2| |#1|) (-890 |#5| |#3| |#1|)) (T -677))
-((-3153 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *9)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *8 (-984)) (-4 *2 (-890 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741)) (-4 *4 (-890 *8 *6 *5)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-984)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-4 *2 (-890 *9 *7 *5)) (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741)) (-4 *4 (-890 *8 *6 *5)))))
-(-10 -7 (-15 -3217 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3153 (|#7| (-597 |#5|) |#6|)))
-((-3217 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
-(((-678 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3217 (|#7| (-1 |#2| |#1|) |#6|))) (-795) (-795) (-741) (-741) (-984) (-890 |#5| |#3| |#1|) (-890 |#5| |#4| |#2|)) (T -678))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-4 *7 (-741)) (-4 *9 (-984)) (-4 *2 (-890 *9 *8 *6)) (-5 *1 (-678 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-741)) (-4 *4 (-890 *9 *7 *5)))))
-(-10 -7 (-15 -3217 (|#7| (-1 |#2| |#1|) |#6|)))
-((-2611 (((-399 |#4|) |#4|) 41)))
-(((-679 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4|))) (-741) (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099))))) (-289) (-890 (-893 |#3|) |#1| |#2|)) (T -679))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-679 *4 *5 *6 *3)) (-4 *3 (-890 (-893 *6) *4 *5)))))
-(-10 -7 (-15 -2611 ((-399 |#4|) |#4|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-806 |#1|)) $) NIL)) (-2577 (((-1095 $) $ (-806 |#1|)) NIL) (((-1095 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-806 |#1|))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-806 |#1|) "failed") $) NIL)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-806 |#1|) $) NIL)) (-3388 (($ $ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| (-502 (-806 |#1|)) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-806 |#1|) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#2|) (-806 |#1|)) NIL) (($ (-1095 $) (-806 |#1|)) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#2| (-502 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-806 |#1|)) NIL)) (-2944 (((-502 (-806 |#1|)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 (-502 (-806 |#1|)) (-502 (-806 |#1|))) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2040 (((-3 (-806 |#1|) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-806 |#1|)) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#2| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-806 |#1|) |#2|) NIL) (($ $ (-597 (-806 |#1|)) (-597 |#2|)) NIL) (($ $ (-806 |#1|) $) NIL) (($ $ (-597 (-806 |#1|)) (-597 $)) NIL)) (-3060 (($ $ (-806 |#1|)) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-1429 (((-502 (-806 |#1|)) $) NIL) (((-719) $ (-806 |#1|)) NIL) (((-597 (-719)) $ (-597 (-806 |#1|))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-806 |#1|) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-806 |#1|) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-806 |#1|)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-806 |#1|)) NIL) (($ $) NIL (|has| |#2| (-522))) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530))))))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-502 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-806 |#1|)) NIL) (($ $ (-597 (-806 |#1|))) NIL) (($ $ (-806 |#1|) (-719)) NIL) (($ $ (-597 (-806 |#1|)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-680 |#1| |#2|) (-890 |#2| (-502 (-806 |#1|)) (-806 |#1|)) (-597 (-1099)) (-984)) (T -680))
-NIL
-(-890 |#2| (-502 (-806 |#1|)) (-806 |#1|))
-((-1917 (((-2 (|:| -3418 (-893 |#3|)) (|:| -1726 (-893 |#3|))) |#4|) 14)) (-3097 ((|#4| |#4| |#2|) 33)) (-1829 ((|#4| (-388 (-893 |#3|)) |#2|) 64)) (-3002 ((|#4| (-1095 (-893 |#3|)) |#2|) 77)) (-3649 ((|#4| (-1095 |#4|) |#2|) 51)) (-2118 ((|#4| |#4| |#2|) 54)) (-2611 (((-399 |#4|) |#4|) 40)))
-(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1917 ((-2 (|:| -3418 (-893 |#3|)) (|:| -1726 (-893 |#3|))) |#4|)) (-15 -2118 (|#4| |#4| |#2|)) (-15 -3649 (|#4| (-1095 |#4|) |#2|)) (-15 -3097 (|#4| |#4| |#2|)) (-15 -3002 (|#4| (-1095 (-893 |#3|)) |#2|)) (-15 -1829 (|#4| (-388 (-893 |#3|)) |#2|)) (-15 -2611 ((-399 |#4|) |#4|))) (-741) (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)))) (-522) (-890 (-388 (-893 |#3|)) |#1| |#2|)) (T -681))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))) (-1829 (*1 *2 *3 *4) (-12 (-4 *6 (-522)) (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-5 *3 (-388 (-893 *6))) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))))) (-3002 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 (-893 *6))) (-4 *6 (-522)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))))) (-3097 (*1 *2 *2 *3) (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *5 (-522)) (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3)))) (-3649 (*1 *2 *3 *4) (-12 (-5 *3 (-1095 *2)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741)) (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522)))) (-2118 (*1 *2 *2 *3) (-12 (-4 *4 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *5 (-522)) (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3)))) (-1917 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522)) (-5 *2 (-2 (|:| -3418 (-893 *6)) (|:| -1726 (-893 *6)))) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))))
-(-10 -7 (-15 -1917 ((-2 (|:| -3418 (-893 |#3|)) (|:| -1726 (-893 |#3|))) |#4|)) (-15 -2118 (|#4| |#4| |#2|)) (-15 -3649 (|#4| (-1095 |#4|) |#2|)) (-15 -3097 (|#4| |#4| |#2|)) (-15 -3002 (|#4| (-1095 (-893 |#3|)) |#2|)) (-15 -1829 (|#4| (-388 (-893 |#3|)) |#2|)) (-15 -2611 ((-399 |#4|) |#4|)))
-((-2611 (((-399 |#4|) |#4|) 52)))
-(((-682 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4|))) (-741) (-795) (-13 (-289) (-140)) (-890 (-388 |#3|) |#1| |#2|)) (T -682))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-682 *4 *5 *6 *3)) (-4 *3 (-890 (-388 *6) *4 *5)))))
-(-10 -7 (-15 -2611 ((-399 |#4|) |#4|)))
-((-3217 (((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|)) 18)))
-(((-683 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|)))) (-984) (-984) (-675)) (T -683))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5 *7)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *7 (-675)) (-5 *2 (-684 *6 *7)) (-5 *1 (-683 *5 *6 *7)))))
-(-10 -7 (-15 -3217 ((-684 |#2| |#3|) (-1 |#2| |#1|) (-684 |#1| |#3|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 28)) (-3678 (((-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))) $) 29)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719)) 20 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2585 ((|#2| $) NIL) ((|#1| $) NIL)) (-2562 (($ $) 79 (|has| |#2| (-795)))) (-2707 (((-3 $ "failed") $) 65)) (-1364 (($) 35 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) 55)) (-2469 (((-597 $) $) 39)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| |#2|) 16)) (-3217 (($ (-1 |#1| |#1|) $) 54)) (-1905 (((-862) $) 32 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2521 ((|#2| $) 78 (|has| |#2| (-795)))) (-2533 ((|#1| $) 77 (|has| |#2| (-795)))) (-1424 (((-1082) $) NIL)) (-1986 (($ (-862)) 27 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 76) (($ (-530)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|)))) 11)) (-3441 (((-597 |#1|) $) 41)) (-4085 ((|#1| $ |#2|) 88)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3080 (($) 12 T CONST)) (-3093 (($) 33 T CONST)) (-2248 (((-110) $ $) 80)) (-2351 (($ $) 47) (($ $ $) NIL)) (-2339 (($ $ $) 26)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-684 |#1| |#2|) (-13 (-984) (-975 |#2|) (-975 |#1|) (-10 -8 (-15 -2725 ($ |#1| |#2|)) (-15 -4085 (|#1| $ |#2|)) (-15 -2366 ($ (-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))))) (-15 -3678 ((-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))) $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (-15 -3668 ((-110) $)) (-15 -3441 ((-597 |#1|) $)) (-15 -2469 ((-597 $) $)) (-15 -3579 ((-719) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-795)) (PROGN (-15 -2521 (|#2| $)) (-15 -2533 (|#1| $)) (-15 -2562 ($ $))) |%noBranch|))) (-984) (-675)) (T -684))
-((-2725 (*1 *1 *2 *3) (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-984)) (-4 *3 (-675)))) (-4085 (*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-675)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -2065 *3) (|:| -3940 *4)))) (-4 *3 (-984)) (-4 *4 (-675)) (-5 *1 (-684 *3 *4)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -2065 *3) (|:| -3940 *4)))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-684 *3 *4)) (-4 *4 (-675)))) (-3668 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3441 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-2469 (*1 *2 *1) (-12 (-5 *2 (-597 (-684 *3 *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-3579 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675)))) (-2521 (*1 *2 *1) (-12 (-4 *2 (-675)) (-4 *2 (-795)) (-5 *1 (-684 *3 *2)) (-4 *3 (-984)))) (-2533 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *3 (-675)))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *2 (-984)) (-4 *3 (-675)))))
-(-13 (-984) (-975 |#2|) (-975 |#1|) (-10 -8 (-15 -2725 ($ |#1| |#2|)) (-15 -4085 (|#1| $ |#2|)) (-15 -2366 ($ (-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))))) (-15 -3678 ((-597 (-2 (|:| -2065 |#1|) (|:| -3940 |#2|))) $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (-15 -3668 ((-110) $)) (-15 -3441 ((-597 |#1|) $)) (-15 -2469 ((-597 $) $)) (-15 -3579 ((-719) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-795)) (PROGN (-15 -2521 (|#2| $)) (-15 -2533 (|#1| $)) (-15 -2562 ($ $))) |%noBranch|)))
-((-2352 (((-110) $ $) 19)) (-4204 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1746 (($ $ $) 72)) (-2431 (((-110) $ $) 73)) (-3186 (((-110) $ (-719)) 8)) (-1243 (($ (-597 |#1|)) 68) (($) 67)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2287 (($ $) 62)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 64)) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22)) (-4033 (($ $ $) 69)) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2624 (((-1046) $) 21)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 61)) (-1252 (($ $ |#1|) 71) (($ $ $) 70)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18)) (-3381 (($ (-597 |#1|)) 66) (($) 65)) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-685 |#1|) (-133) (-1027)) (T -685))
-NIL
-(-13 (-643 |t#1|) (-1025 |t#1|))
-(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-643 |#1|) . T) ((-1025 |#1|) . T) ((-1027) . T) ((-1135) . T))
-((-2352 (((-110) $ $) NIL)) (-4204 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-1746 (($ $ $) 79)) (-2431 (((-110) $ $) 83)) (-3186 (((-110) $ (-719)) NIL)) (-1243 (($ (-597 |#1|)) 24) (($) 16)) (-2901 (($ (-1 (-110) |#1|) $) 70 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-2287 (($ $) 71)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) 61 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 64 (|has| $ (-6 -4269))) (($ |#1| $ (-530)) 62) (($ (-1 (-110) |#1|) $ (-530)) 65)) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (($ |#1| $ (-530)) 67) (($ (-1 (-110) |#1|) $ (-530)) 68)) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 32 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 82)) (-2113 (($) 14) (($ |#1|) 26) (($ (-597 |#1|)) 21)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) 38)) (-4197 (((-110) |#1| $) 58 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 75)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4033 (($ $ $) 77)) (-1723 ((|#1| $) 55)) (-2441 (($ |#1| $) 56) (($ |#1| $ (-719)) 72)) (-2624 (((-1046) $) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2738 ((|#1| $) 54)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 50)) (-3958 (($) 13)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 48)) (-1252 (($ $ |#1|) NIL) (($ $ $) 78)) (-1560 (($) 15) (($ (-597 |#1|)) 23)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) 60 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 66)) (-3260 (((-506) $) 36 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 20)) (-2366 (((-804) $) 44)) (-3381 (($ (-597 |#1|)) 25) (($) 17)) (-2242 (($ (-597 |#1|)) 22)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 81)) (-2267 (((-719) $) 59 (|has| $ (-6 -4269)))))
-(((-686 |#1|) (-13 (-685 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2113 ($)) (-15 -2113 ($ |#1|)) (-15 -2113 ($ (-597 |#1|))) (-15 -2395 ((-597 |#1|) $)) (-15 -2383 ($ |#1| $ (-530))) (-15 -2383 ($ (-1 (-110) |#1|) $ (-530))) (-15 -1842 ($ |#1| $ (-530))) (-15 -1842 ($ (-1 (-110) |#1|) $ (-530))))) (-1027)) (T -686))
-((-2113 (*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-2113 (*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-2113 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-686 *3)))) (-2395 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-686 *3)) (-4 *3 (-1027)))) (-2383 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-2383 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027)) (-5 *1 (-686 *4)))) (-1842 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027)))) (-1842 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027)) (-5 *1 (-686 *4)))))
-(-13 (-685 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -2113 ($)) (-15 -2113 ($ |#1|)) (-15 -2113 ($ (-597 |#1|))) (-15 -2395 ((-597 |#1|) $)) (-15 -2383 ($ |#1| $ (-530))) (-15 -2383 ($ (-1 (-110) |#1|) $ (-530))) (-15 -1842 ($ |#1| $ (-530))) (-15 -1842 ($ (-1 (-110) |#1|) $ (-530)))))
-((-4151 (((-1186) (-1082)) 8)))
-(((-687) (-10 -7 (-15 -4151 ((-1186) (-1082))))) (T -687))
-((-4151 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-687)))))
-(-10 -7 (-15 -4151 ((-1186) (-1082))))
-((-3802 (((-597 |#1|) (-597 |#1|) (-597 |#1|)) 10)))
-(((-688 |#1|) (-10 -7 (-15 -3802 ((-597 |#1|) (-597 |#1|) (-597 |#1|)))) (-795)) (T -688))
-((-3802 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-688 *3)))))
-(-10 -7 (-15 -3802 ((-597 |#1|) (-597 |#1|) (-597 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 |#2|) $) 134)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 127 (|has| |#1| (-522)))) (-3446 (($ $) 126 (|has| |#1| (-522)))) (-1276 (((-110) $) 124 (|has| |#1| (-522)))) (-2386 (($ $) 83 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 66 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-2625 (($ $) 65 (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) 82 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 67 (|has| |#1| (-37 (-388 (-530)))))) (-2409 (($ $) 81 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 68 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-2562 (($ $) 118)) (-2707 (((-3 $ "failed") $) 32)) (-1761 (((-893 |#1|) $ (-719)) 96) (((-893 |#1|) $ (-719) (-719)) 95)) (-3555 (((-110) $) 135)) (-1948 (($) 93 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $ |#2|) 98) (((-719) $ |#2| (-719)) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 64 (|has| |#1| (-37 (-388 (-530)))))) (-3668 (((-110) $) 116)) (-2725 (($ $ (-597 |#2|) (-597 (-502 |#2|))) 133) (($ $ |#2| (-502 |#2|)) 132) (($ |#1| (-502 |#2|)) 117) (($ $ |#2| (-719)) 100) (($ $ (-597 |#2|) (-597 (-719))) 99)) (-3217 (($ (-1 |#1| |#1|) $) 115)) (-2168 (($ $) 90 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 113)) (-2533 ((|#1| $) 112)) (-1424 (((-1082) $) 9)) (-1545 (($ $ |#2|) 94 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) 10)) (-3168 (($ $ (-719)) 101)) (-3551 (((-3 $ "failed") $ $) 128 (|has| |#1| (-522)))) (-2853 (($ $) 91 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (($ $ |#2| $) 109) (($ $ (-597 |#2|) (-597 $)) 108) (($ $ (-597 (-276 $))) 107) (($ $ (-276 $)) 106) (($ $ $ $) 105) (($ $ (-597 $) (-597 $)) 104)) (-3289 (($ $ |#2|) 40) (($ $ (-597 |#2|)) 39) (($ $ |#2| (-719)) 38) (($ $ (-597 |#2|) (-597 (-719))) 37)) (-1429 (((-502 |#2|) $) 114)) (-2421 (($ $) 80 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 69 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 79 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 70 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 78 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 71 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 136)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 131 (|has| |#1| (-162))) (($ $) 129 (|has| |#1| (-522))) (($ (-388 (-530))) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4085 ((|#1| $ (-502 |#2|)) 119) (($ $ |#2| (-719)) 103) (($ $ (-597 |#2|) (-597 (-719))) 102)) (-3251 (((-3 $ "failed") $) 130 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-2459 (($ $) 89 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 77 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 125 (|has| |#1| (-522)))) (-2434 (($ $) 88 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 76 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 87 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 75 (|has| |#1| (-37 (-388 (-530)))))) (-3632 (($ $) 86 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 74 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 85 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 73 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 84 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 72 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ |#2|) 36) (($ $ (-597 |#2|)) 35) (($ $ |#2| (-719)) 34) (($ $ (-597 |#2|) (-597 (-719))) 33)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 120 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ $) 92 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 63 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 123 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 122 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
-(((-689 |#1| |#2|) (-133) (-984) (-795)) (T -689))
-((-4085 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795)))) (-4085 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-689 *3 *4)) (-4 *3 (-984)) (-4 *4 (-795)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984)) (-4 *2 (-795)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)))) (-2031 (*1 *2 *1 *3) (-12 (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *2 (-719)))) (-2031 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-719)) (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795)))) (-1761 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)) (-5 *2 (-893 *4)))) (-1761 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984)) (-4 *5 (-795)) (-5 *2 (-893 *4)))) (-1545 (*1 *1 *1 *2) (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795)) (-4 *3 (-37 (-388 (-530)))))))
-(-13 (-841 |t#2|) (-913 |t#1| (-502 |t#2|) |t#2|) (-491 |t#2| $) (-291 $) (-10 -8 (-15 -4085 ($ $ |t#2| (-719))) (-15 -4085 ($ $ (-597 |t#2|) (-597 (-719)))) (-15 -3168 ($ $ (-719))) (-15 -2725 ($ $ |t#2| (-719))) (-15 -2725 ($ $ (-597 |t#2|) (-597 (-719)))) (-15 -2031 ((-719) $ |t#2|)) (-15 -2031 ((-719) $ |t#2| (-719))) (-15 -1761 ((-893 |t#1|) $ (-719))) (-15 -1761 ((-893 |t#1|) $ (-719) (-719))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ |t#2|)) (-6 (-941)) (-6 (-1121))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-502 |#2|)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-272) |has| |#1| (-522)) ((-291 $) . T) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-491 |#2| $) . T) ((-491 $ $) . T) ((-522) |has| |#1| (-522)) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 |#2|) . T) ((-913 |#1| #0# |#2|) . T) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))))
-((-2611 (((-399 (-1095 |#4|)) (-1095 |#4|)) 30) (((-399 |#4|) |#4|) 26)))
-(((-690 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 |#4|) |#4|)) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|)))) (-795) (-741) (-13 (-289) (-140)) (-890 |#3| |#2| |#1|)) (T -690))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-690 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-690 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
-(-10 -7 (-15 -2611 ((-399 |#4|) |#4|)) (-15 -2611 ((-399 (-1095 |#4|)) (-1095 |#4|))))
-((-3366 (((-399 |#4|) |#4| |#2|) 120)) (-2492 (((-399 |#4|) |#4|) NIL)) (-3272 (((-399 (-1095 |#4|)) (-1095 |#4|)) 111) (((-399 |#4|) |#4|) 41)) (-3268 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2611 (-1095 |#4|)) (|:| -3194 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|))) 69)) (-2312 (((-1095 |#3|) (-1095 |#3|) (-530)) 139)) (-3597 (((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719)) 61)) (-2123 (((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|)) 65)) (-2092 (((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|))) 26)) (-4205 (((-2 (|:| -3109 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530)) 57)) (-1251 (((-530) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) 136)) (-3759 ((|#4| (-530) (-399 |#4|)) 58)) (-3015 (((-110) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) NIL)))
-(((-691 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3272 ((-399 |#4|) |#4|)) (-15 -3272 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2492 ((-399 |#4|) |#4|)) (-15 -1251 ((-530) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))))) (-15 -3366 ((-399 |#4|) |#4| |#2|)) (-15 -4205 ((-2 (|:| -3109 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530))) (-15 -3268 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2611 (-1095 |#4|)) (|:| -3194 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -2092 ((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -3759 (|#4| (-530) (-399 |#4|))) (-15 -3015 ((-110) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))))) (-15 -2123 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|))) (-15 -3597 ((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719))) (-15 -2312 ((-1095 |#3|) (-1095 |#3|) (-530)))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -691))
-((-2312 (*1 *2 *2 *3) (-12 (-5 *2 (-1095 *6)) (-5 *3 (-530)) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3597 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-4 *7 (-795)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-4 *8 (-289)) (-5 *2 (-597 (-719))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *5 (-719)))) (-2123 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1095 *11)) (-5 *6 (-597 *10)) (-5 *7 (-597 (-719))) (-5 *8 (-597 *11)) (-4 *10 (-795)) (-4 *11 (-289)) (-4 *9 (-741)) (-4 *5 (-890 *11 *9 *10)) (-5 *2 (-597 (-1095 *5))) (-5 *1 (-691 *9 *10 *11 *5)) (-5 *3 (-1095 *5)))) (-3015 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-2 (|:| -2611 (-1095 *6)) (|:| -3194 (-530))))) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-399 *2)) (-4 *2 (-890 *7 *5 *6)) (-5 *1 (-691 *5 *6 *7 *2)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-289)))) (-2092 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-5 *2 (-2 (|:| |upol| (-1095 *8)) (|:| |Lval| (-597 *8)) (|:| |Lfact| (-597 (-2 (|:| -2611 (-1095 *8)) (|:| -3194 (-530))))) (|:| |ctpol| *8))) (-5 *1 (-691 *6 *7 *8 *9)))) (-3268 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *6 (-741)) (-4 *9 (-890 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-597 (-2 (|:| -2611 (-1095 *9)) (|:| -3194 (-530))))))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)))) (-4205 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-530)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-5 *2 (-2 (|:| -3109 (-1095 *9)) (|:| |polval| (-1095 *8)))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)) (-5 *4 (-1095 *8)))) (-3366 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))) (-1251 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2611 (-1095 *6)) (|:| -3194 (-530))))) (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-2492 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))))
-(-10 -7 (-15 -3272 ((-399 |#4|) |#4|)) (-15 -3272 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2492 ((-399 |#4|) |#4|)) (-15 -1251 ((-530) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))))) (-15 -3366 ((-399 |#4|) |#4| |#2|)) (-15 -4205 ((-2 (|:| -3109 (-1095 |#4|)) (|:| |polval| (-1095 |#3|))) (-1095 |#4|) (-1095 |#3|) (-530))) (-15 -3268 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-597 (-2 (|:| -2611 (-1095 |#4|)) (|:| -3194 (-530)))))) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -2092 ((-2 (|:| |upol| (-1095 |#3|)) (|:| |Lval| (-597 |#3|)) (|:| |Lfact| (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530))))) (|:| |ctpol| |#3|)) (-1095 |#4|) (-597 |#2|) (-597 (-597 |#3|)))) (-15 -3759 (|#4| (-530) (-399 |#4|))) (-15 -3015 ((-110) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))) (-597 (-2 (|:| -2611 (-1095 |#3|)) (|:| -3194 (-530)))))) (-15 -2123 ((-3 (-597 (-1095 |#4|)) "failed") (-1095 |#4|) (-1095 |#3|) (-1095 |#3|) |#4| (-597 |#2|) (-597 (-719)) (-597 |#3|))) (-15 -3597 ((-597 (-719)) (-1095 |#4|) (-597 |#2|) (-719))) (-15 -2312 ((-1095 |#3|) (-1095 |#3|) (-530))))
-((-1667 (($ $ (-862)) 12)))
-(((-692 |#1| |#2|) (-10 -8 (-15 -1667 (|#1| |#1| (-862)))) (-693 |#2|) (-162)) (T -692))
-NIL
-(-10 -8 (-15 -1667 (|#1| |#1| (-862))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2862 (($ $ (-862)) 28)) (-1667 (($ $ (-862)) 33)) (-4138 (($ $ (-862)) 29)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2607 (($ $ $) 25)) (-2366 (((-804) $) 11)) (-2346 (($ $ $ $) 26)) (-3980 (($ $ $) 24)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
-(((-693 |#1|) (-133) (-162)) (T -693))
-((-1667 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-693 *3)) (-4 *3 (-162)))))
-(-13 (-710) (-666 |t#1|) (-10 -8 (-15 -1667 ($ $ (-862)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-669) . T) ((-710) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-3939 (((-973) (-637 (-208)) (-530) (-110) (-530)) 25)) (-1268 (((-973) (-637 (-208)) (-530) (-110) (-530)) 24)))
-(((-694) (-10 -7 (-15 -1268 ((-973) (-637 (-208)) (-530) (-110) (-530))) (-15 -3939 ((-973) (-637 (-208)) (-530) (-110) (-530))))) (T -694))
-((-3939 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-694)))) (-1268 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-694)))))
-(-10 -7 (-15 -1268 ((-973) (-637 (-208)) (-530) (-110) (-530))) (-15 -3939 ((-973) (-637 (-208)) (-530) (-110) (-530))))
-((-4089 (((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) 43)) (-1338 (((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) 39)) (-2729 (((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 32)))
-(((-695) (-10 -7 (-15 -2729 ((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -1338 ((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -4089 ((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))) (T -695))
-((-4089 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-973)) (-5 *1 (-695)))) (-1338 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-973)) (-5 *1 (-695)))) (-2729 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973)) (-5 *1 (-695)))))
-(-10 -7 (-15 -2729 ((-973) (-208) (-208) (-208) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -1338 ((-973) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -4089 ((-973) (-530) (-530) (-530) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))
-((-2068 (((-973) (-530) (-530) (-637 (-208)) (-530)) 34)) (-2592 (((-973) (-530) (-530) (-637 (-208)) (-530)) 33)) (-3809 (((-973) (-530) (-637 (-208)) (-530)) 32)) (-2762 (((-973) (-530) (-637 (-208)) (-530)) 31)) (-4108 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 30)) (-1215 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-2723 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-4048 (((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530)) 27)) (-3144 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 24)) (-3407 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 23)) (-1691 (((-973) (-530) (-637 (-208)) (-530)) 22)) (-2959 (((-973) (-530) (-637 (-208)) (-530)) 21)))
-(((-696) (-10 -7 (-15 -2959 ((-973) (-530) (-637 (-208)) (-530))) (-15 -1691 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3407 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3144 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4048 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2723 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1215 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4108 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2762 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3809 ((-973) (-530) (-637 (-208)) (-530))) (-15 -2592 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -2068 ((-973) (-530) (-530) (-637 (-208)) (-530))))) (T -696))
-((-2068 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2592 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3809 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2762 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-4108 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-1215 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2723 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-4048 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3144 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-3407 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-1691 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))) (-2959 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-696)))))
-(-10 -7 (-15 -2959 ((-973) (-530) (-637 (-208)) (-530))) (-15 -1691 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3407 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3144 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4048 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2723 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1215 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4108 ((-973) (-530) (-530) (-1082) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2762 ((-973) (-530) (-637 (-208)) (-530))) (-15 -3809 ((-973) (-530) (-637 (-208)) (-530))) (-15 -2592 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -2068 ((-973) (-530) (-530) (-637 (-208)) (-530))))
-((-2905 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 52)) (-3188 (((-973) (-637 (-208)) (-637 (-208)) (-530) (-530)) 51)) (-2240 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2751 (((-973) (-208) (-208) (-530) (-530) (-530) (-530)) 46)) (-4186 (((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 45)) (-1716 (((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 44)) (-1914 (((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 43)) (-3454 (((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 42)) (-3989 (((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 38)) (-2114 (((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 37)) (-3412 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 33)) (-3698 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) 32)))
-(((-697) (-10 -7 (-15 -3698 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3412 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -2114 ((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3989 ((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3454 ((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1914 ((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1716 ((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -4186 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2751 ((-973) (-208) (-208) (-530) (-530) (-530) (-530))) (-15 -2240 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -3188 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-530))) (-15 -2905 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))) (T -697))
-((-2905 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3188 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))) (-2240 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2751 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))) (-4186 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-1716 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-1914 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3454 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3989 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-2114 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-697)))) (-3412 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973)) (-5 *1 (-697)))) (-3698 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973)) (-5 *1 (-697)))))
-(-10 -7 (-15 -3698 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3412 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -2114 ((-973) (-208) (-208) (-530) (-637 (-208)) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3989 ((-973) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334))))) (-15 -3454 ((-973) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1914 ((-973) (-208) (-208) (-208) (-208) (-530) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1716 ((-973) (-208) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -4186 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2751 ((-973) (-208) (-208) (-530) (-530) (-530) (-530))) (-15 -2240 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -3188 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-530))) (-15 -2905 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-208) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))
-((-4042 (((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-4229 (((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369)) 69) (((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) 68)) (-2689 (((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) 57)) (-2779 (((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 50)) (-1227 (((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 49)) (-2775 (((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 45)) (-4117 (((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 42)) (-1288 (((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 38)))
-(((-698) (-10 -7 (-15 -1288 ((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -4117 ((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2775 ((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -1227 ((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2779 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2689 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -4229 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -4229 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -4042 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -698))
-((-4042 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-4229 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-369)) (-5 *2 (-973)) (-5 *1 (-698)))) (-4229 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-973)) (-5 *1 (-698)))) (-2689 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2779 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-973)) (-5 *1 (-698)))) (-1227 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-2775 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-4117 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))) (-1288 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(-10 -7 (-15 -1288 ((-973) (-208) (-530) (-530) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -4117 ((-973) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2775 ((-973) (-208) (-530) (-530) (-208) (-1082) (-208) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -1227 ((-973) (-208) (-530) (-530) (-1082) (-530) (-208) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -2779 ((-973) (-637 (-208)) (-637 (-208)) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -2689 ((-973) (-208) (-208) (-530) (-208) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -4229 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -4229 ((-973) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -4042 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))
-((-3330 (((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530)) 45)) (-1411 (((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) 41)) (-2919 (((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 23)))
-(((-699) (-10 -7 (-15 -2919 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1411 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -3330 ((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530))))) (T -699))
-((-3330 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-625 (-208))) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))) (-1411 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-973)) (-5 *1 (-699)))) (-2919 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))))
-(-10 -7 (-15 -2919 ((-973) (-530) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1411 ((-973) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-1082) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -3330 ((-973) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-625 (-208)) (-530))))
-((-2095 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530)) 35)) (-2554 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530)) 34)) (-4075 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530)) 33)) (-1460 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-3858 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-1591 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530)) 27)) (-3124 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530)) 24)) (-3310 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530)) 23)) (-1701 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 22)) (-1934 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 21)))
-(((-700) (-10 -7 (-15 -1934 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -1701 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3310 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3124 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -1591 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530))) (-15 -3858 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1460 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4075 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530))) (-15 -2554 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530))) (-15 -2095 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530))))) (T -700))
-((-2095 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-2554 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-4075 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-700)))) (-1460 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-3858 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-1591 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-700)))) (-3124 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-3310 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-1701 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))) (-1934 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-700)))))
-(-10 -7 (-15 -1934 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -1701 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3310 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3124 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -1591 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-208) (-530))) (-15 -3858 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1460 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4075 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-637 (-208)) (-208) (-208) (-530))) (-15 -2554 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-208) (-208) (-530))) (-15 -2095 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-637 (-208)) (-208) (-208) (-530))))
-((-2063 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 45)) (-3447 (((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530)) 44)) (-3576 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530)) 43)) (-1930 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 42)) (-2676 (((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530)) 41)) (-3729 (((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530)) 40)) (-3012 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530)) 39)) (-3170 (((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530))) 38)) (-1572 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-530)) 35)) (-1913 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530)) 34)) (-3408 (((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530)) 33)) (-2454 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 32)) (-2893 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530)) 31)) (-1217 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530)) 30)) (-1539 (((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530)) 29)) (-2906 (((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530)) 28)) (-4148 (((-973) (-530) (-637 (-208)) (-208) (-530)) 24)) (-1665 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 21)))
-(((-701) (-10 -7 (-15 -1665 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4148 ((-973) (-530) (-637 (-208)) (-208) (-530))) (-15 -2906 ((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530))) (-15 -1539 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -1217 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530))) (-15 -2893 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530))) (-15 -2454 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3408 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530))) (-15 -1913 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530))) (-15 -1572 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3170 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)))) (-15 -3012 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530))) (-15 -3729 ((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -2676 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1930 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3576 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -3447 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2063 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))))) (T -701))
-((-2063 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-3447 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3576 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-1930 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2676 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3729 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3012 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3170 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))) (-1572 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-1913 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-3408 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2454 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))) (-2893 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-1217 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-1539 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-2906 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-4148 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))) (-1665 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-701)))))
-(-10 -7 (-15 -1665 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4148 ((-973) (-530) (-637 (-208)) (-208) (-530))) (-15 -2906 ((-973) (-530) (-530) (-530) (-208) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-530)) (-530) (-530) (-530))) (-15 -1539 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -1217 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530) (-530) (-530))) (-15 -2893 ((-973) (-530) (-208) (-208) (-637 (-208)) (-530) (-530) (-208) (-530))) (-15 -2454 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3408 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530))) (-15 -1913 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530))) (-15 -1572 ((-973) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3170 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)))) (-15 -3012 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530) (-530) (-530) (-208) (-637 (-208)) (-530))) (-15 -3729 ((-973) (-1082) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -2676 ((-973) (-1082) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1930 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3576 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))) (-15 -3447 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2063 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530) (-637 (-208)) (-637 (-208)) (-530) (-530) (-530))))
-((-1860 (((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530)) 63)) (-1470 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2035 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) 58)) (-3512 (((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530)) 51)) (-3785 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) 50)) (-2221 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2575 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) 42)) (-3607 (((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 38)))
-(((-702) (-10 -7 (-15 -3607 ((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2575 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -2221 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -3785 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -3512 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530))) (-15 -2035 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -1470 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -1860 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530))))) (T -702))
-((-1860 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))) (-1470 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-637 (-530))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-702)))) (-2035 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-637 (-208))) (-5 *6 (-110)) (-5 *7 (-637 (-530))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))) (-3512 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-702)))) (-3785 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2221 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-2575 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-973)) (-5 *1 (-702)))) (-3607 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
-(-10 -7 (-15 -3607 ((-973) (-530) (-208) (-208) (-530) (-208) (-110) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2575 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -2221 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -3785 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -3512 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-530) (-530) (-637 (-208)) (-530))) (-15 -2035 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-208) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-110) (-110) (-110) (-530) (-530) (-637 (-208)) (-637 (-530)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -1470 ((-973) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-530) (-110) (-208) (-530) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-530) (-530) (-530) (-530) (-530) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-530) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -1860 ((-973) (-530) (-530) (-530) (-208) (-637 (-208)) (-530) (-637 (-208)) (-530))))
-((-3695 (((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530)) 47)) (-1880 (((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530)) 46)) (-3281 (((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530)) 45)) (-1645 (((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 40)) (-1941 (((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530)) 39)) (-2800 (((-973) (-530) (-530) (-530) (-637 (-208)) (-530)) 36)) (-1517 (((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530)) 35)) (-3797 (((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530)) 34)) (-2942 (((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530)) 33)) (-1270 (((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530)) 32)))
-(((-703) (-10 -7 (-15 -1270 ((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530))) (-15 -2942 ((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530))) (-15 -3797 ((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530))) (-15 -1517 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530))) (-15 -2800 ((-973) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -1941 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530))) (-15 -1645 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3281 ((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -1880 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -3695 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))) (T -703))
-((-3695 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1880 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-3281 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1645 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1941 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-2800 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-703)))) (-1517 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-703)))) (-3797 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-597 (-110))) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *7 (-208)) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-703)))) (-2942 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-637 (-530))) (-5 *5 (-110)) (-5 *7 (-637 (-208))) (-5 *3 (-530)) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-703)))) (-1270 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-597 (-110))) (-5 *7 (-637 (-208))) (-5 *8 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *5 (-110)) (-5 *2 (-973)) (-5 *1 (-703)))))
-(-10 -7 (-15 -1270 ((-973) (-530) (-530) (-530) (-530) (-208) (-110) (-110) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-530))) (-15 -2942 ((-973) (-530) (-530) (-530) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-637 (-530)) (-110) (-208) (-110) (-637 (-530)) (-637 (-208)) (-530))) (-15 -3797 ((-973) (-530) (-530) (-530) (-530) (-597 (-110)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-208) (-208) (-530))) (-15 -1517 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530))) (-15 -2800 ((-973) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -1941 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)) (-530))) (-15 -1645 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3281 ((-973) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -1880 ((-973) (-1082) (-1082) (-530) (-530) (-637 (-159 (-208))) (-530) (-637 (-159 (-208))) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -3695 ((-973) (-1082) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))
-((-4236 (((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530)) 65)) (-1578 (((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530)) 60)) (-2393 (((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369)) 56) (((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) 55)) (-2932 (((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530)) 37)) (-3344 (((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530)) 33)) (-3804 (((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530)) 30)) (-1289 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 29)) (-3740 (((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 28)) (-2543 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 27)) (-2148 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530)) 26)) (-2628 (((-973) (-530) (-530) (-637 (-208)) (-530)) 25)) (-4131 (((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 24)) (-1431 (((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530)) 23)) (-3066 (((-973) (-637 (-208)) (-530) (-530) (-530) (-530)) 22)) (-3314 (((-973) (-530) (-530) (-637 (-208)) (-530)) 21)))
-(((-704) (-10 -7 (-15 -3314 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -3066 ((-973) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -1431 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4131 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2628 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -2148 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -2543 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3740 ((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1289 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3804 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -3344 ((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530))) (-15 -2932 ((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2393 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -2393 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -1578 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4236 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))) (T -704))
-((-4236 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1578 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2393 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2393 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-2932 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-3344 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))) (-3804 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-704)))) (-1289 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-3740 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2543 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2148 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-2628 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-4131 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-1431 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))) (-3066 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-704)))) (-3314 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-704)))))
-(-10 -7 (-15 -3314 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -3066 ((-973) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -1431 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4131 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2628 ((-973) (-530) (-530) (-637 (-208)) (-530))) (-15 -2148 ((-973) (-530) (-530) (-530) (-530) (-637 (-208)) (-530))) (-15 -2543 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3740 ((-973) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -1289 ((-973) (-530) (-530) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3804 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530) (-530))) (-15 -3344 ((-973) (-530) (-530) (-208) (-208) (-530) (-530) (-637 (-208)) (-530))) (-15 -2932 ((-973) (-530) (-530) (-530) (-208) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2393 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -2393 ((-973) (-530) (-530) (-208) (-530) (-530) (-530) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -1578 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -4236 ((-973) (-530) (-530) (-530) (-530) (-530) (-110) (-530) (-110) (-530) (-637 (-159 (-208))) (-637 (-159 (-208))) (-530))))
-((-2821 (((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) 61)) (-3228 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530)) 57)) (-1771 (((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) 56)) (-2080 (((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530)) 37)) (-3480 (((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530)) 36)) (-3864 (((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530)) 33)) (-3105 (((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208))) 32)) (-3450 (((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530)) 28)) (-3851 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530)) 27)) (-2447 (((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530)) 26)) (-2803 (((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530)) 22)))
-(((-705) (-10 -7 (-15 -2803 ((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -2447 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3851 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3450 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530))) (-15 -3105 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)))) (-15 -3864 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3480 ((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2080 ((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -1771 ((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -3228 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -2821 ((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))) (T -705))
-((-2821 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3228 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-1771 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2080 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3480 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3864 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-3105 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3450 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-705)))) (-3851 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2447 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-705)))) (-2803 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973)) (-5 *1 (-705)))))
-(-10 -7 (-15 -2803 ((-973) (-530) (-637 (-159 (-208))) (-530) (-530) (-530) (-530) (-637 (-159 (-208))) (-530))) (-15 -2447 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3851 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-530))) (-15 -3450 ((-973) (-637 (-208)) (-530) (-637 (-208)) (-530) (-530) (-530))) (-15 -3105 ((-973) (-530) (-637 (-208)) (-530) (-637 (-530)) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)))) (-15 -3864 ((-973) (-530) (-530) (-637 (-208)) (-637 (-208)) (-637 (-208)) (-530))) (-15 -3480 ((-973) (-530) (-530) (-530) (-208) (-530) (-637 (-208)) (-637 (-208)) (-530))) (-15 -2080 ((-973) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-530)) (-637 (-208)) (-637 (-530)) (-637 (-530)) (-637 (-208)) (-637 (-208)) (-637 (-530)) (-530))) (-15 -1771 ((-973) (-530) (-637 (-208)) (-110) (-208) (-530) (-530) (-530) (-530) (-208) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -3228 ((-973) (-530) (-637 (-208)) (-530) (-637 (-208)) (-637 (-530)) (-530) (-637 (-208)) (-530) (-530) (-530) (-530))) (-15 -2821 ((-973) (-530) (-530) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-637 (-208)) (-530) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))
-((-2119 (((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208))) 29)) (-2506 (((-973) (-1082) (-530) (-530) (-637 (-208))) 28)) (-1812 (((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208))) 27)) (-3736 (((-973) (-530) (-530) (-530) (-637 (-208))) 21)))
-(((-706) (-10 -7 (-15 -3736 ((-973) (-530) (-530) (-530) (-637 (-208)))) (-15 -1812 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208)))) (-15 -2506 ((-973) (-1082) (-530) (-530) (-637 (-208)))) (-15 -2119 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)))))) (T -706))
-((-2119 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))) (-2506 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))) (-1812 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-706)))) (-3736 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973)) (-5 *1 (-706)))))
-(-10 -7 (-15 -3736 ((-973) (-530) (-530) (-530) (-637 (-208)))) (-15 -1812 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-637 (-530)) (-530) (-637 (-208)))) (-15 -2506 ((-973) (-1082) (-530) (-530) (-637 (-208)))) (-15 -2119 ((-973) (-1082) (-530) (-530) (-637 (-208)) (-530) (-530) (-637 (-208)))))
-((-3854 (((-973) (-208) (-208) (-208) (-208) (-530)) 62)) (-2135 (((-973) (-208) (-208) (-208) (-530)) 61)) (-4222 (((-973) (-208) (-208) (-208) (-530)) 60)) (-1390 (((-973) (-208) (-208) (-530)) 59)) (-2680 (((-973) (-208) (-530)) 58)) (-3823 (((-973) (-208) (-530)) 57)) (-2156 (((-973) (-208) (-530)) 56)) (-1369 (((-973) (-208) (-530)) 55)) (-2770 (((-973) (-208) (-530)) 54)) (-4008 (((-973) (-208) (-530)) 53)) (-3484 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 52)) (-2527 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 51)) (-3798 (((-973) (-208) (-530)) 50)) (-2175 (((-973) (-208) (-530)) 49)) (-1518 (((-973) (-208) (-530)) 48)) (-1729 (((-973) (-208) (-530)) 47)) (-3099 (((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530)) 46)) (-3173 (((-973) (-1082) (-159 (-208)) (-1082) (-530)) 45)) (-2870 (((-973) (-1082) (-159 (-208)) (-1082) (-530)) 44)) (-3226 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 43)) (-1544 (((-973) (-208) (-159 (-208)) (-530) (-1082) (-530)) 42)) (-1506 (((-973) (-208) (-530)) 39)) (-1978 (((-973) (-208) (-530)) 38)) (-3603 (((-973) (-208) (-530)) 37)) (-4200 (((-973) (-208) (-530)) 36)) (-1513 (((-973) (-208) (-530)) 35)) (-3890 (((-973) (-208) (-530)) 34)) (-1305 (((-973) (-208) (-530)) 33)) (-2215 (((-973) (-208) (-530)) 32)) (-2687 (((-973) (-208) (-530)) 31)) (-4203 (((-973) (-208) (-530)) 30)) (-1620 (((-973) (-208) (-208) (-208) (-530)) 29)) (-1995 (((-973) (-208) (-530)) 28)) (-3455 (((-973) (-208) (-530)) 27)) (-3833 (((-973) (-208) (-530)) 26)) (-2052 (((-973) (-208) (-530)) 25)) (-3467 (((-973) (-208) (-530)) 24)) (-3651 (((-973) (-159 (-208)) (-530)) 21)))
-(((-707) (-10 -7 (-15 -3651 ((-973) (-159 (-208)) (-530))) (-15 -3467 ((-973) (-208) (-530))) (-15 -2052 ((-973) (-208) (-530))) (-15 -3833 ((-973) (-208) (-530))) (-15 -3455 ((-973) (-208) (-530))) (-15 -1995 ((-973) (-208) (-530))) (-15 -1620 ((-973) (-208) (-208) (-208) (-530))) (-15 -4203 ((-973) (-208) (-530))) (-15 -2687 ((-973) (-208) (-530))) (-15 -2215 ((-973) (-208) (-530))) (-15 -1305 ((-973) (-208) (-530))) (-15 -3890 ((-973) (-208) (-530))) (-15 -1513 ((-973) (-208) (-530))) (-15 -4200 ((-973) (-208) (-530))) (-15 -3603 ((-973) (-208) (-530))) (-15 -1978 ((-973) (-208) (-530))) (-15 -1506 ((-973) (-208) (-530))) (-15 -1544 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -3226 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -2870 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -3173 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -3099 ((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1729 ((-973) (-208) (-530))) (-15 -1518 ((-973) (-208) (-530))) (-15 -2175 ((-973) (-208) (-530))) (-15 -3798 ((-973) (-208) (-530))) (-15 -2527 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -3484 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -4008 ((-973) (-208) (-530))) (-15 -2770 ((-973) (-208) (-530))) (-15 -1369 ((-973) (-208) (-530))) (-15 -2156 ((-973) (-208) (-530))) (-15 -3823 ((-973) (-208) (-530))) (-15 -2680 ((-973) (-208) (-530))) (-15 -1390 ((-973) (-208) (-208) (-530))) (-15 -4222 ((-973) (-208) (-208) (-208) (-530))) (-15 -2135 ((-973) (-208) (-208) (-208) (-530))) (-15 -3854 ((-973) (-208) (-208) (-208) (-208) (-530))))) (T -707))
-((-3854 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2135 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-4222 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1390 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2680 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3823 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1369 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2770 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-4008 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3484 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2527 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3798 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2175 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1518 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3099 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-530)) (-5 *5 (-159 (-208))) (-5 *6 (-1082)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3173 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2870 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3226 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1544 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082)) (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1506 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1978 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3603 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1513 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3890 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1305 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2215 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2687 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-4203 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1620 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-1995 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3455 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3833 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-2052 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3467 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))) (-3651 (*1 *2 *3 *4) (-12 (-5 *3 (-159 (-208))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(-10 -7 (-15 -3651 ((-973) (-159 (-208)) (-530))) (-15 -3467 ((-973) (-208) (-530))) (-15 -2052 ((-973) (-208) (-530))) (-15 -3833 ((-973) (-208) (-530))) (-15 -3455 ((-973) (-208) (-530))) (-15 -1995 ((-973) (-208) (-530))) (-15 -1620 ((-973) (-208) (-208) (-208) (-530))) (-15 -4203 ((-973) (-208) (-530))) (-15 -2687 ((-973) (-208) (-530))) (-15 -2215 ((-973) (-208) (-530))) (-15 -1305 ((-973) (-208) (-530))) (-15 -3890 ((-973) (-208) (-530))) (-15 -1513 ((-973) (-208) (-530))) (-15 -4200 ((-973) (-208) (-530))) (-15 -3603 ((-973) (-208) (-530))) (-15 -1978 ((-973) (-208) (-530))) (-15 -1506 ((-973) (-208) (-530))) (-15 -1544 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -3226 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -2870 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -3173 ((-973) (-1082) (-159 (-208)) (-1082) (-530))) (-15 -3099 ((-973) (-530) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -1729 ((-973) (-208) (-530))) (-15 -1518 ((-973) (-208) (-530))) (-15 -2175 ((-973) (-208) (-530))) (-15 -3798 ((-973) (-208) (-530))) (-15 -2527 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -3484 ((-973) (-208) (-159 (-208)) (-530) (-1082) (-530))) (-15 -4008 ((-973) (-208) (-530))) (-15 -2770 ((-973) (-208) (-530))) (-15 -1369 ((-973) (-208) (-530))) (-15 -2156 ((-973) (-208) (-530))) (-15 -3823 ((-973) (-208) (-530))) (-15 -2680 ((-973) (-208) (-530))) (-15 -1390 ((-973) (-208) (-208) (-530))) (-15 -4222 ((-973) (-208) (-208) (-208) (-530))) (-15 -2135 ((-973) (-208) (-208) (-208) (-530))) (-15 -3854 ((-973) (-208) (-208) (-208) (-208) (-530))))
-((-1626 (((-1186)) 18)) (-2160 (((-1082)) 22)) (-3553 (((-1082)) 21)) (-3537 (((-1031) (-1099) (-637 (-530))) 37) (((-1031) (-1099) (-637 (-208))) 32)) (-2396 (((-110)) 16)) (-3744 (((-1082) (-1082)) 25)))
-(((-708) (-10 -7 (-15 -3553 ((-1082))) (-15 -2160 ((-1082))) (-15 -3744 ((-1082) (-1082))) (-15 -3537 ((-1031) (-1099) (-637 (-208)))) (-15 -3537 ((-1031) (-1099) (-637 (-530)))) (-15 -2396 ((-110))) (-15 -1626 ((-1186))))) (T -708))
-((-1626 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-708)))) (-2396 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-708)))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-530))) (-5 *2 (-1031)) (-5 *1 (-708)))) (-3537 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-208))) (-5 *2 (-1031)) (-5 *1 (-708)))) (-3744 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))) (-2160 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))) (-3553 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
-(-10 -7 (-15 -3553 ((-1082))) (-15 -2160 ((-1082))) (-15 -3744 ((-1082) (-1082))) (-15 -3537 ((-1031) (-1099) (-637 (-208)))) (-15 -3537 ((-1031) (-1099) (-637 (-530)))) (-15 -2396 ((-110))) (-15 -1626 ((-1186))))
-((-2607 (($ $ $) 10)) (-2346 (($ $ $ $) 9)) (-3980 (($ $ $) 12)))
-(((-709 |#1|) (-10 -8 (-15 -3980 (|#1| |#1| |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2346 (|#1| |#1| |#1| |#1|))) (-710)) (T -709))
-NIL
-(-10 -8 (-15 -3980 (|#1| |#1| |#1|)) (-15 -2607 (|#1| |#1| |#1|)) (-15 -2346 (|#1| |#1| |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2862 (($ $ (-862)) 28)) (-4138 (($ $ (-862)) 29)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2607 (($ $ $) 25)) (-2366 (((-804) $) 11)) (-2346 (($ $ $ $) 26)) (-3980 (($ $ $) 24)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27)))
-(((-710) (-133)) (T -710))
-((-2346 (*1 *1 *1 *1 *1) (-4 *1 (-710))) (-2607 (*1 *1 *1 *1) (-4 *1 (-710))) (-3980 (*1 *1 *1 *1) (-4 *1 (-710))))
-(-13 (-21) (-669) (-10 -8 (-15 -2346 ($ $ $ $)) (-15 -2607 ($ $ $)) (-15 -3980 ($ $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-669) . T) ((-1027) . T))
-((-2366 (((-804) $) NIL) (($ (-530)) 10)))
-(((-711 |#1|) (-10 -8 (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-712)) (T -711))
-NIL
-(-10 -8 (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2635 (((-3 $ "failed") $) 40)) (-2862 (($ $ (-862)) 28) (($ $ (-719)) 35)) (-2707 (((-3 $ "failed") $) 38)) (-2731 (((-110) $) 34)) (-1232 (((-3 $ "failed") $) 39)) (-4138 (($ $ (-862)) 29) (($ $ (-719)) 36)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2607 (($ $ $) 25)) (-2366 (((-804) $) 11) (($ (-530)) 31)) (-3300 (((-719)) 32)) (-2346 (($ $ $ $) 26)) (-3980 (($ $ $) 24)) (-3080 (($) 18 T CONST)) (-3093 (($) 33 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 30) (($ $ (-719)) 37)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 27)))
+((* (*1 *1 *1 *1) (-4 *1 (-671))) (-1666 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864)))) (-2585 (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864)))))
+(-13 (-1030) (-10 -8 (-15 * ($ $ $)) (-15 -1666 ($ $ (-864))) (-15 -2585 ($ $ (-864))) (-15 ** ($ $ (-864)))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-1666 (($ $ (-864)) NIL) (($ $ (-721)) 17)) (-3481 (((-110) $) 10)) (-2585 (($ $ (-864)) NIL) (($ $ (-721)) 18)) (** (($ $ (-864)) NIL) (($ $ (-721)) 15)))
+(((-672 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-721))) (-15 -2585 (|#1| |#1| (-721))) (-15 -1666 (|#1| |#1| (-721))) (-15 -3481 ((-110) |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 -2585 (|#1| |#1| (-864))) (-15 -1666 (|#1| |#1| (-864)))) (-673)) (T -672))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-721))) (-15 -2585 (|#1| |#1| (-721))) (-15 -1666 (|#1| |#1| (-721))) (-15 -3481 ((-110) |#1|)) (-15 ** (|#1| |#1| (-864))) (-15 -2585 (|#1| |#1| (-864))) (-15 -1666 (|#1| |#1| (-864))))
+((-2247 (((-110) $ $) 7)) (-1387 (((-3 $ "failed") $) 17)) (-1666 (($ $ (-864)) 15) (($ $ (-721)) 22)) (-3622 (((-3 $ "failed") $) 19)) (-3481 (((-110) $) 23)) (-2234 (((-3 $ "failed") $) 18)) (-2585 (($ $ (-864)) 14) (($ $ (-721)) 21)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3050 (($) 24 T CONST)) (-2148 (((-110) $ $) 6)) (** (($ $ (-864)) 13) (($ $ (-721)) 20)) (* (($ $ $) 16)))
+(((-673) (-133)) (T -673))
+((-3050 (*1 *1) (-4 *1 (-673))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-673)) (-5 *2 (-110)))) (-1666 (*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))) (-2585 (*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))) (-3622 (*1 *1 *1) (|partial| -4 *1 (-673))) (-2234 (*1 *1 *1) (|partial| -4 *1 (-673))) (-1387 (*1 *1 *1) (|partial| -4 *1 (-673))))
+(-13 (-671) (-10 -8 (-15 (-3050) ($) -2651) (-15 -3481 ((-110) $)) (-15 -1666 ($ $ (-721))) (-15 -2585 ($ $ (-721))) (-15 ** ($ $ (-721))) (-15 -3622 ((-3 $ "failed") $)) (-15 -2234 ((-3 $ "failed") $)) (-15 -1387 ((-3 $ "failed") $))))
+(((-99) . T) ((-572 (-806)) . T) ((-671) . T) ((-1030) . T))
+((-3006 (((-721)) 34)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#2| $) 22)) (-1760 (($ |#3|) NIL) (((-3 $ "failed") (-388 |#3|)) 44)) (-3622 (((-3 $ "failed") $) 64)) (-1381 (($) 38)) (-1899 ((|#2| $) 20)) (-1861 (($) 17)) (-3352 (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 52) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-3381 (((-639 |#2|) (-1184 $) (-1 |#2| |#2|)) 59)) (-3318 (((-1184 |#2|) $) NIL) (($ (-1184 |#2|)) NIL) ((|#3| $) 10) (($ |#3|) 12)) (-3369 ((|#3| $) 32)) (-3523 (((-1184 $)) 29)))
+(((-674 |#1| |#2| |#3|) (-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -1381 (|#1|)) (-15 -3006 ((-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3381 ((-639 |#2|) (-1184 |#1|) (-1 |#2| |#2|))) (-15 -1760 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3318 (|#1| |#3|)) (-15 -1760 (|#1| |#3|)) (-15 -1861 (|#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 (|#3| |#1|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -3523 ((-1184 |#1|))) (-15 -3369 (|#3| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|))) (-675 |#2| |#3|) (-162) (-1160 |#2|)) (T -674))
+((-3006 (*1 *2) (-12 (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-721)) (-5 *1 (-674 *3 *4 *5)) (-4 *3 (-675 *4 *5)))))
+(-10 -8 (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -1381 (|#1|)) (-15 -3006 ((-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3381 ((-639 |#2|) (-1184 |#1|) (-1 |#2| |#2|))) (-15 -1760 ((-3 |#1| "failed") (-388 |#3|))) (-15 -3318 (|#1| |#3|)) (-15 -1760 (|#1| |#3|)) (-15 -1861 (|#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3318 (|#3| |#1|)) (-15 -3318 (|#1| (-1184 |#2|))) (-15 -3318 ((-1184 |#2|) |#1|)) (-15 -3523 ((-1184 |#1|))) (-15 -3369 (|#3| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -3622 ((-3 |#1| "failed") |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 91 (|has| |#1| (-344)))) (-3258 (($ $) 92 (|has| |#1| (-344)))) (-2921 (((-110) $) 94 (|has| |#1| (-344)))) (-1849 (((-639 |#1|) (-1184 $)) 44) (((-639 |#1|)) 59)) (-1354 ((|#1| $) 50)) (-3646 (((-1112 (-864) (-721)) (-531)) 144 (|has| |#1| (-330)))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 111 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 112 (|has| |#1| (-344)))) (-2760 (((-110) $ $) 102 (|has| |#1| (-344)))) (-3006 (((-721)) 85 (|has| |#1| (-349)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 166 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 164 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 163)) (-2523 (((-531) $) 167 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 165 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 162)) (-2767 (($ (-1184 |#1|) (-1184 $)) 46) (($ (-1184 |#1|)) 62)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) 150 (|has| |#1| (-330)))) (-3650 (($ $ $) 106 (|has| |#1| (-344)))) (-1982 (((-639 |#1|) $ (-1184 $)) 51) (((-639 |#1|) $) 57)) (-3073 (((-639 (-531)) (-639 $)) 161 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 160 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 159) (((-639 |#1|) (-639 $)) 158)) (-1760 (($ |#2|) 155) (((-3 $ "failed") (-388 |#2|)) 152 (|has| |#1| (-344)))) (-3622 (((-3 $ "failed") $) 32)) (-2277 (((-864)) 52)) (-1381 (($) 88 (|has| |#1| (-349)))) (-3630 (($ $ $) 105 (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 100 (|has| |#1| (-344)))) (-1806 (($) 146 (|has| |#1| (-330)))) (-1971 (((-110) $) 147 (|has| |#1| (-330)))) (-3493 (($ $ (-721)) 138 (|has| |#1| (-330))) (($ $) 137 (|has| |#1| (-330)))) (-2534 (((-110) $) 113 (|has| |#1| (-344)))) (-3617 (((-864) $) 149 (|has| |#1| (-330))) (((-783 (-864)) $) 135 (|has| |#1| (-330)))) (-3481 (((-110) $) 30)) (-1899 ((|#1| $) 49)) (-2342 (((-3 $ "failed") $) 139 (|has| |#1| (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 109 (|has| |#1| (-344)))) (-1233 ((|#2| $) 42 (|has| |#1| (-344)))) (-2211 (((-864) $) 87 (|has| |#1| (-349)))) (-1749 ((|#2| $) 153)) (-2078 (($ (-598 $)) 98 (|has| |#1| (-344))) (($ $ $) 97 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 114 (|has| |#1| (-344)))) (-3788 (($) 140 (|has| |#1| (-330)) CONST)) (-1889 (($ (-864)) 86 (|has| |#1| (-349)))) (-2529 (((-1049) $) 10)) (-1861 (($) 157)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 99 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 96 (|has| |#1| (-344))) (($ $ $) 95 (|has| |#1| (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) 143 (|has| |#1| (-330)))) (-2552 (((-399 $) $) 110 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 108 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 107 (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ $) 90 (|has| |#1| (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 101 (|has| |#1| (-344)))) (-4100 (((-721) $) 103 (|has| |#1| (-344)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 104 (|has| |#1| (-344)))) (-3176 ((|#1| (-1184 $)) 45) ((|#1|) 58)) (-2350 (((-721) $) 148 (|has| |#1| (-330))) (((-3 (-721) "failed") $ $) 136 (|has| |#1| (-330)))) (-3352 (($ $) 134 (-1435 (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-721)) 132 (-1435 (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1102)) 130 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-598 (-1102))) 129 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-1102) (-721)) 128 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 (-721))) 127 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-721)) 120 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 119 (|has| |#1| (-344)))) (-3381 (((-639 |#1|) (-1184 $) (-1 |#1| |#1|)) 151 (|has| |#1| (-344)))) (-3608 ((|#2|) 156)) (-2498 (($) 145 (|has| |#1| (-330)))) (-3348 (((-1184 |#1|) $ (-1184 $)) 48) (((-639 |#1|) (-1184 $) (-1184 $)) 47) (((-1184 |#1|) $) 64) (((-639 |#1|) (-1184 $)) 63)) (-3318 (((-1184 |#1|) $) 61) (($ (-1184 |#1|)) 60) ((|#2| $) 168) (($ |#2|) 154)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 142 (|has| |#1| (-330)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35) (($ $) 89 (|has| |#1| (-344))) (($ (-388 (-531))) 84 (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (($ $) 141 (|has| |#1| (-330))) (((-3 $ "failed") $) 41 (|has| |#1| (-138)))) (-3369 ((|#2| $) 43)) (-2284 (((-721)) 28)) (-3523 (((-1184 $)) 65)) (-2587 (((-110) $ $) 93 (|has| |#1| (-344)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $) 133 (-1435 (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-721)) 131 (-1435 (-3427 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1102)) 126 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-598 (-1102))) 125 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-1102) (-721)) 124 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 (-721))) 123 (-3427 (|has| |#1| (-843 (-1102))) (|has| |#1| (-344)))) (($ $ (-1 |#1| |#1|) (-721)) 122 (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) 121 (|has| |#1| (-344)))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 118 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 115 (|has| |#1| (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ (-388 (-531)) $) 117 (|has| |#1| (-344))) (($ $ (-388 (-531))) 116 (|has| |#1| (-344)))))
+(((-675 |#1| |#2|) (-133) (-162) (-1160 |t#1|)) (T -675))
+((-1861 (*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-675 *2 *3)) (-4 *3 (-1160 *2)))) (-3608 (*1 *2) (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) (-1760 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-675 *3 *2)) (-4 *2 (-1160 *3)))) (-3318 (*1 *1 *2) (-12 (-4 *3 (-162)) (-4 *1 (-675 *3 *2)) (-4 *2 (-1160 *3)))) (-1749 (*1 *2 *1) (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3)))) (-1760 (*1 *1 *2) (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-344)) (-4 *3 (-162)) (-4 *1 (-675 *3 *4)))) (-3381 (*1 *2 *3 *4) (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-4 *1 (-675 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1160 *5)) (-5 *2 (-639 *5)))))
+(-13 (-390 |t#1| |t#2|) (-162) (-573 |t#2|) (-392 |t#1|) (-358 |t#1|) (-10 -8 (-15 -1861 ($)) (-15 -3608 (|t#2|)) (-15 -1760 ($ |t#2|)) (-15 -3318 ($ |t#2|)) (-15 -1749 (|t#2| $)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-344)) (-6 (-214 |t#1|)) (-15 -1760 ((-3 $ "failed") (-388 |t#2|))) (-15 -3381 ((-639 |t#1|) (-1184 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-330)) (-6 (-330)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-37 |#1|) . T) ((-37 $) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-99) . T) ((-109 #0# #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| |#1| (-330)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 |#2|) . T) ((-214 |#1|) |has| |#1| (-344)) ((-216) -1435 (|has| |#1| (-330)) (-12 (|has| |#1| (-216)) (|has| |#1| (-344)))) ((-226) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-272) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-289) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-344) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-383) |has| |#1| (-330)) ((-349) -1435 (|has| |#1| (-349)) (|has| |#1| (-330))) ((-330) |has| |#1| (-330)) ((-351 |#1| |#2|) . T) ((-390 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-523) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-601 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-668 |#1|) . T) ((-668 $) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102)))) ((-863) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 #0#) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-330)) ((-1142) -1435 (|has| |#1| (-330)) (|has| |#1| (-344))))
+((-4082 (($) 11)) (-3622 (((-3 $ "failed") $) 13)) (-3481 (((-110) $) 10)) (** (($ $ (-864)) NIL) (($ $ (-721)) 18)))
+(((-676 |#1|) (-10 -8 (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 -3481 ((-110) |#1|)) (-15 -4082 (|#1|)) (-15 ** (|#1| |#1| (-864)))) (-677)) (T -676))
+NIL
+(-10 -8 (-15 -3622 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-721))) (-15 -3481 ((-110) |#1|)) (-15 -4082 (|#1|)) (-15 ** (|#1| |#1| (-864))))
+((-2247 (((-110) $ $) 7)) (-4082 (($) 18 T CONST)) (-3622 (((-3 $ "failed") $) 15)) (-3481 (((-110) $) 17)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3050 (($) 19 T CONST)) (-2148 (((-110) $ $) 6)) (** (($ $ (-864)) 13) (($ $ (-721)) 16)) (* (($ $ $) 14)))
+(((-677) (-133)) (T -677))
+((-3050 (*1 *1) (-4 *1 (-677))) (-4082 (*1 *1) (-4 *1 (-677))) (-3481 (*1 *2 *1) (-12 (-4 *1 (-677)) (-5 *2 (-110)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-677)) (-5 *2 (-721)))) (-3622 (*1 *1 *1) (|partial| -4 *1 (-677))))
+(-13 (-1042) (-10 -8 (-15 (-3050) ($) -2651) (-15 -4082 ($) -2651) (-15 -3481 ((-110) $)) (-15 ** ($ $ (-721))) (-15 -3622 ((-3 $ "failed") $))))
+(((-99) . T) ((-572 (-806)) . T) ((-1042) . T) ((-1030) . T))
+((-1847 (((-2 (|:| -4216 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|)) 38)) (-2040 (((-2 (|:| -4216 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12)) (-1803 ((|#2| (-388 |#2|) (-1 |#2| |#2|)) 13)) (-4044 (((-2 (|:| |poly| |#2|) (|:| -4216 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)) 47)))
+(((-678 |#1| |#2|) (-10 -7 (-15 -2040 ((-2 (|:| -4216 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1847 ((-2 (|:| -4216 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1803 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -4044 ((-2 (|:| |poly| |#2|) (|:| -4216 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|)))) (-344) (-1160 |#1|)) (T -678))
+((-4044 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| |poly| *6) (|:| -4216 (-388 *6)) (|:| |special| (-388 *6)))) (-5 *1 (-678 *5 *6)) (-5 *3 (-388 *6)))) (-1803 (*1 *2 *3 *4) (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1160 *5)) (-5 *1 (-678 *5 *2)) (-4 *5 (-344)))) (-1847 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4216 (-399 *3)) (|:| |special| (-399 *3)))) (-5 *1 (-678 *5 *3)))) (-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -4216 *3) (|:| |special| *3))) (-5 *1 (-678 *5 *3)))))
+(-10 -7 (-15 -2040 ((-2 (|:| -4216 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -1847 ((-2 (|:| -4216 (-399 |#2|)) (|:| |special| (-399 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -1803 (|#2| (-388 |#2|) (-1 |#2| |#2|))) (-15 -4044 ((-2 (|:| |poly| |#2|) (|:| -4216 (-388 |#2|)) (|:| |special| (-388 |#2|))) (-388 |#2|) (-1 |#2| |#2|))))
+((-3186 ((|#7| (-598 |#5|) |#6|) NIL)) (-3261 ((|#7| (-1 |#5| |#4|) |#6|) 26)))
+(((-679 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3261 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3186 (|#7| (-598 |#5|) |#6|))) (-797) (-743) (-743) (-986) (-986) (-892 |#4| |#2| |#1|) (-892 |#5| |#3| |#1|)) (T -679))
+((-3186 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *9)) (-4 *9 (-986)) (-4 *5 (-797)) (-4 *6 (-743)) (-4 *8 (-986)) (-4 *2 (-892 *9 *7 *5)) (-5 *1 (-679 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-743)) (-4 *4 (-892 *8 *6 *5)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-986)) (-4 *9 (-986)) (-4 *5 (-797)) (-4 *6 (-743)) (-4 *2 (-892 *9 *7 *5)) (-5 *1 (-679 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-743)) (-4 *4 (-892 *8 *6 *5)))))
+(-10 -7 (-15 -3261 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -3186 (|#7| (-598 |#5|) |#6|)))
+((-3261 ((|#7| (-1 |#2| |#1|) |#6|) 28)))
+(((-680 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -3261 (|#7| (-1 |#2| |#1|) |#6|))) (-797) (-797) (-743) (-743) (-986) (-892 |#5| |#3| |#1|) (-892 |#5| |#4| |#2|)) (T -680))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-797)) (-4 *6 (-797)) (-4 *7 (-743)) (-4 *9 (-986)) (-4 *2 (-892 *9 *8 *6)) (-5 *1 (-680 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-743)) (-4 *4 (-892 *9 *7 *5)))))
+(-10 -7 (-15 -3261 (|#7| (-1 |#2| |#1|) |#6|)))
+((-2552 (((-399 |#4|) |#4|) 41)))
+(((-681 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4|))) (-743) (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102))))) (-289) (-892 (-895 |#3|) |#1| |#2|)) (T -681))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-892 (-895 *6) *4 *5)))))
+(-10 -7 (-15 -2552 ((-399 |#4|) |#4|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-808 |#1|)) $) NIL)) (-2516 (((-1098 $) $ (-808 |#1|)) NIL) (((-1098 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-808 |#1|))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-808 |#1|) "failed") $) NIL)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-808 |#1|) $) NIL)) (-3115 (($ $ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| (-503 (-808 |#1|)) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-808 |#1|) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#2|) (-808 |#1|)) NIL) (($ (-1098 $) (-808 |#1|)) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#2| (-503 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-808 |#1|)) NIL)) (-3005 (((-503 (-808 |#1|)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 (-503 (-808 |#1|)) (-503 (-808 |#1|))) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3471 (((-3 (-808 |#1|) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-808 |#1|)) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#2| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-808 |#1|) |#2|) NIL) (($ $ (-598 (-808 |#1|)) (-598 |#2|)) NIL) (($ $ (-808 |#1|) $) NIL) (($ $ (-598 (-808 |#1|)) (-598 $)) NIL)) (-3176 (($ $ (-808 |#1|)) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2012 (((-503 (-808 |#1|)) $) NIL) (((-721) $ (-808 |#1|)) NIL) (((-598 (-721)) $ (-598 (-808 |#1|))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-808 |#1|) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-808 |#1|) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-808 |#1|)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-808 |#1|)) NIL) (($ $) NIL (|has| |#2| (-523))) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531))))))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-503 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-808 |#1|)) NIL) (($ $ (-598 (-808 |#1|))) NIL) (($ $ (-808 |#1|) (-721)) NIL) (($ $ (-598 (-808 |#1|)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-682 |#1| |#2|) (-892 |#2| (-503 (-808 |#1|)) (-808 |#1|)) (-598 (-1102)) (-986)) (T -682))
+NIL
+(-892 |#2| (-503 (-808 |#1|)) (-808 |#1|))
+((-1670 (((-2 (|:| -3818 (-895 |#3|)) (|:| -4137 (-895 |#3|))) |#4|) 14)) (-3199 ((|#4| |#4| |#2|) 33)) (-1909 ((|#4| (-388 (-895 |#3|)) |#2|) 64)) (-2889 ((|#4| (-1098 (-895 |#3|)) |#2|) 77)) (-2532 ((|#4| (-1098 |#4|) |#2|) 51)) (-1863 ((|#4| |#4| |#2|) 54)) (-2552 (((-399 |#4|) |#4|) 40)))
+(((-683 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1670 ((-2 (|:| -3818 (-895 |#3|)) (|:| -4137 (-895 |#3|))) |#4|)) (-15 -1863 (|#4| |#4| |#2|)) (-15 -2532 (|#4| (-1098 |#4|) |#2|)) (-15 -3199 (|#4| |#4| |#2|)) (-15 -2889 (|#4| (-1098 (-895 |#3|)) |#2|)) (-15 -1909 (|#4| (-388 (-895 |#3|)) |#2|)) (-15 -2552 ((-399 |#4|) |#4|))) (-743) (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)))) (-523) (-892 (-388 (-895 |#3|)) |#1| |#2|)) (T -683))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523)) (-5 *2 (-399 *3)) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-892 (-388 (-895 *6)) *4 *5)))) (-1909 (*1 *2 *3 *4) (-12 (-4 *6 (-523)) (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-683 *5 *4 *6 *2)) (-5 *3 (-388 (-895 *6))) (-4 *5 (-743)) (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))))) (-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 (-895 *6))) (-4 *6 (-523)) (-4 *2 (-892 (-388 (-895 *6)) *5 *4)) (-5 *1 (-683 *5 *4 *6 *2)) (-4 *5 (-743)) (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))))) (-3199 (*1 *2 *2 *3) (-12 (-4 *4 (-743)) (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *5 (-523)) (-5 *1 (-683 *4 *3 *5 *2)) (-4 *2 (-892 (-388 (-895 *5)) *4 *3)))) (-2532 (*1 *2 *3 *4) (-12 (-5 *3 (-1098 *2)) (-4 *2 (-892 (-388 (-895 *6)) *5 *4)) (-5 *1 (-683 *5 *4 *6 *2)) (-4 *5 (-743)) (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523)))) (-1863 (*1 *2 *2 *3) (-12 (-4 *4 (-743)) (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *5 (-523)) (-5 *1 (-683 *4 *3 *5 *2)) (-4 *2 (-892 (-388 (-895 *5)) *4 *3)))) (-1670 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523)) (-5 *2 (-2 (|:| -3818 (-895 *6)) (|:| -4137 (-895 *6)))) (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-892 (-388 (-895 *6)) *4 *5)))))
+(-10 -7 (-15 -1670 ((-2 (|:| -3818 (-895 |#3|)) (|:| -4137 (-895 |#3|))) |#4|)) (-15 -1863 (|#4| |#4| |#2|)) (-15 -2532 (|#4| (-1098 |#4|) |#2|)) (-15 -3199 (|#4| |#4| |#2|)) (-15 -2889 (|#4| (-1098 (-895 |#3|)) |#2|)) (-15 -1909 (|#4| (-388 (-895 |#3|)) |#2|)) (-15 -2552 ((-399 |#4|) |#4|)))
+((-2552 (((-399 |#4|) |#4|) 52)))
+(((-684 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4|))) (-743) (-797) (-13 (-289) (-140)) (-892 (-388 |#3|) |#1| |#2|)) (T -684))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-684 *4 *5 *6 *3)) (-4 *3 (-892 (-388 *6) *4 *5)))))
+(-10 -7 (-15 -2552 ((-399 |#4|) |#4|)))
+((-3261 (((-686 |#2| |#3|) (-1 |#2| |#1|) (-686 |#1| |#3|)) 18)))
+(((-685 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-686 |#2| |#3|) (-1 |#2| |#1|) (-686 |#1| |#3|)))) (-986) (-986) (-677)) (T -685))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-686 *5 *7)) (-4 *5 (-986)) (-4 *6 (-986)) (-4 *7 (-677)) (-5 *2 (-686 *6 *7)) (-5 *1 (-685 *5 *6 *7)))))
+(-10 -7 (-15 -3261 ((-686 |#2| |#3|) (-1 |#2| |#1|) (-686 |#1| |#3|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 28)) (-4034 (((-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))) $) 29)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721)) 20 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) 57) (((-3 |#1| "failed") $) 60)) (-2523 ((|#2| $) NIL) ((|#1| $) NIL)) (-2500 (($ $) 79 (|has| |#2| (-797)))) (-3622 (((-3 $ "failed") $) 65)) (-1381 (($) 35 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) 55)) (-1230 (((-598 $) $) 39)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| |#2|) 16)) (-3261 (($ (-1 |#1| |#1|) $) 54)) (-2211 (((-864) $) 32 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2462 ((|#2| $) 78 (|has| |#2| (-797)))) (-2475 ((|#1| $) 77 (|has| |#2| (-797)))) (-1521 (((-1085) $) NIL)) (-1889 (($ (-864)) 27 (-12 (|has| |#2| (-349)) (|has| |#1| (-349))))) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 76) (($ (-531)) 45) (($ |#2|) 42) (($ |#1|) 43) (($ (-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|)))) 11)) (-2708 (((-598 |#1|) $) 41)) (-3188 ((|#1| $ |#2|) 88)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3035 (($) 12 T CONST)) (-3050 (($) 33 T CONST)) (-2148 (((-110) $ $) 80)) (-2250 (($ $) 47) (($ $ $) NIL)) (-2237 (($ $ $) 26)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 52) (($ $ $) 90) (($ |#1| $) 49 (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-686 |#1| |#2|) (-13 (-986) (-977 |#2|) (-977 |#1|) (-10 -8 (-15 -2669 ($ |#1| |#2|)) (-15 -3188 (|#1| $ |#2|)) (-15 -2265 ($ (-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))))) (-15 -4034 ((-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))) $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (-15 -3380 ((-110) $)) (-15 -2708 ((-598 |#1|) $)) (-15 -1230 ((-598 $) $)) (-15 -3517 ((-721) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-797)) (PROGN (-15 -2462 (|#2| $)) (-15 -2475 (|#1| $)) (-15 -2500 ($ $))) |%noBranch|))) (-986) (-677)) (T -686))
+((-2669 (*1 *1 *2 *3) (-12 (-5 *1 (-686 *2 *3)) (-4 *2 (-986)) (-4 *3 (-677)))) (-3188 (*1 *2 *1 *3) (-12 (-4 *2 (-986)) (-5 *1 (-686 *2 *3)) (-4 *3 (-677)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -2005 *3) (|:| -4007 *4)))) (-4 *3 (-986)) (-4 *4 (-677)) (-5 *1 (-686 *3 *4)))) (-4034 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| -2005 *3) (|:| -4007 *4)))) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-686 *3 *4)) (-4 *4 (-677)))) (-3380 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-2708 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-1230 (*1 *2 *1) (-12 (-5 *2 (-598 (-686 *3 *4))) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-3517 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677)))) (-2462 (*1 *2 *1) (-12 (-4 *2 (-677)) (-4 *2 (-797)) (-5 *1 (-686 *3 *2)) (-4 *3 (-986)))) (-2475 (*1 *2 *1) (-12 (-4 *2 (-986)) (-5 *1 (-686 *2 *3)) (-4 *3 (-797)) (-4 *3 (-677)))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-686 *2 *3)) (-4 *3 (-797)) (-4 *2 (-986)) (-4 *3 (-677)))))
+(-13 (-986) (-977 |#2|) (-977 |#1|) (-10 -8 (-15 -2669 ($ |#1| |#2|)) (-15 -3188 (|#1| $ |#2|)) (-15 -2265 ($ (-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))))) (-15 -4034 ((-598 (-2 (|:| -2005 |#1|) (|:| -4007 |#2|))) $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (-15 -3380 ((-110) $)) (-15 -2708 ((-598 |#1|) $)) (-15 -1230 ((-598 $) $)) (-15 -3517 ((-721) $)) (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-797)) (PROGN (-15 -2462 (|#2| $)) (-15 -2475 (|#1| $)) (-15 -2500 ($ $))) |%noBranch|)))
+((-2247 (((-110) $ $) 19)) (-4210 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3252 (($ $ $) 72)) (-3890 (((-110) $ $) 73)) (-4058 (((-110) $ (-721)) 8)) (-1245 (($ (-598 |#1|)) 68) (($) 67)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2705 (($ $) 62)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 64)) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22)) (-1301 (($ $ $) 69)) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40) (($ |#1| $ (-721)) 63)) (-2529 (((-1049) $) 21)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 61)) (-1786 (($ $ |#1|) 71) (($ $ $) 70)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18)) (-3445 (($ (-598 |#1|)) 66) (($) 65)) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-687 |#1|) (-133) (-1030)) (T -687))
+NIL
+(-13 (-645 |t#1|) (-1028 |t#1|))
+(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-645 |#1|) . T) ((-1028 |#1|) . T) ((-1030) . T) ((-1138) . T))
+((-2247 (((-110) $ $) NIL)) (-4210 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 76)) (-3252 (($ $ $) 79)) (-3890 (((-110) $ $) 83)) (-4058 (((-110) $ (-721)) NIL)) (-1245 (($ (-598 |#1|)) 24) (($) 16)) (-2245 (($ (-1 (-110) |#1|) $) 70 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-2705 (($ $) 71)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) 61 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 64 (|has| $ (-6 -4273))) (($ |#1| $ (-531)) 62) (($ (-1 (-110) |#1|) $ (-531)) 65)) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (($ |#1| $ (-531)) 67) (($ (-1 (-110) |#1|) $ (-531)) 68)) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 32 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 82)) (-2212 (($) 14) (($ |#1|) 26) (($ (-598 |#1|)) 21)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) 38)) (-1883 (((-110) |#1| $) 58 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) 74 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 75)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-1301 (($ $ $) 77)) (-3540 ((|#1| $) 55)) (-3944 (($ |#1| $) 56) (($ |#1| $ (-721)) 72)) (-2529 (((-1049) $) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-4192 ((|#1| $) 54)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 50)) (-3781 (($) 13)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 48)) (-1786 (($ $ |#1|) NIL) (($ $ $) 78)) (-2543 (($) 15) (($ (-598 |#1|)) 23)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) 60 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 66)) (-3318 (((-507) $) 36 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 20)) (-2265 (((-806) $) 44)) (-3445 (($ (-598 |#1|)) 25) (($) 17)) (-2524 (($ (-598 |#1|)) 22)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 81)) (-2167 (((-721) $) 59 (|has| $ (-6 -4273)))))
+(((-688 |#1|) (-13 (-687 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -2212 ($)) (-15 -2212 ($ |#1|)) (-15 -2212 ($ (-598 |#1|))) (-15 -2445 ((-598 |#1|) $)) (-15 -2283 ($ |#1| $ (-531))) (-15 -2283 ($ (-1 (-110) |#1|) $ (-531))) (-15 -2717 ($ |#1| $ (-531))) (-15 -2717 ($ (-1 (-110) |#1|) $ (-531))))) (-1030)) (T -688))
+((-2212 (*1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1030)))) (-2212 (*1 *1 *2) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1030)))) (-2212 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-688 *3)))) (-2445 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1030)))) (-2283 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-688 *2)) (-4 *2 (-1030)))) (-2283 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-531)) (-4 *4 (-1030)) (-5 *1 (-688 *4)))) (-2717 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-688 *2)) (-4 *2 (-1030)))) (-2717 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-531)) (-4 *4 (-1030)) (-5 *1 (-688 *4)))))
+(-13 (-687 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -2212 ($)) (-15 -2212 ($ |#1|)) (-15 -2212 ($ (-598 |#1|))) (-15 -2445 ((-598 |#1|) $)) (-15 -2283 ($ |#1| $ (-531))) (-15 -2283 ($ (-1 (-110) |#1|) $ (-531))) (-15 -2717 ($ |#1| $ (-531))) (-15 -2717 ($ (-1 (-110) |#1|) $ (-531)))))
+((-4188 (((-1189) (-1085)) 8)))
+(((-689) (-10 -7 (-15 -4188 ((-1189) (-1085))))) (T -689))
+((-4188 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-689)))))
+(-10 -7 (-15 -4188 ((-1189) (-1085))))
+((-4149 (((-598 |#1|) (-598 |#1|) (-598 |#1|)) 10)))
+(((-690 |#1|) (-10 -7 (-15 -4149 ((-598 |#1|) (-598 |#1|) (-598 |#1|)))) (-797)) (T -690))
+((-4149 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-690 *3)))))
+(-10 -7 (-15 -4149 ((-598 |#1|) (-598 |#1|) (-598 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 |#2|) $) 134)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 127 (|has| |#1| (-523)))) (-3258 (($ $) 126 (|has| |#1| (-523)))) (-2921 (((-110) $) 124 (|has| |#1| (-523)))) (-2367 (($ $) 83 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 66 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-2563 (($ $) 65 (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) 82 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 67 (|has| |#1| (-37 (-388 (-531)))))) (-2391 (($ $) 81 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 68 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-2500 (($ $) 118)) (-3622 (((-3 $ "failed") $) 32)) (-3383 (((-895 |#1|) $ (-721)) 96) (((-895 |#1|) $ (-721) (-721)) 95)) (-3201 (((-110) $) 135)) (-1880 (($) 93 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $ |#2|) 98) (((-721) $ |#2| (-721)) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 64 (|has| |#1| (-37 (-388 (-531)))))) (-3380 (((-110) $) 116)) (-2669 (($ $ (-598 |#2|) (-598 (-503 |#2|))) 133) (($ $ |#2| (-503 |#2|)) 132) (($ |#1| (-503 |#2|)) 117) (($ $ |#2| (-721)) 100) (($ $ (-598 |#2|) (-598 (-721))) 99)) (-3261 (($ (-1 |#1| |#1|) $) 115)) (-2076 (($ $) 90 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 113)) (-2475 ((|#1| $) 112)) (-1521 (((-1085) $) 9)) (-1788 (($ $ |#2|) 94 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) 10)) (-1846 (($ $ (-721)) 101)) (-3609 (((-3 $ "failed") $ $) 128 (|has| |#1| (-523)))) (-2798 (($ $) 91 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (($ $ |#2| $) 109) (($ $ (-598 |#2|) (-598 $)) 108) (($ $ (-598 (-276 $))) 107) (($ $ (-276 $)) 106) (($ $ $ $) 105) (($ $ (-598 $) (-598 $)) 104)) (-3352 (($ $ |#2|) 40) (($ $ (-598 |#2|)) 39) (($ $ |#2| (-721)) 38) (($ $ (-598 |#2|) (-598 (-721))) 37)) (-2012 (((-503 |#2|) $) 114)) (-2403 (($ $) 80 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 69 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 79 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 70 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 78 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 71 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 136)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 131 (|has| |#1| (-162))) (($ $) 129 (|has| |#1| (-523))) (($ (-388 (-531))) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3188 ((|#1| $ (-503 |#2|)) 119) (($ $ |#2| (-721)) 103) (($ $ (-598 |#2|) (-598 (-721))) 102)) (-2750 (((-3 $ "failed") $) 130 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-2442 (($ $) 89 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 77 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 125 (|has| |#1| (-523)))) (-2416 (($ $) 88 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 76 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 87 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 75 (|has| |#1| (-37 (-388 (-531)))))) (-2753 (($ $) 86 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 74 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 85 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 73 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 84 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 72 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ |#2|) 36) (($ $ (-598 |#2|)) 35) (($ $ |#2| (-721)) 34) (($ $ (-598 |#2|) (-598 (-721))) 33)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 120 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ $) 92 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 63 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 123 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 122 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 111) (($ $ |#1|) 110)))
+(((-691 |#1| |#2|) (-133) (-986) (-797)) (T -691))
+((-3188 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *2)) (-4 *4 (-986)) (-4 *2 (-797)))) (-3188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *5)) (-5 *3 (-598 (-721))) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) (-4 *5 (-797)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-691 *3 *4)) (-4 *3 (-986)) (-4 *4 (-797)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *2)) (-4 *4 (-986)) (-4 *2 (-797)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *5)) (-5 *3 (-598 (-721))) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) (-4 *5 (-797)))) (-3617 (*1 *2 *1 *3) (-12 (-4 *1 (-691 *4 *3)) (-4 *4 (-986)) (-4 *3 (-797)) (-5 *2 (-721)))) (-3617 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-721)) (-4 *1 (-691 *4 *3)) (-4 *4 (-986)) (-4 *3 (-797)))) (-3383 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) (-4 *5 (-797)) (-5 *2 (-895 *4)))) (-3383 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *5)) (-4 *4 (-986)) (-4 *5 (-797)) (-5 *2 (-895 *4)))) (-1788 (*1 *1 *1 *2) (-12 (-4 *1 (-691 *3 *2)) (-4 *3 (-986)) (-4 *2 (-797)) (-4 *3 (-37 (-388 (-531)))))))
+(-13 (-843 |t#2|) (-915 |t#1| (-503 |t#2|) |t#2|) (-492 |t#2| $) (-291 $) (-10 -8 (-15 -3188 ($ $ |t#2| (-721))) (-15 -3188 ($ $ (-598 |t#2|) (-598 (-721)))) (-15 -1846 ($ $ (-721))) (-15 -2669 ($ $ |t#2| (-721))) (-15 -2669 ($ $ (-598 |t#2|) (-598 (-721)))) (-15 -3617 ((-721) $ |t#2|)) (-15 -3617 ((-721) $ |t#2| (-721))) (-15 -3383 ((-895 |t#1|) $ (-721))) (-15 -3383 ((-895 |t#1|) $ (-721) (-721))) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ |t#2|)) (-6 (-943)) (-6 (-1124))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-503 |#2|)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-272) |has| |#1| (-523)) ((-291 $) . T) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-492 |#2| $) . T) ((-492 $ $) . T) ((-523) |has| |#1| (-523)) ((-601 #1#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-843 |#2|) . T) ((-915 |#1| #0# |#2|) . T) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-992 #1#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))))
+((-2552 (((-399 (-1098 |#4|)) (-1098 |#4|)) 30) (((-399 |#4|) |#4|) 26)))
+(((-692 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 |#4|) |#4|)) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|)))) (-797) (-743) (-13 (-289) (-140)) (-892 |#3| |#2| |#1|)) (T -692))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-692 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-399 *3)) (-5 *1 (-692 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4)))))
+(-10 -7 (-15 -2552 ((-399 |#4|) |#4|)) (-15 -2552 ((-399 (-1098 |#4|)) (-1098 |#4|))))
+((-2144 (((-399 |#4|) |#4| |#2|) 120)) (-1372 (((-399 |#4|) |#4|) NIL)) (-2956 (((-399 (-1098 |#4|)) (-1098 |#4|)) 111) (((-399 |#4|) |#4|) 41)) (-3978 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-598 (-2 (|:| -2552 (-1098 |#4|)) (|:| -1790 (-531)))))) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|))) 69)) (-3300 (((-1098 |#3|) (-1098 |#3|) (-531)) 139)) (-3171 (((-598 (-721)) (-1098 |#4|) (-598 |#2|) (-721)) 61)) (-1749 (((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-1098 |#3|) (-1098 |#3|) |#4| (-598 |#2|) (-598 (-721)) (-598 |#3|)) 65)) (-1653 (((-2 (|:| |upol| (-1098 |#3|)) (|:| |Lval| (-598 |#3|)) (|:| |Lfact| (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) (|:| |ctpol| |#3|)) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|))) 26)) (-2256 (((-2 (|:| -2451 (-1098 |#4|)) (|:| |polval| (-1098 |#3|))) (-1098 |#4|) (-1098 |#3|) (-531)) 57)) (-1520 (((-531) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) 136)) (-1926 ((|#4| (-531) (-399 |#4|)) 58)) (-1321 (((-110) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) NIL)))
+(((-693 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2956 ((-399 |#4|) |#4|)) (-15 -2956 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -1372 ((-399 |#4|) |#4|)) (-15 -1520 ((-531) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))))) (-15 -2144 ((-399 |#4|) |#4| |#2|)) (-15 -2256 ((-2 (|:| -2451 (-1098 |#4|)) (|:| |polval| (-1098 |#3|))) (-1098 |#4|) (-1098 |#3|) (-531))) (-15 -3978 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-598 (-2 (|:| -2552 (-1098 |#4|)) (|:| -1790 (-531)))))) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|)))) (-15 -1653 ((-2 (|:| |upol| (-1098 |#3|)) (|:| |Lval| (-598 |#3|)) (|:| |Lfact| (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) (|:| |ctpol| |#3|)) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|)))) (-15 -1926 (|#4| (-531) (-399 |#4|))) (-15 -1321 ((-110) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))))) (-15 -1749 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-1098 |#3|) (-1098 |#3|) |#4| (-598 |#2|) (-598 (-721)) (-598 |#3|))) (-15 -3171 ((-598 (-721)) (-1098 |#4|) (-598 |#2|) (-721))) (-15 -3300 ((-1098 |#3|) (-1098 |#3|) (-531)))) (-743) (-797) (-289) (-892 |#3| |#1| |#2|)) (T -693))
+((-3300 (*1 *2 *2 *3) (-12 (-5 *2 (-1098 *6)) (-5 *3 (-531)) (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-3171 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-4 *7 (-797)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) (-4 *8 (-289)) (-5 *2 (-598 (-721))) (-5 *1 (-693 *6 *7 *8 *9)) (-5 *5 (-721)))) (-1749 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1098 *11)) (-5 *6 (-598 *10)) (-5 *7 (-598 (-721))) (-5 *8 (-598 *11)) (-4 *10 (-797)) (-4 *11 (-289)) (-4 *9 (-743)) (-4 *5 (-892 *11 *9 *10)) (-5 *2 (-598 (-1098 *5))) (-5 *1 (-693 *9 *10 *11 *5)) (-5 *3 (-1098 *5)))) (-1321 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-2 (|:| -2552 (-1098 *6)) (|:| -1790 (-531))))) (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)) (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-1926 (*1 *2 *3 *4) (-12 (-5 *3 (-531)) (-5 *4 (-399 *2)) (-4 *2 (-892 *7 *5 *6)) (-5 *1 (-693 *5 *6 *7 *2)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-289)))) (-1653 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-5 *5 (-598 (-598 *8))) (-4 *7 (-797)) (-4 *8 (-289)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) (-5 *2 (-2 (|:| |upol| (-1098 *8)) (|:| |Lval| (-598 *8)) (|:| |Lfact| (-598 (-2 (|:| -2552 (-1098 *8)) (|:| -1790 (-531))))) (|:| |ctpol| *8))) (-5 *1 (-693 *6 *7 *8 *9)))) (-3978 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-598 *7)) (-5 *5 (-598 (-598 *8))) (-4 *7 (-797)) (-4 *8 (-289)) (-4 *6 (-743)) (-4 *9 (-892 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-598 (-2 (|:| -2552 (-1098 *9)) (|:| -1790 (-531))))))) (-5 *1 (-693 *6 *7 *8 *9)) (-5 *3 (-1098 *9)))) (-2256 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-531)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-289)) (-4 *9 (-892 *8 *6 *7)) (-5 *2 (-2 (|:| -2451 (-1098 *9)) (|:| |polval| (-1098 *8)))) (-5 *1 (-693 *6 *7 *8 *9)) (-5 *3 (-1098 *9)) (-5 *4 (-1098 *8)))) (-2144 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-693 *5 *4 *6 *3)) (-4 *3 (-892 *6 *5 *4)))) (-1520 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2552 (-1098 *6)) (|:| -1790 (-531))))) (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-531)) (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-1372 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-892 *6 *4 *5)))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-892 *6 *4 *5)))))
+(-10 -7 (-15 -2956 ((-399 |#4|) |#4|)) (-15 -2956 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -1372 ((-399 |#4|) |#4|)) (-15 -1520 ((-531) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))))) (-15 -2144 ((-399 |#4|) |#4| |#2|)) (-15 -2256 ((-2 (|:| -2451 (-1098 |#4|)) (|:| |polval| (-1098 |#3|))) (-1098 |#4|) (-1098 |#3|) (-531))) (-15 -3978 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-598 (-2 (|:| -2552 (-1098 |#4|)) (|:| -1790 (-531)))))) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|)))) (-15 -1653 ((-2 (|:| |upol| (-1098 |#3|)) (|:| |Lval| (-598 |#3|)) (|:| |Lfact| (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531))))) (|:| |ctpol| |#3|)) (-1098 |#4|) (-598 |#2|) (-598 (-598 |#3|)))) (-15 -1926 (|#4| (-531) (-399 |#4|))) (-15 -1321 ((-110) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))) (-598 (-2 (|:| -2552 (-1098 |#3|)) (|:| -1790 (-531)))))) (-15 -1749 ((-3 (-598 (-1098 |#4|)) "failed") (-1098 |#4|) (-1098 |#3|) (-1098 |#3|) |#4| (-598 |#2|) (-598 (-721)) (-598 |#3|))) (-15 -3171 ((-598 (-721)) (-1098 |#4|) (-598 |#2|) (-721))) (-15 -3300 ((-1098 |#3|) (-1098 |#3|) (-531))))
+((-2083 (($ $ (-864)) 12)))
+(((-694 |#1| |#2|) (-10 -8 (-15 -2083 (|#1| |#1| (-864)))) (-695 |#2|) (-162)) (T -694))
+NIL
+(-10 -8 (-15 -2083 (|#1| |#1| (-864))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1666 (($ $ (-864)) 28)) (-2083 (($ $ (-864)) 33)) (-2585 (($ $ (-864)) 29)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3214 (($ $ $) 25)) (-2265 (((-806) $) 11)) (-2801 (($ $ $ $) 26)) (-1605 (($ $ $) 24)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27) (($ $ |#1|) 35) (($ |#1| $) 34)))
+(((-695 |#1|) (-133) (-162)) (T -695))
+((-2083 (*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-695 *3)) (-4 *3 (-162)))))
+(-13 (-712) (-668 |t#1|) (-10 -8 (-15 -2083 ($ $ (-864)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-671) . T) ((-712) . T) ((-992 |#1|) . T) ((-1030) . T))
+((-2799 (((-975) (-639 (-208)) (-531) (-110) (-531)) 25)) (-3130 (((-975) (-639 (-208)) (-531) (-110) (-531)) 24)))
+(((-696) (-10 -7 (-15 -3130 ((-975) (-639 (-208)) (-531) (-110) (-531))) (-15 -2799 ((-975) (-639 (-208)) (-531) (-110) (-531))))) (T -696))
+((-2799 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-110)) (-5 *2 (-975)) (-5 *1 (-696)))) (-3130 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-110)) (-5 *2 (-975)) (-5 *1 (-696)))))
+(-10 -7 (-15 -3130 ((-975) (-639 (-208)) (-531) (-110) (-531))) (-15 -2799 ((-975) (-639 (-208)) (-531) (-110) (-531))))
+((-1674 (((-975) (-531) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) 43)) (-2864 (((-975) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) 39)) (-4114 (((-975) (-208) (-208) (-208) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 32)))
+(((-697) (-10 -7 (-15 -4114 ((-975) (-208) (-208) (-208) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2864 ((-975) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -1674 ((-975) (-531) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))) (T -697))
+((-1674 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-975)) (-5 *1 (-697)))) (-2864 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-975)) (-5 *1 (-697)))) (-4114 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) (-5 *1 (-697)))))
+(-10 -7 (-15 -4114 ((-975) (-208) (-208) (-208) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2864 ((-975) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN))))) (-15 -1674 ((-975) (-531) (-531) (-531) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN))))))
+((-3869 (((-975) (-531) (-531) (-639 (-208)) (-531)) 34)) (-1494 (((-975) (-531) (-531) (-639 (-208)) (-531)) 33)) (-3302 (((-975) (-531) (-639 (-208)) (-531)) 32)) (-1471 (((-975) (-531) (-639 (-208)) (-531)) 31)) (-2631 (((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 30)) (-2352 (((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 29)) (-3371 (((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531)) 28)) (-1248 (((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531)) 27)) (-3557 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 24)) (-3092 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531)) 23)) (-2295 (((-975) (-531) (-639 (-208)) (-531)) 22)) (-3175 (((-975) (-531) (-639 (-208)) (-531)) 21)))
+(((-698) (-10 -7 (-15 -3175 ((-975) (-531) (-639 (-208)) (-531))) (-15 -2295 ((-975) (-531) (-639 (-208)) (-531))) (-15 -3092 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3557 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1248 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3371 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2352 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2631 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1471 ((-975) (-531) (-639 (-208)) (-531))) (-15 -3302 ((-975) (-531) (-639 (-208)) (-531))) (-15 -1494 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -3869 ((-975) (-531) (-531) (-639 (-208)) (-531))))) (T -698))
+((-3869 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-1494 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3302 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-1471 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-2631 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-2352 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3371 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-1248 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3557 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3092 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-2295 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))) (-3175 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-698)))))
+(-10 -7 (-15 -3175 ((-975) (-531) (-639 (-208)) (-531))) (-15 -2295 ((-975) (-531) (-639 (-208)) (-531))) (-15 -3092 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3557 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1248 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3371 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2352 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2631 ((-975) (-531) (-531) (-1085) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1471 ((-975) (-531) (-639 (-208)) (-531))) (-15 -3302 ((-975) (-531) (-639 (-208)) (-531))) (-15 -1494 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -3869 ((-975) (-531) (-531) (-639 (-208)) (-531))))
+((-3312 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 52)) (-2452 (((-975) (-639 (-208)) (-639 (-208)) (-531) (-531)) 51)) (-1384 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) 50)) (-2025 (((-975) (-208) (-208) (-531) (-531) (-531) (-531)) 46)) (-1257 (((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 45)) (-4162 (((-975) (-208) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 44)) (-2091 (((-975) (-208) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 43)) (-2066 (((-975) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) 42)) (-2387 (((-975) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 38)) (-2834 (((-975) (-208) (-208) (-531) (-639 (-208)) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 37)) (-2299 (((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 33)) (-3635 (((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) 32)))
+(((-699) (-10 -7 (-15 -3635 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2299 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2834 ((-975) (-208) (-208) (-531) (-639 (-208)) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2387 ((-975) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2066 ((-975) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2091 ((-975) (-208) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -4162 ((-975) (-208) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1257 ((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2025 ((-975) (-208) (-208) (-531) (-531) (-531) (-531))) (-15 -1384 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -2452 ((-975) (-639 (-208)) (-639 (-208)) (-531) (-531))) (-15 -3312 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))) (T -699))
+((-3312 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2452 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-699)))) (-1384 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2025 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-699)))) (-1257 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-4162 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2091 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2066 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2387 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-2834 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-699)))) (-2299 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) (-5 *1 (-699)))) (-3635 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975)) (-5 *1 (-699)))))
+(-10 -7 (-15 -3635 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2299 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2834 ((-975) (-208) (-208) (-531) (-639 (-208)) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2387 ((-975) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327))))) (-15 -2066 ((-975) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2091 ((-975) (-208) (-208) (-208) (-208) (-531) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -4162 ((-975) (-208) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -1257 ((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G))))) (-15 -2025 ((-975) (-208) (-208) (-531) (-531) (-531) (-531))) (-15 -1384 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))) (-15 -2452 ((-975) (-639 (-208)) (-639 (-208)) (-531) (-531))) (-15 -3312 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-208) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))))
+((-3987 (((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) 76)) (-4048 (((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369)) 69) (((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) 68)) (-3574 (((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) 57)) (-3666 (((-975) (-639 (-208)) (-639 (-208)) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 50)) (-3865 (((-975) (-208) (-531) (-531) (-1085) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 49)) (-3589 (((-975) (-208) (-531) (-531) (-208) (-1085) (-208) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 45)) (-4158 (((-975) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) 42)) (-3544 (((-975) (-208) (-531) (-531) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) 38)))
+(((-700) (-10 -7 (-15 -3544 ((-975) (-208) (-531) (-531) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -4158 ((-975) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -3589 ((-975) (-208) (-531) (-531) (-208) (-1085) (-208) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -3865 ((-975) (-208) (-531) (-531) (-1085) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -3666 ((-975) (-639 (-208)) (-639 (-208)) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -3574 ((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -4048 ((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -4048 ((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -3987 ((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))) (T -700))
+((-3987 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP)))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-4048 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *8 (-369)) (-5 *2 (-975)) (-5 *1 (-700)))) (-4048 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL)))) (-5 *2 (-975)) (-5 *1 (-700)))) (-3574 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-3666 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-975)) (-5 *1 (-700)))) (-3865 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-639 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-3589 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-639 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-4158 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))) (-3544 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT)))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))))
+(-10 -7 (-15 -3544 ((-975) (-208) (-531) (-531) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -4158 ((-975) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -3589 ((-975) (-208) (-531) (-531) (-208) (-1085) (-208) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -3865 ((-975) (-208) (-531) (-531) (-1085) (-531) (-208) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))) (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))) (-15 -3666 ((-975) (-639 (-208)) (-639 (-208)) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))) (-15 -3574 ((-975) (-208) (-208) (-531) (-208) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG))))) (-15 -4048 ((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))) (-15 -4048 ((-975) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))) (-369) (-369))) (-15 -3987 ((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))))
+((-3182 (((-975) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-627 (-208)) (-531)) 45)) (-1676 (((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-1085) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) 41)) (-3752 (((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 23)))
+(((-701) (-10 -7 (-15 -3752 ((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1676 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-1085) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -3182 ((-975) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-627 (-208)) (-531))))) (T -701))
+((-3182 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-627 (-208))) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-701)))) (-1676 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-975)) (-5 *1 (-701)))) (-3752 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-701)))))
+(-10 -7 (-15 -3752 ((-975) (-531) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1676 ((-975) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-1085) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))) (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY))))) (-15 -3182 ((-975) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-627 (-208)) (-531))))
+((-2992 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-639 (-208)) (-208) (-208) (-531)) 35)) (-2533 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-208) (-208) (-531)) 34)) (-1632 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-639 (-208)) (-208) (-208) (-531)) 33)) (-2788 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 29)) (-2784 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 28)) (-3238 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531)) 27)) (-3938 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531)) 24)) (-4084 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531)) 23)) (-2361 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531)) 22)) (-1636 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531)) 21)))
+(((-702) (-10 -7 (-15 -1636 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))) (-15 -2361 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4084 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3938 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3238 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531))) (-15 -2784 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2788 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1632 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-639 (-208)) (-208) (-208) (-531))) (-15 -2533 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-208) (-208) (-531))) (-15 -2992 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-639 (-208)) (-208) (-208) (-531))))) (T -702))
+((-2992 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-702)))) (-2533 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-702)))) (-1632 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *6 (-208)) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-702)))) (-2788 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-2784 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-3238 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-702)))) (-3938 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-4084 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-2361 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))) (-1636 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-702)))))
+(-10 -7 (-15 -1636 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))) (-15 -2361 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4084 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3938 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3238 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-208) (-531))) (-15 -2784 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -2788 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1632 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-639 (-208)) (-208) (-208) (-531))) (-15 -2533 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-208) (-208) (-531))) (-15 -2992 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-639 (-208)) (-208) (-208) (-531))))
+((-4070 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531)) 45)) (-2837 (((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-531)) 44)) (-3576 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531)) 43)) (-4142 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 42)) (-3549 (((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531)) 41)) (-1518 (((-975) (-1085) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531)) 40)) (-1359 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531) (-531) (-531) (-208) (-639 (-208)) (-531)) 39)) (-1641 (((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531))) 38)) (-1481 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-531)) 35)) (-2491 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531)) 34)) (-1898 (((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531)) 33)) (-3147 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 32)) (-3333 (((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531)) 31)) (-3801 (((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-531)) 30)) (-3429 (((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-531) (-531) (-531)) 29)) (-2779 (((-975) (-531) (-531) (-531) (-208) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-531)) (-531) (-531) (-531)) 28)) (-1470 (((-975) (-531) (-639 (-208)) (-208) (-531)) 24)) (-1831 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 21)))
+(((-703) (-10 -7 (-15 -1831 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1470 ((-975) (-531) (-639 (-208)) (-208) (-531))) (-15 -2779 ((-975) (-531) (-531) (-531) (-208) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-531)) (-531) (-531) (-531))) (-15 -3429 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-531) (-531) (-531))) (-15 -3801 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-531))) (-15 -3333 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531))) (-15 -3147 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1898 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531))) (-15 -2491 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531))) (-15 -1481 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1641 ((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)))) (-15 -1359 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531) (-531) (-531) (-208) (-639 (-208)) (-531))) (-15 -1518 ((-975) (-1085) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531))) (-15 -3549 ((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4142 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3576 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))) (-15 -2837 ((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4070 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))))) (T -703))
+((-4070 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-2837 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-3576 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-4142 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-3549 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1518 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-208)) (-5 *7 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1359 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *6 (-208)) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1641 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-208)) (-5 *7 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1481 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-2491 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1898 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-3147 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))) (-3333 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-3801 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-3429 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-2779 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) (-5 *3 (-531)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1470 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))) (-1831 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-703)))))
+(-10 -7 (-15 -1831 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1470 ((-975) (-531) (-639 (-208)) (-208) (-531))) (-15 -2779 ((-975) (-531) (-531) (-531) (-208) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-531)) (-531) (-531) (-531))) (-15 -3429 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-531) (-531) (-531))) (-15 -3801 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531) (-531) (-531))) (-15 -3333 ((-975) (-531) (-208) (-208) (-639 (-208)) (-531) (-531) (-208) (-531))) (-15 -3147 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1898 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531))) (-15 -2491 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531))) (-15 -1481 ((-975) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1641 ((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)))) (-15 -1359 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531) (-531) (-531) (-208) (-639 (-208)) (-531))) (-15 -1518 ((-975) (-1085) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531))) (-15 -3549 ((-975) (-1085) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4142 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3576 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))) (-15 -2837 ((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4070 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531) (-639 (-208)) (-639 (-208)) (-531) (-531) (-531))))
+((-2620 (((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-531) (-639 (-208)) (-531)) 63)) (-1580 (((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-110) (-208) (-531) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-531) (-531) (-531) (-531) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 62)) (-2450 (((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-110) (-110) (-531) (-531) (-639 (-208)) (-639 (-531)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) 58)) (-4144 (((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-531) (-531) (-639 (-208)) (-531)) 51)) (-3907 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) 50)) (-3407 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) 46)) (-2542 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) 42)) (-3675 (((-975) (-531) (-208) (-208) (-531) (-208) (-110) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) 38)))
+(((-704) (-10 -7 (-15 -3675 ((-975) (-531) (-208) (-208) (-531) (-208) (-110) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2542 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -3407 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -3907 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -4144 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-531) (-531) (-639 (-208)) (-531))) (-15 -2450 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-110) (-110) (-531) (-531) (-639 (-208)) (-639 (-531)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -1580 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-110) (-208) (-531) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-531) (-531) (-531) (-531) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2620 ((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-531) (-639 (-208)) (-531))))) (T -704))
+((-2620 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704)))) (-1580 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-639 (-531))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-704)))) (-2450 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-639 (-208))) (-5 *6 (-110)) (-5 *7 (-639 (-531))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS)))) (-5 *3 (-531)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704)))) (-4144 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-110)) (-5 *2 (-975)) (-5 *1 (-704)))) (-3907 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1)))) (-5 *2 (-975)) (-5 *1 (-704)))) (-3407 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2)))) (-5 *2 (-975)) (-5 *1 (-704)))) (-2542 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1)))) (-5 *2 (-975)) (-5 *1 (-704)))) (-3675 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-531)) (-5 *5 (-110)) (-5 *6 (-639 (-208))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN)))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704)))))
+(-10 -7 (-15 -3675 ((-975) (-531) (-208) (-208) (-531) (-208) (-110) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2542 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))) (-15 -3407 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))) (-15 -3907 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))) (-15 -4144 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-531) (-531) (-639 (-208)) (-531))) (-15 -2450 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-208) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-110) (-110) (-110) (-531) (-531) (-639 (-208)) (-639 (-531)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))) (-15 -1580 ((-975) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-531) (-110) (-208) (-531) (-208) (-208) (-110) (-208) (-208) (-208) (-208) (-110) (-531) (-531) (-531) (-531) (-531) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-531) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))) (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))) (-15 -2620 ((-975) (-531) (-531) (-531) (-208) (-639 (-208)) (-531) (-639 (-208)) (-531))))
+((-2963 (((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531)) 47)) (-3502 (((-975) (-1085) (-1085) (-531) (-531) (-639 (-159 (-208))) (-531) (-639 (-159 (-208))) (-531) (-531) (-639 (-159 (-208))) (-531)) 46)) (-3656 (((-975) (-531) (-531) (-531) (-639 (-159 (-208))) (-531)) 45)) (-1815 (((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 40)) (-3958 (((-975) (-1085) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)) (-531)) 39)) (-1706 (((-975) (-531) (-531) (-531) (-639 (-208)) (-531)) 36)) (-2426 (((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531)) 35)) (-2707 (((-975) (-531) (-531) (-531) (-531) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-208) (-208) (-531)) 34)) (-2878 (((-975) (-531) (-531) (-531) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-110) (-208) (-110) (-639 (-531)) (-639 (-208)) (-531)) 33)) (-1367 (((-975) (-531) (-531) (-531) (-531) (-208) (-110) (-110) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-531)) 32)))
+(((-705) (-10 -7 (-15 -1367 ((-975) (-531) (-531) (-531) (-531) (-208) (-110) (-110) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-531))) (-15 -2878 ((-975) (-531) (-531) (-531) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-110) (-208) (-110) (-639 (-531)) (-639 (-208)) (-531))) (-15 -2707 ((-975) (-531) (-531) (-531) (-531) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-208) (-208) (-531))) (-15 -2426 ((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531))) (-15 -1706 ((-975) (-531) (-531) (-531) (-639 (-208)) (-531))) (-15 -3958 ((-975) (-1085) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)) (-531))) (-15 -1815 ((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3656 ((-975) (-531) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -3502 ((-975) (-1085) (-1085) (-531) (-531) (-639 (-159 (-208))) (-531) (-639 (-159 (-208))) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -2963 ((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531))))) (T -705))
+((-2963 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-705)))) (-3502 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-705)))) (-3656 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-705)))) (-1815 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-705)))) (-3958 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-705)))) (-1706 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-705)))) (-2426 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-705)))) (-2707 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-598 (-110))) (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) (-5 *7 (-208)) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-705)))) (-2878 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-639 (-531))) (-5 *5 (-110)) (-5 *7 (-639 (-208))) (-5 *3 (-531)) (-5 *6 (-208)) (-5 *2 (-975)) (-5 *1 (-705)))) (-1367 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-598 (-110))) (-5 *7 (-639 (-208))) (-5 *8 (-639 (-531))) (-5 *3 (-531)) (-5 *4 (-208)) (-5 *5 (-110)) (-5 *2 (-975)) (-5 *1 (-705)))))
+(-10 -7 (-15 -1367 ((-975) (-531) (-531) (-531) (-531) (-208) (-110) (-110) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-531))) (-15 -2878 ((-975) (-531) (-531) (-531) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-639 (-531)) (-110) (-208) (-110) (-639 (-531)) (-639 (-208)) (-531))) (-15 -2707 ((-975) (-531) (-531) (-531) (-531) (-598 (-110)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-208) (-208) (-531))) (-15 -2426 ((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531))) (-15 -1706 ((-975) (-531) (-531) (-531) (-639 (-208)) (-531))) (-15 -3958 ((-975) (-1085) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)) (-531))) (-15 -1815 ((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3656 ((-975) (-531) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -3502 ((-975) (-1085) (-1085) (-531) (-531) (-639 (-159 (-208))) (-531) (-639 (-159 (-208))) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -2963 ((-975) (-1085) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531))))
+((-3355 (((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531)) 65)) (-2791 (((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531)) 60)) (-1309 (((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369)) 56) (((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) 55)) (-4236 (((-975) (-531) (-531) (-531) (-208) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531)) 37)) (-1559 (((-975) (-531) (-531) (-208) (-208) (-531) (-531) (-639 (-208)) (-531)) 33)) (-3284 (((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531) (-531)) 30)) (-1870 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 29)) (-3949 (((-975) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 28)) (-2225 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 27)) (-4043 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531)) 26)) (-3750 (((-975) (-531) (-531) (-639 (-208)) (-531)) 25)) (-3571 (((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 24)) (-3212 (((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531)) 23)) (-1778 (((-975) (-639 (-208)) (-531) (-531) (-531) (-531)) 22)) (-3992 (((-975) (-531) (-531) (-639 (-208)) (-531)) 21)))
+(((-706) (-10 -7 (-15 -3992 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -1778 ((-975) (-639 (-208)) (-531) (-531) (-531) (-531))) (-15 -3212 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3571 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3750 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -4043 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531))) (-15 -2225 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3949 ((-975) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1870 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3284 ((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531) (-531))) (-15 -1559 ((-975) (-531) (-531) (-208) (-208) (-531) (-531) (-639 (-208)) (-531))) (-15 -4236 ((-975) (-531) (-531) (-531) (-208) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1309 ((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -1309 ((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -2791 ((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3355 ((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531))))) (T -706))
+((-3355 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-110)) (-5 *5 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-706)))) (-2791 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *4 (-110)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-1309 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))) (-1309 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT)))) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))) (-4236 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-531)) (-5 *5 (-110)) (-5 *6 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))) (-1559 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))) (-3284 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-706)))) (-1870 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-3949 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-2225 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-4043 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-3750 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-3571 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-3212 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))) (-1778 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-706)))) (-3992 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-706)))))
+(-10 -7 (-15 -3992 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -1778 ((-975) (-639 (-208)) (-531) (-531) (-531) (-531))) (-15 -3212 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3571 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3750 ((-975) (-531) (-531) (-639 (-208)) (-531))) (-15 -4043 ((-975) (-531) (-531) (-531) (-531) (-639 (-208)) (-531))) (-15 -2225 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3949 ((-975) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1870 ((-975) (-531) (-531) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3284 ((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531) (-531))) (-15 -1559 ((-975) (-531) (-531) (-208) (-208) (-531) (-531) (-639 (-208)) (-531))) (-15 -4236 ((-975) (-531) (-531) (-531) (-208) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -1309 ((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))))) (-15 -1309 ((-975) (-531) (-531) (-208) (-531) (-531) (-531) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE))) (-369))) (-15 -2791 ((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3355 ((-975) (-531) (-531) (-531) (-531) (-531) (-110) (-531) (-110) (-531) (-639 (-159 (-208))) (-639 (-159 (-208))) (-531))))
+((-2335 (((-975) (-531) (-531) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) 61)) (-3678 (((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531)) 57)) (-1420 (((-975) (-531) (-639 (-208)) (-110) (-208) (-531) (-531) (-531) (-531) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) 56)) (-4038 (((-975) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531)) 37)) (-3932 (((-975) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-531)) 36)) (-3928 (((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531)) 33)) (-3349 (((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208))) 32)) (-3836 (((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531)) 28)) (-2478 (((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531)) 27)) (-4131 (((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531)) 26)) (-1693 (((-975) (-531) (-639 (-159 (-208))) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-531)) 22)))
+(((-707) (-10 -7 (-15 -1693 ((-975) (-531) (-639 (-159 (-208))) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -4131 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -2478 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3836 ((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531))) (-15 -3349 ((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)))) (-15 -3928 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3932 ((-975) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4038 ((-975) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531))) (-15 -1420 ((-975) (-531) (-639 (-208)) (-110) (-208) (-531) (-531) (-531) (-531) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -3678 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531))) (-15 -2335 ((-975) (-531) (-531) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))) (T -707))
+((-2335 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-707)))) (-3678 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-707)))) (-1420 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-110)) (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD)))) (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE)))) (-5 *2 (-975)) (-5 *1 (-707)))) (-4038 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-707)))) (-3932 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-707)))) (-3928 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-707)))) (-3349 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-707)))) (-3836 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-707)))) (-2478 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-707)))) (-4131 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-707)))) (-1693 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-159 (-208)))) (-5 *2 (-975)) (-5 *1 (-707)))))
+(-10 -7 (-15 -1693 ((-975) (-531) (-639 (-159 (-208))) (-531) (-531) (-531) (-531) (-639 (-159 (-208))) (-531))) (-15 -4131 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -2478 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-531))) (-15 -3836 ((-975) (-639 (-208)) (-531) (-639 (-208)) (-531) (-531) (-531))) (-15 -3349 ((-975) (-531) (-639 (-208)) (-531) (-639 (-531)) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)))) (-15 -3928 ((-975) (-531) (-531) (-639 (-208)) (-639 (-208)) (-639 (-208)) (-531))) (-15 -3932 ((-975) (-531) (-531) (-531) (-208) (-531) (-639 (-208)) (-639 (-208)) (-531))) (-15 -4038 ((-975) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-531)) (-639 (-208)) (-639 (-531)) (-639 (-531)) (-639 (-208)) (-639 (-208)) (-639 (-531)) (-531))) (-15 -1420 ((-975) (-531) (-639 (-208)) (-110) (-208) (-531) (-531) (-531) (-531) (-208) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))) (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))) (-15 -3678 ((-975) (-531) (-639 (-208)) (-531) (-639 (-208)) (-639 (-531)) (-531) (-639 (-208)) (-531) (-531) (-531) (-531))) (-15 -2335 ((-975) (-531) (-531) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-639 (-208)) (-531) (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD))))))
+((-1531 (((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-531) (-639 (-208))) 29)) (-1380 (((-975) (-1085) (-531) (-531) (-639 (-208))) 28)) (-3213 (((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-208))) 27)) (-2176 (((-975) (-531) (-531) (-531) (-639 (-208))) 21)))
+(((-708) (-10 -7 (-15 -2176 ((-975) (-531) (-531) (-531) (-639 (-208)))) (-15 -3213 ((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-208)))) (-15 -1380 ((-975) (-1085) (-531) (-531) (-639 (-208)))) (-15 -1531 ((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)))))) (T -708))
+((-1531 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-708)))) (-1380 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-708)))) (-3213 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-708)))) (-2176 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975)) (-5 *1 (-708)))))
+(-10 -7 (-15 -2176 ((-975) (-531) (-531) (-531) (-639 (-208)))) (-15 -3213 ((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-639 (-531)) (-531) (-639 (-208)))) (-15 -1380 ((-975) (-1085) (-531) (-531) (-639 (-208)))) (-15 -1531 ((-975) (-1085) (-531) (-531) (-639 (-208)) (-531) (-531) (-639 (-208)))))
+((-3834 (((-975) (-208) (-208) (-208) (-208) (-531)) 62)) (-2568 (((-975) (-208) (-208) (-208) (-531)) 61)) (-3901 (((-975) (-208) (-208) (-208) (-531)) 60)) (-3871 (((-975) (-208) (-208) (-531)) 59)) (-3746 (((-975) (-208) (-531)) 58)) (-2574 (((-975) (-208) (-531)) 57)) (-3512 (((-975) (-208) (-531)) 56)) (-2425 (((-975) (-208) (-531)) 55)) (-2192 (((-975) (-208) (-531)) 54)) (-2673 (((-975) (-208) (-531)) 53)) (-2967 (((-975) (-208) (-159 (-208)) (-531) (-1085) (-531)) 52)) (-3968 (((-975) (-208) (-159 (-208)) (-531) (-1085) (-531)) 51)) (-4200 (((-975) (-208) (-531)) 50)) (-2202 (((-975) (-208) (-531)) 49)) (-2045 (((-975) (-208) (-531)) 48)) (-4134 (((-975) (-208) (-531)) 47)) (-1534 (((-975) (-531) (-208) (-159 (-208)) (-531) (-1085) (-531)) 46)) (-2064 (((-975) (-1085) (-159 (-208)) (-1085) (-531)) 45)) (-3972 (((-975) (-1085) (-159 (-208)) (-1085) (-531)) 44)) (-3366 (((-975) (-208) (-159 (-208)) (-531) (-1085) (-531)) 43)) (-2797 (((-975) (-208) (-159 (-208)) (-531) (-1085) (-531)) 42)) (-4226 (((-975) (-208) (-531)) 39)) (-2887 (((-975) (-208) (-531)) 38)) (-2835 (((-975) (-208) (-531)) 37)) (-3291 (((-975) (-208) (-531)) 36)) (-4053 (((-975) (-208) (-531)) 35)) (-1712 (((-975) (-208) (-531)) 34)) (-4078 (((-975) (-208) (-531)) 33)) (-3534 (((-975) (-208) (-531)) 32)) (-1297 (((-975) (-208) (-531)) 31)) (-4133 (((-975) (-208) (-531)) 30)) (-3935 (((-975) (-208) (-208) (-208) (-531)) 29)) (-3885 (((-975) (-208) (-531)) 28)) (-3989 (((-975) (-208) (-531)) 27)) (-1268 (((-975) (-208) (-531)) 26)) (-2789 (((-975) (-208) (-531)) 25)) (-2977 (((-975) (-208) (-531)) 24)) (-4031 (((-975) (-159 (-208)) (-531)) 21)))
+(((-709) (-10 -7 (-15 -4031 ((-975) (-159 (-208)) (-531))) (-15 -2977 ((-975) (-208) (-531))) (-15 -2789 ((-975) (-208) (-531))) (-15 -1268 ((-975) (-208) (-531))) (-15 -3989 ((-975) (-208) (-531))) (-15 -3885 ((-975) (-208) (-531))) (-15 -3935 ((-975) (-208) (-208) (-208) (-531))) (-15 -4133 ((-975) (-208) (-531))) (-15 -1297 ((-975) (-208) (-531))) (-15 -3534 ((-975) (-208) (-531))) (-15 -4078 ((-975) (-208) (-531))) (-15 -1712 ((-975) (-208) (-531))) (-15 -4053 ((-975) (-208) (-531))) (-15 -3291 ((-975) (-208) (-531))) (-15 -2835 ((-975) (-208) (-531))) (-15 -2887 ((-975) (-208) (-531))) (-15 -4226 ((-975) (-208) (-531))) (-15 -2797 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -3366 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -3972 ((-975) (-1085) (-159 (-208)) (-1085) (-531))) (-15 -2064 ((-975) (-1085) (-159 (-208)) (-1085) (-531))) (-15 -1534 ((-975) (-531) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -4134 ((-975) (-208) (-531))) (-15 -2045 ((-975) (-208) (-531))) (-15 -2202 ((-975) (-208) (-531))) (-15 -4200 ((-975) (-208) (-531))) (-15 -3968 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -2967 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -2673 ((-975) (-208) (-531))) (-15 -2192 ((-975) (-208) (-531))) (-15 -2425 ((-975) (-208) (-531))) (-15 -3512 ((-975) (-208) (-531))) (-15 -2574 ((-975) (-208) (-531))) (-15 -3746 ((-975) (-208) (-531))) (-15 -3871 ((-975) (-208) (-208) (-531))) (-15 -3901 ((-975) (-208) (-208) (-208) (-531))) (-15 -2568 ((-975) (-208) (-208) (-208) (-531))) (-15 -3834 ((-975) (-208) (-208) (-208) (-208) (-531))))) (T -709))
+((-3834 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2568 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3901 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3871 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3746 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2574 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3512 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2425 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2192 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2673 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2967 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3968 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4200 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2202 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2045 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4134 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-1534 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-531)) (-5 *5 (-159 (-208))) (-5 *6 (-1085)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2064 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1085)) (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3972 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1085)) (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3366 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2797 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085)) (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4226 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2887 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2835 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3291 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4053 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-1712 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4078 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-1297 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4133 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3935 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3885 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-3989 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-1268 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-2977 (*1 *2 *3 *4) (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))) (-4031 (*1 *2 *3 *4) (-12 (-5 *3 (-159 (-208))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(-10 -7 (-15 -4031 ((-975) (-159 (-208)) (-531))) (-15 -2977 ((-975) (-208) (-531))) (-15 -2789 ((-975) (-208) (-531))) (-15 -1268 ((-975) (-208) (-531))) (-15 -3989 ((-975) (-208) (-531))) (-15 -3885 ((-975) (-208) (-531))) (-15 -3935 ((-975) (-208) (-208) (-208) (-531))) (-15 -4133 ((-975) (-208) (-531))) (-15 -1297 ((-975) (-208) (-531))) (-15 -3534 ((-975) (-208) (-531))) (-15 -4078 ((-975) (-208) (-531))) (-15 -1712 ((-975) (-208) (-531))) (-15 -4053 ((-975) (-208) (-531))) (-15 -3291 ((-975) (-208) (-531))) (-15 -2835 ((-975) (-208) (-531))) (-15 -2887 ((-975) (-208) (-531))) (-15 -4226 ((-975) (-208) (-531))) (-15 -2797 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -3366 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -3972 ((-975) (-1085) (-159 (-208)) (-1085) (-531))) (-15 -2064 ((-975) (-1085) (-159 (-208)) (-1085) (-531))) (-15 -1534 ((-975) (-531) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -4134 ((-975) (-208) (-531))) (-15 -2045 ((-975) (-208) (-531))) (-15 -2202 ((-975) (-208) (-531))) (-15 -4200 ((-975) (-208) (-531))) (-15 -3968 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -2967 ((-975) (-208) (-159 (-208)) (-531) (-1085) (-531))) (-15 -2673 ((-975) (-208) (-531))) (-15 -2192 ((-975) (-208) (-531))) (-15 -2425 ((-975) (-208) (-531))) (-15 -3512 ((-975) (-208) (-531))) (-15 -2574 ((-975) (-208) (-531))) (-15 -3746 ((-975) (-208) (-531))) (-15 -3871 ((-975) (-208) (-208) (-531))) (-15 -3901 ((-975) (-208) (-208) (-208) (-531))) (-15 -2568 ((-975) (-208) (-208) (-208) (-531))) (-15 -3834 ((-975) (-208) (-208) (-208) (-208) (-531))))
+((-2839 (((-1189)) 18)) (-4028 (((-1085)) 22)) (-1529 (((-1085)) 21)) (-3794 (((-1034) (-1102) (-639 (-531))) 37) (((-1034) (-1102) (-639 (-208))) 32)) (-1732 (((-110)) 16)) (-3993 (((-1085) (-1085)) 25)))
+(((-710) (-10 -7 (-15 -1529 ((-1085))) (-15 -4028 ((-1085))) (-15 -3993 ((-1085) (-1085))) (-15 -3794 ((-1034) (-1102) (-639 (-208)))) (-15 -3794 ((-1034) (-1102) (-639 (-531)))) (-15 -1732 ((-110))) (-15 -2839 ((-1189))))) (T -710))
+((-2839 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-710)))) (-1732 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-710)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-639 (-531))) (-5 *2 (-1034)) (-5 *1 (-710)))) (-3794 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-639 (-208))) (-5 *2 (-1034)) (-5 *1 (-710)))) (-3993 (*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710)))) (-4028 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710)))) (-1529 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710)))))
+(-10 -7 (-15 -1529 ((-1085))) (-15 -4028 ((-1085))) (-15 -3993 ((-1085) (-1085))) (-15 -3794 ((-1034) (-1102) (-639 (-208)))) (-15 -3794 ((-1034) (-1102) (-639 (-531)))) (-15 -1732 ((-110))) (-15 -2839 ((-1189))))
+((-3214 (($ $ $) 10)) (-2801 (($ $ $ $) 9)) (-1605 (($ $ $) 12)))
+(((-711 |#1|) (-10 -8 (-15 -1605 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1| |#1|))) (-712)) (T -711))
+NIL
+(-10 -8 (-15 -1605 (|#1| |#1| |#1|)) (-15 -3214 (|#1| |#1| |#1|)) (-15 -2801 (|#1| |#1| |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1666 (($ $ (-864)) 28)) (-2585 (($ $ (-864)) 29)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3214 (($ $ $) 25)) (-2265 (((-806) $) 11)) (-2801 (($ $ $ $) 26)) (-1605 (($ $ $) 24)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27)))
(((-712) (-133)) (T -712))
-((-3300 (*1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-719)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-712)))))
-(-13 (-710) (-671) (-10 -8 (-15 -3300 ((-719))) (-15 -2366 ($ (-530)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-669) . T) ((-671) . T) ((-710) . T) ((-1027) . T))
-((-2860 (((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|) 33)) (-3982 (((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|) 23)) (-1814 (((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099)) 20) (((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530))))) 19)))
-(((-713 |#1|) (-10 -7 (-15 -1814 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))))) (-15 -1814 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099))) (-15 -3982 ((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|)) (-15 -2860 ((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|))) (-13 (-344) (-793))) (T -713))
-((-2860 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 *4))))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))) (-3982 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-159 *4))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *4 (-1099)) (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *5)) (-4 *5 (-13 (-344) (-793))))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -1814 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))))) (-15 -1814 ((-893 (-159 (-388 (-530)))) (-637 (-159 (-388 (-530)))) (-1099))) (-15 -3982 ((-597 (-159 |#1|)) (-637 (-159 (-388 (-530)))) |#1|)) (-15 -2860 ((-597 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 (-159 |#1|)))))) (-637 (-159 (-388 (-530)))) |#1|)))
-((-2054 (((-163 (-530)) |#1|) 25)))
-(((-714 |#1|) (-10 -7 (-15 -2054 ((-163 (-530)) |#1|))) (-385)) (T -714))
-((-2054 (*1 *2 *3) (-12 (-5 *2 (-163 (-530))) (-5 *1 (-714 *3)) (-4 *3 (-385)))))
-(-10 -7 (-15 -2054 ((-163 (-530)) |#1|)))
-((-1396 ((|#1| |#1| |#1|) 24)) (-3140 ((|#1| |#1| |#1|) 23)) (-2615 ((|#1| |#1| |#1|) 32)) (-4132 ((|#1| |#1| |#1|) 28)) (-2876 (((-3 |#1| "failed") |#1| |#1|) 27)) (-3383 (((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|) 22)))
-(((-715 |#1| |#2|) (-10 -7 (-15 -3383 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2615 (|#1| |#1| |#1|))) (-657 |#2|) (-344)) (T -715))
-((-2615 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-4132 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-2876 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-1396 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-3140 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3)))) (-3383 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-715 *3 *4)) (-4 *3 (-657 *4)))))
-(-10 -7 (-15 -3383 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2615 (|#1| |#1| |#1|)))
-((-2596 (((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530)) 59)) (-3696 (((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530))))) 57)) (-3060 (((-530)) 71)))
-(((-716 |#1| |#2|) (-10 -7 (-15 -3060 ((-530))) (-15 -3696 ((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))))) (-15 -2596 ((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530)))) (-1157 (-530)) (-390 (-530) |#1|)) (T -716))
-((-2596 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-716 *4 *5)) (-4 *5 (-390 *3 *4)))) (-3696 (*1 *2) (-12 (-4 *3 (-1157 (-530))) (-5 *2 (-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530))))) (-5 *1 (-716 *3 *4)) (-4 *4 (-390 (-530) *3)))) (-3060 (*1 *2) (-12 (-4 *3 (-1157 *2)) (-5 *2 (-530)) (-5 *1 (-716 *3 *4)) (-4 *4 (-390 *2 *3)))))
-(-10 -7 (-15 -3060 ((-530))) (-15 -3696 ((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))))) (-15 -2596 ((-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530)) (|:| |basisInv| (-637 (-530)))) (-530))))
-((-2352 (((-110) $ $) NIL)) (-2585 (((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $) 21)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 20) (($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) 18)) (-2248 (((-110) $ $) NIL)))
-(((-717) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))) (T -717))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-717)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-717)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-717)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-717)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-717)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-3 (|:| |nia| (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))
-((-2322 (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))) 18) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099))) 17)) (-2688 (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))) 20) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099))) 19)))
-(((-718 |#1|) (-10 -7 (-15 -2322 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2322 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|))))) (-522)) (T -718))
-((-2688 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5)))) (-2322 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5)))))
-(-10 -7 (-15 -2322 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2322 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-893 |#1|)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3418 (($ $ $) 6)) (-1889 (((-3 $ "failed") $ $) 9)) (-4207 (($ $ (-530)) 7)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($ $) NIL)) (-3571 (($ $ $) NIL)) (-2731 (((-110) $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2204 (($ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2366 (((-804) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ $ $) NIL)))
-(((-719) (-13 (-741) (-675) (-10 -8 (-15 -3571 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -3763 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3551 ((-3 $ "failed") $ $)) (-15 -4207 ($ $ (-530))) (-15 -1364 ($ $)) (-6 (-4271 "*"))))) (T -719))
-((-3571 (*1 *1 *1 *1) (-5 *1 (-719))) (-3590 (*1 *1 *1 *1) (-5 *1 (-719))) (-2204 (*1 *1 *1 *1) (-5 *1 (-719))) (-3763 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -1324 (-719)) (|:| -3304 (-719)))) (-5 *1 (-719)))) (-3551 (*1 *1 *1 *1) (|partial| -5 *1 (-719))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-719)))) (-1364 (*1 *1 *1) (-5 *1 (-719))))
-(-13 (-741) (-675) (-10 -8 (-15 -3571 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -2204 ($ $ $)) (-15 -3763 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3551 ((-3 $ "failed") $ $)) (-15 -4207 ($ $ (-530))) (-15 -1364 ($ $)) (-6 (-4271 "*"))))
-((-2688 (((-3 |#2| "failed") |#2| |#2| (-112) (-1099)) 35)))
-(((-720 |#1| |#2|) (-10 -7 (-15 -2688 ((-3 |#2| "failed") |#2| |#2| (-112) (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -720))
-((-2688 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-720 *5 *2)) (-4 *2 (-13 (-29 *5) (-1121) (-900))))))
-(-10 -7 (-15 -2688 ((-3 |#2| "failed") |#2| |#2| (-112) (-1099))))
-((-2366 (((-722) |#1|) 8)))
-(((-721 |#1|) (-10 -7 (-15 -2366 ((-722) |#1|))) (-1135)) (T -721))
-((-2366 (*1 *2 *3) (-12 (-5 *2 (-722)) (-5 *1 (-721 *3)) (-4 *3 (-1135)))))
-(-10 -7 (-15 -2366 ((-722) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 7)) (-2248 (((-110) $ $) 9)))
-(((-722) (-1027)) (T -722))
-NIL
-(-1027)
-((-2376 ((|#2| |#4|) 35)))
-(((-723 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2376 (|#2| |#4|))) (-432) (-1157 |#1|) (-673 |#1| |#2|) (-1157 |#3|)) (T -723))
-((-2376 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-673 *4 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-723 *4 *2 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -2376 (|#2| |#4|)))
-((-2707 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3118 (((-1186) (-1082) (-1082) |#4| |#5|) 33)) (-1766 ((|#4| |#4| |#5|) 73)) (-3258 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|) 77)) (-1608 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 16)))
-(((-724 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1766 (|#4| |#4| |#5|)) (-15 -3258 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3118 ((-1186) (-1082) (-1082) |#4| |#5|)) (-15 -1608 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -724))
-((-1608 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3118 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1082)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *4 (-998 *6 *7 *8)) (-5 *2 (-1186)) (-5 *1 (-724 *6 *7 *8 *4 *5)) (-4 *5 (-1003 *6 *7 *8 *4)))) (-3258 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1766 (*1 *2 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *2 (-998 *4 *5 *6)) (-5 *1 (-724 *4 *5 *6 *2 *3)) (-4 *3 (-1003 *4 *5 *6 *2)))) (-2707 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(-10 -7 (-15 -2707 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -1766 (|#4| |#4| |#5|)) (-15 -3258 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3118 ((-1186) (-1082) (-1082) |#4| |#5|)) (-15 -1608 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)))
-((-3139 (((-3 (-1095 (-1095 |#1|)) "failed") |#4|) 43)) (-3247 (((-597 |#4|) |#4|) 15)) (-3962 ((|#4| |#4|) 11)))
-(((-725 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3247 ((-597 |#4|) |#4|)) (-15 -3139 ((-3 (-1095 (-1095 |#1|)) "failed") |#4|)) (-15 -3962 (|#4| |#4|))) (-330) (-310 |#1|) (-1157 |#2|) (-1157 |#3|) (-862)) (T -725))
-((-3962 (*1 *2 *2) (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1157 *4)) (-5 *1 (-725 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-862)))) (-3139 (*1 *2 *3) (|partial| -12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-862)))) (-3247 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5)) (-5 *2 (-597 *3)) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6)) (-14 *7 (-862)))))
-(-10 -7 (-15 -3247 ((-597 |#4|) |#4|)) (-15 -3139 ((-3 (-1095 (-1095 |#1|)) "failed") |#4|)) (-15 -3962 (|#4| |#4|)))
-((-2975 (((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|)) 54)) (-2216 (((-597 (-719)) |#1|) 13)))
-(((-726 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2975 ((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|))) (-15 -2216 ((-597 (-719)) |#1|))) (-1157 |#4|) (-741) (-795) (-289) (-890 |#4| |#2| |#3|)) (T -726))
-((-2216 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-597 (-719))) (-5 *1 (-726 *3 *4 *5 *6 *7)) (-4 *3 (-1157 *6)) (-4 *7 (-890 *6 *4 *5)))) (-2975 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1157 *9)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-289)) (-4 *10 (-890 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-597 (-1095 *10))) (|:| |dterm| (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| *10))))) (|:| |nfacts| (-597 *6)) (|:| |nlead| (-597 *10)))) (-5 *1 (-726 *6 *7 *8 *9 *10)) (-5 *3 (-1095 *10)) (-5 *4 (-597 *6)) (-5 *5 (-597 *10)))))
-(-10 -7 (-15 -2975 ((-2 (|:| |deter| (-597 (-1095 |#5|))) (|:| |dterm| (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-597 |#1|)) (|:| |nlead| (-597 |#5|))) (-1095 |#5|) (-597 |#1|) (-597 |#5|))) (-15 -2216 ((-597 (-719)) |#1|)))
-((-4013 (((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|) 31)) (-1310 (((-597 |#1|) (-637 (-388 (-530))) |#1|) 21)) (-1814 (((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099)) 18) (((-893 (-388 (-530))) (-637 (-388 (-530)))) 17)))
-(((-727 |#1|) (-10 -7 (-15 -1814 ((-893 (-388 (-530))) (-637 (-388 (-530))))) (-15 -1814 ((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099))) (-15 -1310 ((-597 |#1|) (-637 (-388 (-530))) |#1|)) (-15 -4013 ((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|))) (-13 (-344) (-793))) (T -727))
-((-4013 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 (-2 (|:| |outval| *4) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 *4)))))) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))) (-1310 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))) (-1814 (*1 *2 *3 *4) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *4 (-1099)) (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *5)) (-4 *5 (-13 (-344) (-793))))) (-1814 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))))
-(-10 -7 (-15 -1814 ((-893 (-388 (-530))) (-637 (-388 (-530))))) (-15 -1814 ((-893 (-388 (-530))) (-637 (-388 (-530))) (-1099))) (-15 -1310 ((-597 |#1|) (-637 (-388 (-530))) |#1|)) (-15 -4013 ((-597 (-2 (|:| |outval| |#1|) (|:| |outmult| (-530)) (|:| |outvect| (-597 (-637 |#1|))))) (-637 (-388 (-530))) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 34)) (-2746 (((-597 |#2|) $) NIL)) (-2577 (((-1095 $) $ |#2|) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 |#2|)) NIL)) (-2133 (($ $) 28)) (-3627 (((-110) $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3950 (($ $ $) 93 (|has| |#1| (-522)))) (-2540 (((-597 $) $ $) 106 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (((-3 $ "failed") (-893 (-530))) NIL (-1461 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (((-3 $ "failed") (-893 |#1|)) NIL (-1461 (-12 (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-37 (-530))))) (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-515)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-932 (-530))))))) (((-3 (-1051 |#1| |#2|) "failed") $) 18)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#2| $) NIL) (($ (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (($ (-893 (-530))) NIL (-1461 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (($ (-893 |#1|)) NIL (-1461 (-12 (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-37 (-530))))) (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-515)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-932 (-530))))))) (((-1051 |#1| |#2|) $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-162))) (($ $ $) 104 (|has| |#1| (-522)))) (-2562 (($ $) NIL) (($ $ |#2|) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-3784 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1943 (((-110) $) NIL)) (-2504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 70)) (-4122 (($ $) 119 (|has| |#1| (-432)))) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2651 (($ $) NIL (|has| |#1| (-522)))) (-4224 (($ $) NIL (|has| |#1| (-522)))) (-4170 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-3535 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2410 (($ $ |#1| (-502 |#2|) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-3397 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-2793 (($ $ $ $ $) 90 (|has| |#1| (-522)))) (-3122 ((|#2| $) 19)) (-2735 (($ (-1095 |#1|) |#2|) NIL) (($ (-1095 $) |#2|) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 |#2|)) NIL) (($ $ |#2| (-719)) 36) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2938 (($ $ $) 60)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#2|) NIL)) (-1841 (((-110) $) NIL)) (-2944 (((-502 |#2|) $) NIL) (((-719) $ |#2|) NIL) (((-597 (-719)) $ (-597 |#2|)) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1419 (((-719) $) 20)) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 |#2|) (-502 |#2|)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2040 (((-3 |#2| "failed") $) NIL)) (-3975 (($ $) NIL (|has| |#1| (-432)))) (-3630 (($ $) NIL (|has| |#1| (-432)))) (-2922 (((-597 $) $) NIL)) (-3384 (($ $) 37)) (-2036 (($ $) NIL (|has| |#1| (-432)))) (-2467 (((-597 $) $) 41)) (-3777 (($ $) 39)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4237 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4003 (-719))) $ $) 82)) (-1420 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $) 67) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $ |#2|) NIL)) (-4223 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $) NIL) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $ |#2|) NIL)) (-2456 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-2824 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1424 (((-1082) $) NIL)) (-2991 (($ $ $) 108 (|has| |#1| (-522)))) (-3162 (((-597 $) $) 30)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-719))) "failed") $) NIL)) (-2559 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-3482 (($ $ $) NIL)) (-3657 (($ $) 21)) (-1406 (((-110) $ $) NIL)) (-1663 (((-110) $ $) NIL) (((-110) $ (-597 $)) NIL)) (-2122 (($ $ $) NIL)) (-2846 (($ $) 23)) (-2624 (((-1046) $) NIL)) (-2177 (((-2 (|:| -2204 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-522)))) (-3936 (((-2 (|:| -2204 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-522)))) (-2494 (((-110) $) 52)) (-2505 ((|#1| $) 55)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 ((|#1| |#1| $) 116 (|has| |#1| (-432))) (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-2408 (((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-522)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-2150 (($ $ |#1|) 112 (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-3792 (($ $ |#1|) 111 (|has| |#1| (-522))) (($ $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-597 |#2|) (-597 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-597 |#2|) (-597 $)) NIL)) (-3060 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3289 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1429 (((-502 |#2|) $) NIL) (((-719) $ |#2|) 43) (((-597 (-719)) $ (-597 |#2|)) NIL)) (-1581 (($ $) NIL)) (-3434 (($ $) 33)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506))))) (($ (-893 (-388 (-530)))) NIL (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099))))) (($ (-893 (-530))) NIL (-1461 (-12 (|has| |#1| (-37 (-530))) (|has| |#2| (-572 (-1099))) (-3676 (|has| |#1| (-37 (-388 (-530)))))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#2| (-572 (-1099)))))) (($ (-893 |#1|)) NIL (|has| |#2| (-572 (-1099)))) (((-1082) $) NIL (-12 (|has| |#1| (-975 (-530))) (|has| |#2| (-572 (-1099))))) (((-893 |#1|) $) NIL (|has| |#2| (-572 (-1099))))) (-3829 ((|#1| $) 115 (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-893 |#1|) $) NIL (|has| |#2| (-572 (-1099)))) (((-1051 |#1| |#2|) $) 15) (($ (-1051 |#1| |#2|)) 16) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 |#2|)) NIL) (($ $ |#2| (-719)) 44) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 13 T CONST)) (-3264 (((-3 (-110) "failed") $ $) NIL)) (-3093 (($) 35 T CONST)) (-1271 (($ $ $ $ (-719)) 88 (|has| |#1| (-522)))) (-3984 (($ $ $ (-719)) 87 (|has| |#1| (-522)))) (-3340 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 54)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) 64)) (-2339 (($ $ $) 74)) (** (($ $ (-862)) NIL) (($ $ (-719)) 61)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 59) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
-(((-728 |#1| |#2|) (-13 (-998 |#1| (-502 |#2|) |#2|) (-571 (-1051 |#1| |#2|)) (-975 (-1051 |#1| |#2|))) (-984) (-795)) (T -728))
-NIL
-(-13 (-998 |#1| (-502 |#2|) |#2|) (-571 (-1051 |#1| |#2|)) (-975 (-1051 |#1| |#2|)))
-((-3217 (((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|)) 13)))
-(((-729 |#1| |#2|) (-10 -7 (-15 -3217 ((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|)))) (-984) (-984)) (T -729))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-730 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-730 *6)) (-5 *1 (-729 *5 *6)))))
-(-10 -7 (-15 -3217 ((-730 |#2|) (-1 |#2| |#1|) (-730 |#1|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 12)) (-1825 (((-1181 |#1|) $ (-719)) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-1370 (($ (-1095 |#1|)) NIL)) (-2577 (((-1095 $) $ (-1012)) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3877 (((-597 $) $ $) 39 (|has| |#1| (-522)))) (-3950 (($ $ $) 35 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3269 (($ $ (-719)) NIL)) (-3778 (($ $ (-719)) NIL)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL) (((-3 (-1095 |#1|) "failed") $) 10)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL) (((-1095 |#1|) $) NIL)) (-3388 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) 43 (|has| |#1| (-162)))) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-1350 (($ $ $) NIL)) (-1903 (($ $ $) 71 (|has| |#1| (-522)))) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 $) (|:| -3304 $)) $ $) 70 (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-719) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ $) NIL (|has| |#1| (-522)))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2735 (($ (-1095 |#1|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-3081 (($ $ (-719)) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-2938 (($ $ $) 20)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) NIL) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2609 (((-1095 |#1|) $) NIL)) (-2040 (((-3 (-1012) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4237 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4003 (-719))) $ $) 26)) (-1906 (($ $ $) 29)) (-3524 (($ $ $) 32)) (-1420 (((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $) 31)) (-1424 (((-1082) $) NIL)) (-2991 (($ $ $) 41 (|has| |#1| (-522)))) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2177 (((-2 (|:| -2204 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-522)))) (-3936 (((-2 (|:| -2204 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-522)))) (-2593 (((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-522)))) (-2053 (((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-522)))) (-2494 (((-110) $) 13)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1641 (($ $ (-719) |#1| $) 19)) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-2408 (((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-522)))) (-2466 (((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-522)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3060 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1429 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-1331 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1012)) NIL) (((-1095 |#1|) $) 7) (($ (-1095 |#1|)) 8) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 21 T CONST)) (-3093 (($) 24 T CONST)) (-3340 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) 28) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
-(((-730 |#1|) (-13 (-1157 |#1|) (-571 (-1095 |#1|)) (-975 (-1095 |#1|)) (-10 -8 (-15 -1641 ($ $ (-719) |#1| $)) (-15 -2938 ($ $ $)) (-15 -4237 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4003 (-719))) $ $)) (-15 -1906 ($ $ $)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3524 ($ $ $)) (IF (|has| |#1| (-522)) (PROGN (-15 -3877 ((-597 $) $ $)) (-15 -2991 ($ $ $)) (-15 -2408 ((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3936 ((-2 (|:| -2204 $) (|:| |coef1| $)) $ $)) (-15 -2177 ((-2 (|:| -2204 $) (|:| |coef2| $)) $ $)) (-15 -2466 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2053 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -2593 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-984)) (T -730))
-((-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-2938 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-4237 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-730 *3)) (|:| |polden| *3) (|:| -4003 (-719)))) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-1906 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-1420 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2065 *3) (|:| |gap| (-719)) (|:| -1324 (-730 *3)) (|:| -3304 (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-984)))) (-3524 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))) (-3877 (*1 *2 *1 *1) (-12 (-5 *2 (-597 (-730 *3))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2991 (*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-522)) (-4 *2 (-984)))) (-2408 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-3936 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef1| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2177 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2466 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2053 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))) (-2593 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-730 *3)))) (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(-13 (-1157 |#1|) (-571 (-1095 |#1|)) (-975 (-1095 |#1|)) (-10 -8 (-15 -1641 ($ $ (-719) |#1| $)) (-15 -2938 ($ $ $)) (-15 -4237 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -4003 (-719))) $ $)) (-15 -1906 ($ $ $)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3524 ($ $ $)) (IF (|has| |#1| (-522)) (PROGN (-15 -3877 ((-597 $) $ $)) (-15 -2991 ($ $ $)) (-15 -2408 ((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3936 ((-2 (|:| -2204 $) (|:| |coef1| $)) $ $)) (-15 -2177 ((-2 (|:| -2204 $) (|:| |coef2| $)) $ $)) (-15 -2466 ((-2 (|:| -3388 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2053 ((-2 (|:| -3388 |#1|) (|:| |coef1| $)) $ $)) (-15 -2593 ((-2 (|:| -3388 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
-((-4174 ((|#1| (-719) |#1|) 32 (|has| |#1| (-37 (-388 (-530)))))) (-3570 ((|#1| (-719) |#1|) 22)) (-1563 ((|#1| (-719) |#1|) 34 (|has| |#1| (-37 (-388 (-530)))))))
-(((-731 |#1|) (-10 -7 (-15 -3570 (|#1| (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1563 (|#1| (-719) |#1|)) (-15 -4174 (|#1| (-719) |#1|))) |%noBranch|)) (-162)) (T -731))
-((-4174 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-1563 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-3570 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-162)))))
-(-10 -7 (-15 -3570 (|#1| (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1563 (|#1| (-719) |#1|)) (-15 -4174 (|#1| (-719) |#1|))) |%noBranch|))
-((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 126)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3131 (((-110) |#4| $) 136)) (-2747 (((-110) |#4| $) 133)) (-2984 (((-110) |#4| $) 137) (((-110) $) 134)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 127)) (-2407 (((-3 |#4| "failed") $) 83)) (-3274 (((-597 $) |#4| $) 129)) (-1404 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-4033 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-2721 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-4208 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-1321 (((-110) |#4| $) 135)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
-(((-732 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -732))
-NIL
-(-13 (-1003 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1003 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1135) . T))
-((-3648 (((-3 (-360) "failed") (-297 |#1|) (-862)) 62 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-360) "failed") (-297 |#1|)) 54 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-360) "failed") (-388 (-893 |#1|)) (-862)) 41 (|has| |#1| (-522))) (((-3 (-360) "failed") (-388 (-893 |#1|))) 40 (|has| |#1| (-522))) (((-3 (-360) "failed") (-893 |#1|) (-862)) 31 (|has| |#1| (-984))) (((-3 (-360) "failed") (-893 |#1|)) 30 (|has| |#1| (-984)))) (-1925 (((-360) (-297 |#1|) (-862)) 99 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-360) (-297 |#1|)) 94 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-360) (-388 (-893 |#1|)) (-862)) 91 (|has| |#1| (-522))) (((-360) (-388 (-893 |#1|))) 90 (|has| |#1| (-522))) (((-360) (-893 |#1|) (-862)) 86 (|has| |#1| (-984))) (((-360) (-893 |#1|)) 85 (|has| |#1| (-984))) (((-360) |#1| (-862)) 76) (((-360) |#1|) 22)) (-1401 (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)) 71 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|))) 70 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 |#1|) (-862)) 63 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-297 |#1|)) 61 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862)) 46 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|)))) 45 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862)) 39 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-388 (-893 |#1|))) 38 (|has| |#1| (-522))) (((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)) 28 (|has| |#1| (-984))) (((-3 (-159 (-360)) "failed") (-893 |#1|)) 26 (|has| |#1| (-984))) (((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)) 18 (|has| |#1| (-162))) (((-3 (-159 (-360)) "failed") (-893 (-159 |#1|))) 15 (|has| |#1| (-162)))) (-2537 (((-159 (-360)) (-297 (-159 |#1|)) (-862)) 102 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 (-159 |#1|))) 101 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 |#1|) (-862)) 100 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-297 |#1|)) 98 (-12 (|has| |#1| (-522)) (|has| |#1| (-795)))) (((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862)) 93 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 (-159 |#1|)))) 92 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 |#1|)) (-862)) 89 (|has| |#1| (-522))) (((-159 (-360)) (-388 (-893 |#1|))) 88 (|has| |#1| (-522))) (((-159 (-360)) (-893 |#1|) (-862)) 84 (|has| |#1| (-984))) (((-159 (-360)) (-893 |#1|)) 83 (|has| |#1| (-984))) (((-159 (-360)) (-893 (-159 |#1|)) (-862)) 78 (|has| |#1| (-162))) (((-159 (-360)) (-893 (-159 |#1|))) 77 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|) (-862)) 80 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|)) 79 (|has| |#1| (-162))) (((-159 (-360)) |#1| (-862)) 27) (((-159 (-360)) |#1|) 25)))
-(((-733 |#1|) (-10 -7 (-15 -1925 ((-360) |#1|)) (-15 -1925 ((-360) |#1| (-862))) (-15 -2537 ((-159 (-360)) |#1|)) (-15 -2537 ((-159 (-360)) |#1| (-862))) (IF (|has| |#1| (-162)) (PROGN (-15 -2537 ((-159 (-360)) (-159 |#1|))) (-15 -2537 ((-159 (-360)) (-159 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-893 (-159 |#1|)))) (-15 -2537 ((-159 (-360)) (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -1925 ((-360) (-893 |#1|))) (-15 -1925 ((-360) (-893 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-893 |#1|))) (-15 -2537 ((-159 (-360)) (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1925 ((-360) (-388 (-893 |#1|)))) (-15 -1925 ((-360) (-388 (-893 |#1|)) (-862))) (-15 -2537 ((-159 (-360)) (-388 (-893 |#1|)))) (-15 -2537 ((-159 (-360)) (-388 (-893 |#1|)) (-862))) (-15 -2537 ((-159 (-360)) (-388 (-893 (-159 |#1|))))) (-15 -2537 ((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -1925 ((-360) (-297 |#1|))) (-15 -1925 ((-360) (-297 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-297 |#1|))) (-15 -2537 ((-159 (-360)) (-297 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2537 ((-159 (-360)) (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-893 |#1|))) (-15 -3648 ((-3 (-360) "failed") (-893 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 |#1|))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-388 (-893 |#1|)))) (-15 -3648 ((-3 (-360) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-297 |#1|))) (-15 -3648 ((-3 (-360) "failed") (-297 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|)) (-572 (-360))) (T -733))
-((-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3648 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3648 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-3648 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-3648 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-1401 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-1401 (*1 *2 *3) (|partial| -12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-1925 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984)) (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))) (-1925 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *3 (-159 *5)) (-5 *4 (-862)) (-4 *5 (-162)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5)))) (-2537 (*1 *2 *3) (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4)))) (-2537 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-159 (-360))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-360))))) (-2537 (*1 *2 *3) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-360))))) (-1925 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2)))) (-1925 (*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2)))))
-(-10 -7 (-15 -1925 ((-360) |#1|)) (-15 -1925 ((-360) |#1| (-862))) (-15 -2537 ((-159 (-360)) |#1|)) (-15 -2537 ((-159 (-360)) |#1| (-862))) (IF (|has| |#1| (-162)) (PROGN (-15 -2537 ((-159 (-360)) (-159 |#1|))) (-15 -2537 ((-159 (-360)) (-159 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-893 (-159 |#1|)))) (-15 -2537 ((-159 (-360)) (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -1925 ((-360) (-893 |#1|))) (-15 -1925 ((-360) (-893 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-893 |#1|))) (-15 -2537 ((-159 (-360)) (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -1925 ((-360) (-388 (-893 |#1|)))) (-15 -1925 ((-360) (-388 (-893 |#1|)) (-862))) (-15 -2537 ((-159 (-360)) (-388 (-893 |#1|)))) (-15 -2537 ((-159 (-360)) (-388 (-893 |#1|)) (-862))) (-15 -2537 ((-159 (-360)) (-388 (-893 (-159 |#1|))))) (-15 -2537 ((-159 (-360)) (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -1925 ((-360) (-297 |#1|))) (-15 -1925 ((-360) (-297 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-297 |#1|))) (-15 -2537 ((-159 (-360)) (-297 |#1|) (-862))) (-15 -2537 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2537 ((-159 (-360)) (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 (-159 |#1|)) (-862)))) |%noBranch|) (IF (|has| |#1| (-984)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-893 |#1|))) (-15 -3648 ((-3 (-360) "failed") (-893 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 |#1|))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-893 |#1|) (-862)))) |%noBranch|) (IF (|has| |#1| (-522)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-388 (-893 |#1|)))) (-15 -3648 ((-3 (-360) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 |#1|)) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-388 (-893 (-159 |#1|))) (-862))) (IF (|has| |#1| (-795)) (PROGN (-15 -3648 ((-3 (-360) "failed") (-297 |#1|))) (-15 -3648 ((-3 (-360) "failed") (-297 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-862))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -1401 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-862)))) |%noBranch|)) |%noBranch|))
-((-1280 (((-862) (-1082)) 66)) (-1970 (((-3 (-360) "failed") (-1082)) 33)) (-3892 (((-360) (-1082)) 31)) (-3505 (((-862) (-1082)) 54)) (-2989 (((-1082) (-862)) 56)) (-3965 (((-1082) (-862)) 53)))
-(((-734) (-10 -7 (-15 -3965 ((-1082) (-862))) (-15 -3505 ((-862) (-1082))) (-15 -2989 ((-1082) (-862))) (-15 -1280 ((-862) (-1082))) (-15 -3892 ((-360) (-1082))) (-15 -1970 ((-3 (-360) "failed") (-1082))))) (T -734))
-((-1970 (*1 *2 *3) (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))) (-3892 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))) (-1280 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))) (-2989 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))) (-3505 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))) (-3965 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
-(-10 -7 (-15 -3965 ((-1082) (-862))) (-15 -3505 ((-862) (-1082))) (-15 -2989 ((-1082) (-862))) (-15 -1280 ((-862) (-1082))) (-15 -3892 ((-360) (-1082))) (-15 -1970 ((-3 (-360) "failed") (-1082))))
-((-2352 (((-110) $ $) 7)) (-1508 (((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 15) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)) 13)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
-(((-735) (-133)) (T -735))
-((-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973)))))) (-1508 (*1 *2 *3 *2) (-12 (-4 *1 (-735)) (-5 *2 (-973)) (-5 *3 (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-735)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973)))))) (-1508 (*1 *2 *3 *2) (-12 (-4 *1 (-735)) (-5 *2 (-973)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
-(-13 (-1027) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1508 ((-973) (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208))) (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)) (|:| |extra| (-973))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -1508 ((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-973)))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3653 (((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360))) 44) (((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 43)) (-3292 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 50)) (-4198 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 41)) (-1790 (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360))) 52) (((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360))) 51)))
-(((-736) (-10 -7 (-15 -1790 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -1790 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -4198 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3653 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3653 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -3292 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))))) (T -736))
-((-3292 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3653 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-530)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360)))) (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-3653 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-530)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360)))) (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-4198 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-1790 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))) (-1790 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360))) (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186)) (-5 *1 (-736)))))
-(-10 -7 (-15 -1790 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -1790 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -4198 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3653 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))) (-15 -3653 ((-1186) (-1181 (-360)) (-530) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))) (-360) (-1181 (-360)) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)) (-1181 (-360)))) (-15 -3292 ((-1186) (-1181 (-360)) (-530) (-360) (-360) (-530) (-1 (-1186) (-1181 (-360)) (-1181 (-360)) (-360)))))
-((-2468 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 53)) (-1773 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 31)) (-2965 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 52)) (-1985 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 29)) (-3303 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 51)) (-3419 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530)) 19)) (-1846 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 32)) (-1238 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 30)) (-2952 (((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530)) 28)))
-(((-737) (-10 -7 (-15 -2952 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -1238 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -1846 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3419 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -1985 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -1773 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3303 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -2965 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -2468 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))))) (T -737))
-((-2468 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-2965 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3303 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-1773 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-1985 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-3419 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-1846 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-1238 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))) (-2952 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530)) (|:| |success| (-110)))) (-5 *1 (-737)) (-5 *5 (-530)))))
-(-10 -7 (-15 -2952 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -1238 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -1846 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530) (-530))) (-15 -3419 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -1985 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -1773 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -3303 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -2965 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))) (-15 -2468 ((-2 (|:| -3417 (-360)) (|:| -3913 (-360)) (|:| |totalpts| (-530)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-530) (-530))))
-((-2487 (((-1131 |#1|) |#1| (-208) (-530)) 46)))
-(((-738 |#1|) (-10 -7 (-15 -2487 ((-1131 |#1|) |#1| (-208) (-530)))) (-914)) (T -738))
-((-2487 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-208)) (-5 *5 (-530)) (-5 *2 (-1131 *3)) (-5 *1 (-738 *3)) (-4 *3 (-914)))))
-(-10 -7 (-15 -2487 ((-1131 |#1|) |#1| (-208) (-530))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-1889 (((-3 $ "failed") $ $) 26)) (-2350 (($) 23 T CONST)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2351 (($ $ $) 28) (($ $) 27)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25) (($ (-530) $) 29)))
-(((-739) (-133)) (T -739))
-NIL
-(-13 (-743) (-21))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-795) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-2350 (($) 23 T CONST)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
-(((-740) (-133)) (T -740))
-NIL
-(-13 (-742) (-23))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-571 (-804)) . T) ((-742) . T) ((-795) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-3418 (($ $ $) 27)) (-1889 (((-3 $ "failed") $ $) 26)) (-2350 (($) 23 T CONST)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
+((-2801 (*1 *1 *1 *1 *1) (-4 *1 (-712))) (-3214 (*1 *1 *1 *1) (-4 *1 (-712))) (-1605 (*1 *1 *1 *1) (-4 *1 (-712))))
+(-13 (-21) (-671) (-10 -8 (-15 -2801 ($ $ $ $)) (-15 -3214 ($ $ $)) (-15 -1605 ($ $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-671) . T) ((-1030) . T))
+((-2265 (((-806) $) NIL) (($ (-531)) 10)))
+(((-713 |#1|) (-10 -8 (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-714)) (T -713))
+NIL
+(-10 -8 (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1387 (((-3 $ "failed") $) 40)) (-1666 (($ $ (-864)) 28) (($ $ (-721)) 35)) (-3622 (((-3 $ "failed") $) 38)) (-3481 (((-110) $) 34)) (-2234 (((-3 $ "failed") $) 39)) (-2585 (($ $ (-864)) 29) (($ $ (-721)) 36)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3214 (($ $ $) 25)) (-2265 (((-806) $) 11) (($ (-531)) 31)) (-2284 (((-721)) 32)) (-2801 (($ $ $ $) 26)) (-1605 (($ $ $) 24)) (-3035 (($) 18 T CONST)) (-3050 (($) 33 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 30) (($ $ (-721)) 37)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 27)))
+(((-714) (-133)) (T -714))
+((-2284 (*1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-721)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-714)))))
+(-13 (-712) (-673) (-10 -8 (-15 -2284 ((-721))) (-15 -2265 ($ (-531)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-671) . T) ((-673) . T) ((-712) . T) ((-1030) . T))
+((-1402 (((-598 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 (-159 |#1|)))))) (-639 (-159 (-388 (-531)))) |#1|) 33)) (-3682 (((-598 (-159 |#1|)) (-639 (-159 (-388 (-531)))) |#1|) 23)) (-3369 (((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))) (-1102)) 20) (((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531))))) 19)))
+(((-715 |#1|) (-10 -7 (-15 -3369 ((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))))) (-15 -3369 ((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))) (-1102))) (-15 -3682 ((-598 (-159 |#1|)) (-639 (-159 (-388 (-531)))) |#1|)) (-15 -1402 ((-598 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 (-159 |#1|)))))) (-639 (-159 (-388 (-531)))) |#1|))) (-13 (-344) (-795))) (T -715))
+((-1402 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *2 (-598 (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 (-159 *4))))))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795))))) (-3682 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *2 (-598 (-159 *4))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *4 (-1102)) (-5 *2 (-895 (-159 (-388 (-531))))) (-5 *1 (-715 *5)) (-4 *5 (-13 (-344) (-795))))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *2 (-895 (-159 (-388 (-531))))) (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795))))))
+(-10 -7 (-15 -3369 ((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))))) (-15 -3369 ((-895 (-159 (-388 (-531)))) (-639 (-159 (-388 (-531)))) (-1102))) (-15 -3682 ((-598 (-159 |#1|)) (-639 (-159 (-388 (-531)))) |#1|)) (-15 -1402 ((-598 (-2 (|:| |outval| (-159 |#1|)) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 (-159 |#1|)))))) (-639 (-159 (-388 (-531)))) |#1|)))
+((-3591 (((-163 (-531)) |#1|) 25)))
+(((-716 |#1|) (-10 -7 (-15 -3591 ((-163 (-531)) |#1|))) (-385)) (T -716))
+((-3591 (*1 *2 *3) (-12 (-5 *2 (-163 (-531))) (-5 *1 (-716 *3)) (-4 *3 (-385)))))
+(-10 -7 (-15 -3591 ((-163 (-531)) |#1|)))
+((-3215 ((|#1| |#1| |#1|) 24)) (-3351 ((|#1| |#1| |#1|) 23)) (-2321 ((|#1| |#1| |#1|) 32)) (-1884 ((|#1| |#1| |#1|) 28)) (-3894 (((-3 |#1| "failed") |#1| |#1|) 27)) (-1912 (((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|) 22)))
+(((-717 |#1| |#2|) (-10 -7 (-15 -1912 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -3894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -2321 (|#1| |#1| |#1|))) (-659 |#2|) (-344)) (T -717))
+((-2321 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-1884 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-3894 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-3215 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-3351 (*1 *2 *2 *2) (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3)))) (-1912 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-717 *3 *4)) (-4 *3 (-659 *4)))))
+(-10 -7 (-15 -1912 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -3894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -2321 (|#1| |#1| |#1|)))
+((-2720 (((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))) (-531)) 59)) (-2670 (((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531))))) 57)) (-3176 (((-531)) 71)))
+(((-718 |#1| |#2|) (-10 -7 (-15 -3176 ((-531))) (-15 -2670 ((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))))) (-15 -2720 ((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))) (-531)))) (-1160 (-531)) (-390 (-531) |#1|)) (T -718))
+((-2720 (*1 *2 *3) (-12 (-5 *3 (-531)) (-4 *4 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-718 *4 *5)) (-4 *5 (-390 *3 *4)))) (-2670 (*1 *2) (-12 (-4 *3 (-1160 (-531))) (-5 *2 (-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531))))) (-5 *1 (-718 *3 *4)) (-4 *4 (-390 (-531) *3)))) (-3176 (*1 *2) (-12 (-4 *3 (-1160 *2)) (-5 *2 (-531)) (-5 *1 (-718 *3 *4)) (-4 *4 (-390 *2 *3)))))
+(-10 -7 (-15 -3176 ((-531))) (-15 -2670 ((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))))) (-15 -2720 ((-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531)) (|:| |basisInv| (-639 (-531)))) (-531))))
+((-2247 (((-110) $ $) NIL)) (-2523 (((-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $) 21)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 20) (($ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) 18)) (-2148 (((-110) $ $) NIL)))
+(((-719) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))) (T -719))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-719)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-719)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-719)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-719)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-5 *1 (-719)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-3 (|:| |nia| (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| |mdnia| (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) $))))
+((-1504 (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|))) 18) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102))) 17)) (-1871 (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|))) 20) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102))) 19)))
+(((-720 |#1|) (-10 -7 (-15 -1504 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1504 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|))))) (-523)) (T -720))
+((-1871 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-720 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-720 *5)))) (-1504 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-720 *4)))) (-1504 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-720 *5)))))
+(-10 -7 (-15 -1504 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1504 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-895 |#1|)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3818 (($ $ $) 6)) (-2128 (((-3 $ "failed") $ $) 9)) (-3709 (($ $ (-531)) 7)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($ $) NIL)) (-3630 (($ $ $) NIL)) (-3481 (((-110) $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2109 (($ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2265 (((-806) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ $ $) NIL)))
+(((-721) (-13 (-743) (-677) (-10 -8 (-15 -3630 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -2109 ($ $ $)) (-15 -2100 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3609 ((-3 $ "failed") $ $)) (-15 -3709 ($ $ (-531))) (-15 -1381 ($ $)) (-6 (-4275 "*"))))) (T -721))
+((-3630 (*1 *1 *1 *1) (-5 *1 (-721))) (-3650 (*1 *1 *1 *1) (-5 *1 (-721))) (-2109 (*1 *1 *1 *1) (-5 *1 (-721))) (-2100 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2937 (-721)) (|:| -4124 (-721)))) (-5 *1 (-721)))) (-3609 (*1 *1 *1 *1) (|partial| -5 *1 (-721))) (-3709 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-721)))) (-1381 (*1 *1 *1) (-5 *1 (-721))))
+(-13 (-743) (-677) (-10 -8 (-15 -3630 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -2109 ($ $ $)) (-15 -2100 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3609 ((-3 $ "failed") $ $)) (-15 -3709 ($ $ (-531))) (-15 -1381 ($ $)) (-6 (-4275 "*"))))
+((-1871 (((-3 |#2| "failed") |#2| |#2| (-112) (-1102)) 35)))
+(((-722 |#1| |#2|) (-10 -7 (-15 -1871 ((-3 |#2| "failed") |#2| |#2| (-112) (-1102)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902))) (T -722))
+((-1871 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1102)) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-722 *5 *2)) (-4 *2 (-13 (-29 *5) (-1124) (-902))))))
+(-10 -7 (-15 -1871 ((-3 |#2| "failed") |#2| |#2| (-112) (-1102))))
+((-2265 (((-724) |#1|) 8)))
+(((-723 |#1|) (-10 -7 (-15 -2265 ((-724) |#1|))) (-1138)) (T -723))
+((-2265 (*1 *2 *3) (-12 (-5 *2 (-724)) (-5 *1 (-723 *3)) (-4 *3 (-1138)))))
+(-10 -7 (-15 -2265 ((-724) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 7)) (-2148 (((-110) $ $) 9)))
+(((-724) (-1030)) (T -724))
+NIL
+(-1030)
+((-1899 ((|#2| |#4|) 35)))
+(((-725 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1899 (|#2| |#4|))) (-432) (-1160 |#1|) (-675 |#1| |#2|) (-1160 |#3|)) (T -725))
+((-1899 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-675 *4 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-725 *4 *2 *5 *3)) (-4 *3 (-1160 *5)))))
+(-10 -7 (-15 -1899 (|#2| |#4|)))
+((-3622 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 56)) (-3374 (((-1189) (-1085) (-1085) |#4| |#5|) 33)) (-2269 ((|#4| |#4| |#5|) 73)) (-2748 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|) 77)) (-1911 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 16)))
+(((-726 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3622 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2269 (|#4| |#4| |#5|)) (-15 -2748 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3374 ((-1189) (-1085) (-1085) |#4| |#5|)) (-15 -1911 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -726))
+((-1911 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3374 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1085)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *4 (-1000 *6 *7 *8)) (-5 *2 (-1189)) (-5 *1 (-726 *6 *7 *8 *4 *5)) (-4 *5 (-1005 *6 *7 *8 *4)))) (-2748 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2269 (*1 *2 *2 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *2 (-1000 *4 *5 *6)) (-5 *1 (-726 *4 *5 *6 *2 *3)) (-4 *3 (-1005 *4 *5 *6 *2)))) (-3622 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(-10 -7 (-15 -3622 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2269 (|#4| |#4| |#5|)) (-15 -2748 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3374 ((-1189) (-1085) (-1085) |#4| |#5|)) (-15 -1911 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)))
+((-3154 (((-3 (-1098 (-1098 |#1|)) "failed") |#4|) 43)) (-1346 (((-598 |#4|) |#4|) 15)) (-2730 ((|#4| |#4|) 11)))
+(((-727 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1346 ((-598 |#4|) |#4|)) (-15 -3154 ((-3 (-1098 (-1098 |#1|)) "failed") |#4|)) (-15 -2730 (|#4| |#4|))) (-330) (-310 |#1|) (-1160 |#2|) (-1160 |#3|) (-864)) (T -727))
+((-2730 (*1 *2 *2) (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1160 *4)) (-5 *1 (-727 *3 *4 *5 *2 *6)) (-4 *2 (-1160 *5)) (-14 *6 (-864)))) (-3154 (*1 *2 *3) (|partial| -12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1160 *5)) (-5 *2 (-1098 (-1098 *4))) (-5 *1 (-727 *4 *5 *6 *3 *7)) (-4 *3 (-1160 *6)) (-14 *7 (-864)))) (-1346 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1160 *5)) (-5 *2 (-598 *3)) (-5 *1 (-727 *4 *5 *6 *3 *7)) (-4 *3 (-1160 *6)) (-14 *7 (-864)))))
+(-10 -7 (-15 -1346 ((-598 |#4|) |#4|)) (-15 -3154 ((-3 (-1098 (-1098 |#1|)) "failed") |#4|)) (-15 -2730 (|#4| |#4|)))
+((-4056 (((-2 (|:| |deter| (-598 (-1098 |#5|))) (|:| |dterm| (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-598 |#1|)) (|:| |nlead| (-598 |#5|))) (-1098 |#5|) (-598 |#1|) (-598 |#5|)) 54)) (-3329 (((-598 (-721)) |#1|) 13)))
+(((-728 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4056 ((-2 (|:| |deter| (-598 (-1098 |#5|))) (|:| |dterm| (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-598 |#1|)) (|:| |nlead| (-598 |#5|))) (-1098 |#5|) (-598 |#1|) (-598 |#5|))) (-15 -3329 ((-598 (-721)) |#1|))) (-1160 |#4|) (-743) (-797) (-289) (-892 |#4| |#2| |#3|)) (T -728))
+((-3329 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-598 (-721))) (-5 *1 (-728 *3 *4 *5 *6 *7)) (-4 *3 (-1160 *6)) (-4 *7 (-892 *6 *4 *5)))) (-4056 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1160 *9)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-289)) (-4 *10 (-892 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-598 (-1098 *10))) (|:| |dterm| (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| *10))))) (|:| |nfacts| (-598 *6)) (|:| |nlead| (-598 *10)))) (-5 *1 (-728 *6 *7 *8 *9 *10)) (-5 *3 (-1098 *10)) (-5 *4 (-598 *6)) (-5 *5 (-598 *10)))))
+(-10 -7 (-15 -4056 ((-2 (|:| |deter| (-598 (-1098 |#5|))) (|:| |dterm| (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-598 |#1|)) (|:| |nlead| (-598 |#5|))) (-1098 |#5|) (-598 |#1|) (-598 |#5|))) (-15 -3329 ((-598 (-721)) |#1|)))
+((-2739 (((-598 (-2 (|:| |outval| |#1|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#1|))))) (-639 (-388 (-531))) |#1|) 31)) (-2586 (((-598 |#1|) (-639 (-388 (-531))) |#1|) 21)) (-3369 (((-895 (-388 (-531))) (-639 (-388 (-531))) (-1102)) 18) (((-895 (-388 (-531))) (-639 (-388 (-531)))) 17)))
+(((-729 |#1|) (-10 -7 (-15 -3369 ((-895 (-388 (-531))) (-639 (-388 (-531))))) (-15 -3369 ((-895 (-388 (-531))) (-639 (-388 (-531))) (-1102))) (-15 -2586 ((-598 |#1|) (-639 (-388 (-531))) |#1|)) (-15 -2739 ((-598 (-2 (|:| |outval| |#1|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#1|))))) (-639 (-388 (-531))) |#1|))) (-13 (-344) (-795))) (T -729))
+((-2739 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-598 (-2 (|:| |outval| *4) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 *4)))))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795))))) (-2586 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-598 *4)) (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795))))) (-3369 (*1 *2 *3 *4) (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *4 (-1102)) (-5 *2 (-895 (-388 (-531)))) (-5 *1 (-729 *5)) (-4 *5 (-13 (-344) (-795))))) (-3369 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-895 (-388 (-531)))) (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795))))))
+(-10 -7 (-15 -3369 ((-895 (-388 (-531))) (-639 (-388 (-531))))) (-15 -3369 ((-895 (-388 (-531))) (-639 (-388 (-531))) (-1102))) (-15 -2586 ((-598 |#1|) (-639 (-388 (-531))) |#1|)) (-15 -2739 ((-598 (-2 (|:| |outval| |#1|) (|:| |outmult| (-531)) (|:| |outvect| (-598 (-639 |#1|))))) (-639 (-388 (-531))) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 34)) (-2695 (((-598 |#2|) $) NIL)) (-2516 (((-1098 $) $ |#2|) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 |#2|)) NIL)) (-2072 (($ $) 28)) (-1993 (((-110) $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3720 (($ $ $) 93 (|has| |#1| (-523)))) (-1954 (((-598 $) $ $) 106 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 |#2| "failed") $) NIL) (((-3 $ "failed") (-895 (-388 (-531)))) NIL (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))))) (((-3 $ "failed") (-895 (-531))) NIL (-1435 (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531)))))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102)))))) (((-3 $ "failed") (-895 |#1|)) NIL (-1435 (-12 (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-37 (-531))))) (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-516)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-934 (-531))))))) (((-3 (-1054 |#1| |#2|) "failed") $) 18)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) ((|#2| $) NIL) (($ (-895 (-388 (-531)))) NIL (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))))) (($ (-895 (-531))) NIL (-1435 (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531)))))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102)))))) (($ (-895 |#1|)) NIL (-1435 (-12 (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-37 (-531))))) (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-516)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-934 (-531))))))) (((-1054 |#1| |#2|) $) NIL)) (-3115 (($ $ $ |#2|) NIL (|has| |#1| (-162))) (($ $ $) 104 (|has| |#1| (-523)))) (-2500 (($ $) NIL) (($ $ |#2|) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-2125 (((-110) $ $) NIL) (((-110) $ (-598 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-4009 (((-110) $) NIL)) (-1647 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 70)) (-4228 (($ $) 119 (|has| |#1| (-432)))) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-3230 (($ $) NIL (|has| |#1| (-523)))) (-3592 (($ $) NIL (|has| |#1| (-523)))) (-2579 (($ $ $) 65) (($ $ $ |#2|) NIL)) (-1879 (($ $ $) 68) (($ $ $ |#2|) NIL)) (-2490 (($ $ |#1| (-503 |#2|) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| |#1| (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| |#1| (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-1426 (((-110) $ $) NIL) (((-110) $ (-598 $)) NIL)) (-2418 (($ $ $ $ $) 90 (|has| |#1| (-523)))) (-4075 ((|#2| $) 19)) (-2682 (($ (-1098 |#1|) |#2|) NIL) (($ (-1098 $) |#2|) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 |#2|)) NIL) (($ $ |#2| (-721)) 36) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-4174 (($ $ $) 60)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#2|) NIL)) (-1448 (((-110) $) NIL)) (-3005 (((-503 |#2|) $) NIL) (((-721) $ |#2|) NIL) (((-598 (-721)) $ (-598 |#2|)) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3096 (((-721) $) 20)) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 |#2|) (-503 |#2|)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3471 (((-3 |#2| "failed") $) NIL)) (-2376 (($ $) NIL (|has| |#1| (-432)))) (-3773 (($ $) NIL (|has| |#1| (-432)))) (-1680 (((-598 $) $) NIL)) (-3577 (($ $) 37)) (-1246 (($ $) NIL (|has| |#1| (-432)))) (-3029 (((-598 $) $) 41)) (-3546 (($ $) 39)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL) (($ $ |#2|) 45)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4165 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3158 (-721))) $ $) 82)) (-1547 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $) 67) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $ |#2|) NIL)) (-1716 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $) NIL) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $ |#2|) NIL)) (-2847 (($ $ $) 72) (($ $ $ |#2|) NIL)) (-3146 (($ $ $) 75) (($ $ $ |#2|) NIL)) (-1521 (((-1085) $) NIL)) (-2255 (($ $ $) 108 (|has| |#1| (-523)))) (-3337 (((-598 $) $) 30)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-721))) "failed") $) NIL)) (-2009 (((-110) $ $) NIL) (((-110) $ (-598 $)) NIL)) (-1279 (($ $ $) NIL)) (-3788 (($ $) 21)) (-1744 (((-110) $ $) NIL)) (-2421 (((-110) $ $) NIL) (((-110) $ (-598 $)) NIL)) (-3044 (($ $ $) NIL)) (-3162 (($ $) 23)) (-2529 (((-1049) $) NIL)) (-3002 (((-2 (|:| -2109 $) (|:| |coef2| $)) $ $) 99 (|has| |#1| (-523)))) (-2362 (((-2 (|:| -2109 $) (|:| |coef1| $)) $ $) 96 (|has| |#1| (-523)))) (-2435 (((-110) $) 52)) (-2448 ((|#1| $) 55)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 ((|#1| |#1| $) 116 (|has| |#1| (-432))) (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3075 (((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 102 (|has| |#1| (-523)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-2209 (($ $ |#1|) 112 (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-2004 (($ $ |#1|) 111 (|has| |#1| (-523))) (($ $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#2| |#1|) NIL) (($ $ (-598 |#2|) (-598 |#1|)) NIL) (($ $ |#2| $) NIL) (($ $ (-598 |#2|) (-598 $)) NIL)) (-3176 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3352 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2012 (((-503 |#2|) $) NIL) (((-721) $ |#2|) 43) (((-598 (-721)) $ (-598 |#2|)) NIL)) (-3637 (($ $) NIL)) (-3451 (($ $) 33)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| |#1| (-573 (-507))) (|has| |#2| (-573 (-507))))) (($ (-895 (-388 (-531)))) NIL (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102))))) (($ (-895 (-531))) NIL (-1435 (-12 (|has| |#1| (-37 (-531))) (|has| |#2| (-573 (-1102))) (-3745 (|has| |#1| (-37 (-388 (-531)))))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#2| (-573 (-1102)))))) (($ (-895 |#1|)) NIL (|has| |#2| (-573 (-1102)))) (((-1085) $) NIL (-12 (|has| |#1| (-977 (-531))) (|has| |#2| (-573 (-1102))))) (((-895 |#1|) $) NIL (|has| |#2| (-573 (-1102))))) (-1767 ((|#1| $) 115 (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ |#2|) NIL) (((-895 |#1|) $) NIL (|has| |#2| (-573 (-1102)))) (((-1054 |#1| |#2|) $) 15) (($ (-1054 |#1| |#2|)) 16) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 |#2|)) NIL) (($ $ |#2| (-721)) 44) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 13 T CONST)) (-2316 (((-3 (-110) "failed") $ $) NIL)) (-3050 (($) 35 T CONST)) (-3135 (($ $ $ $ (-721)) 88 (|has| |#1| (-523)))) (-1705 (($ $ $ (-721)) 87 (|has| |#1| (-523)))) (-4020 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 54)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) 64)) (-2237 (($ $ $) 74)) (** (($ $ (-864)) NIL) (($ $ (-721)) 61)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 59) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 58) (($ $ |#1|) NIL)))
+(((-730 |#1| |#2|) (-13 (-1000 |#1| (-503 |#2|) |#2|) (-572 (-1054 |#1| |#2|)) (-977 (-1054 |#1| |#2|))) (-986) (-797)) (T -730))
+NIL
+(-13 (-1000 |#1| (-503 |#2|) |#2|) (-572 (-1054 |#1| |#2|)) (-977 (-1054 |#1| |#2|)))
+((-3261 (((-732 |#2|) (-1 |#2| |#1|) (-732 |#1|)) 13)))
+(((-731 |#1| |#2|) (-10 -7 (-15 -3261 ((-732 |#2|) (-1 |#2| |#1|) (-732 |#1|)))) (-986) (-986)) (T -731))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-732 *6)) (-5 *1 (-731 *5 *6)))))
+(-10 -7 (-15 -3261 ((-732 |#2|) (-1 |#2| |#1|) (-732 |#1|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 12)) (-3191 (((-1184 |#1|) $ (-721)) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-1310 (($ (-1098 |#1|)) NIL)) (-2516 (((-1098 $) $ (-1014)) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2235 (((-598 $) $ $) 39 (|has| |#1| (-523)))) (-3720 (($ $ $) 35 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3767 (($ $ (-721)) NIL)) (-3441 (($ $ (-721)) NIL)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1014) "failed") $) NIL) (((-3 (-1098 |#1|) "failed") $) 10)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1014) $) NIL) (((-1098 |#1|) $) NIL)) (-3115 (($ $ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $ $) 43 (|has| |#1| (-162)))) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-1376 (($ $ $) NIL)) (-1570 (($ $ $) 71 (|has| |#1| (-523)))) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 $) (|:| -4124 $)) $ $) 70 (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-721) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ $) NIL (|has| |#1| (-523)))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-1078)))) (-2682 (($ (-1098 |#1|) (-1014)) NIL) (($ (-1098 $) (-1014)) NIL)) (-3688 (($ $ (-721)) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-4174 (($ $ $) 20)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) NIL) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3294 (((-1098 |#1|) $) NIL)) (-3471 (((-3 (-1014) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-4165 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3158 (-721))) $ $) 26)) (-4233 (($ $ $) 29)) (-3498 (($ $ $) 32)) (-1547 (((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $) 31)) (-1521 (((-1085) $) NIL)) (-2255 (($ $ $) 41 (|has| |#1| (-523)))) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-3002 (((-2 (|:| -2109 $) (|:| |coef2| $)) $ $) 67 (|has| |#1| (-523)))) (-2362 (((-2 (|:| -2109 $) (|:| |coef1| $)) $ $) 63 (|has| |#1| (-523)))) (-3279 (((-2 (|:| -3115 |#1|) (|:| |coef2| $)) $ $) 55 (|has| |#1| (-523)))) (-2038 (((-2 (|:| -3115 |#1|) (|:| |coef1| $)) $ $) 51 (|has| |#1| (-523)))) (-2435 (((-110) $) 13)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1816 (($ $ (-721) |#1| $) 19)) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3075 (((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 59 (|has| |#1| (-523)))) (-3556 (((-2 (|:| -3115 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 47 (|has| |#1| (-523)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#1|) NIL) (($ $ (-598 (-1014)) (-598 |#1|)) NIL) (($ $ (-1014) $) NIL) (($ $ (-598 (-1014)) (-598 $)) NIL)) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ |#1|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3176 (($ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2012 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-523)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-1014)) NIL) (((-1098 |#1|) $) 7) (($ (-1098 |#1|)) 8) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 21 T CONST)) (-3050 (($) 24 T CONST)) (-4020 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) 28) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 23) (($ $ |#1|) NIL)))
+(((-732 |#1|) (-13 (-1160 |#1|) (-572 (-1098 |#1|)) (-977 (-1098 |#1|)) (-10 -8 (-15 -1816 ($ $ (-721) |#1| $)) (-15 -4174 ($ $ $)) (-15 -4165 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3158 (-721))) $ $)) (-15 -4233 ($ $ $)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3498 ($ $ $)) (IF (|has| |#1| (-523)) (PROGN (-15 -2235 ((-598 $) $ $)) (-15 -2255 ($ $ $)) (-15 -3075 ((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2362 ((-2 (|:| -2109 $) (|:| |coef1| $)) $ $)) (-15 -3002 ((-2 (|:| -2109 $) (|:| |coef2| $)) $ $)) (-15 -3556 ((-2 (|:| -3115 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2038 ((-2 (|:| -3115 |#1|) (|:| |coef1| $)) $ $)) (-15 -3279 ((-2 (|:| -3115 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-986)) (T -732))
+((-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-721)) (-5 *1 (-732 *3)) (-4 *3 (-986)))) (-4174 (*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))) (-4165 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-732 *3)) (|:| |polden| *3) (|:| -3158 (-721)))) (-5 *1 (-732 *3)) (-4 *3 (-986)))) (-4233 (*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))) (-1547 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2005 *3) (|:| |gap| (-721)) (|:| -2937 (-732 *3)) (|:| -4124 (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-986)))) (-3498 (*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))) (-2235 (*1 *2 *1 *1) (-12 (-5 *2 (-598 (-732 *3))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-2255 (*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-523)) (-4 *2 (-986)))) (-3075 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef1| (-732 *3)) (|:| |coef2| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-2362 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef1| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-3002 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef2| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-3556 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef1| (-732 *3)) (|:| |coef2| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-2038 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef1| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))) (-3279 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef2| (-732 *3)))) (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))))
+(-13 (-1160 |#1|) (-572 (-1098 |#1|)) (-977 (-1098 |#1|)) (-10 -8 (-15 -1816 ($ $ (-721) |#1| $)) (-15 -4174 ($ $ $)) (-15 -4165 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3158 (-721))) $ $)) (-15 -4233 ($ $ $)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3498 ($ $ $)) (IF (|has| |#1| (-523)) (PROGN (-15 -2235 ((-598 $) $ $)) (-15 -2255 ($ $ $)) (-15 -3075 ((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2362 ((-2 (|:| -2109 $) (|:| |coef1| $)) $ $)) (-15 -3002 ((-2 (|:| -2109 $) (|:| |coef2| $)) $ $)) (-15 -3556 ((-2 (|:| -3115 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2038 ((-2 (|:| -3115 |#1|) (|:| |coef1| $)) $ $)) (-15 -3279 ((-2 (|:| -3115 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|)))
+((-2536 ((|#1| (-721) |#1|) 32 (|has| |#1| (-37 (-388 (-531)))))) (-3913 ((|#1| (-721) |#1|) 22)) (-2850 ((|#1| (-721) |#1|) 34 (|has| |#1| (-37 (-388 (-531)))))))
+(((-733 |#1|) (-10 -7 (-15 -3913 (|#1| (-721) |#1|)) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -2850 (|#1| (-721) |#1|)) (-15 -2536 (|#1| (-721) |#1|))) |%noBranch|)) (-162)) (T -733))
+((-2536 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-162)))) (-2850 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-162)))) (-3913 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-162)))))
+(-10 -7 (-15 -3913 (|#1| (-721) |#1|)) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -2850 (|#1| (-721) |#1|)) (-15 -2536 (|#1| (-721) |#1|))) |%noBranch|))
+((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86) (((-598 $) (-598 |#4|) (-110)) 111)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 126)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2950 (((-110) |#4| $) 136)) (-1428 (((-110) |#4| $) 133)) (-2213 (((-110) |#4| $) 137) (((-110) $) 134)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) 128)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 127)) (-2309 (((-3 |#4| "failed") $) 83)) (-2918 (((-598 $) |#4| $) 129)) (-1568 (((-3 (-110) (-598 $)) |#4| $) 132)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-1301 (((-598 $) |#4| $) 125) (((-598 $) (-598 |#4|) $) 124) (((-598 $) (-598 |#4|) (-598 $)) 123) (((-598 $) |#4| (-598 $)) 122)) (-2106 (($ |#4| $) 117) (($ (-598 |#4|) $) 116)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77) (((-598 $) |#4| $) 115) (((-598 $) |#4| (-598 $)) 114) (((-598 $) (-598 |#4|) $) 113) (((-598 $) (-598 |#4|) (-598 $)) 112)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-3777 (((-598 $) |#4| $) 121) (((-598 $) |#4| (-598 $)) 120) (((-598 $) (-598 |#4|) $) 119) (((-598 $) (-598 |#4|) (-598 $)) 118)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-3695 (((-110) |#4| $) 135)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273)))))
+(((-734 |#1| |#2| |#3| |#4|) (-133) (-432) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -734))
+NIL
+(-13 (-1005 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1005 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1132 |#1| |#2| |#3| |#4|) . T) ((-1138) . T))
+((-4060 (((-3 (-360) "failed") (-297 |#1|) (-864)) 62 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-360) "failed") (-297 |#1|)) 54 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-360) "failed") (-388 (-895 |#1|)) (-864)) 41 (|has| |#1| (-523))) (((-3 (-360) "failed") (-388 (-895 |#1|))) 40 (|has| |#1| (-523))) (((-3 (-360) "failed") (-895 |#1|) (-864)) 31 (|has| |#1| (-986))) (((-3 (-360) "failed") (-895 |#1|)) 30 (|has| |#1| (-986)))) (-3535 (((-360) (-297 |#1|) (-864)) 99 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-360) (-297 |#1|)) 94 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-360) (-388 (-895 |#1|)) (-864)) 91 (|has| |#1| (-523))) (((-360) (-388 (-895 |#1|))) 90 (|has| |#1| (-523))) (((-360) (-895 |#1|) (-864)) 86 (|has| |#1| (-986))) (((-360) (-895 |#1|)) 85 (|has| |#1| (-986))) (((-360) |#1| (-864)) 76) (((-360) |#1|) 22)) (-4055 (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-864)) 71 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-159 (-360)) "failed") (-297 (-159 |#1|))) 70 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-159 (-360)) "failed") (-297 |#1|) (-864)) 63 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-159 (-360)) "failed") (-297 |#1|)) 61 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))) (-864)) 46 (|has| |#1| (-523))) (((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|)))) 45 (|has| |#1| (-523))) (((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)) (-864)) 39 (|has| |#1| (-523))) (((-3 (-159 (-360)) "failed") (-388 (-895 |#1|))) 38 (|has| |#1| (-523))) (((-3 (-159 (-360)) "failed") (-895 |#1|) (-864)) 28 (|has| |#1| (-986))) (((-3 (-159 (-360)) "failed") (-895 |#1|)) 26 (|has| |#1| (-986))) (((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)) (-864)) 18 (|has| |#1| (-162))) (((-3 (-159 (-360)) "failed") (-895 (-159 |#1|))) 15 (|has| |#1| (-162)))) (-2476 (((-159 (-360)) (-297 (-159 |#1|)) (-864)) 102 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-159 (-360)) (-297 (-159 |#1|))) 101 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-159 (-360)) (-297 |#1|) (-864)) 100 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-159 (-360)) (-297 |#1|)) 98 (-12 (|has| |#1| (-523)) (|has| |#1| (-797)))) (((-159 (-360)) (-388 (-895 (-159 |#1|))) (-864)) 93 (|has| |#1| (-523))) (((-159 (-360)) (-388 (-895 (-159 |#1|)))) 92 (|has| |#1| (-523))) (((-159 (-360)) (-388 (-895 |#1|)) (-864)) 89 (|has| |#1| (-523))) (((-159 (-360)) (-388 (-895 |#1|))) 88 (|has| |#1| (-523))) (((-159 (-360)) (-895 |#1|) (-864)) 84 (|has| |#1| (-986))) (((-159 (-360)) (-895 |#1|)) 83 (|has| |#1| (-986))) (((-159 (-360)) (-895 (-159 |#1|)) (-864)) 78 (|has| |#1| (-162))) (((-159 (-360)) (-895 (-159 |#1|))) 77 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|) (-864)) 80 (|has| |#1| (-162))) (((-159 (-360)) (-159 |#1|)) 79 (|has| |#1| (-162))) (((-159 (-360)) |#1| (-864)) 27) (((-159 (-360)) |#1|) 25)))
+(((-735 |#1|) (-10 -7 (-15 -3535 ((-360) |#1|)) (-15 -3535 ((-360) |#1| (-864))) (-15 -2476 ((-159 (-360)) |#1|)) (-15 -2476 ((-159 (-360)) |#1| (-864))) (IF (|has| |#1| (-162)) (PROGN (-15 -2476 ((-159 (-360)) (-159 |#1|))) (-15 -2476 ((-159 (-360)) (-159 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-895 (-159 |#1|)))) (-15 -2476 ((-159 (-360)) (-895 (-159 |#1|)) (-864)))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-15 -3535 ((-360) (-895 |#1|))) (-15 -3535 ((-360) (-895 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-895 |#1|))) (-15 -2476 ((-159 (-360)) (-895 |#1|) (-864)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -3535 ((-360) (-388 (-895 |#1|)))) (-15 -3535 ((-360) (-388 (-895 |#1|)) (-864))) (-15 -2476 ((-159 (-360)) (-388 (-895 |#1|)))) (-15 -2476 ((-159 (-360)) (-388 (-895 |#1|)) (-864))) (-15 -2476 ((-159 (-360)) (-388 (-895 (-159 |#1|))))) (-15 -2476 ((-159 (-360)) (-388 (-895 (-159 |#1|))) (-864))) (IF (|has| |#1| (-797)) (PROGN (-15 -3535 ((-360) (-297 |#1|))) (-15 -3535 ((-360) (-297 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-297 |#1|))) (-15 -2476 ((-159 (-360)) (-297 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2476 ((-159 (-360)) (-297 (-159 |#1|)) (-864)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)) (-864)))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-895 |#1|))) (-15 -4060 ((-3 (-360) "failed") (-895 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 |#1|))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 |#1|) (-864)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-388 (-895 |#1|)))) (-15 -4060 ((-3 (-360) "failed") (-388 (-895 |#1|)) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))) (-864))) (IF (|has| |#1| (-797)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-297 |#1|))) (-15 -4060 ((-3 (-360) "failed") (-297 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-864)))) |%noBranch|)) |%noBranch|)) (-573 (-360))) (T -735))
+((-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4060 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-4060 (*1 *2 *3) (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-895 (-159 *5)))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 (-159 *4)))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4060 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-4060 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-4060 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-4060 (*1 *2 *3) (|partial| -12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-4055 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-895 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-162)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-4055 (*1 *2 *3) (|partial| -12 (-5 *3 (-895 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 (-159 *5)))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 (-159 *4)))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-3535 (*1 *2 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986)) (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))) (-3535 (*1 *2 *3) (-12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-162)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-895 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *3 (-159 *5)) (-5 *4 (-864)) (-4 *5 (-162)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4)))) (-2476 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-5 *2 (-159 (-360))) (-5 *1 (-735 *3)) (-4 *3 (-573 (-360))))) (-2476 (*1 *2 *3) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-735 *3)) (-4 *3 (-573 (-360))))) (-3535 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-5 *2 (-360)) (-5 *1 (-735 *3)) (-4 *3 (-573 *2)))) (-3535 (*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-735 *3)) (-4 *3 (-573 *2)))))
+(-10 -7 (-15 -3535 ((-360) |#1|)) (-15 -3535 ((-360) |#1| (-864))) (-15 -2476 ((-159 (-360)) |#1|)) (-15 -2476 ((-159 (-360)) |#1| (-864))) (IF (|has| |#1| (-162)) (PROGN (-15 -2476 ((-159 (-360)) (-159 |#1|))) (-15 -2476 ((-159 (-360)) (-159 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-895 (-159 |#1|)))) (-15 -2476 ((-159 (-360)) (-895 (-159 |#1|)) (-864)))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-15 -3535 ((-360) (-895 |#1|))) (-15 -3535 ((-360) (-895 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-895 |#1|))) (-15 -2476 ((-159 (-360)) (-895 |#1|) (-864)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -3535 ((-360) (-388 (-895 |#1|)))) (-15 -3535 ((-360) (-388 (-895 |#1|)) (-864))) (-15 -2476 ((-159 (-360)) (-388 (-895 |#1|)))) (-15 -2476 ((-159 (-360)) (-388 (-895 |#1|)) (-864))) (-15 -2476 ((-159 (-360)) (-388 (-895 (-159 |#1|))))) (-15 -2476 ((-159 (-360)) (-388 (-895 (-159 |#1|))) (-864))) (IF (|has| |#1| (-797)) (PROGN (-15 -3535 ((-360) (-297 |#1|))) (-15 -3535 ((-360) (-297 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-297 |#1|))) (-15 -2476 ((-159 (-360)) (-297 |#1|) (-864))) (-15 -2476 ((-159 (-360)) (-297 (-159 |#1|)))) (-15 -2476 ((-159 (-360)) (-297 (-159 |#1|)) (-864)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 (-159 |#1|)) (-864)))) |%noBranch|) (IF (|has| |#1| (-986)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-895 |#1|))) (-15 -4060 ((-3 (-360) "failed") (-895 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 |#1|))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-895 |#1|) (-864)))) |%noBranch|) (IF (|has| |#1| (-523)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-388 (-895 |#1|)))) (-15 -4060 ((-3 (-360) "failed") (-388 (-895 |#1|)) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 |#1|)) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-388 (-895 (-159 |#1|))) (-864))) (IF (|has| |#1| (-797)) (PROGN (-15 -4060 ((-3 (-360) "failed") (-297 |#1|))) (-15 -4060 ((-3 (-360) "failed") (-297 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 |#1|))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 |#1|) (-864))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)))) (-15 -4055 ((-3 (-159 (-360)) "failed") (-297 (-159 |#1|)) (-864)))) |%noBranch|)) |%noBranch|))
+((-2000 (((-864) (-1085)) 66)) (-3743 (((-3 (-360) "failed") (-1085)) 33)) (-1610 (((-360) (-1085)) 31)) (-2604 (((-864) (-1085)) 54)) (-4207 (((-1085) (-864)) 56)) (-3425 (((-1085) (-864)) 53)))
+(((-736) (-10 -7 (-15 -3425 ((-1085) (-864))) (-15 -2604 ((-864) (-1085))) (-15 -4207 ((-1085) (-864))) (-15 -2000 ((-864) (-1085))) (-15 -1610 ((-360) (-1085))) (-15 -3743 ((-3 (-360) "failed") (-1085))))) (T -736))
+((-3743 (*1 *2 *3) (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-736)))) (-1610 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-736)))) (-2000 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-864)) (-5 *1 (-736)))) (-4207 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1085)) (-5 *1 (-736)))) (-2604 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-864)) (-5 *1 (-736)))) (-3425 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1085)) (-5 *1 (-736)))))
+(-10 -7 (-15 -3425 ((-1085) (-864))) (-15 -2604 ((-864) (-1085))) (-15 -4207 ((-1085) (-864))) (-15 -2000 ((-864) (-1085))) (-15 -1610 ((-360) (-1085))) (-15 -3743 ((-3 (-360) "failed") (-1085))))
+((-2247 (((-110) $ $) 7)) (-3895 (((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 15) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)) 13)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 16) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)))
+(((-737) (-133)) (T -737))
+((-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-737)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975)))))) (-3895 (*1 *2 *3 *2) (-12 (-4 *1 (-737)) (-5 *2 (-975)) (-5 *3 (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))) (-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-737)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975)))))) (-3895 (*1 *2 *3 *2) (-12 (-4 *1 (-737)) (-5 *2 (-975)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
+(-13 (-1030) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3895 ((-975) (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208))) (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)) (|:| |extra| (-975))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -3895 ((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) (-975)))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2881 (((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360))) 44) (((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))) 43)) (-2493 (((-1189) (-1184 (-360)) (-531) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))) 50)) (-4110 (((-1189) (-1184 (-360)) (-531) (-360) (-360) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))) 41)) (-1320 (((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360))) 52) (((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360))) 51)))
+(((-738) (-10 -7 (-15 -1320 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -1320 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)))) (-15 -4110 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -2881 ((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -2881 ((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)))) (-15 -2493 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))))) (T -738))
+((-2493 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-2881 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-531)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360)))) (-5 *7 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-2881 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-531)) (-5 *6 (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360)))) (-5 *7 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-4110 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-1320 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))) (-1320 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360))) (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189)) (-5 *1 (-738)))))
+(-10 -7 (-15 -1320 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -1320 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)))) (-15 -4110 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -2881 ((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))) (-15 -2881 ((-1189) (-1184 (-360)) (-531) (-360) (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))) (-360) (-1184 (-360)) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)) (-1184 (-360)))) (-15 -2493 ((-1189) (-1184 (-360)) (-531) (-360) (-360) (-531) (-1 (-1189) (-1184 (-360)) (-1184 (-360)) (-360)))))
+((-2776 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 53)) (-4175 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 31)) (-3933 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 52)) (-1540 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 29)) (-2287 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 51)) (-2228 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531)) 19)) (-2681 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531)) 32)) (-3774 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531)) 30)) (-1586 (((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531)) 28)))
+(((-739) (-10 -7 (-15 -1586 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -3774 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -2681 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -2228 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -1540 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -4175 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -2287 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -3933 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -2776 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))))) (T -739))
+((-2776 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-3933 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-2287 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-4175 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-1540 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-2228 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-2681 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-3774 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))) (-1586 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360)) (-5 *2 (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531)) (|:| |success| (-110)))) (-5 *1 (-739)) (-5 *5 (-531)))))
+(-10 -7 (-15 -1586 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -3774 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -2681 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531) (-531))) (-15 -2228 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -1540 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -4175 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -2287 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -3933 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))) (-15 -2776 ((-2 (|:| -3482 (-360)) (|:| -3959 (-360)) (|:| |totalpts| (-531)) (|:| |success| (-110))) (-1 (-360) (-360)) (-360) (-360) (-360) (-360) (-531) (-531))))
+((-1952 (((-1134 |#1|) |#1| (-208) (-531)) 46)))
+(((-740 |#1|) (-10 -7 (-15 -1952 ((-1134 |#1|) |#1| (-208) (-531)))) (-916)) (T -740))
+((-1952 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-208)) (-5 *5 (-531)) (-5 *2 (-1134 *3)) (-5 *1 (-740 *3)) (-4 *3 (-916)))))
+(-10 -7 (-15 -1952 ((-1134 |#1|) |#1| (-208) (-531))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-2128 (((-3 $ "failed") $ $) 26)) (-4082 (($) 23 T CONST)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2250 (($ $ $) 28) (($ $) 27)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21) (($ (-721) $) 25) (($ (-531) $) 29)))
(((-741) (-133)) (T -741))
-((-3418 (*1 *1 *1 *1) (-4 *1 (-741))))
-(-13 (-743) (-10 -8 (-15 -3418 ($ $ $))))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-795) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 7)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21)))
+NIL
+(-13 (-745) (-21))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-797) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-4082 (($) 23 T CONST)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21) (($ (-721) $) 25)))
(((-742) (-133)) (T -742))
NIL
-(-13 (-795) (-25))
-(((-25) . T) ((-99) . T) ((-571 (-804)) . T) ((-795) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-1889 (((-3 $ "failed") $ $) 26)) (-2350 (($) 23 T CONST)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2339 (($ $ $) 20)) (* (($ (-862) $) 21) (($ (-719) $) 25)))
+(-13 (-744) (-23))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-572 (-806)) . T) ((-744) . T) ((-797) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-3818 (($ $ $) 27)) (-2128 (((-3 $ "failed") $ $) 26)) (-4082 (($) 23 T CONST)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21) (($ (-721) $) 25)))
(((-743) (-133)) (T -743))
-NIL
-(-13 (-740) (-128))
-(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-740) . T) ((-742) . T) ((-795) . T) ((-1027) . T))
-((-1813 (((-110) $) 41)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 42)) (-2180 (((-3 (-388 (-530)) "failed") $) 78)) (-3016 (((-110) $) 72)) (-3370 (((-388 (-530)) $) 76)) (-2376 ((|#2| $) 26)) (-3217 (($ (-1 |#2| |#2|) $) 23)) (-2483 (($ $) 61)) (-3260 (((-506) $) 67)) (-2555 (($ $) 21)) (-2366 (((-804) $) 56) (($ (-530)) 39) (($ |#2|) 37) (($ (-388 (-530))) NIL)) (-3300 (((-719)) 10)) (-3934 ((|#2| $) 71)) (-2248 (((-110) $ $) 29)) (-2272 (((-110) $ $) 69)) (-2351 (($ $) 31) (($ $ $) NIL)) (-2339 (($ $ $) 30)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
-(((-744 |#1| |#2|) (-10 -8 (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3934 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-745 |#2|) (-162)) (T -744))
-((-3300 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-744 *3 *4)) (-4 *3 (-745 *4)))))
-(-10 -8 (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2483 (|#1| |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3934 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-3023 (((-719)) 51 (|has| |#1| (-349)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 92 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 90 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 88)) (-2585 (((-530) $) 93 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 91 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 87)) (-2707 (((-3 $ "failed") $) 32)) (-2637 ((|#1| $) 77)) (-2180 (((-3 (-388 (-530)) "failed") $) 64 (|has| |#1| (-515)))) (-3016 (((-110) $) 66 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 65 (|has| |#1| (-515)))) (-1364 (($) 54 (|has| |#1| (-349)))) (-2731 (((-110) $) 30)) (-1481 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-2376 ((|#1| $) 69)) (-2508 (($ $ $) 60 (|has| |#1| (-795)))) (-1817 (($ $ $) 59 (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) 79)) (-1905 (((-862) $) 53 (|has| |#1| (-349)))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 63 (|has| |#1| (-344)))) (-1986 (($ (-862)) 52 (|has| |#1| (-349)))) (-1782 ((|#1| $) 74)) (-3316 ((|#1| $) 75)) (-3025 ((|#1| $) 76)) (-2110 ((|#1| $) 70)) (-1702 ((|#1| $) 71)) (-3178 ((|#1| $) 72)) (-1994 ((|#1| $) 73)) (-2624 (((-1046) $) 10)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 85 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 83 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 82 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 81 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 80 (|has| |#1| (-491 (-1099) |#1|)))) (-1902 (($ $ |#1|) 86 (|has| |#1| (-268 |#1| |#1|)))) (-3260 (((-506) $) 61 (|has| |#1| (-572 (-506))))) (-2555 (($ $) 78)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35) (($ (-388 (-530))) 89 (|has| |#1| (-975 (-388 (-530)))))) (-3251 (((-3 $ "failed") $) 62 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3934 ((|#1| $) 67 (|has| |#1| (-993)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 57 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 56 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 58 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 55 (|has| |#1| (-795)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
-(((-745 |#1|) (-133) (-162)) (T -745))
-((-2555 (*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3025 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3316 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1782 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-1481 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2483 (*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
-(-13 (-37 |t#1|) (-392 |t#1|) (-319 |t#1|) (-10 -8 (-15 -2555 ($ $)) (-15 -2637 (|t#1| $)) (-15 -3025 (|t#1| $)) (-15 -3316 (|t#1| $)) (-15 -1782 (|t#1| $)) (-15 -1994 (|t#1| $)) (-15 -3178 (|t#1| $)) (-15 -1702 (|t#1| $)) (-15 -2110 (|t#1| $)) (-15 -2376 (|t#1| $)) (-15 -1481 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -3934 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2483 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-349) |has| |#1| (-349)) ((-319 |#1|) . T) ((-392 |#1|) . T) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3217 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
-(((-746 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|))) (-745 |#2|) (-162) (-745 |#4|) (-162)) (T -746))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-745 *6)) (-5 *1 (-746 *4 *5 *2 *6)) (-4 *4 (-745 *5)))))
-(-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-938 |#1|) "failed") $) 35) (((-3 (-530) "failed") $) NIL (-1461 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530))))) (((-3 (-388 (-530)) "failed") $) NIL (-1461 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-2585 ((|#1| $) NIL) (((-938 |#1|) $) 33) (((-530) $) NIL (-1461 (|has| (-938 |#1|) (-975 (-530))) (|has| |#1| (-975 (-530))))) (((-388 (-530)) $) NIL (-1461 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-2707 (((-3 $ "failed") $) NIL)) (-2637 ((|#1| $) 16)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-3016 (((-110) $) NIL (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-1364 (($) NIL (|has| |#1| (-349)))) (-2731 (((-110) $) NIL)) (-1481 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-938 |#1|) (-938 |#1|)) 29)) (-2376 ((|#1| $) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-1782 ((|#1| $) 22)) (-3316 ((|#1| $) 20)) (-3025 ((|#1| $) 18)) (-2110 ((|#1| $) 26)) (-1702 ((|#1| $) 25)) (-3178 ((|#1| $) 24)) (-1994 ((|#1| $) 23)) (-2624 (((-1046) $) NIL)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-1902 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2555 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-938 |#1|)) 30) (($ (-388 (-530))) NIL (-1461 (|has| (-938 |#1|) (-975 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3934 ((|#1| $) NIL (|has| |#1| (-993)))) (-3080 (($) 8 T CONST)) (-3093 (($) 12 T CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-747 |#1|) (-13 (-745 |#1|) (-392 (-938 |#1|)) (-10 -8 (-15 -1481 ($ (-938 |#1|) (-938 |#1|))))) (-162)) (T -747))
-((-1481 (*1 *1 *2 *2) (-12 (-5 *2 (-938 *3)) (-4 *3 (-162)) (-5 *1 (-747 *3)))))
-(-13 (-745 |#1|) (-392 (-938 |#1|)) (-10 -8 (-15 -1481 ($ (-938 |#1|) (-938 |#1|)))))
-((-2352 (((-110) $ $) 7)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2238 (((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13)) (-2248 (((-110) $ $) 6)))
-(((-748) (-133)) (T -748))
-((-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-748)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)))))) (-2238 (*1 *2 *3) (-12 (-4 *1 (-748)) (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-973)))))
-(-13 (-1027) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2238 ((-973) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2966 (((-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#3| |#2| (-1099)) 19)))
-(((-749 |#1| |#2| |#3|) (-10 -7 (-15 -2966 ((-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#3| |#2| (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900)) (-607 |#2|)) (T -749))
-((-2966 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-4 *4 (-13 (-29 *6) (-1121) (-900))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3220 (-597 *4)))) (-5 *1 (-749 *6 *4 *3)) (-4 *3 (-607 *4)))))
-(-10 -7 (-15 -2966 ((-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#3| |#2| (-1099))))
-((-2688 (((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|)) 28) (((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099)) 18) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099)) 24) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099)) 26) (((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099)) 37) (((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099)) 35)))
-(((-750 |#1| |#2|) (-10 -7 (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099))) (-15 -2688 ((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099))) (-15 -2688 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -2688 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -750))
-((-2688 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-750 *6 *2)))) (-2688 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-597 *2)) (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-5 *1 (-750 *6 *2)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))))) (-2688 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-5 *5 (-1099)) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3220 (-597 *3))) *3 "failed")) (-5 *1 (-750 *6 *3)) (-4 *3 (-13 (-29 *6) (-1121) (-900))))) (-2688 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3220 (-597 *7))) *7 "failed")) (-5 *1 (-750 *6 *7)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)))) (-2688 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-637 *6)) (-5 *4 (-1099)) (-4 *6 (-13 (-29 *5) (-1121) (-900))) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-1181 *6))) (-5 *1 (-750 *5 *6)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-637 *7)) (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900))) (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7))))) (-5 *1 (-750 *6 *7)) (-5 *4 (-1181 *7)))))
-(-10 -7 (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-637 |#2|) (-1181 |#2|) (-1099))) (-15 -2688 ((-3 (-597 (-1181 |#2|)) "failed") (-637 |#2|) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 (-276 |#2|)) (-597 (-112)) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#2|)) (|:| -3220 (-597 (-1181 |#2|)))) "failed") (-597 |#2|) (-597 (-112)) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1099))) (-15 -2688 ((-3 (-2 (|:| |particular| |#2|) (|:| -3220 (-597 |#2|))) |#2| "failed") |#2| (-112) (-1099))) (-15 -2688 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-597 |#2|))) (-15 -2688 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-597 |#2|))))
-((-1498 (($) 9)) (-1742 (((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 31)) (-3282 (((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 28)) (-2441 (($ (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) 25)) (-1967 (($ (-597 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) 23)) (-3234 (((-1186)) 12)))
-(((-751) (-10 -8 (-15 -1498 ($)) (-15 -3234 ((-1186))) (-15 -3282 ((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -1967 ($ (-597 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -2441 ($ (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -1742 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -751))
-((-1742 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *1 (-751)))) (-2441 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) (-5 *1 (-751)))) (-1967 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-5 *1 (-751)))) (-3282 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-751)))) (-3234 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-751)))) (-1498 (*1 *1) (-5 *1 (-751))))
-(-10 -8 (-15 -1498 ($)) (-15 -3234 ((-1186))) (-15 -3282 ((-597 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -1967 ($ (-597 (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -2441 ($ (-2 (|:| -3078 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1874 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -1742 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
-((-3967 ((|#2| |#2| (-1099)) 16)) (-3584 ((|#2| |#2| (-1099)) 51)) (-2235 (((-1 |#2| |#2|) (-1099)) 11)))
-(((-752 |#1| |#2|) (-10 -7 (-15 -3967 (|#2| |#2| (-1099))) (-15 -3584 (|#2| |#2| (-1099))) (-15 -2235 ((-1 |#2| |#2|) (-1099)))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)) (-13 (-29 |#1|) (-1121) (-900))) (T -752))
-((-2235 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-1 *5 *5)) (-5 *1 (-752 *4 *5)) (-4 *5 (-13 (-29 *4) (-1121) (-900))))) (-3584 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))) (-3967 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))))
-(-10 -7 (-15 -3967 (|#2| |#2| (-1099))) (-15 -3584 (|#2| |#2| (-1099))) (-15 -2235 ((-1 |#2| |#2|) (-1099))))
-((-2688 (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360)) 116) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360)) 117) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360)) 119) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360)) 120) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360)) 121) (((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360))) 122) (((-973) (-756) (-996)) 108) (((-973) (-756)) 109)) (-2631 (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996)) 75) (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756)) 77)))
-(((-753) (-10 -7 (-15 -2688 ((-973) (-756))) (-15 -2688 ((-973) (-756) (-996))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996))))) (T -753))
-((-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-753)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-753)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-973)) (-5 *1 (-753)))))
-(-10 -7 (-15 -2688 ((-973) (-756))) (-15 -2688 ((-973) (-756) (-996))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360))) (-15 -2688 ((-973) (-1181 (-297 (-360))) (-360) (-360) (-597 (-360)) (-297 (-360)) (-597 (-360)) (-360) (-360))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-756) (-996))))
-((-3796 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3220 (-597 |#4|))) (-604 |#4|) |#4|) 35)))
-(((-754 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3796 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3220 (-597 |#4|))) (-604 |#4|) |#4|))) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -754))
-((-3796 (*1 *2 *3 *4) (-12 (-5 *3 (-604 *4)) (-4 *4 (-323 *5 *6 *7)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-754 *5 *6 *7 *4)))))
-(-10 -7 (-15 -3796 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3220 (-597 |#4|))) (-604 |#4|) |#4|)))
-((-1912 (((-2 (|:| -2776 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|))) 52)) (-2046 (((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4| |#2|) 60) (((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4|) 59) (((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3| |#2|) 20) (((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3|) 21)) (-1682 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-3529 ((|#2| |#3| (-597 (-388 |#2|))) 93) (((-3 |#2| "failed") |#3| (-388 |#2|)) 90)))
-(((-755 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3529 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -3529 (|#2| |#3| (-597 (-388 |#2|)))) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3| |#2|)) (-15 -1682 (|#2| |#3| |#1|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4| |#2|)) (-15 -1682 (|#2| |#4| |#1|)) (-15 -1912 ((-2 (|:| -2776 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|))))) (-13 (-344) (-140) (-975 (-388 (-530)))) (-1157 |#1|) (-607 |#2|) (-607 (-388 |#2|))) (T -755))
-((-1912 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-2 (|:| -2776 *7) (|:| |rh| (-597 (-388 *6))))) (-5 *1 (-755 *5 *6 *7 *3)) (-5 *4 (-597 (-388 *6))) (-4 *7 (-607 *6)) (-4 *3 (-607 (-388 *6))))) (-1682 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *5 *3)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-607 *2)) (-4 *3 (-607 (-388 *2))))) (-2046 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3705 *4) (|:| -1685 *4)))) (-5 *1 (-755 *5 *4 *6 *3)) (-4 *6 (-607 *4)) (-4 *3 (-607 (-388 *4))))) (-2046 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3705 *5) (|:| -1685 *5)))) (-5 *1 (-755 *4 *5 *6 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 (-388 *5))))) (-1682 (*1 *2 *3 *4) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *5 (-607 (-388 *2))))) (-2046 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3705 *4) (|:| -1685 *4)))) (-5 *1 (-755 *5 *4 *3 *6)) (-4 *3 (-607 *4)) (-4 *6 (-607 (-388 *4))))) (-2046 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3705 *5) (|:| -1685 *5)))) (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-607 (-388 *5))))) (-3529 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-388 *2))) (-4 *2 (-1157 *5)) (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *6 (-607 (-388 *2))))) (-3529 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1157 *5)) (-5 *1 (-755 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *6 (-607 *4)))))
-(-10 -7 (-15 -3529 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -3529 (|#2| |#3| (-597 (-388 |#2|)))) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#3| |#2|)) (-15 -1682 (|#2| |#3| |#1|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4|)) (-15 -2046 ((-597 (-2 (|:| -3705 |#2|) (|:| -1685 |#2|))) |#4| |#2|)) (-15 -1682 (|#2| |#4| |#1|)) (-15 -1912 ((-2 (|:| -2776 |#3|) (|:| |rh| (-597 (-388 |#2|)))) |#4| (-597 (-388 |#2|)))))
-((-2352 (((-110) $ $) NIL)) (-2585 (((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $) 13)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 15) (($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 12)) (-2248 (((-110) $ $) NIL)))
-(((-756) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))) (T -756))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-756)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-756)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-756)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))
-((-2782 (((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|)) 118)) (-1263 (((-597 (-2 (|:| |poly| |#2|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|)) 46)) (-1438 (((-597 (-2 (|:| |deg| (-719)) (|:| -2776 |#2|))) |#3|) 95)) (-3813 ((|#2| |#3|) 37)) (-4055 (((-597 (-2 (|:| -2708 |#1|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|)) 82)) (-2499 ((|#3| |#3| (-388 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
-(((-757 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3813 (|#2| |#3|)) (-15 -1438 ((-597 (-2 (|:| |deg| (-719)) (|:| -2776 |#2|))) |#3|)) (-15 -4055 ((-597 (-2 (|:| -2708 |#1|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -1263 ((-597 (-2 (|:| |poly| |#2|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -2782 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -2499 (|#3| |#3| |#2|)) (-15 -2499 (|#3| |#3| (-388 |#2|)))) (-13 (-344) (-140) (-975 (-388 (-530)))) (-1157 |#1|) (-607 |#2|) (-607 (-388 |#2|))) (T -757))
-((-2499 (*1 *2 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *1 (-757 *4 *5 *2 *6)) (-4 *2 (-607 *5)) (-4 *6 (-607 *3)))) (-2499 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-1157 *4)) (-5 *1 (-757 *4 *3 *2 *5)) (-4 *2 (-607 *3)) (-4 *5 (-607 (-388 *3))))) (-2782 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-597 *7) *7 (-1095 *7))) (-5 *5 (-1 (-399 *7) *7)) (-4 *7 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |frac| (-388 *7)) (|:| -2776 *3)))) (-5 *1 (-757 *6 *7 *3 *8)) (-4 *3 (-607 *7)) (-4 *8 (-607 (-388 *7))))) (-1263 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2776 *3)))) (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6)) (-4 *7 (-607 (-388 *6))))) (-4055 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -2708 *5) (|:| -2776 *3)))) (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6)) (-4 *7 (-607 (-388 *6))))) (-1438 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -2776 *5)))) (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-607 (-388 *5))))) (-3813 (*1 *2 *3) (-12 (-4 *2 (-1157 *4)) (-5 *1 (-757 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2)) (-4 *5 (-607 (-388 *2))))))
-(-10 -7 (-15 -3813 (|#2| |#3|)) (-15 -1438 ((-597 (-2 (|:| |deg| (-719)) (|:| -2776 |#2|))) |#3|)) (-15 -4055 ((-597 (-2 (|:| -2708 |#1|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -1263 ((-597 (-2 (|:| |poly| |#2|) (|:| -2776 |#3|))) |#3| (-1 (-597 |#1|) |#2|))) (-15 -2782 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 |#3|))) |#3| (-1 (-597 |#2|) |#2| (-1095 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -2499 (|#3| |#3| |#2|)) (-15 -2499 (|#3| |#3| (-388 |#2|))))
-((-2085 (((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|))) 121) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|)) 120) (((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|))) 115) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|)) 113)) (-1639 ((|#2| (-605 |#2| (-388 |#2|))) 80) ((|#2| (-604 (-388 |#2|))) 83)))
-(((-758 |#1| |#2|) (-10 -7 (-15 -2085 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|))) (-15 -2085 ((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -2085 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -2085 ((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -1639 (|#2| (-604 (-388 |#2|)))) (-15 -1639 (|#2| (-605 |#2| (-388 |#2|))))) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -758))
-((-1639 (*1 *2 *3) (-12 (-5 *3 (-605 *2 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))) (-1639 (*1 *2 *3) (-12 (-5 *3 (-604 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| -3220 (-597 (-388 *6))) (|:| -2030 (-637 *5)))) (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-758 *5 *6)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| -3220 (-597 (-388 *6))) (|:| -2030 (-637 *5)))) (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-758 *5 *6)))))
-(-10 -7 (-15 -2085 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-604 (-388 |#2|)) (-388 |#2|))) (-15 -2085 ((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-604 (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -2085 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3220 (-597 (-388 |#2|)))) (-605 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -2085 ((-2 (|:| -3220 (-597 (-388 |#2|))) (|:| -2030 (-637 |#1|))) (-605 |#2| (-388 |#2|)) (-597 (-388 |#2|)))) (-15 -1639 (|#2| (-604 (-388 |#2|)))) (-15 -1639 (|#2| (-605 |#2| (-388 |#2|)))))
-((-4102 (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|) 48)))
-(((-759 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4102 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|))) (-344) (-607 |#1|) (-1157 |#1|) (-673 |#1| |#3|) (-607 |#4|)) (T -759))
-((-4102 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *7 (-1157 *5)) (-4 *4 (-673 *5 *7)) (-5 *2 (-2 (|:| -2030 (-637 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-759 *5 *6 *7 *4 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 *4)))))
-(-10 -7 (-15 -4102 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) |#5| |#4|)))
-((-2782 (((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 47)) (-4014 (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|))) 138 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-604 (-388 |#2|))) 140 (|has| |#1| (-27))) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 38) (((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 39) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 36) (((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 37)) (-1263 (((-597 (-2 (|:| |poly| |#2|) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|)) 83)))
-(((-760 |#1| |#2|) (-10 -7 (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -2782 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1263 ((-597 (-2 (|:| |poly| |#2|) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)))) (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|)) (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))) (-1157 |#1|)) (T -760))
-((-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-605 *5 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4014 (*1 *2 *3) (-12 (-5 *3 (-604 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5)))) (-1263 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2776 (-605 *6 (-388 *6)))))) (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))) (-2782 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-5 *2 (-597 (-2 (|:| |frac| (-388 *6)) (|:| -2776 (-605 *6 (-388 *6)))))) (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))) (-4014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-605 *7 (-388 *7))) (-5 *4 (-1 (-597 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))) (-4014 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-604 (-388 *7))) (-5 *4 (-1 (-597 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7)))) (-4014 (*1 *2 *3 *4) (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-597 *5) *6)) (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))) (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))))
-(-10 -7 (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -2782 ((-597 (-2 (|:| |frac| (-388 |#2|)) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1263 ((-597 (-2 (|:| |poly| |#2|) (|:| -2776 (-605 |#2| (-388 |#2|))))) (-605 |#2| (-388 |#2|)) (-1 (-597 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)))) (-15 -4014 ((-597 (-388 |#2|)) (-604 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)))) (-15 -4014 ((-597 (-388 |#2|)) (-605 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|))
-((-2778 (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|)) 85) (((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2776 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|)) 15)) (-2322 (((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3220 (-597 |#1|))) |#2| |#1|)) 92)) (-2688 (((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3220 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed") |#2| |#1|)) 43)))
-(((-761 |#1| |#2|) (-10 -7 (-15 -2778 ((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2776 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|))) (-15 -2778 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3220 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed") |#2| |#1|))) (-15 -2322 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3220 (-597 |#1|))) |#2| |#1|)))) (-344) (-607 |#1|)) (T -761))
-((-2322 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3220 (-597 *6))) *7 *6)) (-4 *6 (-344)) (-4 *7 (-607 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1181 *6) "failed")) (|:| -3220 (-597 (-1181 *6))))) (-5 *1 (-761 *6 *7)) (-5 *4 (-1181 *6)))) (-2688 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3220 (-597 *6))) "failed") *7 *6)) (-4 *6 (-344)) (-4 *7 (-607 *6)) (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -3220 (-637 *6)))) (-5 *1 (-761 *6 *7)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *6)))) (-2778 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-607 *5)) (-5 *2 (-2 (|:| -2030 (-637 *6)) (|:| |vec| (-1181 *5)))) (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *5)))) (-2778 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| A (-637 *5)) (|:| |eqs| (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)) (|:| -2776 *6) (|:| |rh| *5)))))) (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *6 (-607 *5)))))
-(-10 -7 (-15 -2778 ((-2 (|:| A (-637 |#1|)) (|:| |eqs| (-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)) (|:| -2776 |#2|) (|:| |rh| |#1|))))) (-637 |#1|) (-1181 |#1|))) (-15 -2778 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#1|))) (-637 |#2|) (-1181 |#1|))) (-15 -2688 ((-3 (-2 (|:| |particular| (-1181 |#1|)) (|:| -3220 (-637 |#1|))) "failed") (-637 |#1|) (-1181 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3220 (-597 |#1|))) "failed") |#2| |#1|))) (-15 -2322 ((-2 (|:| |particular| (-3 (-1181 |#1|) "failed")) (|:| -3220 (-597 (-1181 |#1|)))) (-637 |#2|) (-1181 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3220 (-597 |#1|))) |#2| |#1|))))
-((-3453 (((-637 |#1|) (-597 |#1|) (-719)) 13) (((-637 |#1|) (-597 |#1|)) 14)) (-2049 (((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|)) 34)) (-2057 (((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|)) 42)))
-(((-762 |#1| |#2|) (-10 -7 (-15 -3453 ((-637 |#1|) (-597 |#1|))) (-15 -3453 ((-637 |#1|) (-597 |#1|) (-719))) (-15 -2049 ((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|))) (-15 -2057 ((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|)))) (-344) (-607 |#1|)) (T -762))
-((-2057 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-597 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344)) (-5 *1 (-762 *2 *3)) (-4 *3 (-607 *2)))) (-2049 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-1181 *4)) (-5 *1 (-762 *4 *3)) (-4 *3 (-607 *4)))) (-3453 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-637 *5)) (-5 *1 (-762 *5 *6)) (-4 *6 (-607 *5)))) (-3453 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4)) (-5 *1 (-762 *4 *5)) (-4 *5 (-607 *4)))))
-(-10 -7 (-15 -3453 ((-637 |#1|) (-597 |#1|))) (-15 -3453 ((-637 |#1|) (-597 |#1|) (-719))) (-15 -2049 ((-3 (-1181 |#1|) "failed") |#2| |#1| (-597 |#1|))) (-15 -2057 ((-3 |#1| "failed") |#2| |#1| (-597 |#1|) (-1 |#1| |#1|))))
-((-2352 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-1813 (((-110) $) NIL (|has| |#2| (-128)))) (-3930 (($ (-862)) NIL (|has| |#2| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#2| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#2| (-349)))) (-1867 (((-530) $) NIL (|has| |#2| (-793)))) (-2552 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1027)))) (-2585 (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) ((|#2| $) NIL (|has| |#2| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#2| (-984)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#2| (-984))) (((-637 |#2|) (-637 $)) NIL (|has| |#2| (-984)))) (-2707 (((-3 $ "failed") $) NIL (|has| |#2| (-675)))) (-1364 (($) NIL (|has| |#2| (-349)))) (-3592 ((|#2| $ (-530) |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ (-530)) NIL)) (-2514 (((-110) $) NIL (|has| |#2| (-793)))) (-3779 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (|has| |#2| (-675)))) (-2166 (((-110) $) NIL (|has| |#2| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#2| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#2| (-1027)))) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#2| (-349)))) (-2624 (((-1046) $) NIL (|has| |#2| (-1027)))) (-3048 ((|#2| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) |#2|) NIL) ((|#2| $ (-530)) NIL)) (-3334 ((|#2| $ $) NIL (|has| |#2| (-984)))) (-2658 (($ (-1181 |#2|)) NIL)) (-2488 (((-130)) NIL (|has| |#2| (-344)))) (-3289 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#2|) $) NIL) (($ (-530)) NIL (-1461 (-12 (|has| |#2| (-975 (-530))) (|has| |#2| (-1027))) (|has| |#2| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#2| (-975 (-388 (-530)))) (|has| |#2| (-1027)))) (($ |#2|) NIL (|has| |#2| (-1027))) (((-804) $) NIL (|has| |#2| (-571 (-804))))) (-3300 (((-719)) NIL (|has| |#2| (-984)))) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#2| (-793)))) (-3080 (($) NIL (|has| |#2| (-128)) CONST)) (-3093 (($) NIL (|has| |#2| (-675)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#2| (-841 (-1099))) (|has| |#2| (-984)))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#2| (-984))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-984)))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2248 (((-110) $ $) NIL (|has| |#2| (-1027)))) (-2297 (((-110) $ $) NIL (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2272 (((-110) $ $) 11 (-1461 (|has| |#2| (-741)) (|has| |#2| (-793))))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $ $) NIL (|has| |#2| (-984))) (($ $) NIL (|has| |#2| (-984)))) (-2339 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-719)) NIL (|has| |#2| (-675))) (($ $ (-862)) NIL (|has| |#2| (-675)))) (* (($ (-530) $) NIL (|has| |#2| (-984))) (($ $ $) NIL (|has| |#2| (-675))) (($ $ |#2|) NIL (|has| |#2| (-675))) (($ |#2| $) NIL (|has| |#2| (-675))) (($ (-719) $) NIL (|has| |#2| (-128))) (($ (-862) $) NIL (|has| |#2| (-25)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-763 |#1| |#2| |#3|) (-221 |#1| |#2|) (-719) (-741) (-1 (-110) (-1181 |#2|) (-1181 |#2|))) (T -763))
+((-3818 (*1 *1 *1 *1) (-4 *1 (-743))))
+(-13 (-745) (-10 -8 (-15 -3818 ($ $ $))))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-797) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 7)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21)))
+(((-744) (-133)) (T -744))
+NIL
+(-13 (-797) (-25))
+(((-25) . T) ((-99) . T) ((-572 (-806)) . T) ((-797) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-2128 (((-3 $ "failed") $ $) 26)) (-4082 (($) 23 T CONST)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2237 (($ $ $) 20)) (* (($ (-864) $) 21) (($ (-721) $) 25)))
+(((-745) (-133)) (T -745))
+NIL
+(-13 (-742) (-128))
+(((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-742) . T) ((-744) . T) ((-797) . T) ((-1030) . T))
+((-3019 (((-110) $) 41)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 44)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#2| $) 42)) (-1609 (((-3 (-388 (-531)) "failed") $) 78)) (-3004 (((-110) $) 72)) (-2727 (((-388 (-531)) $) 76)) (-1899 ((|#2| $) 26)) (-3261 (($ (-1 |#2| |#2|) $) 23)) (-2422 (($ $) 61)) (-3318 (((-507) $) 67)) (-4164 (($ $) 21)) (-2265 (((-806) $) 56) (($ (-531)) 39) (($ |#2|) 37) (($ (-388 (-531))) NIL)) (-2284 (((-721)) 10)) (-1620 ((|#2| $) 71)) (-2148 (((-110) $ $) 29)) (-2174 (((-110) $ $) 69)) (-2250 (($ $) 31) (($ $ $) NIL)) (-2237 (($ $ $) 30)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 35) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 32)))
+(((-746 |#1| |#2|) (-10 -8 (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1620 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-747 |#2|) (-162)) (T -746))
+((-2284 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-746 *3 *4)) (-4 *3 (-747 *4)))))
+(-10 -8 (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2422 (|#1| |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1620 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-3006 (((-721)) 51 (|has| |#1| (-349)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 92 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 90 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 88)) (-2523 (((-531) $) 93 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 91 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 87)) (-3622 (((-3 $ "failed") $) 32)) (-2577 ((|#1| $) 77)) (-1609 (((-3 (-388 (-531)) "failed") $) 64 (|has| |#1| (-516)))) (-3004 (((-110) $) 66 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 65 (|has| |#1| (-516)))) (-1381 (($) 54 (|has| |#1| (-349)))) (-3481 (((-110) $) 30)) (-3309 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 68)) (-1899 ((|#1| $) 69)) (-4103 (($ $ $) 60 (|has| |#1| (-797)))) (-1241 (($ $ $) 59 (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) 79)) (-2211 (((-864) $) 53 (|has| |#1| (-349)))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 63 (|has| |#1| (-344)))) (-1889 (($ (-864)) 52 (|has| |#1| (-349)))) (-3698 ((|#1| $) 74)) (-4121 ((|#1| $) 75)) (-2193 ((|#1| $) 76)) (-1614 ((|#1| $) 70)) (-2600 ((|#1| $) 71)) (-2774 ((|#1| $) 72)) (-2876 ((|#1| $) 73)) (-2529 (((-1049) $) 10)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 85 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 84 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 83 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 82 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 81 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) 80 (|has| |#1| (-492 (-1102) |#1|)))) (-1785 (($ $ |#1|) 86 (|has| |#1| (-268 |#1| |#1|)))) (-3318 (((-507) $) 61 (|has| |#1| (-573 (-507))))) (-4164 (($ $) 78)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35) (($ (-388 (-531))) 89 (|has| |#1| (-977 (-388 (-531)))))) (-2750 (((-3 $ "failed") $) 62 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-1620 ((|#1| $) 67 (|has| |#1| (-995)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 57 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 56 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 58 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 55 (|has| |#1| (-797)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36)))
+(((-747 |#1|) (-133) (-162)) (T -747))
+((-4164 (*1 *1 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2193 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-3698 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-3309 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))) (-1609 (*1 *2 *1) (|partial| -12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))) (-2422 (*1 *1 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
+(-13 (-37 |t#1|) (-392 |t#1|) (-319 |t#1|) (-10 -8 (-15 -4164 ($ $)) (-15 -2577 (|t#1| $)) (-15 -2193 (|t#1| $)) (-15 -4121 (|t#1| $)) (-15 -3698 (|t#1| $)) (-15 -2876 (|t#1| $)) (-15 -2774 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -1614 (|t#1| $)) (-15 -1899 (|t#1| $)) (-15 -3309 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-349)) (-6 (-349)) |%noBranch|) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-995)) (-15 -1620 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-344)) (-15 -2422 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-349) |has| |#1| (-349)) ((-319 |#1|) . T) ((-392 |#1|) . T) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) . T) ((-677) . T) ((-797) |has| |#1| (-797)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3261 ((|#3| (-1 |#4| |#2|) |#1|) 20)))
+(((-748 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) (-747 |#2|) (-162) (-747 |#4|) (-162)) (T -748))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-747 *6)) (-5 *1 (-748 *4 *5 *2 *6)) (-4 *4 (-747 *5)))))
+(-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-940 |#1|) "failed") $) 35) (((-3 (-531) "failed") $) NIL (-1435 (|has| (-940 |#1|) (-977 (-531))) (|has| |#1| (-977 (-531))))) (((-3 (-388 (-531)) "failed") $) NIL (-1435 (|has| (-940 |#1|) (-977 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2523 ((|#1| $) NIL) (((-940 |#1|) $) 33) (((-531) $) NIL (-1435 (|has| (-940 |#1|) (-977 (-531))) (|has| |#1| (-977 (-531))))) (((-388 (-531)) $) NIL (-1435 (|has| (-940 |#1|) (-977 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-3622 (((-3 $ "failed") $) NIL)) (-2577 ((|#1| $) 16)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-516)))) (-3004 (((-110) $) NIL (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) NIL (|has| |#1| (-516)))) (-1381 (($) NIL (|has| |#1| (-349)))) (-3481 (((-110) $) NIL)) (-3309 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28) (($ (-940 |#1|) (-940 |#1|)) 29)) (-1899 ((|#1| $) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-3698 ((|#1| $) 22)) (-4121 ((|#1| $) 20)) (-2193 ((|#1| $) 18)) (-1614 ((|#1| $) 26)) (-2600 ((|#1| $) 25)) (-2774 ((|#1| $) 24)) (-2876 ((|#1| $) 23)) (-2529 (((-1049) $) NIL)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|)))) (-1785 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-4164 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-940 |#1|)) 30) (($ (-388 (-531))) NIL (-1435 (|has| (-940 |#1|) (-977 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-1620 ((|#1| $) NIL (|has| |#1| (-995)))) (-3035 (($) 8 T CONST)) (-3050 (($) 12 T CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 40) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-749 |#1|) (-13 (-747 |#1|) (-392 (-940 |#1|)) (-10 -8 (-15 -3309 ($ (-940 |#1|) (-940 |#1|))))) (-162)) (T -749))
+((-3309 (*1 *1 *2 *2) (-12 (-5 *2 (-940 *3)) (-4 *3 (-162)) (-5 *1 (-749 *3)))))
+(-13 (-747 |#1|) (-392 (-940 |#1|)) (-10 -8 (-15 -3309 ($ (-940 |#1|) (-940 |#1|)))))
+((-2247 (((-110) $ $) 7)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2146 (((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 13)) (-2148 (((-110) $ $) 6)))
+(((-750) (-133)) (T -750))
+((-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-750)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) (-2146 (*1 *2 *3) (-12 (-4 *1 (-750)) (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-975)))))
+(-13 (-1030) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2146 ((-975) (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2220 (((-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#3| |#2| (-1102)) 19)))
+(((-751 |#1| |#2| |#3|) (-10 -7 (-15 -2220 ((-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#3| |#2| (-1102)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902)) (-609 |#2|)) (T -751))
+((-2220 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1102)) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-4 *4 (-13 (-29 *6) (-1124) (-902))) (-5 *2 (-2 (|:| |particular| *4) (|:| -3523 (-598 *4)))) (-5 *1 (-751 *6 *4 *3)) (-4 *3 (-609 *4)))))
+(-10 -7 (-15 -2220 ((-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#3| |#2| (-1102))))
+((-1871 (((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-598 |#2|)) 28) (((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|)) 29) (((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") |#2| (-112) (-1102)) 17) (((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1102)) 18) (((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 |#2|) (-598 (-112)) (-1102)) 24) (((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 (-276 |#2|)) (-598 (-112)) (-1102)) 26) (((-3 (-598 (-1184 |#2|)) "failed") (-639 |#2|) (-1102)) 37) (((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-639 |#2|) (-1184 |#2|) (-1102)) 35)))
+(((-752 |#1| |#2|) (-10 -7 (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-639 |#2|) (-1184 |#2|) (-1102))) (-15 -1871 ((-3 (-598 (-1184 |#2|)) "failed") (-639 |#2|) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 (-276 |#2|)) (-598 (-112)) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 |#2|) (-598 (-112)) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") |#2| (-112) (-1102))) (-15 -1871 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|))) (-15 -1871 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-598 |#2|)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902))) (T -752))
+((-1871 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-598 *2)) (-4 *2 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-752 *6 *2)))) (-1871 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-598 *2)) (-4 *2 (-13 (-29 *6) (-1124) (-902))) (-5 *1 (-752 *6 *2)) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))))) (-1871 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-112)) (-5 *5 (-1102)) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -3523 (-598 *3))) *3 "failed")) (-5 *1 (-752 *6 *3)) (-4 *3 (-13 (-29 *6) (-1124) (-902))))) (-1871 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -3523 (-598 *7))) *7 "failed")) (-5 *1 (-752 *6 *7)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-598 *7)) (-5 *4 (-598 (-112))) (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) (-5 *1 (-752 *6 *7)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-598 (-276 *7))) (-5 *4 (-598 (-112))) (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) (-5 *1 (-752 *6 *7)))) (-1871 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-639 *6)) (-5 *4 (-1102)) (-4 *6 (-13 (-29 *5) (-1124) (-902))) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-1184 *6))) (-5 *1 (-752 *5 *6)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-639 *7)) (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902))) (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7))))) (-5 *1 (-752 *6 *7)) (-5 *4 (-1184 *7)))))
+(-10 -7 (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-639 |#2|) (-1184 |#2|) (-1102))) (-15 -1871 ((-3 (-598 (-1184 |#2|)) "failed") (-639 |#2|) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 (-276 |#2|)) (-598 (-112)) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#2|)) (|:| -3523 (-598 (-1184 |#2|)))) "failed") (-598 |#2|) (-598 (-112)) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") (-276 |#2|) (-112) (-1102))) (-15 -1871 ((-3 (-2 (|:| |particular| |#2|) (|:| -3523 (-598 |#2|))) |#2| "failed") |#2| (-112) (-1102))) (-15 -1871 ((-3 |#2| "failed") (-276 |#2|) (-112) (-276 |#2|) (-598 |#2|))) (-15 -1871 ((-3 |#2| "failed") |#2| (-112) (-276 |#2|) (-598 |#2|))))
+((-4138 (($) 9)) (-3478 (((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 31)) (-3345 (((-598 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $) 28)) (-3944 (($ (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) 25)) (-2939 (($ (-598 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) 23)) (-4029 (((-1189)) 12)))
+(((-753) (-10 -8 (-15 -4138 ($)) (-15 -4029 ((-1189))) (-15 -3345 ((-598 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2939 ($ (-598 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -3944 ($ (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -3478 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))) (T -753))
+((-3478 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *2 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))) (-5 *1 (-753)))) (-3944 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))) (-5 *1 (-753)))) (-2939 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-5 *1 (-753)))) (-3345 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-5 *1 (-753)))) (-4029 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-753)))) (-4138 (*1 *1) (-5 *1 (-753))))
+(-10 -8 (-15 -4138 ($)) (-15 -4029 ((-1189))) (-15 -3345 ((-598 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) $)) (-15 -2939 ($ (-598 (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360)))))))) (-15 -3944 ($ (-2 (|:| -3033 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (|:| -1798 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))))))) (-15 -3478 ((-3 (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360)) (|:| |expense| (-360)) (|:| |accuracy| (-360)) (|:| |intermediateResults| (-360))) "failed") (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))))
+((-4150 ((|#2| |#2| (-1102)) 16)) (-1688 ((|#2| |#2| (-1102)) 51)) (-4032 (((-1 |#2| |#2|) (-1102)) 11)))
+(((-754 |#1| |#2|) (-10 -7 (-15 -4150 (|#2| |#2| (-1102))) (-15 -1688 (|#2| |#2| (-1102))) (-15 -4032 ((-1 |#2| |#2|) (-1102)))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)) (-13 (-29 |#1|) (-1124) (-902))) (T -754))
+((-4032 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-1 *5 *5)) (-5 *1 (-754 *4 *5)) (-4 *5 (-13 (-29 *4) (-1124) (-902))))) (-1688 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-754 *4 *2)) (-4 *2 (-13 (-29 *4) (-1124) (-902))))) (-4150 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *1 (-754 *4 *2)) (-4 *2 (-13 (-29 *4) (-1124) (-902))))))
+(-10 -7 (-15 -4150 (|#2| |#2| (-1102))) (-15 -1688 (|#2| |#2| (-1102))) (-15 -4032 ((-1 |#2| |#2|) (-1102))))
+((-1871 (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360) (-360)) 116) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360)) 117) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-598 (-360)) (-360)) 119) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-360)) 120) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-360)) 121) (((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360))) 122) (((-975) (-758) (-998)) 108) (((-975) (-758)) 109)) (-3582 (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758) (-998)) 75) (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758)) 77)))
+(((-755) (-10 -7 (-15 -1871 ((-975) (-758))) (-15 -1871 ((-975) (-758) (-998))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360) (-360))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758) (-998))))) (T -755))
+((-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-998)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-755)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360))) (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-758)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-755)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-975)) (-5 *1 (-755)))))
+(-10 -7 (-15 -1871 ((-975) (-758))) (-15 -1871 ((-975) (-758) (-998))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360))) (-15 -1871 ((-975) (-1184 (-297 (-360))) (-360) (-360) (-598 (-360)) (-297 (-360)) (-598 (-360)) (-360) (-360))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-758) (-998))))
+((-1858 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3523 (-598 |#4|))) (-606 |#4|) |#4|) 35)))
+(((-756 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1858 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3523 (-598 |#4|))) (-606 |#4|) |#4|))) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|)) (T -756))
+((-1858 (*1 *2 *3 *4) (-12 (-5 *3 (-606 *4)) (-4 *4 (-323 *5 *6 *7)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-756 *5 *6 *7 *4)))))
+(-10 -7 (-15 -1858 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -3523 (-598 |#4|))) (-606 |#4|) |#4|)))
+((-1682 (((-2 (|:| -2723 |#3|) (|:| |rh| (-598 (-388 |#2|)))) |#4| (-598 (-388 |#2|))) 52)) (-1672 (((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4| |#2|) 60) (((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4|) 59) (((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3| |#2|) 20) (((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3|) 21)) (-2465 ((|#2| |#4| |#1|) 61) ((|#2| |#3| |#1|) 27)) (-1224 ((|#2| |#3| (-598 (-388 |#2|))) 93) (((-3 |#2| "failed") |#3| (-388 |#2|)) 90)))
+(((-757 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1224 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -1224 (|#2| |#3| (-598 (-388 |#2|)))) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3| |#2|)) (-15 -2465 (|#2| |#3| |#1|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4| |#2|)) (-15 -2465 (|#2| |#4| |#1|)) (-15 -1682 ((-2 (|:| -2723 |#3|) (|:| |rh| (-598 (-388 |#2|)))) |#4| (-598 (-388 |#2|))))) (-13 (-344) (-140) (-977 (-388 (-531)))) (-1160 |#1|) (-609 |#2|) (-609 (-388 |#2|))) (T -757))
+((-1682 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-2 (|:| -2723 *7) (|:| |rh| (-598 (-388 *6))))) (-5 *1 (-757 *5 *6 *7 *3)) (-5 *4 (-598 (-388 *6))) (-4 *7 (-609 *6)) (-4 *3 (-609 (-388 *6))))) (-2465 (*1 *2 *3 *4) (-12 (-4 *2 (-1160 *4)) (-5 *1 (-757 *4 *2 *5 *3)) (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-609 *2)) (-4 *3 (-609 (-388 *2))))) (-1672 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *4 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3840 *4) (|:| -1623 *4)))) (-5 *1 (-757 *5 *4 *6 *3)) (-4 *6 (-609 *4)) (-4 *3 (-609 (-388 *4))))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| -3840 *5) (|:| -1623 *5)))) (-5 *1 (-757 *4 *5 *6 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 (-388 *5))))) (-2465 (*1 *2 *3 *4) (-12 (-4 *2 (-1160 *4)) (-5 *1 (-757 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) (-4 *5 (-609 (-388 *2))))) (-1672 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *4 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3840 *4) (|:| -1623 *4)))) (-5 *1 (-757 *5 *4 *3 *6)) (-4 *3 (-609 *4)) (-4 *6 (-609 (-388 *4))))) (-1672 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| -3840 *5) (|:| -1623 *5)))) (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-609 (-388 *5))))) (-1224 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-388 *2))) (-4 *2 (-1160 *5)) (-5 *1 (-757 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) (-4 *6 (-609 (-388 *2))))) (-1224 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1160 *5)) (-5 *1 (-757 *5 *2 *3 *6)) (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) (-4 *6 (-609 *4)))))
+(-10 -7 (-15 -1224 ((-3 |#2| "failed") |#3| (-388 |#2|))) (-15 -1224 (|#2| |#3| (-598 (-388 |#2|)))) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#3| |#2|)) (-15 -2465 (|#2| |#3| |#1|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4|)) (-15 -1672 ((-598 (-2 (|:| -3840 |#2|) (|:| -1623 |#2|))) |#4| |#2|)) (-15 -2465 (|#2| |#4| |#1|)) (-15 -1682 ((-2 (|:| -2723 |#3|) (|:| |rh| (-598 (-388 |#2|)))) |#4| (-598 (-388 |#2|)))))
+((-2247 (((-110) $ $) NIL)) (-2523 (((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $) 13)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 15) (($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) 12)) (-2148 (((-110) $ $) NIL)))
+(((-758) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))) (T -758))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-758)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-758)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208)))) (-5 *1 (-758)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-2 (|:| |xinit| (-208)) (|:| |xend| (-208)) (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208))) (|:| |abserr| (-208)) (|:| |relerr| (-208))) $))))
+((-3940 (((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 |#3|))) |#3| (-1 (-598 |#2|) |#2| (-1098 |#2|)) (-1 (-399 |#2|) |#2|)) 118)) (-1741 (((-598 (-2 (|:| |poly| |#2|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|)) 46)) (-2461 (((-598 (-2 (|:| |deg| (-721)) (|:| -2723 |#2|))) |#3|) 95)) (-1721 ((|#2| |#3|) 37)) (-2635 (((-598 (-2 (|:| -2651 |#1|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|)) 82)) (-1758 ((|#3| |#3| (-388 |#2|)) 63) ((|#3| |#3| |#2|) 79)))
+(((-759 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1721 (|#2| |#3|)) (-15 -2461 ((-598 (-2 (|:| |deg| (-721)) (|:| -2723 |#2|))) |#3|)) (-15 -2635 ((-598 (-2 (|:| -2651 |#1|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|))) (-15 -1741 ((-598 (-2 (|:| |poly| |#2|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|))) (-15 -3940 ((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 |#3|))) |#3| (-1 (-598 |#2|) |#2| (-1098 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1758 (|#3| |#3| |#2|)) (-15 -1758 (|#3| |#3| (-388 |#2|)))) (-13 (-344) (-140) (-977 (-388 (-531)))) (-1160 |#1|) (-609 |#2|) (-609 (-388 |#2|))) (T -759))
+((-1758 (*1 *2 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *1 (-759 *4 *5 *2 *6)) (-4 *2 (-609 *5)) (-4 *6 (-609 *3)))) (-1758 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-1160 *4)) (-5 *1 (-759 *4 *3 *2 *5)) (-4 *2 (-609 *3)) (-4 *5 (-609 (-388 *3))))) (-3940 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-598 *7) *7 (-1098 *7))) (-5 *5 (-1 (-399 *7) *7)) (-4 *7 (-1160 *6)) (-4 *6 (-13 (-344) (-140) (-977 (-388 (-531))))) (-5 *2 (-598 (-2 (|:| |frac| (-388 *7)) (|:| -2723 *3)))) (-5 *1 (-759 *6 *7 *3 *8)) (-4 *3 (-609 *7)) (-4 *8 (-609 (-388 *7))))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-2 (|:| |poly| *6) (|:| -2723 *3)))) (-5 *1 (-759 *5 *6 *3 *7)) (-4 *3 (-609 *6)) (-4 *7 (-609 (-388 *6))))) (-2635 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -2651 *5) (|:| -2723 *3)))) (-5 *1 (-759 *5 *6 *3 *7)) (-4 *3 (-609 *6)) (-4 *7 (-609 (-388 *6))))) (-2461 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| |deg| (-721)) (|:| -2723 *5)))) (-5 *1 (-759 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-609 (-388 *5))))) (-1721 (*1 *2 *3) (-12 (-4 *2 (-1160 *4)) (-5 *1 (-759 *4 *2 *3 *5)) (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2)) (-4 *5 (-609 (-388 *2))))))
+(-10 -7 (-15 -1721 (|#2| |#3|)) (-15 -2461 ((-598 (-2 (|:| |deg| (-721)) (|:| -2723 |#2|))) |#3|)) (-15 -2635 ((-598 (-2 (|:| -2651 |#1|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|))) (-15 -1741 ((-598 (-2 (|:| |poly| |#2|) (|:| -2723 |#3|))) |#3| (-1 (-598 |#1|) |#2|))) (-15 -3940 ((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 |#3|))) |#3| (-1 (-598 |#2|) |#2| (-1098 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1758 (|#3| |#3| |#2|)) (-15 -1758 (|#3| |#3| (-388 |#2|))))
+((-3106 (((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-607 |#2| (-388 |#2|)) (-598 (-388 |#2|))) 121) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|)) 120) (((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-606 (-388 |#2|)) (-598 (-388 |#2|))) 115) (((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|)) 113)) (-2281 ((|#2| (-607 |#2| (-388 |#2|))) 80) ((|#2| (-606 (-388 |#2|))) 83)))
+(((-760 |#1| |#2|) (-10 -7 (-15 -3106 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|))) (-15 -3106 ((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-606 (-388 |#2|)) (-598 (-388 |#2|)))) (-15 -3106 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -3106 ((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-607 |#2| (-388 |#2|)) (-598 (-388 |#2|)))) (-15 -2281 (|#2| (-606 (-388 |#2|)))) (-15 -2281 (|#2| (-607 |#2| (-388 |#2|))))) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|)) (T -760))
+((-2281 (*1 *2 *3) (-12 (-5 *3 (-607 *2 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-760 *4 *2)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))))) (-2281 (*1 *2 *3) (-12 (-5 *3 (-606 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-760 *4 *2)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-2 (|:| -3523 (-598 (-388 *6))) (|:| -1751 (-639 *5)))) (-5 *1 (-760 *5 *6)) (-5 *4 (-598 (-388 *6))))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-760 *5 *6)))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-2 (|:| -3523 (-598 (-388 *6))) (|:| -1751 (-639 *5)))) (-5 *1 (-760 *5 *6)) (-5 *4 (-598 (-388 *6))))) (-3106 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-760 *5 *6)))))
+(-10 -7 (-15 -3106 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-606 (-388 |#2|)) (-388 |#2|))) (-15 -3106 ((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-606 (-388 |#2|)) (-598 (-388 |#2|)))) (-15 -3106 ((-2 (|:| |particular| (-3 (-388 |#2|) "failed")) (|:| -3523 (-598 (-388 |#2|)))) (-607 |#2| (-388 |#2|)) (-388 |#2|))) (-15 -3106 ((-2 (|:| -3523 (-598 (-388 |#2|))) (|:| -1751 (-639 |#1|))) (-607 |#2| (-388 |#2|)) (-598 (-388 |#2|)))) (-15 -2281 (|#2| (-606 (-388 |#2|)))) (-15 -2281 (|#2| (-607 |#2| (-388 |#2|)))))
+((-2761 (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) |#5| |#4|) 48)))
+(((-761 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2761 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) |#5| |#4|))) (-344) (-609 |#1|) (-1160 |#1|) (-675 |#1| |#3|) (-609 |#4|)) (T -761))
+((-2761 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *7 (-1160 *5)) (-4 *4 (-675 *5 *7)) (-5 *2 (-2 (|:| -1751 (-639 *6)) (|:| |vec| (-1184 *5)))) (-5 *1 (-761 *5 *6 *7 *4 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 *4)))))
+(-10 -7 (-15 -2761 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) |#5| |#4|)))
+((-3940 (((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 47)) (-2882 (((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 141 (|has| |#1| (-27))) (((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|))) 138 (|has| |#1| (-27))) (((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-399 |#2|) |#2|)) 142 (|has| |#1| (-27))) (((-598 (-388 |#2|)) (-606 (-388 |#2|))) 140 (|has| |#1| (-27))) (((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 38) (((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|)) 39) (((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|)) 36) (((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|)) 37)) (-1741 (((-598 (-2 (|:| |poly| |#2|) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|)) 83)))
+(((-762 |#1| |#2|) (-10 -7 (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -3940 ((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1741 ((-598 (-2 (|:| |poly| |#2|) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)))) (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|)) (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))) (-1160 |#1|)) (T -762))
+((-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-607 *5 (-388 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-388 *5))) (-5 *1 (-762 *4 *5)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) (-2882 (*1 *2 *3) (-12 (-5 *3 (-606 (-388 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-388 *5))) (-5 *1 (-762 *4 *5)))) (-1741 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-2 (|:| |poly| *6) (|:| -2723 (-607 *6 (-388 *6)))))) (-5 *1 (-762 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))) (-3940 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-5 *2 (-598 (-2 (|:| |frac| (-388 *6)) (|:| -2723 (-607 *6 (-388 *6)))))) (-5 *1 (-762 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))) (-2882 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-607 *7 (-388 *7))) (-5 *4 (-1 (-598 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *7 (-1160 *6)) (-5 *2 (-598 (-388 *7))) (-5 *1 (-762 *6 *7)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))) (-2882 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-606 (-388 *7))) (-5 *4 (-1 (-598 *6) *7)) (-5 *5 (-1 (-399 *7) *7)) (-4 *6 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *7 (-1160 *6)) (-5 *2 (-598 (-388 *7))) (-5 *1 (-762 *6 *7)))) (-2882 (*1 *2 *3 *4) (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-598 *5) *6)) (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))) (-4 *6 (-1160 *5)) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))))
+(-10 -7 (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|) (-1 (-399 |#2|) |#2|))) (-15 -3940 ((-598 (-2 (|:| |frac| (-388 |#2|)) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -1741 ((-598 (-2 (|:| |poly| |#2|) (|:| -2723 (-607 |#2| (-388 |#2|))))) (-607 |#2| (-388 |#2|)) (-1 (-598 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)))) (-15 -2882 ((-598 (-388 |#2|)) (-606 (-388 |#2|)) (-1 (-399 |#2|) |#2|))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)))) (-15 -2882 ((-598 (-388 |#2|)) (-607 |#2| (-388 |#2|)) (-1 (-399 |#2|) |#2|)))) |%noBranch|))
+((-1874 (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) (-639 |#2|) (-1184 |#1|)) 85) (((-2 (|:| A (-639 |#1|)) (|:| |eqs| (-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)) (|:| -2723 |#2|) (|:| |rh| |#1|))))) (-639 |#1|) (-1184 |#1|)) 15)) (-1504 (((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#2|) (-1184 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3523 (-598 |#1|))) |#2| |#1|)) 92)) (-1871 (((-3 (-2 (|:| |particular| (-1184 |#1|)) (|:| -3523 (-639 |#1|))) "failed") (-639 |#1|) (-1184 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed") |#2| |#1|)) 43)))
+(((-763 |#1| |#2|) (-10 -7 (-15 -1874 ((-2 (|:| A (-639 |#1|)) (|:| |eqs| (-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)) (|:| -2723 |#2|) (|:| |rh| |#1|))))) (-639 |#1|) (-1184 |#1|))) (-15 -1874 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) (-639 |#2|) (-1184 |#1|))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#1|)) (|:| -3523 (-639 |#1|))) "failed") (-639 |#1|) (-1184 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed") |#2| |#1|))) (-15 -1504 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#2|) (-1184 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3523 (-598 |#1|))) |#2| |#1|)))) (-344) (-609 |#1|)) (T -763))
+((-1504 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3523 (-598 *6))) *7 *6)) (-4 *6 (-344)) (-4 *7 (-609 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1184 *6) "failed")) (|:| -3523 (-598 (-1184 *6))))) (-5 *1 (-763 *6 *7)) (-5 *4 (-1184 *6)))) (-1871 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -3523 (-598 *6))) "failed") *7 *6)) (-4 *6 (-344)) (-4 *7 (-609 *6)) (-5 *2 (-2 (|:| |particular| (-1184 *6)) (|:| -3523 (-639 *6)))) (-5 *1 (-763 *6 *7)) (-5 *3 (-639 *6)) (-5 *4 (-1184 *6)))) (-1874 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-4 *6 (-609 *5)) (-5 *2 (-2 (|:| -1751 (-639 *6)) (|:| |vec| (-1184 *5)))) (-5 *1 (-763 *5 *6)) (-5 *3 (-639 *6)) (-5 *4 (-1184 *5)))) (-1874 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| A (-639 *5)) (|:| |eqs| (-598 (-2 (|:| C (-639 *5)) (|:| |g| (-1184 *5)) (|:| -2723 *6) (|:| |rh| *5)))))) (-5 *1 (-763 *5 *6)) (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *6 (-609 *5)))))
+(-10 -7 (-15 -1874 ((-2 (|:| A (-639 |#1|)) (|:| |eqs| (-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)) (|:| -2723 |#2|) (|:| |rh| |#1|))))) (-639 |#1|) (-1184 |#1|))) (-15 -1874 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#1|))) (-639 |#2|) (-1184 |#1|))) (-15 -1871 ((-3 (-2 (|:| |particular| (-1184 |#1|)) (|:| -3523 (-639 |#1|))) "failed") (-639 |#1|) (-1184 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -3523 (-598 |#1|))) "failed") |#2| |#1|))) (-15 -1504 ((-2 (|:| |particular| (-3 (-1184 |#1|) "failed")) (|:| -3523 (-598 (-1184 |#1|)))) (-639 |#2|) (-1184 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| "failed")) (|:| -3523 (-598 |#1|))) |#2| |#1|))))
+((-3131 (((-639 |#1|) (-598 |#1|) (-721)) 13) (((-639 |#1|) (-598 |#1|)) 14)) (-2102 (((-3 (-1184 |#1|) "failed") |#2| |#1| (-598 |#1|)) 34)) (-2197 (((-3 |#1| "failed") |#2| |#1| (-598 |#1|) (-1 |#1| |#1|)) 42)))
+(((-764 |#1| |#2|) (-10 -7 (-15 -3131 ((-639 |#1|) (-598 |#1|))) (-15 -3131 ((-639 |#1|) (-598 |#1|) (-721))) (-15 -2102 ((-3 (-1184 |#1|) "failed") |#2| |#1| (-598 |#1|))) (-15 -2197 ((-3 |#1| "failed") |#2| |#1| (-598 |#1|) (-1 |#1| |#1|)))) (-344) (-609 |#1|)) (T -764))
+((-2197 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-598 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344)) (-5 *1 (-764 *2 *3)) (-4 *3 (-609 *2)))) (-2102 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-598 *4)) (-4 *4 (-344)) (-5 *2 (-1184 *4)) (-5 *1 (-764 *4 *3)) (-4 *3 (-609 *4)))) (-3131 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-721)) (-4 *5 (-344)) (-5 *2 (-639 *5)) (-5 *1 (-764 *5 *6)) (-4 *6 (-609 *5)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-344)) (-5 *2 (-639 *4)) (-5 *1 (-764 *4 *5)) (-4 *5 (-609 *4)))))
+(-10 -7 (-15 -3131 ((-639 |#1|) (-598 |#1|))) (-15 -3131 ((-639 |#1|) (-598 |#1|) (-721))) (-15 -2102 ((-3 (-1184 |#1|) "failed") |#2| |#1| (-598 |#1|))) (-15 -2197 ((-3 |#1| "failed") |#2| |#1| (-598 |#1|) (-1 |#1| |#1|))))
+((-2247 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-3019 (((-110) $) NIL (|has| |#2| (-128)))) (-1685 (($ (-864)) NIL (|has| |#2| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#2| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#2| (-128)))) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#2| (-349)))) (-3459 (((-531) $) NIL (|has| |#2| (-795)))) (-2454 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (((-3 |#2| "failed") $) NIL (|has| |#2| (-1030)))) (-2523 (((-531) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) ((|#2| $) NIL (|has| |#2| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#2| (-986)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL (|has| |#2| (-986))) (((-639 |#2|) (-639 $)) NIL (|has| |#2| (-986)))) (-3622 (((-3 $ "failed") $) NIL (|has| |#2| (-677)))) (-1381 (($) NIL (|has| |#2| (-349)))) (-2693 ((|#2| $ (-531) |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ (-531)) NIL)) (-1599 (((-110) $) NIL (|has| |#2| (-795)))) (-2227 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (|has| |#2| (-677)))) (-2985 (((-110) $) NIL (|has| |#2| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#2| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#2| (-1030)))) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#2| (-349)))) (-2529 (((-1049) $) NIL (|has| |#2| (-1030)))) (-3046 ((|#2| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) |#2|) NIL) ((|#2| $ (-531)) NIL)) (-3225 ((|#2| $ $) NIL (|has| |#2| (-986)))) (-2602 (($ (-1184 |#2|)) NIL)) (-2190 (((-130)) NIL (|has| |#2| (-344)))) (-3352 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#2|) $) NIL) (($ (-531)) NIL (-1435 (-12 (|has| |#2| (-977 (-531))) (|has| |#2| (-1030))) (|has| |#2| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#2| (-977 (-388 (-531)))) (|has| |#2| (-1030)))) (($ |#2|) NIL (|has| |#2| (-1030))) (((-806) $) NIL (|has| |#2| (-572 (-806))))) (-2284 (((-721)) NIL (|has| |#2| (-986)))) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#2| (-795)))) (-3035 (($) NIL (|has| |#2| (-128)) CONST)) (-3050 (($) NIL (|has| |#2| (-677)) CONST)) (-4020 (($ $) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#2| (-216)) (|has| |#2| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#2| (-843 (-1102))) (|has| |#2| (-986)))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#2| (-986))) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-986)))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2148 (((-110) $ $) NIL (|has| |#2| (-1030)))) (-2195 (((-110) $ $) NIL (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2174 (((-110) $ $) 11 (-1435 (|has| |#2| (-743)) (|has| |#2| (-795))))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $ $) NIL (|has| |#2| (-986))) (($ $) NIL (|has| |#2| (-986)))) (-2237 (($ $ $) NIL (|has| |#2| (-25)))) (** (($ $ (-721)) NIL (|has| |#2| (-677))) (($ $ (-864)) NIL (|has| |#2| (-677)))) (* (($ (-531) $) NIL (|has| |#2| (-986))) (($ $ $) NIL (|has| |#2| (-677))) (($ $ |#2|) NIL (|has| |#2| (-677))) (($ |#2| $) NIL (|has| |#2| (-677))) (($ (-721) $) NIL (|has| |#2| (-128))) (($ (-864) $) NIL (|has| |#2| (-25)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-765 |#1| |#2| |#3|) (-221 |#1| |#2|) (-721) (-743) (-1 (-110) (-1184 |#2|) (-1184 |#2|))) (T -765))
NIL
(-221 |#1| |#2|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1772 (((-597 (-719)) $) NIL) (((-597 (-719)) $ (-1099)) NIL)) (-2001 (((-719) $) NIL) (((-719) $ (-1099)) NIL)) (-2746 (((-597 (-766 (-1099))) $) NIL)) (-2577 (((-1095 $) $ (-766 (-1099))) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-766 (-1099)))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3373 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-766 (-1099)) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL) (((-3 (-1051 |#1| (-1099)) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-766 (-1099)) $) NIL) (((-1099) $) NIL) (((-1051 |#1| (-1099)) $) NIL)) (-3388 (($ $ $ (-766 (-1099))) NIL (|has| |#1| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-766 (-1099))) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 (-766 (-1099))) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-766 (-1099)) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-766 (-1099)) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ (-1099)) NIL) (((-719) $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#1|) (-766 (-1099))) NIL) (($ (-1095 $) (-766 (-1099))) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-766 (-1099))) NIL)) (-2944 (((-502 (-766 (-1099))) $) NIL) (((-719) $ (-766 (-1099))) NIL) (((-597 (-719)) $ (-597 (-766 (-1099)))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 (-766 (-1099))) (-502 (-766 (-1099)))) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3135 (((-1 $ (-719)) (-1099)) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-2040 (((-3 (-766 (-1099)) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2948 (((-766 (-1099)) $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2003 (((-110) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-766 (-1099))) (|:| -3194 (-719))) "failed") $) NIL)) (-2384 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-766 (-1099)) |#1|) NIL) (($ $ (-597 (-766 (-1099))) (-597 |#1|)) NIL) (($ $ (-766 (-1099)) $) NIL) (($ $ (-597 (-766 (-1099))) (-597 $)) NIL) (($ $ (-1099) $) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 $)) NIL (|has| |#1| (-216))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-3060 (($ $ (-766 (-1099))) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-766 (-1099))) NIL) (($ $ (-597 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3353 (((-597 (-1099)) $) NIL)) (-1429 (((-502 (-766 (-1099))) $) NIL) (((-719) $ (-766 (-1099))) NIL) (((-597 (-719)) $ (-597 (-766 (-1099)))) NIL) (((-719) $ (-1099)) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-766 (-1099)) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-766 (-1099))) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-766 (-1099))) NIL) (($ (-1099)) NIL) (($ (-1051 |#1| (-1099))) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-766 (-1099))) NIL) (($ $ (-597 (-766 (-1099)))) NIL) (($ $ (-766 (-1099)) (-719)) NIL) (($ $ (-597 (-766 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-764 |#1|) (-13 (-235 |#1| (-1099) (-766 (-1099)) (-502 (-766 (-1099)))) (-975 (-1051 |#1| (-1099)))) (-984)) (T -764))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1584 (((-598 (-721)) $) NIL) (((-598 (-721)) $ (-1102)) NIL)) (-3449 (((-721) $) NIL) (((-721) $ (-1102)) NIL)) (-2695 (((-598 (-768 (-1102))) $) NIL)) (-2516 (((-1098 $) $ (-768 (-1102))) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-768 (-1102)))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-1524 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-768 (-1102)) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL) (((-3 (-1054 |#1| (-1102)) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-768 (-1102)) $) NIL) (((-1102) $) NIL) (((-1054 |#1| (-1102)) $) NIL)) (-3115 (($ $ $ (-768 (-1102))) NIL (|has| |#1| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-768 (-1102))) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 (-768 (-1102))) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-768 (-1102)) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-768 (-1102)) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ (-1102)) NIL) (((-721) $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#1|) (-768 (-1102))) NIL) (($ (-1098 $) (-768 (-1102))) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 (-768 (-1102)))) NIL) (($ $ (-768 (-1102)) (-721)) NIL) (($ $ (-598 (-768 (-1102))) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-768 (-1102))) NIL)) (-3005 (((-503 (-768 (-1102))) $) NIL) (((-721) $ (-768 (-1102))) NIL) (((-598 (-721)) $ (-598 (-768 (-1102)))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 (-768 (-1102))) (-503 (-768 (-1102)))) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-4252 (((-1 $ (-721)) (-1102)) NIL) (((-1 $ (-721)) $) NIL (|has| |#1| (-216)))) (-3471 (((-3 (-768 (-1102)) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2941 (((-768 (-1102)) $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-1921 (((-110) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-768 (-1102))) (|:| -1790 (-721))) "failed") $) NIL)) (-2319 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-768 (-1102)) |#1|) NIL) (($ $ (-598 (-768 (-1102))) (-598 |#1|)) NIL) (($ $ (-768 (-1102)) $) NIL) (($ $ (-598 (-768 (-1102))) (-598 $)) NIL) (($ $ (-1102) $) NIL (|has| |#1| (-216))) (($ $ (-598 (-1102)) (-598 $)) NIL (|has| |#1| (-216))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-216))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-216)))) (-3176 (($ $ (-768 (-1102))) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-768 (-1102))) NIL) (($ $ (-598 (-768 (-1102)))) NIL) (($ $ (-768 (-1102)) (-721)) NIL) (($ $ (-598 (-768 (-1102))) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3288 (((-598 (-1102)) $) NIL)) (-2012 (((-503 (-768 (-1102))) $) NIL) (((-721) $ (-768 (-1102))) NIL) (((-598 (-721)) $ (-598 (-768 (-1102)))) NIL) (((-721) $ (-1102)) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-768 (-1102)) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-768 (-1102)) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-768 (-1102)) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-768 (-1102))) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-768 (-1102))) NIL) (($ (-1102)) NIL) (($ (-1054 |#1| (-1102))) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 (-768 (-1102)))) NIL) (($ $ (-768 (-1102)) (-721)) NIL) (($ $ (-598 (-768 (-1102))) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-768 (-1102))) NIL) (($ $ (-598 (-768 (-1102)))) NIL) (($ $ (-768 (-1102)) (-721)) NIL) (($ $ (-598 (-768 (-1102))) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-766 |#1|) (-13 (-235 |#1| (-1102) (-768 (-1102)) (-503 (-768 (-1102)))) (-977 (-1054 |#1| (-1102)))) (-986)) (T -766))
NIL
-(-13 (-235 |#1| (-1099) (-766 (-1099)) (-502 (-766 (-1099)))) (-975 (-1051 |#1| (-1099))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-344)))) (-3446 (($ $) NIL (|has| |#2| (-344)))) (-1276 (((-110) $) NIL (|has| |#2| (-344)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#2| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-344)))) (-1426 (((-110) $ $) NIL (|has| |#2| (-344)))) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL (|has| |#2| (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#2| (-344)))) (-3295 (((-110) $) NIL (|has| |#2| (-344)))) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-2170 (($ (-597 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 20 (|has| |#2| (-344)))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#2| (-344)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-2356 (((-719) $) NIL (|has| |#2| (-344)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-344)))) (-3289 (($ $ (-719)) NIL) (($ $) 13)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-388 (-530))) NIL (|has| |#2| (-344))) (($ $) NIL (|has| |#2| (-344)))) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) 15 (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL) (($ $ (-530)) 18 (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-388 (-530)) $) NIL (|has| |#2| (-344))) (($ $ (-388 (-530))) NIL (|has| |#2| (-344)))))
-(((-765 |#1| |#2| |#3|) (-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2366 ($ |#2|)) (-15 -2366 (|#2| $)))) (-1027) (-841 |#1|) |#1|) (T -765))
-((-2366 (*1 *1 *2) (-12 (-4 *3 (-1027)) (-14 *4 *3) (-5 *1 (-765 *3 *2 *4)) (-4 *2 (-841 *3)))) (-2366 (*1 *2 *1) (-12 (-4 *2 (-841 *3)) (-5 *1 (-765 *3 *2 *4)) (-4 *3 (-1027)) (-14 *4 *3))))
-(-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2366 ($ |#2|)) (-15 -2366 (|#2| $))))
-((-2352 (((-110) $ $) NIL)) (-2001 (((-719) $) NIL)) (-4007 ((|#1| $) 10)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2031 (((-719) $) 11)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3135 (($ |#1| (-719)) 9)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3289 (($ $) NIL) (($ $ (-719)) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)))
-(((-766 |#1|) (-248 |#1|) (-795)) (T -766))
+(-13 (-235 |#1| (-1102) (-768 (-1102)) (-503 (-768 (-1102)))) (-977 (-1054 |#1| (-1102))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-344)))) (-3258 (($ $) NIL (|has| |#2| (-344)))) (-2921 (((-110) $) NIL (|has| |#2| (-344)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#2| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-344)))) (-2760 (((-110) $ $) NIL (|has| |#2| (-344)))) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL (|has| |#2| (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#2| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#2| (-344)))) (-2534 (((-110) $) NIL (|has| |#2| (-344)))) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#2| (-344)))) (-2078 (($ (-598 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 20 (|has| |#2| (-344)))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-344))) (($ $ $) NIL (|has| |#2| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#2| (-344)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#2| (-344)))) (-4100 (((-721) $) NIL (|has| |#2| (-344)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-344)))) (-3352 (($ $ (-721)) NIL) (($ $) 13)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) 10) ((|#2| $) 11) (($ (-388 (-531))) NIL (|has| |#2| (-344))) (($ $) NIL (|has| |#2| (-344)))) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) 15 (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL) (($ $ (-531)) 18 (|has| |#2| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ $) NIL) (($ (-388 (-531)) $) NIL (|has| |#2| (-344))) (($ $ (-388 (-531))) NIL (|has| |#2| (-344)))))
+(((-767 |#1| |#2| |#3|) (-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2265 ($ |#2|)) (-15 -2265 (|#2| $)))) (-1030) (-843 |#1|) |#1|) (T -767))
+((-2265 (*1 *1 *2) (-12 (-4 *3 (-1030)) (-14 *4 *3) (-5 *1 (-767 *3 *2 *4)) (-4 *2 (-843 *3)))) (-2265 (*1 *2 *1) (-12 (-4 *2 (-843 *3)) (-5 *1 (-767 *3 *2 *4)) (-4 *3 (-1030)) (-14 *4 *3))))
+(-13 (-109 $ $) (-216) (-10 -8 (IF (|has| |#2| (-344)) (-6 (-344)) |%noBranch|) (-15 -2265 ($ |#2|)) (-15 -2265 (|#2| $))))
+((-2247 (((-110) $ $) NIL)) (-3449 (((-721) $) NIL)) (-3524 ((|#1| $) 10)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3617 (((-721) $) 11)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-4252 (($ |#1| (-721)) 9)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3352 (($ $) NIL) (($ $ (-721)) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)))
+(((-768 |#1|) (-248 |#1|) (-797)) (T -768))
NIL
(-248 |#1|)
-((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) 29)) (-3023 (((-719) $) NIL)) (-2350 (($) NIL T CONST)) (-3575 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-3057 (($ $) 31)) (-2707 (((-3 $ "failed") $) NIL)) (-3686 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-2731 (((-110) $) NIL)) (-3519 ((|#1| $ (-530)) NIL)) (-2033 (((-719) $ (-530)) NIL)) (-2627 (($ $) 36)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-2448 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-3847 (((-110) $ $) 34)) (-4109 (((-719) $) 25)) (-1424 (((-1082) $) NIL)) (-2458 (($ $ $) NIL)) (-2325 (($ $ $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 ((|#1| $) 30)) (-3721 (((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $) NIL)) (-3561 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-3093 (($) 15 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 35)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ |#1| (-719)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-767 |#1|) (-13 (-791) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -3048 (|#1| $)) (-15 -3057 ($ $)) (-15 -2627 ($ $)) (-15 -3847 ((-110) $ $)) (-15 -2325 ($ $ $)) (-15 -2458 ($ $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ |#1|)) (-15 -3575 ((-3 $ "failed") $ |#1|)) (-15 -3561 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3686 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3023 ((-719) $)) (-15 -2033 ((-719) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $)) (-15 -4109 ((-719) $)) (-15 -3702 ((-597 |#1|) $)))) (-795)) (T -767))
-((* (*1 *1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3048 (*1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3057 (*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2627 (*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3847 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2325 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2458 (*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2448 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3575 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-2448 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3575 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3561 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |rm| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-3686 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |mm| (-767 *3)) (|:| |rm| (-767 *3)))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-3023 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-2033 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-767 *4)) (-4 *4 (-795)))) (-3519 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-767 *2)) (-4 *2 (-795)))) (-3721 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-719))))) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-767 *3)) (-4 *3 (-795)))))
-(-13 (-791) (-975 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-719))) (-15 -3048 (|#1| $)) (-15 -3057 ($ $)) (-15 -2627 ($ $)) (-15 -3847 ((-110) $ $)) (-15 -2325 ($ $ $)) (-15 -2458 ($ $ $)) (-15 -2448 ((-3 $ "failed") $ $)) (-15 -3575 ((-3 $ "failed") $ $)) (-15 -2448 ((-3 $ "failed") $ |#1|)) (-15 -3575 ((-3 $ "failed") $ |#1|)) (-15 -3561 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -3686 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3023 ((-719) $)) (-15 -2033 ((-719) $ (-530))) (-15 -3519 (|#1| $ (-530))) (-15 -3721 ((-597 (-2 (|:| |gen| |#1|) (|:| -2853 (-719)))) $)) (-15 -4109 ((-719) $)) (-15 -3702 ((-597 |#1|) $))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-1867 (((-530) $) 51)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2514 (((-110) $) 49)) (-2731 (((-110) $) 30)) (-2166 (((-110) $) 50)) (-2508 (($ $ $) 48)) (-1817 (($ $ $) 47)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3934 (($ $) 52)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 45)) (-2284 (((-110) $ $) 44)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 46)) (-2272 (((-110) $ $) 43)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-768) (-133)) (T -768))
-NIL
-(-13 (-522) (-793))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-793) . T) ((-795) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2830 (($ (-1046)) 7)) (-3929 (((-110) $ (-1082) (-1046)) 15)) (-2296 (((-770) $) 12)) (-2550 (((-770) $) 11)) (-1432 (((-1186) $) 9)) (-3674 (((-110) $ (-1046)) 16)))
-(((-769) (-10 -8 (-15 -2830 ($ (-1046))) (-15 -1432 ((-1186) $)) (-15 -2550 ((-770) $)) (-15 -2296 ((-770) $)) (-15 -3929 ((-110) $ (-1082) (-1046))) (-15 -3674 ((-110) $ (-1046))))) (T -769))
-((-3674 (*1 *2 *1 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))) (-3929 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))) (-2296 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))) (-2550 (*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-769)))) (-2830 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-769)))))
-(-10 -8 (-15 -2830 ($ (-1046))) (-15 -1432 ((-1186) $)) (-15 -2550 ((-770) $)) (-15 -2296 ((-770) $)) (-15 -3929 ((-110) $ (-1082) (-1046))) (-15 -3674 ((-110) $ (-1046))))
-((-3732 (((-1186) $ (-771)) 12)) (-1845 (((-1186) $ (-1099)) 32)) (-2907 (((-1186) $ (-1082) (-1082)) 34)) (-4026 (((-1186) $ (-1082)) 33)) (-1348 (((-1186) $) 19)) (-2015 (((-1186) $ (-530)) 28)) (-3880 (((-1186) $ (-208)) 30)) (-2706 (((-1186) $) 18)) (-3681 (((-1186) $) 26)) (-3750 (((-1186) $) 25)) (-3132 (((-1186) $) 23)) (-2405 (((-1186) $) 24)) (-3238 (((-1186) $) 22)) (-2523 (((-1186) $) 21)) (-3438 (((-1186) $) 20)) (-1769 (((-1186) $) 16)) (-3625 (((-1186) $) 17)) (-3689 (((-1186) $) 15)) (-2394 (((-1186) $) 14)) (-3604 (((-1186) $) 13)) (-3382 (($ (-1082) (-771)) 9)) (-2265 (($ (-1082) (-1082) (-771)) 8)) (-3700 (((-1099) $) 51)) (-2791 (((-1099) $) 55)) (-2239 (((-2 (|:| |cd| (-1082)) (|:| -3907 (-1082))) $) 54)) (-3586 (((-1082) $) 52)) (-3539 (((-1186) $) 41)) (-3514 (((-530) $) 49)) (-2038 (((-208) $) 50)) (-3682 (((-1186) $) 40)) (-3831 (((-1186) $) 48)) (-2924 (((-1186) $) 47)) (-1346 (((-1186) $) 45)) (-1234 (((-1186) $) 46)) (-2648 (((-1186) $) 44)) (-3762 (((-1186) $) 43)) (-2342 (((-1186) $) 42)) (-1317 (((-1186) $) 38)) (-4061 (((-1186) $) 39)) (-3151 (((-1186) $) 37)) (-3346 (((-1186) $) 36)) (-1629 (((-1186) $) 35)) (-2058 (((-1186) $) 11)))
-(((-770) (-10 -8 (-15 -2265 ($ (-1082) (-1082) (-771))) (-15 -3382 ($ (-1082) (-771))) (-15 -2058 ((-1186) $)) (-15 -3732 ((-1186) $ (-771))) (-15 -3604 ((-1186) $)) (-15 -2394 ((-1186) $)) (-15 -3689 ((-1186) $)) (-15 -1769 ((-1186) $)) (-15 -3625 ((-1186) $)) (-15 -2706 ((-1186) $)) (-15 -1348 ((-1186) $)) (-15 -3438 ((-1186) $)) (-15 -2523 ((-1186) $)) (-15 -3238 ((-1186) $)) (-15 -3132 ((-1186) $)) (-15 -2405 ((-1186) $)) (-15 -3750 ((-1186) $)) (-15 -3681 ((-1186) $)) (-15 -2015 ((-1186) $ (-530))) (-15 -3880 ((-1186) $ (-208))) (-15 -1845 ((-1186) $ (-1099))) (-15 -4026 ((-1186) $ (-1082))) (-15 -2907 ((-1186) $ (-1082) (-1082))) (-15 -1629 ((-1186) $)) (-15 -3346 ((-1186) $)) (-15 -3151 ((-1186) $)) (-15 -1317 ((-1186) $)) (-15 -4061 ((-1186) $)) (-15 -3682 ((-1186) $)) (-15 -3539 ((-1186) $)) (-15 -2342 ((-1186) $)) (-15 -3762 ((-1186) $)) (-15 -2648 ((-1186) $)) (-15 -1346 ((-1186) $)) (-15 -1234 ((-1186) $)) (-15 -2924 ((-1186) $)) (-15 -3831 ((-1186) $)) (-15 -3514 ((-530) $)) (-15 -2038 ((-208) $)) (-15 -3700 ((-1099) $)) (-15 -3586 ((-1082) $)) (-15 -2239 ((-2 (|:| |cd| (-1082)) (|:| -3907 (-1082))) $)) (-15 -2791 ((-1099) $)))) (T -770))
-((-2791 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))) (-2239 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1082)) (|:| -3907 (-1082)))) (-5 *1 (-770)))) (-3586 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-770)))) (-3700 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))) (-2038 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-770)))) (-3514 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-770)))) (-3831 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1234 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1346 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3762 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3539 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3682 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-4061 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1317 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3151 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1629 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2907 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-4026 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-1845 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3880 (*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-2015 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-3681 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3750 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2405 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3132 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3238 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3438 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1348 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2706 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3625 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-1769 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3689 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-2394 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3604 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3732 (*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1186)) (-5 *1 (-770)))) (-2058 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))) (-3382 (*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))) (-2265 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
-(-10 -8 (-15 -2265 ($ (-1082) (-1082) (-771))) (-15 -3382 ($ (-1082) (-771))) (-15 -2058 ((-1186) $)) (-15 -3732 ((-1186) $ (-771))) (-15 -3604 ((-1186) $)) (-15 -2394 ((-1186) $)) (-15 -3689 ((-1186) $)) (-15 -1769 ((-1186) $)) (-15 -3625 ((-1186) $)) (-15 -2706 ((-1186) $)) (-15 -1348 ((-1186) $)) (-15 -3438 ((-1186) $)) (-15 -2523 ((-1186) $)) (-15 -3238 ((-1186) $)) (-15 -3132 ((-1186) $)) (-15 -2405 ((-1186) $)) (-15 -3750 ((-1186) $)) (-15 -3681 ((-1186) $)) (-15 -2015 ((-1186) $ (-530))) (-15 -3880 ((-1186) $ (-208))) (-15 -1845 ((-1186) $ (-1099))) (-15 -4026 ((-1186) $ (-1082))) (-15 -2907 ((-1186) $ (-1082) (-1082))) (-15 -1629 ((-1186) $)) (-15 -3346 ((-1186) $)) (-15 -3151 ((-1186) $)) (-15 -1317 ((-1186) $)) (-15 -4061 ((-1186) $)) (-15 -3682 ((-1186) $)) (-15 -3539 ((-1186) $)) (-15 -2342 ((-1186) $)) (-15 -3762 ((-1186) $)) (-15 -2648 ((-1186) $)) (-15 -1346 ((-1186) $)) (-15 -1234 ((-1186) $)) (-15 -2924 ((-1186) $)) (-15 -3831 ((-1186) $)) (-15 -3514 ((-530) $)) (-15 -2038 ((-208) $)) (-15 -3700 ((-1099) $)) (-15 -3586 ((-1082) $)) (-15 -2239 ((-2 (|:| |cd| (-1082)) (|:| -3907 (-1082))) $)) (-15 -2791 ((-1099) $)))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 12)) (-3049 (($) 15)) (-2930 (($) 13)) (-1548 (($) 16)) (-1758 (($) 14)) (-2248 (((-110) $ $) 8)))
-(((-771) (-13 (-1027) (-10 -8 (-15 -2930 ($)) (-15 -3049 ($)) (-15 -1548 ($)) (-15 -1758 ($))))) (T -771))
-((-2930 (*1 *1) (-5 *1 (-771))) (-3049 (*1 *1) (-5 *1 (-771))) (-1548 (*1 *1) (-5 *1 (-771))) (-1758 (*1 *1) (-5 *1 (-771))))
-(-13 (-1027) (-10 -8 (-15 -2930 ($)) (-15 -3049 ($)) (-15 -1548 ($)) (-15 -1758 ($))))
-((-2352 (((-110) $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 21) (($ (-1099)) 17)) (-4143 (((-110) $) 10)) (-3488 (((-110) $) 9)) (-1441 (((-110) $) 11)) (-3152 (((-110) $) 8)) (-2248 (((-110) $ $) 19)))
-(((-772) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-1099))) (-15 -3152 ((-110) $)) (-15 -3488 ((-110) $)) (-15 -4143 ((-110) $)) (-15 -1441 ((-110) $))))) (T -772))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-772)))) (-3152 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-3488 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-4143 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))) (-1441 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ($ (-1099))) (-15 -3152 ((-110) $)) (-15 -3488 ((-110) $)) (-15 -4143 ((-110) $)) (-15 -1441 ((-110) $))))
-((-2352 (((-110) $ $) NIL)) (-1422 (($ (-772) (-597 (-1099))) 24)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3088 (((-772) $) 25)) (-3410 (((-597 (-1099)) $) 26)) (-2366 (((-804) $) 23)) (-2248 (((-110) $ $) NIL)))
-(((-773) (-13 (-1027) (-10 -8 (-15 -3088 ((-772) $)) (-15 -3410 ((-597 (-1099)) $)) (-15 -1422 ($ (-772) (-597 (-1099))))))) (T -773))
-((-3088 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-773)))) (-3410 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-773)))) (-1422 (*1 *1 *2 *3) (-12 (-5 *2 (-772)) (-5 *3 (-597 (-1099))) (-5 *1 (-773)))))
-(-13 (-1027) (-10 -8 (-15 -3088 ((-772) $)) (-15 -3410 ((-597 (-1099)) $)) (-15 -1422 ($ (-772) (-597 (-1099))))))
-((-3987 (((-1186) (-770) (-297 |#1|) (-110)) 23) (((-1186) (-770) (-297 |#1|)) 79) (((-1082) (-297 |#1|) (-110)) 78) (((-1082) (-297 |#1|)) 77)))
-(((-774 |#1|) (-10 -7 (-15 -3987 ((-1082) (-297 |#1|))) (-15 -3987 ((-1082) (-297 |#1|) (-110))) (-15 -3987 ((-1186) (-770) (-297 |#1|))) (-15 -3987 ((-1186) (-770) (-297 |#1|) (-110)))) (-13 (-776) (-795) (-984))) (T -774))
-((-3987 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-770)) (-5 *4 (-297 *6)) (-5 *5 (-110)) (-4 *6 (-13 (-776) (-795) (-984))) (-5 *2 (-1186)) (-5 *1 (-774 *6)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-770)) (-5 *4 (-297 *5)) (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1186)) (-5 *1 (-774 *5)))) (-3987 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-110)) (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1082)) (-5 *1 (-774 *5)))) (-3987 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-776) (-795) (-984))) (-5 *2 (-1082)) (-5 *1 (-774 *4)))))
-(-10 -7 (-15 -3987 ((-1082) (-297 |#1|))) (-15 -3987 ((-1082) (-297 |#1|) (-110))) (-15 -3987 ((-1186) (-770) (-297 |#1|))) (-15 -3987 ((-1186) (-770) (-297 |#1|) (-110))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2471 ((|#1| $) 10)) (-4145 (($ |#1|) 9)) (-2731 (((-110) $) NIL)) (-2725 (($ |#2| (-719)) NIL)) (-2944 (((-719) $) NIL)) (-2533 ((|#2| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3289 (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-1429 (((-719) $) NIL)) (-2366 (((-804) $) 17) (($ (-530)) NIL) (($ |#2|) NIL (|has| |#2| (-162)))) (-4085 ((|#2| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-775 |#1| |#2|) (-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4145 ($ |#1|)) (-15 -2471 (|#1| $)))) (-657 |#2|) (-984)) (T -775))
-((-4145 (*1 *1 *2) (-12 (-4 *3 (-984)) (-5 *1 (-775 *2 *3)) (-4 *2 (-657 *3)))) (-2471 (*1 *2 *1) (-12 (-4 *2 (-657 *3)) (-5 *1 (-775 *2 *3)) (-4 *3 (-984)))))
-(-13 (-657 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4145 ($ |#1|)) (-15 -2471 (|#1| $))))
-((-3987 (((-1186) (-770) $ (-110)) 9) (((-1186) (-770) $) 8) (((-1082) $ (-110)) 7) (((-1082) $) 6)))
-(((-776) (-133)) (T -776))
-((-3987 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *4 (-110)) (-5 *2 (-1186)))) (-3987 (*1 *2 *3 *1) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *2 (-1186)))) (-3987 (*1 *2 *1 *3) (-12 (-4 *1 (-776)) (-5 *3 (-110)) (-5 *2 (-1082)))) (-3987 (*1 *2 *1) (-12 (-4 *1 (-776)) (-5 *2 (-1082)))))
-(-13 (-10 -8 (-15 -3987 ((-1082) $)) (-15 -3987 ((-1082) $ (-110))) (-15 -3987 ((-1186) (-770) $)) (-15 -3987 ((-1186) (-770) $ (-110)))))
-((-3710 (((-293) (-1082) (-1082)) 12)) (-2079 (((-110) (-1082) (-1082)) 34)) (-2812 (((-110) (-1082)) 33)) (-3502 (((-51) (-1082)) 25)) (-3712 (((-51) (-1082)) 23)) (-2245 (((-51) (-770)) 17)) (-3868 (((-597 (-1082)) (-1082)) 28)) (-2115 (((-597 (-1082))) 27)))
-(((-777) (-10 -7 (-15 -2245 ((-51) (-770))) (-15 -3712 ((-51) (-1082))) (-15 -3502 ((-51) (-1082))) (-15 -2115 ((-597 (-1082)))) (-15 -3868 ((-597 (-1082)) (-1082))) (-15 -2812 ((-110) (-1082))) (-15 -2079 ((-110) (-1082) (-1082))) (-15 -3710 ((-293) (-1082) (-1082))))) (T -777))
-((-3710 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-777)))) (-2079 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))) (-2812 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))) (-3868 (*1 *2 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)) (-5 *3 (-1082)))) (-2115 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))) (-3712 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-51)) (-5 *1 (-777)))))
-(-10 -7 (-15 -2245 ((-51) (-770))) (-15 -3712 ((-51) (-1082))) (-15 -3502 ((-51) (-1082))) (-15 -2115 ((-597 (-1082)))) (-15 -3868 ((-597 (-1082)) (-1082))) (-15 -2812 ((-110) (-1082))) (-15 -2079 ((-110) (-1082) (-1082))) (-15 -3710 ((-293) (-1082) (-1082))))
-((-2352 (((-110) $ $) 19)) (-4204 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-1746 (($ $ $) 72)) (-2431 (((-110) $ $) 73)) (-3186 (((-110) $ (-719)) 8)) (-1243 (($ (-597 |#1|)) 68) (($) 67)) (-2901 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2287 (($ $) 62)) (-3077 (($ $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ |#1| $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 64)) (-4027 (((-110) $ (-719)) 9)) (-2508 ((|#1| $) 78)) (-2090 (($ $ $) 81)) (-3683 (($ $ $) 80)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1817 ((|#1| $) 79)) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22)) (-4033 (($ $ $) 69)) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40) (($ |#1| $ (-719)) 63)) (-2624 (((-1046) $) 21)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2413 (((-597 (-2 (|:| -1874 |#1|) (|:| -2632 (-719)))) $) 61)) (-1252 (($ $ |#1|) 71) (($ $ $) 70)) (-1560 (($) 49) (($ (-597 |#1|)) 48)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 50)) (-2366 (((-804) $) 18)) (-3381 (($ (-597 |#1|)) 66) (($) 65)) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20)) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-778 |#1|) (-133) (-795)) (T -778))
-((-2508 (*1 *2 *1) (-12 (-4 *1 (-778 *2)) (-4 *2 (-795)))))
-(-13 (-685 |t#1|) (-909 |t#1|) (-10 -8 (-15 -2508 (|t#1| $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-643 |#1|) . T) ((-685 |#1|) . T) ((-909 |#1|) . T) ((-1025 |#1|) . T) ((-1027) . T) ((-1135) . T))
-((-4158 (((-1186) (-1046) (-1046)) 47)) (-2340 (((-1186) (-769) (-51)) 44)) (-2512 (((-51) (-769)) 16)))
-(((-779) (-10 -7 (-15 -2512 ((-51) (-769))) (-15 -2340 ((-1186) (-769) (-51))) (-15 -4158 ((-1186) (-1046) (-1046))))) (T -779))
-((-4158 (*1 *2 *3 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-1186)) (-5 *1 (-779)))) (-2340 (*1 *2 *3 *4) (-12 (-5 *3 (-769)) (-5 *4 (-51)) (-5 *2 (-1186)) (-5 *1 (-779)))) (-2512 (*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-51)) (-5 *1 (-779)))))
-(-10 -7 (-15 -2512 ((-51) (-769))) (-15 -2340 ((-1186) (-769) (-51))) (-15 -4158 ((-1186) (-1046) (-1046))))
-((-3217 (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|)) 12) (((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|)) 13)))
-(((-780 |#1| |#2|) (-10 -7 (-15 -3217 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|))) (-15 -3217 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|)))) (-1027) (-1027)) (T -780))
-((-3217 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-781 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-780 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-781 *6)) (-5 *1 (-780 *5 *6)))))
-(-10 -7 (-15 -3217 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|))) (-15 -3217 ((-781 |#2|) (-1 |#2| |#1|) (-781 |#1|) (-781 |#2|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL (|has| |#1| (-21)))) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1867 (((-530) $) NIL (|has| |#1| (-793)))) (-2350 (($) NIL (|has| |#1| (-21)) CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 15)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 9)) (-2707 (((-3 $ "failed") $) 40 (|has| |#1| (-793)))) (-2180 (((-3 (-388 (-530)) "failed") $) 49 (|has| |#1| (-515)))) (-3016 (((-110) $) 43 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 46 (|has| |#1| (-515)))) (-2514 (((-110) $) NIL (|has| |#1| (-793)))) (-2731 (((-110) $) NIL (|has| |#1| (-793)))) (-2166 (((-110) $) NIL (|has| |#1| (-793)))) (-2508 (($ $ $) NIL (|has| |#1| (-793)))) (-1817 (($ $ $) NIL (|has| |#1| (-793)))) (-1424 (((-1082) $) NIL)) (-1960 (($) 13)) (-1393 (((-110) $) 12)) (-2624 (((-1046) $) NIL)) (-3855 (((-110) $) 11)) (-2366 (((-804) $) 18) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 8) (($ (-530)) NIL (-1461 (|has| |#1| (-793)) (|has| |#1| (-975 (-530)))))) (-3300 (((-719)) 34 (|has| |#1| (-793)))) (-3934 (($ $) NIL (|has| |#1| (-793)))) (-3080 (($) 22 (|has| |#1| (-21)) CONST)) (-3093 (($) 31 (|has| |#1| (-793)) CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2248 (((-110) $ $) 20)) (-2297 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2272 (((-110) $ $) 42 (|has| |#1| (-793)))) (-2351 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2339 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-862)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (* (($ $ $) 37 (|has| |#1| (-793))) (($ (-530) $) 25 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-21)))))
-(((-781 |#1|) (-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1960 ($)) (-15 -3855 ((-110) $)) (-15 -1393 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|))) (-1027)) (T -781))
-((-1960 (*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1027)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-2180 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))))
-(-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1960 ($)) (-15 -3855 ((-110) $)) (-15 -1393 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-112) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-112) $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1347 ((|#1| (-112) |#1|) NIL)) (-2731 (((-110) $) NIL)) (-2868 (($ |#1| (-342 (-112))) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-4155 (($ $ (-1 |#1| |#1|)) NIL)) (-2755 (($ $ (-1 |#1| |#1|)) NIL)) (-1902 ((|#1| $ |#1|) NIL)) (-1306 ((|#1| |#1|) NIL (|has| |#1| (-162)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-112)) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-1803 (($ $) NIL (|has| |#1| (-162))) (($ $ $) NIL (|has| |#1| (-162)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ (-112) (-530)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-782 |#1|) (-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -1803 ($ $)) (-15 -1803 ($ $ $)) (-15 -1306 (|#1| |#1|))) |%noBranch|) (-15 -2755 ($ $ (-1 |#1| |#1|))) (-15 -4155 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -1347 (|#1| (-112) |#1|)) (-15 -2868 ($ |#1| (-342 (-112)))))) (-984)) (T -782))
-((-1803 (*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-1803 (*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-1306 (*1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))) (-2755 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))) (-4155 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-530)) (-5 *1 (-782 *4)) (-4 *4 (-984)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-782 *3)) (-4 *3 (-984)))) (-1347 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-782 *2)) (-4 *2 (-984)))) (-2868 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
-(-13 (-984) (-975 |#1|) (-975 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -1803 ($ $)) (-15 -1803 ($ $ $)) (-15 -1306 (|#1| |#1|))) |%noBranch|) (-15 -2755 ($ $ (-1 |#1| |#1|))) (-15 -4155 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-530))) (-15 ** ($ $ (-530))) (-15 -1347 (|#1| (-112) |#1|)) (-15 -2868 ($ |#1| (-342 (-112))))))
-((-1223 (((-198 (-480)) (-1082)) 9)))
-(((-783) (-10 -7 (-15 -1223 ((-198 (-480)) (-1082))))) (T -783))
-((-1223 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-198 (-480))) (-5 *1 (-783)))))
-(-10 -7 (-15 -1223 ((-198 (-480)) (-1082))))
-((-2352 (((-110) $ $) 7)) (-3827 (((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 14) (((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 13)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 16) (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 15)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
-(((-784) (-133)) (T -784))
-((-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)))))) (-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-784)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)))))) (-3827 (*1 *2 *3) (-12 (-4 *1 (-784)) (-5 *3 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *2 (-973)))) (-3827 (*1 *2 *3) (-12 (-4 *1 (-784)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *2 (-973)))))
-(-13 (-1027) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -3827 ((-973) (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -3827 ((-973) (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3931 (((-973) (-597 (-297 (-360))) (-597 (-360))) 147) (((-973) (-297 (-360)) (-597 (-360))) 145) (((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360)))) 144) (((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360)))) 143) (((-973) (-786)) 117) (((-973) (-786) (-996)) 116)) (-2631 (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996)) 82) (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786)) 84)) (-3431 (((-973) (-597 (-297 (-360))) (-597 (-360))) 148) (((-973) (-786)) 133)))
-(((-785) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996))) (-15 -3931 ((-973) (-786) (-996))) (-15 -3931 ((-973) (-786))) (-15 -3431 ((-973) (-786))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360))))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360))))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)))) (-15 -3931 ((-973) (-597 (-297 (-360))) (-597 (-360)))) (-15 -3431 ((-973) (-597 (-297 (-360))) (-597 (-360)))))) (T -785))
-((-3431 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-360))) (-5 *5 (-597 (-788 (-360)))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-597 (-360))) (-5 *5 (-597 (-788 (-360)))) (-5 *6 (-597 (-297 (-360)))) (-5 *3 (-297 (-360))) (-5 *2 (-973)) (-5 *1 (-785)))) (-3431 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785)))) (-3931 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-785)))) (-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-786)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-785)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-785)))))
-(-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-786) (-996))) (-15 -3931 ((-973) (-786) (-996))) (-15 -3931 ((-973) (-786))) (-15 -3431 ((-973) (-786))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-297 (-360))) (-597 (-788 (-360))))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)) (-597 (-788 (-360))) (-597 (-788 (-360))))) (-15 -3931 ((-973) (-297 (-360)) (-597 (-360)))) (-15 -3931 ((-973) (-597 (-297 (-360))) (-597 (-360)))) (-15 -3431 ((-973) (-597 (-297 (-360))) (-597 (-360)))))
-((-2352 (((-110) $ $) NIL)) (-2585 (((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) $) 21)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 20) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) 14) (($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) 18)) (-2248 (((-110) $ $) NIL)))
-(((-786) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -2366 ($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -2366 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) $))))) (T -786))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-786)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (-5 *1 (-786)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))) (-5 *1 (-786)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) (-5 *1 (-786)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208))))))) (-5 *1 (-786)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208))))))) (-15 -2366 ($ (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) (-15 -2366 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208))) (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208)))) (|:| |ub| (-597 (-788 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))) $))))
-((-3217 (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|)) 13) (((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|)) 14)))
-(((-787 |#1| |#2|) (-10 -7 (-15 -3217 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|))) (-15 -3217 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|)))) (-1027) (-1027)) (T -787))
-((-3217 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-788 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-787 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6)))))
-(-10 -7 (-15 -3217 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|))) (-15 -3217 ((-788 |#2|) (-1 |#2| |#1|) (-788 |#1|) (-788 |#2|) (-788 |#2|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL (|has| |#1| (-21)))) (-1872 (((-1046) $) 24)) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-1867 (((-530) $) NIL (|has| |#1| (-793)))) (-2350 (($) NIL (|has| |#1| (-21)) CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 16)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 9)) (-2707 (((-3 $ "failed") $) 47 (|has| |#1| (-793)))) (-2180 (((-3 (-388 (-530)) "failed") $) 54 (|has| |#1| (-515)))) (-3016 (((-110) $) 49 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 52 (|has| |#1| (-515)))) (-2514 (((-110) $) NIL (|has| |#1| (-793)))) (-1477 (($) 13)) (-2731 (((-110) $) NIL (|has| |#1| (-793)))) (-2166 (((-110) $) NIL (|has| |#1| (-793)))) (-1490 (($) 14)) (-2508 (($ $ $) NIL (|has| |#1| (-793)))) (-1817 (($ $ $) NIL (|has| |#1| (-793)))) (-1424 (((-1082) $) NIL)) (-1393 (((-110) $) 12)) (-2624 (((-1046) $) NIL)) (-3855 (((-110) $) 11)) (-2366 (((-804) $) 22) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 8) (($ (-530)) NIL (-1461 (|has| |#1| (-793)) (|has| |#1| (-975 (-530)))))) (-3300 (((-719)) 41 (|has| |#1| (-793)))) (-3934 (($ $) NIL (|has| |#1| (-793)))) (-3080 (($) 29 (|has| |#1| (-21)) CONST)) (-3093 (($) 38 (|has| |#1| (-793)) CONST)) (-2306 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2248 (((-110) $ $) 27)) (-2297 (((-110) $ $) NIL (|has| |#1| (-793)))) (-2272 (((-110) $ $) 48 (|has| |#1| (-793)))) (-2351 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2339 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-862)) NIL (|has| |#1| (-793))) (($ $ (-719)) NIL (|has| |#1| (-793)))) (* (($ $ $) 44 (|has| |#1| (-793))) (($ (-530) $) 32 (|has| |#1| (-21))) (($ (-719) $) NIL (|has| |#1| (-21))) (($ (-862) $) NIL (|has| |#1| (-21)))))
-(((-788 |#1|) (-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1477 ($)) (-15 -1490 ($)) (-15 -3855 ((-110) $)) (-15 -1393 ((-110) $)) (-15 -1872 ((-1046) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|))) (-1027)) (T -788))
-((-1477 (*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))) (-1490 (*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))) (-3855 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-1393 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-1872 (*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))) (-3016 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-3370 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))) (-2180 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027)))))
-(-13 (-1027) (-392 |#1|) (-10 -8 (-15 -1477 ($)) (-15 -1490 ($)) (-15 -3855 ((-110) $)) (-15 -1393 ((-110) $)) (-15 -1872 ((-1046) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-793)) |%noBranch|) (IF (|has| |#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
-((-2352 (((-110) $ $) 7)) (-3023 (((-719)) 20)) (-1364 (($) 23)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1905 (((-862) $) 22)) (-1424 (((-1082) $) 9)) (-1986 (($ (-862)) 21)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
-(((-789) (-133)) (T -789))
-NIL
-(-13 (-795) (-349))
-(((-99) . T) ((-571 (-804)) . T) ((-349) . T) ((-795) . T) ((-1027) . T))
-((-2349 (((-110) (-1181 |#2|) (-1181 |#2|)) 17)) (-3961 (((-110) (-1181 |#2|) (-1181 |#2|)) 18)) (-3601 (((-110) (-1181 |#2|) (-1181 |#2|)) 14)))
-(((-790 |#1| |#2|) (-10 -7 (-15 -3601 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -2349 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -3961 ((-110) (-1181 |#2|) (-1181 |#2|)))) (-719) (-740)) (T -790))
-((-3961 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))) (-2349 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))) (-3601 (*1 *2 *3 *3) (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110)) (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
-(-10 -7 (-15 -3601 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -2349 ((-110) (-1181 |#2|) (-1181 |#2|))) (-15 -3961 ((-110) (-1181 |#2|) (-1181 |#2|))))
-((-2352 (((-110) $ $) 7)) (-2350 (($) 23 T CONST)) (-2707 (((-3 $ "failed") $) 26)) (-2731 (((-110) $) 24)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3093 (($) 22 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (** (($ $ (-862)) 21) (($ $ (-719)) 25)) (* (($ $ $) 20)))
+((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) 29)) (-3006 (((-721) $) NIL)) (-4082 (($) NIL T CONST)) (-2489 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 20)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3062 (($ $) 31)) (-3622 (((-3 $ "failed") $) NIL)) (-1273 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL)) (-3481 (((-110) $) NIL)) (-3616 ((|#1| $ (-531)) NIL)) (-4173 (((-721) $ (-531)) NIL)) (-4104 (($ $) 36)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2931 (((-3 $ "failed") $ $) NIL) (((-3 $ "failed") $ |#1|) 17)) (-4122 (((-110) $ $) 34)) (-2428 (((-721) $) 25)) (-1521 (((-1085) $) NIL)) (-2236 (($ $ $) NIL)) (-2592 (($ $ $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 ((|#1| $) 30)) (-2721 (((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $) NIL)) (-3620 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-3050 (($) 15 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 35)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ |#1| (-721)) NIL)) (* (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-769 |#1|) (-13 (-793) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-721))) (-15 -3046 (|#1| $)) (-15 -3062 ($ $)) (-15 -4104 ($ $)) (-15 -4122 ((-110) $ $)) (-15 -2592 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -2931 ((-3 $ "failed") $ $)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -2931 ((-3 $ "failed") $ |#1|)) (-15 -2489 ((-3 $ "failed") $ |#1|)) (-15 -3620 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1273 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3006 ((-721) $)) (-15 -4173 ((-721) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $)) (-15 -2428 ((-721) $)) (-15 -3798 ((-598 |#1|) $)))) (-797)) (T -769))
+((* (*1 *1 *2 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-3046 (*1 *2 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-4104 (*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-4122 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-2592 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2236 (*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2931 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2489 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2931 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2489 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-3620 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-769 *3)) (|:| |rm| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-1273 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |lm| (-769 *3)) (|:| |mm| (-769 *3)) (|:| |rm| (-769 *3)))) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-4173 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-721)) (-5 *1 (-769 *4)) (-4 *4 (-797)))) (-3616 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-769 *2)) (-4 *2 (-797)))) (-2721 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-721))))) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-769 *3)) (-4 *3 (-797)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-769 *3)) (-4 *3 (-797)))))
+(-13 (-793) (-977 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-721))) (-15 -3046 (|#1| $)) (-15 -3062 ($ $)) (-15 -4104 ($ $)) (-15 -4122 ((-110) $ $)) (-15 -2592 ($ $ $)) (-15 -2236 ($ $ $)) (-15 -2931 ((-3 $ "failed") $ $)) (-15 -2489 ((-3 $ "failed") $ $)) (-15 -2931 ((-3 $ "failed") $ |#1|)) (-15 -2489 ((-3 $ "failed") $ |#1|)) (-15 -3620 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1273 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3006 ((-721) $)) (-15 -4173 ((-721) $ (-531))) (-15 -3616 (|#1| $ (-531))) (-15 -2721 ((-598 (-2 (|:| |gen| |#1|) (|:| -2798 (-721)))) $)) (-15 -2428 ((-721) $)) (-15 -3798 ((-598 |#1|) $))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3459 (((-531) $) 51)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-1599 (((-110) $) 49)) (-3481 (((-110) $) 30)) (-2985 (((-110) $) 50)) (-4103 (($ $ $) 48)) (-1241 (($ $ $) 47)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-1620 (($ $) 52)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 45)) (-2184 (((-110) $ $) 44)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 46)) (-2174 (((-110) $ $) 43)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-770) (-133)) (T -770))
+NIL
+(-13 (-523) (-795))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-795) . T) ((-797) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-1522 (($ (-1049)) 7)) (-3249 (((-110) $ (-1085) (-1049)) 15)) (-2178 (((-772) $) 12)) (-1588 (((-772) $) 11)) (-2715 (((-1189) $) 9)) (-2243 (((-110) $ (-1049)) 16)))
+(((-771) (-10 -8 (-15 -1522 ($ (-1049))) (-15 -2715 ((-1189) $)) (-15 -1588 ((-772) $)) (-15 -2178 ((-772) $)) (-15 -3249 ((-110) $ (-1085) (-1049))) (-15 -2243 ((-110) $ (-1049))))) (T -771))
+((-2243 (*1 *2 *1 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-110)) (-5 *1 (-771)))) (-3249 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-1049)) (-5 *2 (-110)) (-5 *1 (-771)))) (-2178 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-771)))) (-1588 (*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-771)))) (-2715 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-771)))) (-1522 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-771)))))
+(-10 -8 (-15 -1522 ($ (-1049))) (-15 -2715 ((-1189) $)) (-15 -1588 ((-772) $)) (-15 -2178 ((-772) $)) (-15 -3249 ((-110) $ (-1085) (-1049))) (-15 -2243 ((-110) $ (-1049))))
+((-1649 (((-1189) $ (-773)) 12)) (-2762 (((-1189) $ (-1102)) 32)) (-2048 (((-1189) $ (-1085) (-1085)) 34)) (-3256 (((-1189) $ (-1085)) 33)) (-4086 (((-1189) $) 19)) (-1644 (((-1189) $ (-531)) 28)) (-3060 (((-1189) $ (-208)) 30)) (-3336 (((-1189) $) 18)) (-3679 (((-1189) $) 26)) (-1811 (((-1189) $) 25)) (-1710 (((-1189) $) 23)) (-3466 (((-1189) $) 24)) (-2926 (((-1189) $) 22)) (-3220 (((-1189) $) 21)) (-1881 (((-1189) $) 20)) (-3412 (((-1189) $) 16)) (-3747 (((-1189) $) 17)) (-2104 (((-1189) $) 15)) (-2909 (((-1189) $) 14)) (-3434 (((-1189) $) 13)) (-2173 (($ (-1085) (-773)) 9)) (-2547 (($ (-1085) (-1085) (-773)) 8)) (-1639 (((-1102) $) 51)) (-1364 (((-1102) $) 55)) (-1802 (((-2 (|:| |cd| (-1085)) (|:| -3955 (-1085))) $) 54)) (-1465 (((-1085) $) 52)) (-2312 (((-1189) $) 41)) (-3475 (((-531) $) 49)) (-1593 (((-208) $) 50)) (-3313 (((-1189) $) 40)) (-3229 (((-1189) $) 48)) (-3362 (((-1189) $) 47)) (-3346 (((-1189) $) 45)) (-2363 (((-1189) $) 46)) (-1918 (((-1189) $) 44)) (-2383 (((-1189) $) 43)) (-2544 (((-1189) $) 42)) (-4049 (((-1189) $) 38)) (-3404 (((-1189) $) 39)) (-2067 (((-1189) $) 37)) (-1734 (((-1189) $) 36)) (-1519 (((-1189) $) 35)) (-3607 (((-1189) $) 11)))
+(((-772) (-10 -8 (-15 -2547 ($ (-1085) (-1085) (-773))) (-15 -2173 ($ (-1085) (-773))) (-15 -3607 ((-1189) $)) (-15 -1649 ((-1189) $ (-773))) (-15 -3434 ((-1189) $)) (-15 -2909 ((-1189) $)) (-15 -2104 ((-1189) $)) (-15 -3412 ((-1189) $)) (-15 -3747 ((-1189) $)) (-15 -3336 ((-1189) $)) (-15 -4086 ((-1189) $)) (-15 -1881 ((-1189) $)) (-15 -3220 ((-1189) $)) (-15 -2926 ((-1189) $)) (-15 -1710 ((-1189) $)) (-15 -3466 ((-1189) $)) (-15 -1811 ((-1189) $)) (-15 -3679 ((-1189) $)) (-15 -1644 ((-1189) $ (-531))) (-15 -3060 ((-1189) $ (-208))) (-15 -2762 ((-1189) $ (-1102))) (-15 -3256 ((-1189) $ (-1085))) (-15 -2048 ((-1189) $ (-1085) (-1085))) (-15 -1519 ((-1189) $)) (-15 -1734 ((-1189) $)) (-15 -2067 ((-1189) $)) (-15 -4049 ((-1189) $)) (-15 -3404 ((-1189) $)) (-15 -3313 ((-1189) $)) (-15 -2312 ((-1189) $)) (-15 -2544 ((-1189) $)) (-15 -2383 ((-1189) $)) (-15 -1918 ((-1189) $)) (-15 -3346 ((-1189) $)) (-15 -2363 ((-1189) $)) (-15 -3362 ((-1189) $)) (-15 -3229 ((-1189) $)) (-15 -3475 ((-531) $)) (-15 -1593 ((-208) $)) (-15 -1639 ((-1102) $)) (-15 -1465 ((-1085) $)) (-15 -1802 ((-2 (|:| |cd| (-1085)) (|:| -3955 (-1085))) $)) (-15 -1364 ((-1102) $)))) (T -772))
+((-1364 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-772)))) (-1802 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |cd| (-1085)) (|:| -3955 (-1085)))) (-5 *1 (-772)))) (-1465 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-772)))) (-1639 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-772)))) (-1593 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-772)))) (-3475 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-772)))) (-3229 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3362 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2363 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3346 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1918 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2383 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2544 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2312 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3313 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3404 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-4049 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2067 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1734 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1519 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2048 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3256 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-2762 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3060 (*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-1644 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3679 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3466 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2926 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3220 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1881 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-4086 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3336 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3747 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3412 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2104 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-3434 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-1649 (*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1189)) (-5 *1 (-772)))) (-3607 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))) (-2173 (*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-773)) (-5 *1 (-772)))) (-2547 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-773)) (-5 *1 (-772)))))
+(-10 -8 (-15 -2547 ($ (-1085) (-1085) (-773))) (-15 -2173 ($ (-1085) (-773))) (-15 -3607 ((-1189) $)) (-15 -1649 ((-1189) $ (-773))) (-15 -3434 ((-1189) $)) (-15 -2909 ((-1189) $)) (-15 -2104 ((-1189) $)) (-15 -3412 ((-1189) $)) (-15 -3747 ((-1189) $)) (-15 -3336 ((-1189) $)) (-15 -4086 ((-1189) $)) (-15 -1881 ((-1189) $)) (-15 -3220 ((-1189) $)) (-15 -2926 ((-1189) $)) (-15 -1710 ((-1189) $)) (-15 -3466 ((-1189) $)) (-15 -1811 ((-1189) $)) (-15 -3679 ((-1189) $)) (-15 -1644 ((-1189) $ (-531))) (-15 -3060 ((-1189) $ (-208))) (-15 -2762 ((-1189) $ (-1102))) (-15 -3256 ((-1189) $ (-1085))) (-15 -2048 ((-1189) $ (-1085) (-1085))) (-15 -1519 ((-1189) $)) (-15 -1734 ((-1189) $)) (-15 -2067 ((-1189) $)) (-15 -4049 ((-1189) $)) (-15 -3404 ((-1189) $)) (-15 -3313 ((-1189) $)) (-15 -2312 ((-1189) $)) (-15 -2544 ((-1189) $)) (-15 -2383 ((-1189) $)) (-15 -1918 ((-1189) $)) (-15 -3346 ((-1189) $)) (-15 -2363 ((-1189) $)) (-15 -3362 ((-1189) $)) (-15 -3229 ((-1189) $)) (-15 -3475 ((-531) $)) (-15 -1593 ((-208) $)) (-15 -1639 ((-1102) $)) (-15 -1465 ((-1085) $)) (-15 -1802 ((-2 (|:| |cd| (-1085)) (|:| -3955 (-1085))) $)) (-15 -1364 ((-1102) $)))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 12)) (-2999 (($) 15)) (-3982 (($) 13)) (-3807 (($) 16)) (-3390 (($) 14)) (-2148 (((-110) $ $) 8)))
+(((-773) (-13 (-1030) (-10 -8 (-15 -3982 ($)) (-15 -2999 ($)) (-15 -3807 ($)) (-15 -3390 ($))))) (T -773))
+((-3982 (*1 *1) (-5 *1 (-773))) (-2999 (*1 *1) (-5 *1 (-773))) (-3807 (*1 *1) (-5 *1 (-773))) (-3390 (*1 *1) (-5 *1 (-773))))
+(-13 (-1030) (-10 -8 (-15 -3982 ($)) (-15 -2999 ($)) (-15 -3807 ($)) (-15 -3390 ($))))
+((-2247 (((-110) $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 21) (($ (-1102)) 17)) (-2036 (((-110) $) 10)) (-2446 (((-110) $) 9)) (-3328 (((-110) $) 11)) (-3691 (((-110) $) 8)) (-2148 (((-110) $ $) 19)))
+(((-774) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-1102))) (-15 -3691 ((-110) $)) (-15 -2446 ((-110) $)) (-15 -2036 ((-110) $)) (-15 -3328 ((-110) $))))) (T -774))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-774)))) (-3691 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-2446 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))) (-3328 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ($ (-1102))) (-15 -3691 ((-110) $)) (-15 -2446 ((-110) $)) (-15 -2036 ((-110) $)) (-15 -3328 ((-110) $))))
+((-2247 (((-110) $ $) NIL)) (-3375 (($ (-774) (-598 (-1102))) 24)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-4030 (((-774) $) 25)) (-2782 (((-598 (-1102)) $) 26)) (-2265 (((-806) $) 23)) (-2148 (((-110) $ $) NIL)))
+(((-775) (-13 (-1030) (-10 -8 (-15 -4030 ((-774) $)) (-15 -2782 ((-598 (-1102)) $)) (-15 -3375 ($ (-774) (-598 (-1102))))))) (T -775))
+((-4030 (*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-775)))) (-2782 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-775)))) (-3375 (*1 *1 *2 *3) (-12 (-5 *2 (-774)) (-5 *3 (-598 (-1102))) (-5 *1 (-775)))))
+(-13 (-1030) (-10 -8 (-15 -4030 ((-774) $)) (-15 -2782 ((-598 (-1102)) $)) (-15 -3375 ($ (-774) (-598 (-1102))))))
+((-4231 (((-1189) (-772) (-297 |#1|) (-110)) 23) (((-1189) (-772) (-297 |#1|)) 79) (((-1085) (-297 |#1|) (-110)) 78) (((-1085) (-297 |#1|)) 77)))
+(((-776 |#1|) (-10 -7 (-15 -4231 ((-1085) (-297 |#1|))) (-15 -4231 ((-1085) (-297 |#1|) (-110))) (-15 -4231 ((-1189) (-772) (-297 |#1|))) (-15 -4231 ((-1189) (-772) (-297 |#1|) (-110)))) (-13 (-778) (-797) (-986))) (T -776))
+((-4231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-772)) (-5 *4 (-297 *6)) (-5 *5 (-110)) (-4 *6 (-13 (-778) (-797) (-986))) (-5 *2 (-1189)) (-5 *1 (-776 *6)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-772)) (-5 *4 (-297 *5)) (-4 *5 (-13 (-778) (-797) (-986))) (-5 *2 (-1189)) (-5 *1 (-776 *5)))) (-4231 (*1 *2 *3 *4) (-12 (-5 *3 (-297 *5)) (-5 *4 (-110)) (-4 *5 (-13 (-778) (-797) (-986))) (-5 *2 (-1085)) (-5 *1 (-776 *5)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-778) (-797) (-986))) (-5 *2 (-1085)) (-5 *1 (-776 *4)))))
+(-10 -7 (-15 -4231 ((-1085) (-297 |#1|))) (-15 -4231 ((-1085) (-297 |#1|) (-110))) (-15 -4231 ((-1189) (-772) (-297 |#1|))) (-15 -4231 ((-1189) (-772) (-297 |#1|) (-110))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-4066 ((|#1| $) 10)) (-4155 (($ |#1|) 9)) (-3481 (((-110) $) NIL)) (-2669 (($ |#2| (-721)) NIL)) (-3005 (((-721) $) NIL)) (-2475 ((|#2| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3352 (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2012 (((-721) $) NIL)) (-2265 (((-806) $) 17) (($ (-531)) NIL) (($ |#2|) NIL (|has| |#2| (-162)))) (-3188 ((|#2| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $) NIL (|has| |#1| (-216)))) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 12) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-777 |#1| |#2|) (-13 (-659 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4155 ($ |#1|)) (-15 -4066 (|#1| $)))) (-659 |#2|) (-986)) (T -777))
+((-4155 (*1 *1 *2) (-12 (-4 *3 (-986)) (-5 *1 (-777 *2 *3)) (-4 *2 (-659 *3)))) (-4066 (*1 *2 *1) (-12 (-4 *2 (-659 *3)) (-5 *1 (-777 *2 *3)) (-4 *3 (-986)))))
+(-13 (-659 |#2|) (-10 -8 (IF (|has| |#1| (-216)) (-6 (-216)) |%noBranch|) (-15 -4155 ($ |#1|)) (-15 -4066 (|#1| $))))
+((-4231 (((-1189) (-772) $ (-110)) 9) (((-1189) (-772) $) 8) (((-1085) $ (-110)) 7) (((-1085) $) 6)))
+(((-778) (-133)) (T -778))
+((-4231 (*1 *2 *3 *1 *4) (-12 (-4 *1 (-778)) (-5 *3 (-772)) (-5 *4 (-110)) (-5 *2 (-1189)))) (-4231 (*1 *2 *3 *1) (-12 (-4 *1 (-778)) (-5 *3 (-772)) (-5 *2 (-1189)))) (-4231 (*1 *2 *1 *3) (-12 (-4 *1 (-778)) (-5 *3 (-110)) (-5 *2 (-1085)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-778)) (-5 *2 (-1085)))))
+(-13 (-10 -8 (-15 -4231 ((-1085) $)) (-15 -4231 ((-1085) $ (-110))) (-15 -4231 ((-1189) (-772) $)) (-15 -4231 ((-1189) (-772) $ (-110)))))
+((-2595 (((-293) (-1085) (-1085)) 12)) (-1326 (((-110) (-1085) (-1085)) 34)) (-3209 (((-110) (-1085)) 33)) (-3561 (((-51) (-1085)) 25)) (-3655 (((-51) (-1085)) 23)) (-3581 (((-51) (-772)) 17)) (-1796 (((-598 (-1085)) (-1085)) 28)) (-4224 (((-598 (-1085))) 27)))
+(((-779) (-10 -7 (-15 -3581 ((-51) (-772))) (-15 -3655 ((-51) (-1085))) (-15 -3561 ((-51) (-1085))) (-15 -4224 ((-598 (-1085)))) (-15 -1796 ((-598 (-1085)) (-1085))) (-15 -3209 ((-110) (-1085))) (-15 -1326 ((-110) (-1085) (-1085))) (-15 -2595 ((-293) (-1085) (-1085))))) (T -779))
+((-2595 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-779)))) (-1326 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-779)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-779)))) (-1796 (*1 *2 *3) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-779)) (-5 *3 (-1085)))) (-4224 (*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-779)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-779)))) (-3655 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-779)))) (-3581 (*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-51)) (-5 *1 (-779)))))
+(-10 -7 (-15 -3581 ((-51) (-772))) (-15 -3655 ((-51) (-1085))) (-15 -3561 ((-51) (-1085))) (-15 -4224 ((-598 (-1085)))) (-15 -1796 ((-598 (-1085)) (-1085))) (-15 -3209 ((-110) (-1085))) (-15 -1326 ((-110) (-1085) (-1085))) (-15 -2595 ((-293) (-1085) (-1085))))
+((-2247 (((-110) $ $) 19)) (-4210 (($ |#1| $) 76) (($ $ |#1|) 75) (($ $ $) 74)) (-3252 (($ $ $) 72)) (-3890 (((-110) $ $) 73)) (-4058 (((-110) $ (-721)) 8)) (-1245 (($ (-598 |#1|)) 68) (($) 67)) (-2245 (($ (-1 (-110) |#1|) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2705 (($ $) 62)) (-3086 (($ $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ |#1| $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) 46 (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 54 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 56 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 53 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 52 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 64)) (-3280 (((-110) $ (-721)) 9)) (-4103 ((|#1| $) 78)) (-3611 (($ $ $) 81)) (-3508 (($ $ $) 80)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1241 ((|#1| $) 79)) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22)) (-1301 (($ $ $) 69)) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40) (($ |#1| $ (-721)) 63)) (-2529 (((-1049) $) 21)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 51)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-3555 (((-598 (-2 (|:| -1798 |#1|) (|:| -2539 (-721)))) $) 61)) (-1786 (($ $ |#1|) 71) (($ $ $) 70)) (-2543 (($) 49) (($ (-598 |#1|)) 48)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 50)) (-2265 (((-806) $) 18)) (-3445 (($ (-598 |#1|)) 66) (($) 65)) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20)) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-780 |#1|) (-133) (-797)) (T -780))
+((-4103 (*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-797)))))
+(-13 (-687 |t#1|) (-911 |t#1|) (-10 -8 (-15 -4103 (|t#1| $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-218 |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-645 |#1|) . T) ((-687 |#1|) . T) ((-911 |#1|) . T) ((-1028 |#1|) . T) ((-1030) . T) ((-1138) . T))
+((-2576 (((-1189) (-1049) (-1049)) 47)) (-2156 (((-1189) (-771) (-51)) 44)) (-3585 (((-51) (-771)) 16)))
+(((-781) (-10 -7 (-15 -3585 ((-51) (-771))) (-15 -2156 ((-1189) (-771) (-51))) (-15 -2576 ((-1189) (-1049) (-1049))))) (T -781))
+((-2576 (*1 *2 *3 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-1189)) (-5 *1 (-781)))) (-2156 (*1 *2 *3 *4) (-12 (-5 *3 (-771)) (-5 *4 (-51)) (-5 *2 (-1189)) (-5 *1 (-781)))) (-3585 (*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-51)) (-5 *1 (-781)))))
+(-10 -7 (-15 -3585 ((-51) (-771))) (-15 -2156 ((-1189) (-771) (-51))) (-15 -2576 ((-1189) (-1049) (-1049))))
+((-3261 (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|) (-783 |#2|)) 12) (((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|)) 13)))
+(((-782 |#1| |#2|) (-10 -7 (-15 -3261 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|))) (-15 -3261 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|) (-783 |#2|)))) (-1030) (-1030)) (T -782))
+((-3261 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-783 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *1 (-782 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6)))))
+(-10 -7 (-15 -3261 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|))) (-15 -3261 ((-783 |#2|) (-1 |#2| |#1|) (-783 |#1|) (-783 |#2|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL (|has| |#1| (-21)))) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3459 (((-531) $) NIL (|has| |#1| (-795)))) (-4082 (($) NIL (|has| |#1| (-21)) CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 15)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 9)) (-3622 (((-3 $ "failed") $) 40 (|has| |#1| (-795)))) (-1609 (((-3 (-388 (-531)) "failed") $) 49 (|has| |#1| (-516)))) (-3004 (((-110) $) 43 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 46 (|has| |#1| (-516)))) (-1599 (((-110) $) NIL (|has| |#1| (-795)))) (-3481 (((-110) $) NIL (|has| |#1| (-795)))) (-2985 (((-110) $) NIL (|has| |#1| (-795)))) (-4103 (($ $ $) NIL (|has| |#1| (-795)))) (-1241 (($ $ $) NIL (|has| |#1| (-795)))) (-1521 (((-1085) $) NIL)) (-1893 (($) 13)) (-3285 (((-110) $) 12)) (-2529 (((-1049) $) NIL)) (-2311 (((-110) $) 11)) (-2265 (((-806) $) 18) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 8) (($ (-531)) NIL (-1435 (|has| |#1| (-795)) (|has| |#1| (-977 (-531)))))) (-2284 (((-721)) 34 (|has| |#1| (-795)))) (-1620 (($ $) NIL (|has| |#1| (-795)))) (-3035 (($) 22 (|has| |#1| (-21)) CONST)) (-3050 (($) 31 (|has| |#1| (-795)) CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2174 (((-110) $ $) 42 (|has| |#1| (-795)))) (-2250 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 27 (|has| |#1| (-21)))) (-2237 (($ $ $) 29 (|has| |#1| (-21)))) (** (($ $ (-864)) NIL (|has| |#1| (-795))) (($ $ (-721)) NIL (|has| |#1| (-795)))) (* (($ $ $) 37 (|has| |#1| (-795))) (($ (-531) $) 25 (|has| |#1| (-21))) (($ (-721) $) NIL (|has| |#1| (-21))) (($ (-864) $) NIL (|has| |#1| (-21)))))
+(((-783 |#1|) (-13 (-1030) (-392 |#1|) (-10 -8 (-15 -1893 ($)) (-15 -2311 ((-110) $)) (-15 -3285 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|))) (-1030)) (T -783))
+((-1893 (*1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1030)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-1030)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-1030)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-783 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) (-1609 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-783 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))))
+(-13 (-1030) (-392 |#1|) (-10 -8 (-15 -1893 ($)) (-15 -2311 ((-110) $)) (-15 -3285 ((-110) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-112) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-112) $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-4168 ((|#1| (-112) |#1|) NIL)) (-3481 (((-110) $) NIL)) (-1611 (($ |#1| (-342 (-112))) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3087 (($ $ (-1 |#1| |#1|)) NIL)) (-2678 (($ $ (-1 |#1| |#1|)) NIL)) (-1785 ((|#1| $ |#1|) NIL)) (-2650 ((|#1| |#1|) NIL (|has| |#1| (-162)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-112)) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-2661 (($ $) NIL (|has| |#1| (-162))) (($ $ $) NIL (|has| |#1| (-162)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ (-112) (-531)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-784 |#1|) (-13 (-986) (-977 |#1|) (-977 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2661 ($ $)) (-15 -2661 ($ $ $)) (-15 -2650 (|#1| |#1|))) |%noBranch|) (-15 -2678 ($ $ (-1 |#1| |#1|))) (-15 -3087 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-531))) (-15 ** ($ $ (-531))) (-15 -4168 (|#1| (-112) |#1|)) (-15 -1611 ($ |#1| (-342 (-112)))))) (-986)) (T -784))
+((-2661 (*1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))) (-2661 (*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))) (-2650 (*1 *2 *2) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))) (-2678 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-784 *3)))) (-3087 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-784 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-531)) (-5 *1 (-784 *4)) (-4 *4 (-986)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-784 *3)) (-4 *3 (-986)))) (-4168 (*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-784 *2)) (-4 *2 (-986)))) (-1611 (*1 *1 *2 *3) (-12 (-5 *3 (-342 (-112))) (-5 *1 (-784 *2)) (-4 *2 (-986)))))
+(-13 (-986) (-977 |#1|) (-977 (-112)) (-268 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |#1| (-162)) (PROGN (-6 (-37 |#1|)) (-15 -2661 ($ $)) (-15 -2661 ($ $ $)) (-15 -2650 (|#1| |#1|))) |%noBranch|) (-15 -2678 ($ $ (-1 |#1| |#1|))) (-15 -3087 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-112) (-531))) (-15 ** ($ $ (-531))) (-15 -4168 (|#1| (-112) |#1|)) (-15 -1611 ($ |#1| (-342 (-112))))))
+((-2746 (((-198 (-480)) (-1085)) 9)))
+(((-785) (-10 -7 (-15 -2746 ((-198 (-480)) (-1085))))) (T -785))
+((-2746 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-198 (-480))) (-5 *1 (-785)))))
+(-10 -7 (-15 -2746 ((-198 (-480)) (-1085))))
+((-2247 (((-110) $ $) 7)) (-2922 (((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 14) (((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 13)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 16) (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 15)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)))
+(((-786) (-133)) (T -786))
+((-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-786)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) (-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-786)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) (-2922 (*1 *2 *3) (-12 (-4 *1 (-786)) (-5 *3 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *2 (-975)))) (-2922 (*1 *2 *3) (-12 (-4 *1 (-786)) (-5 *3 (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (-5 *2 (-975)))))
+(-13 (-1030) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2922 ((-975) (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2922 ((-975) (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-4010 (((-975) (-598 (-297 (-360))) (-598 (-360))) 147) (((-975) (-297 (-360)) (-598 (-360))) 145) (((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-790 (-360)))) 144) (((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-297 (-360))) (-598 (-790 (-360)))) 143) (((-975) (-788)) 117) (((-975) (-788) (-998)) 116)) (-3582 (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788) (-998)) 82) (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788)) 84)) (-2689 (((-975) (-598 (-297 (-360))) (-598 (-360))) 148) (((-975) (-788)) 133)))
+(((-787) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788) (-998))) (-15 -4010 ((-975) (-788) (-998))) (-15 -4010 ((-975) (-788))) (-15 -2689 ((-975) (-788))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-297 (-360))) (-598 (-790 (-360))))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-790 (-360))))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)))) (-15 -4010 ((-975) (-598 (-297 (-360))) (-598 (-360)))) (-15 -2689 ((-975) (-598 (-297 (-360))) (-598 (-360)))))) (T -787))
+((-2689 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-297 (-360)))) (-5 *4 (-598 (-360))) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-297 (-360)))) (-5 *4 (-598 (-360))) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-360))) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-360))) (-5 *5 (-598 (-790 (-360)))) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-598 (-360))) (-5 *5 (-598 (-790 (-360)))) (-5 *6 (-598 (-297 (-360)))) (-5 *3 (-297 (-360))) (-5 *2 (-975)) (-5 *1 (-787)))) (-2689 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-975)) (-5 *1 (-787)))) (-4010 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-787)))) (-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-998)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-787)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-787)))))
+(-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-788) (-998))) (-15 -4010 ((-975) (-788) (-998))) (-15 -4010 ((-975) (-788))) (-15 -2689 ((-975) (-788))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-297 (-360))) (-598 (-790 (-360))))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)) (-598 (-790 (-360))) (-598 (-790 (-360))))) (-15 -4010 ((-975) (-297 (-360)) (-598 (-360)))) (-15 -4010 ((-975) (-598 (-297 (-360))) (-598 (-360)))) (-15 -2689 ((-975) (-598 (-297 (-360))) (-598 (-360)))))
+((-2247 (((-110) $ $) NIL)) (-2523 (((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) $) 21)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 20) (($ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) 14) (($ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) 16) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) 18)) (-2148 (((-110) $ $) NIL)))
+(((-788) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -2265 ($ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2265 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) $))))) (T -788))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-788)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (-5 *1 (-788)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))) (-5 *1 (-788)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) (-5 *1 (-788)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208))))))) (-5 *1 (-788)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208))))))) (-15 -2265 ($ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) (-15 -2265 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-3 (|:| |noa| (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208))) (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208)))) (|:| |ub| (-598 (-790 (-208)))))) (|:| |lsa| (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))) $))))
+((-3261 (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|) (-790 |#2|) (-790 |#2|)) 13) (((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|)) 14)))
+(((-789 |#1| |#2|) (-10 -7 (-15 -3261 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|))) (-15 -3261 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|) (-790 |#2|) (-790 |#2|)))) (-1030) (-1030)) (T -789))
+((-3261 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-790 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *1 (-789 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6)))))
+(-10 -7 (-15 -3261 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|))) (-15 -3261 ((-790 |#2|) (-1 |#2| |#1|) (-790 |#1|) (-790 |#2|) (-790 |#2|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL (|has| |#1| (-21)))) (-2495 (((-1049) $) 24)) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#1| (-21)))) (-3459 (((-531) $) NIL (|has| |#1| (-795)))) (-4082 (($) NIL (|has| |#1| (-21)) CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 16)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 9)) (-3622 (((-3 $ "failed") $) 47 (|has| |#1| (-795)))) (-1609 (((-3 (-388 (-531)) "failed") $) 54 (|has| |#1| (-516)))) (-3004 (((-110) $) 49 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 52 (|has| |#1| (-516)))) (-1599 (((-110) $) NIL (|has| |#1| (-795)))) (-1447 (($) 13)) (-3481 (((-110) $) NIL (|has| |#1| (-795)))) (-2985 (((-110) $) NIL (|has| |#1| (-795)))) (-1458 (($) 14)) (-4103 (($ $ $) NIL (|has| |#1| (-795)))) (-1241 (($ $ $) NIL (|has| |#1| (-795)))) (-1521 (((-1085) $) NIL)) (-3285 (((-110) $) 12)) (-2529 (((-1049) $) NIL)) (-2311 (((-110) $) 11)) (-2265 (((-806) $) 22) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 8) (($ (-531)) NIL (-1435 (|has| |#1| (-795)) (|has| |#1| (-977 (-531)))))) (-2284 (((-721)) 41 (|has| |#1| (-795)))) (-1620 (($ $) NIL (|has| |#1| (-795)))) (-3035 (($) 29 (|has| |#1| (-21)) CONST)) (-3050 (($) 38 (|has| |#1| (-795)) CONST)) (-2207 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2148 (((-110) $ $) 27)) (-2195 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2174 (((-110) $ $) 48 (|has| |#1| (-795)))) (-2250 (($ $ $) NIL (|has| |#1| (-21))) (($ $) 34 (|has| |#1| (-21)))) (-2237 (($ $ $) 36 (|has| |#1| (-21)))) (** (($ $ (-864)) NIL (|has| |#1| (-795))) (($ $ (-721)) NIL (|has| |#1| (-795)))) (* (($ $ $) 44 (|has| |#1| (-795))) (($ (-531) $) 32 (|has| |#1| (-21))) (($ (-721) $) NIL (|has| |#1| (-21))) (($ (-864) $) NIL (|has| |#1| (-21)))))
+(((-790 |#1|) (-13 (-1030) (-392 |#1|) (-10 -8 (-15 -1447 ($)) (-15 -1458 ($)) (-15 -2311 ((-110) $)) (-15 -3285 ((-110) $)) (-15 -2495 ((-1049) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|))) (-1030)) (T -790))
+((-1447 (*1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1030)))) (-1458 (*1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1030)))) (-2311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))) (-3285 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))) (-2495 (*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))) (-3004 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) (-2727 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-790 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))) (-1609 (*1 *2 *1) (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-790 *3)) (-4 *3 (-516)) (-4 *3 (-1030)))))
+(-13 (-1030) (-392 |#1|) (-10 -8 (-15 -1447 ($)) (-15 -1458 ($)) (-15 -2311 ((-110) $)) (-15 -3285 ((-110) $)) (-15 -2495 ((-1049) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|)))
+((-2247 (((-110) $ $) 7)) (-3006 (((-721)) 20)) (-1381 (($) 23)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-2211 (((-864) $) 22)) (-1521 (((-1085) $) 9)) (-1889 (($ (-864)) 21)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)))
(((-791) (-133)) (T -791))
NIL
-(-13 (-802) (-675))
-(((-99) . T) ((-571 (-804)) . T) ((-675) . T) ((-802) . T) ((-795) . T) ((-1039) . T) ((-1027) . T))
-((-1867 (((-530) $) 17)) (-2514 (((-110) $) 10)) (-2166 (((-110) $) 11)) (-3934 (($ $) 19)))
-(((-792 |#1|) (-10 -8 (-15 -3934 (|#1| |#1|)) (-15 -1867 ((-530) |#1|)) (-15 -2166 ((-110) |#1|)) (-15 -2514 ((-110) |#1|))) (-793)) (T -792))
-NIL
-(-10 -8 (-15 -3934 (|#1| |#1|)) (-15 -1867 ((-530) |#1|)) (-15 -2166 ((-110) |#1|)) (-15 -2514 ((-110) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 24)) (-1889 (((-3 $ "failed") $ $) 26)) (-1867 (((-530) $) 33)) (-2350 (($) 23 T CONST)) (-2707 (((-3 $ "failed") $) 38)) (-2514 (((-110) $) 35)) (-2731 (((-110) $) 40)) (-2166 (((-110) $) 34)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 43)) (-3300 (((-719)) 42)) (-3934 (($ $) 32)) (-3080 (($) 22 T CONST)) (-3093 (($) 41 T CONST)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (-2351 (($ $ $) 28) (($ $) 27)) (-2339 (($ $ $) 20)) (** (($ $ (-719)) 39) (($ $ (-862)) 36)) (* (($ (-862) $) 21) (($ (-719) $) 25) (($ (-530) $) 29) (($ $ $) 37)))
+(-13 (-797) (-349))
+(((-99) . T) ((-572 (-806)) . T) ((-349) . T) ((-797) . T) ((-1030) . T))
+((-2275 (((-110) (-1184 |#2|) (-1184 |#2|)) 17)) (-3916 (((-110) (-1184 |#2|) (-1184 |#2|)) 18)) (-1733 (((-110) (-1184 |#2|) (-1184 |#2|)) 14)))
+(((-792 |#1| |#2|) (-10 -7 (-15 -1733 ((-110) (-1184 |#2|) (-1184 |#2|))) (-15 -2275 ((-110) (-1184 |#2|) (-1184 |#2|))) (-15 -3916 ((-110) (-1184 |#2|) (-1184 |#2|)))) (-721) (-742)) (T -792))
+((-3916 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) (-5 *1 (-792 *4 *5)) (-14 *4 (-721)))) (-2275 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) (-5 *1 (-792 *4 *5)) (-14 *4 (-721)))) (-1733 (*1 *2 *3 *3) (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110)) (-5 *1 (-792 *4 *5)) (-14 *4 (-721)))))
+(-10 -7 (-15 -1733 ((-110) (-1184 |#2|) (-1184 |#2|))) (-15 -2275 ((-110) (-1184 |#2|) (-1184 |#2|))) (-15 -3916 ((-110) (-1184 |#2|) (-1184 |#2|))))
+((-2247 (((-110) $ $) 7)) (-4082 (($) 23 T CONST)) (-3622 (((-3 $ "failed") $) 26)) (-3481 (((-110) $) 24)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3050 (($) 22 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (** (($ $ (-864)) 21) (($ $ (-721)) 25)) (* (($ $ $) 20)))
(((-793) (-133)) (T -793))
-((-2514 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-2166 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110)))) (-1867 (*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-530)))) (-3934 (*1 *1 *1) (-4 *1 (-793))))
-(-13 (-739) (-984) (-675) (-10 -8 (-15 -2514 ((-110) $)) (-15 -2166 ((-110) $)) (-15 -1867 ((-530) $)) (-15 -3934 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-795) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2508 (($ $ $) 10)) (-1817 (($ $ $) 9)) (-2306 (((-110) $ $) 13)) (-2284 (((-110) $ $) 11)) (-2297 (((-110) $ $) 14)))
-(((-794 |#1|) (-10 -8 (-15 -2508 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1| |#1|)) (-15 -2297 ((-110) |#1| |#1|)) (-15 -2306 ((-110) |#1| |#1|)) (-15 -2284 ((-110) |#1| |#1|))) (-795)) (T -794))
-NIL
-(-10 -8 (-15 -2508 (|#1| |#1| |#1|)) (-15 -1817 (|#1| |#1| |#1|)) (-15 -2297 ((-110) |#1| |#1|)) (-15 -2306 ((-110) |#1| |#1|)) (-15 -2284 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)))
+NIL
+(-13 (-804) (-677))
+(((-99) . T) ((-572 (-806)) . T) ((-677) . T) ((-804) . T) ((-797) . T) ((-1042) . T) ((-1030) . T))
+((-3459 (((-531) $) 17)) (-1599 (((-110) $) 10)) (-2985 (((-110) $) 11)) (-1620 (($ $) 19)))
+(((-794 |#1|) (-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -3459 ((-531) |#1|)) (-15 -2985 ((-110) |#1|)) (-15 -1599 ((-110) |#1|))) (-795)) (T -794))
+NIL
+(-10 -8 (-15 -1620 (|#1| |#1|)) (-15 -3459 ((-531) |#1|)) (-15 -2985 ((-110) |#1|)) (-15 -1599 ((-110) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 24)) (-2128 (((-3 $ "failed") $ $) 26)) (-3459 (((-531) $) 33)) (-4082 (($) 23 T CONST)) (-3622 (((-3 $ "failed") $) 38)) (-1599 (((-110) $) 35)) (-3481 (((-110) $) 40)) (-2985 (((-110) $) 34)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 43)) (-2284 (((-721)) 42)) (-1620 (($ $) 32)) (-3035 (($) 22 T CONST)) (-3050 (($) 41 T CONST)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (-2250 (($ $ $) 28) (($ $) 27)) (-2237 (($ $ $) 20)) (** (($ $ (-721)) 39) (($ $ (-864)) 36)) (* (($ (-864) $) 21) (($ (-721) $) 25) (($ (-531) $) 29) (($ $ $) 37)))
(((-795) (-133)) (T -795))
-((-2272 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2284 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2306 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2297 (*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-1817 (*1 *1 *1 *1) (-4 *1 (-795))) (-2508 (*1 *1 *1 *1) (-4 *1 (-795))))
-(-13 (-1027) (-10 -8 (-15 -2272 ((-110) $ $)) (-15 -2284 ((-110) $ $)) (-15 -2306 ((-110) $ $)) (-15 -2297 ((-110) $ $)) (-15 -1817 ($ $ $)) (-15 -2508 ($ $ $))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1261 (($ $ $) 45)) (-3973 (($ $ $) 44)) (-2640 (($ $ $) 42)) (-3174 (($ $ $) 51)) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 46)) (-2877 (((-3 $ "failed") $ $) 49)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-1239 (($ $) 35)) (-1396 (($ $ $) 39)) (-3140 (($ $ $) 38)) (-2615 (($ $ $) 47)) (-4132 (($ $ $) 53)) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 41)) (-2876 (((-3 $ "failed") $ $) 48)) (-3551 (((-3 $ "failed") $ |#2|) 28)) (-3829 ((|#2| $) 32)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#2|) 12)) (-3441 (((-597 |#2|) $) 18)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
-(((-796 |#1| |#2|) (-10 -8 (-15 -2615 (|#1| |#1| |#1|)) (-15 -2191 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -3174 (|#1| |#1| |#1|)) (-15 -2877 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1261 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -2640 (|#1| |#1| |#1|)) (-15 -1285 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -1239 (|#1| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3441 ((-597 |#2|) |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2366 ((-804) |#1|))) (-797 |#2|) (-984)) (T -796))
-NIL
-(-10 -8 (-15 -2615 (|#1| |#1| |#1|)) (-15 -2191 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -3174 (|#1| |#1| |#1|)) (-15 -2877 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1261 (|#1| |#1| |#1|)) (-15 -3973 (|#1| |#1| |#1|)) (-15 -2640 (|#1| |#1| |#1|)) (-15 -1285 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1974 |#1|)) |#1| |#1|)) (-15 -4132 (|#1| |#1| |#1|)) (-15 -2876 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1396 (|#1| |#1| |#1|)) (-15 -3140 (|#1| |#1| |#1|)) (-15 -1239 (|#1| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3551 ((-3 |#1| "failed") |#1| |#2|)) (-15 -3441 ((-597 |#2|) |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1261 (($ $ $) 43 (|has| |#1| (-344)))) (-3973 (($ $ $) 44 (|has| |#1| (-344)))) (-2640 (($ $ $) 46 (|has| |#1| (-344)))) (-3174 (($ $ $) 41 (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 40 (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) 42 (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 45 (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) 72 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 70 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 67)) (-2585 (((-530) $) 73 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 71 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 66)) (-2562 (($ $) 62)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 53 (|has| |#1| (-432)))) (-2731 (((-110) $) 30)) (-2725 (($ |#1| (-719)) 60)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55 (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 56 (|has| |#1| (-522)))) (-2944 (((-719) $) 64)) (-1396 (($ $ $) 50 (|has| |#1| (-344)))) (-3140 (($ $ $) 51 (|has| |#1| (-344)))) (-2615 (($ $ $) 39 (|has| |#1| (-344)))) (-4132 (($ $ $) 48 (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 47 (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) 49 (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 52 (|has| |#1| (-344)))) (-2533 ((|#1| $) 63)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-522)))) (-1429 (((-719) $) 65)) (-3829 ((|#1| $) 54 (|has| |#1| (-432)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 69 (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) 68)) (-3441 (((-597 |#1|) $) 59)) (-4085 ((|#1| $ (-719)) 61)) (-3300 (((-719)) 28)) (-3003 ((|#1| $ |#1| |#1|) 58)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
-(((-797 |#1|) (-133) (-984)) (T -797))
-((-1429 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2944 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2533 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-2562 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-2725 (*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-597 *3)))) (-3003 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-3004 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3)))) (-1504 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3)))) (-3829 (*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432)))) (-1239 (*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432)))) (-3383 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3)))) (-3140 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1396 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2876 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-4132 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1285 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1))) (-4 *1 (-797 *3)))) (-2640 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2017 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3)))) (-3973 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1261 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2877 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-3174 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-2191 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1))) (-4 *1 (-797 *3)))) (-2615 (*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(-13 (-984) (-109 |t#1| |t#1|) (-392 |t#1|) (-10 -8 (-15 -1429 ((-719) $)) (-15 -2944 ((-719) $)) (-15 -2533 (|t#1| $)) (-15 -2562 ($ $)) (-15 -4085 (|t#1| $ (-719))) (-15 -2725 ($ |t#1| (-719))) (-15 -3441 ((-597 |t#1|) $)) (-15 -3003 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -3551 ((-3 $ "failed") $ |t#1|)) (-15 -3004 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -1504 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -3829 (|t#1| $)) (-15 -1239 ($ $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -3383 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3140 ($ $ $)) (-15 -1396 ($ $ $)) (-15 -2876 ((-3 $ "failed") $ $)) (-15 -4132 ($ $ $)) (-15 -1285 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $)) (-15 -2640 ($ $ $)) (-15 -2017 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -3973 ($ $ $)) (-15 -1261 ($ $ $)) (-15 -2877 ((-3 $ "failed") $ $)) (-15 -3174 ($ $ $)) (-15 -2191 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $)) (-15 -2615 ($ $ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-392 |#1|) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3893 ((|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|)) 20)) (-2017 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)) 43 (|has| |#1| (-344)))) (-1504 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)) 40 (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)) 39 (|has| |#1| (-522)))) (-3383 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)) 42 (|has| |#1| (-344)))) (-3003 ((|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|)) 31)))
-(((-798 |#1| |#2|) (-10 -7 (-15 -3893 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -3003 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-522)) (PROGN (-15 -3004 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -1504 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -3383 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2017 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|)) (-984) (-797 |#1|)) (T -798))
-((-2017 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-3383 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-1504 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-3004 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3)) (-4 *3 (-797 *5)))) (-3003 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-984)) (-5 *1 (-798 *2 *3)) (-4 *3 (-797 *2)))) (-3893 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-984)) (-5 *1 (-798 *5 *2)) (-4 *2 (-797 *5)))))
-(-10 -7 (-15 -3893 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -3003 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-522)) (PROGN (-15 -3004 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -1504 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -3383 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2017 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#1| (-344)))) (-3973 (($ $ $) NIL (|has| |#1| (-344)))) (-2640 (($ $ $) NIL (|has| |#1| (-344)))) (-3174 (($ $ $) NIL (|has| |#1| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 25 (|has| |#1| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2589 (((-804) $ (-804)) NIL)) (-2731 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) NIL)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 21 (|has| |#1| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 19 (|has| |#1| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#1| (-344)))) (-3140 (($ $ $) NIL (|has| |#1| (-344)))) (-2615 (($ $ $) NIL (|has| |#1| (-344)))) (-4132 (($ $ $) NIL (|has| |#1| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 23 (|has| |#1| (-344)))) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1429 (((-719) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-975 (-388 (-530))))) (($ |#1|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#1| $ |#1| |#1|) 15)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
-(((-799 |#1| |#2| |#3|) (-13 (-797 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-804))))) (-984) (-96 |#1|) (-1 |#1| |#1|)) (T -799))
-((-2589 (*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3)))))
-(-13 (-797 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-804)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-1261 (($ $ $) NIL (|has| |#2| (-344)))) (-3973 (($ $ $) NIL (|has| |#2| (-344)))) (-2640 (($ $ $) NIL (|has| |#2| (-344)))) (-3174 (($ $ $) NIL (|has| |#2| (-344)))) (-2191 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#2| (-344)))) (-2877 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-2017 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-344)))) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#2| (-432)))) (-2731 (((-110) $) NIL)) (-2725 (($ |#2| (-719)) 16)) (-1504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-522)))) (-3004 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-522)))) (-2944 (((-719) $) NIL)) (-1396 (($ $ $) NIL (|has| |#2| (-344)))) (-3140 (($ $ $) NIL (|has| |#2| (-344)))) (-2615 (($ $ $) NIL (|has| |#2| (-344)))) (-4132 (($ $ $) NIL (|has| |#2| (-344)))) (-1285 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#2| (-344)))) (-2876 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-3383 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-344)))) (-2533 ((|#2| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-1429 (((-719) $) NIL)) (-3829 ((|#2| $) NIL (|has| |#2| (-432)))) (-2366 (((-804) $) 23) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (($ (-1177 |#1|)) 18)) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-719)) NIL)) (-3300 (((-719)) NIL)) (-3003 ((|#2| $ |#2| |#2|) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) 13 T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
-(((-800 |#1| |#2| |#3| |#4|) (-13 (-797 |#2|) (-10 -8 (-15 -2366 ($ (-1177 |#1|))))) (-1099) (-984) (-96 |#2|) (-1 |#2| |#2|)) (T -800))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-14 *3 (-1099)) (-5 *1 (-800 *3 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4)))))
-(-13 (-797 |#2|) (-10 -8 (-15 -2366 ($ (-1177 |#1|)))))
-((-2997 ((|#1| (-719) |#1|) 35 (|has| |#1| (-37 (-388 (-530)))))) (-3273 ((|#1| (-719) (-719) |#1|) 27) ((|#1| (-719) |#1|) 20)) (-1648 ((|#1| (-719) |#1|) 31)) (-3699 ((|#1| (-719) |#1|) 29)) (-1923 ((|#1| (-719) |#1|) 28)))
-(((-801 |#1|) (-10 -7 (-15 -1923 (|#1| (-719) |#1|)) (-15 -3699 (|#1| (-719) |#1|)) (-15 -1648 (|#1| (-719) |#1|)) (-15 -3273 (|#1| (-719) |#1|)) (-15 -3273 (|#1| (-719) (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -2997 (|#1| (-719) |#1|)) |%noBranch|)) (-162)) (T -801))
-((-2997 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-162)))) (-3273 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-3273 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-1648 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-3699 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))) (-1923 (*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
-(-10 -7 (-15 -1923 (|#1| (-719) |#1|)) (-15 -3699 (|#1| (-719) |#1|)) (-15 -1648 (|#1| (-719) |#1|)) (-15 -3273 (|#1| (-719) |#1|)) (-15 -3273 (|#1| (-719) (-719) |#1|)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -2997 (|#1| (-719) |#1|)) |%noBranch|))
-((-2352 (((-110) $ $) 7)) (-2508 (($ $ $) 13)) (-1817 (($ $ $) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2306 (((-110) $ $) 16)) (-2284 (((-110) $ $) 17)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 15)) (-2272 (((-110) $ $) 18)) (** (($ $ (-862)) 21)) (* (($ $ $) 20)))
-(((-802) (-133)) (T -802))
-NIL
-(-13 (-795) (-1039))
-(((-99) . T) ((-571 (-804)) . T) ((-795) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-3417 (((-530) $) 12)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 18) (($ (-530)) 11)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 8)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 9)))
-(((-803) (-13 (-795) (-10 -8 (-15 -2366 ($ (-530))) (-15 -3417 ((-530) $))))) (T -803))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-803)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-803)))))
-(-13 (-795) (-10 -8 (-15 -2366 ($ (-530))) (-15 -3417 ((-530) $))))
-((-2352 (((-110) $ $) NIL) (($ $ $) 77)) (-4180 (($ $ $) 115)) (-1447 (((-530) $) 30) (((-530)) 35)) (-3921 (($ (-530)) 44)) (-2664 (($ $ $) 45) (($ (-597 $)) 76)) (-1653 (($ $ (-597 $)) 74)) (-2083 (((-530) $) 33)) (-2362 (($ $ $) 63)) (-3426 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-1762 (((-530) $) 32)) (-3807 (($ $ $) 62)) (-3166 (($ $) 105)) (-2278 (($ $ $) 119)) (-2452 (($ (-597 $)) 52)) (-4119 (($ $ (-597 $)) 69)) (-1266 (($ (-530) (-530)) 46)) (-3165 (($ $) 116) (($ $ $) 117)) (-3638 (($ $ (-530)) 40) (($ $) 43)) (-3590 (($ $ $) 89)) (-3461 (($ $ $) 122)) (-2808 (($ $) 106)) (-3571 (($ $ $) 90)) (-1360 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-1606 (((-1186) $) 8)) (-4020 (($ $) 109) (($ $ (-719)) 112)) (-4149 (($ $ $) 65)) (-2736 (($ $ $) 64)) (-3853 (($ $ (-597 $)) 100)) (-1749 (($ $ $) 104)) (-3690 (($ (-597 $)) 50)) (-3324 (($ $) 60) (($ (-597 $)) 61)) (-2885 (($ $ $) 113)) (-1287 (($ $) 107)) (-1683 (($ $ $) 118)) (-2589 (($ (-530)) 20) (($ (-1099)) 22) (($ (-1082)) 29) (($ (-208)) 24)) (-2813 (($ $ $) 93)) (-3676 (($ $) 94)) (-4233 (((-1186) (-1082)) 14)) (-2184 (($ (-1082)) 13)) (-2263 (($ (-597 (-597 $))) 49)) (-3628 (($ $ (-530)) 39) (($ $) 42)) (-1424 (((-1082) $) NIL)) (-3138 (($ $ $) 121)) (-3967 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3092 (((-110) $) 98)) (-3130 (($ $ (-597 $)) 102) (($ $ $ $) 103)) (-3593 (($ (-530)) 36)) (-4156 (((-530) $) 31) (((-530)) 34)) (-2105 (($ $ $) 37) (($ (-597 $)) 75)) (-2624 (((-1046) $) NIL)) (-3551 (($ $ $) 91)) (-3958 (($) 12)) (-1902 (($ $ (-597 $)) 99)) (-3334 (($ $) 108) (($ $ (-719)) 111)) (-3561 (($ $ $) 88)) (-3289 (($ $ (-719)) 127)) (-4160 (($ (-597 $)) 51)) (-2366 (((-804) $) 18)) (-3705 (($ $ (-530)) 38) (($ $) 41)) (-3070 (($ $) 58) (($ (-597 $)) 59)) (-3381 (($ $) 56) (($ (-597 $)) 57)) (-1678 (($ $) 114)) (-2444 (($ (-597 $)) 55)) (-2947 (($ $ $) 97)) (-3106 (($ $ $) 120)) (-3380 (($ $ $) 92)) (-3848 (($ $ $) 95) (($ $) 96)) (-2306 (($ $ $) 81)) (-2284 (($ $ $) 79)) (-2248 (((-110) $ $) 15) (($ $ $) 16)) (-2297 (($ $ $) 80)) (-2272 (($ $ $) 78)) (-2364 (($ $ $) 86)) (-2351 (($ $ $) 83) (($ $) 84)) (-2339 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
-(((-804) (-13 (-1027) (-10 -8 (-15 -1606 ((-1186) $)) (-15 -2184 ($ (-1082))) (-15 -4233 ((-1186) (-1082))) (-15 -2589 ($ (-530))) (-15 -2589 ($ (-1099))) (-15 -2589 ($ (-1082))) (-15 -2589 ($ (-208))) (-15 -3958 ($)) (-15 -1447 ((-530) $)) (-15 -4156 ((-530) $)) (-15 -1447 ((-530))) (-15 -4156 ((-530))) (-15 -1762 ((-530) $)) (-15 -2083 ((-530) $)) (-15 -3593 ($ (-530))) (-15 -3921 ($ (-530))) (-15 -1266 ($ (-530) (-530))) (-15 -3628 ($ $ (-530))) (-15 -3638 ($ $ (-530))) (-15 -3705 ($ $ (-530))) (-15 -3628 ($ $)) (-15 -3638 ($ $)) (-15 -3705 ($ $)) (-15 -2105 ($ $ $)) (-15 -2664 ($ $ $)) (-15 -2105 ($ (-597 $))) (-15 -2664 ($ (-597 $))) (-15 -3853 ($ $ (-597 $))) (-15 -3130 ($ $ (-597 $))) (-15 -3130 ($ $ $ $)) (-15 -1749 ($ $ $)) (-15 -3092 ((-110) $)) (-15 -1902 ($ $ (-597 $))) (-15 -3166 ($ $)) (-15 -3138 ($ $ $)) (-15 -1678 ($ $)) (-15 -2263 ($ (-597 (-597 $)))) (-15 -4180 ($ $ $)) (-15 -3165 ($ $)) (-15 -3165 ($ $ $)) (-15 -1683 ($ $ $)) (-15 -2278 ($ $ $)) (-15 -3106 ($ $ $)) (-15 -3461 ($ $ $)) (-15 -3289 ($ $ (-719))) (-15 -2947 ($ $ $)) (-15 -3807 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -4149 ($ $ $)) (-15 -4119 ($ $ (-597 $))) (-15 -1653 ($ $ (-597 $))) (-15 -2808 ($ $)) (-15 -3334 ($ $)) (-15 -3334 ($ $ (-719))) (-15 -4020 ($ $)) (-15 -4020 ($ $ (-719))) (-15 -1287 ($ $)) (-15 -2885 ($ $ $)) (-15 -3426 ($ $)) (-15 -3426 ($ $ $)) (-15 -3426 ($ $ $ $)) (-15 -1360 ($ $)) (-15 -1360 ($ $ $)) (-15 -1360 ($ $ $ $)) (-15 -3967 ($ $)) (-15 -3967 ($ $ $)) (-15 -3967 ($ $ $ $)) (-15 -3381 ($ $)) (-15 -3381 ($ (-597 $))) (-15 -3070 ($ $)) (-15 -3070 ($ (-597 $))) (-15 -3324 ($ $)) (-15 -3324 ($ (-597 $))) (-15 -3690 ($ (-597 $))) (-15 -4160 ($ (-597 $))) (-15 -2452 ($ (-597 $))) (-15 -2444 ($ (-597 $))) (-15 -2248 ($ $ $)) (-15 -2352 ($ $ $)) (-15 -2272 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -2297 ($ $ $)) (-15 -2306 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2351 ($ $)) (-15 * ($ $ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ $)) (-15 -3561 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -3380 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3676 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $))))) (T -804))
-((-1606 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-804)))) (-2184 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804)))) (-4233 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-804)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-804)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804)))) (-2589 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-804)))) (-3958 (*1 *1) (-5 *1 (-804))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-4156 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-1447 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-4156 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-1762 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-2083 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3593 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3921 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-1266 (*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3628 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3638 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3705 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))) (-3628 (*1 *1 *1) (-5 *1 (-804))) (-3638 (*1 *1 *1) (-5 *1 (-804))) (-3705 (*1 *1 *1) (-5 *1 (-804))) (-2105 (*1 *1 *1 *1) (-5 *1 (-804))) (-2664 (*1 *1 *1 *1) (-5 *1 (-804))) (-2105 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2664 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3853 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3130 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3130 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-1749 (*1 *1 *1 *1) (-5 *1 (-804))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-804)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3166 (*1 *1 *1) (-5 *1 (-804))) (-3138 (*1 *1 *1 *1) (-5 *1 (-804))) (-1678 (*1 *1 *1) (-5 *1 (-804))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-804)))) (-4180 (*1 *1 *1 *1) (-5 *1 (-804))) (-3165 (*1 *1 *1) (-5 *1 (-804))) (-3165 (*1 *1 *1 *1) (-5 *1 (-804))) (-1683 (*1 *1 *1 *1) (-5 *1 (-804))) (-2278 (*1 *1 *1 *1) (-5 *1 (-804))) (-3106 (*1 *1 *1 *1) (-5 *1 (-804))) (-3461 (*1 *1 *1 *1) (-5 *1 (-804))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-2947 (*1 *1 *1 *1) (-5 *1 (-804))) (-3807 (*1 *1 *1 *1) (-5 *1 (-804))) (-2362 (*1 *1 *1 *1) (-5 *1 (-804))) (-2736 (*1 *1 *1 *1) (-5 *1 (-804))) (-4149 (*1 *1 *1 *1) (-5 *1 (-804))) (-4119 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-1653 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2808 (*1 *1 *1) (-5 *1 (-804))) (-3334 (*1 *1 *1) (-5 *1 (-804))) (-3334 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-4020 (*1 *1 *1) (-5 *1 (-804))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804)))) (-1287 (*1 *1 *1) (-5 *1 (-804))) (-2885 (*1 *1 *1 *1) (-5 *1 (-804))) (-3426 (*1 *1 *1) (-5 *1 (-804))) (-3426 (*1 *1 *1 *1) (-5 *1 (-804))) (-3426 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-1360 (*1 *1 *1) (-5 *1 (-804))) (-1360 (*1 *1 *1 *1) (-5 *1 (-804))) (-1360 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-3967 (*1 *1 *1) (-5 *1 (-804))) (-3967 (*1 *1 *1 *1) (-5 *1 (-804))) (-3967 (*1 *1 *1 *1 *1) (-5 *1 (-804))) (-3381 (*1 *1 *1) (-5 *1 (-804))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3070 (*1 *1 *1) (-5 *1 (-804))) (-3070 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3324 (*1 *1 *1) (-5 *1 (-804))) (-3324 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-3690 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-4160 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2452 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2444 (*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))) (-2248 (*1 *1 *1 *1) (-5 *1 (-804))) (-2352 (*1 *1 *1 *1) (-5 *1 (-804))) (-2272 (*1 *1 *1 *1) (-5 *1 (-804))) (-2284 (*1 *1 *1 *1) (-5 *1 (-804))) (-2297 (*1 *1 *1 *1) (-5 *1 (-804))) (-2306 (*1 *1 *1 *1) (-5 *1 (-804))) (-2339 (*1 *1 *1 *1) (-5 *1 (-804))) (-2351 (*1 *1 *1 *1) (-5 *1 (-804))) (-2351 (*1 *1 *1) (-5 *1 (-804))) (* (*1 *1 *1 *1) (-5 *1 (-804))) (-2364 (*1 *1 *1 *1) (-5 *1 (-804))) (** (*1 *1 *1 *1) (-5 *1 (-804))) (-3561 (*1 *1 *1 *1) (-5 *1 (-804))) (-3590 (*1 *1 *1 *1) (-5 *1 (-804))) (-3571 (*1 *1 *1 *1) (-5 *1 (-804))) (-3551 (*1 *1 *1 *1) (-5 *1 (-804))) (-3380 (*1 *1 *1 *1) (-5 *1 (-804))) (-2813 (*1 *1 *1 *1) (-5 *1 (-804))) (-3676 (*1 *1 *1) (-5 *1 (-804))) (-3848 (*1 *1 *1 *1) (-5 *1 (-804))) (-3848 (*1 *1 *1) (-5 *1 (-804))))
-(-13 (-1027) (-10 -8 (-15 -1606 ((-1186) $)) (-15 -2184 ($ (-1082))) (-15 -4233 ((-1186) (-1082))) (-15 -2589 ($ (-530))) (-15 -2589 ($ (-1099))) (-15 -2589 ($ (-1082))) (-15 -2589 ($ (-208))) (-15 -3958 ($)) (-15 -1447 ((-530) $)) (-15 -4156 ((-530) $)) (-15 -1447 ((-530))) (-15 -4156 ((-530))) (-15 -1762 ((-530) $)) (-15 -2083 ((-530) $)) (-15 -3593 ($ (-530))) (-15 -3921 ($ (-530))) (-15 -1266 ($ (-530) (-530))) (-15 -3628 ($ $ (-530))) (-15 -3638 ($ $ (-530))) (-15 -3705 ($ $ (-530))) (-15 -3628 ($ $)) (-15 -3638 ($ $)) (-15 -3705 ($ $)) (-15 -2105 ($ $ $)) (-15 -2664 ($ $ $)) (-15 -2105 ($ (-597 $))) (-15 -2664 ($ (-597 $))) (-15 -3853 ($ $ (-597 $))) (-15 -3130 ($ $ (-597 $))) (-15 -3130 ($ $ $ $)) (-15 -1749 ($ $ $)) (-15 -3092 ((-110) $)) (-15 -1902 ($ $ (-597 $))) (-15 -3166 ($ $)) (-15 -3138 ($ $ $)) (-15 -1678 ($ $)) (-15 -2263 ($ (-597 (-597 $)))) (-15 -4180 ($ $ $)) (-15 -3165 ($ $)) (-15 -3165 ($ $ $)) (-15 -1683 ($ $ $)) (-15 -2278 ($ $ $)) (-15 -3106 ($ $ $)) (-15 -3461 ($ $ $)) (-15 -3289 ($ $ (-719))) (-15 -2947 ($ $ $)) (-15 -3807 ($ $ $)) (-15 -2362 ($ $ $)) (-15 -2736 ($ $ $)) (-15 -4149 ($ $ $)) (-15 -4119 ($ $ (-597 $))) (-15 -1653 ($ $ (-597 $))) (-15 -2808 ($ $)) (-15 -3334 ($ $)) (-15 -3334 ($ $ (-719))) (-15 -4020 ($ $)) (-15 -4020 ($ $ (-719))) (-15 -1287 ($ $)) (-15 -2885 ($ $ $)) (-15 -3426 ($ $)) (-15 -3426 ($ $ $)) (-15 -3426 ($ $ $ $)) (-15 -1360 ($ $)) (-15 -1360 ($ $ $)) (-15 -1360 ($ $ $ $)) (-15 -3967 ($ $)) (-15 -3967 ($ $ $)) (-15 -3967 ($ $ $ $)) (-15 -3381 ($ $)) (-15 -3381 ($ (-597 $))) (-15 -3070 ($ $)) (-15 -3070 ($ (-597 $))) (-15 -3324 ($ $)) (-15 -3324 ($ (-597 $))) (-15 -3690 ($ (-597 $))) (-15 -4160 ($ (-597 $))) (-15 -2452 ($ (-597 $))) (-15 -2444 ($ (-597 $))) (-15 -2248 ($ $ $)) (-15 -2352 ($ $ $)) (-15 -2272 ($ $ $)) (-15 -2284 ($ $ $)) (-15 -2297 ($ $ $)) (-15 -2306 ($ $ $)) (-15 -2339 ($ $ $)) (-15 -2351 ($ $ $)) (-15 -2351 ($ $)) (-15 * ($ $ $)) (-15 -2364 ($ $ $)) (-15 ** ($ $ $)) (-15 -3561 ($ $ $)) (-15 -3590 ($ $ $)) (-15 -3571 ($ $ $)) (-15 -3551 ($ $ $)) (-15 -3380 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3676 ($ $)) (-15 -3848 ($ $ $)) (-15 -3848 ($ $))))
-((-2197 (((-1186) (-597 (-51))) 24)) (-2187 (((-1186) (-1082) (-804)) 14) (((-1186) (-804)) 9) (((-1186) (-1082)) 11)))
-(((-805) (-10 -7 (-15 -2187 ((-1186) (-1082))) (-15 -2187 ((-1186) (-804))) (-15 -2187 ((-1186) (-1082) (-804))) (-15 -2197 ((-1186) (-597 (-51)))))) (T -805))
-((-2197 (*1 *2 *3) (-12 (-5 *3 (-597 (-51))) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-804)) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-805)))) (-2187 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-805)))))
-(-10 -7 (-15 -2187 ((-1186) (-1082))) (-15 -2187 ((-1186) (-804))) (-15 -2187 ((-1186) (-1082) (-804))) (-15 -2197 ((-1186) (-597 (-51)))))
-((-2352 (((-110) $ $) NIL)) (-4007 (((-3 $ "failed") (-1099)) 33)) (-3023 (((-719)) 31)) (-1364 (($) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1905 (((-862) $) 29)) (-1424 (((-1082) $) 39)) (-1986 (($ (-862)) 28)) (-2624 (((-1046) $) NIL)) (-3260 (((-1099) $) 13) (((-506) $) 19) (((-833 (-360)) $) 26) (((-833 (-530)) $) 22)) (-2366 (((-804) $) 16)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 36)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 35)))
-(((-806 |#1|) (-13 (-789) (-572 (-1099)) (-572 (-506)) (-572 (-833 (-360))) (-572 (-833 (-530))) (-10 -8 (-15 -4007 ((-3 $ "failed") (-1099))))) (-597 (-1099))) (T -806))
-((-4007 (*1 *1 *2) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-806 *3)) (-14 *3 (-597 *2)))))
-(-13 (-789) (-572 (-1099)) (-572 (-506)) (-572 (-833 (-360))) (-572 (-833 (-530))) (-10 -8 (-15 -4007 ((-3 $ "failed") (-1099)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (((-893 |#1|) $) NIL) (($ (-893 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-162)))) (-3300 (((-719)) NIL)) (-1329 (((-1186) (-719)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-807 |#1| |#2| |#3| |#4|) (-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2366 ((-893 |#1|) $)) (-15 -2366 ($ (-893 |#1|))) (IF (|has| |#1| (-344)) (-15 -2364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1329 ((-1186) (-719))))) (-984) (-597 (-1099)) (-597 (-719)) (-719)) (T -807))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-893 *3)) (-5 *1 (-807 *3 *4 *5 *6)) (-4 *3 (-984)) (-14 *4 (-597 (-1099))) (-14 *5 (-597 (-719))) (-14 *6 (-719)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-5 *1 (-807 *3 *4 *5 *6)) (-14 *4 (-597 (-1099))) (-14 *5 (-597 (-719))) (-14 *6 (-719)))) (-2364 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-807 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *2 (-984)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-719))) (-14 *5 (-719)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-807 *4 *5 *6 *7)) (-4 *4 (-984)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 *3)) (-14 *7 *3))))
-(-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2366 ((-893 |#1|) $)) (-15 -2366 ($ (-893 |#1|))) (IF (|has| |#1| (-344)) (-15 -2364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -1329 ((-1186) (-719)))))
-((-2789 (((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|) 31)) (-3599 (((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|) 24)))
-(((-808 |#1| |#2| |#3|) (-10 -7 (-15 -3599 ((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|)) (-15 -2789 ((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|))) (-344) (-1172 |#1|) (-1157 |#1|)) (T -808))
-((-2789 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-163 *6)) (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))) (-3599 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-388 *6)) (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))))
-(-10 -7 (-15 -3599 ((-3 (-388 |#3|) "failed") (-719) (-719) |#2| |#2|)) (-15 -2789 ((-3 (-163 |#3|) "failed") (-719) (-719) |#2| |#2|)))
-((-3599 (((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|)) 28) (((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) 26)))
-(((-809 |#1| |#2| |#3|) (-10 -7 (-15 -3599 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (-15 -3599 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|)))) (-344) (-1099) |#1|) (T -809))
-((-3599 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5))) (-5 *1 (-809 *5 *6 *7)))) (-3599 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5))) (-5 *1 (-809 *5 *6 *7)))))
-(-10 -7 (-15 -3599 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (-15 -3599 ((-3 (-388 (-1154 |#2| |#1|)) "failed") (-719) (-719) (-1173 |#1| |#2| |#3|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2625 (($ $ (-530)) 60)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3165 (($ (-1095 (-530)) (-530)) 59)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-2957 (($ $) 62)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-2031 (((-719) $) 67)) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-4076 (((-530)) 64)) (-1439 (((-530) $) 63)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3168 (($ $ (-530)) 66)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-2513 (((-1080 (-530)) $) 68)) (-4050 (($ $) 65)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-4136 (((-530) $ (-530)) 61)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-810 |#1|) (-133) (-530)) (T -810))
-((-2513 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-1080 (-530))))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-719)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-4050 (*1 *1 *1) (-4 *1 (-810 *2))) (-4076 (*1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-2957 (*1 *1 *1) (-4 *1 (-810 *2))) (-4136 (*1 *2 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-2625 (*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))) (-3165 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *3 (-530)) (-4 *1 (-810 *4)))))
-(-13 (-289) (-140) (-10 -8 (-15 -2513 ((-1080 (-530)) $)) (-15 -2031 ((-719) $)) (-15 -3168 ($ $ (-530))) (-15 -4050 ($ $)) (-15 -4076 ((-530))) (-15 -1439 ((-530) $)) (-15 -2957 ($ $)) (-15 -4136 ((-530) $ (-530))) (-15 -2625 ($ $ (-530))) (-15 -3165 ($ (-1095 (-530)) (-530)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $ (-530)) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3165 (($ (-1095 (-530)) (-530)) NIL)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2957 (($ $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-2031 (((-719) $) NIL)) (-2731 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4076 (((-530)) NIL)) (-1439 (((-530) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3168 (($ $ (-530)) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2513 (((-1080 (-530)) $) NIL)) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-4136 (((-530) $ (-530)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
-(((-811 |#1|) (-810 |#1|) (-530)) (T -811))
-NIL
-(-810 |#1|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-811 |#1|) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-811 |#1|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| (-811 |#1|) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-811 |#1|) (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| (-811 |#1|) (-975 (-530))))) (-2585 (((-811 |#1|) $) NIL) (((-1099) $) NIL (|has| (-811 |#1|) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-811 |#1|) (-975 (-530)))) (((-530) $) NIL (|has| (-811 |#1|) (-975 (-530))))) (-3239 (($ $) NIL) (($ (-530) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-811 |#1|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-811 |#1|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-811 |#1|))) (|:| |vec| (-1181 (-811 |#1|)))) (-637 $) (-1181 $)) NIL) (((-637 (-811 |#1|)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-811 |#1|) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| (-811 |#1|) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-811 |#1|) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-811 |#1|) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-811 |#1|) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| (-811 |#1|) (-1075)))) (-2166 (((-110) $) NIL (|has| (-811 |#1|) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-811 |#1|) (-795)))) (-1817 (($ $ $) NIL (|has| (-811 |#1|) (-795)))) (-3217 (($ (-1 (-811 |#1|) (-811 |#1|)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-811 |#1|) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-811 |#1|) (-289)))) (-3175 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-811 |#1|) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-811 |#1|)) (-597 (-811 |#1|))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-811 |#1|) (-811 |#1|)) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-276 (-811 |#1|))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-597 (-276 (-811 |#1|)))) NIL (|has| (-811 |#1|) (-291 (-811 |#1|)))) (($ $ (-597 (-1099)) (-597 (-811 |#1|))) NIL (|has| (-811 |#1|) (-491 (-1099) (-811 |#1|)))) (($ $ (-1099) (-811 |#1|)) NIL (|has| (-811 |#1|) (-491 (-1099) (-811 |#1|))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-811 |#1|)) NIL (|has| (-811 |#1|) (-268 (-811 |#1|) (-811 |#1|))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| (-811 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-811 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1 (-811 |#1|) (-811 |#1|)) (-719)) NIL) (($ $ (-1 (-811 |#1|) (-811 |#1|))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-811 |#1|) $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| (-811 |#1|) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-811 |#1|) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-811 |#1|) (-572 (-506)))) (((-360) $) NIL (|has| (-811 |#1|) (-960))) (((-208) $) NIL (|has| (-811 |#1|) (-960)))) (-2054 (((-163 (-388 (-530))) $) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-811 |#1|) (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL) (($ (-811 |#1|)) NIL) (($ (-1099)) NIL (|has| (-811 |#1|) (-975 (-1099))))) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-811 |#1|) (-850))) (|has| (-811 |#1|) (-138))))) (-3300 (((-719)) NIL)) (-2748 (((-811 |#1|) $) NIL (|has| (-811 |#1|) (-515)))) (-3944 (((-110) $ $) NIL)) (-4136 (((-388 (-530)) $ (-530)) NIL)) (-3934 (($ $) NIL (|has| (-811 |#1|) (-768)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $) NIL (|has| (-811 |#1|) (-216))) (($ $ (-719)) NIL (|has| (-811 |#1|) (-216))) (($ $ (-1099)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-811 |#1|) (-841 (-1099)))) (($ $ (-1 (-811 |#1|) (-811 |#1|)) (-719)) NIL) (($ $ (-1 (-811 |#1|) (-811 |#1|))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-811 |#1|) (-795)))) (-2364 (($ $ $) NIL) (($ (-811 |#1|) (-811 |#1|)) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-811 |#1|) $) NIL) (($ $ (-811 |#1|)) NIL)))
-(((-812 |#1|) (-13 (-932 (-811 |#1|)) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $)))) (-530)) (T -812))
-((-4136 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-812 *4)) (-14 *4 *3) (-5 *3 (-530)))) (-2054 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-812 *3)) (-14 *3 (-530)))) (-3239 (*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-14 *2 (-530)))) (-3239 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-812 *3)) (-14 *3 *2))))
-(-13 (-932 (-811 |#1|)) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 ((|#2| $) NIL (|has| |#2| (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| |#2| (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (|has| |#2| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530))))) (-2585 ((|#2| $) NIL) (((-1099) $) NIL (|has| |#2| (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-530)))) (((-530) $) NIL (|has| |#2| (-975 (-530))))) (-3239 (($ $) 31) (($ (-530) $) 32)) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) 53)) (-1364 (($) NIL (|has| |#2| (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) NIL (|has| |#2| (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| |#2| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| |#2| (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 ((|#2| $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#2| (-1075)))) (-2166 (((-110) $) NIL (|has| |#2| (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 49)) (-3657 (($) NIL (|has| |#2| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| |#2| (-289)))) (-3175 ((|#2| $) NIL (|has| |#2| (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 |#2|) (-597 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-291 |#2|))) (($ $ (-276 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ (-597 (-276 |#2|))) NIL (|has| |#2| (-291 |#2|))) (($ $ (-597 (-1099)) (-597 |#2|)) NIL (|has| |#2| (-491 (-1099) |#2|))) (($ $ (-1099) |#2|) NIL (|has| |#2| (-491 (-1099) |#2|)))) (-2356 (((-719) $) NIL)) (-1902 (($ $ |#2|) NIL (|has| |#2| (-268 |#2| |#2|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) NIL (|has| |#2| (-216))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-1269 (($ $) NIL)) (-1928 ((|#2| $) NIL)) (-3260 (((-833 (-530)) $) NIL (|has| |#2| (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| |#2| (-572 (-833 (-360))))) (((-506) $) NIL (|has| |#2| (-572 (-506)))) (((-360) $) NIL (|has| |#2| (-960))) (((-208) $) NIL (|has| |#2| (-960)))) (-2054 (((-163 (-388 (-530))) $) 68)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-2366 (((-804) $) 87) (($ (-530)) 19) (($ $) NIL) (($ (-388 (-530))) 24) (($ |#2|) 18) (($ (-1099)) NIL (|has| |#2| (-975 (-1099))))) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2748 ((|#2| $) NIL (|has| |#2| (-515)))) (-3944 (((-110) $ $) NIL)) (-4136 (((-388 (-530)) $ (-530)) 60)) (-3934 (($ $) NIL (|has| |#2| (-768)))) (-3080 (($) 14 T CONST)) (-3093 (($) 16 T CONST)) (-3340 (($ $) NIL (|has| |#2| (-216))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) 35)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2351 (($ $) 39) (($ $ $) 41)) (-2339 (($ $ $) 37)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) 50)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 42) (($ $ $) 44) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
-(((-813 |#1| |#2|) (-13 (-932 |#2|) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $)))) (-530) (-810 |#1|)) (T -813))
-((-4136 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-388 (-530))) (-5 *1 (-813 *4 *5)) (-5 *3 (-530)) (-4 *5 (-810 *4)))) (-2054 (*1 *2 *1) (-12 (-14 *3 (-530)) (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))) (-3239 (*1 *1 *1) (-12 (-14 *2 (-530)) (-5 *1 (-813 *2 *3)) (-4 *3 (-810 *2)))) (-3239 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-14 *3 *2) (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))))
-(-13 (-932 |#2|) (-10 -8 (-15 -4136 ((-388 (-530)) $ (-530))) (-15 -2054 ((-163 (-388 (-530))) $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $))))
-((-2352 (((-110) $ $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-3245 ((|#2| $) 12)) (-2019 (($ |#1| |#2|) 9)) (-1424 (((-1082) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-2624 (((-1046) $) NIL (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#1| $) 11)) (-2377 (($ |#1| |#2|) 10)) (-2366 (((-804) $) 18 (-1461 (-12 (|has| |#1| (-571 (-804))) (|has| |#2| (-571 (-804)))) (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027)))))) (-2248 (((-110) $ $) 22 (-12 (|has| |#1| (-1027)) (|has| |#2| (-1027))))))
-(((-814 |#1| |#2|) (-13 (-1135) (-10 -8 (IF (|has| |#1| (-571 (-804))) (IF (|has| |#2| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1027)) (IF (|has| |#2| (-1027)) (-6 (-1027)) |%noBranch|) |%noBranch|) (-15 -2019 ($ |#1| |#2|)) (-15 -2377 ($ |#1| |#2|)) (-15 -3048 (|#1| $)) (-15 -3245 (|#2| $)))) (-1135) (-1135)) (T -814))
-((-2019 (*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))) (-2377 (*1 *1 *2 *3) (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))) (-3048 (*1 *2 *1) (-12 (-4 *2 (-1135)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1135)))) (-3245 (*1 *2 *1) (-12 (-4 *2 (-1135)) (-5 *1 (-814 *3 *2)) (-4 *3 (-1135)))))
-(-13 (-1135) (-10 -8 (IF (|has| |#1| (-571 (-804))) (IF (|has| |#2| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1027)) (IF (|has| |#2| (-1027)) (-6 (-1027)) |%noBranch|) |%noBranch|) (-15 -2019 ($ |#1| |#2|)) (-15 -2377 ($ |#1| |#2|)) (-15 -3048 (|#1| $)) (-15 -3245 (|#2| $))))
-((-2352 (((-110) $ $) NIL)) (-3522 (((-530) $) 15)) (-2643 (($ (-148)) 11)) (-3709 (($ (-148)) 12)) (-1424 (((-1082) $) NIL)) (-3886 (((-148) $) 13)) (-2624 (((-1046) $) NIL)) (-3148 (($ (-148)) 9)) (-1816 (($ (-148)) 8)) (-2366 (((-804) $) 23) (($ (-148)) 16)) (-1774 (($ (-148)) 10)) (-2248 (((-110) $ $) NIL)))
-(((-815) (-13 (-1027) (-10 -8 (-15 -1816 ($ (-148))) (-15 -3148 ($ (-148))) (-15 -1774 ($ (-148))) (-15 -2643 ($ (-148))) (-15 -3709 ($ (-148))) (-15 -3886 ((-148) $)) (-15 -3522 ((-530) $)) (-15 -2366 ($ (-148)))))) (T -815))
-((-1816 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3148 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-1774 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-2643 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3709 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3886 (*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-815)))) (-3522 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-815)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
-(-13 (-1027) (-10 -8 (-15 -1816 ($ (-148))) (-15 -3148 ($ (-148))) (-15 -1774 ($ (-148))) (-15 -2643 ($ (-148))) (-15 -3709 ($ (-148))) (-15 -3886 ((-148) $)) (-15 -3522 ((-530) $)) (-15 -2366 ($ (-148)))))
-((-2366 (((-297 (-530)) (-388 (-893 (-47)))) 23) (((-297 (-530)) (-893 (-47))) 18)))
-(((-816) (-10 -7 (-15 -2366 ((-297 (-530)) (-893 (-47)))) (-15 -2366 ((-297 (-530)) (-388 (-893 (-47))))))) (T -816))
-((-2366 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 (-47)))) (-5 *2 (-297 (-530))) (-5 *1 (-816)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-893 (-47))) (-5 *2 (-297 (-530))) (-5 *1 (-816)))))
-(-10 -7 (-15 -2366 ((-297 (-530)) (-893 (-47)))) (-15 -2366 ((-297 (-530)) (-388 (-893 (-47))))))
-((-3217 (((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)) 14)))
-(((-817 |#1| |#2|) (-10 -7 (-15 -3217 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|)))) (-1135) (-1135)) (T -817))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6)))))
-(-10 -7 (-15 -3217 ((-818 |#2|) (-1 |#2| |#1|) (-818 |#1|))))
-((-3663 (($ |#1| |#1|) 8)) (-2983 ((|#1| $ (-719)) 10)))
-(((-818 |#1|) (-10 -8 (-15 -3663 ($ |#1| |#1|)) (-15 -2983 (|#1| $ (-719)))) (-1135)) (T -818))
-((-2983 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-818 *2)) (-4 *2 (-1135)))) (-3663 (*1 *1 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1135)))))
-(-10 -8 (-15 -3663 ($ |#1| |#1|)) (-15 -2983 (|#1| $ (-719))))
-((-3217 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 14)))
-(((-819 |#1| |#2|) (-10 -7 (-15 -3217 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) (-1135) (-1135)) (T -819))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
-(-10 -7 (-15 -3217 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))))
-((-3663 (($ |#1| |#1| |#1|) 8)) (-2983 ((|#1| $ (-719)) 10)))
-(((-820 |#1|) (-10 -8 (-15 -3663 ($ |#1| |#1| |#1|)) (-15 -2983 (|#1| $ (-719)))) (-1135)) (T -820))
-((-2983 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-820 *2)) (-4 *2 (-1135)))) (-3663 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1135)))))
-(-10 -8 (-15 -3663 ($ |#1| |#1| |#1|)) (-15 -2983 (|#1| $ (-719))))
-((-1472 (((-597 (-1104)) (-1082)) 9)))
-(((-821) (-10 -7 (-15 -1472 ((-597 (-1104)) (-1082))))) (T -821))
-((-1472 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-821)))))
-(-10 -7 (-15 -1472 ((-597 (-1104)) (-1082))))
-((-3217 (((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)) 14)))
-(((-822 |#1| |#2|) (-10 -7 (-15 -3217 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|)))) (-1135) (-1135)) (T -822))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6)))))
-(-10 -7 (-15 -3217 ((-823 |#2|) (-1 |#2| |#1|) (-823 |#1|))))
-((-3120 (($ |#1| |#1| |#1|) 8)) (-2983 ((|#1| $ (-719)) 10)))
-(((-823 |#1|) (-10 -8 (-15 -3120 ($ |#1| |#1| |#1|)) (-15 -2983 (|#1| $ (-719)))) (-1135)) (T -823))
-((-2983 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-823 *2)) (-4 *2 (-1135)))) (-3120 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
-(-10 -8 (-15 -3120 ($ |#1| |#1| |#1|)) (-15 -2983 (|#1| $ (-719))))
-((-1291 (((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530)))) 32)) (-2916 (((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530))) 28)) (-3873 (((-1080 (-597 (-530))) (-597 (-530))) 41) (((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530))) 40)) (-3520 (((-1080 (-597 (-530))) (-530)) 42)) (-1777 (((-1080 (-597 (-530))) (-530) (-530)) 22) (((-1080 (-597 (-530))) (-530)) 16) (((-1080 (-597 (-530))) (-530) (-530) (-530)) 12)) (-3207 (((-1080 (-597 (-530))) (-1080 (-597 (-530)))) 26)) (-2555 (((-597 (-530)) (-597 (-530))) 25)))
-(((-824) (-10 -7 (-15 -1777 ((-1080 (-597 (-530))) (-530) (-530) (-530))) (-15 -1777 ((-1080 (-597 (-530))) (-530))) (-15 -1777 ((-1080 (-597 (-530))) (-530) (-530))) (-15 -2555 ((-597 (-530)) (-597 (-530)))) (-15 -3207 ((-1080 (-597 (-530))) (-1080 (-597 (-530))))) (-15 -2916 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -1291 ((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530))))) (-15 -3873 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -3873 ((-1080 (-597 (-530))) (-597 (-530)))) (-15 -3520 ((-1080 (-597 (-530))) (-530))))) (T -824))
-((-3520 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-3873 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-3873 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-1291 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *3 (-597 (-530))) (-5 *1 (-824)))) (-2916 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-597 (-530))))) (-3207 (*1 *2 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)))) (-2555 (*1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-824)))) (-1777 (*1 *2 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-1777 (*1 *2 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))) (-1777 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
-(-10 -7 (-15 -1777 ((-1080 (-597 (-530))) (-530) (-530) (-530))) (-15 -1777 ((-1080 (-597 (-530))) (-530))) (-15 -1777 ((-1080 (-597 (-530))) (-530) (-530))) (-15 -2555 ((-597 (-530)) (-597 (-530)))) (-15 -3207 ((-1080 (-597 (-530))) (-1080 (-597 (-530))))) (-15 -2916 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -1291 ((-1080 (-597 (-530))) (-597 (-530)) (-1080 (-597 (-530))))) (-15 -3873 ((-1080 (-597 (-530))) (-597 (-530)) (-597 (-530)))) (-15 -3873 ((-1080 (-597 (-530))) (-597 (-530)))) (-15 -3520 ((-1080 (-597 (-530))) (-530))))
-((-3260 (((-833 (-360)) $) 9 (|has| |#1| (-572 (-833 (-360))))) (((-833 (-530)) $) 8 (|has| |#1| (-572 (-833 (-530)))))))
-(((-825 |#1|) (-133) (-1135)) (T -825))
-NIL
-(-13 (-10 -7 (IF (|has| |t#1| (-572 (-833 (-530)))) (-6 (-572 (-833 (-530)))) |%noBranch|) (IF (|has| |t#1| (-572 (-833 (-360)))) (-6 (-572 (-833 (-360)))) |%noBranch|)))
-(((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))))
-((-2352 (((-110) $ $) NIL)) (-3538 (($) 14)) (-2404 (($ (-830 |#1| |#2|) (-830 |#1| |#3|)) 27)) (-2497 (((-830 |#1| |#3|) $) 16)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3658 (((-110) $) 22)) (-4031 (($) 19)) (-2366 (((-804) $) 30)) (-3161 (((-830 |#1| |#2|) $) 15)) (-2248 (((-110) $ $) 25)))
-(((-826 |#1| |#2| |#3|) (-13 (-1027) (-10 -8 (-15 -3658 ((-110) $)) (-15 -4031 ($)) (-15 -3538 ($)) (-15 -2404 ($ (-830 |#1| |#2|) (-830 |#1| |#3|))) (-15 -3161 ((-830 |#1| |#2|) $)) (-15 -2497 ((-830 |#1| |#3|) $)))) (-1027) (-1027) (-617 |#2|)) (T -826))
-((-3658 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))) (-4031 (*1 *1) (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027)) (-4 *4 (-617 *3)))) (-3538 (*1 *1) (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027)) (-4 *4 (-617 *3)))) (-2404 (*1 *1 *2 *3) (-12 (-5 *2 (-830 *4 *5)) (-5 *3 (-830 *4 *6)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-617 *5)) (-5 *1 (-826 *4 *5 *6)))) (-3161 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *4)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))) (-2497 (*1 *2 *1) (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *5)) (-5 *1 (-826 *3 *4 *5)) (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
-(-13 (-1027) (-10 -8 (-15 -3658 ((-110) $)) (-15 -4031 ($)) (-15 -3538 ($)) (-15 -2404 ($ (-830 |#1| |#2|) (-830 |#1| |#3|))) (-15 -3161 ((-830 |#1| |#2|) $)) (-15 -2497 ((-830 |#1| |#3|) $))))
-((-2352 (((-110) $ $) 7)) (-2890 (((-830 |#1| $) $ (-833 |#1|) (-830 |#1| $)) 13)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
-(((-827 |#1|) (-133) (-1027)) (T -827))
-((-2890 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-830 *4 *1)) (-5 *3 (-833 *4)) (-4 *1 (-827 *4)) (-4 *4 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2890 ((-830 |t#1| $) $ (-833 |t#1|) (-830 |t#1| $)))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1826 (((-110) (-597 |#2|) |#3|) 23) (((-110) |#2| |#3|) 18)) (-1242 (((-830 |#1| |#2|) |#2| |#3|) 43 (-12 (-3676 (|has| |#2| (-975 (-1099)))) (-3676 (|has| |#2| (-984))))) (((-597 (-276 (-893 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-984)) (-3676 (|has| |#2| (-975 (-1099)))))) (((-597 (-276 |#2|)) |#2| |#3|) 35 (|has| |#2| (-975 (-1099)))) (((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|) 21)))
-(((-828 |#1| |#2| |#3|) (-10 -7 (-15 -1826 ((-110) |#2| |#3|)) (-15 -1826 ((-110) (-597 |#2|) |#3|)) (-15 -1242 ((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|)) (IF (|has| |#2| (-975 (-1099))) (-15 -1242 ((-597 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-984)) (-15 -1242 ((-597 (-276 (-893 |#2|))) |#2| |#3|)) (-15 -1242 ((-830 |#1| |#2|) |#2| |#3|))))) (-1027) (-827 |#1|) (-572 (-833 |#1|))) (T -828))
-((-1242 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-830 *5 *3)) (-5 *1 (-828 *5 *3 *4)) (-3676 (-4 *3 (-975 (-1099)))) (-3676 (-4 *3 (-984))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-1242 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 (-893 *3)))) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-984)) (-3676 (-4 *3 (-975 (-1099)))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-1242 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 *3))) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-975 (-1099))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))) (-1242 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-5 *2 (-826 *5 *6 (-597 *6))) (-5 *1 (-828 *5 *6 *4)) (-5 *3 (-597 *6)) (-4 *4 (-572 (-833 *5))))) (-1826 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-4 *6 (-827 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *6 *4)) (-4 *4 (-572 (-833 *5))))) (-1826 (*1 *2 *3 *4) (-12 (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))))
-(-10 -7 (-15 -1826 ((-110) |#2| |#3|)) (-15 -1826 ((-110) (-597 |#2|) |#3|)) (-15 -1242 ((-826 |#1| |#2| (-597 |#2|)) (-597 |#2|) |#3|)) (IF (|has| |#2| (-975 (-1099))) (-15 -1242 ((-597 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-984)) (-15 -1242 ((-597 (-276 (-893 |#2|))) |#2| |#3|)) (-15 -1242 ((-830 |#1| |#2|) |#2| |#3|)))))
-((-3217 (((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|)) 22)))
-(((-829 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|)))) (-1027) (-1027) (-1027)) (T -829))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-830 *5 *6)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-830 *5 *7)) (-5 *1 (-829 *5 *6 *7)))))
-(-10 -7 (-15 -3217 ((-830 |#1| |#3|) (-1 |#3| |#2|) (-830 |#1| |#2|))))
-((-2352 (((-110) $ $) NIL)) (-4204 (($ $ $) 39)) (-3605 (((-3 (-110) "failed") $ (-833 |#1|)) 36)) (-3538 (($) 12)) (-1424 (((-1082) $) NIL)) (-3317 (($ (-833 |#1|) |#2| $) 20)) (-2624 (((-1046) $) NIL)) (-1267 (((-3 |#2| "failed") (-833 |#1|) $) 50)) (-3658 (((-110) $) 15)) (-4031 (($) 13)) (-2681 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))) $) 25)) (-2377 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|)))) 23)) (-2366 (((-804) $) 44)) (-3861 (($ (-833 |#1|) |#2| $ |#2|) 48)) (-2973 (($ (-833 |#1|) |#2| $) 47)) (-2248 (((-110) $ $) 41)))
-(((-830 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3658 ((-110) $)) (-15 -4031 ($)) (-15 -3538 ($)) (-15 -4204 ($ $ $)) (-15 -1267 ((-3 |#2| "failed") (-833 |#1|) $)) (-15 -2973 ($ (-833 |#1|) |#2| $)) (-15 -3317 ($ (-833 |#1|) |#2| $)) (-15 -3861 ($ (-833 |#1|) |#2| $ |#2|)) (-15 -2681 ((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))) $)) (-15 -2377 ($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))))) (-15 -3605 ((-3 (-110) "failed") $ (-833 |#1|))))) (-1027) (-1027)) (T -830))
-((-3658 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-4031 (*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3538 (*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-4204 (*1 *1 *1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-1267 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-4 *2 (-1027)) (-5 *1 (-830 *4 *2)))) (-2973 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-3317 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-3861 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3)) (-4 *3 (-1027)))) (-2681 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 *4)))) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 *4)))) (-4 *4 (-1027)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)))) (-3605 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-830 *4 *5)) (-4 *5 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -3658 ((-110) $)) (-15 -4031 ($)) (-15 -3538 ($)) (-15 -4204 ($ $ $)) (-15 -1267 ((-3 |#2| "failed") (-833 |#1|) $)) (-15 -2973 ($ (-833 |#1|) |#2| $)) (-15 -3317 ($ (-833 |#1|) |#2| $)) (-15 -3861 ($ (-833 |#1|) |#2| $ |#2|)) (-15 -2681 ((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))) $)) (-15 -2377 ($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 |#2|))))) (-15 -3605 ((-3 (-110) "failed") $ (-833 |#1|)))))
-((-2598 (((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|))) 32) (((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|))) 43) (((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|)) 35)) (-3605 (((-110) (-597 |#2|) (-833 |#1|)) 40) (((-110) |#2| (-833 |#1|)) 36)) (-3341 (((-1 (-110) |#2|) (-833 |#1|)) 16)) (-3231 (((-597 |#2|) (-833 |#1|)) 24)) (-1705 (((-833 |#1|) (-833 |#1|) |#2|) 20)))
-(((-831 |#1| |#2|) (-10 -7 (-15 -2598 ((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|))) (-15 -2598 ((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|)))) (-15 -2598 ((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|)))) (-15 -3341 ((-1 (-110) |#2|) (-833 |#1|))) (-15 -3605 ((-110) |#2| (-833 |#1|))) (-15 -3605 ((-110) (-597 |#2|) (-833 |#1|))) (-15 -1705 ((-833 |#1|) (-833 |#1|) |#2|)) (-15 -3231 ((-597 |#2|) (-833 |#1|)))) (-1027) (-1135)) (T -831))
-((-3231 (*1 *2 *3) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-597 *5)) (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))) (-1705 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-831 *4 *3)) (-4 *3 (-1135)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *2 (-110)) (-5 *1 (-831 *5 *6)))) (-3605 (*1 *2 *3 *4) (-12 (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-831 *5 *3)) (-4 *3 (-1135)))) (-3341 (*1 *2 *3) (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))) (-2598 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-833 *5)) (-5 *3 (-597 (-1099))) (-5 *4 (-1 (-110) (-597 *6))) (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *1 (-831 *5 *6)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-5 *3 (-597 (-1 (-110) *5))) (-4 *4 (-1027)) (-4 *5 (-1135)) (-5 *1 (-831 *4 *5)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *2 (-833 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1027)) (-4 *5 (-1135)) (-5 *1 (-831 *4 *5)))))
-(-10 -7 (-15 -2598 ((-833 |#1|) (-833 |#1|) (-1 (-110) |#2|))) (-15 -2598 ((-833 |#1|) (-833 |#1|) (-597 (-1 (-110) |#2|)))) (-15 -2598 ((-833 |#1|) (-833 |#1|) (-597 (-1099)) (-1 (-110) (-597 |#2|)))) (-15 -3341 ((-1 (-110) |#2|) (-833 |#1|))) (-15 -3605 ((-110) |#2| (-833 |#1|))) (-15 -3605 ((-110) (-597 |#2|) (-833 |#1|))) (-15 -1705 ((-833 |#1|) (-833 |#1|) |#2|)) (-15 -3231 ((-597 |#2|) (-833 |#1|))))
-((-3217 (((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)) 19)))
-(((-832 |#1| |#2|) (-10 -7 (-15 -3217 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|)))) (-1027) (-1027)) (T -832))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6)))))
-(-10 -7 (-15 -3217 ((-833 |#2|) (-1 |#2| |#1|) (-833 |#1|))))
-((-2352 (((-110) $ $) NIL)) (-3680 (($ $ (-597 (-51))) 64)) (-2746 (((-597 $) $) 118)) (-1264 (((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $) 24)) (-4201 (((-110) $) 30)) (-4175 (($ $ (-597 (-1099)) (-51)) 25)) (-3541 (($ $ (-597 (-51))) 63)) (-3139 (((-3 |#1| "failed") $) 61) (((-3 (-1099) "failed") $) 140)) (-2585 ((|#1| $) 58) (((-1099) $) NIL)) (-2509 (($ $) 108)) (-1568 (((-110) $) 47)) (-4022 (((-597 (-51)) $) 45)) (-1694 (($ (-1099) (-110) (-110) (-110)) 65)) (-3182 (((-3 (-597 $) "failed") (-597 $)) 72)) (-3464 (((-110) $) 50)) (-2152 (((-110) $) 49)) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) 36)) (-4101 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3193 (((-3 (-2 (|:| |val| $) (|:| -3194 $)) "failed") $) 83)) (-1534 (((-3 (-597 $) "failed") $) 33)) (-3840 (((-3 (-597 $) "failed") $ (-112)) 107) (((-3 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 $))) "failed") $) 95)) (-2071 (((-3 (-597 $) "failed") $) 37)) (-1487 (((-3 (-2 (|:| |val| $) (|:| -3194 (-719))) "failed") $) 40)) (-3306 (((-110) $) 29)) (-2624 (((-1046) $) NIL)) (-2661 (((-110) $) 21)) (-1778 (((-110) $) 46)) (-2869 (((-597 (-51)) $) 111)) (-2993 (((-110) $) 48)) (-1902 (($ (-112) (-597 $)) 92)) (-4218 (((-719) $) 28)) (-2579 (($ $) 62)) (-3260 (($ (-597 $)) 59)) (-1613 (((-110) $) 26)) (-2366 (((-804) $) 53) (($ |#1|) 18) (($ (-1099)) 66)) (-1705 (($ $ (-51)) 110)) (-3080 (($) 91 T CONST)) (-3093 (($) 73 T CONST)) (-2248 (((-110) $ $) 79)) (-2364 (($ $ $) 100)) (-2339 (($ $ $) 104)) (** (($ $ (-719)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
-(((-833 |#1|) (-13 (-1027) (-975 |#1|) (-975 (-1099)) (-10 -8 (-15 0 ($) -2708) (-15 1 ($) -2708) (-15 -1534 ((-3 (-597 $) "failed") $)) (-15 -1862 ((-3 (-597 $) "failed") $)) (-15 -3840 ((-3 (-597 $) "failed") $ (-112))) (-15 -3840 ((-3 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 $))) "failed") $)) (-15 -1487 ((-3 (-2 (|:| |val| $) (|:| -3194 (-719))) "failed") $)) (-15 -4101 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2071 ((-3 (-597 $) "failed") $)) (-15 -3193 ((-3 (-2 (|:| |val| $) (|:| -3194 $)) "failed") $)) (-15 -1902 ($ (-112) (-597 $))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ $)) (-15 -2364 ($ $ $)) (-15 -4218 ((-719) $)) (-15 -3260 ($ (-597 $))) (-15 -2579 ($ $)) (-15 -3306 ((-110) $)) (-15 -1568 ((-110) $)) (-15 -4201 ((-110) $)) (-15 -1613 ((-110) $)) (-15 -2993 ((-110) $)) (-15 -2152 ((-110) $)) (-15 -3464 ((-110) $)) (-15 -1778 ((-110) $)) (-15 -4022 ((-597 (-51)) $)) (-15 -3541 ($ $ (-597 (-51)))) (-15 -3680 ($ $ (-597 (-51)))) (-15 -1694 ($ (-1099) (-110) (-110) (-110))) (-15 -4175 ($ $ (-597 (-1099)) (-51))) (-15 -1264 ((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $)) (-15 -2661 ((-110) $)) (-15 -2509 ($ $)) (-15 -1705 ($ $ (-51))) (-15 -2869 ((-597 (-51)) $)) (-15 -2746 ((-597 $) $)) (-15 -3182 ((-3 (-597 $) "failed") (-597 $))))) (-1027)) (T -833))
-((-3080 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-3093 (*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-1534 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1862 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3840 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-833 *4))) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-3840 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 (-833 *3))))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1487 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3194 (-719)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-4101 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-833 *3)) (|:| |den| (-833 *3)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2071 (*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3193 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3194 (-833 *3)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1902 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 (-833 *4))) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-2339 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-2364 (*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-4218 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2579 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-3306 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1568 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2993 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2152 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3464 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1778 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3541 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3680 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-1694 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-110)) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-4175 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-51)) (-5 *1 (-833 *4)) (-4 *4 (-1027)))) (-1264 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51)))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2661 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2509 (*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))) (-1705 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2869 (*1 *2 *1) (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))) (-3182 (*1 *2 *2) (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(-13 (-1027) (-975 |#1|) (-975 (-1099)) (-10 -8 (-15 (-3080) ($) -2708) (-15 (-3093) ($) -2708) (-15 -1534 ((-3 (-597 $) "failed") $)) (-15 -1862 ((-3 (-597 $) "failed") $)) (-15 -3840 ((-3 (-597 $) "failed") $ (-112))) (-15 -3840 ((-3 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 $))) "failed") $)) (-15 -1487 ((-3 (-2 (|:| |val| $) (|:| -3194 (-719))) "failed") $)) (-15 -4101 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -2071 ((-3 (-597 $) "failed") $)) (-15 -3193 ((-3 (-2 (|:| |val| $) (|:| -3194 $)) "failed") $)) (-15 -1902 ($ (-112) (-597 $))) (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))) (-15 ** ($ $ $)) (-15 -2364 ($ $ $)) (-15 -4218 ((-719) $)) (-15 -3260 ($ (-597 $))) (-15 -2579 ($ $)) (-15 -3306 ((-110) $)) (-15 -1568 ((-110) $)) (-15 -4201 ((-110) $)) (-15 -1613 ((-110) $)) (-15 -2993 ((-110) $)) (-15 -2152 ((-110) $)) (-15 -3464 ((-110) $)) (-15 -1778 ((-110) $)) (-15 -4022 ((-597 (-51)) $)) (-15 -3541 ($ $ (-597 (-51)))) (-15 -3680 ($ $ (-597 (-51)))) (-15 -1694 ($ (-1099) (-110) (-110) (-110))) (-15 -4175 ($ $ (-597 (-1099)) (-51))) (-15 -1264 ((-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))) $)) (-15 -2661 ((-110) $)) (-15 -2509 ($ $)) (-15 -1705 ($ $ (-51))) (-15 -2869 ((-597 (-51)) $)) (-15 -2746 ((-597 $) $)) (-15 -3182 ((-3 (-597 $) "failed") (-597 $)))))
-((-2352 (((-110) $ $) NIL)) (-3702 (((-597 |#1|) $) 16)) (-3038 (((-110) $) 38)) (-3139 (((-3 (-622 |#1|) "failed") $) 43)) (-2585 (((-622 |#1|) $) 41)) (-3057 (($ $) 18)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-4109 (((-719) $) 46)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-622 |#1|) $) 17)) (-2366 (((-804) $) 37) (($ (-622 |#1|)) 21) (((-767 |#1|) $) 27) (($ |#1|) 20)) (-3093 (($) 8 T CONST)) (-1537 (((-597 (-622 |#1|)) $) 23)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 11)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 49)))
-(((-834 |#1|) (-13 (-795) (-975 (-622 |#1|)) (-10 -8 (-15 1 ($) -2708) (-15 -2366 ((-767 |#1|) $)) (-15 -2366 ($ |#1|)) (-15 -3048 ((-622 |#1|) $)) (-15 -4109 ((-719) $)) (-15 -1537 ((-597 (-622 |#1|)) $)) (-15 -3057 ($ $)) (-15 -3038 ((-110) $)) (-15 -3702 ((-597 |#1|) $)))) (-795)) (T -834))
-((-3093 (*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-2366 (*1 *1 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-597 (-622 *3))) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-3057 (*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))) (-3038 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-834 *3)) (-4 *3 (-795)))) (-3702 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
-(-13 (-795) (-975 (-622 |#1|)) (-10 -8 (-15 (-3093) ($) -2708) (-15 -2366 ((-767 |#1|) $)) (-15 -2366 ($ |#1|)) (-15 -3048 ((-622 |#1|) $)) (-15 -4109 ((-719) $)) (-15 -1537 ((-597 (-622 |#1|)) $)) (-15 -3057 ($ $)) (-15 -3038 ((-110) $)) (-15 -3702 ((-597 |#1|) $))))
-((-1225 ((|#1| |#1| |#1|) 19)))
-(((-835 |#1| |#2|) (-10 -7 (-15 -1225 (|#1| |#1| |#1|))) (-1157 |#2|) (-984)) (T -835))
-((-1225 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1157 *3)))))
-(-10 -7 (-15 -1225 (|#1| |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-2631 (((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 14)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3236 (((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 13)) (-2248 (((-110) $ $) 6)))
-(((-836) (-133)) (T -836))
-((-2631 (*1 *2 *3 *4) (-12 (-4 *1 (-836)) (-5 *3 (-996)) (-5 *4 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082)))))) (-3236 (*1 *2 *3) (-12 (-4 *1 (-836)) (-5 *3 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *2 (-973)))))
-(-13 (-1027) (-10 -7 (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))) (-996) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -3236 ((-973) (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1741 ((|#1| |#1| (-719)) 24)) (-2503 (((-3 |#1| "failed") |#1| |#1|) 22)) (-3850 (((-3 (-2 (|:| -3628 |#1|) (|:| -3638 |#1|)) "failed") |#1| (-719) (-719)) 27) (((-597 |#1|) |#1|) 29)))
-(((-837 |#1| |#2|) (-10 -7 (-15 -3850 ((-597 |#1|) |#1|)) (-15 -3850 ((-3 (-2 (|:| -3628 |#1|) (|:| -3638 |#1|)) "failed") |#1| (-719) (-719))) (-15 -2503 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1741 (|#1| |#1| (-719)))) (-1157 |#2|) (-344)) (T -837))
-((-1741 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-5 *1 (-837 *2 *4)) (-4 *2 (-1157 *4)))) (-2503 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1157 *3)))) (-3850 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-719)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -3628 *3) (|:| -3638 *3))) (-5 *1 (-837 *3 *5)) (-4 *3 (-1157 *5)))) (-3850 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-837 *3 *4)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -3850 ((-597 |#1|) |#1|)) (-15 -3850 ((-3 (-2 (|:| -3628 |#1|) (|:| -3638 |#1|)) "failed") |#1| (-719) (-719))) (-15 -2503 ((-3 |#1| "failed") |#1| |#1|)) (-15 -1741 (|#1| |#1| (-719))))
-((-2688 (((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082)) 96) (((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208)) 91) (((-973) (-839) (-996)) 83) (((-973) (-839)) 84)) (-2631 (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996)) 59) (((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839)) 61)))
-(((-838) (-10 -7 (-15 -2688 ((-973) (-839))) (-15 -2688 ((-973) (-839) (-996))) (-15 -2688 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208))) (-15 -2688 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996))))) (T -838))
-((-2631 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-838)))) (-2631 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082))))) (-5 *1 (-838)))) (-2688 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973)) (-5 *1 (-838)))) (-2688 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082)) (-5 *8 (-208)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973)) (-5 *1 (-838)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-838)))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-973)) (-5 *1 (-838)))))
-(-10 -7 (-15 -2688 ((-973) (-839))) (-15 -2688 ((-973) (-839) (-996))) (-15 -2688 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082) (-208))) (-15 -2688 ((-973) (-360) (-360) (-360) (-360) (-719) (-719) (-597 (-297 (-360))) (-597 (-597 (-297 (-360)))) (-1082))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839))) (-15 -2631 ((-2 (|:| -2631 (-360)) (|:| -3907 (-1082)) (|:| |explanations| (-597 (-1082)))) (-839) (-996))))
-((-2352 (((-110) $ $) NIL)) (-2585 (((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $) 19)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 21) (($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) 18)) (-2248 (((-110) $ $) NIL)))
-(((-839) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $))))) (T -839))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-839)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *1 (-839)))) (-2585 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208)))) (-5 *1 (-839)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ($ (-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))))) (-15 -2366 ((-804) $)) (-15 -2585 ((-2 (|:| |pde| (-597 (-297 (-208)))) (|:| |constraints| (-597 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-719)) (|:| |boundaryType| (-530)) (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208)))))) (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082)) (|:| |tol| (-208))) $))))
-((-3289 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) 10) (($ $ |#2| (-719)) 12) (($ $ (-597 |#2|) (-597 (-719))) 15)) (-3340 (($ $ |#2|) 16) (($ $ (-597 |#2|)) 18) (($ $ |#2| (-719)) 19) (($ $ (-597 |#2|) (-597 (-719))) 21)))
-(((-840 |#1| |#2|) (-10 -8 (-15 -3340 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3340 (|#1| |#1| |#2| (-719))) (-15 -3340 (|#1| |#1| (-597 |#2|))) (-15 -3340 (|#1| |#1| |#2|)) (-15 -3289 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3289 (|#1| |#1| |#2| (-719))) (-15 -3289 (|#1| |#1| (-597 |#2|))) (-15 -3289 (|#1| |#1| |#2|))) (-841 |#2|) (-1027)) (T -840))
-NIL
-(-10 -8 (-15 -3340 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3340 (|#1| |#1| |#2| (-719))) (-15 -3340 (|#1| |#1| (-597 |#2|))) (-15 -3340 (|#1| |#1| |#2|)) (-15 -3289 (|#1| |#1| (-597 |#2|) (-597 (-719)))) (-15 -3289 (|#1| |#1| |#2| (-719))) (-15 -3289 (|#1| |#1| (-597 |#2|))) (-15 -3289 (|#1| |#1| |#2|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3289 (($ $ |#1|) 40) (($ $ (-597 |#1|)) 39) (($ $ |#1| (-719)) 38) (($ $ (-597 |#1|) (-597 (-719))) 37)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ |#1|) 36) (($ $ (-597 |#1|)) 35) (($ $ |#1| (-719)) 34) (($ $ (-597 |#1|) (-597 (-719))) 33)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-841 |#1|) (-133) (-1027)) (T -841))
-((-3289 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027)))) (-3289 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3289 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 (-719))) (-4 *1 (-841 *4)) (-4 *4 (-1027)))) (-3340 (*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3340 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027)))) (-3340 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 (-719))) (-4 *1 (-841 *4)) (-4 *4 (-1027)))))
-(-13 (-984) (-10 -8 (-15 -3289 ($ $ |t#1|)) (-15 -3289 ($ $ (-597 |t#1|))) (-15 -3289 ($ $ |t#1| (-719))) (-15 -3289 ($ $ (-597 |t#1|) (-597 (-719)))) (-15 -3340 ($ $ |t#1|)) (-15 -3340 ($ $ (-597 |t#1|))) (-15 -3340 ($ $ |t#1| (-719))) (-15 -3340 ($ $ (-597 |t#1|) (-597 (-719))))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 26)) (-3186 (((-110) $ (-719)) NIL)) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-2096 (($ $ $) NIL (|has| $ (-6 -4270)))) (-4232 (($ $ $) NIL (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) (($ $ "left" $) NIL (|has| $ (-6 -4270))) (($ $ "right" $) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3638 (($ $) 25)) (-2920 (($ |#1|) 12) (($ $ $) 17)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-3628 (($ $) 23)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) 20)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1122 |#1|) $) 9) (((-804) $) 29 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 21 (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-842 |#1|) (-13 (-117 |#1|) (-10 -8 (-15 -2920 ($ |#1|)) (-15 -2920 ($ $ $)) (-15 -2366 ((-1122 |#1|) $)))) (-1027)) (T -842))
-((-2920 (*1 *1 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))) (-2920 (*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1122 *3)) (-5 *1 (-842 *3)) (-4 *3 (-1027)))))
-(-13 (-117 |#1|) (-10 -8 (-15 -2920 ($ |#1|)) (-15 -2920 ($ $ $)) (-15 -2366 ((-1122 |#1|) $))))
-((-3133 ((|#2| (-1066 |#1| |#2|)) 40)))
-(((-843 |#1| |#2|) (-10 -7 (-15 -3133 (|#2| (-1066 |#1| |#2|)))) (-862) (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (T -843))
-((-3133 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *2)) (-14 *4 (-862)) (-4 *2 (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (-5 *1 (-843 *4 *2)))))
-(-10 -7 (-15 -3133 (|#2| (-1066 |#1| |#2|))))
-((-2352 (((-110) $ $) 7)) (-2350 (($) 18 T CONST)) (-2707 (((-3 $ "failed") $) 15)) (-3259 (((-1029 |#1|) $ |#1|) 32)) (-2731 (((-110) $) 17)) (-2508 (($ $ $) 30 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-1817 (($ $ $) 29 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 24)) (-2624 (((-1046) $) 10)) (-4098 ((|#1| $ |#1|) 34)) (-1902 ((|#1| $ |#1|) 33)) (-1445 (($ (-597 (-597 |#1|))) 35)) (-4137 (($ (-597 |#1|)) 36)) (-2555 (($ $ $) 21)) (-2607 (($ $ $) 20)) (-2366 (((-804) $) 11)) (-3093 (($) 19 T CONST)) (-2306 (((-110) $ $) 27 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2284 (((-110) $ $) 26 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 28 (-1461 (|has| |#1| (-795)) (|has| |#1| (-349))))) (-2272 (((-110) $ $) 31)) (-2364 (($ $ $) 23)) (** (($ $ (-862)) 13) (($ $ (-719)) 16) (($ $ (-530)) 22)) (* (($ $ $) 14)))
-(((-844 |#1|) (-133) (-1027)) (T -844))
-((-4137 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-844 *3)))) (-1445 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-4 *1 (-844 *3)))) (-4098 (*1 *2 *1 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1027)))) (-1902 (*1 *2 *1 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1027)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-1029 *3)))) (-2272 (*1 *2 *1 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(-13 (-453) (-10 -8 (-15 -4137 ($ (-597 |t#1|))) (-15 -1445 ($ (-597 (-597 |t#1|)))) (-15 -4098 (|t#1| $ |t#1|)) (-15 -1902 (|t#1| $ |t#1|)) (-15 -3259 ((-1029 |t#1|) $ |t#1|)) (-15 -2272 ((-110) $ $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-795)) |%noBranch|)))
-(((-99) . T) ((-571 (-804)) . T) ((-453) . T) ((-675) . T) ((-795) -1461 (|has| |#1| (-795)) (|has| |#1| (-349))) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-2496 (((-597 (-597 (-719))) $) 108)) (-2086 (((-597 (-719)) (-846 |#1|) $) 130)) (-3042 (((-597 (-719)) (-846 |#1|) $) 131)) (-3883 (((-597 (-846 |#1|)) $) 98)) (-1364 (((-846 |#1|) $ (-530)) 103) (((-846 |#1|) $) 104)) (-2847 (($ (-597 (-846 |#1|))) 110)) (-2031 (((-719) $) 105)) (-1731 (((-1029 (-1029 |#1|)) $) 128)) (-3259 (((-1029 |#1|) $ |#1|) 121) (((-1029 (-1029 |#1|)) $ (-1029 |#1|)) 139) (((-1029 (-597 |#1|)) $ (-597 |#1|)) 142)) (-3368 (((-1029 |#1|) $) 101)) (-4197 (((-110) (-846 |#1|) $) 92)) (-1424 (((-1082) $) NIL)) (-3662 (((-1186) $) 95) (((-1186) $ (-530) (-530)) 143)) (-2624 (((-1046) $) NIL)) (-3478 (((-597 (-846 |#1|)) $) 96)) (-1902 (((-846 |#1|) $ (-719)) 99)) (-1429 (((-719) $) 106)) (-2366 (((-804) $) 119) (((-597 (-846 |#1|)) $) 23) (($ (-597 (-846 |#1|))) 109)) (-1510 (((-597 |#1|) $) 107)) (-2248 (((-110) $ $) 136)) (-2297 (((-110) $ $) 134)) (-2272 (((-110) $ $) 133)))
-(((-845 |#1|) (-13 (-1027) (-10 -8 (-15 -2366 ((-597 (-846 |#1|)) $)) (-15 -3478 ((-597 (-846 |#1|)) $)) (-15 -1902 ((-846 |#1|) $ (-719))) (-15 -1364 ((-846 |#1|) $ (-530))) (-15 -1364 ((-846 |#1|) $)) (-15 -2031 ((-719) $)) (-15 -1429 ((-719) $)) (-15 -1510 ((-597 |#1|) $)) (-15 -3883 ((-597 (-846 |#1|)) $)) (-15 -2496 ((-597 (-597 (-719))) $)) (-15 -2366 ($ (-597 (-846 |#1|)))) (-15 -2847 ($ (-597 (-846 |#1|)))) (-15 -3259 ((-1029 |#1|) $ |#1|)) (-15 -1731 ((-1029 (-1029 |#1|)) $)) (-15 -3259 ((-1029 (-1029 |#1|)) $ (-1029 |#1|))) (-15 -3259 ((-1029 (-597 |#1|)) $ (-597 |#1|))) (-15 -4197 ((-110) (-846 |#1|) $)) (-15 -2086 ((-597 (-719)) (-846 |#1|) $)) (-15 -3042 ((-597 (-719)) (-846 |#1|) $)) (-15 -3368 ((-1029 |#1|) $)) (-15 -2272 ((-110) $ $)) (-15 -2297 ((-110) $ $)) (-15 -3662 ((-1186) $)) (-15 -3662 ((-1186) $ (-530) (-530))))) (-1027)) (T -845))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3478 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))) (-1364 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))) (-1364 (*1 *2 *1) (-12 (-5 *2 (-846 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1510 (*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3883 (*1 *2 *1) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2496 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-719)))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))) (-2847 (*1 *1 *2) (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))) (-3259 (*1 *2 *1 *3) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-1731 (*1 *2 *1) (-12 (-5 *2 (-1029 (-1029 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-1029 *4))) (-5 *1 (-845 *4)) (-5 *3 (-1029 *4)))) (-3259 (*1 *2 *1 *3) (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-597 *4))) (-5 *1 (-845 *4)) (-5 *3 (-597 *4)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-845 *4)))) (-2086 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719))) (-5 *1 (-845 *4)))) (-3042 (*1 *2 *3 *1) (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719))) (-5 *1 (-845 *4)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2272 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-2297 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3662 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))) (-3662 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-845 *4)) (-4 *4 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ((-597 (-846 |#1|)) $)) (-15 -3478 ((-597 (-846 |#1|)) $)) (-15 -1902 ((-846 |#1|) $ (-719))) (-15 -1364 ((-846 |#1|) $ (-530))) (-15 -1364 ((-846 |#1|) $)) (-15 -2031 ((-719) $)) (-15 -1429 ((-719) $)) (-15 -1510 ((-597 |#1|) $)) (-15 -3883 ((-597 (-846 |#1|)) $)) (-15 -2496 ((-597 (-597 (-719))) $)) (-15 -2366 ($ (-597 (-846 |#1|)))) (-15 -2847 ($ (-597 (-846 |#1|)))) (-15 -3259 ((-1029 |#1|) $ |#1|)) (-15 -1731 ((-1029 (-1029 |#1|)) $)) (-15 -3259 ((-1029 (-1029 |#1|)) $ (-1029 |#1|))) (-15 -3259 ((-1029 (-597 |#1|)) $ (-597 |#1|))) (-15 -4197 ((-110) (-846 |#1|) $)) (-15 -2086 ((-597 (-719)) (-846 |#1|) $)) (-15 -3042 ((-597 (-719)) (-846 |#1|) $)) (-15 -3368 ((-1029 |#1|) $)) (-15 -2272 ((-110) $ $)) (-15 -2297 ((-110) $ $)) (-15 -3662 ((-1186) $)) (-15 -3662 ((-1186) $ (-530) (-530)))))
-((-2352 (((-110) $ $) NIL)) (-1307 (((-597 $) (-597 $)) 77)) (-1867 (((-530) $) 60)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2031 (((-719) $) 58)) (-3259 (((-1029 |#1|) $ |#1|) 49)) (-2731 (((-110) $) NIL)) (-3457 (((-110) $) 63)) (-4009 (((-719) $) 61)) (-3368 (((-1029 |#1|) $) 42)) (-2508 (($ $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-1817 (($ $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-3665 (((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $) 37)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 93)) (-2624 (((-1046) $) NIL)) (-1712 (((-1029 |#1|) $) 100 (|has| |#1| (-349)))) (-1403 (((-110) $) 59)) (-4098 ((|#1| $ |#1|) 47)) (-1902 ((|#1| $ |#1|) 94)) (-1429 (((-719) $) 44)) (-1445 (($ (-597 (-597 |#1|))) 85)) (-2682 (((-911) $) 53)) (-4137 (($ (-597 |#1|)) 21)) (-2555 (($ $ $) NIL)) (-2607 (($ $ $) NIL)) (-3974 (($ (-597 (-597 |#1|))) 39)) (-2424 (($ (-597 (-597 |#1|))) 88)) (-1904 (($ (-597 |#1|)) 96)) (-2366 (((-804) $) 84) (($ (-597 (-597 |#1|))) 66) (($ (-597 |#1|)) 67)) (-3093 (($) 16 T CONST)) (-2306 (((-110) $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2248 (((-110) $ $) 45)) (-2297 (((-110) $ $) NIL (-1461 (|has| |#1| (-349)) (|has| |#1| (-795))))) (-2272 (((-110) $ $) 65)) (-2364 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ $ $) 22)))
-(((-846 |#1|) (-13 (-844 |#1|) (-10 -8 (-15 -3665 ((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $)) (-15 -3974 ($ (-597 (-597 |#1|)))) (-15 -2366 ($ (-597 (-597 |#1|)))) (-15 -2366 ($ (-597 |#1|))) (-15 -2424 ($ (-597 (-597 |#1|)))) (-15 -1429 ((-719) $)) (-15 -3368 ((-1029 |#1|) $)) (-15 -2682 ((-911) $)) (-15 -2031 ((-719) $)) (-15 -4009 ((-719) $)) (-15 -1867 ((-530) $)) (-15 -1403 ((-110) $)) (-15 -3457 ((-110) $)) (-15 -1307 ((-597 $) (-597 $))) (IF (|has| |#1| (-349)) (-15 -1712 ((-1029 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -1904 ($ (-597 |#1|))) (IF (|has| |#1| (-349)) (-15 -1904 ($ (-597 |#1|))) |%noBranch|)))) (-1027)) (T -846))
-((-3665 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-597 *3)) (|:| |image| (-597 *3)))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-3974 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-2424 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-3368 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2682 (*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-2031 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-4009 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1867 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1403 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-3457 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1307 (*1 *2 *2) (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027)))) (-1712 (*1 *2 *1) (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-349)) (-4 *3 (-1027)))) (-1904 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
-(-13 (-844 |#1|) (-10 -8 (-15 -3665 ((-2 (|:| |preimage| (-597 |#1|)) (|:| |image| (-597 |#1|))) $)) (-15 -3974 ($ (-597 (-597 |#1|)))) (-15 -2366 ($ (-597 (-597 |#1|)))) (-15 -2366 ($ (-597 |#1|))) (-15 -2424 ($ (-597 (-597 |#1|)))) (-15 -1429 ((-719) $)) (-15 -3368 ((-1029 |#1|) $)) (-15 -2682 ((-911) $)) (-15 -2031 ((-719) $)) (-15 -4009 ((-719) $)) (-15 -1867 ((-530) $)) (-15 -1403 ((-110) $)) (-15 -3457 ((-110) $)) (-15 -1307 ((-597 $) (-597 $))) (IF (|has| |#1| (-349)) (-15 -1712 ((-1029 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-515)) (-15 -1904 ($ (-597 |#1|))) (IF (|has| |#1| (-349)) (-15 -1904 ($ (-597 |#1|))) |%noBranch|))))
-((-3706 (((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|)) 128)) (-2220 ((|#1|) 77)) (-2701 (((-399 (-1095 |#4|)) (-1095 |#4|)) 137)) (-1805 (((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|)) 69)) (-3277 (((-399 (-1095 |#4|)) (-1095 |#4|)) 147)) (-2309 (((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|) 92)))
-(((-847 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3706 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|))) (-15 -3277 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2701 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2220 (|#1|)) (-15 -2309 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|)) (-15 -1805 ((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|)))) (-850) (-741) (-795) (-890 |#1| |#2| |#3|)) (T -847))
-((-1805 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *7)) (-4 *7 (-795)) (-4 *5 (-850)) (-4 *6 (-741)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-399 (-1095 *8))) (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-1095 *8)))) (-2309 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7)) (-4 *7 (-890 *5 *6 *4)) (-4 *5 (-850)) (-4 *6 (-741)) (-4 *4 (-795)) (-5 *1 (-847 *5 *6 *4 *7)))) (-2220 (*1 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850)) (-5 *1 (-847 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7))) (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7)))) (-3706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-847 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3706 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|))) (-15 -3277 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2701 ((-399 (-1095 |#4|)) (-1095 |#4|))) (-15 -2220 (|#1|)) (-15 -2309 ((-3 (-597 (-1095 |#4|)) "failed") (-597 (-1095 |#4|)) (-1095 |#4|) |#3|)) (-15 -1805 ((-399 (-1095 |#4|)) (-597 |#3|) (-1095 |#4|))))
-((-3706 (((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|)) 36)) (-2220 ((|#1|) 54)) (-2701 (((-399 (-1095 |#2|)) (-1095 |#2|)) 102)) (-1805 (((-399 (-1095 |#2|)) (-1095 |#2|)) 90)) (-3277 (((-399 (-1095 |#2|)) (-1095 |#2|)) 113)))
-(((-848 |#1| |#2|) (-10 -7 (-15 -3706 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))) (-15 -3277 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -2701 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -2220 (|#1|)) (-15 -1805 ((-399 (-1095 |#2|)) (-1095 |#2|)))) (-850) (-1157 |#1|)) (T -848))
-((-1805 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-2220 (*1 *2) (-12 (-4 *2 (-850)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1157 *2)))) (-2701 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-3277 (*1 *2 *3) (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5))) (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))) (-3706 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-850)) (-5 *1 (-848 *4 *5)))))
-(-10 -7 (-15 -3706 ((-3 (-597 (-1095 |#2|)) "failed") (-597 (-1095 |#2|)) (-1095 |#2|))) (-15 -3277 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -2701 ((-399 (-1095 |#2|)) (-1095 |#2|))) (-15 -2220 (|#1|)) (-15 -1805 ((-399 (-1095 |#2|)) (-1095 |#2|))))
-((-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 41)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 18)) (-3251 (((-3 $ "failed") $) 35)))
-(((-849 |#1|) (-10 -8 (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|)))) (-850)) (T -849))
-NIL
-(-10 -8 (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 58)) (-3544 (($ $) 49)) (-3272 (((-399 $) $) 50)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 55)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-3295 (((-110) $) 51)) (-2731 (((-110) $) 30)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-3845 (((-399 (-1095 $)) (-1095 $)) 56)) (-1473 (((-399 (-1095 $)) (-1095 $)) 57)) (-2611 (((-399 $) $) 48)) (-3551 (((-3 $ "failed") $ $) 40)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 54 (|has| $ (-138)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3251 (((-3 $ "failed") $) 53 (|has| $ (-138)))) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-850) (-133)) (T -850))
-((-2569 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-850)))) (-4002 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-1473 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-3845 (*1 *2 *3) (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))) (-1708 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-597 (-1095 *1))) (-5 *3 (-1095 *1)) (-4 *1 (-850)))) (-2665 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-138)) (-4 *1 (-850)) (-5 *2 (-1181 *1)))) (-3251 (*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-850)))))
-(-13 (-1139) (-10 -8 (-15 -4002 ((-399 (-1095 $)) (-1095 $))) (-15 -1473 ((-399 (-1095 $)) (-1095 $))) (-15 -3845 ((-399 (-1095 $)) (-1095 $))) (-15 -2569 ((-1095 $) (-1095 $) (-1095 $))) (-15 -1708 ((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $))) (IF (|has| $ (-138)) (PROGN (-15 -2665 ((-3 (-1181 $) "failed") (-637 $))) (-15 -3251 ((-3 $ "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2536 (((-110) $) NIL)) (-2766 (((-719)) NIL)) (-1367 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-3143 (((-1109 (-862) (-719)) (-530)) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-3023 (((-719)) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 $ "failed") $) NIL)) (-2585 (($ $) NIL)) (-1574 (($ (-1181 $)) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-1677 (($) NIL)) (-2798 (((-110) $) NIL)) (-3948 (($ $) NIL) (($ $ (-719)) NIL)) (-3295 (((-110) $) NIL)) (-2031 (((-781 (-862)) $) NIL) (((-862) $) NIL)) (-2731 (((-110) $) NIL)) (-2931 (($) NIL (|has| $ (-349)))) (-1672 (((-110) $) NIL (|has| $ (-349)))) (-2376 (($ $ (-862)) NIL (|has| $ (-349))) (($ $) NIL)) (-2972 (((-3 $ "failed") $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1359 (((-1095 $) $ (-862)) NIL (|has| $ (-349))) (((-1095 $) $) NIL)) (-1905 (((-862) $) NIL)) (-3005 (((-1095 $) $) NIL (|has| $ (-349)))) (-3396 (((-3 (-1095 $) "failed") $ $) NIL (|has| $ (-349))) (((-1095 $) $) NIL (|has| $ (-349)))) (-1658 (($ $ (-1095 $)) NIL (|has| $ (-349)))) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL T CONST)) (-1986 (($ (-862)) NIL)) (-1655 (((-110) $) NIL)) (-2624 (((-1046) $) NIL)) (-1974 (($) NIL (|has| $ (-349)))) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL)) (-2611 (((-399 $) $) NIL)) (-1415 (((-862)) NIL) (((-781 (-862))) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-1823 (((-3 (-719) "failed") $ $) NIL) (((-719) $) NIL)) (-2488 (((-130)) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1429 (((-862) $) NIL) (((-781 (-862)) $) NIL)) (-1781 (((-1095 $)) NIL)) (-3406 (($) NIL)) (-1698 (($) NIL (|has| $ (-349)))) (-2328 (((-637 $) (-1181 $)) NIL) (((-1181 $) $) NIL)) (-3260 (((-530) $) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-3300 (((-719)) NIL)) (-3220 (((-1181 $) (-862)) NIL) (((-1181 $)) NIL)) (-3944 (((-110) $ $) NIL)) (-2856 (((-110) $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3962 (($ $ (-719)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-851 |#1|) (-13 (-330) (-310 $) (-572 (-530))) (-862)) (T -851))
-NIL
-(-13 (-330) (-310 $) (-572 (-530)))
-((-1680 (((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)) 79)) (-2116 (((-110) (-317 |#2| |#3| |#4| |#5|)) 17)) (-2031 (((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|)) 15)))
-(((-852 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2031 ((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -2116 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -1680 ((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)))) (-13 (-795) (-522) (-975 (-530))) (-411 |#1|) (-1157 |#2|) (-1157 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -852))
-((-1680 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-2 (|:| -2031 (-719)) (|:| -2047 *8))) (-5 *1 (-852 *4 *5 *6 *7 *8)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-110)) (-5 *1 (-852 *4 *5 *6 *7 *8)))) (-2031 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-719)) (-5 *1 (-852 *4 *5 *6 *7 *8)))))
-(-10 -7 (-15 -2031 ((-3 (-719) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -2116 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -1680 ((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|))))
-((-1680 (((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)) 56)) (-2116 (((-110) (-317 (-388 (-530)) |#1| |#2| |#3|)) 16)) (-2031 (((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)) 14)))
-(((-853 |#1| |#2| |#3|) (-10 -7 (-15 -2031 ((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -2116 ((-110) (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -1680 ((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|)))) (-1157 (-388 (-530))) (-1157 (-388 |#1|)) (-323 (-388 (-530)) |#1| |#2|)) (T -853))
-((-1680 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-2 (|:| -2031 (-719)) (|:| -2047 *6))) (-5 *1 (-853 *4 *5 *6)))) (-2116 (*1 *2 *3) (-12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-110)) (-5 *1 (-853 *4 *5 *6)))) (-2031 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6)) (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-719)) (-5 *1 (-853 *4 *5 *6)))))
-(-10 -7 (-15 -2031 ((-3 (-719) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -2116 ((-110) (-317 (-388 (-530)) |#1| |#2| |#3|))) (-15 -1680 ((-3 (-2 (|:| -2031 (-719)) (|:| -2047 |#3|)) "failed") (-317 (-388 (-530)) |#1| |#2| |#3|))))
-((-2630 ((|#2| |#2|) 26)) (-2462 (((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))) 15)) (-4049 (((-862) (-530)) 35)) (-4056 (((-530) |#2|) 42)) (-2828 (((-530) |#2|) 21) (((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|) 20)))
-(((-854 |#1| |#2|) (-10 -7 (-15 -4049 ((-862) (-530))) (-15 -2828 ((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|)) (-15 -2828 ((-530) |#2|)) (-15 -2462 ((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))) (-15 -4056 ((-530) |#2|)) (-15 -2630 (|#2| |#2|))) (-1157 (-388 (-530))) (-1157 (-388 |#1|))) (T -854))
-((-2630 (*1 *2 *2) (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *1 (-854 *3 *2)) (-4 *2 (-1157 (-388 *3))))) (-4056 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))) (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))) (-2828 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3)) (-4 *3 (-1157 (-388 *4))))) (-2828 (*1 *2 *3) (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *2 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))) (-5 *1 (-854 *3 *4)) (-4 *4 (-1157 (-388 *3))))) (-4049 (*1 *2 *3) (-12 (-5 *3 (-530)) (-4 *4 (-1157 (-388 *3))) (-5 *2 (-862)) (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))))
-(-10 -7 (-15 -4049 ((-862) (-530))) (-15 -2828 ((-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))) |#1|)) (-15 -2828 ((-530) |#2|)) (-15 -2462 ((-530) (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))) (-15 -4056 ((-530) |#2|)) (-15 -2630 (|#2| |#2|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 ((|#1| $) 81)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-3590 (($ $ $) NIL)) (-2707 (((-3 $ "failed") $) 75)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-1832 (($ |#1| (-399 |#1|)) 73)) (-3086 (((-1095 |#1|) |#1| |#1|) 41)) (-2108 (($ $) 49)) (-2731 (((-110) $) NIL)) (-2886 (((-530) $) 78)) (-1344 (($ $ (-530)) 80)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-4065 ((|#1| $) 77)) (-2652 (((-399 |#1|) $) 76)) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) 74)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2311 (($ $) 39)) (-2366 (((-804) $) 99) (($ (-530)) 54) (($ $) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 31) (((-388 |#1|) $) 59) (($ (-388 (-399 |#1|))) 67)) (-3300 (((-719)) 52)) (-3944 (((-110) $ $) NIL)) (-3080 (($) 23 T CONST)) (-3093 (($) 12 T CONST)) (-2248 (((-110) $ $) 68)) (-2364 (($ $ $) NIL)) (-2351 (($ $) 88) (($ $ $) NIL)) (-2339 (($ $ $) 38)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 90) (($ $ $) 37) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
-(((-855 |#1|) (-13 (-344) (-37 |#1|) (-10 -8 (-15 -2366 ((-388 |#1|) $)) (-15 -2366 ($ (-388 (-399 |#1|)))) (-15 -2311 ($ $)) (-15 -2652 ((-399 |#1|) $)) (-15 -4065 (|#1| $)) (-15 -1344 ($ $ (-530))) (-15 -2886 ((-530) $)) (-15 -3086 ((-1095 |#1|) |#1| |#1|)) (-15 -2108 ($ $)) (-15 -1832 ($ |#1| (-399 |#1|))) (-15 -1612 (|#1| $)))) (-289)) (T -855))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-388 (-399 *3))) (-4 *3 (-289)) (-5 *1 (-855 *3)))) (-2311 (*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-2652 (*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-4065 (*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-1344 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2886 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-3086 (*1 *2 *3 *3) (-12 (-5 *2 (-1095 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))) (-2108 (*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))) (-1832 (*1 *1 *2 *3) (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-855 *2)))) (-1612 (*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
-(-13 (-344) (-37 |#1|) (-10 -8 (-15 -2366 ((-388 |#1|) $)) (-15 -2366 ($ (-388 (-399 |#1|)))) (-15 -2311 ($ $)) (-15 -2652 ((-399 |#1|) $)) (-15 -4065 (|#1| $)) (-15 -1344 ($ $ (-530))) (-15 -2886 ((-530) $)) (-15 -3086 ((-1095 |#1|) |#1| |#1|)) (-15 -2108 ($ $)) (-15 -1832 ($ |#1| (-399 |#1|))) (-15 -1612 (|#1| $))))
-((-1832 (((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099)) 17) (((-51) (-388 (-893 |#1|)) (-1099)) 18)))
-(((-856 |#1|) (-10 -7 (-15 -1832 ((-51) (-388 (-893 |#1|)) (-1099))) (-15 -1832 ((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099)))) (-13 (-289) (-140))) (T -856))
-((-1832 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-399 (-893 *6))) (-5 *5 (-1099)) (-5 *3 (-893 *6)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *6)))) (-1832 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *5)))))
-(-10 -7 (-15 -1832 ((-51) (-388 (-893 |#1|)) (-1099))) (-15 -1832 ((-51) (-893 |#1|) (-399 (-893 |#1|)) (-1099))))
-((-2534 ((|#4| (-597 |#4|)) 121) (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2204 (((-1095 |#4|) (-597 (-1095 |#4|))) 114) (((-1095 |#4|) (-1095 |#4|) (-1095 |#4|)) 50) ((|#4| (-597 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
-(((-857 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2204 (|#4| |#4| |#4|)) (-15 -2204 (|#4| (-597 |#4|))) (-15 -2204 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2204 ((-1095 |#4|) (-597 (-1095 |#4|)))) (-15 -2534 (|#4| |#4| |#4|)) (-15 -2534 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2534 (|#4| (-597 |#4|)))) (-741) (-795) (-289) (-890 |#3| |#1| |#2|)) (T -857))
-((-2534 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))) (-2534 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6)))) (-2534 (*1 *2 *2 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-597 (-1095 *7))) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-1095 *7)) (-5 *1 (-857 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))) (-2204 (*1 *2 *2 *2) (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6)))) (-2204 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5)) (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)))) (-2204 (*1 *2 *2 *2) (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4)))))
-(-10 -7 (-15 -2204 (|#4| |#4| |#4|)) (-15 -2204 (|#4| (-597 |#4|))) (-15 -2204 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2204 ((-1095 |#4|) (-597 (-1095 |#4|)))) (-15 -2534 (|#4| |#4| |#4|)) (-15 -2534 ((-1095 |#4|) (-1095 |#4|) (-1095 |#4|))) (-15 -2534 (|#4| (-597 |#4|))))
-((-3701 (((-845 (-530)) (-911)) 23) (((-845 (-530)) (-597 (-530))) 20)) (-2282 (((-845 (-530)) (-597 (-530))) 48) (((-845 (-530)) (-862)) 49)) (-4239 (((-845 (-530))) 24)) (-2544 (((-845 (-530))) 38) (((-845 (-530)) (-597 (-530))) 37)) (-2902 (((-845 (-530))) 36) (((-845 (-530)) (-597 (-530))) 35)) (-3195 (((-845 (-530))) 34) (((-845 (-530)) (-597 (-530))) 33)) (-1528 (((-845 (-530))) 32) (((-845 (-530)) (-597 (-530))) 31)) (-3047 (((-845 (-530))) 30) (((-845 (-530)) (-597 (-530))) 29)) (-1649 (((-845 (-530))) 40) (((-845 (-530)) (-597 (-530))) 39)) (-3216 (((-845 (-530)) (-597 (-530))) 52) (((-845 (-530)) (-862)) 53)) (-1292 (((-845 (-530)) (-597 (-530))) 50) (((-845 (-530)) (-862)) 51)) (-3902 (((-845 (-530)) (-597 (-530))) 46) (((-845 (-530)) (-862)) 47)) (-2786 (((-845 (-530)) (-597 (-862))) 43)))
-(((-858) (-10 -7 (-15 -2282 ((-845 (-530)) (-862))) (-15 -2282 ((-845 (-530)) (-597 (-530)))) (-15 -3902 ((-845 (-530)) (-862))) (-15 -3902 ((-845 (-530)) (-597 (-530)))) (-15 -2786 ((-845 (-530)) (-597 (-862)))) (-15 -1292 ((-845 (-530)) (-862))) (-15 -1292 ((-845 (-530)) (-597 (-530)))) (-15 -3216 ((-845 (-530)) (-862))) (-15 -3216 ((-845 (-530)) (-597 (-530)))) (-15 -3047 ((-845 (-530)) (-597 (-530)))) (-15 -3047 ((-845 (-530)))) (-15 -1528 ((-845 (-530)) (-597 (-530)))) (-15 -1528 ((-845 (-530)))) (-15 -3195 ((-845 (-530)) (-597 (-530)))) (-15 -3195 ((-845 (-530)))) (-15 -2902 ((-845 (-530)) (-597 (-530)))) (-15 -2902 ((-845 (-530)))) (-15 -2544 ((-845 (-530)) (-597 (-530)))) (-15 -2544 ((-845 (-530)))) (-15 -1649 ((-845 (-530)) (-597 (-530)))) (-15 -1649 ((-845 (-530)))) (-15 -4239 ((-845 (-530)))) (-15 -3701 ((-845 (-530)) (-597 (-530)))) (-15 -3701 ((-845 (-530)) (-911))))) (T -858))
-((-3701 (*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3701 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-4239 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1649 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2544 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2544 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2902 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3195 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1528 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1528 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3047 (*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3047 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-1292 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-597 (-862))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))) (-2282 (*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(-10 -7 (-15 -2282 ((-845 (-530)) (-862))) (-15 -2282 ((-845 (-530)) (-597 (-530)))) (-15 -3902 ((-845 (-530)) (-862))) (-15 -3902 ((-845 (-530)) (-597 (-530)))) (-15 -2786 ((-845 (-530)) (-597 (-862)))) (-15 -1292 ((-845 (-530)) (-862))) (-15 -1292 ((-845 (-530)) (-597 (-530)))) (-15 -3216 ((-845 (-530)) (-862))) (-15 -3216 ((-845 (-530)) (-597 (-530)))) (-15 -3047 ((-845 (-530)) (-597 (-530)))) (-15 -3047 ((-845 (-530)))) (-15 -1528 ((-845 (-530)) (-597 (-530)))) (-15 -1528 ((-845 (-530)))) (-15 -3195 ((-845 (-530)) (-597 (-530)))) (-15 -3195 ((-845 (-530)))) (-15 -2902 ((-845 (-530)) (-597 (-530)))) (-15 -2902 ((-845 (-530)))) (-15 -2544 ((-845 (-530)) (-597 (-530)))) (-15 -2544 ((-845 (-530)))) (-15 -1649 ((-845 (-530)) (-597 (-530)))) (-15 -1649 ((-845 (-530)))) (-15 -4239 ((-845 (-530)))) (-15 -3701 ((-845 (-530)) (-597 (-530)))) (-15 -3701 ((-845 (-530)) (-911))))
-((-2995 (((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))) 12)) (-3333 (((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))) 11)))
-(((-859 |#1|) (-10 -7 (-15 -3333 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2995 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099))))) (-432)) (T -859))
-((-2995 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-859 *4)))) (-3333 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432)) (-5 *1 (-859 *4)))))
-(-10 -7 (-15 -3333 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -2995 ((-597 (-893 |#1|)) (-597 (-893 |#1|)) (-597 (-1099)))))
-((-2366 (((-297 |#1|) (-457)) 16)))
-(((-860 |#1|) (-10 -7 (-15 -2366 ((-297 |#1|) (-457)))) (-13 (-795) (-522))) (T -860))
-((-2366 (*1 *2 *3) (-12 (-5 *3 (-457)) (-5 *2 (-297 *4)) (-5 *1 (-860 *4)) (-4 *4 (-13 (-795) (-522))))))
-(-10 -7 (-15 -2366 ((-297 |#1|) (-457))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-2731 (((-110) $) 30)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-861) (-133)) (T -861))
-((-3856 (*1 *2 *3) (-12 (-4 *1 (-861)) (-5 *2 (-2 (|:| -2065 (-597 *1)) (|:| -1974 *1))) (-5 *3 (-597 *1)))) (-1286 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-861)))))
-(-13 (-432) (-10 -8 (-15 -3856 ((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $))) (-15 -1286 ((-3 (-597 $) "failed") (-597 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2204 (($ $ $) NIL)) (-2366 (((-804) $) NIL)) (-3093 (($) NIL T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ $ $) NIL)))
-(((-862) (-13 (-742) (-675) (-10 -8 (-15 -2204 ($ $ $)) (-6 (-4271 "*"))))) (T -862))
-((-2204 (*1 *1 *1 *1) (-5 *1 (-862))))
-(-13 (-742) (-675) (-10 -8 (-15 -2204 ($ $ $)) (-6 (-4271 "*"))))
-((-3474 ((|#2| (-597 |#1|) (-597 |#1|)) 24)))
-(((-863 |#1| |#2|) (-10 -7 (-15 -3474 (|#2| (-597 |#1|) (-597 |#1|)))) (-344) (-1157 |#1|)) (T -863))
-((-3474 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-4 *2 (-1157 *4)) (-5 *1 (-863 *4 *2)))))
-(-10 -7 (-15 -3474 (|#2| (-597 |#1|) (-597 |#1|))))
-((-1621 (((-1095 |#2|) (-597 |#2|) (-597 |#2|)) 17) (((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|)) 13)))
-(((-864 |#1| |#2|) (-10 -7 (-15 -1621 ((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|))) (-15 -1621 ((-1095 |#2|) (-597 |#2|) (-597 |#2|)))) (-1099) (-344)) (T -864))
-((-1621 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *5)) (-4 *5 (-344)) (-5 *2 (-1095 *5)) (-5 *1 (-864 *4 *5)) (-14 *4 (-1099)))) (-1621 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1154 *4 *5)) (-5 *3 (-597 *5)) (-14 *4 (-1099)) (-4 *5 (-344)) (-5 *1 (-864 *4 *5)))))
-(-10 -7 (-15 -1621 ((-1154 |#1| |#2|) (-1154 |#1| |#2|) (-597 |#2|) (-597 |#2|))) (-15 -1621 ((-1095 |#2|) (-597 |#2|) (-597 |#2|))))
-((-3724 (((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082)) 139)) (-1496 ((|#4| |#4|) 155)) (-2926 (((-597 (-388 (-893 |#1|))) (-597 (-1099))) 118)) (-3094 (((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530)) 75)) (-1434 (((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|)) 59)) (-3492 (((-637 |#4|) (-637 |#4|) (-597 |#4|)) 55)) (-3513 (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082)) 151)) (-2050 (((-530) (-637 |#4|) (-862) (-1082)) 132) (((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082)) 131) (((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082)) 130) (((-530) (-637 |#4|) (-1082)) 127) (((-530) (-637 |#4|) (-597 (-1099)) (-1082)) 126) (((-530) (-637 |#4|) (-597 |#4|) (-1082)) 125) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862)) 124) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862)) 123) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862)) 122) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|)) 120) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099))) 119) (((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|)) 115)) (-1514 ((|#4| (-893 |#1|)) 68)) (-2610 (((-110) (-597 |#4|) (-597 (-597 |#4|))) 152)) (-2225 (((-597 (-597 (-530))) (-530) (-530)) 129)) (-2224 (((-597 (-597 |#4|)) (-597 (-597 |#4|))) 88)) (-3430 (((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|))))) 86)) (-1571 (((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|))))) 85)) (-2836 (((-110) (-597 (-893 |#1|))) 17) (((-110) (-597 |#4|)) 13)) (-3201 (((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|)) 71)) (-1876 (((-597 |#4|) |#4|) 49)) (-3146 (((-597 (-388 (-893 |#1|))) (-597 |#4|)) 114) (((-637 (-388 (-893 |#1|))) (-637 |#4|)) 56) (((-388 (-893 |#1|)) |#4|) 111)) (-2013 (((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530)) 93)) (-2974 (((-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719)) 84)) (-2125 (((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719)) 101)) (-2489 (((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -2030 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -2426 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) 48)))
-(((-865 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862))) (-15 -2050 ((-530) (-637 |#4|) (-597 |#4|) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 (-1099)) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-862) (-1082))) (-15 -3724 ((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -3513 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -2013 ((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530))) (-15 -3146 ((-388 (-893 |#1|)) |#4|)) (-15 -3146 ((-637 (-388 (-893 |#1|))) (-637 |#4|))) (-15 -3146 ((-597 (-388 (-893 |#1|))) (-597 |#4|))) (-15 -2926 ((-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1514 (|#4| (-893 |#1|))) (-15 -3201 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|))) (-15 -2974 ((-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719))) (-15 -1434 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|))) (-15 -2489 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -2030 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -2426 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-15 -1876 ((-597 |#4|) |#4|)) (-15 -1571 ((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -3430 ((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -2224 ((-597 (-597 |#4|)) (-597 (-597 |#4|)))) (-15 -2225 ((-597 (-597 (-530))) (-530) (-530))) (-15 -2610 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -2125 ((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719))) (-15 -3492 ((-637 |#4|) (-637 |#4|) (-597 |#4|))) (-15 -3094 ((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530))) (-15 -1496 (|#4| |#4|)) (-15 -2836 ((-110) (-597 |#4|))) (-15 -2836 ((-110) (-597 (-893 |#1|))))) (-13 (-289) (-140)) (-13 (-795) (-572 (-1099))) (-741) (-890 |#1| |#3| |#2|)) (T -865))
-((-2836 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7)))) (-1496 (*1 *2 *2) (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099)))) (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *2)) (-4 *2 (-890 *3 *5 *4)))) (-3094 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-5 *4 (-637 *12)) (-5 *5 (-597 (-388 (-893 *9)))) (-5 *6 (-597 (-597 *12))) (-5 *7 (-719)) (-5 *8 (-530)) (-4 *9 (-13 (-289) (-140))) (-4 *12 (-890 *9 *11 *10)) (-4 *10 (-13 (-795) (-572 (-1099)))) (-4 *11 (-741)) (-5 *2 (-2 (|:| |eqzro| (-597 *12)) (|:| |neqzro| (-597 *12)) (|:| |wcond| (-597 (-893 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *9)))) (|:| -3220 (-597 (-1181 (-388 (-893 *9))))))))) (-5 *1 (-865 *9 *10 *11 *12)))) (-3492 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *7)) (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))) (-2125 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-719)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |det| *8) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-2610 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *5 *6 *7 *8)))) (-2225 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *6 *5)))) (-2224 (*1 *2 *2) (-12 (-5 *2 (-597 (-597 *6))) (-4 *6 (-890 *3 *5 *4)) (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099)))) (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *6)))) (-3430 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *7) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *7))))) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719)) (-5 *1 (-865 *4 *5 *6 *7)))) (-1571 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *7) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *7))))) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719)) (-5 *1 (-865 *4 *5 *6 *7)))) (-1876 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 *3)) (-5 *1 (-865 *4 *5 *6 *3)) (-4 *3 (-890 *4 *6 *5)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -2030 (-637 (-388 (-893 *4)))) (|:| |vec| (-597 (-388 (-893 *4)))) (|:| -2426 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3220 (-597 (-1181 (-388 (-893 *4))))))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-1434 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3220 (-597 (-1181 (-388 (-893 *4))))))) (-5 *3 (-597 *7)) (-4 *4 (-13 (-289) (-140))) (-4 *7 (-890 *4 *6 *5)) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))) (-2974 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| *8) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 *8))))) (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-719)))) (-3201 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-4 *7 (-890 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-110)) (|:| |z0| (-597 *7)) (|:| |n0| (-597 *7)))) (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-1514 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-289) (-140))) (-4 *2 (-890 *4 *6 *5)) (-5 *1 (-865 *4 *5 *6 *2)) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)))) (-2926 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-637 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7)))) (-3146 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-388 (-893 *4))) (-5 *1 (-865 *4 *5 *6 *3)) (-4 *3 (-890 *4 *6 *5)))) (-2013 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-637 *11)) (-5 *4 (-597 (-388 (-893 *8)))) (-5 *5 (-719)) (-5 *6 (-1082)) (-4 *8 (-13 (-289) (-140))) (-4 *11 (-890 *8 *10 *9)) (-4 *9 (-13 (-795) (-572 (-1099)))) (-4 *10 (-741)) (-5 *2 (-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 *11)) (|:| |neqzro| (-597 *11)) (|:| |wcond| (-597 (-893 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *8)))) (|:| -3220 (-597 (-1181 (-388 (-893 *8)))))))))) (|:| |rgsz| (-530)))) (-5 *1 (-865 *8 *9 *10 *11)) (-5 *7 (-530)))) (-3513 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7)) (|:| |wcond| (-597 (-893 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3220 (-597 (-1181 (-388 (-893 *4)))))))))) (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))) (-3724 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3220 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *4 (-1082)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-890 *5 *7 *6)) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-862)) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-2050 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 (-1099))) (-5 *5 (-862)) (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *7 *8 *9 *10)))) (-2050 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 *10)) (-5 *5 (-862)) (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *7 *8 *9 *10)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-1082)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 *9)) (-5 *5 (-1082)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *6 *7 *8 *9)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-862)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3220 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9)) (|:| |wcond| (-597 (-893 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *6)))) (|:| -3220 (-597 (-1181 (-388 (-893 *6)))))))))) (-5 *1 (-865 *6 *7 *8 *9)))) (-2050 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-637 *9)) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9)) (|:| |wcond| (-597 (-893 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *6)))) (|:| -3220 (-597 (-1181 (-388 (-893 *6)))))))))) (-5 *1 (-865 *6 *7 *8 *9)) (-5 *4 (-597 *9)))) (-2050 (*1 *2 *3) (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7)) (|:| |wcond| (-597 (-893 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *4)))) (|:| -3220 (-597 (-1181 (-388 (-893 *4)))))))))) (-5 *1 (-865 *4 *5 *6 *7)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-5 *4 (-597 (-1099))) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3220 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)))) (-2050 (*1 *2 *3 *4) (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-597 (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8)) (|:| |wcond| (-597 (-893 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 *5)))) (|:| -3220 (-597 (-1181 (-388 (-893 *5)))))))))) (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
-(-10 -7 (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 |#4|) (-862))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-597 (-1099)) (-862))) (-15 -2050 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-637 |#4|) (-862))) (-15 -2050 ((-530) (-637 |#4|) (-597 |#4|) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 (-1099)) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 |#4|) (-862) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-597 (-1099)) (-862) (-1082))) (-15 -2050 ((-530) (-637 |#4|) (-862) (-1082))) (-15 -3724 ((-530) (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -3513 ((-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|))))))))) (-1082))) (-15 -2013 ((-2 (|:| |rgl| (-597 (-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))))) (|:| |rgsz| (-530))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-719) (-1082) (-530))) (-15 -3146 ((-388 (-893 |#1|)) |#4|)) (-15 -3146 ((-637 (-388 (-893 |#1|))) (-637 |#4|))) (-15 -3146 ((-597 (-388 (-893 |#1|))) (-597 |#4|))) (-15 -2926 ((-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1514 (|#4| (-893 |#1|))) (-15 -3201 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-597 |#4|)) (|:| |n0| (-597 |#4|))) (-597 |#4|) (-597 |#4|))) (-15 -2974 ((-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))) (-637 |#4|) (-719))) (-15 -1434 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-597 |#4|))) (-15 -2489 ((-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))) (-2 (|:| -2030 (-637 (-388 (-893 |#1|)))) (|:| |vec| (-597 (-388 (-893 |#1|)))) (|:| -2426 (-719)) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (-15 -1876 ((-597 |#4|) |#4|)) (-15 -1571 ((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -3430 ((-719) (-597 (-2 (|:| -2426 (-719)) (|:| |eqns| (-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))) (|:| |fgb| (-597 |#4|)))))) (-15 -2224 ((-597 (-597 |#4|)) (-597 (-597 |#4|)))) (-15 -2225 ((-597 (-597 (-530))) (-530) (-530))) (-15 -2610 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -2125 ((-597 (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530))))) (-637 |#4|) (-719))) (-15 -3492 ((-637 |#4|) (-637 |#4|) (-597 |#4|))) (-15 -3094 ((-2 (|:| |eqzro| (-597 |#4|)) (|:| |neqzro| (-597 |#4|)) (|:| |wcond| (-597 (-893 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1181 (-388 (-893 |#1|)))) (|:| -3220 (-597 (-1181 (-388 (-893 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))) (-637 |#4|) (-597 (-388 (-893 |#1|))) (-597 (-597 |#4|)) (-719) (-719) (-530))) (-15 -1496 (|#4| |#4|)) (-15 -2836 ((-110) (-597 |#4|))) (-15 -2836 ((-110) (-597 (-893 |#1|)))))
-((-3852 (((-868) |#1| (-1099)) 17) (((-868) |#1| (-1099) (-1022 (-208))) 21)) (-2532 (((-868) |#1| |#1| (-1099) (-1022 (-208))) 19) (((-868) |#1| (-1099) (-1022 (-208))) 15)))
-(((-866 |#1|) (-10 -7 (-15 -2532 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -2532 ((-868) |#1| |#1| (-1099) (-1022 (-208)))) (-15 -3852 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -3852 ((-868) |#1| (-1099)))) (-572 (-506))) (T -866))
-((-3852 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-3852 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-2532 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))) (-2532 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868)) (-5 *1 (-866 *3)) (-4 *3 (-572 (-506))))))
-(-10 -7 (-15 -2532 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -2532 ((-868) |#1| |#1| (-1099) (-1022 (-208)))) (-15 -3852 ((-868) |#1| (-1099) (-1022 (-208)))) (-15 -3852 ((-868) |#1| (-1099))))
-((-2898 (($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 70)) (-3574 (((-1022 (-208)) $) 40)) (-3562 (((-1022 (-208)) $) 39)) (-3554 (((-1022 (-208)) $) 38)) (-3985 (((-597 (-597 (-208))) $) 43)) (-2698 (((-1022 (-208)) $) 41)) (-2745 (((-530) (-530)) 32)) (-3465 (((-530) (-530)) 28)) (-2450 (((-530) (-530)) 30)) (-3879 (((-110) (-110)) 35)) (-1485 (((-530)) 31)) (-3399 (($ $ (-1022 (-208))) 73) (($ $) 74)) (-1836 (($ (-1 (-884 (-208)) (-208)) (-1022 (-208))) 78) (($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 79)) (-2532 (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 82) (($ $ (-1022 (-208))) 76)) (-1318 (((-530)) 36)) (-2210 (((-530)) 27)) (-1788 (((-530)) 29)) (-2425 (((-597 (-597 (-884 (-208)))) $) 95)) (-2667 (((-110) (-110)) 37)) (-2366 (((-804) $) 94)) (-2012 (((-110)) 34)))
-(((-867) (-13 (-914) (-10 -8 (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ $ (-1022 (-208)))) (-15 -2898 ($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3399 ($ $ (-1022 (-208)))) (-15 -3399 ($ $)) (-15 -2698 ((-1022 (-208)) $)) (-15 -3985 ((-597 (-597 (-208))) $)) (-15 -2210 ((-530))) (-15 -3465 ((-530) (-530))) (-15 -1788 ((-530))) (-15 -2450 ((-530) (-530))) (-15 -1485 ((-530))) (-15 -2745 ((-530) (-530))) (-15 -2012 ((-110))) (-15 -3879 ((-110) (-110))) (-15 -1318 ((-530))) (-15 -2667 ((-110) (-110)))))) (T -867))
-((-1836 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-1836 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-2532 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-2532 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-867)))) (-2532 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-2898 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-3399 (*1 *1 *1) (-5 *1 (-867))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-867)))) (-2210 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-3465 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-1788 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-2450 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-1485 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-2745 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-2012 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))) (-3879 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))) (-1318 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))) (-2667 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
-(-13 (-914) (-10 -8 (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ $ (-1022 (-208)))) (-15 -2898 ($ $ (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3399 ($ $ (-1022 (-208)))) (-15 -3399 ($ $)) (-15 -2698 ((-1022 (-208)) $)) (-15 -3985 ((-597 (-597 (-208))) $)) (-15 -2210 ((-530))) (-15 -3465 ((-530) (-530))) (-15 -1788 ((-530))) (-15 -2450 ((-530) (-530))) (-15 -1485 ((-530))) (-15 -2745 ((-530) (-530))) (-15 -2012 ((-110))) (-15 -3879 ((-110) (-110))) (-15 -1318 ((-530))) (-15 -2667 ((-110) (-110)))))
-((-2898 (($ $ (-1022 (-208))) 70) (($ $ (-1022 (-208)) (-1022 (-208))) 71)) (-3562 (((-1022 (-208)) $) 44)) (-3554 (((-1022 (-208)) $) 43)) (-2698 (((-1022 (-208)) $) 45)) (-1800 (((-530) (-530)) 37)) (-2124 (((-530) (-530)) 33)) (-4241 (((-530) (-530)) 35)) (-3211 (((-110) (-110)) 39)) (-2470 (((-530)) 36)) (-3399 (($ $ (-1022 (-208))) 74) (($ $) 75)) (-1836 (($ (-1 (-884 (-208)) (-208)) (-1022 (-208))) 84) (($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 85)) (-3852 (($ (-1 (-208) (-208)) (-1022 (-208))) 92) (($ (-1 (-208) (-208))) 95)) (-2532 (($ (-1 (-208) (-208)) (-1022 (-208))) 79) (($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208))) 80) (($ (-597 (-1 (-208) (-208))) (-1022 (-208))) 87) (($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208))) 88) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208))) 82) (($ $ (-1022 (-208))) 76)) (-1954 (((-110) $) 40)) (-1407 (((-530)) 41)) (-3841 (((-530)) 32)) (-3191 (((-530)) 34)) (-2425 (((-597 (-597 (-884 (-208)))) $) 23)) (-3331 (((-110) (-110)) 42)) (-2366 (((-804) $) 106)) (-3051 (((-110)) 38)))
-(((-868) (-13 (-896) (-10 -8 (-15 -2532 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)))) (-15 -2532 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3852 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3852 ($ (-1 (-208) (-208)))) (-15 -2532 ($ $ (-1022 (-208)))) (-15 -1954 ((-110) $)) (-15 -2898 ($ $ (-1022 (-208)))) (-15 -2898 ($ $ (-1022 (-208)) (-1022 (-208)))) (-15 -3399 ($ $ (-1022 (-208)))) (-15 -3399 ($ $)) (-15 -2698 ((-1022 (-208)) $)) (-15 -3841 ((-530))) (-15 -2124 ((-530) (-530))) (-15 -3191 ((-530))) (-15 -4241 ((-530) (-530))) (-15 -2470 ((-530))) (-15 -1800 ((-530) (-530))) (-15 -3051 ((-110))) (-15 -3211 ((-110) (-110))) (-15 -1407 ((-530))) (-15 -3331 ((-110) (-110)))))) (T -868))
-((-2532 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *3) (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-1836 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-1836 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3852 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208))) (-5 *1 (-868)))) (-3852 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-868)))) (-2532 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-1954 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-2898 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-2898 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3399 (*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3399 (*1 *1 *1) (-5 *1 (-868))) (-2698 (*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))) (-3841 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-2124 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3191 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-4241 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-2470 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-1800 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3051 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-3211 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))) (-1407 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))) (-3331 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
-(-13 (-896) (-10 -8 (-15 -2532 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)))) (-15 -2532 ($ (-597 (-1 (-208) (-208))) (-1022 (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)))) (-15 -2532 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)))) (-15 -1836 ($ (-1 (-884 (-208)) (-208)) (-1022 (-208)) (-1022 (-208)) (-1022 (-208)))) (-15 -3852 ($ (-1 (-208) (-208)) (-1022 (-208)))) (-15 -3852 ($ (-1 (-208) (-208)))) (-15 -2532 ($ $ (-1022 (-208)))) (-15 -1954 ((-110) $)) (-15 -2898 ($ $ (-1022 (-208)))) (-15 -2898 ($ $ (-1022 (-208)) (-1022 (-208)))) (-15 -3399 ($ $ (-1022 (-208)))) (-15 -3399 ($ $)) (-15 -2698 ((-1022 (-208)) $)) (-15 -3841 ((-530))) (-15 -2124 ((-530) (-530))) (-15 -3191 ((-530))) (-15 -4241 ((-530) (-530))) (-15 -2470 ((-530))) (-15 -1800 ((-530) (-530))) (-15 -3051 ((-110))) (-15 -3211 ((-110) (-110))) (-15 -1407 ((-530))) (-15 -3331 ((-110) (-110)))))
-((-1320 (((-597 (-1022 (-208))) (-597 (-597 (-884 (-208))))) 24)))
-(((-869) (-10 -7 (-15 -1320 ((-597 (-1022 (-208))) (-597 (-597 (-884 (-208)))))))) (T -869))
-((-1320 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-1022 (-208)))) (-5 *1 (-869)))))
-(-10 -7 (-15 -1320 ((-597 (-1022 (-208))) (-597 (-597 (-884 (-208)))))))
-((-1523 ((|#2| |#2|) 26)) (-2507 ((|#2| |#2|) 27)) (-2708 ((|#2| |#2|) 25)) (-3925 ((|#2| |#2| (-1082)) 24)))
-(((-870 |#1| |#2|) (-10 -7 (-15 -3925 (|#2| |#2| (-1082))) (-15 -2708 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -2507 (|#2| |#2|))) (-795) (-411 |#1|)) (T -870))
-((-2507 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-1523 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-2708 (*1 *2 *2) (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3)))) (-3925 (*1 *2 *2 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-795)) (-5 *1 (-870 *4 *2)) (-4 *2 (-411 *4)))))
-(-10 -7 (-15 -3925 (|#2| |#2| (-1082))) (-15 -2708 (|#2| |#2|)) (-15 -1523 (|#2| |#2|)) (-15 -2507 (|#2| |#2|)))
-((-1523 (((-297 (-530)) (-1099)) 16)) (-2507 (((-297 (-530)) (-1099)) 14)) (-2708 (((-297 (-530)) (-1099)) 12)) (-3925 (((-297 (-530)) (-1099) (-1082)) 19)))
-(((-871) (-10 -7 (-15 -3925 ((-297 (-530)) (-1099) (-1082))) (-15 -2708 ((-297 (-530)) (-1099))) (-15 -1523 ((-297 (-530)) (-1099))) (-15 -2507 ((-297 (-530)) (-1099))))) (T -871))
-((-2507 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-1523 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-2708 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))) (-3925 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1082)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))))
-(-10 -7 (-15 -3925 ((-297 (-530)) (-1099) (-1082))) (-15 -2708 ((-297 (-530)) (-1099))) (-15 -1523 ((-297 (-530)) (-1099))) (-15 -2507 ((-297 (-530)) (-1099))))
-((-2890 (((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|)) 25)) (-4118 (((-1 (-110) |#2|) (-1 (-110) |#3|)) 13)))
-(((-872 |#1| |#2| |#3|) (-10 -7 (-15 -4118 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -2890 ((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-827 |#1|) (-13 (-1027) (-975 |#2|))) (T -872))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-13 (-1027) (-975 *3))) (-4 *3 (-827 *5)) (-5 *1 (-872 *5 *3 *6)))) (-4118 (*1 *2 *3) (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1027) (-975 *5))) (-4 *5 (-827 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-872 *4 *5 *6)))))
-(-10 -7 (-15 -4118 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -2890 ((-830 |#1| |#3|) |#2| (-833 |#1|) (-830 |#1| |#3|))))
-((-2890 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 30)))
-(((-873 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-13 (-522) (-795) (-827 |#1|)) (-13 (-411 |#2|) (-572 (-833 |#1|)) (-827 |#1|) (-975 (-570 $)))) (T -873))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-13 (-411 *6) (-572 *4) (-827 *5) (-975 (-570 $)))) (-5 *4 (-833 *5)) (-4 *6 (-13 (-522) (-795) (-827 *5))) (-5 *1 (-873 *5 *6 *3)))))
-(-10 -7 (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))
-((-2890 (((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|)) 13)))
-(((-874 |#1|) (-10 -7 (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|)))) (-515)) (T -874))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 (-530) *3)) (-5 *4 (-833 (-530))) (-4 *3 (-515)) (-5 *1 (-874 *3)))))
-(-10 -7 (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))))
-((-2890 (((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|)) 54)))
-(((-875 |#1| |#2|) (-10 -7 (-15 -2890 ((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|)))) (-1027) (-13 (-795) (-975 (-570 $)) (-572 (-833 |#1|)) (-827 |#1|))) (T -875))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *6)) (-5 *3 (-570 *6)) (-4 *5 (-1027)) (-4 *6 (-13 (-795) (-975 (-570 $)) (-572 *4) (-827 *5))) (-5 *4 (-833 *5)) (-5 *1 (-875 *5 *6)))))
-(-10 -7 (-15 -2890 ((-830 |#1| |#2|) (-570 |#2|) (-833 |#1|) (-830 |#1| |#2|))))
-((-2890 (((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|)) 15)))
-(((-876 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|)))) (-1027) (-827 |#1|) (-617 |#2|)) (T -876))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-826 *5 *6 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-4 *3 (-617 *6)) (-5 *1 (-876 *5 *6 *3)))))
-(-10 -7 (-15 -2890 ((-826 |#1| |#2| |#3|) |#3| (-833 |#1|) (-826 |#1| |#2| |#3|))))
-((-2890 (((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|)) 17 (|has| |#3| (-827 |#1|))) (((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|))) 16)))
-(((-877 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2890 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|)))) (IF (|has| |#3| (-827 |#1|)) (-15 -2890 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|))) |%noBranch|)) (-1027) (-741) (-795) (-13 (-984) (-795) (-827 |#1|)) (-13 (-890 |#4| |#2| |#3|) (-572 (-833 |#1|)))) (T -877))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-13 (-890 *8 *6 *7) (-572 *4))) (-5 *4 (-833 *5)) (-4 *7 (-827 *5)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-13 (-984) (-795) (-827 *5))) (-5 *1 (-877 *5 *6 *7 *8 *3)))) (-2890 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-830 *6 *3) *8 (-833 *6) (-830 *6 *3))) (-4 *8 (-795)) (-5 *2 (-830 *6 *3)) (-5 *4 (-833 *6)) (-4 *6 (-1027)) (-4 *3 (-13 (-890 *9 *7 *8) (-572 *4))) (-4 *7 (-741)) (-4 *9 (-13 (-984) (-795) (-827 *6))) (-5 *1 (-877 *6 *7 *8 *9 *3)))))
-(-10 -7 (-15 -2890 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|) (-1 (-830 |#1| |#5|) |#3| (-833 |#1|) (-830 |#1| |#5|)))) (IF (|has| |#3| (-827 |#1|)) (-15 -2890 ((-830 |#1| |#5|) |#5| (-833 |#1|) (-830 |#1| |#5|))) |%noBranch|))
-((-2598 ((|#2| |#2| (-597 (-1 (-110) |#3|))) 12) ((|#2| |#2| (-1 (-110) |#3|)) 13)))
-(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -2598 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2598 (|#2| |#2| (-597 (-1 (-110) |#3|))))) (-795) (-411 |#1|) (-1135)) (T -878))
-((-2598 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-1 (-110) *5))) (-4 *5 (-1135)) (-4 *4 (-795)) (-5 *1 (-878 *4 *2 *5)) (-4 *2 (-411 *4)))) (-2598 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1135)) (-4 *4 (-795)) (-5 *1 (-878 *4 *2 *5)) (-4 *2 (-411 *4)))))
-(-10 -7 (-15 -2598 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2598 (|#2| |#2| (-597 (-1 (-110) |#3|)))))
-((-2598 (((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|))) 18) (((-297 (-530)) (-1099) (-1 (-110) |#1|)) 15)))
-(((-879 |#1|) (-10 -7 (-15 -2598 ((-297 (-530)) (-1099) (-1 (-110) |#1|))) (-15 -2598 ((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|))))) (-1135)) (T -879))
-((-2598 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-597 (-1 (-110) *5))) (-4 *5 (-1135)) (-5 *2 (-297 (-530))) (-5 *1 (-879 *5)))) (-2598 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1135)) (-5 *2 (-297 (-530))) (-5 *1 (-879 *5)))))
-(-10 -7 (-15 -2598 ((-297 (-530)) (-1099) (-1 (-110) |#1|))) (-15 -2598 ((-297 (-530)) (-1099) (-597 (-1 (-110) |#1|)))))
-((-2890 (((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)) 25)))
-(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-1027) (-13 (-522) (-827 |#1|) (-572 (-833 |#1|))) (-932 |#2|)) (T -880))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-932 *6)) (-4 *6 (-13 (-522) (-827 *5) (-572 *4))) (-5 *4 (-833 *5)) (-5 *1 (-880 *5 *6 *3)))))
-(-10 -7 (-15 -2890 ((-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))
-((-2890 (((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099))) 17)))
-(((-881 |#1|) (-10 -7 (-15 -2890 ((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099))))) (-1027)) (T -881))
-((-2890 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-830 *5 (-1099))) (-5 *3 (-1099)) (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *1 (-881 *5)))))
-(-10 -7 (-15 -2890 ((-830 |#1| (-1099)) (-1099) (-833 |#1|) (-830 |#1| (-1099)))))
-((-1520 (((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) 33)) (-2890 (((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))) 32)))
-(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -2890 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-15 -1520 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|))))) (-1027) (-13 (-984) (-795)) (-13 (-984) (-572 (-833 |#1|)) (-975 |#2|))) (T -882))
-((-1520 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-833 *6))) (-5 *5 (-1 (-830 *6 *8) *8 (-833 *6) (-830 *6 *8))) (-4 *6 (-1027)) (-4 *8 (-13 (-984) (-572 (-833 *6)) (-975 *7))) (-5 *2 (-830 *6 *8)) (-4 *7 (-13 (-984) (-795))) (-5 *1 (-882 *6 *7 *8)))) (-2890 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-597 (-833 *7))) (-5 *5 (-1 *9 (-597 *9))) (-5 *6 (-1 (-830 *7 *9) *9 (-833 *7) (-830 *7 *9))) (-4 *7 (-1027)) (-4 *9 (-13 (-984) (-572 (-833 *7)) (-975 *8))) (-5 *2 (-830 *7 *9)) (-5 *3 (-597 *9)) (-4 *8 (-13 (-984) (-795))) (-5 *1 (-882 *7 *8 *9)))))
-(-10 -7 (-15 -2890 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-1 |#3| (-597 |#3|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))) (-15 -1520 ((-830 |#1| |#3|) (-597 |#3|) (-597 (-833 |#1|)) (-830 |#1| |#3|) (-1 (-830 |#1| |#3|) |#3| (-833 |#1|) (-830 |#1| |#3|)))))
-((-1387 (((-1095 (-388 (-530))) (-530)) 63)) (-2915 (((-1095 (-530)) (-530)) 66)) (-3730 (((-1095 (-530)) (-530)) 60)) (-3126 (((-530) (-1095 (-530))) 55)) (-2067 (((-1095 (-388 (-530))) (-530)) 49)) (-3570 (((-1095 (-530)) (-530)) 38)) (-3699 (((-1095 (-530)) (-530)) 68)) (-1923 (((-1095 (-530)) (-530)) 67)) (-3190 (((-1095 (-388 (-530))) (-530)) 51)))
-(((-883) (-10 -7 (-15 -3190 ((-1095 (-388 (-530))) (-530))) (-15 -1923 ((-1095 (-530)) (-530))) (-15 -3699 ((-1095 (-530)) (-530))) (-15 -3570 ((-1095 (-530)) (-530))) (-15 -2067 ((-1095 (-388 (-530))) (-530))) (-15 -3126 ((-530) (-1095 (-530)))) (-15 -3730 ((-1095 (-530)) (-530))) (-15 -2915 ((-1095 (-530)) (-530))) (-15 -1387 ((-1095 (-388 (-530))) (-530))))) (T -883))
-((-1387 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))) (-2915 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3730 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-530)) (-5 *1 (-883)))) (-2067 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3570 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3699 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-1923 (*1 *2 *3) (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))) (-3190 (*1 *2 *3) (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(-10 -7 (-15 -3190 ((-1095 (-388 (-530))) (-530))) (-15 -1923 ((-1095 (-530)) (-530))) (-15 -3699 ((-1095 (-530)) (-530))) (-15 -3570 ((-1095 (-530)) (-530))) (-15 -2067 ((-1095 (-388 (-530))) (-530))) (-15 -3126 ((-530) (-1095 (-530)))) (-15 -3730 ((-1095 (-530)) (-530))) (-15 -2915 ((-1095 (-530)) (-530))) (-15 -1387 ((-1095 (-388 (-530))) (-530))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719)) NIL (|has| |#1| (-23)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) 11 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-2422 (($ (-597 |#1|)) 13)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) 8)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 10 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2337 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-2763 (((-110) $ (-719)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-3168 (($ $ (-597 |#1|)) 26)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 20) (($ $ (-1148 (-530))) NIL)) (-3334 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-2488 (((-862) $) 16)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3691 (($ $ $) 24)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506)))) (($ (-597 |#1|)) 17)) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2339 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2267 (((-719) $) 14 (|has| $ (-6 -4269)))))
-(((-884 |#1|) (-920 |#1|) (-984)) (T -884))
-NIL
-(-920 |#1|)
-((-1704 (((-460 |#1| |#2|) (-893 |#2|)) 20)) (-3938 (((-230 |#1| |#2|) (-893 |#2|)) 33)) (-2823 (((-893 |#2|) (-460 |#1| |#2|)) 25)) (-2953 (((-230 |#1| |#2|) (-460 |#1| |#2|)) 55)) (-2315 (((-893 |#2|) (-230 |#1| |#2|)) 30)) (-3185 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 46)))
-(((-885 |#1| |#2|) (-10 -7 (-15 -3185 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -2953 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -1704 ((-460 |#1| |#2|) (-893 |#2|))) (-15 -2823 ((-893 |#2|) (-460 |#1| |#2|))) (-15 -2315 ((-893 |#2|) (-230 |#1| |#2|))) (-15 -3938 ((-230 |#1| |#2|) (-893 |#2|)))) (-597 (-1099)) (-984)) (T -885))
-((-3938 (*1 *2 *3) (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))) (-2315 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))) (-2823 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))) (-1704 (*1 *2 *3) (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))) (-2953 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)))) (-3185 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984)) (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)))))
-(-10 -7 (-15 -3185 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -2953 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -1704 ((-460 |#1| |#2|) (-893 |#2|))) (-15 -2823 ((-893 |#2|) (-460 |#1| |#2|))) (-15 -2315 ((-893 |#2|) (-230 |#1| |#2|))) (-15 -3938 ((-230 |#1| |#2|) (-893 |#2|))))
-((-2526 (((-597 |#2|) |#2| |#2|) 10)) (-2636 (((-719) (-597 |#1|)) 37 (|has| |#1| (-793)))) (-2353 (((-597 |#2|) |#2|) 11)) (-2390 (((-719) (-597 |#1|) (-530) (-530)) 39 (|has| |#1| (-793)))) (-4169 ((|#1| |#2|) 32 (|has| |#1| (-793)))))
-(((-886 |#1| |#2|) (-10 -7 (-15 -2526 ((-597 |#2|) |#2| |#2|)) (-15 -2353 ((-597 |#2|) |#2|)) (IF (|has| |#1| (-793)) (PROGN (-15 -4169 (|#1| |#2|)) (-15 -2636 ((-719) (-597 |#1|))) (-15 -2390 ((-719) (-597 |#1|) (-530) (-530)))) |%noBranch|)) (-344) (-1157 |#1|)) (T -886))
-((-2390 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-530)) (-4 *5 (-793)) (-4 *5 (-344)) (-5 *2 (-719)) (-5 *1 (-886 *5 *6)) (-4 *6 (-1157 *5)))) (-2636 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-793)) (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-886 *4 *5)) (-4 *5 (-1157 *4)))) (-4169 (*1 *2 *3) (-12 (-4 *2 (-344)) (-4 *2 (-793)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1157 *2)))) (-2353 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1157 *4)))) (-2526 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -2526 ((-597 |#2|) |#2| |#2|)) (-15 -2353 ((-597 |#2|) |#2|)) (IF (|has| |#1| (-793)) (PROGN (-15 -4169 (|#1| |#2|)) (-15 -2636 ((-719) (-597 |#1|))) (-15 -2390 ((-719) (-597 |#1|) (-530) (-530)))) |%noBranch|))
-((-3217 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 19)))
-(((-887 |#1| |#2|) (-10 -7 (-15 -3217 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-984) (-984)) (T -887))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-893 *6)) (-5 *1 (-887 *5 *6)))))
-(-10 -7 (-15 -3217 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|))))
-((-2577 (((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|)) 18)))
-(((-888 |#1| |#2|) (-10 -7 (-15 -2577 ((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|)))) (-1099) (-984)) (T -888))
-((-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1099)) (-4 *6 (-984)) (-5 *2 (-1154 *5 (-893 *6))) (-5 *1 (-888 *5 *6)) (-5 *3 (-893 *6)))))
-(-10 -7 (-15 -2577 ((-1154 |#1| (-893 |#2|)) (-893 |#2|) (-1177 |#1|))))
-((-3471 (((-719) $) 71) (((-719) $ (-597 |#4|)) 74)) (-3544 (($ $) 173)) (-3272 (((-399 $) $) 165)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 116)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL) ((|#4| $) 59)) (-3388 (($ $ $ |#4|) 76)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 106) (((-637 |#2|) (-637 $)) 99)) (-1239 (($ $) 180) (($ $ |#4|) 183)) (-2548 (((-597 $) $) 63)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 199) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 192)) (-2469 (((-597 $) $) 28)) (-2725 (($ |#2| |#3|) NIL) (($ $ |#4| (-719)) NIL) (($ $ (-597 |#4|) (-597 (-719))) 57)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#4|) 162)) (-1862 (((-3 (-597 $) "failed") $) 42)) (-1534 (((-3 (-597 $) "failed") $) 31)) (-1487 (((-3 (-2 (|:| |var| |#4|) (|:| -3194 (-719))) "failed") $) 47)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 109)) (-3845 (((-399 (-1095 $)) (-1095 $)) 122)) (-1473 (((-399 (-1095 $)) (-1095 $)) 120)) (-2611 (((-399 $) $) 140)) (-4098 (($ $ (-597 (-276 $))) 21) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-597 |#4|) (-597 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-597 |#4|) (-597 $)) NIL)) (-3060 (($ $ |#4|) 78)) (-3260 (((-833 (-360)) $) 213) (((-833 (-530)) $) 206) (((-506) $) 221)) (-3829 ((|#2| $) NIL) (($ $ |#4|) 175)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 154)) (-4085 ((|#2| $ |#3|) NIL) (($ $ |#4| (-719)) 52) (($ $ (-597 |#4|) (-597 (-719))) 55)) (-3251 (((-3 $ "failed") $) 156)) (-2272 (((-110) $ $) 186)))
-(((-889 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2665 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -1239 (|#1| |#1| |#4|)) (-15 -3829 (|#1| |#1| |#4|)) (-15 -3060 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -2548 ((-597 |#1|) |#1|)) (-15 -3471 ((-719) |#1| (-597 |#4|))) (-15 -3471 ((-719) |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| |#4|) (|:| -3194 (-719))) "failed") |#1|)) (-15 -1862 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -1534 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -2725 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -2725 (|#1| |#1| |#4| (-719))) (-15 -1357 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -2469 ((-597 |#1|) |#1|)) (-15 -4085 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -4085 (|#1| |#1| |#4| (-719))) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#4| |#1|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#4| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#4| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -2725 (|#1| |#2| |#3|)) (-15 -4085 (|#2| |#1| |#3|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -1239 (|#1| |#1|))) (-890 |#2| |#3| |#4|) (-984) (-741) (-795)) (T -889))
-NIL
-(-10 -8 (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -3251 ((-3 |#1| "failed") |#1|)) (-15 -2272 ((-110) |#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -2665 ((-3 (-1181 |#1|) "failed") (-637 |#1|))) (-15 -1239 (|#1| |#1| |#4|)) (-15 -3829 (|#1| |#1| |#4|)) (-15 -3060 (|#1| |#1| |#4|)) (-15 -3388 (|#1| |#1| |#1| |#4|)) (-15 -2548 ((-597 |#1|) |#1|)) (-15 -3471 ((-719) |#1| (-597 |#4|))) (-15 -3471 ((-719) |#1|)) (-15 -1487 ((-3 (-2 (|:| |var| |#4|) (|:| -3194 (-719))) "failed") |#1|)) (-15 -1862 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -1534 ((-3 (-597 |#1|) "failed") |#1|)) (-15 -2725 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -2725 (|#1| |#1| |#4| (-719))) (-15 -1357 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -2469 ((-597 |#1|) |#1|)) (-15 -4085 (|#1| |#1| (-597 |#4|) (-597 (-719)))) (-15 -4085 (|#1| |#1| |#4| (-719))) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#4| |#1|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#4| |#1|)) (-15 -4098 (|#1| |#1| (-597 |#4|) (-597 |#2|))) (-15 -4098 (|#1| |#1| |#4| |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -2725 (|#1| |#2| |#3|)) (-15 -4085 (|#2| |#1| |#3|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -1239 (|#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 |#3|) $) 108)) (-2577 (((-1095 $) $ |#3|) 123) (((-1095 |#1|) $) 122)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85 (|has| |#1| (-522)))) (-3446 (($ $) 86 (|has| |#1| (-522)))) (-1276 (((-110) $) 88 (|has| |#1| (-522)))) (-3471 (((-719) $) 110) (((-719) $ (-597 |#3|)) 109)) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 98 (|has| |#1| (-850)))) (-3544 (($ $) 96 (|has| |#1| (-432)))) (-3272 (((-399 $) $) 95 (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-530)) "failed") $) 160 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 158 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 134)) (-2585 ((|#1| $) 163) (((-388 (-530)) $) 159 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 157 (|has| |#1| (-975 (-530)))) ((|#3| $) 133)) (-3388 (($ $ $ |#3|) 106 (|has| |#1| (-162)))) (-2562 (($ $) 152)) (-2329 (((-637 (-530)) (-637 $)) 132 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 131 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 130) (((-637 |#1|) (-637 $)) 129)) (-2707 (((-3 $ "failed") $) 32)) (-1239 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2548 (((-597 $) $) 107)) (-3295 (((-110) $) 94 (|has| |#1| (-850)))) (-2410 (($ $ |#1| |#2| $) 170)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 82 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 81 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 167)) (-2735 (($ (-1095 |#1|) |#3|) 115) (($ (-1095 $) |#3|) 114)) (-2469 (((-597 $) $) 124)) (-3668 (((-110) $) 150)) (-2725 (($ |#1| |#2|) 151) (($ $ |#3| (-719)) 117) (($ $ (-597 |#3|) (-597 (-719))) 116)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) 118)) (-2944 ((|#2| $) 168) (((-719) $ |#3|) 120) (((-597 (-719)) $ (-597 |#3|)) 119)) (-2508 (($ $ $) 77 (|has| |#1| (-795)))) (-1817 (($ $ $) 76 (|has| |#1| (-795)))) (-3756 (($ (-1 |#2| |#2|) $) 169)) (-3217 (($ (-1 |#1| |#1|) $) 149)) (-2040 (((-3 |#3| "failed") $) 121)) (-2521 (($ $) 147)) (-2533 ((|#1| $) 146)) (-2170 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1424 (((-1082) $) 9)) (-1862 (((-3 (-597 $) "failed") $) 112)) (-1534 (((-3 (-597 $) "failed") $) 113)) (-1487 (((-3 (-2 (|:| |var| |#3|) (|:| -3194 (-719))) "failed") $) 111)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 164)) (-2505 ((|#1| $) 165)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 93 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 99 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 97 (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-597 $) (-597 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-597 |#3|) (-597 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-597 |#3|) (-597 $)) 136)) (-3060 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3289 (($ $ |#3|) 40) (($ $ (-597 |#3|)) 39) (($ $ |#3| (-719)) 38) (($ $ (-597 |#3|) (-597 (-719))) 37)) (-1429 ((|#2| $) 148) (((-719) $ |#3|) 128) (((-597 (-719)) $ (-597 |#3|)) 127)) (-3260 (((-833 (-360)) $) 80 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 79 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 78 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 102 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-522))) (($ (-388 (-530))) 70 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530))))))) (-3441 (((-597 |#1|) $) 166)) (-4085 ((|#1| $ |#2|) 153) (($ $ |#3| (-719)) 126) (($ $ (-597 |#3|) (-597 (-719))) 125)) (-3251 (((-3 $ "failed") $) 71 (-1461 (-3380 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 171 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 87 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ |#3|) 36) (($ $ (-597 |#3|)) 35) (($ $ |#3| (-719)) 34) (($ $ (-597 |#3|) (-597 (-719))) 33)) (-2306 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 73 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 72 (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 156 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 155 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-890 |#1| |#2| |#3|) (-133) (-984) (-741) (-795)) (T -890))
-((-1239 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-1429 (*1 *2 *1 *3) (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-719)))) (-1429 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719))))) (-4085 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *2 (-795)))) (-4085 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)))) (-2469 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-2577 (*1 *2 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-1095 *1)) (-4 *1 (-890 *4 *5 *3)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-1095 *3)))) (-2040 (*1 *2 *1) (|partial| -12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2944 (*1 *2 *1 *3) (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-719)))) (-2944 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719))))) (-1357 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-890 *4 *5 *3)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *2 (-795)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)))) (-2735 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *4)) (-4 *4 (-984)) (-4 *1 (-890 *4 *5 *3)) (-4 *5 (-741)) (-4 *3 (-795)))) (-2735 (*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)))) (-1534 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-1862 (*1 *2 *1) (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-1487 (*1 *2 *1) (|partial| -12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |var| *5) (|:| -3194 (-719)))))) (-3471 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-719)))) (-3471 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *5)))) (-2548 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5)))) (-3388 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-162)))) (-3060 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-162)))) (-3829 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-432)))) (-1239 (*1 *1 *1 *2) (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *3 (-432)))) (-3544 (*1 *1 *1) (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3272 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-399 *1)) (-4 *1 (-890 *3 *4 *5)))))
-(-13 (-841 |t#3|) (-307 |t#1| |t#2|) (-291 $) (-491 |t#3| |t#1|) (-491 |t#3| $) (-975 |t#3|) (-358 |t#1|) (-10 -8 (-15 -1429 ((-719) $ |t#3|)) (-15 -1429 ((-597 (-719)) $ (-597 |t#3|))) (-15 -4085 ($ $ |t#3| (-719))) (-15 -4085 ($ $ (-597 |t#3|) (-597 (-719)))) (-15 -2469 ((-597 $) $)) (-15 -2577 ((-1095 $) $ |t#3|)) (-15 -2577 ((-1095 |t#1|) $)) (-15 -2040 ((-3 |t#3| "failed") $)) (-15 -2944 ((-719) $ |t#3|)) (-15 -2944 ((-597 (-719)) $ (-597 |t#3|))) (-15 -1357 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |t#3|)) (-15 -2725 ($ $ |t#3| (-719))) (-15 -2725 ($ $ (-597 |t#3|) (-597 (-719)))) (-15 -2735 ($ (-1095 |t#1|) |t#3|)) (-15 -2735 ($ (-1095 $) |t#3|)) (-15 -1534 ((-3 (-597 $) "failed") $)) (-15 -1862 ((-3 (-597 $) "failed") $)) (-15 -1487 ((-3 (-2 (|:| |var| |t#3|) (|:| -3194 (-719))) "failed") $)) (-15 -3471 ((-719) $)) (-15 -3471 ((-719) $ (-597 |t#3|))) (-15 -2746 ((-597 |t#3|) $)) (-15 -2548 ((-597 $) $)) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (IF (|has| |t#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-572 (-833 (-530)))) (IF (|has| |t#3| (-572 (-833 (-530)))) (-6 (-572 (-833 (-530)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-572 (-833 (-360)))) (IF (|has| |t#3| (-572 (-833 (-360)))) (-6 (-572 (-833 (-360)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827 (-530))) (IF (|has| |t#3| (-827 (-530))) (-6 (-827 (-530))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-827 (-360))) (IF (|has| |t#3| (-827 (-360))) (-6 (-827 (-360))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -3388 ($ $ $ |t#3|)) (-15 -3060 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-6 (-432)) (-15 -3829 ($ $ |t#3|)) (-15 -1239 ($ $)) (-15 -1239 ($ $ |t#3|)) (-15 -3272 ((-399 $) $)) (-15 -3544 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4267)) (-6 -4267) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-272) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
-((-2746 (((-597 |#2|) |#5|) 36)) (-2577 (((-1095 |#5|) |#5| |#2| (-1095 |#5|)) 23) (((-388 (-1095 |#5|)) |#5| |#2|) 16)) (-2735 ((|#5| (-388 (-1095 |#5|)) |#2|) 30)) (-2040 (((-3 |#2| "failed") |#5|) 65)) (-1862 (((-3 (-597 |#5|) "failed") |#5|) 59)) (-3193 (((-3 (-2 (|:| |val| |#5|) (|:| -3194 (-530))) "failed") |#5|) 47)) (-1534 (((-3 (-597 |#5|) "failed") |#5|) 61)) (-1487 (((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-530))) "failed") |#5|) 51)))
-(((-891 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2746 ((-597 |#2|) |#5|)) (-15 -2040 ((-3 |#2| "failed") |#5|)) (-15 -2577 ((-388 (-1095 |#5|)) |#5| |#2|)) (-15 -2735 (|#5| (-388 (-1095 |#5|)) |#2|)) (-15 -2577 ((-1095 |#5|) |#5| |#2| (-1095 |#5|))) (-15 -1534 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -1862 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -1487 ((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-530))) "failed") |#5|)) (-15 -3193 ((-3 (-2 (|:| |val| |#5|) (|:| -3194 (-530))) "failed") |#5|))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -2366 ($ |#4|)) (-15 -1918 (|#4| $)) (-15 -1928 (|#4| $))))) (T -891))
-((-3193 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -3194 (-530)))) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-1487 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -3194 (-530)))) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-1862 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-1534 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-2577 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))) (-4 *7 (-890 *6 *5 *4)) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-5 *1 (-891 *5 *4 *6 *7 *3)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1095 *2))) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *2 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))) (-5 *1 (-891 *5 *4 *6 *7 *2)) (-4 *7 (-890 *6 *5 *4)))) (-2577 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-388 (-1095 *3))) (-5 *1 (-891 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))) (-2040 (*1 *2 *3) (|partial| -12 (-4 *4 (-741)) (-4 *5 (-984)) (-4 *6 (-890 *5 *4 *2)) (-4 *2 (-795)) (-5 *1 (-891 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *6)) (-15 -1918 (*6 $)) (-15 -1928 (*6 $))))))) (-2746 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *5)) (-5 *1 (-891 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $))))))))
-(-10 -7 (-15 -2746 ((-597 |#2|) |#5|)) (-15 -2040 ((-3 |#2| "failed") |#5|)) (-15 -2577 ((-388 (-1095 |#5|)) |#5| |#2|)) (-15 -2735 (|#5| (-388 (-1095 |#5|)) |#2|)) (-15 -2577 ((-1095 |#5|) |#5| |#2| (-1095 |#5|))) (-15 -1534 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -1862 ((-3 (-597 |#5|) "failed") |#5|)) (-15 -1487 ((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-530))) "failed") |#5|)) (-15 -3193 ((-3 (-2 (|:| |val| |#5|) (|:| -3194 (-530))) "failed") |#5|)))
-((-3217 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
-(((-892 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3217 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-741) (-795) (-984) (-890 |#3| |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719)))))) (T -892))
-((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-795)) (-4 *8 (-984)) (-4 *6 (-741)) (-4 *2 (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719)))))) (-5 *1 (-892 *6 *7 *8 *5 *2)) (-4 *5 (-890 *8 *6 *7)))))
-(-10 -7 (-15 -3217 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1099)) $) 16)) (-2577 (((-1095 $) $ (-1099)) 21) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1099))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 8) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1099) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1099) $) NIL)) (-3388 (($ $ $ (-1099)) NIL (|has| |#1| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1099)) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 (-1099)) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1099) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1099) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#1|) (-1099)) NIL) (($ (-1095 $) (-1099)) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1099)) NIL)) (-2944 (((-502 (-1099)) $) NIL) (((-719) $ (-1099)) NIL) (((-597 (-719)) $ (-597 (-1099))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 (-1099)) (-502 (-1099))) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2040 (((-3 (-1099) "failed") $) 19)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1099)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $ (-1099)) 29 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1099) |#1|) NIL) (($ $ (-597 (-1099)) (-597 |#1|)) NIL) (($ $ (-1099) $) NIL) (($ $ (-597 (-1099)) (-597 $)) NIL)) (-3060 (($ $ (-1099)) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-1429 (((-502 (-1099)) $) NIL) (((-719) $ (-1099)) NIL) (((-597 (-719)) $ (-597 (-1099))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1099) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1099) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1099) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1099)) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 25) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1099)) 27) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-893 |#1|) (-13 (-890 |#1| (-502 (-1099)) (-1099)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1099))) |%noBranch|))) (-984)) (T -893))
-((-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-893 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))))
-(-13 (-890 |#1| (-502 (-1099)) (-1099)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1099))) |%noBranch|)))
-((-2962 (((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#3| (-719)) 38)) (-1515 (((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719)) 34)) (-2894 (((-2 (|:| -3194 (-719)) (|:| -2065 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719)) 54)) (-3452 (((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#5| (-719)) 64 (|has| |#3| (-432)))))
-(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2962 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#3| (-719))) (-15 -1515 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719))) (IF (|has| |#3| (-432)) (-15 -3452 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#5| (-719))) |%noBranch|) (-15 -2894 ((-2 (|:| -3194 (-719)) (|:| -2065 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719)))) (-741) (-795) (-522) (-890 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -1918 (|#4| $)) (-15 -1928 (|#4| $)) (-15 -2366 ($ |#4|))))) (T -894))
-((-2894 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *3 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| (-597 *3)))) (-5 *1 (-894 *5 *6 *7 *3 *8)) (-5 *4 (-719)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1918 (*3 $)) (-15 -1928 (*3 $)) (-15 -2366 ($ *3))))))) (-3452 (*1 *2 *3 *4) (-12 (-4 *7 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| *3))) (-5 *1 (-894 *5 *6 *7 *8 *3)) (-5 *4 (-719)) (-4 *3 (-13 (-344) (-10 -8 (-15 -1918 (*8 $)) (-15 -1928 (*8 $)) (-15 -2366 ($ *8))))))) (-1515 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-530))) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *9) (|:| |radicand| *9))) (-5 *1 (-894 *5 *6 *7 *8 *9)) (-5 *4 (-719)) (-4 *9 (-13 (-344) (-10 -8 (-15 -1918 (*8 $)) (-15 -1928 (*8 $)) (-15 -2366 ($ *8))))))) (-2962 (*1 *2 *3 *4) (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-522)) (-4 *7 (-890 *3 *5 *6)) (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *8) (|:| |radicand| *8))) (-5 *1 (-894 *5 *6 *3 *7 *8)) (-5 *4 (-719)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1918 (*7 $)) (-15 -1928 (*7 $)) (-15 -2366 ($ *7))))))))
-(-10 -7 (-15 -2962 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#3| (-719))) (-15 -1515 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) (-388 (-530)) (-719))) (IF (|has| |#3| (-432)) (-15 -3452 ((-2 (|:| -3194 (-719)) (|:| -2065 |#5|) (|:| |radicand| |#5|)) |#5| (-719))) |%noBranch|) (-15 -2894 ((-2 (|:| -3194 (-719)) (|:| -2065 |#4|) (|:| |radicand| (-597 |#4|))) |#4| (-719))))
-((-2352 (((-110) $ $) NIL)) (-1417 (($ (-1046)) 8)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 14) (((-1046) $) 11)) (-2248 (((-110) $ $) 10)))
-(((-895) (-13 (-1027) (-571 (-1046)) (-10 -8 (-15 -1417 ($ (-1046)))))) (T -895))
-((-1417 (*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-895)))))
-(-13 (-1027) (-571 (-1046)) (-10 -8 (-15 -1417 ($ (-1046)))))
-((-3562 (((-1022 (-208)) $) 8)) (-3554 (((-1022 (-208)) $) 9)) (-2425 (((-597 (-597 (-884 (-208)))) $) 10)) (-2366 (((-804) $) 6)))
-(((-896) (-133)) (T -896))
-((-2425 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-597 (-597 (-884 (-208))))))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208))))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208))))))
-(-13 (-571 (-804)) (-10 -8 (-15 -2425 ((-597 (-597 (-884 (-208)))) $)) (-15 -3554 ((-1022 (-208)) $)) (-15 -3562 ((-1022 (-208)) $))))
-(((-571 (-804)) . T))
-((-3177 (((-3 (-637 |#1|) "failed") |#2| (-862)) 15)))
-(((-897 |#1| |#2|) (-10 -7 (-15 -3177 ((-3 (-637 |#1|) "failed") |#2| (-862)))) (-522) (-607 |#1|)) (T -897))
-((-3177 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-862)) (-4 *5 (-522)) (-5 *2 (-637 *5)) (-5 *1 (-897 *5 *3)) (-4 *3 (-607 *5)))))
-(-10 -7 (-15 -3177 ((-3 (-637 |#1|) "failed") |#2| (-862))))
-((-2753 (((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|) 16)) (-2134 ((|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|) 18)) (-3217 (((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)) 13)))
-(((-898 |#1| |#2|) (-10 -7 (-15 -2753 ((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -3217 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|)))) (-1135) (-1135)) (T -898))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-899 *6)) (-5 *1 (-898 *5 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-899 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-898 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-899 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-899 *5)) (-5 *1 (-898 *6 *5)))))
-(-10 -7 (-15 -2753 ((-899 |#2|) (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-899 |#1|) |#2|)) (-15 -3217 ((-899 |#2|) (-1 |#2| |#1|) (-899 |#1|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) 16 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 15 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 13)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) |#1|) 12)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) 10 (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) 17 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) 11)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) 14) (($ $ (-1148 (-530))) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) NIL)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2267 (((-719) $) 8 (|has| $ (-6 -4269)))))
-(((-899 |#1|) (-19 |#1|) (-1135)) (T -899))
+((-1599 (*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110)))) (-3459 (*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-531)))) (-1620 (*1 *1 *1) (-4 *1 (-795))))
+(-13 (-741) (-986) (-677) (-10 -8 (-15 -1599 ((-110) $)) (-15 -2985 ((-110) $)) (-15 -3459 ((-531) $)) (-15 -1620 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-797) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-4103 (($ $ $) 10)) (-1241 (($ $ $) 9)) (-2207 (((-110) $ $) 13)) (-2184 (((-110) $ $) 11)) (-2195 (((-110) $ $) 14)))
+(((-796 |#1|) (-10 -8 (-15 -4103 (|#1| |#1| |#1|)) (-15 -1241 (|#1| |#1| |#1|)) (-15 -2195 ((-110) |#1| |#1|)) (-15 -2207 ((-110) |#1| |#1|)) (-15 -2184 ((-110) |#1| |#1|))) (-797)) (T -796))
+NIL
+(-10 -8 (-15 -4103 (|#1| |#1| |#1|)) (-15 -1241 (|#1| |#1| |#1|)) (-15 -2195 ((-110) |#1| |#1|)) (-15 -2207 ((-110) |#1| |#1|)) (-15 -2184 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)))
+(((-797) (-133)) (T -797))
+((-2174 (*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) (-2184 (*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) (-2207 (*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) (-2195 (*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110)))) (-1241 (*1 *1 *1 *1) (-4 *1 (-797))) (-4103 (*1 *1 *1 *1) (-4 *1 (-797))))
+(-13 (-1030) (-10 -8 (-15 -2174 ((-110) $ $)) (-15 -2184 ((-110) $ $)) (-15 -2207 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -1241 ($ $ $)) (-15 -4103 ($ $ $))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2089 (($ $ $) 45)) (-2643 (($ $ $) 44)) (-1866 (($ $ $) 42)) (-3812 (($ $ $) 51)) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 46)) (-2470 (((-3 $ "failed") $ $) 49)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 25)) (-2226 (($ $) 35)) (-3215 (($ $ $) 39)) (-3351 (($ $ $) 38)) (-2321 (($ $ $) 47)) (-1884 (($ $ $) 53)) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 41)) (-3894 (((-3 $ "failed") $ $) 48)) (-3609 (((-3 $ "failed") $ |#2|) 28)) (-1767 ((|#2| $) 32)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ |#2|) 12)) (-2708 (((-598 |#2|) $) 18)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 22)))
+(((-798 |#1| |#2|) (-10 -8 (-15 -2321 (|#1| |#1| |#1|)) (-15 -3665 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -3812 (|#1| |#1| |#1|)) (-15 -2470 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2643 (|#1| |#1| |#1|)) (-15 -1866 (|#1| |#1| |#1|)) (-15 -3460 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -3894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2708 ((-598 |#2|) |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2265 ((-806) |#1|))) (-799 |#2|) (-986)) (T -798))
+NIL
+(-10 -8 (-15 -2321 (|#1| |#1| |#1|)) (-15 -3665 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -3812 (|#1| |#1| |#1|)) (-15 -2470 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2089 (|#1| |#1| |#1|)) (-15 -2643 (|#1| |#1| |#1|)) (-15 -1866 (|#1| |#1| |#1|)) (-15 -3460 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -1861 |#1|)) |#1| |#1|)) (-15 -1884 (|#1| |#1| |#1|)) (-15 -3894 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3215 (|#1| |#1| |#1|)) (-15 -3351 (|#1| |#1| |#1|)) (-15 -2226 (|#1| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3609 ((-3 |#1| "failed") |#1| |#2|)) (-15 -2708 ((-598 |#2|) |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2089 (($ $ $) 43 (|has| |#1| (-344)))) (-2643 (($ $ $) 44 (|has| |#1| (-344)))) (-1866 (($ $ $) 46 (|has| |#1| (-344)))) (-3812 (($ $ $) 41 (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 40 (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) 42 (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 45 (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) 72 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 70 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 67)) (-2523 (((-531) $) 73 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 71 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 66)) (-2500 (($ $) 62)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 53 (|has| |#1| (-432)))) (-3481 (((-110) $) 30)) (-2669 (($ |#1| (-721)) 60)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55 (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 56 (|has| |#1| (-523)))) (-3005 (((-721) $) 64)) (-3215 (($ $ $) 50 (|has| |#1| (-344)))) (-3351 (($ $ $) 51 (|has| |#1| (-344)))) (-2321 (($ $ $) 39 (|has| |#1| (-344)))) (-1884 (($ $ $) 48 (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 47 (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) 49 (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 52 (|has| |#1| (-344)))) (-2475 ((|#1| $) 63)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ |#1|) 57 (|has| |#1| (-523)))) (-2012 (((-721) $) 65)) (-1767 ((|#1| $) 54 (|has| |#1| (-432)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 69 (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) 68)) (-2708 (((-598 |#1|) $) 59)) (-3188 ((|#1| $ (-721)) 61)) (-2284 (((-721)) 28)) (-2979 ((|#1| $ |#1| |#1|) 58)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 75) (($ |#1| $) 74)))
+(((-799 |#1|) (-133) (-986)) (T -799))
+((-2012 (*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-3005 (*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-2475 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-2500 (*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-2669 (*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-598 *3)))) (-2979 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) (-2517 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) (-2856 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) (-1767 (*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-432)))) (-2226 (*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-432)))) (-1912 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) (-3351 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3215 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3894 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-1884 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3460 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-986)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) (-4 *1 (-799 *3)))) (-1866 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-2932 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3)))) (-2643 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-2089 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-2470 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3812 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-3665 (*1 *2 *1 *1) (-12 (-4 *3 (-344)) (-4 *3 (-986)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1))) (-4 *1 (-799 *3)))) (-2321 (*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(-13 (-986) (-109 |t#1| |t#1|) (-392 |t#1|) (-10 -8 (-15 -2012 ((-721) $)) (-15 -3005 ((-721) $)) (-15 -2475 (|t#1| $)) (-15 -2500 ($ $)) (-15 -3188 (|t#1| $ (-721))) (-15 -2669 ($ |t#1| (-721))) (-15 -2708 ((-598 |t#1|) $)) (-15 -2979 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -3609 ((-3 $ "failed") $ |t#1|)) (-15 -2517 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -2856 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -1767 (|t#1| $)) (-15 -2226 ($ $))) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-15 -1912 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -3351 ($ $ $)) (-15 -3215 ($ $ $)) (-15 -3894 ((-3 $ "failed") $ $)) (-15 -1884 ($ $ $)) (-15 -3460 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $)) (-15 -1866 ($ $ $)) (-15 -2932 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -2643 ($ $ $)) (-15 -2089 ($ $ $)) (-15 -2470 ((-3 $ "failed") $ $)) (-15 -3812 ($ $ $)) (-15 -3665 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $)) (-15 -2321 ($ $ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-392 |#1|) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) |has| |#1| (-162)) ((-677) . T) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3974 ((|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|)) 20)) (-2932 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)) 43 (|has| |#1| (-344)))) (-2856 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)) 40 (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)) 39 (|has| |#1| (-523)))) (-1912 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)) 42 (|has| |#1| (-344)))) (-2979 ((|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|)) 31)))
+(((-800 |#1| |#2|) (-10 -7 (-15 -3974 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2979 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-523)) (PROGN (-15 -2517 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2856 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1912 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2932 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|)) (-986) (-799 |#1|)) (T -800))
+((-2932 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) (-4 *3 (-799 *5)))) (-1912 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) (-4 *3 (-799 *5)))) (-2856 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) (-4 *3 (-799 *5)))) (-2517 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-986)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3)) (-4 *3 (-799 *5)))) (-2979 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-986)) (-5 *1 (-800 *2 *3)) (-4 *3 (-799 *2)))) (-3974 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-986)) (-5 *1 (-800 *5 *2)) (-4 *2 (-799 *5)))))
+(-10 -7 (-15 -3974 (|#2| |#2| |#2| (-96 |#1|) (-1 |#1| |#1|))) (-15 -2979 (|#1| |#2| |#1| |#1| (-96 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-523)) (PROGN (-15 -2517 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2856 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1912 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|))) (-15 -2932 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2| (-96 |#1|)))) |%noBranch|))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#1| (-344)))) (-2643 (($ $ $) NIL (|has| |#1| (-344)))) (-1866 (($ $ $) NIL (|has| |#1| (-344)))) (-3812 (($ $ $) NIL (|has| |#1| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 32 (|has| |#1| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-1362 (((-806) $ (-806)) NIL)) (-3481 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) NIL)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 28 (|has| |#1| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 26 (|has| |#1| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#1| (-344)))) (-3351 (($ $ $) NIL (|has| |#1| (-344)))) (-2321 (($ $ $) NIL (|has| |#1| (-344)))) (-1884 (($ $ $) NIL (|has| |#1| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 30 (|has| |#1| (-344)))) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2012 (((-721) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-977 (-388 (-531))))) (($ |#1|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#1| $ |#1| |#1|) 15)) (-3035 (($) NIL T CONST)) (-3050 (($) 20 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) 19) (($ $ (-721)) 22)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 13) (($ $ |#1|) NIL) (($ |#1| $) NIL)))
+(((-801 |#1| |#2| |#3|) (-13 (-799 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-806))))) (-986) (-96 |#1|) (-1 |#1| |#1|)) (T -801))
+((-1362 (*1 *2 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-801 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3)))))
+(-13 (-799 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-806)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-2089 (($ $ $) NIL (|has| |#2| (-344)))) (-2643 (($ $ $) NIL (|has| |#2| (-344)))) (-1866 (($ $ $) NIL (|has| |#2| (-344)))) (-3812 (($ $ $) NIL (|has| |#2| (-344)))) (-3665 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#2| (-344)))) (-2470 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-2932 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-344)))) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 |#2| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) ((|#2| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#2| (-432)))) (-3481 (((-110) $) NIL)) (-2669 (($ |#2| (-721)) 16)) (-2856 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-523)))) (-2517 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-523)))) (-3005 (((-721) $) NIL)) (-3215 (($ $ $) NIL (|has| |#2| (-344)))) (-3351 (($ $ $) NIL (|has| |#2| (-344)))) (-2321 (($ $ $) NIL (|has| |#2| (-344)))) (-1884 (($ $ $) NIL (|has| |#2| (-344)))) (-3460 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#2| (-344)))) (-3894 (((-3 $ "failed") $ $) NIL (|has| |#2| (-344)))) (-1912 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-344)))) (-2475 ((|#2| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523)))) (-2012 (((-721) $) NIL)) (-1767 ((|#2| $) NIL (|has| |#2| (-432)))) (-2265 (((-806) $) 23) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#2| (-977 (-388 (-531))))) (($ |#2|) NIL) (($ (-1180 |#1|)) 18)) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-721)) NIL)) (-2284 (((-721)) NIL)) (-2979 ((|#2| $ |#2| |#2|) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) 13 T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL)))
+(((-802 |#1| |#2| |#3| |#4|) (-13 (-799 |#2|) (-10 -8 (-15 -2265 ($ (-1180 |#1|))))) (-1102) (-986) (-96 |#2|) (-1 |#2| |#2|)) (T -802))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-14 *3 (-1102)) (-5 *1 (-802 *3 *4 *5 *6)) (-4 *4 (-986)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4)))))
+(-13 (-799 |#2|) (-10 -8 (-15 -2265 ($ (-1180 |#1|)))))
+((-1941 ((|#1| (-721) |#1|) 35 (|has| |#1| (-37 (-388 (-531)))))) (-1234 ((|#1| (-721) (-721) |#1|) 27) ((|#1| (-721) |#1|) 20)) (-2612 ((|#1| (-721) |#1|) 31)) (-3376 ((|#1| (-721) |#1|) 29)) (-1554 ((|#1| (-721) |#1|) 28)))
+(((-803 |#1|) (-10 -7 (-15 -1554 (|#1| (-721) |#1|)) (-15 -3376 (|#1| (-721) |#1|)) (-15 -2612 (|#1| (-721) |#1|)) (-15 -1234 (|#1| (-721) |#1|)) (-15 -1234 (|#1| (-721) (-721) |#1|)) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1941 (|#1| (-721) |#1|)) |%noBranch|)) (-162)) (T -803))
+((-1941 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-162)))) (-1234 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) (-1234 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) (-2612 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) (-3376 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))) (-1554 (*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))))
+(-10 -7 (-15 -1554 (|#1| (-721) |#1|)) (-15 -3376 (|#1| (-721) |#1|)) (-15 -2612 (|#1| (-721) |#1|)) (-15 -1234 (|#1| (-721) |#1|)) (-15 -1234 (|#1| (-721) (-721) |#1|)) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1941 (|#1| (-721) |#1|)) |%noBranch|))
+((-2247 (((-110) $ $) 7)) (-4103 (($ $ $) 13)) (-1241 (($ $ $) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2207 (((-110) $ $) 16)) (-2184 (((-110) $ $) 17)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 15)) (-2174 (((-110) $ $) 18)) (** (($ $ (-864)) 21)) (* (($ $ $) 20)))
+(((-804) (-133)) (T -804))
+NIL
+(-13 (-797) (-1042))
+(((-99) . T) ((-572 (-806)) . T) ((-797) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3482 (((-531) $) 12)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 18) (($ (-531)) 11)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 8)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 9)))
+(((-805) (-13 (-797) (-10 -8 (-15 -2265 ($ (-531))) (-15 -3482 ((-531) $))))) (T -805))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-805)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-805)))))
+(-13 (-797) (-10 -8 (-15 -2265 ($ (-531))) (-15 -3482 ((-531) $))))
+((-2247 (((-110) $ $) NIL) (($ $ $) 77)) (-1395 (($ $ $) 115)) (-1463 (((-531) $) 30) (((-531)) 35)) (-2510 (($ (-531)) 44)) (-2406 (($ $ $) 45) (($ (-598 $)) 76)) (-3391 (($ $ (-598 $)) 74)) (-1621 (((-531) $) 33)) (-4040 (($ $ $) 63)) (-3539 (($ $) 128) (($ $ $) 129) (($ $ $ $) 130)) (-2288 (((-531) $) 32)) (-1250 (($ $ $) 62)) (-3149 (($ $) 105)) (-4016 (($ $ $) 119)) (-2817 (($ (-598 $)) 52)) (-2441 (($ $ (-598 $)) 69)) (-1699 (($ (-531) (-531)) 46)) (-3071 (($ $) 116) (($ $ $) 117)) (-3157 (($ $ (-531)) 40) (($ $) 43)) (-3650 (($ $ $) 89)) (-2413 (($ $ $) 122)) (-3651 (($ $) 106)) (-3630 (($ $ $) 90)) (-3239 (($ $) 131) (($ $ $) 132) (($ $ $ $) 133)) (-4094 (((-1189) $) 8)) (-1658 (($ $) 109) (($ $ (-721)) 112)) (-3104 (($ $ $) 65)) (-3394 (($ $ $) 64)) (-3936 (($ $ (-598 $)) 100)) (-3480 (($ $ $) 104)) (-3764 (($ (-598 $)) 50)) (-1238 (($ $) 60) (($ (-598 $)) 61)) (-2328 (($ $ $) 113)) (-3763 (($ $) 107)) (-2093 (($ $ $) 118)) (-1362 (($ (-531)) 20) (($ (-1102)) 22) (($ (-1085)) 29) (($ (-208)) 24)) (-2726 (($ $ $) 93)) (-3745 (($ $) 94)) (-2944 (((-1189) (-1085)) 14)) (-2092 (($ (-1085)) 13)) (-2200 (($ (-598 (-598 $))) 49)) (-3144 (($ $ (-531)) 39) (($ $) 42)) (-1521 (((-1085) $) NIL)) (-3117 (($ $ $) 121)) (-4150 (($ $) 134) (($ $ $) 135) (($ $ $ $) 136)) (-3095 (((-110) $) 98)) (-3150 (($ $ (-598 $)) 102) (($ $ $ $) 103)) (-1856 (($ (-531)) 36)) (-4194 (((-531) $) 31) (((-531)) 34)) (-2074 (($ $ $) 37) (($ (-598 $)) 75)) (-2529 (((-1049) $) NIL)) (-3609 (($ $ $) 91)) (-3781 (($) 12)) (-1785 (($ $ (-598 $)) 99)) (-3225 (($ $) 108) (($ $ (-721)) 111)) (-3620 (($ $ $) 88)) (-3352 (($ $ (-721)) 127)) (-3049 (($ (-598 $)) 51)) (-2265 (((-806) $) 18)) (-3840 (($ $ (-531)) 38) (($ $) 41)) (-3802 (($ $) 58) (($ (-598 $)) 59)) (-3445 (($ $) 56) (($ (-598 $)) 57)) (-3504 (($ $) 114)) (-3897 (($ (-598 $)) 55)) (-2589 (($ $ $) 97)) (-3447 (($ $ $) 120)) (-3427 (($ $ $) 92)) (-3941 (($ $ $) 95) (($ $) 96)) (-2207 (($ $ $) 81)) (-2184 (($ $ $) 79)) (-2148 (((-110) $ $) 15) (($ $ $) 16)) (-2195 (($ $ $) 80)) (-2174 (($ $ $) 78)) (-2263 (($ $ $) 86)) (-2250 (($ $ $) 83) (($ $) 84)) (-2237 (($ $ $) 82)) (** (($ $ $) 87)) (* (($ $ $) 85)))
+(((-806) (-13 (-1030) (-10 -8 (-15 -4094 ((-1189) $)) (-15 -2092 ($ (-1085))) (-15 -2944 ((-1189) (-1085))) (-15 -1362 ($ (-531))) (-15 -1362 ($ (-1102))) (-15 -1362 ($ (-1085))) (-15 -1362 ($ (-208))) (-15 -3781 ($)) (-15 -1463 ((-531) $)) (-15 -4194 ((-531) $)) (-15 -1463 ((-531))) (-15 -4194 ((-531))) (-15 -2288 ((-531) $)) (-15 -1621 ((-531) $)) (-15 -1856 ($ (-531))) (-15 -2510 ($ (-531))) (-15 -1699 ($ (-531) (-531))) (-15 -3144 ($ $ (-531))) (-15 -3157 ($ $ (-531))) (-15 -3840 ($ $ (-531))) (-15 -3144 ($ $)) (-15 -3157 ($ $)) (-15 -3840 ($ $)) (-15 -2074 ($ $ $)) (-15 -2406 ($ $ $)) (-15 -2074 ($ (-598 $))) (-15 -2406 ($ (-598 $))) (-15 -3936 ($ $ (-598 $))) (-15 -3150 ($ $ (-598 $))) (-15 -3150 ($ $ $ $)) (-15 -3480 ($ $ $)) (-15 -3095 ((-110) $)) (-15 -1785 ($ $ (-598 $))) (-15 -3149 ($ $)) (-15 -3117 ($ $ $)) (-15 -3504 ($ $)) (-15 -2200 ($ (-598 (-598 $)))) (-15 -1395 ($ $ $)) (-15 -3071 ($ $)) (-15 -3071 ($ $ $)) (-15 -2093 ($ $ $)) (-15 -4016 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -2413 ($ $ $)) (-15 -3352 ($ $ (-721))) (-15 -2589 ($ $ $)) (-15 -1250 ($ $ $)) (-15 -4040 ($ $ $)) (-15 -3394 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -2441 ($ $ (-598 $))) (-15 -3391 ($ $ (-598 $))) (-15 -3651 ($ $)) (-15 -3225 ($ $)) (-15 -3225 ($ $ (-721))) (-15 -1658 ($ $)) (-15 -1658 ($ $ (-721))) (-15 -3763 ($ $)) (-15 -2328 ($ $ $)) (-15 -3539 ($ $)) (-15 -3539 ($ $ $)) (-15 -3539 ($ $ $ $)) (-15 -3239 ($ $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ $ $ $)) (-15 -4150 ($ $)) (-15 -4150 ($ $ $)) (-15 -4150 ($ $ $ $)) (-15 -3445 ($ $)) (-15 -3445 ($ (-598 $))) (-15 -3802 ($ $)) (-15 -3802 ($ (-598 $))) (-15 -1238 ($ $)) (-15 -1238 ($ (-598 $))) (-15 -3764 ($ (-598 $))) (-15 -3049 ($ (-598 $))) (-15 -2817 ($ (-598 $))) (-15 -3897 ($ (-598 $))) (-15 -2148 ($ $ $)) (-15 -2247 ($ $ $)) (-15 -2174 ($ $ $)) (-15 -2184 ($ $ $)) (-15 -2195 ($ $ $)) (-15 -2207 ($ $ $)) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2250 ($ $)) (-15 * ($ $ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ $)) (-15 -3620 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -3630 ($ $ $)) (-15 -3609 ($ $ $)) (-15 -3427 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -3745 ($ $)) (-15 -3941 ($ $ $)) (-15 -3941 ($ $))))) (T -806))
+((-4094 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-806)))) (-2092 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-806)))) (-2944 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-806)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-806)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-806)))) (-1362 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-806)))) (-3781 (*1 *1) (-5 *1 (-806))) (-1463 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-4194 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1463 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-4194 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-2288 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1621 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1856 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-2510 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-1699 (*1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-3144 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-3157 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-3840 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))) (-3144 (*1 *1 *1) (-5 *1 (-806))) (-3157 (*1 *1 *1) (-5 *1 (-806))) (-3840 (*1 *1 *1) (-5 *1 (-806))) (-2074 (*1 *1 *1 *1) (-5 *1 (-806))) (-2406 (*1 *1 *1 *1) (-5 *1 (-806))) (-2074 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-2406 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3150 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3150 (*1 *1 *1 *1 *1) (-5 *1 (-806))) (-3480 (*1 *1 *1 *1) (-5 *1 (-806))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-806)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3149 (*1 *1 *1) (-5 *1 (-806))) (-3117 (*1 *1 *1 *1) (-5 *1 (-806))) (-3504 (*1 *1 *1) (-5 *1 (-806))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-806)))) (-5 *1 (-806)))) (-1395 (*1 *1 *1 *1) (-5 *1 (-806))) (-3071 (*1 *1 *1) (-5 *1 (-806))) (-3071 (*1 *1 *1 *1) (-5 *1 (-806))) (-2093 (*1 *1 *1 *1) (-5 *1 (-806))) (-4016 (*1 *1 *1 *1) (-5 *1 (-806))) (-3447 (*1 *1 *1 *1) (-5 *1 (-806))) (-2413 (*1 *1 *1 *1) (-5 *1 (-806))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) (-2589 (*1 *1 *1 *1) (-5 *1 (-806))) (-1250 (*1 *1 *1 *1) (-5 *1 (-806))) (-4040 (*1 *1 *1 *1) (-5 *1 (-806))) (-3394 (*1 *1 *1 *1) (-5 *1 (-806))) (-3104 (*1 *1 *1 *1) (-5 *1 (-806))) (-2441 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3651 (*1 *1 *1) (-5 *1 (-806))) (-3225 (*1 *1 *1) (-5 *1 (-806))) (-3225 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) (-1658 (*1 *1 *1) (-5 *1 (-806))) (-1658 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806)))) (-3763 (*1 *1 *1) (-5 *1 (-806))) (-2328 (*1 *1 *1 *1) (-5 *1 (-806))) (-3539 (*1 *1 *1) (-5 *1 (-806))) (-3539 (*1 *1 *1 *1) (-5 *1 (-806))) (-3539 (*1 *1 *1 *1 *1) (-5 *1 (-806))) (-3239 (*1 *1 *1) (-5 *1 (-806))) (-3239 (*1 *1 *1 *1) (-5 *1 (-806))) (-3239 (*1 *1 *1 *1 *1) (-5 *1 (-806))) (-4150 (*1 *1 *1) (-5 *1 (-806))) (-4150 (*1 *1 *1 *1) (-5 *1 (-806))) (-4150 (*1 *1 *1 *1 *1) (-5 *1 (-806))) (-3445 (*1 *1 *1) (-5 *1 (-806))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3802 (*1 *1 *1) (-5 *1 (-806))) (-3802 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-1238 (*1 *1 *1) (-5 *1 (-806))) (-1238 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3764 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3049 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-2817 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-3897 (*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))) (-2148 (*1 *1 *1 *1) (-5 *1 (-806))) (-2247 (*1 *1 *1 *1) (-5 *1 (-806))) (-2174 (*1 *1 *1 *1) (-5 *1 (-806))) (-2184 (*1 *1 *1 *1) (-5 *1 (-806))) (-2195 (*1 *1 *1 *1) (-5 *1 (-806))) (-2207 (*1 *1 *1 *1) (-5 *1 (-806))) (-2237 (*1 *1 *1 *1) (-5 *1 (-806))) (-2250 (*1 *1 *1 *1) (-5 *1 (-806))) (-2250 (*1 *1 *1) (-5 *1 (-806))) (* (*1 *1 *1 *1) (-5 *1 (-806))) (-2263 (*1 *1 *1 *1) (-5 *1 (-806))) (** (*1 *1 *1 *1) (-5 *1 (-806))) (-3620 (*1 *1 *1 *1) (-5 *1 (-806))) (-3650 (*1 *1 *1 *1) (-5 *1 (-806))) (-3630 (*1 *1 *1 *1) (-5 *1 (-806))) (-3609 (*1 *1 *1 *1) (-5 *1 (-806))) (-3427 (*1 *1 *1 *1) (-5 *1 (-806))) (-2726 (*1 *1 *1 *1) (-5 *1 (-806))) (-3745 (*1 *1 *1) (-5 *1 (-806))) (-3941 (*1 *1 *1 *1) (-5 *1 (-806))) (-3941 (*1 *1 *1) (-5 *1 (-806))))
+(-13 (-1030) (-10 -8 (-15 -4094 ((-1189) $)) (-15 -2092 ($ (-1085))) (-15 -2944 ((-1189) (-1085))) (-15 -1362 ($ (-531))) (-15 -1362 ($ (-1102))) (-15 -1362 ($ (-1085))) (-15 -1362 ($ (-208))) (-15 -3781 ($)) (-15 -1463 ((-531) $)) (-15 -4194 ((-531) $)) (-15 -1463 ((-531))) (-15 -4194 ((-531))) (-15 -2288 ((-531) $)) (-15 -1621 ((-531) $)) (-15 -1856 ($ (-531))) (-15 -2510 ($ (-531))) (-15 -1699 ($ (-531) (-531))) (-15 -3144 ($ $ (-531))) (-15 -3157 ($ $ (-531))) (-15 -3840 ($ $ (-531))) (-15 -3144 ($ $)) (-15 -3157 ($ $)) (-15 -3840 ($ $)) (-15 -2074 ($ $ $)) (-15 -2406 ($ $ $)) (-15 -2074 ($ (-598 $))) (-15 -2406 ($ (-598 $))) (-15 -3936 ($ $ (-598 $))) (-15 -3150 ($ $ (-598 $))) (-15 -3150 ($ $ $ $)) (-15 -3480 ($ $ $)) (-15 -3095 ((-110) $)) (-15 -1785 ($ $ (-598 $))) (-15 -3149 ($ $)) (-15 -3117 ($ $ $)) (-15 -3504 ($ $)) (-15 -2200 ($ (-598 (-598 $)))) (-15 -1395 ($ $ $)) (-15 -3071 ($ $)) (-15 -3071 ($ $ $)) (-15 -2093 ($ $ $)) (-15 -4016 ($ $ $)) (-15 -3447 ($ $ $)) (-15 -2413 ($ $ $)) (-15 -3352 ($ $ (-721))) (-15 -2589 ($ $ $)) (-15 -1250 ($ $ $)) (-15 -4040 ($ $ $)) (-15 -3394 ($ $ $)) (-15 -3104 ($ $ $)) (-15 -2441 ($ $ (-598 $))) (-15 -3391 ($ $ (-598 $))) (-15 -3651 ($ $)) (-15 -3225 ($ $)) (-15 -3225 ($ $ (-721))) (-15 -1658 ($ $)) (-15 -1658 ($ $ (-721))) (-15 -3763 ($ $)) (-15 -2328 ($ $ $)) (-15 -3539 ($ $)) (-15 -3539 ($ $ $)) (-15 -3539 ($ $ $ $)) (-15 -3239 ($ $)) (-15 -3239 ($ $ $)) (-15 -3239 ($ $ $ $)) (-15 -4150 ($ $)) (-15 -4150 ($ $ $)) (-15 -4150 ($ $ $ $)) (-15 -3445 ($ $)) (-15 -3445 ($ (-598 $))) (-15 -3802 ($ $)) (-15 -3802 ($ (-598 $))) (-15 -1238 ($ $)) (-15 -1238 ($ (-598 $))) (-15 -3764 ($ (-598 $))) (-15 -3049 ($ (-598 $))) (-15 -2817 ($ (-598 $))) (-15 -3897 ($ (-598 $))) (-15 -2148 ($ $ $)) (-15 -2247 ($ $ $)) (-15 -2174 ($ $ $)) (-15 -2184 ($ $ $)) (-15 -2195 ($ $ $)) (-15 -2207 ($ $ $)) (-15 -2237 ($ $ $)) (-15 -2250 ($ $ $)) (-15 -2250 ($ $)) (-15 * ($ $ $)) (-15 -2263 ($ $ $)) (-15 ** ($ $ $)) (-15 -3620 ($ $ $)) (-15 -3650 ($ $ $)) (-15 -3630 ($ $ $)) (-15 -3609 ($ $ $)) (-15 -3427 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -3745 ($ $)) (-15 -3941 ($ $ $)) (-15 -3941 ($ $))))
+((-4135 (((-1189) (-598 (-51))) 24)) (-2131 (((-1189) (-1085) (-806)) 14) (((-1189) (-806)) 9) (((-1189) (-1085)) 11)))
+(((-807) (-10 -7 (-15 -2131 ((-1189) (-1085))) (-15 -2131 ((-1189) (-806))) (-15 -2131 ((-1189) (-1085) (-806))) (-15 -4135 ((-1189) (-598 (-51)))))) (T -807))
+((-4135 (*1 *2 *3) (-12 (-5 *3 (-598 (-51))) (-5 *2 (-1189)) (-5 *1 (-807)))) (-2131 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-806)) (-5 *2 (-1189)) (-5 *1 (-807)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-807)))) (-2131 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-807)))))
+(-10 -7 (-15 -2131 ((-1189) (-1085))) (-15 -2131 ((-1189) (-806))) (-15 -2131 ((-1189) (-1085) (-806))) (-15 -4135 ((-1189) (-598 (-51)))))
+((-2247 (((-110) $ $) NIL)) (-3524 (((-3 $ "failed") (-1102)) 33)) (-3006 (((-721)) 31)) (-1381 (($) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2211 (((-864) $) 29)) (-1521 (((-1085) $) 39)) (-1889 (($ (-864)) 28)) (-2529 (((-1049) $) NIL)) (-3318 (((-1102) $) 13) (((-507) $) 19) (((-835 (-360)) $) 26) (((-835 (-531)) $) 22)) (-2265 (((-806) $) 16)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 36)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 35)))
+(((-808 |#1|) (-13 (-791) (-573 (-1102)) (-573 (-507)) (-573 (-835 (-360))) (-573 (-835 (-531))) (-10 -8 (-15 -3524 ((-3 $ "failed") (-1102))))) (-598 (-1102))) (T -808))
+((-3524 (*1 *1 *2) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-808 *3)) (-14 *3 (-598 *2)))))
+(-13 (-791) (-573 (-1102)) (-573 (-507)) (-573 (-835 (-360))) (-573 (-835 (-531))) (-10 -8 (-15 -3524 ((-3 $ "failed") (-1102)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (((-895 |#1|) $) NIL) (($ (-895 |#1|)) NIL) (($ |#1|) NIL (|has| |#1| (-162)))) (-2284 (((-721)) NIL)) (-3575 (((-1189) (-721)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-809 |#1| |#2| |#3| |#4|) (-13 (-986) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2265 ((-895 |#1|) $)) (-15 -2265 ($ (-895 |#1|))) (IF (|has| |#1| (-344)) (-15 -2263 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3575 ((-1189) (-721))))) (-986) (-598 (-1102)) (-598 (-721)) (-721)) (T -809))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-895 *3)) (-5 *1 (-809 *3 *4 *5 *6)) (-4 *3 (-986)) (-14 *4 (-598 (-1102))) (-14 *5 (-598 (-721))) (-14 *6 (-721)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-5 *1 (-809 *3 *4 *5 *6)) (-14 *4 (-598 (-1102))) (-14 *5 (-598 (-721))) (-14 *6 (-721)))) (-2263 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-809 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *2 (-986)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-721))) (-14 *5 (-721)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-809 *4 *5 *6 *7)) (-4 *4 (-986)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 *3)) (-14 *7 *3))))
+(-13 (-986) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2265 ((-895 |#1|) $)) (-15 -2265 ($ (-895 |#1|))) (IF (|has| |#1| (-344)) (-15 -2263 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -3575 ((-1189) (-721)))))
+((-2157 (((-3 (-163 |#3|) "failed") (-721) (-721) |#2| |#2|) 31)) (-1462 (((-3 (-388 |#3|) "failed") (-721) (-721) |#2| |#2|) 24)))
+(((-810 |#1| |#2| |#3|) (-10 -7 (-15 -1462 ((-3 (-388 |#3|) "failed") (-721) (-721) |#2| |#2|)) (-15 -2157 ((-3 (-163 |#3|) "failed") (-721) (-721) |#2| |#2|))) (-344) (-1175 |#1|) (-1160 |#1|)) (T -810))
+((-2157 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-721)) (-4 *5 (-344)) (-5 *2 (-163 *6)) (-5 *1 (-810 *5 *4 *6)) (-4 *4 (-1175 *5)) (-4 *6 (-1160 *5)))) (-1462 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-721)) (-4 *5 (-344)) (-5 *2 (-388 *6)) (-5 *1 (-810 *5 *4 *6)) (-4 *4 (-1175 *5)) (-4 *6 (-1160 *5)))))
+(-10 -7 (-15 -1462 ((-3 (-388 |#3|) "failed") (-721) (-721) |#2| |#2|)) (-15 -2157 ((-3 (-163 |#3|) "failed") (-721) (-721) |#2| |#2|)))
+((-1462 (((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|)) 28) (((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) 26)))
+(((-811 |#1| |#2| |#3|) (-10 -7 (-15 -1462 ((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (-15 -1462 ((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|)))) (-344) (-1102) |#1|) (T -811))
+((-1462 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-721)) (-5 *4 (-1176 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1102)) (-14 *7 *5) (-5 *2 (-388 (-1157 *6 *5))) (-5 *1 (-811 *5 *6 *7)))) (-1462 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-721)) (-5 *4 (-1176 *5 *6 *7)) (-4 *5 (-344)) (-14 *6 (-1102)) (-14 *7 *5) (-5 *2 (-388 (-1157 *6 *5))) (-5 *1 (-811 *5 *6 *7)))))
+(-10 -7 (-15 -1462 ((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (-15 -1462 ((-3 (-388 (-1157 |#2| |#1|)) "failed") (-721) (-721) (-1176 |#1| |#2| |#3|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-2563 (($ $ (-531)) 60)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3071 (($ (-1098 (-531)) (-531)) 59)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3649 (($ $) 62)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3617 (((-721) $) 67)) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-1406 (((-531)) 64)) (-3045 (((-531) $) 63)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-1846 (($ $ (-531)) 66)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2890 (((-1083 (-531)) $) 68)) (-3437 (($ $) 65)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-4148 (((-531) $ (-531)) 61)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-812 |#1|) (-133) (-531)) (T -812))
+((-2890 (*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-1083 (-531))))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-721)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-3437 (*1 *1 *1) (-4 *1 (-812 *2))) (-1406 (*1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-3649 (*1 *1 *1) (-4 *1 (-812 *2))) (-4148 (*1 *2 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-2563 (*1 *1 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))) (-3071 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *3 (-531)) (-4 *1 (-812 *4)))))
+(-13 (-289) (-140) (-10 -8 (-15 -2890 ((-1083 (-531)) $)) (-15 -3617 ((-721) $)) (-15 -1846 ($ $ (-531))) (-15 -3437 ($ $)) (-15 -1406 ((-531))) (-15 -3045 ((-531) $)) (-15 -3649 ($ $)) (-15 -4148 ((-531) $ (-531))) (-15 -2563 ($ $ (-531))) (-15 -3071 ($ (-1098 (-531)) (-531)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-289) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $ (-531)) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3071 (($ (-1098 (-531)) (-531)) NIL)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3649 (($ $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-3617 (((-721) $) NIL)) (-3481 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1406 (((-531)) NIL)) (-3045 (((-531) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-1846 (($ $ (-531)) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2890 (((-1083 (-531)) $) NIL)) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-4148 (((-531) $ (-531)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL)))
+(((-813 |#1|) (-812 |#1|) (-531)) (T -813))
+NIL
+(-812 |#1|)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-813 |#1|) $) NIL (|has| (-813 |#1|) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-813 |#1|) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-813 |#1|) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-813 |#1|) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-813 |#1|) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| (-813 |#1|) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-813 |#1|) (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| (-813 |#1|) (-977 (-531))))) (-2523 (((-813 |#1|) $) NIL) (((-1102) $) NIL (|has| (-813 |#1|) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-813 |#1|) (-977 (-531)))) (((-531) $) NIL (|has| (-813 |#1|) (-977 (-531))))) (-2581 (($ $) NIL) (($ (-531) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-813 |#1|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-813 |#1|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-813 |#1|))) (|:| |vec| (-1184 (-813 |#1|)))) (-639 $) (-1184 $)) NIL) (((-639 (-813 |#1|)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-813 |#1|) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| (-813 |#1|) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-813 |#1|) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-813 |#1|) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-813 |#1|) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| (-813 |#1|) (-1078)))) (-2985 (((-110) $) NIL (|has| (-813 |#1|) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-813 |#1|) (-797)))) (-1241 (($ $ $) NIL (|has| (-813 |#1|) (-797)))) (-3261 (($ (-1 (-813 |#1|) (-813 |#1|)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-813 |#1|) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-813 |#1|) (-289)))) (-2943 (((-813 |#1|) $) NIL (|has| (-813 |#1|) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-813 |#1|) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-813 |#1|) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-813 |#1|)) (-598 (-813 |#1|))) NIL (|has| (-813 |#1|) (-291 (-813 |#1|)))) (($ $ (-813 |#1|) (-813 |#1|)) NIL (|has| (-813 |#1|) (-291 (-813 |#1|)))) (($ $ (-276 (-813 |#1|))) NIL (|has| (-813 |#1|) (-291 (-813 |#1|)))) (($ $ (-598 (-276 (-813 |#1|)))) NIL (|has| (-813 |#1|) (-291 (-813 |#1|)))) (($ $ (-598 (-1102)) (-598 (-813 |#1|))) NIL (|has| (-813 |#1|) (-492 (-1102) (-813 |#1|)))) (($ $ (-1102) (-813 |#1|)) NIL (|has| (-813 |#1|) (-492 (-1102) (-813 |#1|))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-813 |#1|)) NIL (|has| (-813 |#1|) (-268 (-813 |#1|) (-813 |#1|))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| (-813 |#1|) (-216))) (($ $ (-721)) NIL (|has| (-813 |#1|) (-216))) (($ $ (-1102)) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-1 (-813 |#1|) (-813 |#1|)) (-721)) NIL) (($ $ (-1 (-813 |#1|) (-813 |#1|))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-813 |#1|) $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| (-813 |#1|) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-813 |#1|) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-813 |#1|) (-573 (-507)))) (((-360) $) NIL (|has| (-813 |#1|) (-962))) (((-208) $) NIL (|has| (-813 |#1|) (-962)))) (-3591 (((-163 (-388 (-531))) $) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-813 |#1|) (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL) (($ (-813 |#1|)) NIL) (($ (-1102)) NIL (|has| (-813 |#1|) (-977 (-1102))))) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-813 |#1|) (-852))) (|has| (-813 |#1|) (-138))))) (-2284 (((-721)) NIL)) (-3831 (((-813 |#1|) $) NIL (|has| (-813 |#1|) (-516)))) (-2587 (((-110) $ $) NIL)) (-4148 (((-388 (-531)) $ (-531)) NIL)) (-1620 (($ $) NIL (|has| (-813 |#1|) (-770)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $) NIL (|has| (-813 |#1|) (-216))) (($ $ (-721)) NIL (|has| (-813 |#1|) (-216))) (($ $ (-1102)) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-813 |#1|) (-843 (-1102)))) (($ $ (-1 (-813 |#1|) (-813 |#1|)) (-721)) NIL) (($ $ (-1 (-813 |#1|) (-813 |#1|))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-813 |#1|) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-813 |#1|) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-813 |#1|) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-813 |#1|) (-797)))) (-2263 (($ $ $) NIL) (($ (-813 |#1|) (-813 |#1|)) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-813 |#1|) $) NIL) (($ $ (-813 |#1|)) NIL)))
+(((-814 |#1|) (-13 (-934 (-813 |#1|)) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) (-531)) (T -814))
+((-4148 (*1 *2 *1 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-814 *4)) (-14 *4 *3) (-5 *3 (-531)))) (-3591 (*1 *2 *1) (-12 (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-814 *3)) (-14 *3 (-531)))) (-2581 (*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-14 *2 (-531)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-814 *3)) (-14 *3 *2))))
+(-13 (-934 (-813 |#1|)) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 ((|#2| $) NIL (|has| |#2| (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| |#2| (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (|has| |#2| (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531))))) (-2523 ((|#2| $) NIL) (((-1102) $) NIL (|has| |#2| (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-531)))) (((-531) $) NIL (|has| |#2| (-977 (-531))))) (-2581 (($ $) 31) (($ (-531) $) 32)) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) 53)) (-1381 (($) NIL (|has| |#2| (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) NIL (|has| |#2| (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| |#2| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| |#2| (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 ((|#2| $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#2| (-1078)))) (-2985 (((-110) $) NIL (|has| |#2| (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 49)) (-3788 (($) NIL (|has| |#2| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| |#2| (-289)))) (-2943 ((|#2| $) NIL (|has| |#2| (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 |#2|) (-598 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ |#2| |#2|) NIL (|has| |#2| (-291 |#2|))) (($ $ (-276 |#2|)) NIL (|has| |#2| (-291 |#2|))) (($ $ (-598 (-276 |#2|))) NIL (|has| |#2| (-291 |#2|))) (($ $ (-598 (-1102)) (-598 |#2|)) NIL (|has| |#2| (-492 (-1102) |#2|))) (($ $ (-1102) |#2|) NIL (|has| |#2| (-492 (-1102) |#2|)))) (-4100 (((-721) $) NIL)) (-1785 (($ $ |#2|) NIL (|has| |#2| (-268 |#2| |#2|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) NIL (|has| |#2| (-216))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2842 (($ $) NIL)) (-1853 ((|#2| $) NIL)) (-3318 (((-835 (-531)) $) NIL (|has| |#2| (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| |#2| (-573 (-835 (-360))))) (((-507) $) NIL (|has| |#2| (-573 (-507)))) (((-360) $) NIL (|has| |#2| (-962))) (((-208) $) NIL (|has| |#2| (-962)))) (-3591 (((-163 (-388 (-531))) $) 68)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2265 (((-806) $) 87) (($ (-531)) 19) (($ $) NIL) (($ (-388 (-531))) 24) (($ |#2|) 18) (($ (-1102)) NIL (|has| |#2| (-977 (-1102))))) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-3831 ((|#2| $) NIL (|has| |#2| (-516)))) (-2587 (((-110) $ $) NIL)) (-4148 (((-388 (-531)) $ (-531)) 60)) (-1620 (($ $) NIL (|has| |#2| (-770)))) (-3035 (($) 14 T CONST)) (-3050 (($) 16 T CONST)) (-4020 (($ $) NIL (|has| |#2| (-216))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) 35)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ $) 23) (($ |#2| |#2|) 54)) (-2250 (($ $) 39) (($ $ $) 41)) (-2237 (($ $ $) 37)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) 50)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 42) (($ $ $) 44) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ |#2| $) 55) (($ $ |#2|) NIL)))
+(((-815 |#1| |#2|) (-13 (-934 |#2|) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)))) (-531) (-812 |#1|)) (T -815))
+((-4148 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-388 (-531))) (-5 *1 (-815 *4 *5)) (-5 *3 (-531)) (-4 *5 (-812 *4)))) (-3591 (*1 *2 *1) (-12 (-14 *3 (-531)) (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-815 *3 *4)) (-4 *4 (-812 *3)))) (-2581 (*1 *1 *1) (-12 (-14 *2 (-531)) (-5 *1 (-815 *2 *3)) (-4 *3 (-812 *2)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-14 *3 *2) (-5 *1 (-815 *3 *4)) (-4 *4 (-812 *3)))))
+(-13 (-934 |#2|) (-10 -8 (-15 -4148 ((-388 (-531)) $ (-531))) (-15 -3591 ((-163 (-388 (-531))) $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $))))
+((-2247 (((-110) $ $) NIL (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))))) (-3297 ((|#2| $) 12)) (-1924 (($ |#1| |#2|) 9)) (-1521 (((-1085) $) NIL (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))))) (-2529 (((-1049) $) NIL (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#1| $) 11)) (-2274 (($ |#1| |#2|) 10)) (-2265 (((-806) $) 18 (-1435 (-12 (|has| |#1| (-572 (-806))) (|has| |#2| (-572 (-806)))) (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030)))))) (-2148 (((-110) $ $) 22 (-12 (|has| |#1| (-1030)) (|has| |#2| (-1030))))))
+(((-816 |#1| |#2|) (-13 (-1138) (-10 -8 (IF (|has| |#1| (-572 (-806))) (IF (|has| |#2| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1030)) (IF (|has| |#2| (-1030)) (-6 (-1030)) |%noBranch|) |%noBranch|) (-15 -1924 ($ |#1| |#2|)) (-15 -2274 ($ |#1| |#2|)) (-15 -3046 (|#1| $)) (-15 -3297 (|#2| $)))) (-1138) (-1138)) (T -816))
+((-1924 (*1 *1 *2 *3) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1138)) (-4 *3 (-1138)))) (-2274 (*1 *1 *2 *3) (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1138)) (-4 *3 (-1138)))) (-3046 (*1 *2 *1) (-12 (-4 *2 (-1138)) (-5 *1 (-816 *2 *3)) (-4 *3 (-1138)))) (-3297 (*1 *2 *1) (-12 (-4 *2 (-1138)) (-5 *1 (-816 *3 *2)) (-4 *3 (-1138)))))
+(-13 (-1138) (-10 -8 (IF (|has| |#1| (-572 (-806))) (IF (|has| |#2| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1030)) (IF (|has| |#2| (-1030)) (-6 (-1030)) |%noBranch|) |%noBranch|) (-15 -1924 ($ |#1| |#2|)) (-15 -2274 ($ |#1| |#2|)) (-15 -3046 (|#1| $)) (-15 -3297 (|#2| $))))
+((-2247 (((-110) $ $) NIL)) (-2059 (((-531) $) 15)) (-3151 (($ (-148)) 11)) (-2384 (($ (-148)) 12)) (-1521 (((-1085) $) NIL)) (-2697 (((-148) $) 13)) (-2529 (((-1049) $) NIL)) (-3169 (($ (-148)) 9)) (-2584 (($ (-148)) 8)) (-2265 (((-806) $) 23) (($ (-148)) 16)) (-1667 (($ (-148)) 10)) (-2148 (((-110) $ $) NIL)))
+(((-817) (-13 (-1030) (-10 -8 (-15 -2584 ($ (-148))) (-15 -3169 ($ (-148))) (-15 -1667 ($ (-148))) (-15 -3151 ($ (-148))) (-15 -2384 ($ (-148))) (-15 -2697 ((-148) $)) (-15 -2059 ((-531) $)) (-15 -2265 ($ (-148)))))) (T -817))
+((-2584 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-3169 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-3151 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-2384 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-2697 (*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-817)))) (-2059 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-817)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))))
+(-13 (-1030) (-10 -8 (-15 -2584 ($ (-148))) (-15 -3169 ($ (-148))) (-15 -1667 ($ (-148))) (-15 -3151 ($ (-148))) (-15 -2384 ($ (-148))) (-15 -2697 ((-148) $)) (-15 -2059 ((-531) $)) (-15 -2265 ($ (-148)))))
+((-2265 (((-297 (-531)) (-388 (-895 (-47)))) 23) (((-297 (-531)) (-895 (-47))) 18)))
+(((-818) (-10 -7 (-15 -2265 ((-297 (-531)) (-895 (-47)))) (-15 -2265 ((-297 (-531)) (-388 (-895 (-47))))))) (T -818))
+((-2265 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 (-47)))) (-5 *2 (-297 (-531))) (-5 *1 (-818)))) (-2265 (*1 *2 *3) (-12 (-5 *3 (-895 (-47))) (-5 *2 (-297 (-531))) (-5 *1 (-818)))))
+(-10 -7 (-15 -2265 ((-297 (-531)) (-895 (-47)))) (-15 -2265 ((-297 (-531)) (-388 (-895 (-47))))))
+((-3261 (((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)) 14)))
+(((-819 |#1| |#2|) (-10 -7 (-15 -3261 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|)))) (-1138) (-1138)) (T -819))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6)))))
+(-10 -7 (-15 -3261 ((-820 |#2|) (-1 |#2| |#1|) (-820 |#1|))))
+((-2430 (($ |#1| |#1|) 8)) (-3810 ((|#1| $ (-721)) 10)))
+(((-820 |#1|) (-10 -8 (-15 -2430 ($ |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) (-1138)) (T -820))
+((-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-820 *2)) (-4 *2 (-1138)))) (-2430 (*1 *1 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1138)))))
+(-10 -8 (-15 -2430 ($ |#1| |#1|)) (-15 -3810 (|#1| $ (-721))))
+((-3261 (((-822 |#2|) (-1 |#2| |#1|) (-822 |#1|)) 14)))
+(((-821 |#1| |#2|) (-10 -7 (-15 -3261 ((-822 |#2|) (-1 |#2| |#1|) (-822 |#1|)))) (-1138) (-1138)) (T -821))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-822 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-822 *6)) (-5 *1 (-821 *5 *6)))))
+(-10 -7 (-15 -3261 ((-822 |#2|) (-1 |#2| |#1|) (-822 |#1|))))
+((-2430 (($ |#1| |#1| |#1|) 8)) (-3810 ((|#1| $ (-721)) 10)))
+(((-822 |#1|) (-10 -8 (-15 -2430 ($ |#1| |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) (-1138)) (T -822))
+((-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-822 *2)) (-4 *2 (-1138)))) (-2430 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-1138)))))
+(-10 -8 (-15 -2430 ($ |#1| |#1| |#1|)) (-15 -3810 (|#1| $ (-721))))
+((-3023 (((-598 (-1107)) (-1085)) 9)))
+(((-823) (-10 -7 (-15 -3023 ((-598 (-1107)) (-1085))))) (T -823))
+((-3023 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-598 (-1107))) (-5 *1 (-823)))))
+(-10 -7 (-15 -3023 ((-598 (-1107)) (-1085))))
+((-3261 (((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)) 14)))
+(((-824 |#1| |#2|) (-10 -7 (-15 -3261 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|)))) (-1138) (-1138)) (T -824))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-825 *6)) (-5 *1 (-824 *5 *6)))))
+(-10 -7 (-15 -3261 ((-825 |#2|) (-1 |#2| |#1|) (-825 |#1|))))
+((-1687 (($ |#1| |#1| |#1|) 8)) (-3810 ((|#1| $ (-721)) 10)))
+(((-825 |#1|) (-10 -8 (-15 -1687 ($ |#1| |#1| |#1|)) (-15 -3810 (|#1| $ (-721)))) (-1138)) (T -825))
+((-3810 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-825 *2)) (-4 *2 (-1138)))) (-1687 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1138)))))
+(-10 -8 (-15 -1687 ($ |#1| |#1| |#1|)) (-15 -3810 (|#1| $ (-721))))
+((-3925 (((-1083 (-598 (-531))) (-598 (-531)) (-1083 (-598 (-531)))) 32)) (-2503 (((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531))) 28)) (-1500 (((-1083 (-598 (-531))) (-598 (-531))) 41) (((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531))) 40)) (-3334 (((-1083 (-598 (-531))) (-531)) 42)) (-2062 (((-1083 (-598 (-531))) (-531) (-531)) 22) (((-1083 (-598 (-531))) (-531)) 16) (((-1083 (-598 (-531))) (-531) (-531) (-531)) 12)) (-1243 (((-1083 (-598 (-531))) (-1083 (-598 (-531)))) 26)) (-4164 (((-598 (-531)) (-598 (-531))) 25)))
+(((-826) (-10 -7 (-15 -2062 ((-1083 (-598 (-531))) (-531) (-531) (-531))) (-15 -2062 ((-1083 (-598 (-531))) (-531))) (-15 -2062 ((-1083 (-598 (-531))) (-531) (-531))) (-15 -4164 ((-598 (-531)) (-598 (-531)))) (-15 -1243 ((-1083 (-598 (-531))) (-1083 (-598 (-531))))) (-15 -2503 ((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531)))) (-15 -3925 ((-1083 (-598 (-531))) (-598 (-531)) (-1083 (-598 (-531))))) (-15 -1500 ((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531)))) (-15 -1500 ((-1083 (-598 (-531))) (-598 (-531)))) (-15 -3334 ((-1083 (-598 (-531))) (-531))))) (T -826))
+((-3334 (*1 *2 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))) (-1500 (*1 *2 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-598 (-531))))) (-1500 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-598 (-531))))) (-3925 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *3 (-598 (-531))) (-5 *1 (-826)))) (-2503 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-598 (-531))))) (-1243 (*1 *2 *2) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)))) (-4164 (*1 *2 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-826)))) (-2062 (*1 *2 *3 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))) (-2062 (*1 *2 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))) (-2062 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))))
+(-10 -7 (-15 -2062 ((-1083 (-598 (-531))) (-531) (-531) (-531))) (-15 -2062 ((-1083 (-598 (-531))) (-531))) (-15 -2062 ((-1083 (-598 (-531))) (-531) (-531))) (-15 -4164 ((-598 (-531)) (-598 (-531)))) (-15 -1243 ((-1083 (-598 (-531))) (-1083 (-598 (-531))))) (-15 -2503 ((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531)))) (-15 -3925 ((-1083 (-598 (-531))) (-598 (-531)) (-1083 (-598 (-531))))) (-15 -1500 ((-1083 (-598 (-531))) (-598 (-531)) (-598 (-531)))) (-15 -1500 ((-1083 (-598 (-531))) (-598 (-531)))) (-15 -3334 ((-1083 (-598 (-531))) (-531))))
+((-3318 (((-835 (-360)) $) 9 (|has| |#1| (-573 (-835 (-360))))) (((-835 (-531)) $) 8 (|has| |#1| (-573 (-835 (-531)))))))
+(((-827 |#1|) (-133) (-1138)) (T -827))
+NIL
+(-13 (-10 -7 (IF (|has| |t#1| (-573 (-835 (-531)))) (-6 (-573 (-835 (-531)))) |%noBranch|) (IF (|has| |t#1| (-573 (-835 (-360)))) (-6 (-573 (-835 (-360)))) |%noBranch|)))
+(((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))))
+((-2247 (((-110) $ $) NIL)) (-3010 (($) 14)) (-4001 (($ (-832 |#1| |#2|) (-832 |#1| |#3|)) 27)) (-2355 (((-832 |#1| |#3|) $) 16)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2610 (((-110) $) 22)) (-4062 (($) 19)) (-2265 (((-806) $) 30)) (-2053 (((-832 |#1| |#2|) $) 15)) (-2148 (((-110) $ $) 25)))
+(((-828 |#1| |#2| |#3|) (-13 (-1030) (-10 -8 (-15 -2610 ((-110) $)) (-15 -4062 ($)) (-15 -3010 ($)) (-15 -4001 ($ (-832 |#1| |#2|) (-832 |#1| |#3|))) (-15 -2053 ((-832 |#1| |#2|) $)) (-15 -2355 ((-832 |#1| |#3|) $)))) (-1030) (-1030) (-619 |#2|)) (T -828))
+((-2610 (*1 *2 *1) (-12 (-4 *4 (-1030)) (-5 *2 (-110)) (-5 *1 (-828 *3 *4 *5)) (-4 *3 (-1030)) (-4 *5 (-619 *4)))) (-4062 (*1 *1) (-12 (-4 *3 (-1030)) (-5 *1 (-828 *2 *3 *4)) (-4 *2 (-1030)) (-4 *4 (-619 *3)))) (-3010 (*1 *1) (-12 (-4 *3 (-1030)) (-5 *1 (-828 *2 *3 *4)) (-4 *2 (-1030)) (-4 *4 (-619 *3)))) (-4001 (*1 *1 *2 *3) (-12 (-5 *2 (-832 *4 *5)) (-5 *3 (-832 *4 *6)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-619 *5)) (-5 *1 (-828 *4 *5 *6)))) (-2053 (*1 *2 *1) (-12 (-4 *4 (-1030)) (-5 *2 (-832 *3 *4)) (-5 *1 (-828 *3 *4 *5)) (-4 *3 (-1030)) (-4 *5 (-619 *4)))) (-2355 (*1 *2 *1) (-12 (-4 *4 (-1030)) (-5 *2 (-832 *3 *5)) (-5 *1 (-828 *3 *4 *5)) (-4 *3 (-1030)) (-4 *5 (-619 *4)))))
+(-13 (-1030) (-10 -8 (-15 -2610 ((-110) $)) (-15 -4062 ($)) (-15 -3010 ($)) (-15 -4001 ($ (-832 |#1| |#2|) (-832 |#1| |#3|))) (-15 -2053 ((-832 |#1| |#2|) $)) (-15 -2355 ((-832 |#1| |#3|) $))))
+((-2247 (((-110) $ $) 7)) (-2792 (((-832 |#1| $) $ (-835 |#1|) (-832 |#1| $)) 13)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)))
+(((-829 |#1|) (-133) (-1030)) (T -829))
+((-2792 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-832 *4 *1)) (-5 *3 (-835 *4)) (-4 *1 (-829 *4)) (-4 *4 (-1030)))))
+(-13 (-1030) (-10 -8 (-15 -2792 ((-832 |t#1| $) $ (-835 |t#1|) (-832 |t#1| $)))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-4247 (((-110) (-598 |#2|) |#3|) 23) (((-110) |#2| |#3|) 18)) (-3513 (((-832 |#1| |#2|) |#2| |#3|) 43 (-12 (-3745 (|has| |#2| (-977 (-1102)))) (-3745 (|has| |#2| (-986))))) (((-598 (-276 (-895 |#2|))) |#2| |#3|) 42 (-12 (|has| |#2| (-986)) (-3745 (|has| |#2| (-977 (-1102)))))) (((-598 (-276 |#2|)) |#2| |#3|) 35 (|has| |#2| (-977 (-1102)))) (((-828 |#1| |#2| (-598 |#2|)) (-598 |#2|) |#3|) 21)))
+(((-830 |#1| |#2| |#3|) (-10 -7 (-15 -4247 ((-110) |#2| |#3|)) (-15 -4247 ((-110) (-598 |#2|) |#3|)) (-15 -3513 ((-828 |#1| |#2| (-598 |#2|)) (-598 |#2|) |#3|)) (IF (|has| |#2| (-977 (-1102))) (-15 -3513 ((-598 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-986)) (-15 -3513 ((-598 (-276 (-895 |#2|))) |#2| |#3|)) (-15 -3513 ((-832 |#1| |#2|) |#2| |#3|))))) (-1030) (-829 |#1|) (-573 (-835 |#1|))) (T -830))
+((-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-5 *2 (-832 *5 *3)) (-5 *1 (-830 *5 *3 *4)) (-3745 (-4 *3 (-977 (-1102)))) (-3745 (-4 *3 (-986))) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))) (-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-5 *2 (-598 (-276 (-895 *3)))) (-5 *1 (-830 *5 *3 *4)) (-4 *3 (-986)) (-3745 (-4 *3 (-977 (-1102)))) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))) (-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-5 *2 (-598 (-276 *3))) (-5 *1 (-830 *5 *3 *4)) (-4 *3 (-977 (-1102))) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))) (-3513 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-4 *6 (-829 *5)) (-5 *2 (-828 *5 *6 (-598 *6))) (-5 *1 (-830 *5 *6 *4)) (-5 *3 (-598 *6)) (-4 *4 (-573 (-835 *5))))) (-4247 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-4 *6 (-829 *5)) (-4 *5 (-1030)) (-5 *2 (-110)) (-5 *1 (-830 *5 *6 *4)) (-4 *4 (-573 (-835 *5))))) (-4247 (*1 *2 *3 *4) (-12 (-4 *5 (-1030)) (-5 *2 (-110)) (-5 *1 (-830 *5 *3 *4)) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))))
+(-10 -7 (-15 -4247 ((-110) |#2| |#3|)) (-15 -4247 ((-110) (-598 |#2|) |#3|)) (-15 -3513 ((-828 |#1| |#2| (-598 |#2|)) (-598 |#2|) |#3|)) (IF (|has| |#2| (-977 (-1102))) (-15 -3513 ((-598 (-276 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-986)) (-15 -3513 ((-598 (-276 (-895 |#2|))) |#2| |#3|)) (-15 -3513 ((-832 |#1| |#2|) |#2| |#3|)))))
+((-3261 (((-832 |#1| |#3|) (-1 |#3| |#2|) (-832 |#1| |#2|)) 22)))
+(((-831 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-832 |#1| |#3|) (-1 |#3| |#2|) (-832 |#1| |#2|)))) (-1030) (-1030) (-1030)) (T -831))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-832 *5 *6)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-832 *5 *7)) (-5 *1 (-831 *5 *6 *7)))))
+(-10 -7 (-15 -3261 ((-832 |#1| |#3|) (-1 |#3| |#2|) (-832 |#1| |#2|))))
+((-2247 (((-110) $ $) NIL)) (-4210 (($ $ $) 39)) (-2867 (((-3 (-110) "failed") $ (-835 |#1|)) 36)) (-3010 (($) 12)) (-1521 (((-1085) $) NIL)) (-4087 (($ (-835 |#1|) |#2| $) 20)) (-2529 (((-1049) $) NIL)) (-1323 (((-3 |#2| "failed") (-835 |#1|) $) 50)) (-2610 (((-110) $) 15)) (-4062 (($) 13)) (-2625 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))) $) 25)) (-2274 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|)))) 23)) (-2265 (((-806) $) 44)) (-2306 (($ (-835 |#1|) |#2| $ |#2|) 48)) (-1765 (($ (-835 |#1|) |#2| $) 47)) (-2148 (((-110) $ $) 41)))
+(((-832 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -2610 ((-110) $)) (-15 -4062 ($)) (-15 -3010 ($)) (-15 -4210 ($ $ $)) (-15 -1323 ((-3 |#2| "failed") (-835 |#1|) $)) (-15 -1765 ($ (-835 |#1|) |#2| $)) (-15 -4087 ($ (-835 |#1|) |#2| $)) (-15 -2306 ($ (-835 |#1|) |#2| $ |#2|)) (-15 -2625 ((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))) $)) (-15 -2274 ($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))))) (-15 -2867 ((-3 (-110) "failed") $ (-835 |#1|))))) (-1030) (-1030)) (T -832))
+((-2610 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-4062 (*1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-3010 (*1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-4210 (*1 *1 *1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-1323 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-4 *2 (-1030)) (-5 *1 (-832 *4 *2)))) (-1765 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) (-4 *3 (-1030)))) (-4087 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) (-4 *3 (-1030)))) (-2306 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3)) (-4 *3 (-1030)))) (-2625 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 *4)))) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 *4)))) (-4 *4 (-1030)) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)))) (-2867 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-110)) (-5 *1 (-832 *4 *5)) (-4 *5 (-1030)))))
+(-13 (-1030) (-10 -8 (-15 -2610 ((-110) $)) (-15 -4062 ($)) (-15 -3010 ($)) (-15 -4210 ($ $ $)) (-15 -1323 ((-3 |#2| "failed") (-835 |#1|) $)) (-15 -1765 ($ (-835 |#1|) |#2| $)) (-15 -4087 ($ (-835 |#1|) |#2| $)) (-15 -2306 ($ (-835 |#1|) |#2| $ |#2|)) (-15 -2625 ((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))) $)) (-15 -2274 ($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 |#2|))))) (-15 -2867 ((-3 (-110) "failed") $ (-835 |#1|)))))
+((-2583 (((-835 |#1|) (-835 |#1|) (-598 (-1102)) (-1 (-110) (-598 |#2|))) 32) (((-835 |#1|) (-835 |#1|) (-598 (-1 (-110) |#2|))) 43) (((-835 |#1|) (-835 |#1|) (-1 (-110) |#2|)) 35)) (-2867 (((-110) (-598 |#2|) (-835 |#1|)) 40) (((-110) |#2| (-835 |#1|)) 36)) (-3081 (((-1 (-110) |#2|) (-835 |#1|)) 16)) (-1967 (((-598 |#2|) (-835 |#1|)) 24)) (-3627 (((-835 |#1|) (-835 |#1|) |#2|) 20)))
+(((-833 |#1| |#2|) (-10 -7 (-15 -2583 ((-835 |#1|) (-835 |#1|) (-1 (-110) |#2|))) (-15 -2583 ((-835 |#1|) (-835 |#1|) (-598 (-1 (-110) |#2|)))) (-15 -2583 ((-835 |#1|) (-835 |#1|) (-598 (-1102)) (-1 (-110) (-598 |#2|)))) (-15 -3081 ((-1 (-110) |#2|) (-835 |#1|))) (-15 -2867 ((-110) |#2| (-835 |#1|))) (-15 -2867 ((-110) (-598 |#2|) (-835 |#1|))) (-15 -3627 ((-835 |#1|) (-835 |#1|) |#2|)) (-15 -1967 ((-598 |#2|) (-835 |#1|)))) (-1030) (-1138)) (T -833))
+((-1967 (*1 *2 *3) (-12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-598 *5)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1138)))) (-3627 (*1 *2 *2 *3) (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-833 *4 *3)) (-4 *3 (-1138)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *2 (-110)) (-5 *1 (-833 *5 *6)))) (-2867 (*1 *2 *3 *4) (-12 (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-5 *2 (-110)) (-5 *1 (-833 *5 *3)) (-4 *3 (-1138)))) (-3081 (*1 *2 *3) (-12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-833 *4 *5)) (-4 *5 (-1138)))) (-2583 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-835 *5)) (-5 *3 (-598 (-1102))) (-5 *4 (-1 (-110) (-598 *6))) (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *1 (-833 *5 *6)))) (-2583 (*1 *2 *2 *3) (-12 (-5 *2 (-835 *4)) (-5 *3 (-598 (-1 (-110) *5))) (-4 *4 (-1030)) (-4 *5 (-1138)) (-5 *1 (-833 *4 *5)))) (-2583 (*1 *2 *2 *3) (-12 (-5 *2 (-835 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1030)) (-4 *5 (-1138)) (-5 *1 (-833 *4 *5)))))
+(-10 -7 (-15 -2583 ((-835 |#1|) (-835 |#1|) (-1 (-110) |#2|))) (-15 -2583 ((-835 |#1|) (-835 |#1|) (-598 (-1 (-110) |#2|)))) (-15 -2583 ((-835 |#1|) (-835 |#1|) (-598 (-1102)) (-1 (-110) (-598 |#2|)))) (-15 -3081 ((-1 (-110) |#2|) (-835 |#1|))) (-15 -2867 ((-110) |#2| (-835 |#1|))) (-15 -2867 ((-110) (-598 |#2|) (-835 |#1|))) (-15 -3627 ((-835 |#1|) (-835 |#1|) |#2|)) (-15 -1967 ((-598 |#2|) (-835 |#1|))))
+((-3261 (((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)) 19)))
+(((-834 |#1| |#2|) (-10 -7 (-15 -3261 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|)))) (-1030) (-1030)) (T -834))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6)))))
+(-10 -7 (-15 -3261 ((-835 |#2|) (-1 |#2| |#1|) (-835 |#1|))))
+((-2247 (((-110) $ $) NIL)) (-2084 (($ $ (-598 (-51))) 64)) (-2695 (((-598 $) $) 118)) (-3550 (((-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51))) $) 24)) (-1660 (((-110) $) 30)) (-2110 (($ $ (-598 (-1102)) (-51)) 25)) (-2818 (($ $ (-598 (-51))) 63)) (-3154 (((-3 |#1| "failed") $) 61) (((-3 (-1102) "failed") $) 140)) (-2523 ((|#1| $) 58) (((-1102) $) NIL)) (-3305 (($ $) 108)) (-1937 (((-110) $) 47)) (-4033 (((-598 (-51)) $) 45)) (-4218 (($ (-1102) (-110) (-110) (-110)) 65)) (-3643 (((-3 (-598 $) "failed") (-598 $)) 72)) (-2189 (((-110) $) 50)) (-4085 (((-110) $) 49)) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) 36)) (-4146 (((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $) 43)) (-3058 (((-3 (-2 (|:| |val| $) (|:| -1790 $)) "failed") $) 83)) (-2077 (((-3 (-598 $) "failed") $) 33)) (-2846 (((-3 (-598 $) "failed") $ (-112)) 107) (((-3 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 $))) "failed") $) 95)) (-1783 (((-3 (-598 $) "failed") $) 37)) (-3448 (((-3 (-2 (|:| |val| $) (|:| -1790 (-721))) "failed") $) 40)) (-1896 (((-110) $) 29)) (-2529 (((-1049) $) NIL)) (-1900 (((-110) $) 21)) (-3761 (((-110) $) 46)) (-4243 (((-598 (-51)) $) 111)) (-4177 (((-110) $) 48)) (-1785 (($ (-112) (-598 $)) 92)) (-1216 (((-721) $) 28)) (-2480 (($ $) 62)) (-3318 (($ (-598 $)) 59)) (-3012 (((-110) $) 26)) (-2265 (((-806) $) 53) (($ |#1|) 18) (($ (-1102)) 66)) (-3627 (($ $ (-51)) 110)) (-3035 (($) 91 T CONST)) (-3050 (($) 73 T CONST)) (-2148 (((-110) $ $) 79)) (-2263 (($ $ $) 100)) (-2237 (($ $ $) 104)) (** (($ $ (-721)) 99) (($ $ $) 54)) (* (($ $ $) 105)))
+(((-835 |#1|) (-13 (-1030) (-977 |#1|) (-977 (-1102)) (-10 -8 (-15 0 ($) -2651) (-15 1 ($) -2651) (-15 -2077 ((-3 (-598 $) "failed") $)) (-15 -3443 ((-3 (-598 $) "failed") $)) (-15 -2846 ((-3 (-598 $) "failed") $ (-112))) (-15 -2846 ((-3 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 $))) "failed") $)) (-15 -3448 ((-3 (-2 (|:| |val| $) (|:| -1790 (-721))) "failed") $)) (-15 -4146 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1783 ((-3 (-598 $) "failed") $)) (-15 -3058 ((-3 (-2 (|:| |val| $) (|:| -1790 $)) "failed") $)) (-15 -1785 ($ (-112) (-598 $))) (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721))) (-15 ** ($ $ $)) (-15 -2263 ($ $ $)) (-15 -1216 ((-721) $)) (-15 -3318 ($ (-598 $))) (-15 -2480 ($ $)) (-15 -1896 ((-110) $)) (-15 -1937 ((-110) $)) (-15 -1660 ((-110) $)) (-15 -3012 ((-110) $)) (-15 -4177 ((-110) $)) (-15 -4085 ((-110) $)) (-15 -2189 ((-110) $)) (-15 -3761 ((-110) $)) (-15 -4033 ((-598 (-51)) $)) (-15 -2818 ($ $ (-598 (-51)))) (-15 -2084 ($ $ (-598 (-51)))) (-15 -4218 ($ (-1102) (-110) (-110) (-110))) (-15 -2110 ($ $ (-598 (-1102)) (-51))) (-15 -3550 ((-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51))) $)) (-15 -1900 ((-110) $)) (-15 -3305 ($ $)) (-15 -3627 ($ $ (-51))) (-15 -4243 ((-598 (-51)) $)) (-15 -2695 ((-598 $) $)) (-15 -3643 ((-3 (-598 $) "failed") (-598 $))))) (-1030)) (T -835))
+((-3035 (*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-3050 (*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-2077 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3443 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2846 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-112)) (-5 *2 (-598 (-835 *4))) (-5 *1 (-835 *4)) (-4 *4 (-1030)))) (-2846 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 (-835 *3))))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3448 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-835 *3)) (|:| -1790 (-721)))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4146 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-835 *3)) (|:| |den| (-835 *3)))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1783 (*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3058 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-835 *3)) (|:| -1790 (-835 *3)))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1785 (*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 (-835 *4))) (-5 *1 (-835 *4)) (-4 *4 (-1030)))) (-2237 (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-2263 (*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-1216 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2480 (*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-1896 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1937 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1660 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4177 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4085 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2189 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3761 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4033 (*1 *2 *1) (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2818 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2084 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4218 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-110)) (-5 *1 (-835 *4)) (-4 *4 (-1030)))) (-2110 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-51)) (-5 *1 (-835 *4)) (-4 *4 (-1030)))) (-3550 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51)))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-1900 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3305 (*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))) (-3627 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-4243 (*1 *2 *1) (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))) (-3643 (*1 *2 *2) (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(-13 (-1030) (-977 |#1|) (-977 (-1102)) (-10 -8 (-15 (-3035) ($) -2651) (-15 (-3050) ($) -2651) (-15 -2077 ((-3 (-598 $) "failed") $)) (-15 -3443 ((-3 (-598 $) "failed") $)) (-15 -2846 ((-3 (-598 $) "failed") $ (-112))) (-15 -2846 ((-3 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 $))) "failed") $)) (-15 -3448 ((-3 (-2 (|:| |val| $) (|:| -1790 (-721))) "failed") $)) (-15 -4146 ((-3 (-2 (|:| |num| $) (|:| |den| $)) "failed") $)) (-15 -1783 ((-3 (-598 $) "failed") $)) (-15 -3058 ((-3 (-2 (|:| |val| $) (|:| -1790 $)) "failed") $)) (-15 -1785 ($ (-112) (-598 $))) (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721))) (-15 ** ($ $ $)) (-15 -2263 ($ $ $)) (-15 -1216 ((-721) $)) (-15 -3318 ($ (-598 $))) (-15 -2480 ($ $)) (-15 -1896 ((-110) $)) (-15 -1937 ((-110) $)) (-15 -1660 ((-110) $)) (-15 -3012 ((-110) $)) (-15 -4177 ((-110) $)) (-15 -4085 ((-110) $)) (-15 -2189 ((-110) $)) (-15 -3761 ((-110) $)) (-15 -4033 ((-598 (-51)) $)) (-15 -2818 ($ $ (-598 (-51)))) (-15 -2084 ($ $ (-598 (-51)))) (-15 -4218 ($ (-1102) (-110) (-110) (-110))) (-15 -2110 ($ $ (-598 (-1102)) (-51))) (-15 -3550 ((-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51))) $)) (-15 -1900 ((-110) $)) (-15 -3305 ($ $)) (-15 -3627 ($ $ (-51))) (-15 -4243 ((-598 (-51)) $)) (-15 -2695 ((-598 $) $)) (-15 -3643 ((-3 (-598 $) "failed") (-598 $)))))
+((-2247 (((-110) $ $) NIL)) (-3798 (((-598 |#1|) $) 16)) (-1922 (((-110) $) 38)) (-3154 (((-3 (-624 |#1|) "failed") $) 43)) (-2523 (((-624 |#1|) $) 41)) (-3062 (($ $) 18)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2428 (((-721) $) 46)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-624 |#1|) $) 17)) (-2265 (((-806) $) 37) (($ (-624 |#1|)) 21) (((-769 |#1|) $) 27) (($ |#1|) 20)) (-3050 (($) 8 T CONST)) (-2400 (((-598 (-624 |#1|)) $) 23)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 11)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 49)))
+(((-836 |#1|) (-13 (-797) (-977 (-624 |#1|)) (-10 -8 (-15 1 ($) -2651) (-15 -2265 ((-769 |#1|) $)) (-15 -2265 ($ |#1|)) (-15 -3046 ((-624 |#1|) $)) (-15 -2428 ((-721) $)) (-15 -2400 ((-598 (-624 |#1|)) $)) (-15 -3062 ($ $)) (-15 -1922 ((-110) $)) (-15 -3798 ((-598 |#1|) $)))) (-797)) (T -836))
+((-3050 (*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-2265 (*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))) (-3046 (*1 *2 *1) (-12 (-5 *2 (-624 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-598 (-624 *3))) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-3062 (*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))) (-1922 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-836 *3)) (-4 *3 (-797)))) (-3798 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797)))))
+(-13 (-797) (-977 (-624 |#1|)) (-10 -8 (-15 (-3050) ($) -2651) (-15 -2265 ((-769 |#1|) $)) (-15 -2265 ($ |#1|)) (-15 -3046 ((-624 |#1|) $)) (-15 -2428 ((-721) $)) (-15 -2400 ((-598 (-624 |#1|)) $)) (-15 -3062 ($ $)) (-15 -1922 ((-110) $)) (-15 -3798 ((-598 |#1|) $))))
+((-3990 ((|#1| |#1| |#1|) 19)))
+(((-837 |#1| |#2|) (-10 -7 (-15 -3990 (|#1| |#1| |#1|))) (-1160 |#2|) (-986)) (T -837))
+((-3990 (*1 *2 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1160 *3)))))
+(-10 -7 (-15 -3990 (|#1| |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3582 (((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 14)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-1932 (((-975) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 13)) (-2148 (((-110) $ $) 6)))
+(((-838) (-133)) (T -838))
+((-3582 (*1 *2 *3 *4) (-12 (-4 *1 (-838)) (-5 *3 (-998)) (-5 *4 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085)))))) (-1932 (*1 *2 *3) (-12 (-4 *1 (-838)) (-5 *3 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *2 (-975)))))
+(-13 (-1030) (-10 -7 (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))) (-998) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))) (-15 -1932 ((-975) (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-3859 ((|#1| |#1| (-721)) 24)) (-3286 (((-3 |#1| "failed") |#1| |#1|) 22)) (-4044 (((-3 (-2 (|:| -3144 |#1|) (|:| -3157 |#1|)) "failed") |#1| (-721) (-721)) 27) (((-598 |#1|) |#1|) 29)))
+(((-839 |#1| |#2|) (-10 -7 (-15 -4044 ((-598 |#1|) |#1|)) (-15 -4044 ((-3 (-2 (|:| -3144 |#1|) (|:| -3157 |#1|)) "failed") |#1| (-721) (-721))) (-15 -3286 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3859 (|#1| |#1| (-721)))) (-1160 |#2|) (-344)) (T -839))
+((-3859 (*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-344)) (-5 *1 (-839 *2 *4)) (-4 *2 (-1160 *4)))) (-3286 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-344)) (-5 *1 (-839 *2 *3)) (-4 *2 (-1160 *3)))) (-4044 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-721)) (-4 *5 (-344)) (-5 *2 (-2 (|:| -3144 *3) (|:| -3157 *3))) (-5 *1 (-839 *3 *5)) (-4 *3 (-1160 *5)))) (-4044 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-839 *3 *4)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -4044 ((-598 |#1|) |#1|)) (-15 -4044 ((-3 (-2 (|:| -3144 |#1|) (|:| -3157 |#1|)) "failed") |#1| (-721) (-721))) (-15 -3286 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3859 (|#1| |#1| (-721))))
+((-1871 (((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085)) 96) (((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085) (-208)) 91) (((-975) (-841) (-998)) 83) (((-975) (-841)) 84)) (-3582 (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841) (-998)) 59) (((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841)) 61)))
+(((-840) (-10 -7 (-15 -1871 ((-975) (-841))) (-15 -1871 ((-975) (-841) (-998))) (-15 -1871 ((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085) (-208))) (-15 -1871 ((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841) (-998))))) (T -840))
+((-3582 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-998)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-840)))) (-3582 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085))))) (-5 *1 (-840)))) (-1871 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-721)) (-5 *6 (-598 (-598 (-297 *3)))) (-5 *7 (-1085)) (-5 *5 (-598 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-975)) (-5 *1 (-840)))) (-1871 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-721)) (-5 *6 (-598 (-598 (-297 *3)))) (-5 *7 (-1085)) (-5 *8 (-208)) (-5 *5 (-598 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-975)) (-5 *1 (-840)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-841)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-840)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-975)) (-5 *1 (-840)))))
+(-10 -7 (-15 -1871 ((-975) (-841))) (-15 -1871 ((-975) (-841) (-998))) (-15 -1871 ((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085) (-208))) (-15 -1871 ((-975) (-360) (-360) (-360) (-360) (-721) (-721) (-598 (-297 (-360))) (-598 (-598 (-297 (-360)))) (-1085))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841))) (-15 -3582 ((-2 (|:| -3582 (-360)) (|:| -3955 (-1085)) (|:| |explanations| (-598 (-1085)))) (-841) (-998))))
+((-2247 (((-110) $ $) NIL)) (-2523 (((-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))) $) 19)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 21) (($ (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) 18)) (-2148 (((-110) $ $) NIL)))
+(((-841) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))) $))))) (T -841))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-841)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *1 (-841)))) (-2523 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208)))) (-5 *1 (-841)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ($ (-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))))) (-15 -2265 ((-806) $)) (-15 -2523 ((-2 (|:| |pde| (-598 (-297 (-208)))) (|:| |constraints| (-598 (-2 (|:| |start| (-208)) (|:| |finish| (-208)) (|:| |grid| (-721)) (|:| |boundaryType| (-531)) (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208)))))) (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085)) (|:| |tol| (-208))) $))))
+((-3352 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) 10) (($ $ |#2| (-721)) 12) (($ $ (-598 |#2|) (-598 (-721))) 15)) (-4020 (($ $ |#2|) 16) (($ $ (-598 |#2|)) 18) (($ $ |#2| (-721)) 19) (($ $ (-598 |#2|) (-598 (-721))) 21)))
+(((-842 |#1| |#2|) (-10 -8 (-15 -4020 (|#1| |#1| (-598 |#2|) (-598 (-721)))) (-15 -4020 (|#1| |#1| |#2| (-721))) (-15 -4020 (|#1| |#1| (-598 |#2|))) (-15 -4020 (|#1| |#1| |#2|)) (-15 -3352 (|#1| |#1| (-598 |#2|) (-598 (-721)))) (-15 -3352 (|#1| |#1| |#2| (-721))) (-15 -3352 (|#1| |#1| (-598 |#2|))) (-15 -3352 (|#1| |#1| |#2|))) (-843 |#2|) (-1030)) (T -842))
+NIL
+(-10 -8 (-15 -4020 (|#1| |#1| (-598 |#2|) (-598 (-721)))) (-15 -4020 (|#1| |#1| |#2| (-721))) (-15 -4020 (|#1| |#1| (-598 |#2|))) (-15 -4020 (|#1| |#1| |#2|)) (-15 -3352 (|#1| |#1| (-598 |#2|) (-598 (-721)))) (-15 -3352 (|#1| |#1| |#2| (-721))) (-15 -3352 (|#1| |#1| (-598 |#2|))) (-15 -3352 (|#1| |#1| |#2|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3352 (($ $ |#1|) 40) (($ $ (-598 |#1|)) 39) (($ $ |#1| (-721)) 38) (($ $ (-598 |#1|) (-598 (-721))) 37)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ |#1|) 36) (($ $ (-598 |#1|)) 35) (($ $ |#1| (-721)) 34) (($ $ (-598 |#1|) (-598 (-721))) 33)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-843 |#1|) (-133) (-1030)) (T -843))
+((-3352 (*1 *1 *1 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1030)))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *1 (-843 *3)) (-4 *3 (-1030)))) (-3352 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-843 *2)) (-4 *2 (-1030)))) (-3352 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 (-721))) (-4 *1 (-843 *4)) (-4 *4 (-1030)))) (-4020 (*1 *1 *1 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1030)))) (-4020 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *1 (-843 *3)) (-4 *3 (-1030)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-843 *2)) (-4 *2 (-1030)))) (-4020 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 (-721))) (-4 *1 (-843 *4)) (-4 *4 (-1030)))))
+(-13 (-986) (-10 -8 (-15 -3352 ($ $ |t#1|)) (-15 -3352 ($ $ (-598 |t#1|))) (-15 -3352 ($ $ |t#1| (-721))) (-15 -3352 ($ $ (-598 |t#1|) (-598 (-721)))) (-15 -4020 ($ $ |t#1|)) (-15 -4020 ($ $ (-598 |t#1|))) (-15 -4020 ($ $ |t#1| (-721))) (-15 -4020 ($ $ (-598 |t#1|) (-598 (-721))))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 26)) (-4058 (((-110) $ (-721)) NIL)) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-3303 (($ $ $) NIL (|has| $ (-6 -4274)))) (-1508 (($ $ $) NIL (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) (($ $ "left" $) NIL (|has| $ (-6 -4274))) (($ $ "right" $) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3157 (($ $) 25)) (-2873 (($ |#1|) 12) (($ $ $) 17)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-3144 (($ $) 23)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) 20)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ "value") NIL) (($ $ "left") NIL) (($ $ "right") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1125 |#1|) $) 9) (((-806) $) 29 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 21 (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-844 |#1|) (-13 (-117 |#1|) (-10 -8 (-15 -2873 ($ |#1|)) (-15 -2873 ($ $ $)) (-15 -2265 ((-1125 |#1|) $)))) (-1030)) (T -844))
+((-2873 (*1 *1 *2) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1030)))) (-2873 (*1 *1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1030)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1125 *3)) (-5 *1 (-844 *3)) (-4 *3 (-1030)))))
+(-13 (-117 |#1|) (-10 -8 (-15 -2873 ($ |#1|)) (-15 -2873 ($ $ $)) (-15 -2265 ((-1125 |#1|) $))))
+((-3740 ((|#2| (-1069 |#1| |#2|)) 40)))
+(((-845 |#1| |#2|) (-10 -7 (-15 -3740 (|#2| (-1069 |#1| |#2|)))) (-864) (-13 (-986) (-10 -7 (-6 (-4275 "*"))))) (T -845))
+((-3740 (*1 *2 *3) (-12 (-5 *3 (-1069 *4 *2)) (-14 *4 (-864)) (-4 *2 (-13 (-986) (-10 -7 (-6 (-4275 "*"))))) (-5 *1 (-845 *4 *2)))))
+(-10 -7 (-15 -3740 (|#2| (-1069 |#1| |#2|))))
+((-2247 (((-110) $ $) 7)) (-4082 (($) 18 T CONST)) (-3622 (((-3 $ "failed") $) 15)) (-1218 (((-1032 |#1|) $ |#1|) 32)) (-3481 (((-110) $) 17)) (-4103 (($ $ $) 30 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-1241 (($ $ $) 29 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 24)) (-2529 (((-1049) $) 10)) (-4115 ((|#1| $ |#1|) 34)) (-1785 ((|#1| $ |#1|) 33)) (-2049 (($ (-598 (-598 |#1|))) 35)) (-3436 (($ (-598 |#1|)) 36)) (-4164 (($ $ $) 21)) (-3214 (($ $ $) 20)) (-2265 (((-806) $) 11)) (-3050 (($) 19 T CONST)) (-2207 (((-110) $ $) 27 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-2184 (((-110) $ $) 26 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 28 (-1435 (|has| |#1| (-797)) (|has| |#1| (-349))))) (-2174 (((-110) $ $) 31)) (-2263 (($ $ $) 23)) (** (($ $ (-864)) 13) (($ $ (-721)) 16) (($ $ (-531)) 22)) (* (($ $ $) 14)))
+(((-846 |#1|) (-133) (-1030)) (T -846))
+((-3436 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-846 *3)))) (-2049 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-4 *1 (-846 *3)))) (-4115 (*1 *2 *1 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1030)))) (-1785 (*1 *2 *1 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1030)))) (-1218 (*1 *2 *1 *3) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1030)) (-5 *2 (-1032 *3)))) (-2174 (*1 *2 *1 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1030)) (-5 *2 (-110)))))
+(-13 (-453) (-10 -8 (-15 -3436 ($ (-598 |t#1|))) (-15 -2049 ($ (-598 (-598 |t#1|)))) (-15 -4115 (|t#1| $ |t#1|)) (-15 -1785 (|t#1| $ |t#1|)) (-15 -1218 ((-1032 |t#1|) $ |t#1|)) (-15 -2174 ((-110) $ $)) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-349)) (-6 (-797)) |%noBranch|)))
+(((-99) . T) ((-572 (-806)) . T) ((-453) . T) ((-677) . T) ((-797) -1435 (|has| |#1| (-797)) (|has| |#1| (-349))) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-2023 (((-598 (-598 (-721))) $) 108)) (-2722 (((-598 (-721)) (-848 |#1|) $) 130)) (-1842 (((-598 (-721)) (-848 |#1|) $) 131)) (-2205 (((-598 (-848 |#1|)) $) 98)) (-1381 (((-848 |#1|) $ (-531)) 103) (((-848 |#1|) $) 104)) (-2222 (($ (-598 (-848 |#1|))) 110)) (-3617 (((-721) $) 105)) (-3552 (((-1032 (-1032 |#1|)) $) 128)) (-1218 (((-1032 |#1|) $ |#1|) 121) (((-1032 (-1032 |#1|)) $ (-1032 |#1|)) 139) (((-1032 (-598 |#1|)) $ (-598 |#1|)) 142)) (-1466 (((-1032 |#1|) $) 101)) (-1883 (((-110) (-848 |#1|) $) 92)) (-1521 (((-1085) $) NIL)) (-3830 (((-1189) $) 95) (((-1189) $ (-531) (-531)) 143)) (-2529 (((-1049) $) NIL)) (-3304 (((-598 (-848 |#1|)) $) 96)) (-1785 (((-848 |#1|) $ (-721)) 99)) (-2012 (((-721) $) 106)) (-2265 (((-806) $) 119) (((-598 (-848 |#1|)) $) 23) (($ (-598 (-848 |#1|))) 109)) (-3276 (((-598 |#1|) $) 107)) (-2148 (((-110) $ $) 136)) (-2195 (((-110) $ $) 134)) (-2174 (((-110) $ $) 133)))
+(((-847 |#1|) (-13 (-1030) (-10 -8 (-15 -2265 ((-598 (-848 |#1|)) $)) (-15 -3304 ((-598 (-848 |#1|)) $)) (-15 -1785 ((-848 |#1|) $ (-721))) (-15 -1381 ((-848 |#1|) $ (-531))) (-15 -1381 ((-848 |#1|) $)) (-15 -3617 ((-721) $)) (-15 -2012 ((-721) $)) (-15 -3276 ((-598 |#1|) $)) (-15 -2205 ((-598 (-848 |#1|)) $)) (-15 -2023 ((-598 (-598 (-721))) $)) (-15 -2265 ($ (-598 (-848 |#1|)))) (-15 -2222 ($ (-598 (-848 |#1|)))) (-15 -1218 ((-1032 |#1|) $ |#1|)) (-15 -3552 ((-1032 (-1032 |#1|)) $)) (-15 -1218 ((-1032 (-1032 |#1|)) $ (-1032 |#1|))) (-15 -1218 ((-1032 (-598 |#1|)) $ (-598 |#1|))) (-15 -1883 ((-110) (-848 |#1|) $)) (-15 -2722 ((-598 (-721)) (-848 |#1|) $)) (-15 -1842 ((-598 (-721)) (-848 |#1|) $)) (-15 -1466 ((-1032 |#1|) $)) (-15 -2174 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -3830 ((-1189) $)) (-15 -3830 ((-1189) $ (-531) (-531))))) (-1030)) (T -847))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3304 (*1 *2 *1) (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-848 *4)) (-5 *1 (-847 *4)) (-4 *4 (-1030)))) (-1381 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-848 *4)) (-5 *1 (-847 *4)) (-4 *4 (-1030)))) (-1381 (*1 *2 *1) (-12 (-5 *2 (-848 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3276 (*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2205 (*1 *2 *1) (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-721)))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-848 *3))) (-4 *3 (-1030)) (-5 *1 (-847 *3)))) (-2222 (*1 *1 *2) (-12 (-5 *2 (-598 (-848 *3))) (-4 *3 (-1030)) (-5 *1 (-847 *3)))) (-1218 (*1 *2 *1 *3) (-12 (-5 *2 (-1032 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3552 (*1 *2 *1) (-12 (-5 *2 (-1032 (-1032 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-1218 (*1 *2 *1 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-1032 (-1032 *4))) (-5 *1 (-847 *4)) (-5 *3 (-1032 *4)))) (-1218 (*1 *2 *1 *3) (-12 (-4 *4 (-1030)) (-5 *2 (-1032 (-598 *4))) (-5 *1 (-847 *4)) (-5 *3 (-598 *4)))) (-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-110)) (-5 *1 (-847 *4)))) (-2722 (*1 *2 *3 *1) (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-598 (-721))) (-5 *1 (-847 *4)))) (-1842 (*1 *2 *3 *1) (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-598 (-721))) (-5 *1 (-847 *4)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1032 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2174 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-2195 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))) (-3830 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-847 *4)) (-4 *4 (-1030)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ((-598 (-848 |#1|)) $)) (-15 -3304 ((-598 (-848 |#1|)) $)) (-15 -1785 ((-848 |#1|) $ (-721))) (-15 -1381 ((-848 |#1|) $ (-531))) (-15 -1381 ((-848 |#1|) $)) (-15 -3617 ((-721) $)) (-15 -2012 ((-721) $)) (-15 -3276 ((-598 |#1|) $)) (-15 -2205 ((-598 (-848 |#1|)) $)) (-15 -2023 ((-598 (-598 (-721))) $)) (-15 -2265 ($ (-598 (-848 |#1|)))) (-15 -2222 ($ (-598 (-848 |#1|)))) (-15 -1218 ((-1032 |#1|) $ |#1|)) (-15 -3552 ((-1032 (-1032 |#1|)) $)) (-15 -1218 ((-1032 (-1032 |#1|)) $ (-1032 |#1|))) (-15 -1218 ((-1032 (-598 |#1|)) $ (-598 |#1|))) (-15 -1883 ((-110) (-848 |#1|) $)) (-15 -2722 ((-598 (-721)) (-848 |#1|) $)) (-15 -1842 ((-598 (-721)) (-848 |#1|) $)) (-15 -1466 ((-1032 |#1|) $)) (-15 -2174 ((-110) $ $)) (-15 -2195 ((-110) $ $)) (-15 -3830 ((-1189) $)) (-15 -3830 ((-1189) $ (-531) (-531)))))
+((-2247 (((-110) $ $) NIL)) (-1332 (((-598 $) (-598 $)) 77)) (-3459 (((-531) $) 60)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3617 (((-721) $) 58)) (-1218 (((-1032 |#1|) $ |#1|) 49)) (-3481 (((-110) $) NIL)) (-4250 (((-110) $) 63)) (-2163 (((-721) $) 61)) (-1466 (((-1032 |#1|) $) 42)) (-4103 (($ $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-1241 (($ $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-3251 (((-2 (|:| |preimage| (-598 |#1|)) (|:| |image| (-598 |#1|))) $) 37)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 93)) (-2529 (((-1049) $) NIL)) (-3875 (((-1032 |#1|) $) 100 (|has| |#1| (-349)))) (-1787 (((-110) $) 59)) (-4115 ((|#1| $ |#1|) 47)) (-1785 ((|#1| $ |#1|) 94)) (-2012 (((-721) $) 44)) (-2049 (($ (-598 (-598 |#1|))) 85)) (-2113 (((-913) $) 53)) (-3436 (($ (-598 |#1|)) 21)) (-4164 (($ $ $) NIL)) (-3214 (($ $ $) NIL)) (-2771 (($ (-598 (-598 |#1|))) 39)) (-2388 (($ (-598 (-598 |#1|))) 88)) (-3583 (($ (-598 |#1|)) 96)) (-2265 (((-806) $) 84) (($ (-598 (-598 |#1|))) 66) (($ (-598 |#1|)) 67)) (-3050 (($) 16 T CONST)) (-2207 (((-110) $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-2148 (((-110) $ $) 45)) (-2195 (((-110) $ $) NIL (-1435 (|has| |#1| (-349)) (|has| |#1| (-797))))) (-2174 (((-110) $ $) 65)) (-2263 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ $ $) 22)))
+(((-848 |#1|) (-13 (-846 |#1|) (-10 -8 (-15 -3251 ((-2 (|:| |preimage| (-598 |#1|)) (|:| |image| (-598 |#1|))) $)) (-15 -2771 ($ (-598 (-598 |#1|)))) (-15 -2265 ($ (-598 (-598 |#1|)))) (-15 -2265 ($ (-598 |#1|))) (-15 -2388 ($ (-598 (-598 |#1|)))) (-15 -2012 ((-721) $)) (-15 -1466 ((-1032 |#1|) $)) (-15 -2113 ((-913) $)) (-15 -3617 ((-721) $)) (-15 -2163 ((-721) $)) (-15 -3459 ((-531) $)) (-15 -1787 ((-110) $)) (-15 -4250 ((-110) $)) (-15 -1332 ((-598 $) (-598 $))) (IF (|has| |#1| (-349)) (-15 -3875 ((-1032 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-516)) (-15 -3583 ($ (-598 |#1|))) (IF (|has| |#1| (-349)) (-15 -3583 ($ (-598 |#1|))) |%noBranch|)))) (-1030)) (T -848))
+((-3251 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-598 *3)) (|:| |image| (-598 *3)))) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-2771 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) (-2388 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))) (-2012 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-1466 (*1 *2 *1) (-12 (-5 *2 (-1032 *3)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-913)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-3617 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-3459 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-1787 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-4250 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-1332 (*1 *2 *2) (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-848 *3)) (-4 *3 (-1030)))) (-3875 (*1 *2 *1) (-12 (-5 *2 (-1032 *3)) (-5 *1 (-848 *3)) (-4 *3 (-349)) (-4 *3 (-1030)))) (-3583 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-848 *3)))))
+(-13 (-846 |#1|) (-10 -8 (-15 -3251 ((-2 (|:| |preimage| (-598 |#1|)) (|:| |image| (-598 |#1|))) $)) (-15 -2771 ($ (-598 (-598 |#1|)))) (-15 -2265 ($ (-598 (-598 |#1|)))) (-15 -2265 ($ (-598 |#1|))) (-15 -2388 ($ (-598 (-598 |#1|)))) (-15 -2012 ((-721) $)) (-15 -1466 ((-1032 |#1|) $)) (-15 -2113 ((-913) $)) (-15 -3617 ((-721) $)) (-15 -2163 ((-721) $)) (-15 -3459 ((-531) $)) (-15 -1787 ((-110) $)) (-15 -4250 ((-110) $)) (-15 -1332 ((-598 $) (-598 $))) (IF (|has| |#1| (-349)) (-15 -3875 ((-1032 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-516)) (-15 -3583 ($ (-598 |#1|))) (IF (|has| |#1| (-349)) (-15 -3583 ($ (-598 |#1|))) |%noBranch|))))
+((-1713 (((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|)) 128)) (-3530 ((|#1|) 77)) (-2079 (((-399 (-1098 |#4|)) (-1098 |#4|)) 137)) (-2526 (((-399 (-1098 |#4|)) (-598 |#3|) (-1098 |#4|)) 69)) (-3672 (((-399 (-1098 |#4|)) (-1098 |#4|)) 147)) (-2794 (((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|) |#3|) 92)))
+(((-849 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1713 ((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|))) (-15 -3672 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -2079 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -3530 (|#1|)) (-15 -2794 ((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|) |#3|)) (-15 -2526 ((-399 (-1098 |#4|)) (-598 |#3|) (-1098 |#4|)))) (-852) (-743) (-797) (-892 |#1| |#2| |#3|)) (T -849))
+((-2526 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *7)) (-4 *7 (-797)) (-4 *5 (-852)) (-4 *6 (-743)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-399 (-1098 *8))) (-5 *1 (-849 *5 *6 *7 *8)) (-5 *4 (-1098 *8)))) (-2794 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-598 (-1098 *7))) (-5 *3 (-1098 *7)) (-4 *7 (-892 *5 *6 *4)) (-4 *5 (-852)) (-4 *6 (-743)) (-4 *4 (-797)) (-5 *1 (-849 *5 *6 *4 *7)))) (-3530 (*1 *2) (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-852)) (-5 *1 (-849 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))) (-2079 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-849 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-3672 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-399 (-1098 *7))) (-5 *1 (-849 *4 *5 *6 *7)) (-5 *3 (-1098 *7)))) (-1713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *7))) (-5 *3 (-1098 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-849 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1713 ((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|))) (-15 -3672 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -2079 ((-399 (-1098 |#4|)) (-1098 |#4|))) (-15 -3530 (|#1|)) (-15 -2794 ((-3 (-598 (-1098 |#4|)) "failed") (-598 (-1098 |#4|)) (-1098 |#4|) |#3|)) (-15 -2526 ((-399 (-1098 |#4|)) (-598 |#3|) (-1098 |#4|))))
+((-1713 (((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|)) 36)) (-3530 ((|#1|) 54)) (-2079 (((-399 (-1098 |#2|)) (-1098 |#2|)) 102)) (-2526 (((-399 (-1098 |#2|)) (-1098 |#2|)) 90)) (-3672 (((-399 (-1098 |#2|)) (-1098 |#2|)) 113)))
+(((-850 |#1| |#2|) (-10 -7 (-15 -1713 ((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|))) (-15 -3672 ((-399 (-1098 |#2|)) (-1098 |#2|))) (-15 -2079 ((-399 (-1098 |#2|)) (-1098 |#2|))) (-15 -3530 (|#1|)) (-15 -2526 ((-399 (-1098 |#2|)) (-1098 |#2|)))) (-852) (-1160 |#1|)) (T -850))
+((-2526 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))) (-3530 (*1 *2) (-12 (-4 *2 (-852)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1160 *2)))) (-2079 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))) (-3672 (*1 *2 *3) (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5))) (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))) (-1713 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *5))) (-5 *3 (-1098 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-852)) (-5 *1 (-850 *4 *5)))))
+(-10 -7 (-15 -1713 ((-3 (-598 (-1098 |#2|)) "failed") (-598 (-1098 |#2|)) (-1098 |#2|))) (-15 -3672 ((-399 (-1098 |#2|)) (-1098 |#2|))) (-15 -2079 ((-399 (-1098 |#2|)) (-1098 |#2|))) (-15 -3530 (|#1|)) (-15 -2526 ((-399 (-1098 |#2|)) (-1098 |#2|))))
+((-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 41)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 18)) (-2750 (((-3 $ "failed") $) 35)))
+(((-851 |#1|) (-10 -8 (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|)))) (-852)) (T -851))
+NIL
+(-10 -8 (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 58)) (-3240 (($ $) 49)) (-2956 (((-399 $) $) 50)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 55)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-2534 (((-110) $) 51)) (-3481 (((-110) $) 30)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-3799 (((-399 (-1098 $)) (-1098 $)) 56)) (-2894 (((-399 (-1098 $)) (-1098 $)) 57)) (-2552 (((-399 $) $) 48)) (-3609 (((-3 $ "failed") $ $) 40)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 54 (|has| $ (-138)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2750 (((-3 $ "failed") $) 53 (|has| $ (-138)))) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-852) (-133)) (T -852))
+((-2993 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-852)))) (-1383 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))) (-2894 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))) (-3799 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))) (-4197 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-598 (-1098 *1))) (-5 *3 (-1098 *1)) (-4 *1 (-852)))) (-1737 (*1 *2 *3) (|partial| -12 (-5 *3 (-639 *1)) (-4 *1 (-138)) (-4 *1 (-852)) (-5 *2 (-1184 *1)))) (-2750 (*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-852)))))
+(-13 (-1142) (-10 -8 (-15 -1383 ((-399 (-1098 $)) (-1098 $))) (-15 -2894 ((-399 (-1098 $)) (-1098 $))) (-15 -3799 ((-399 (-1098 $)) (-1098 $))) (-15 -2993 ((-1098 $) (-1098 $) (-1098 $))) (-15 -4197 ((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $))) (IF (|has| $ (-138)) (PROGN (-15 -1737 ((-3 (-1184 $) "failed") (-639 $))) (-15 -2750 ((-3 $ "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2330 (((-110) $) NIL)) (-2675 (((-721)) NIL)) (-1354 (($ $ (-864)) NIL (|has| $ (-349))) (($ $) NIL)) (-3646 (((-1112 (-864) (-721)) (-531)) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3006 (((-721)) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 $ "failed") $) NIL)) (-2523 (($ $) NIL)) (-2767 (($ (-1184 $)) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-1806 (($) NIL)) (-1971 (((-110) $) NIL)) (-3493 (($ $) NIL) (($ $ (-721)) NIL)) (-2534 (((-110) $) NIL)) (-3617 (((-783 (-864)) $) NIL) (((-864) $) NIL)) (-3481 (((-110) $) NIL)) (-3323 (($) NIL (|has| $ (-349)))) (-3653 (((-110) $) NIL (|has| $ (-349)))) (-1899 (($ $ (-864)) NIL (|has| $ (-349))) (($ $) NIL)) (-2342 (((-3 $ "failed") $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1233 (((-1098 $) $ (-864)) NIL (|has| $ (-349))) (((-1098 $) $) NIL)) (-2211 (((-864) $) NIL)) (-1832 (((-1098 $) $) NIL (|has| $ (-349)))) (-1612 (((-3 (-1098 $) "failed") $ $) NIL (|has| $ (-349))) (((-1098 $) $) NIL (|has| $ (-349)))) (-3601 (($ $ (-1098 $)) NIL (|has| $ (-349)))) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL T CONST)) (-1889 (($ (-864)) NIL)) (-3693 (((-110) $) NIL)) (-2529 (((-1049) $) NIL)) (-1861 (($) NIL (|has| $ (-349)))) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL)) (-2552 (((-399 $) $) NIL)) (-3717 (((-864)) NIL) (((-783 (-864))) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2350 (((-3 (-721) "failed") $ $) NIL) (((-721) $) NIL)) (-2190 (((-130)) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-2012 (((-864) $) NIL) (((-783 (-864)) $) NIL)) (-3608 (((-1098 $)) NIL)) (-2498 (($) NIL)) (-2389 (($) NIL (|has| $ (-349)))) (-3348 (((-639 $) (-1184 $)) NIL) (((-1184 $) $) NIL)) (-3318 (((-531) $) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL) (($ $) NIL)) (-2284 (((-721)) NIL)) (-3523 (((-1184 $) (-864)) NIL) (((-1184 $)) NIL)) (-2587 (((-110) $ $) NIL)) (-1697 (((-110) $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-2730 (($ $ (-721)) NIL (|has| $ (-349))) (($ $) NIL (|has| $ (-349)))) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL)))
+(((-853 |#1|) (-13 (-330) (-310 $) (-573 (-531))) (-864)) (T -853))
+NIL
+(-13 (-330) (-310 $) (-573 (-531)))
+((-1350 (((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)) 79)) (-4005 (((-110) (-317 |#2| |#3| |#4| |#5|)) 17)) (-3617 (((-3 (-721) "failed") (-317 |#2| |#3| |#4| |#5|)) 15)))
+(((-854 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3617 ((-3 (-721) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -4005 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -1350 ((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|)))) (-13 (-797) (-523) (-977 (-531))) (-411 |#1|) (-1160 |#2|) (-1160 (-388 |#3|)) (-323 |#2| |#3| |#4|)) (T -854))
+((-1350 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-2 (|:| -3617 (-721)) (|:| -1956 *8))) (-5 *1 (-854 *4 *5 *6 *7 *8)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-110)) (-5 *1 (-854 *4 *5 *6 *7 *8)))) (-3617 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-721)) (-5 *1 (-854 *4 *5 *6 *7 *8)))))
+(-10 -7 (-15 -3617 ((-3 (-721) "failed") (-317 |#2| |#3| |#4| |#5|))) (-15 -4005 ((-110) (-317 |#2| |#3| |#4| |#5|))) (-15 -1350 ((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#5|)) "failed") (-317 |#2| |#3| |#4| |#5|))))
+((-1350 (((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#3|)) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|)) 56)) (-4005 (((-110) (-317 (-388 (-531)) |#1| |#2| |#3|)) 16)) (-3617 (((-3 (-721) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|)) 14)))
+(((-855 |#1| |#2| |#3|) (-10 -7 (-15 -3617 ((-3 (-721) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|))) (-15 -4005 ((-110) (-317 (-388 (-531)) |#1| |#2| |#3|))) (-15 -1350 ((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#3|)) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|)))) (-1160 (-388 (-531))) (-1160 (-388 |#1|)) (-323 (-388 (-531)) |#1| |#2|)) (T -855))
+((-1350 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-2 (|:| -3617 (-721)) (|:| -1956 *6))) (-5 *1 (-855 *4 *5 *6)))) (-4005 (*1 *2 *3) (-12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-110)) (-5 *1 (-855 *4 *5 *6)))) (-3617 (*1 *2 *3) (|partial| -12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6)) (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-721)) (-5 *1 (-855 *4 *5 *6)))))
+(-10 -7 (-15 -3617 ((-3 (-721) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|))) (-15 -4005 ((-110) (-317 (-388 (-531)) |#1| |#2| |#3|))) (-15 -1350 ((-3 (-2 (|:| -3617 (-721)) (|:| -1956 |#3|)) "failed") (-317 (-388 (-531)) |#1| |#2| |#3|))))
+((-1726 ((|#2| |#2|) 26)) (-3569 (((-531) (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))))) 15)) (-3902 (((-864) (-531)) 35)) (-1280 (((-531) |#2|) 42)) (-2710 (((-531) |#2|) 21) (((-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))) |#1|) 20)))
+(((-856 |#1| |#2|) (-10 -7 (-15 -3902 ((-864) (-531))) (-15 -2710 ((-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))) |#1|)) (-15 -2710 ((-531) |#2|)) (-15 -3569 ((-531) (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531)))))) (-15 -1280 ((-531) |#2|)) (-15 -1726 (|#2| |#2|))) (-1160 (-388 (-531))) (-1160 (-388 |#1|))) (T -856))
+((-1726 (*1 *2 *2) (-12 (-4 *3 (-1160 (-388 (-531)))) (-5 *1 (-856 *3 *2)) (-4 *2 (-1160 (-388 *3))))) (-1280 (*1 *2 *3) (-12 (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1160 (-388 *4))))) (-3569 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))))) (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1160 (-388 *4))))) (-2710 (*1 *2 *3) (-12 (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *3)) (-4 *3 (-1160 (-388 *4))))) (-2710 (*1 *2 *3) (-12 (-4 *3 (-1160 (-388 (-531)))) (-5 *2 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531)))) (-5 *1 (-856 *3 *4)) (-4 *4 (-1160 (-388 *3))))) (-3902 (*1 *2 *3) (-12 (-5 *3 (-531)) (-4 *4 (-1160 (-388 *3))) (-5 *2 (-864)) (-5 *1 (-856 *4 *5)) (-4 *5 (-1160 (-388 *4))))))
+(-10 -7 (-15 -3902 ((-864) (-531))) (-15 -2710 ((-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))) |#1|)) (-15 -2710 ((-531) |#2|)) (-15 -3569 ((-531) (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531)))))) (-15 -1280 ((-531) |#2|)) (-15 -1726 (|#2| |#2|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 ((|#1| $) 81)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3650 (($ $ $) NIL)) (-3622 (((-3 $ "failed") $) 75)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1464 (($ |#1| (-399 |#1|)) 73)) (-2636 (((-1098 |#1|) |#1| |#1|) 41)) (-2324 (($ $) 49)) (-3481 (((-110) $) NIL)) (-2071 (((-531) $) 78)) (-3500 (($ $ (-531)) 80)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1281 ((|#1| $) 77)) (-2830 (((-399 |#1|) $) 76)) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) 74)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3770 (($ $) 39)) (-2265 (((-806) $) 99) (($ (-531)) 54) (($ $) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 31) (((-388 |#1|) $) 59) (($ (-388 (-399 |#1|))) 67)) (-2284 (((-721)) 52)) (-2587 (((-110) $ $) NIL)) (-3035 (($) 23 T CONST)) (-3050 (($) 12 T CONST)) (-2148 (((-110) $ $) 68)) (-2263 (($ $ $) NIL)) (-2250 (($ $) 88) (($ $ $) NIL)) (-2237 (($ $ $) 38)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 90) (($ $ $) 37) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ |#1| $) 89) (($ $ |#1|) NIL)))
+(((-857 |#1|) (-13 (-344) (-37 |#1|) (-10 -8 (-15 -2265 ((-388 |#1|) $)) (-15 -2265 ($ (-388 (-399 |#1|)))) (-15 -3770 ($ $)) (-15 -2830 ((-399 |#1|) $)) (-15 -1281 (|#1| $)) (-15 -3500 ($ $ (-531))) (-15 -2071 ((-531) $)) (-15 -2636 ((-1098 |#1|) |#1| |#1|)) (-15 -2324 ($ $)) (-15 -1464 ($ |#1| (-399 |#1|))) (-15 -1317 (|#1| $)))) (-289)) (T -857))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-388 (-399 *3))) (-4 *3 (-289)) (-5 *1 (-857 *3)))) (-3770 (*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))) (-2830 (*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-1281 (*1 *2 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))) (-3500 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-2071 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-2636 (*1 *2 *3 *3) (-12 (-5 *2 (-1098 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))) (-2324 (*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))) (-1464 (*1 *1 *2 *3) (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-857 *2)))) (-1317 (*1 *2 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))))
+(-13 (-344) (-37 |#1|) (-10 -8 (-15 -2265 ((-388 |#1|) $)) (-15 -2265 ($ (-388 (-399 |#1|)))) (-15 -3770 ($ $)) (-15 -2830 ((-399 |#1|) $)) (-15 -1281 (|#1| $)) (-15 -3500 ($ $ (-531))) (-15 -2071 ((-531) $)) (-15 -2636 ((-1098 |#1|) |#1| |#1|)) (-15 -2324 ($ $)) (-15 -1464 ($ |#1| (-399 |#1|))) (-15 -1317 (|#1| $))))
+((-1464 (((-51) (-895 |#1|) (-399 (-895 |#1|)) (-1102)) 17) (((-51) (-388 (-895 |#1|)) (-1102)) 18)))
+(((-858 |#1|) (-10 -7 (-15 -1464 ((-51) (-388 (-895 |#1|)) (-1102))) (-15 -1464 ((-51) (-895 |#1|) (-399 (-895 |#1|)) (-1102)))) (-13 (-289) (-140))) (T -858))
+((-1464 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-399 (-895 *6))) (-5 *5 (-1102)) (-5 *3 (-895 *6)) (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-858 *6)))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-858 *5)))))
+(-10 -7 (-15 -1464 ((-51) (-388 (-895 |#1|)) (-1102))) (-15 -1464 ((-51) (-895 |#1|) (-399 (-895 |#1|)) (-1102))))
+((-2822 ((|#4| (-598 |#4|)) 121) (((-1098 |#4|) (-1098 |#4|) (-1098 |#4|)) 67) ((|#4| |#4| |#4|) 120)) (-2109 (((-1098 |#4|) (-598 (-1098 |#4|))) 114) (((-1098 |#4|) (-1098 |#4|) (-1098 |#4|)) 50) ((|#4| (-598 |#4|)) 55) ((|#4| |#4| |#4|) 84)))
+(((-859 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2109 (|#4| |#4| |#4|)) (-15 -2109 (|#4| (-598 |#4|))) (-15 -2109 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -2109 ((-1098 |#4|) (-598 (-1098 |#4|)))) (-15 -2822 (|#4| |#4| |#4|)) (-15 -2822 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -2822 (|#4| (-598 |#4|)))) (-743) (-797) (-289) (-892 |#3| |#1| |#2|)) (T -859))
+((-2822 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *6 *4 *5)) (-5 *1 (-859 *4 *5 *6 *2)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)))) (-2822 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *6)))) (-2822 (*1 *2 *2 *2) (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-892 *5 *3 *4)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-598 (-1098 *7))) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-1098 *7)) (-5 *1 (-859 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))) (-2109 (*1 *2 *2 *2) (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *6)))) (-2109 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *6 *4 *5)) (-5 *1 (-859 *4 *5 *6 *2)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)))) (-2109 (*1 *2 *2 *2) (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-892 *5 *3 *4)))))
+(-10 -7 (-15 -2109 (|#4| |#4| |#4|)) (-15 -2109 (|#4| (-598 |#4|))) (-15 -2109 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -2109 ((-1098 |#4|) (-598 (-1098 |#4|)))) (-15 -2822 (|#4| |#4| |#4|)) (-15 -2822 ((-1098 |#4|) (-1098 |#4|) (-1098 |#4|))) (-15 -2822 (|#4| (-598 |#4|))))
+((-3683 (((-847 (-531)) (-913)) 23) (((-847 (-531)) (-598 (-531))) 20)) (-1563 (((-847 (-531)) (-598 (-531))) 48) (((-847 (-531)) (-864)) 49)) (-2469 (((-847 (-531))) 24)) (-1876 (((-847 (-531))) 38) (((-847 (-531)) (-598 (-531))) 37)) (-1992 (((-847 (-531))) 36) (((-847 (-531)) (-598 (-531))) 35)) (-3851 (((-847 (-531))) 34) (((-847 (-531)) (-598 (-531))) 33)) (-2459 (((-847 (-531))) 32) (((-847 (-531)) (-598 (-531))) 31)) (-1546 (((-847 (-531))) 30) (((-847 (-531)) (-598 (-531))) 29)) (-2859 (((-847 (-531))) 40) (((-847 (-531)) (-598 (-531))) 39)) (-1385 (((-847 (-531)) (-598 (-531))) 52) (((-847 (-531)) (-864)) 53)) (-1490 (((-847 (-531)) (-598 (-531))) 50) (((-847 (-531)) (-864)) 51)) (-1282 (((-847 (-531)) (-598 (-531))) 46) (((-847 (-531)) (-864)) 47)) (-4002 (((-847 (-531)) (-598 (-864))) 43)))
+(((-860) (-10 -7 (-15 -1563 ((-847 (-531)) (-864))) (-15 -1563 ((-847 (-531)) (-598 (-531)))) (-15 -1282 ((-847 (-531)) (-864))) (-15 -1282 ((-847 (-531)) (-598 (-531)))) (-15 -4002 ((-847 (-531)) (-598 (-864)))) (-15 -1490 ((-847 (-531)) (-864))) (-15 -1490 ((-847 (-531)) (-598 (-531)))) (-15 -1385 ((-847 (-531)) (-864))) (-15 -1385 ((-847 (-531)) (-598 (-531)))) (-15 -1546 ((-847 (-531)) (-598 (-531)))) (-15 -1546 ((-847 (-531)))) (-15 -2459 ((-847 (-531)) (-598 (-531)))) (-15 -2459 ((-847 (-531)))) (-15 -3851 ((-847 (-531)) (-598 (-531)))) (-15 -3851 ((-847 (-531)))) (-15 -1992 ((-847 (-531)) (-598 (-531)))) (-15 -1992 ((-847 (-531)))) (-15 -1876 ((-847 (-531)) (-598 (-531)))) (-15 -1876 ((-847 (-531)))) (-15 -2859 ((-847 (-531)) (-598 (-531)))) (-15 -2859 ((-847 (-531)))) (-15 -2469 ((-847 (-531)))) (-15 -3683 ((-847 (-531)) (-598 (-531)))) (-15 -3683 ((-847 (-531)) (-913))))) (T -860))
+((-3683 (*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-3683 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2469 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2859 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2859 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1876 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1876 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1992 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1992 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-3851 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-3851 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2459 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-2459 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1546 (*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1385 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1490 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-598 (-864))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1282 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))) (-1563 (*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(-10 -7 (-15 -1563 ((-847 (-531)) (-864))) (-15 -1563 ((-847 (-531)) (-598 (-531)))) (-15 -1282 ((-847 (-531)) (-864))) (-15 -1282 ((-847 (-531)) (-598 (-531)))) (-15 -4002 ((-847 (-531)) (-598 (-864)))) (-15 -1490 ((-847 (-531)) (-864))) (-15 -1490 ((-847 (-531)) (-598 (-531)))) (-15 -1385 ((-847 (-531)) (-864))) (-15 -1385 ((-847 (-531)) (-598 (-531)))) (-15 -1546 ((-847 (-531)) (-598 (-531)))) (-15 -1546 ((-847 (-531)))) (-15 -2459 ((-847 (-531)) (-598 (-531)))) (-15 -2459 ((-847 (-531)))) (-15 -3851 ((-847 (-531)) (-598 (-531)))) (-15 -3851 ((-847 (-531)))) (-15 -1992 ((-847 (-531)) (-598 (-531)))) (-15 -1992 ((-847 (-531)))) (-15 -1876 ((-847 (-531)) (-598 (-531)))) (-15 -1876 ((-847 (-531)))) (-15 -2859 ((-847 (-531)) (-598 (-531)))) (-15 -2859 ((-847 (-531)))) (-15 -2469 ((-847 (-531)))) (-15 -3683 ((-847 (-531)) (-598 (-531)))) (-15 -3683 ((-847 (-531)) (-913))))
+((-3490 (((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102))) 12)) (-1468 (((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102))) 11)))
+(((-861 |#1|) (-10 -7 (-15 -1468 ((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -3490 ((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102))))) (-432)) (T -861))
+((-3490 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-895 *4))) (-5 *3 (-598 (-1102))) (-4 *4 (-432)) (-5 *1 (-861 *4)))) (-1468 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-895 *4))) (-5 *3 (-598 (-1102))) (-4 *4 (-432)) (-5 *1 (-861 *4)))))
+(-10 -7 (-15 -1468 ((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -3490 ((-598 (-895 |#1|)) (-598 (-895 |#1|)) (-598 (-1102)))))
+((-2265 (((-297 |#1|) (-457)) 16)))
+(((-862 |#1|) (-10 -7 (-15 -2265 ((-297 |#1|) (-457)))) (-13 (-797) (-523))) (T -862))
+((-2265 (*1 *2 *3) (-12 (-5 *3 (-457)) (-5 *2 (-297 *4)) (-5 *1 (-862 *4)) (-4 *4 (-13 (-797) (-523))))))
+(-10 -7 (-15 -2265 ((-297 |#1|) (-457))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3481 (((-110) $) 30)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-863) (-133)) (T -863))
+((-2434 (*1 *2 *3) (-12 (-4 *1 (-863)) (-5 *2 (-2 (|:| -2005 (-598 *1)) (|:| -1861 *1))) (-5 *3 (-598 *1)))) (-1995 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-863)))))
+(-13 (-432) (-10 -8 (-15 -2434 ((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $))) (-15 -1995 ((-3 (-598 $) "failed") (-598 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2109 (($ $ $) NIL)) (-2265 (((-806) $) NIL)) (-3050 (($) NIL T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ $ $) NIL)))
+(((-864) (-13 (-744) (-677) (-10 -8 (-15 -2109 ($ $ $)) (-6 (-4275 "*"))))) (T -864))
+((-2109 (*1 *1 *1 *1) (-5 *1 (-864))))
+(-13 (-744) (-677) (-10 -8 (-15 -2109 ($ $ $)) (-6 (-4275 "*"))))
+((-1221 ((|#2| (-598 |#1|) (-598 |#1|)) 24)))
+(((-865 |#1| |#2|) (-10 -7 (-15 -1221 (|#2| (-598 |#1|) (-598 |#1|)))) (-344) (-1160 |#1|)) (T -865))
+((-1221 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-344)) (-4 *2 (-1160 *4)) (-5 *1 (-865 *4 *2)))))
+(-10 -7 (-15 -1221 (|#2| (-598 |#1|) (-598 |#1|))))
+((-3476 (((-1098 |#2|) (-598 |#2|) (-598 |#2|)) 17) (((-1157 |#1| |#2|) (-1157 |#1| |#2|) (-598 |#2|) (-598 |#2|)) 13)))
+(((-866 |#1| |#2|) (-10 -7 (-15 -3476 ((-1157 |#1| |#2|) (-1157 |#1| |#2|) (-598 |#2|) (-598 |#2|))) (-15 -3476 ((-1098 |#2|) (-598 |#2|) (-598 |#2|)))) (-1102) (-344)) (T -866))
+((-3476 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *5)) (-4 *5 (-344)) (-5 *2 (-1098 *5)) (-5 *1 (-866 *4 *5)) (-14 *4 (-1102)))) (-3476 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1157 *4 *5)) (-5 *3 (-598 *5)) (-14 *4 (-1102)) (-4 *5 (-344)) (-5 *1 (-866 *4 *5)))))
+(-10 -7 (-15 -3476 ((-1157 |#1| |#2|) (-1157 |#1| |#2|) (-598 |#2|) (-598 |#2|))) (-15 -3476 ((-1098 |#2|) (-598 |#2|) (-598 |#2|))))
+((-3438 (((-531) (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085)) 139)) (-2632 ((|#4| |#4|) 155)) (-3759 (((-598 (-388 (-895 |#1|))) (-598 (-1102))) 118)) (-2694 (((-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-598 (-598 |#4|)) (-721) (-721) (-531)) 75)) (-4213 (((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-598 |#4|)) 59)) (-1393 (((-639 |#4|) (-639 |#4|) (-598 |#4|)) 55)) (-3866 (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085)) 151)) (-3685 (((-531) (-639 |#4|) (-864) (-1085)) 132) (((-531) (-639 |#4|) (-598 (-1102)) (-864) (-1085)) 131) (((-531) (-639 |#4|) (-598 |#4|) (-864) (-1085)) 130) (((-531) (-639 |#4|) (-1085)) 127) (((-531) (-639 |#4|) (-598 (-1102)) (-1085)) 126) (((-531) (-639 |#4|) (-598 |#4|) (-1085)) 125) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-864)) 124) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)) (-864)) 123) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|) (-864)) 122) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|)) 120) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102))) 119) (((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|)) 115)) (-3942 ((|#4| (-895 |#1|)) 68)) (-2804 (((-110) (-598 |#4|) (-598 (-598 |#4|))) 152)) (-2477 (((-598 (-598 (-531))) (-531) (-531)) 129)) (-3805 (((-598 (-598 |#4|)) (-598 (-598 |#4|))) 88)) (-3388 (((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|))))) 86)) (-1857 (((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|))))) 85)) (-3210 (((-110) (-598 (-895 |#1|))) 17) (((-110) (-598 |#4|)) 13)) (-2861 (((-2 (|:| |sysok| (-110)) (|:| |z0| (-598 |#4|)) (|:| |n0| (-598 |#4|))) (-598 |#4|) (-598 |#4|)) 71)) (-2290 (((-598 |#4|) |#4|) 49)) (-2836 (((-598 (-388 (-895 |#1|))) (-598 |#4|)) 114) (((-639 (-388 (-895 |#1|))) (-639 |#4|)) 56) (((-388 (-895 |#1|)) |#4|) 111)) (-2271 (((-2 (|:| |rgl| (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))))) (|:| |rgsz| (-531))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-721) (-1085) (-531)) 93)) (-1469 (((-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))) (-639 |#4|) (-721)) 84)) (-3367 (((-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-639 |#4|) (-721)) 101)) (-2940 (((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| -1751 (-639 (-388 (-895 |#1|)))) (|:| |vec| (-598 (-388 (-895 |#1|)))) (|:| -2277 (-721)) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) 48)))
+(((-867 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|) (-864))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)) (-864))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-864))) (-15 -3685 ((-531) (-639 |#4|) (-598 |#4|) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 (-1102)) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 |#4|) (-864) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 (-1102)) (-864) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-864) (-1085))) (-15 -3438 ((-531) (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085))) (-15 -3866 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085))) (-15 -2271 ((-2 (|:| |rgl| (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))))) (|:| |rgsz| (-531))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-721) (-1085) (-531))) (-15 -2836 ((-388 (-895 |#1|)) |#4|)) (-15 -2836 ((-639 (-388 (-895 |#1|))) (-639 |#4|))) (-15 -2836 ((-598 (-388 (-895 |#1|))) (-598 |#4|))) (-15 -3759 ((-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -3942 (|#4| (-895 |#1|))) (-15 -2861 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-598 |#4|)) (|:| |n0| (-598 |#4|))) (-598 |#4|) (-598 |#4|))) (-15 -1469 ((-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))) (-639 |#4|) (-721))) (-15 -4213 ((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-598 |#4|))) (-15 -2940 ((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| -1751 (-639 (-388 (-895 |#1|)))) (|:| |vec| (-598 (-388 (-895 |#1|)))) (|:| -2277 (-721)) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (-15 -2290 ((-598 |#4|) |#4|)) (-15 -1857 ((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))))) (-15 -3388 ((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))))) (-15 -3805 ((-598 (-598 |#4|)) (-598 (-598 |#4|)))) (-15 -2477 ((-598 (-598 (-531))) (-531) (-531))) (-15 -2804 ((-110) (-598 |#4|) (-598 (-598 |#4|)))) (-15 -3367 ((-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-639 |#4|) (-721))) (-15 -1393 ((-639 |#4|) (-639 |#4|) (-598 |#4|))) (-15 -2694 ((-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-598 (-598 |#4|)) (-721) (-721) (-531))) (-15 -2632 (|#4| |#4|)) (-15 -3210 ((-110) (-598 |#4|))) (-15 -3210 ((-110) (-598 (-895 |#1|))))) (-13 (-289) (-140)) (-13 (-797) (-573 (-1102))) (-743) (-892 |#1| |#3| |#2|)) (T -867))
+((-3210 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-110)) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-110)) (-5 *1 (-867 *4 *5 *6 *7)))) (-2632 (*1 *2 *2) (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-797) (-573 (-1102)))) (-4 *5 (-743)) (-5 *1 (-867 *3 *4 *5 *2)) (-4 *2 (-892 *3 *5 *4)))) (-2694 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-5 *4 (-639 *12)) (-5 *5 (-598 (-388 (-895 *9)))) (-5 *6 (-598 (-598 *12))) (-5 *7 (-721)) (-5 *8 (-531)) (-4 *9 (-13 (-289) (-140))) (-4 *12 (-892 *9 *11 *10)) (-4 *10 (-13 (-797) (-573 (-1102)))) (-4 *11 (-743)) (-5 *2 (-2 (|:| |eqzro| (-598 *12)) (|:| |neqzro| (-598 *12)) (|:| |wcond| (-598 (-895 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *9)))) (|:| -3523 (-598 (-1184 (-388 (-895 *9))))))))) (-5 *1 (-867 *9 *10 *11 *12)))) (-1393 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *7)) (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *1 (-867 *4 *5 *6 *7)))) (-3367 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-721)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| |det| *8) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (-5 *1 (-867 *5 *6 *7 *8)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-598 *8))) (-5 *3 (-598 *8)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-110)) (-5 *1 (-867 *5 *6 *7 *8)))) (-2477 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-598 (-531)))) (-5 *1 (-867 *4 *5 *6 *7)) (-5 *3 (-531)) (-4 *7 (-892 *4 *6 *5)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-598 (-598 *6))) (-4 *6 (-892 *3 *5 *4)) (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-797) (-573 (-1102)))) (-4 *5 (-743)) (-5 *1 (-867 *3 *4 *5 *6)))) (-3388 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| *7) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 *7))))) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-721)) (-5 *1 (-867 *4 *5 *6 *7)))) (-1857 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| *7) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 *7))))) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-721)) (-5 *1 (-867 *4 *5 *6 *7)))) (-2290 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 *3)) (-5 *1 (-867 *4 *5 *6 *3)) (-4 *3 (-892 *4 *6 *5)))) (-2940 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1751 (-639 (-388 (-895 *4)))) (|:| |vec| (-598 (-388 (-895 *4)))) (|:| -2277 (-721)) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) (|:| -3523 (-598 (-1184 (-388 (-895 *4))))))) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))) (-4213 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) (|:| -3523 (-598 (-1184 (-388 (-895 *4))))))) (-5 *3 (-598 *7)) (-4 *4 (-13 (-289) (-140))) (-4 *7 (-892 *4 *6 *5)) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *1 (-867 *4 *5 *6 *7)))) (-1469 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| *8) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 *8))))) (-5 *1 (-867 *5 *6 *7 *8)) (-5 *4 (-721)))) (-2861 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-4 *7 (-892 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-110)) (|:| |z0| (-598 *7)) (|:| |n0| (-598 *7)))) (-5 *1 (-867 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3942 (*1 *2 *3) (-12 (-5 *3 (-895 *4)) (-4 *4 (-13 (-289) (-140))) (-4 *2 (-892 *4 *6 *5)) (-5 *1 (-867 *4 *5 *6 *2)) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)))) (-3759 (*1 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-388 (-895 *4)))) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-388 (-895 *4)))) (-5 *1 (-867 *4 *5 *6 *7)))) (-2836 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-639 (-388 (-895 *4)))) (-5 *1 (-867 *4 *5 *6 *7)))) (-2836 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-388 (-895 *4))) (-5 *1 (-867 *4 *5 *6 *3)) (-4 *3 (-892 *4 *6 *5)))) (-2271 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-639 *11)) (-5 *4 (-598 (-388 (-895 *8)))) (-5 *5 (-721)) (-5 *6 (-1085)) (-4 *8 (-13 (-289) (-140))) (-4 *11 (-892 *8 *10 *9)) (-4 *9 (-13 (-797) (-573 (-1102)))) (-4 *10 (-743)) (-5 *2 (-2 (|:| |rgl| (-598 (-2 (|:| |eqzro| (-598 *11)) (|:| |neqzro| (-598 *11)) (|:| |wcond| (-598 (-895 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *8)))) (|:| -3523 (-598 (-1184 (-388 (-895 *8)))))))))) (|:| |rgsz| (-531)))) (-5 *1 (-867 *8 *9 *10 *11)) (-5 *7 (-531)))) (-3866 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *7)) (|:| |neqzro| (-598 *7)) (|:| |wcond| (-598 (-895 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) (|:| -3523 (-598 (-1184 (-388 (-895 *4)))))))))) (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))) (-3438 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) (|:| |wcond| (-598 (-895 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) (-5 *4 (-1085)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-892 *5 *7 *6)) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-864)) (-5 *5 (-1085)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *6 *7 *8 *9)))) (-3685 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 *10)) (-5 *4 (-598 (-1102))) (-5 *5 (-864)) (-5 *6 (-1085)) (-4 *10 (-892 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-797) (-573 (-1102)))) (-4 *9 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *7 *8 *9 *10)))) (-3685 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-639 *10)) (-5 *4 (-598 *10)) (-5 *5 (-864)) (-5 *6 (-1085)) (-4 *10 (-892 *7 *9 *8)) (-4 *7 (-13 (-289) (-140))) (-4 *8 (-13 (-797) (-573 (-1102)))) (-4 *9 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *7 *8 *9 *10)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-1085)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 (-1102))) (-5 *5 (-1085)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *6 *7 *8 *9)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 *9)) (-5 *5 (-1085)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *6 *7 *8 *9)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-864)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) (|:| |wcond| (-598 (-895 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) (-5 *1 (-867 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 (-1102))) (-5 *5 (-864)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *9)) (|:| |neqzro| (-598 *9)) (|:| |wcond| (-598 (-895 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *6)))) (|:| -3523 (-598 (-1184 (-388 (-895 *6)))))))))) (-5 *1 (-867 *6 *7 *8 *9)))) (-3685 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-639 *9)) (-5 *5 (-864)) (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *9)) (|:| |neqzro| (-598 *9)) (|:| |wcond| (-598 (-895 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *6)))) (|:| -3523 (-598 (-1184 (-388 (-895 *6)))))))))) (-5 *1 (-867 *6 *7 *8 *9)) (-5 *4 (-598 *9)))) (-3685 (*1 *2 *3) (-12 (-5 *3 (-639 *7)) (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *7)) (|:| |neqzro| (-598 *7)) (|:| |wcond| (-598 (-895 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *4)))) (|:| -3523 (-598 (-1184 (-388 (-895 *4)))))))))) (-5 *1 (-867 *4 *5 *6 *7)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-5 *4 (-598 (-1102))) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) (|:| |wcond| (-598 (-895 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) (-5 *1 (-867 *5 *6 *7 *8)))) (-3685 (*1 *2 *3 *4) (-12 (-5 *3 (-639 *8)) (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-598 (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8)) (|:| |wcond| (-598 (-895 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 *5)))) (|:| -3523 (-598 (-1184 (-388 (-895 *5)))))))))) (-5 *1 (-867 *5 *6 *7 *8)) (-5 *4 (-598 *8)))))
+(-10 -7 (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 |#4|) (-864))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-598 (-1102)) (-864))) (-15 -3685 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-639 |#4|) (-864))) (-15 -3685 ((-531) (-639 |#4|) (-598 |#4|) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 (-1102)) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 |#4|) (-864) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-598 (-1102)) (-864) (-1085))) (-15 -3685 ((-531) (-639 |#4|) (-864) (-1085))) (-15 -3438 ((-531) (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085))) (-15 -3866 ((-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|))))))))) (-1085))) (-15 -2271 ((-2 (|:| |rgl| (-598 (-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))))) (|:| |rgsz| (-531))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-721) (-1085) (-531))) (-15 -2836 ((-388 (-895 |#1|)) |#4|)) (-15 -2836 ((-639 (-388 (-895 |#1|))) (-639 |#4|))) (-15 -2836 ((-598 (-388 (-895 |#1|))) (-598 |#4|))) (-15 -3759 ((-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -3942 (|#4| (-895 |#1|))) (-15 -2861 ((-2 (|:| |sysok| (-110)) (|:| |z0| (-598 |#4|)) (|:| |n0| (-598 |#4|))) (-598 |#4|) (-598 |#4|))) (-15 -1469 ((-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))) (-639 |#4|) (-721))) (-15 -4213 ((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-598 |#4|))) (-15 -2940 ((-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))) (-2 (|:| -1751 (-639 (-388 (-895 |#1|)))) (|:| |vec| (-598 (-388 (-895 |#1|)))) (|:| -2277 (-721)) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (-15 -2290 ((-598 |#4|) |#4|)) (-15 -1857 ((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))))) (-15 -3388 ((-721) (-598 (-2 (|:| -2277 (-721)) (|:| |eqns| (-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))) (|:| |fgb| (-598 |#4|)))))) (-15 -3805 ((-598 (-598 |#4|)) (-598 (-598 |#4|)))) (-15 -2477 ((-598 (-598 (-531))) (-531) (-531))) (-15 -2804 ((-110) (-598 |#4|) (-598 (-598 |#4|)))) (-15 -3367 ((-598 (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531))))) (-639 |#4|) (-721))) (-15 -1393 ((-639 |#4|) (-639 |#4|) (-598 |#4|))) (-15 -2694 ((-2 (|:| |eqzro| (-598 |#4|)) (|:| |neqzro| (-598 |#4|)) (|:| |wcond| (-598 (-895 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1184 (-388 (-895 |#1|)))) (|:| -3523 (-598 (-1184 (-388 (-895 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))) (-639 |#4|) (-598 (-388 (-895 |#1|))) (-598 (-598 |#4|)) (-721) (-721) (-531))) (-15 -2632 (|#4| |#4|)) (-15 -3210 ((-110) (-598 |#4|))) (-15 -3210 ((-110) (-598 (-895 |#1|)))))
+((-4193 (((-870) |#1| (-1102)) 17) (((-870) |#1| (-1102) (-1025 (-208))) 21)) (-3289 (((-870) |#1| |#1| (-1102) (-1025 (-208))) 19) (((-870) |#1| (-1102) (-1025 (-208))) 15)))
+(((-868 |#1|) (-10 -7 (-15 -3289 ((-870) |#1| (-1102) (-1025 (-208)))) (-15 -3289 ((-870) |#1| |#1| (-1102) (-1025 (-208)))) (-15 -4193 ((-870) |#1| (-1102) (-1025 (-208)))) (-15 -4193 ((-870) |#1| (-1102)))) (-573 (-507))) (T -868))
+((-4193 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-5 *2 (-870)) (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) (-4193 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) (-3289 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))) (-3289 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870)) (-5 *1 (-868 *3)) (-4 *3 (-573 (-507))))))
+(-10 -7 (-15 -3289 ((-870) |#1| (-1102) (-1025 (-208)))) (-15 -3289 ((-870) |#1| |#1| (-1102) (-1025 (-208)))) (-15 -4193 ((-870) |#1| (-1102) (-1025 (-208)))) (-15 -4193 ((-870) |#1| (-1102))))
+((-3026 (($ $ (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 70)) (-2671 (((-1025 (-208)) $) 40)) (-2659 (((-1025 (-208)) $) 39)) (-2647 (((-1025 (-208)) $) 38)) (-1412 (((-598 (-598 (-208))) $) 43)) (-1418 (((-1025 (-208)) $) 41)) (-1810 (((-531) (-531)) 32)) (-1708 (((-531) (-531)) 28)) (-1423 (((-531) (-531)) 30)) (-1407 (((-110) (-110)) 35)) (-1972 (((-531)) 31)) (-2522 (($ $ (-1025 (-208))) 73) (($ $) 74)) (-1576 (($ (-1 (-886 (-208)) (-208)) (-1025 (-208))) 78) (($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 79)) (-3289 (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 82) (($ $ (-1025 (-208))) 76)) (-2486 (((-531)) 36)) (-3433 (((-531)) 27)) (-2953 (((-531)) 29)) (-2126 (((-598 (-598 (-886 (-208)))) $) 95)) (-3018 (((-110) (-110)) 37)) (-2265 (((-806) $) 94)) (-3409 (((-110)) 34)))
+(((-869) (-13 (-916) (-10 -8 (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ $ (-1025 (-208)))) (-15 -3026 ($ $ (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -2522 ($ $ (-1025 (-208)))) (-15 -2522 ($ $)) (-15 -1418 ((-1025 (-208)) $)) (-15 -1412 ((-598 (-598 (-208))) $)) (-15 -3433 ((-531))) (-15 -1708 ((-531) (-531))) (-15 -2953 ((-531))) (-15 -1423 ((-531) (-531))) (-15 -1972 ((-531))) (-15 -1810 ((-531) (-531))) (-15 -3409 ((-110))) (-15 -1407 ((-110) (-110))) (-15 -2486 ((-531))) (-15 -3018 ((-110) (-110)))))) (T -869))
+((-1576 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-869)))) (-1576 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-869)))) (-3289 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-869)))) (-3289 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-869)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) (-3026 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) (-2522 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) (-2522 (*1 *1 *1) (-5 *1 (-869))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869)))) (-1412 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-208)))) (-5 *1 (-869)))) (-3433 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-1708 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-2953 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-1423 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-1972 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-3409 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869)))) (-1407 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869)))) (-2486 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869)))))
+(-13 (-916) (-10 -8 (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ $ (-1025 (-208)))) (-15 -3026 ($ $ (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -2522 ($ $ (-1025 (-208)))) (-15 -2522 ($ $)) (-15 -1418 ((-1025 (-208)) $)) (-15 -1412 ((-598 (-598 (-208))) $)) (-15 -3433 ((-531))) (-15 -1708 ((-531) (-531))) (-15 -2953 ((-531))) (-15 -1423 ((-531) (-531))) (-15 -1972 ((-531))) (-15 -1810 ((-531) (-531))) (-15 -3409 ((-110))) (-15 -1407 ((-110) (-110))) (-15 -2486 ((-531))) (-15 -3018 ((-110) (-110)))))
+((-3026 (($ $ (-1025 (-208))) 70) (($ $ (-1025 (-208)) (-1025 (-208))) 71)) (-2659 (((-1025 (-208)) $) 44)) (-2647 (((-1025 (-208)) $) 43)) (-1418 (((-1025 (-208)) $) 45)) (-1747 (((-531) (-531)) 37)) (-1308 (((-531) (-531)) 33)) (-3837 (((-531) (-531)) 35)) (-1430 (((-110) (-110)) 39)) (-3905 (((-531)) 36)) (-2522 (($ $ (-1025 (-208))) 74) (($ $) 75)) (-1576 (($ (-1 (-886 (-208)) (-208)) (-1025 (-208))) 84) (($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 85)) (-4193 (($ (-1 (-208) (-208)) (-1025 (-208))) 92) (($ (-1 (-208) (-208))) 95)) (-3289 (($ (-1 (-208) (-208)) (-1025 (-208))) 79) (($ (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208))) 80) (($ (-598 (-1 (-208) (-208))) (-1025 (-208))) 87) (($ (-598 (-1 (-208) (-208))) (-1025 (-208)) (-1025 (-208))) 88) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208))) 81) (($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208))) 82) (($ $ (-1025 (-208))) 76)) (-3505 (((-110) $) 40)) (-1511 (((-531)) 41)) (-3664 (((-531)) 32)) (-2828 (((-531)) 34)) (-2126 (((-598 (-598 (-886 (-208)))) $) 23)) (-4008 (((-110) (-110)) 42)) (-2265 (((-806) $) 106)) (-3681 (((-110)) 38)))
+(((-870) (-13 (-898) (-10 -8 (-15 -3289 ($ (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-598 (-1 (-208) (-208))) (-1025 (-208)))) (-15 -3289 ($ (-598 (-1 (-208) (-208))) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -4193 ($ (-1 (-208) (-208)) (-1025 (-208)))) (-15 -4193 ($ (-1 (-208) (-208)))) (-15 -3289 ($ $ (-1025 (-208)))) (-15 -3505 ((-110) $)) (-15 -3026 ($ $ (-1025 (-208)))) (-15 -3026 ($ $ (-1025 (-208)) (-1025 (-208)))) (-15 -2522 ($ $ (-1025 (-208)))) (-15 -2522 ($ $)) (-15 -1418 ((-1025 (-208)) $)) (-15 -3664 ((-531))) (-15 -1308 ((-531) (-531))) (-15 -2828 ((-531))) (-15 -3837 ((-531) (-531))) (-15 -3905 ((-531))) (-15 -1747 ((-531) (-531))) (-15 -3681 ((-110))) (-15 -1430 ((-110) (-110))) (-15 -1511 ((-531))) (-15 -4008 ((-110) (-110)))))) (T -870))
+((-3289 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *3) (-12 (-5 *2 (-598 (-1 (-208) (-208)))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-598 (-1 (-208) (-208)))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-1576 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-1576 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-4193 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208))) (-5 *1 (-870)))) (-4193 (*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-870)))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-3505 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-870)))) (-3026 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-3026 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-2522 (*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-2522 (*1 *1 *1) (-5 *1 (-870))) (-1418 (*1 *2 *1) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))) (-3664 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-1308 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-2828 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-3905 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-1747 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-3681 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870)))) (-1430 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870)))) (-1511 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))) (-4008 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870)))))
+(-13 (-898) (-10 -8 (-15 -3289 ($ (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-598 (-1 (-208) (-208))) (-1025 (-208)))) (-15 -3289 ($ (-598 (-1 (-208) (-208))) (-1025 (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)))) (-15 -3289 ($ (-1 (-208) (-208)) (-1 (-208) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)))) (-15 -1576 ($ (-1 (-886 (-208)) (-208)) (-1025 (-208)) (-1025 (-208)) (-1025 (-208)))) (-15 -4193 ($ (-1 (-208) (-208)) (-1025 (-208)))) (-15 -4193 ($ (-1 (-208) (-208)))) (-15 -3289 ($ $ (-1025 (-208)))) (-15 -3505 ((-110) $)) (-15 -3026 ($ $ (-1025 (-208)))) (-15 -3026 ($ $ (-1025 (-208)) (-1025 (-208)))) (-15 -2522 ($ $ (-1025 (-208)))) (-15 -2522 ($ $)) (-15 -1418 ((-1025 (-208)) $)) (-15 -3664 ((-531))) (-15 -1308 ((-531) (-531))) (-15 -2828 ((-531))) (-15 -3837 ((-531) (-531))) (-15 -3905 ((-531))) (-15 -1747 ((-531) (-531))) (-15 -3681 ((-110))) (-15 -1430 ((-110) (-110))) (-15 -1511 ((-531))) (-15 -4008 ((-110) (-110)))))
+((-1906 (((-598 (-1025 (-208))) (-598 (-598 (-886 (-208))))) 24)))
+(((-871) (-10 -7 (-15 -1906 ((-598 (-1025 (-208))) (-598 (-598 (-886 (-208)))))))) (T -871))
+((-1906 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-598 (-1025 (-208)))) (-5 *1 (-871)))))
+(-10 -7 (-15 -1906 ((-598 (-1025 (-208))) (-598 (-598 (-886 (-208)))))))
+((-1515 ((|#2| |#2|) 26)) (-2494 ((|#2| |#2|) 27)) (-2651 ((|#2| |#2|) 25)) (-3973 ((|#2| |#2| (-1085)) 24)))
+(((-872 |#1| |#2|) (-10 -7 (-15 -3973 (|#2| |#2| (-1085))) (-15 -2651 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -2494 (|#2| |#2|))) (-797) (-411 |#1|)) (T -872))
+((-2494 (*1 *2 *2) (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) (-1515 (*1 *2 *2) (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) (-2651 (*1 *2 *2) (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3)))) (-3973 (*1 *2 *2 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-797)) (-5 *1 (-872 *4 *2)) (-4 *2 (-411 *4)))))
+(-10 -7 (-15 -3973 (|#2| |#2| (-1085))) (-15 -2651 (|#2| |#2|)) (-15 -1515 (|#2| |#2|)) (-15 -2494 (|#2| |#2|)))
+((-1515 (((-297 (-531)) (-1102)) 16)) (-2494 (((-297 (-531)) (-1102)) 14)) (-2651 (((-297 (-531)) (-1102)) 12)) (-3973 (((-297 (-531)) (-1102) (-1085)) 19)))
+(((-873) (-10 -7 (-15 -3973 ((-297 (-531)) (-1102) (-1085))) (-15 -2651 ((-297 (-531)) (-1102))) (-15 -1515 ((-297 (-531)) (-1102))) (-15 -2494 ((-297 (-531)) (-1102))))) (T -873))
+((-2494 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))) (-1515 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))) (-2651 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))) (-3973 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-1085)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))))
+(-10 -7 (-15 -3973 ((-297 (-531)) (-1102) (-1085))) (-15 -2651 ((-297 (-531)) (-1102))) (-15 -1515 ((-297 (-531)) (-1102))) (-15 -2494 ((-297 (-531)) (-1102))))
+((-2792 (((-832 |#1| |#3|) |#2| (-835 |#1|) (-832 |#1| |#3|)) 25)) (-3775 (((-1 (-110) |#2|) (-1 (-110) |#3|)) 13)))
+(((-874 |#1| |#2| |#3|) (-10 -7 (-15 -3775 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -2792 ((-832 |#1| |#3|) |#2| (-835 |#1|) (-832 |#1| |#3|)))) (-1030) (-829 |#1|) (-13 (-1030) (-977 |#2|))) (T -874))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *6)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *6 (-13 (-1030) (-977 *3))) (-4 *3 (-829 *5)) (-5 *1 (-874 *5 *3 *6)))) (-3775 (*1 *2 *3) (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1030) (-977 *5))) (-4 *5 (-829 *4)) (-4 *4 (-1030)) (-5 *2 (-1 (-110) *5)) (-5 *1 (-874 *4 *5 *6)))))
+(-10 -7 (-15 -3775 ((-1 (-110) |#2|) (-1 (-110) |#3|))) (-15 -2792 ((-832 |#1| |#3|) |#2| (-835 |#1|) (-832 |#1| |#3|))))
+((-2792 (((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)) 30)))
+(((-875 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) (-1030) (-13 (-523) (-797) (-829 |#1|)) (-13 (-411 |#2|) (-573 (-835 |#1|)) (-829 |#1|) (-977 (-571 $)))) (T -875))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) (-4 *3 (-13 (-411 *6) (-573 *4) (-829 *5) (-977 (-571 $)))) (-5 *4 (-835 *5)) (-4 *6 (-13 (-523) (-797) (-829 *5))) (-5 *1 (-875 *5 *6 *3)))))
+(-10 -7 (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))))
+((-2792 (((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|)) 13)))
+(((-876 |#1|) (-10 -7 (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|)))) (-516)) (T -876))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 (-531) *3)) (-5 *4 (-835 (-531))) (-4 *3 (-516)) (-5 *1 (-876 *3)))))
+(-10 -7 (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))))
+((-2792 (((-832 |#1| |#2|) (-571 |#2|) (-835 |#1|) (-832 |#1| |#2|)) 54)))
+(((-877 |#1| |#2|) (-10 -7 (-15 -2792 ((-832 |#1| |#2|) (-571 |#2|) (-835 |#1|) (-832 |#1| |#2|)))) (-1030) (-13 (-797) (-977 (-571 $)) (-573 (-835 |#1|)) (-829 |#1|))) (T -877))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *6)) (-5 *3 (-571 *6)) (-4 *5 (-1030)) (-4 *6 (-13 (-797) (-977 (-571 $)) (-573 *4) (-829 *5))) (-5 *4 (-835 *5)) (-5 *1 (-877 *5 *6)))))
+(-10 -7 (-15 -2792 ((-832 |#1| |#2|) (-571 |#2|) (-835 |#1|) (-832 |#1| |#2|))))
+((-2792 (((-828 |#1| |#2| |#3|) |#3| (-835 |#1|) (-828 |#1| |#2| |#3|)) 15)))
+(((-878 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-828 |#1| |#2| |#3|) |#3| (-835 |#1|) (-828 |#1| |#2| |#3|)))) (-1030) (-829 |#1|) (-619 |#2|)) (T -878))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-828 *5 *6 *3)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-4 *6 (-829 *5)) (-4 *3 (-619 *6)) (-5 *1 (-878 *5 *6 *3)))))
+(-10 -7 (-15 -2792 ((-828 |#1| |#2| |#3|) |#3| (-835 |#1|) (-828 |#1| |#2| |#3|))))
+((-2792 (((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|)) 17 (|has| |#3| (-829 |#1|))) (((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|) (-1 (-832 |#1| |#5|) |#3| (-835 |#1|) (-832 |#1| |#5|))) 16)))
+(((-879 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2792 ((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|) (-1 (-832 |#1| |#5|) |#3| (-835 |#1|) (-832 |#1| |#5|)))) (IF (|has| |#3| (-829 |#1|)) (-15 -2792 ((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|))) |%noBranch|)) (-1030) (-743) (-797) (-13 (-986) (-797) (-829 |#1|)) (-13 (-892 |#4| |#2| |#3|) (-573 (-835 |#1|)))) (T -879))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) (-4 *3 (-13 (-892 *8 *6 *7) (-573 *4))) (-5 *4 (-835 *5)) (-4 *7 (-829 *5)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-13 (-986) (-797) (-829 *5))) (-5 *1 (-879 *5 *6 *7 *8 *3)))) (-2792 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-832 *6 *3) *8 (-835 *6) (-832 *6 *3))) (-4 *8 (-797)) (-5 *2 (-832 *6 *3)) (-5 *4 (-835 *6)) (-4 *6 (-1030)) (-4 *3 (-13 (-892 *9 *7 *8) (-573 *4))) (-4 *7 (-743)) (-4 *9 (-13 (-986) (-797) (-829 *6))) (-5 *1 (-879 *6 *7 *8 *9 *3)))))
+(-10 -7 (-15 -2792 ((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|) (-1 (-832 |#1| |#5|) |#3| (-835 |#1|) (-832 |#1| |#5|)))) (IF (|has| |#3| (-829 |#1|)) (-15 -2792 ((-832 |#1| |#5|) |#5| (-835 |#1|) (-832 |#1| |#5|))) |%noBranch|))
+((-2583 ((|#2| |#2| (-598 (-1 (-110) |#3|))) 12) ((|#2| |#2| (-1 (-110) |#3|)) 13)))
+(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -2583 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2583 (|#2| |#2| (-598 (-1 (-110) |#3|))))) (-797) (-411 |#1|) (-1138)) (T -880))
+((-2583 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-1 (-110) *5))) (-4 *5 (-1138)) (-4 *4 (-797)) (-5 *1 (-880 *4 *2 *5)) (-4 *2 (-411 *4)))) (-2583 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1138)) (-4 *4 (-797)) (-5 *1 (-880 *4 *2 *5)) (-4 *2 (-411 *4)))))
+(-10 -7 (-15 -2583 (|#2| |#2| (-1 (-110) |#3|))) (-15 -2583 (|#2| |#2| (-598 (-1 (-110) |#3|)))))
+((-2583 (((-297 (-531)) (-1102) (-598 (-1 (-110) |#1|))) 18) (((-297 (-531)) (-1102) (-1 (-110) |#1|)) 15)))
+(((-881 |#1|) (-10 -7 (-15 -2583 ((-297 (-531)) (-1102) (-1 (-110) |#1|))) (-15 -2583 ((-297 (-531)) (-1102) (-598 (-1 (-110) |#1|))))) (-1138)) (T -881))
+((-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-598 (-1 (-110) *5))) (-4 *5 (-1138)) (-5 *2 (-297 (-531))) (-5 *1 (-881 *5)))) (-2583 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1138)) (-5 *2 (-297 (-531))) (-5 *1 (-881 *5)))))
+(-10 -7 (-15 -2583 ((-297 (-531)) (-1102) (-1 (-110) |#1|))) (-15 -2583 ((-297 (-531)) (-1102) (-598 (-1 (-110) |#1|)))))
+((-2792 (((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)) 25)))
+(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) (-1030) (-13 (-523) (-829 |#1|) (-573 (-835 |#1|))) (-934 |#2|)) (T -882))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) (-4 *3 (-934 *6)) (-4 *6 (-13 (-523) (-829 *5) (-573 *4))) (-5 *4 (-835 *5)) (-5 *1 (-882 *5 *6 *3)))))
+(-10 -7 (-15 -2792 ((-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))))
+((-2792 (((-832 |#1| (-1102)) (-1102) (-835 |#1|) (-832 |#1| (-1102))) 17)))
+(((-883 |#1|) (-10 -7 (-15 -2792 ((-832 |#1| (-1102)) (-1102) (-835 |#1|) (-832 |#1| (-1102))))) (-1030)) (T -883))
+((-2792 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-832 *5 (-1102))) (-5 *3 (-1102)) (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-5 *1 (-883 *5)))))
+(-10 -7 (-15 -2792 ((-832 |#1| (-1102)) (-1102) (-835 |#1|) (-832 |#1| (-1102)))))
+((-3684 (((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))) 33)) (-2792 (((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-1 |#3| (-598 |#3|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))) 32)))
+(((-884 |#1| |#2| |#3|) (-10 -7 (-15 -2792 ((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-1 |#3| (-598 |#3|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) (-15 -3684 ((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|))))) (-1030) (-13 (-986) (-797)) (-13 (-986) (-573 (-835 |#1|)) (-977 |#2|))) (T -884))
+((-3684 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-835 *6))) (-5 *5 (-1 (-832 *6 *8) *8 (-835 *6) (-832 *6 *8))) (-4 *6 (-1030)) (-4 *8 (-13 (-986) (-573 (-835 *6)) (-977 *7))) (-5 *2 (-832 *6 *8)) (-4 *7 (-13 (-986) (-797))) (-5 *1 (-884 *6 *7 *8)))) (-2792 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-598 (-835 *7))) (-5 *5 (-1 *9 (-598 *9))) (-5 *6 (-1 (-832 *7 *9) *9 (-835 *7) (-832 *7 *9))) (-4 *7 (-1030)) (-4 *9 (-13 (-986) (-573 (-835 *7)) (-977 *8))) (-5 *2 (-832 *7 *9)) (-5 *3 (-598 *9)) (-4 *8 (-13 (-986) (-797))) (-5 *1 (-884 *7 *8 *9)))))
+(-10 -7 (-15 -2792 ((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-1 |#3| (-598 |#3|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))) (-15 -3684 ((-832 |#1| |#3|) (-598 |#3|) (-598 (-835 |#1|)) (-832 |#1| |#3|) (-1 (-832 |#1| |#3|) |#3| (-835 |#1|) (-832 |#1| |#3|)))))
+((-3270 (((-1098 (-388 (-531))) (-531)) 63)) (-2849 (((-1098 (-531)) (-531)) 66)) (-3098 (((-1098 (-531)) (-531)) 60)) (-2696 (((-531) (-1098 (-531))) 55)) (-2135 (((-1098 (-388 (-531))) (-531)) 49)) (-3913 (((-1098 (-531)) (-531)) 38)) (-3376 (((-1098 (-531)) (-531)) 68)) (-1554 (((-1098 (-531)) (-531)) 67)) (-2349 (((-1098 (-388 (-531))) (-531)) 51)))
+(((-885) (-10 -7 (-15 -2349 ((-1098 (-388 (-531))) (-531))) (-15 -1554 ((-1098 (-531)) (-531))) (-15 -3376 ((-1098 (-531)) (-531))) (-15 -3913 ((-1098 (-531)) (-531))) (-15 -2135 ((-1098 (-388 (-531))) (-531))) (-15 -2696 ((-531) (-1098 (-531)))) (-15 -3098 ((-1098 (-531)) (-531))) (-15 -2849 ((-1098 (-531)) (-531))) (-15 -3270 ((-1098 (-388 (-531))) (-531))))) (T -885))
+((-3270 (*1 *2 *3) (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531)))) (-2849 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-3098 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-2696 (*1 *2 *3) (-12 (-5 *3 (-1098 (-531))) (-5 *2 (-531)) (-5 *1 (-885)))) (-2135 (*1 *2 *3) (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531)))) (-3913 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-3376 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-1554 (*1 *2 *3) (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))) (-2349 (*1 *2 *3) (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531)))))
+(-10 -7 (-15 -2349 ((-1098 (-388 (-531))) (-531))) (-15 -1554 ((-1098 (-531)) (-531))) (-15 -3376 ((-1098 (-531)) (-531))) (-15 -3913 ((-1098 (-531)) (-531))) (-15 -2135 ((-1098 (-388 (-531))) (-531))) (-15 -2696 ((-531) (-1098 (-531)))) (-15 -3098 ((-1098 (-531)) (-531))) (-15 -2849 ((-1098 (-531)) (-531))) (-15 -3270 ((-1098 (-388 (-531))) (-531))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721)) NIL (|has| |#1| (-23)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) 11 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-4042 (($ (-598 |#1|)) 13)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) NIL (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) 8)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 10 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1408 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-3332 (((-110) $ (-721)) NIL)) (-2428 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-1846 (($ $ (-598 |#1|)) 26)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) 20) (($ $ (-1151 (-531))) NIL)) (-3225 ((|#1| $ $) NIL (|has| |#1| (-986)))) (-2190 (((-864) $) 16)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2261 (($ $ $) 24)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507)))) (($ (-598 |#1|)) 17)) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) 25) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2237 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-531) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-677))) (($ $ |#1|) NIL (|has| |#1| (-677)))) (-2167 (((-721) $) 14 (|has| $ (-6 -4273)))))
+(((-886 |#1|) (-922 |#1|) (-986)) (T -886))
+NIL
+(-922 |#1|)
+((-1960 (((-460 |#1| |#2|) (-895 |#2|)) 20)) (-2969 (((-230 |#1| |#2|) (-895 |#2|)) 33)) (-1812 (((-895 |#2|) (-460 |#1| |#2|)) 25)) (-1262 (((-230 |#1| |#2|) (-460 |#1| |#2|)) 55)) (-2028 (((-895 |#2|) (-230 |#1| |#2|)) 30)) (-2608 (((-460 |#1| |#2|) (-230 |#1| |#2|)) 46)))
+(((-887 |#1| |#2|) (-10 -7 (-15 -2608 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -1262 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -1960 ((-460 |#1| |#2|) (-895 |#2|))) (-15 -1812 ((-895 |#2|) (-460 |#1| |#2|))) (-15 -2028 ((-895 |#2|) (-230 |#1| |#2|))) (-15 -2969 ((-230 |#1| |#2|) (-895 |#2|)))) (-598 (-1102)) (-986)) (T -887))
+((-2969 (*1 *2 *3) (-12 (-5 *3 (-895 *5)) (-4 *5 (-986)) (-5 *2 (-230 *4 *5)) (-5 *1 (-887 *4 *5)) (-14 *4 (-598 (-1102))))) (-2028 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) (-5 *2 (-895 *5)) (-5 *1 (-887 *4 *5)))) (-1812 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) (-5 *2 (-895 *5)) (-5 *1 (-887 *4 *5)))) (-1960 (*1 *2 *3) (-12 (-5 *3 (-895 *5)) (-4 *5 (-986)) (-5 *2 (-460 *4 *5)) (-5 *1 (-887 *4 *5)) (-14 *4 (-598 (-1102))))) (-1262 (*1 *2 *3) (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) (-5 *2 (-230 *4 *5)) (-5 *1 (-887 *4 *5)))) (-2608 (*1 *2 *3) (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986)) (-5 *2 (-460 *4 *5)) (-5 *1 (-887 *4 *5)))))
+(-10 -7 (-15 -2608 ((-460 |#1| |#2|) (-230 |#1| |#2|))) (-15 -1262 ((-230 |#1| |#2|) (-460 |#1| |#2|))) (-15 -1960 ((-460 |#1| |#2|) (-895 |#2|))) (-15 -1812 ((-895 |#2|) (-460 |#1| |#2|))) (-15 -2028 ((-895 |#2|) (-230 |#1| |#2|))) (-15 -2969 ((-230 |#1| |#2|) (-895 |#2|))))
+((-1582 (((-598 |#2|) |#2| |#2|) 10)) (-4064 (((-721) (-598 |#1|)) 37 (|has| |#1| (-795)))) (-3732 (((-598 |#2|) |#2|) 11)) (-1925 (((-721) (-598 |#1|) (-531) (-531)) 39 (|has| |#1| (-795)))) (-1739 ((|#1| |#2|) 32 (|has| |#1| (-795)))))
+(((-888 |#1| |#2|) (-10 -7 (-15 -1582 ((-598 |#2|) |#2| |#2|)) (-15 -3732 ((-598 |#2|) |#2|)) (IF (|has| |#1| (-795)) (PROGN (-15 -1739 (|#1| |#2|)) (-15 -4064 ((-721) (-598 |#1|))) (-15 -1925 ((-721) (-598 |#1|) (-531) (-531)))) |%noBranch|)) (-344) (-1160 |#1|)) (T -888))
+((-1925 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-531)) (-4 *5 (-795)) (-4 *5 (-344)) (-5 *2 (-721)) (-5 *1 (-888 *5 *6)) (-4 *6 (-1160 *5)))) (-4064 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-795)) (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-888 *4 *5)) (-4 *5 (-1160 *4)))) (-1739 (*1 *2 *3) (-12 (-4 *2 (-344)) (-4 *2 (-795)) (-5 *1 (-888 *2 *3)) (-4 *3 (-1160 *2)))) (-3732 (*1 *2 *3) (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-888 *4 *3)) (-4 *3 (-1160 *4)))) (-1582 (*1 *2 *3 *3) (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-888 *4 *3)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -1582 ((-598 |#2|) |#2| |#2|)) (-15 -3732 ((-598 |#2|) |#2|)) (IF (|has| |#1| (-795)) (PROGN (-15 -1739 (|#1| |#2|)) (-15 -4064 ((-721) (-598 |#1|))) (-15 -1925 ((-721) (-598 |#1|) (-531) (-531)))) |%noBranch|))
+((-3261 (((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)) 19)))
+(((-889 |#1| |#2|) (-10 -7 (-15 -3261 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|)))) (-986) (-986)) (T -889))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-895 *6)) (-5 *1 (-889 *5 *6)))))
+(-10 -7 (-15 -3261 ((-895 |#2|) (-1 |#2| |#1|) (-895 |#1|))))
+((-2516 (((-1157 |#1| (-895 |#2|)) (-895 |#2|) (-1180 |#1|)) 18)))
+(((-890 |#1| |#2|) (-10 -7 (-15 -2516 ((-1157 |#1| (-895 |#2|)) (-895 |#2|) (-1180 |#1|)))) (-1102) (-986)) (T -890))
+((-2516 (*1 *2 *3 *4) (-12 (-5 *4 (-1180 *5)) (-14 *5 (-1102)) (-4 *6 (-986)) (-5 *2 (-1157 *5 (-895 *6))) (-5 *1 (-890 *5 *6)) (-5 *3 (-895 *6)))))
+(-10 -7 (-15 -2516 ((-1157 |#1| (-895 |#2|)) (-895 |#2|) (-1180 |#1|))))
+((-4109 (((-721) $) 71) (((-721) $ (-598 |#4|)) 74)) (-3240 (($ $) 173)) (-2956 (((-399 $) $) 165)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 116)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 |#4| "failed") $) 60)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL) (((-531) $) NIL) ((|#4| $) 59)) (-3115 (($ $ $ |#4|) 76)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 106) (((-639 |#2|) (-639 $)) 99)) (-2226 (($ $) 180) (($ $ |#4|) 183)) (-2488 (((-598 $) $) 63)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 199) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 192)) (-1230 (((-598 $) $) 28)) (-2669 (($ |#2| |#3|) NIL) (($ $ |#4| (-721)) NIL) (($ $ (-598 |#4|) (-598 (-721))) 57)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#4|) 162)) (-3443 (((-3 (-598 $) "failed") $) 42)) (-2077 (((-3 (-598 $) "failed") $) 31)) (-3448 (((-3 (-2 (|:| |var| |#4|) (|:| -1790 (-721))) "failed") $) 47)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 109)) (-3799 (((-399 (-1098 $)) (-1098 $)) 122)) (-2894 (((-399 (-1098 $)) (-1098 $)) 120)) (-2552 (((-399 $) $) 140)) (-4115 (($ $ (-598 (-276 $))) 21) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#4| |#2|) NIL) (($ $ (-598 |#4|) (-598 |#2|)) NIL) (($ $ |#4| $) NIL) (($ $ (-598 |#4|) (-598 $)) NIL)) (-3176 (($ $ |#4|) 78)) (-3318 (((-835 (-360)) $) 213) (((-835 (-531)) $) 206) (((-507) $) 221)) (-1767 ((|#2| $) NIL) (($ $ |#4|) 175)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 154)) (-3188 ((|#2| $ |#3|) NIL) (($ $ |#4| (-721)) 52) (($ $ (-598 |#4|) (-598 (-721))) 55)) (-2750 (((-3 $ "failed") $) 156)) (-2174 (((-110) $ $) 186)))
+(((-891 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1737 ((-3 (-1184 |#1|) "failed") (-639 |#1|))) (-15 -2226 (|#1| |#1| |#4|)) (-15 -1767 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#1| |#4|)) (-15 -2488 ((-598 |#1|) |#1|)) (-15 -4109 ((-721) |#1| (-598 |#4|))) (-15 -4109 ((-721) |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| |#4|) (|:| -1790 (-721))) "failed") |#1|)) (-15 -3443 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2077 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2669 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -2669 (|#1| |#1| |#4| (-721))) (-15 -2382 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1230 ((-598 |#1|) |#1|)) (-15 -3188 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -3188 (|#1| |#1| |#4| (-721))) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#4| |#1|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#4| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#4| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2669 (|#1| |#2| |#3|)) (-15 -3188 (|#2| |#1| |#3|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -2226 (|#1| |#1|))) (-892 |#2| |#3| |#4|) (-986) (-743) (-797)) (T -891))
+NIL
+(-10 -8 (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -2750 ((-3 |#1| "failed") |#1|)) (-15 -2174 ((-110) |#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1737 ((-3 (-1184 |#1|) "failed") (-639 |#1|))) (-15 -2226 (|#1| |#1| |#4|)) (-15 -1767 (|#1| |#1| |#4|)) (-15 -3176 (|#1| |#1| |#4|)) (-15 -3115 (|#1| |#1| |#1| |#4|)) (-15 -2488 ((-598 |#1|) |#1|)) (-15 -4109 ((-721) |#1| (-598 |#4|))) (-15 -4109 ((-721) |#1|)) (-15 -3448 ((-3 (-2 (|:| |var| |#4|) (|:| -1790 (-721))) "failed") |#1|)) (-15 -3443 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2077 ((-3 (-598 |#1|) "failed") |#1|)) (-15 -2669 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -2669 (|#1| |#1| |#4| (-721))) (-15 -2382 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1230 ((-598 |#1|) |#1|)) (-15 -3188 (|#1| |#1| (-598 |#4|) (-598 (-721)))) (-15 -3188 (|#1| |#1| |#4| (-721))) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#4| |#1|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#4| |#1|)) (-15 -4115 (|#1| |#1| (-598 |#4|) (-598 |#2|))) (-15 -4115 (|#1| |#1| |#4| |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2669 (|#1| |#2| |#3|)) (-15 -3188 (|#2| |#1| |#3|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -2226 (|#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 |#3|) $) 108)) (-2516 (((-1098 $) $ |#3|) 123) (((-1098 |#1|) $) 122)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85 (|has| |#1| (-523)))) (-3258 (($ $) 86 (|has| |#1| (-523)))) (-2921 (((-110) $) 88 (|has| |#1| (-523)))) (-4109 (((-721) $) 110) (((-721) $ (-598 |#3|)) 109)) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 98 (|has| |#1| (-852)))) (-3240 (($ $) 96 (|has| |#1| (-432)))) (-2956 (((-399 $) $) 95 (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 101 (|has| |#1| (-852)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-531)) "failed") $) 160 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 158 (|has| |#1| (-977 (-531)))) (((-3 |#3| "failed") $) 134)) (-2523 ((|#1| $) 163) (((-388 (-531)) $) 159 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 157 (|has| |#1| (-977 (-531)))) ((|#3| $) 133)) (-3115 (($ $ $ |#3|) 106 (|has| |#1| (-162)))) (-2500 (($ $) 152)) (-3073 (((-639 (-531)) (-639 $)) 132 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 131 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 130) (((-639 |#1|) (-639 $)) 129)) (-3622 (((-3 $ "failed") $) 32)) (-2226 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2488 (((-598 $) $) 107)) (-2534 (((-110) $) 94 (|has| |#1| (-852)))) (-2490 (($ $ |#1| |#2| $) 170)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 82 (-12 (|has| |#3| (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 81 (-12 (|has| |#3| (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 167)) (-2682 (($ (-1098 |#1|) |#3|) 115) (($ (-1098 $) |#3|) 114)) (-1230 (((-598 $) $) 124)) (-3380 (((-110) $) 150)) (-2669 (($ |#1| |#2|) 151) (($ $ |#3| (-721)) 117) (($ $ (-598 |#3|) (-598 (-721))) 116)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) 118)) (-3005 ((|#2| $) 168) (((-721) $ |#3|) 120) (((-598 (-721)) $ (-598 |#3|)) 119)) (-4103 (($ $ $) 77 (|has| |#1| (-797)))) (-1241 (($ $ $) 76 (|has| |#1| (-797)))) (-2736 (($ (-1 |#2| |#2|) $) 169)) (-3261 (($ (-1 |#1| |#1|) $) 149)) (-3471 (((-3 |#3| "failed") $) 121)) (-2462 (($ $) 147)) (-2475 ((|#1| $) 146)) (-2078 (($ (-598 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1521 (((-1085) $) 9)) (-3443 (((-3 (-598 $) "failed") $) 112)) (-2077 (((-3 (-598 $) "failed") $) 113)) (-3448 (((-3 (-2 (|:| |var| |#3|) (|:| -1790 (-721))) "failed") $) 111)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 164)) (-2448 ((|#1| $) 165)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 93 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 100 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 99 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 97 (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-598 $) (-598 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-598 |#3|) (-598 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-598 |#3|) (-598 $)) 136)) (-3176 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3352 (($ $ |#3|) 40) (($ $ (-598 |#3|)) 39) (($ $ |#3| (-721)) 38) (($ $ (-598 |#3|) (-598 (-721))) 37)) (-2012 ((|#2| $) 148) (((-721) $ |#3|) 128) (((-598 (-721)) $ (-598 |#3|)) 127)) (-3318 (((-835 (-360)) $) 80 (-12 (|has| |#3| (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) 79 (-12 (|has| |#3| (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) 78 (-12 (|has| |#3| (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 102 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 161) (($ |#3|) 135) (($ $) 83 (|has| |#1| (-523))) (($ (-388 (-531))) 70 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531))))))) (-2708 (((-598 |#1|) $) 166)) (-3188 ((|#1| $ |#2|) 153) (($ $ |#3| (-721)) 126) (($ $ (-598 |#3|) (-598 (-721))) 125)) (-2750 (((-3 $ "failed") $) 71 (-1435 (-3427 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 171 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 87 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ |#3|) 36) (($ $ (-598 |#3|)) 35) (($ $ |#3| (-721)) 34) (($ $ (-598 |#3|) (-598 (-721))) 33)) (-2207 (((-110) $ $) 74 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 73 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 75 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 72 (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 156 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 155 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-892 |#1| |#2| |#3|) (-133) (-986) (-743) (-797)) (T -892))
+((-2226 (*1 *1 *1) (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-2012 (*1 *2 *1 *3) (-12 (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-721)))) (-2012 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-721))))) (-3188 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-892 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *2 (-797)))) (-3188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 (-721))) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)))) (-1230 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) (-2516 (*1 *2 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-1098 *1)) (-4 *1 (-892 *4 *5 *3)))) (-2516 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-1098 *3)))) (-3471 (*1 *2 *1) (|partial| -12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-3005 (*1 *2 *1 *3) (-12 (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-721)))) (-3005 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-721))))) (-2382 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-892 *4 *5 *3)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-892 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *2 (-797)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 (-721))) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)))) (-2682 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 *4)) (-4 *4 (-986)) (-4 *1 (-892 *4 *5 *3)) (-4 *5 (-743)) (-4 *3 (-797)))) (-2682 (*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)))) (-2077 (*1 *2 *1) (|partial| -12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) (-3443 (*1 *2 *1) (|partial| -12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) (-3448 (*1 *2 *1) (|partial| -12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| |var| *5) (|:| -1790 (-721)))))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-721)))) (-4109 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-721)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *5)))) (-2488 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5)))) (-3115 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *3 (-162)))) (-3176 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *3 (-162)))) (-1767 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *3 (-432)))) (-2226 (*1 *1 *1 *2) (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *3 (-432)))) (-3240 (*1 *1 *1) (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-2956 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-399 *1)) (-4 *1 (-892 *3 *4 *5)))))
+(-13 (-843 |t#3|) (-307 |t#1| |t#2|) (-291 $) (-492 |t#3| |t#1|) (-492 |t#3| $) (-977 |t#3|) (-358 |t#1|) (-10 -8 (-15 -2012 ((-721) $ |t#3|)) (-15 -2012 ((-598 (-721)) $ (-598 |t#3|))) (-15 -3188 ($ $ |t#3| (-721))) (-15 -3188 ($ $ (-598 |t#3|) (-598 (-721)))) (-15 -1230 ((-598 $) $)) (-15 -2516 ((-1098 $) $ |t#3|)) (-15 -2516 ((-1098 |t#1|) $)) (-15 -3471 ((-3 |t#3| "failed") $)) (-15 -3005 ((-721) $ |t#3|)) (-15 -3005 ((-598 (-721)) $ (-598 |t#3|))) (-15 -2382 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |t#3|)) (-15 -2669 ($ $ |t#3| (-721))) (-15 -2669 ($ $ (-598 |t#3|) (-598 (-721)))) (-15 -2682 ($ (-1098 |t#1|) |t#3|)) (-15 -2682 ($ (-1098 $) |t#3|)) (-15 -2077 ((-3 (-598 $) "failed") $)) (-15 -3443 ((-3 (-598 $) "failed") $)) (-15 -3448 ((-3 (-2 (|:| |var| |t#3|) (|:| -1790 (-721))) "failed") $)) (-15 -4109 ((-721) $)) (-15 -4109 ((-721) $ (-598 |t#3|))) (-15 -2695 ((-598 |t#3|) $)) (-15 -2488 ((-598 $) $)) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (IF (|has| |t#3| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-573 (-835 (-531)))) (IF (|has| |t#3| (-573 (-835 (-531)))) (-6 (-573 (-835 (-531)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-573 (-835 (-360)))) (IF (|has| |t#3| (-573 (-835 (-360)))) (-6 (-573 (-835 (-360)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-829 (-531))) (IF (|has| |t#3| (-829 (-531))) (-6 (-829 (-531))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-829 (-360))) (IF (|has| |t#3| (-829 (-360))) (-6 (-829 (-360))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -3115 ($ $ $ |t#3|)) (-15 -3176 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-6 (-432)) (-15 -1767 ($ $ |t#3|)) (-15 -2226 ($ $)) (-15 -2226 ($ $ |t#3|)) (-15 -2956 ((-399 $) $)) (-15 -3240 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4271)) (-6 -4271) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-573 (-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531))))) ((-272) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-852)) (|has| |#1| (-432))) ((-492 |#3| |#1|) . T) ((-492 |#3| $) . T) ((-492 $ $) . T) ((-523) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 |#3|) . T) ((-829 (-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360)))) ((-829 (-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))) ((-852) |has| |#1| (-852)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-977 |#3|) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) |has| |#1| (-852)))
+((-2695 (((-598 |#2|) |#5|) 36)) (-2516 (((-1098 |#5|) |#5| |#2| (-1098 |#5|)) 23) (((-388 (-1098 |#5|)) |#5| |#2|) 16)) (-2682 ((|#5| (-388 (-1098 |#5|)) |#2|) 30)) (-3471 (((-3 |#2| "failed") |#5|) 65)) (-3443 (((-3 (-598 |#5|) "failed") |#5|) 59)) (-3058 (((-3 (-2 (|:| |val| |#5|) (|:| -1790 (-531))) "failed") |#5|) 47)) (-2077 (((-3 (-598 |#5|) "failed") |#5|) 61)) (-3448 (((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-531))) "failed") |#5|) 51)))
+(((-893 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2695 ((-598 |#2|) |#5|)) (-15 -3471 ((-3 |#2| "failed") |#5|)) (-15 -2516 ((-388 (-1098 |#5|)) |#5| |#2|)) (-15 -2682 (|#5| (-388 (-1098 |#5|)) |#2|)) (-15 -2516 ((-1098 |#5|) |#5| |#2| (-1098 |#5|))) (-15 -2077 ((-3 (-598 |#5|) "failed") |#5|)) (-15 -3443 ((-3 (-598 |#5|) "failed") |#5|)) (-15 -3448 ((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-531))) "failed") |#5|)) (-15 -3058 ((-3 (-2 (|:| |val| |#5|) (|:| -1790 (-531))) "failed") |#5|))) (-743) (-797) (-986) (-892 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -2265 ($ |#4|)) (-15 -1840 (|#4| $)) (-15 -1853 (|#4| $))))) (T -893))
+((-3058 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -1790 (-531)))) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-3448 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -1790 (-531)))) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-3443 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *3)) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-2077 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *3)) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-2516 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))) (-4 *7 (-892 *6 *5 *4)) (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986)) (-5 *1 (-893 *5 *4 *6 *7 *3)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1098 *2))) (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986)) (-4 *2 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))) (-5 *1 (-893 *5 *4 *6 *7 *2)) (-4 *7 (-892 *6 *5 *4)))) (-2516 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-388 (-1098 *3))) (-5 *1 (-893 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))) (-3471 (*1 *2 *3) (|partial| -12 (-4 *4 (-743)) (-4 *5 (-986)) (-4 *6 (-892 *5 *4 *2)) (-4 *2 (-797)) (-5 *1 (-893 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *6)) (-15 -1840 (*6 $)) (-15 -1853 (*6 $))))))) (-2695 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *5)) (-5 *1 (-893 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-344) (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $))))))))
+(-10 -7 (-15 -2695 ((-598 |#2|) |#5|)) (-15 -3471 ((-3 |#2| "failed") |#5|)) (-15 -2516 ((-388 (-1098 |#5|)) |#5| |#2|)) (-15 -2682 (|#5| (-388 (-1098 |#5|)) |#2|)) (-15 -2516 ((-1098 |#5|) |#5| |#2| (-1098 |#5|))) (-15 -2077 ((-3 (-598 |#5|) "failed") |#5|)) (-15 -3443 ((-3 (-598 |#5|) "failed") |#5|)) (-15 -3448 ((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-531))) "failed") |#5|)) (-15 -3058 ((-3 (-2 (|:| |val| |#5|) (|:| -1790 (-531))) "failed") |#5|)))
+((-3261 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24)))
+(((-894 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3261 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-743) (-797) (-986) (-892 |#3| |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721)))))) (T -894))
+((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-797)) (-4 *8 (-986)) (-4 *6 (-743)) (-4 *2 (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721)))))) (-5 *1 (-894 *6 *7 *8 *5 *2)) (-4 *5 (-892 *8 *6 *7)))))
+(-10 -7 (-15 -3261 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1102)) $) 16)) (-2516 (((-1098 $) $ (-1102)) 21) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1102))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 8) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1102) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1102) $) NIL)) (-3115 (($ $ $ (-1102)) NIL (|has| |#1| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1102)) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 (-1102)) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1102) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1102) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#1|) (-1102)) NIL) (($ (-1098 $) (-1102)) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1102)) NIL)) (-3005 (((-503 (-1102)) $) NIL) (((-721) $ (-1102)) NIL) (((-598 (-721)) $ (-598 (-1102))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 (-1102)) (-503 (-1102))) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3471 (((-3 (-1102) "failed") $) 19)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1102)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $ (-1102)) 29 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1102) |#1|) NIL) (($ $ (-598 (-1102)) (-598 |#1|)) NIL) (($ $ (-1102) $) NIL) (($ $ (-598 (-1102)) (-598 $)) NIL)) (-3176 (($ $ (-1102)) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2012 (((-503 (-1102)) $) NIL) (((-721) $ (-1102)) NIL) (((-598 (-721)) $ (-598 (-1102))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1102) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1102) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1102) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1102)) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 25) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-1102)) 27) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-895 |#1|) (-13 (-892 |#1| (-503 (-1102)) (-1102)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1102))) |%noBranch|))) (-986)) (T -895))
+((-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-895 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)))))
+(-13 (-892 |#1| (-503 (-1102)) (-1102)) (-10 -8 (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1102))) |%noBranch|)))
+((-2246 (((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#3| (-721)) 38)) (-2168 (((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) (-388 (-531)) (-721)) 34)) (-1756 (((-2 (|:| -1790 (-721)) (|:| -2005 |#4|) (|:| |radicand| (-598 |#4|))) |#4| (-721)) 54)) (-1290 (((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#5| (-721)) 64 (|has| |#3| (-432)))))
+(((-896 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2246 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#3| (-721))) (-15 -2168 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) (-388 (-531)) (-721))) (IF (|has| |#3| (-432)) (-15 -1290 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#5| (-721))) |%noBranch|) (-15 -1756 ((-2 (|:| -1790 (-721)) (|:| -2005 |#4|) (|:| |radicand| (-598 |#4|))) |#4| (-721)))) (-743) (-797) (-523) (-892 |#3| |#1| |#2|) (-13 (-344) (-10 -8 (-15 -1840 (|#4| $)) (-15 -1853 (|#4| $)) (-15 -2265 ($ |#4|))))) (T -896))
+((-1756 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523)) (-4 *3 (-892 *7 *5 *6)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| (-598 *3)))) (-5 *1 (-896 *5 *6 *7 *3 *8)) (-5 *4 (-721)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1840 (*3 $)) (-15 -1853 (*3 $)) (-15 -2265 ($ *3))))))) (-1290 (*1 *2 *3 *4) (-12 (-4 *7 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523)) (-4 *8 (-892 *7 *5 *6)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| *3))) (-5 *1 (-896 *5 *6 *7 *8 *3)) (-5 *4 (-721)) (-4 *3 (-13 (-344) (-10 -8 (-15 -1840 (*8 $)) (-15 -1853 (*8 $)) (-15 -2265 ($ *8))))))) (-2168 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-531))) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523)) (-4 *8 (-892 *7 *5 *6)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *9) (|:| |radicand| *9))) (-5 *1 (-896 *5 *6 *7 *8 *9)) (-5 *4 (-721)) (-4 *9 (-13 (-344) (-10 -8 (-15 -1840 (*8 $)) (-15 -1853 (*8 $)) (-15 -2265 ($ *8))))))) (-2246 (*1 *2 *3 *4) (-12 (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-523)) (-4 *7 (-892 *3 *5 *6)) (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *8) (|:| |radicand| *8))) (-5 *1 (-896 *5 *6 *3 *7 *8)) (-5 *4 (-721)) (-4 *8 (-13 (-344) (-10 -8 (-15 -1840 (*7 $)) (-15 -1853 (*7 $)) (-15 -2265 ($ *7))))))))
+(-10 -7 (-15 -2246 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#3| (-721))) (-15 -2168 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) (-388 (-531)) (-721))) (IF (|has| |#3| (-432)) (-15 -1290 ((-2 (|:| -1790 (-721)) (|:| -2005 |#5|) (|:| |radicand| |#5|)) |#5| (-721))) |%noBranch|) (-15 -1756 ((-2 (|:| -1790 (-721)) (|:| -2005 |#4|) (|:| |radicand| (-598 |#4|))) |#4| (-721))))
+((-2247 (((-110) $ $) NIL)) (-2338 (($ (-1049)) 8)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 14) (((-1049) $) 11)) (-2148 (((-110) $ $) 10)))
+(((-897) (-13 (-1030) (-572 (-1049)) (-10 -8 (-15 -2338 ($ (-1049)))))) (T -897))
+((-2338 (*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-897)))))
+(-13 (-1030) (-572 (-1049)) (-10 -8 (-15 -2338 ($ (-1049)))))
+((-2659 (((-1025 (-208)) $) 8)) (-2647 (((-1025 (-208)) $) 9)) (-2126 (((-598 (-598 (-886 (-208)))) $) 10)) (-2265 (((-806) $) 6)))
+(((-898) (-133)) (T -898))
+((-2126 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-598 (-598 (-886 (-208))))))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1025 (-208))))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1025 (-208))))))
+(-13 (-572 (-806)) (-10 -8 (-15 -2126 ((-598 (-598 (-886 (-208)))) $)) (-15 -2647 ((-1025 (-208)) $)) (-15 -2659 ((-1025 (-208)) $))))
+(((-572 (-806)) . T))
+((-2924 (((-3 (-639 |#1|) "failed") |#2| (-864)) 15)))
+(((-899 |#1| |#2|) (-10 -7 (-15 -2924 ((-3 (-639 |#1|) "failed") |#2| (-864)))) (-523) (-609 |#1|)) (T -899))
+((-2924 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-864)) (-4 *5 (-523)) (-5 *2 (-639 *5)) (-5 *1 (-899 *5 *3)) (-4 *3 (-609 *5)))))
+(-10 -7 (-15 -2924 ((-3 (-639 |#1|) "failed") |#2| (-864))))
+((-3203 (((-901 |#2|) (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|) 16)) (-1760 ((|#2| (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|) 18)) (-3261 (((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)) 13)))
+(((-900 |#1| |#2|) (-10 -7 (-15 -3203 ((-901 |#2|) (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|)) (-15 -3261 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|)))) (-1138) (-1138)) (T -900))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-901 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-900 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-901 *6)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-5 *2 (-901 *5)) (-5 *1 (-900 *6 *5)))))
+(-10 -7 (-15 -3203 ((-901 |#2|) (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-901 |#1|) |#2|)) (-15 -3261 ((-901 |#2|) (-1 |#2| |#1|) (-901 |#1|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) 16 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 15 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 13)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) |#1|) 12)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) 10 (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) 17 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) 11)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) 14) (($ $ (-1151 (-531))) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) NIL)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2167 (((-721) $) 8 (|has| $ (-6 -4273)))))
+(((-901 |#1|) (-19 |#1|) (-1138)) (T -901))
NIL
(-19 |#1|)
-((-1900 (($ $ (-1020 $)) 7) (($ $ (-1099)) 6)))
-(((-900) (-133)) (T -900))
-((-1900 (*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-900)))) (-1900 (*1 *1 *1 *2) (-12 (-4 *1 (-900)) (-5 *2 (-1099)))))
-(-13 (-10 -8 (-15 -1900 ($ $ (-1099))) (-15 -1900 ($ $ (-1020 $)))))
-((-1677 (((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099)) 25) (((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099))) 26) (((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099)) 43)))
-(((-901 |#1|) (-10 -7 (-15 -1677 ((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099))) (-15 -1677 ((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -1677 ((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099)))) (-13 (-344) (-140))) (T -901))
-((-1677 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-5 *5 (-1099)) (-4 *6 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 *6))) (|:| |prim| (-1095 *6)))) (-5 *1 (-901 *6)))) (-1677 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 *5))) (|:| |prim| (-1095 *5)))) (-5 *1 (-901 *5)))) (-1677 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1099)) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 *5)))) (-5 *1 (-901 *5)))))
-(-10 -7 (-15 -1677 ((-2 (|:| |coef1| (-530)) (|:| |coef2| (-530)) (|:| |prim| (-1095 |#1|))) (-893 |#1|) (-1099) (-893 |#1|) (-1099))) (-15 -1677 ((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)))) (-15 -1677 ((-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 |#1|))) (|:| |prim| (-1095 |#1|))) (-597 (-893 |#1|)) (-597 (-1099)) (-1099))))
-((-3703 (((-597 |#1|) |#1| |#1|) 42)) (-3295 (((-110) |#1|) 39)) (-2153 ((|#1| |#1|) 65)) (-3506 ((|#1| |#1|) 64)))
-(((-902 |#1|) (-10 -7 (-15 -3295 ((-110) |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -3703 ((-597 |#1|) |#1| |#1|))) (-515)) (T -902))
-((-3703 (*1 *2 *3 *3) (-12 (-5 *2 (-597 *3)) (-5 *1 (-902 *3)) (-4 *3 (-515)))) (-2153 (*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))) (-3506 (*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))) (-3295 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-902 *3)) (-4 *3 (-515)))))
-(-10 -7 (-15 -3295 ((-110) |#1|)) (-15 -3506 (|#1| |#1|)) (-15 -2153 (|#1| |#1|)) (-15 -3703 ((-597 |#1|) |#1| |#1|)))
-((-1606 (((-1186) (-804)) 9)))
-(((-903) (-10 -7 (-15 -1606 ((-1186) (-804))))) (T -903))
-((-1606 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-903)))))
-(-10 -7 (-15 -1606 ((-1186) (-804))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 61 (|has| |#1| (-522)))) (-3446 (($ $) 62 (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 28)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) 24)) (-2707 (((-3 $ "failed") $) 35)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2410 (($ $ |#1| |#2| $) 48)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) 16)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| |#2|) NIL)) (-2944 ((|#2| $) 19)) (-3756 (($ (-1 |#2| |#2|) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2521 (($ $) 23)) (-2533 ((|#1| $) 21)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 40)) (-2505 ((|#1| $) NIL)) (-1641 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-128)) (|has| |#1| (-522))))) (-3551 (((-3 $ "failed") $ $) 74 (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-522)))) (-1429 ((|#2| $) 17)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) 39) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 34) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ |#2|) 31)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 15)) (-2659 (($ $ $ (-719)) 57 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 67 (|has| |#1| (-522)))) (-3080 (($) 22 T CONST)) (-3093 (($) 12 T CONST)) (-2248 (((-110) $ $) 66)) (-2364 (($ $ |#1|) 75 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) 54) (($ $ (-719)) 52)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-904 |#1| |#2|) (-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| |#2| (-128)) (-15 -1641 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984) (-740)) (T -904))
-((-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-904 *3 *2)) (-4 *2 (-128)) (-4 *3 (-522)) (-4 *3 (-984)) (-4 *2 (-740)))))
-(-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| |#2| (-128)) (-15 -1641 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (-3418 (($ $ $) 63 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (-1889 (((-3 $ "failed") $ $) 50 (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (-3023 (((-719)) 34 (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3479 ((|#2| $) 21)) (-2077 ((|#1| $) 20)) (-2350 (($) NIL (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))) CONST)) (-2707 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-1364 (($) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2731 (((-110) $) NIL (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (-2508 (($ $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-1817 (($ $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-1849 (($ |#1| |#2|) 19)) (-1905 (((-862) $) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 37 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-1986 (($ (-862)) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2624 (((-1046) $) NIL)) (-2555 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2607 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2366 (((-804) $) 14)) (-3080 (($) 40 (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))) CONST)) (-3093 (($) 24 (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))) CONST)) (-2306 (((-110) $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2284 (((-110) $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2248 (((-110) $ $) 18)) (-2297 (((-110) $ $) NIL (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2272 (((-110) $ $) 66 (-1461 (-12 (|has| |#1| (-741)) (|has| |#2| (-741))) (-12 (|has| |#1| (-795)) (|has| |#2| (-795)))))) (-2364 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2351 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2339 (($ $ $) 43 (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741)))))) (** (($ $ (-530)) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453)))) (($ $ (-719)) 31 (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675))))) (($ $ (-862)) NIL (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))) (* (($ (-530) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-719) $) 46 (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (($ (-862) $) NIL (-1461 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-741)) (|has| |#2| (-741))))) (($ $ $) 27 (-1461 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-675)) (|has| |#2| (-675)))))))
-(((-905 |#1| |#2|) (-13 (-1027) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-675)) (IF (|has| |#2| (-675)) (-6 (-675)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-741)) (IF (|has| |#2| (-741)) (-6 (-741)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (-15 -1849 ($ |#1| |#2|)) (-15 -2077 (|#1| $)) (-15 -3479 (|#2| $)))) (-1027) (-1027)) (T -905))
-((-1849 (*1 *1 *2 *3) (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-2077 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1027)))) (-3479 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-905 *3 *2)) (-4 *3 (-1027)))))
-(-13 (-1027) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-675)) (IF (|has| |#2| (-675)) (-6 (-675)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-741)) (IF (|has| |#2| (-741)) (-6 (-741)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-795)) (IF (|has| |#2| (-795)) (-6 (-795)) |%noBranch|) |%noBranch|) (-15 -1849 ($ |#1| |#2|)) (-15 -2077 (|#1| $)) (-15 -3479 (|#2| $))))
-((-3417 (((-1031) $) 12)) (-1818 (($ (-1099) (-1031)) 13)) (-3907 (((-1099) $) 10)) (-2366 (((-804) $) 22)))
-(((-906) (-13 (-571 (-804)) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -3417 ((-1031) $)) (-15 -1818 ($ (-1099) (-1031)))))) (T -906))
-((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-906)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-906)))) (-1818 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-906)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3907 ((-1099) $)) (-15 -3417 ((-1031) $)) (-15 -1818 ($ (-1099) (-1031)))))
-((-2746 (((-1029 (-1099)) $) 19)) (-3311 (((-110) $) 26)) (-4007 (((-1099) $) 27)) (-3953 (((-110) $) 24)) (-3037 ((|#1| $) 25)) (-2320 (((-814 $ $) $) 34)) (-1847 (((-110) $) 33)) (-2813 (($ $ $) 12)) (-1784 (($ $) 29)) (-3111 (((-110) $) 28)) (-3676 (($ $) 10)) (-3149 (((-814 $ $) $) 36)) (-2787 (((-110) $) 35)) (-3064 (($ $ $) 13)) (-4029 (((-814 $ $) $) 38)) (-1673 (((-110) $) 37)) (-3582 (($ $ $) 14)) (-2366 (($ |#1|) 7) (($ (-1099)) 9) (((-804) $) 40 (|has| |#1| (-571 (-804))))) (-3241 (((-814 $ $) $) 32)) (-3128 (((-110) $) 30)) (-3380 (($ $ $) 11)))
-(((-907 |#1|) (-13 (-908) (-10 -8 (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (-15 -2366 ($ |#1|)) (-15 -2366 ($ (-1099))) (-15 -2746 ((-1029 (-1099)) $)) (-15 -3953 ((-110) $)) (-15 -3037 (|#1| $)) (-15 -3311 ((-110) $)) (-15 -4007 ((-1099) $)) (-15 -3111 ((-110) $)) (-15 -1784 ($ $)) (-15 -3128 ((-110) $)) (-15 -3241 ((-814 $ $) $)) (-15 -1847 ((-110) $)) (-15 -2320 ((-814 $ $) $)) (-15 -2787 ((-110) $)) (-15 -3149 ((-814 $ $) $)) (-15 -1673 ((-110) $)) (-15 -4029 ((-814 $ $) $)))) (-908)) (T -907))
-((-2366 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2746 (*1 *2 *1) (-12 (-5 *2 (-1029 (-1099))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3953 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3037 (*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-3311 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3111 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-1784 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))) (-3128 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3241 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-1847 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2320 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-2787 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-1673 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))) (-4029 (*1 *2 *1) (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(-13 (-908) (-10 -8 (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (-15 -2366 ($ |#1|)) (-15 -2366 ($ (-1099))) (-15 -2746 ((-1029 (-1099)) $)) (-15 -3953 ((-110) $)) (-15 -3037 (|#1| $)) (-15 -3311 ((-110) $)) (-15 -4007 ((-1099) $)) (-15 -3111 ((-110) $)) (-15 -1784 ($ $)) (-15 -3128 ((-110) $)) (-15 -3241 ((-814 $ $) $)) (-15 -1847 ((-110) $)) (-15 -2320 ((-814 $ $) $)) (-15 -2787 ((-110) $)) (-15 -3149 ((-814 $ $) $)) (-15 -1673 ((-110) $)) (-15 -4029 ((-814 $ $) $))))
-((-2813 (($ $ $) 8)) (-3676 (($ $) 6)) (-3064 (($ $ $) 9)) (-3582 (($ $ $) 10)) (-3380 (($ $ $) 7)))
-(((-908) (-133)) (T -908))
-((-3582 (*1 *1 *1 *1) (-4 *1 (-908))) (-3064 (*1 *1 *1 *1) (-4 *1 (-908))) (-2813 (*1 *1 *1 *1) (-4 *1 (-908))) (-3380 (*1 *1 *1 *1) (-4 *1 (-908))) (-3676 (*1 *1 *1) (-4 *1 (-908))))
-(-13 (-10 -8 (-15 -3676 ($ $)) (-15 -3380 ($ $ $)) (-15 -2813 ($ $ $)) (-15 -3064 ($ $ $)) (-15 -3582 ($ $ $))))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2090 (($ $ $) 43)) (-3683 (($ $ $) 44)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1817 ((|#1| $) 45)) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-909 |#1|) (-133) (-795)) (T -909))
-((-1817 (*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))) (-2090 (*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -1817 (|t#1| $)) (-15 -3683 ($ $ $)) (-15 -2090 ($ $ $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2474 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|) 85)) (-3950 ((|#2| |#2| |#2|) 83)) (-4015 (((-2 (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|) 87)) (-2617 (((-2 (|:| |coef1| |#2|) (|:| -2204 |#2|)) |#2| |#2|) 89)) (-2368 (((-2 (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|) 107 (|has| |#1| (-432)))) (-1819 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 46)) (-3325 (((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 64)) (-1969 (((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 66)) (-2838 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-2140 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 71)) (-1696 (((-2 (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|) 97)) (-2298 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 74)) (-1526 (((-597 (-719)) |#2| |#2|) 82)) (-3775 ((|#1| |#2| |#2|) 42)) (-2752 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|) 105 (|has| |#1| (-432)))) (-4129 ((|#1| |#2| |#2|) 103 (|has| |#1| (-432)))) (-4082 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 44)) (-1793 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|) 63)) (-3388 ((|#1| |#2| |#2|) 61)) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|) 35)) (-1830 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3787 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2991 ((|#2| |#2| |#2|) 75)) (-2397 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 69)) (-3924 ((|#2| |#2| |#2| (-719)) 67)) (-2204 ((|#2| |#2| |#2|) 111 (|has| |#1| (-432)))) (-3551 (((-1181 |#2|) (-1181 |#2|) |#1|) 21)) (-3763 (((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|) 39)) (-2241 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|) 95)) (-3060 ((|#1| |#2|) 92)) (-2639 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719)) 73)) (-3781 ((|#2| |#2| |#2| (-719)) 72)) (-3825 (((-597 |#2|) |#2| |#2|) 80)) (-2061 ((|#2| |#2| |#1| |#1| (-719)) 50)) (-3374 ((|#1| |#1| |#1| (-719)) 49)) (* (((-1181 |#2|) |#1| (-1181 |#2|)) 16)))
-(((-910 |#1| |#2|) (-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -1793 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3325 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -1969 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3924 (|#2| |#2| |#2| (-719))) (-15 -2397 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2140 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3781 (|#2| |#2| |#2| (-719))) (-15 -2639 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2298 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2991 (|#2| |#2| |#2|)) (-15 -3787 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2838 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3950 (|#2| |#2| |#2|)) (-15 -2474 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -4015 ((-2 (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -2617 ((-2 (|:| |coef1| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -3060 (|#1| |#2|)) (-15 -2241 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|)) (-15 -1696 ((-2 (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|)) (-15 -3825 ((-597 |#2|) |#2| |#2|)) (-15 -1526 ((-597 (-719)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -4129 (|#1| |#2| |#2|)) (-15 -2752 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|)) (-15 -2368 ((-2 (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|)) (-15 -2204 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1181 |#2|) |#1| (-1181 |#2|))) (-15 -3551 ((-1181 |#2|) (-1181 |#2|) |#1|)) (-15 -2504 ((-2 (|:| -2065 |#1|) (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|)) (-15 -3763 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|)) (-15 -3374 (|#1| |#1| |#1| (-719))) (-15 -2061 (|#2| |#2| |#1| |#1| (-719))) (-15 -1830 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3775 (|#1| |#2| |#2|)) (-15 -4082 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -1819 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|))) (-522) (-1157 |#1|)) (T -910))
-((-1819 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-4082 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3775 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-1830 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2061 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-3374 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *2 (-522)) (-5 *1 (-910 *2 *4)) (-4 *4 (-1157 *2)))) (-3763 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2504 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -2065 *4) (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3551 (*1 *2 *2 *3) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522)) (-5 *1 (-910 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522)) (-5 *1 (-910 *3 *4)))) (-2204 (*1 *2 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2368 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4129 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2752 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4129 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-4129 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-4 *2 (-432)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-1526 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-719))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3825 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-1696 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3060 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2241 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3060 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3060 (*1 *2 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))) (-2617 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2204 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-4015 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2204 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2474 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2204 *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3950 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2838 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3787 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-2991 (*1 *2 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))) (-2298 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-2639 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-3781 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1157 *4)))) (-2140 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-2397 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))) (-3924 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2)) (-4 *2 (-1157 *4)))) (-1969 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3325 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-1793 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4))) (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))) (-3388 (*1 *2 *3 *3) (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))))
-(-10 -7 (-15 -3388 (|#1| |#2| |#2|)) (-15 -1793 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3325 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -1969 ((-2 (|:| |coef1| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -3924 (|#2| |#2| |#2| (-719))) (-15 -2397 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2140 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -3781 (|#2| |#2| |#2| (-719))) (-15 -2639 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2298 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-719))) (-15 -2991 (|#2| |#2| |#2|)) (-15 -3787 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2838 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3950 (|#2| |#2| |#2|)) (-15 -2474 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -4015 ((-2 (|:| |coef2| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -2617 ((-2 (|:| |coef1| |#2|) (|:| -2204 |#2|)) |#2| |#2|)) (-15 -3060 (|#1| |#2|)) (-15 -2241 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|)) (-15 -1696 ((-2 (|:| |coef2| |#2|) (|:| -3060 |#1|)) |#2|)) (-15 -3825 ((-597 |#2|) |#2| |#2|)) (-15 -1526 ((-597 (-719)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -4129 (|#1| |#2| |#2|)) (-15 -2752 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|)) (-15 -2368 ((-2 (|:| |coef2| |#2|) (|:| -4129 |#1|)) |#2| |#2|)) (-15 -2204 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1181 |#2|) |#1| (-1181 |#2|))) (-15 -3551 ((-1181 |#2|) (-1181 |#2|) |#1|)) (-15 -2504 ((-2 (|:| -2065 |#1|) (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|)) (-15 -3763 ((-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) |#2| |#2|)) (-15 -3374 (|#1| |#1| |#1| (-719))) (-15 -2061 (|#2| |#2| |#1| |#1| (-719))) (-15 -1830 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3775 (|#1| |#2| |#2|)) (-15 -4082 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)) (-15 -1819 ((-2 (|:| |coef2| |#2|) (|:| -3388 |#1|)) |#2| |#2|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) 27)) (-2350 (($) NIL T CONST)) (-3006 (((-597 (-597 (-530))) (-597 (-530))) 29)) (-3253 (((-530) $) 45)) (-1444 (($ (-597 (-530))) 17)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3260 (((-597 (-530)) $) 12)) (-2555 (($ $) 32)) (-2366 (((-804) $) 43) (((-597 (-530)) $) 10)) (-3080 (($) 7 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 20)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 19)) (-2339 (($ $ $) 21)) (* (($ (-862) $) NIL) (($ (-719) $) 25)))
-(((-911) (-13 (-743) (-572 (-597 (-530))) (-10 -8 (-15 -1444 ($ (-597 (-530)))) (-15 -3006 ((-597 (-597 (-530))) (-597 (-530)))) (-15 -3253 ((-530) $)) (-15 -2555 ($ $)) (-15 -2366 ((-597 (-530)) $))))) (T -911))
-((-1444 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))) (-3006 (*1 *2 *3) (-12 (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-911)) (-5 *3 (-597 (-530))))) (-3253 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-911)))) (-2555 (*1 *1 *1) (-5 *1 (-911))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))))
-(-13 (-743) (-572 (-597 (-530))) (-10 -8 (-15 -1444 ($ (-597 (-530)))) (-15 -3006 ((-597 (-597 (-530))) (-597 (-530)))) (-15 -3253 ((-530) $)) (-15 -2555 ($ $)) (-15 -2366 ((-597 (-530)) $))))
-((-2364 (($ $ |#2|) 30)) (-2351 (($ $) 22) (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-388 (-530)) $) 26) (($ $ (-388 (-530))) 28)))
-(((-912 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2364 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|))) (-913 |#2| |#3| |#4|) (-984) (-740) (-795)) (T -912))
-NIL
-(-10 -8 (-15 * (|#1| |#1| (-388 (-530)))) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 -2364 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 * (|#1| (-862) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 |#3|) $) 72)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-3555 (((-110) $) 71)) (-2731 (((-110) $) 30)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-597 |#3|) (-597 |#2|)) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1429 ((|#2| $) 62)) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45 (|has| |#1| (-162)))) (-4085 ((|#1| $ |#2|) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-913 |#1| |#2| |#3|) (-133) (-984) (-740) (-795)) (T -913))
-((-2533 (*1 *2 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-740)) (-4 *4 (-795)) (-4 *2 (-984)))) (-2521 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *2 (-740)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-984)) (-4 *3 (-740)) (-4 *2 (-795)))) (-2725 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 *5)) (-4 *1 (-913 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-740)) (-4 *6 (-795)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795)) (-5 *2 (-597 *5)))) (-3555 (*1 *2 *1) (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740)) (-4 *5 (-795)) (-5 *2 (-110)))) (-4050 (*1 *1 *1) (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740)) (-4 *4 (-795)))))
-(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2725 ($ $ |t#3| |t#2|)) (-15 -2725 ($ $ (-597 |t#3|) (-597 |t#2|))) (-15 -2521 ($ $)) (-15 -2533 (|t#1| $)) (-15 -1429 (|t#2| $)) (-15 -2746 ((-597 |t#3|) $)) (-15 -3555 ((-110) $)) (-15 -4050 ($ $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3574 (((-1022 (-208)) $) 8)) (-3562 (((-1022 (-208)) $) 9)) (-3554 (((-1022 (-208)) $) 10)) (-2425 (((-597 (-597 (-884 (-208)))) $) 11)) (-2366 (((-804) $) 6)))
-(((-914) (-133)) (T -914))
-((-2425 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-597 (-597 (-884 (-208))))))) (-3554 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))) (-3562 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
-(-13 (-571 (-804)) (-10 -8 (-15 -2425 ((-597 (-597 (-884 (-208)))) $)) (-15 -3554 ((-1022 (-208)) $)) (-15 -3562 ((-1022 (-208)) $)) (-15 -3574 ((-1022 (-208)) $))))
-(((-571 (-804)) . T))
-((-2746 (((-597 |#4|) $) 23)) (-2925 (((-110) $) 48)) (-4024 (((-110) $) 47)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#4|) 36)) (-3645 (((-110) $) 49)) (-2276 (((-110) $ $) 55)) (-3528 (((-110) $ $) 58)) (-3660 (((-110) $) 53)) (-3588 (((-597 |#5|) (-597 |#5|) $) 90)) (-2167 (((-597 |#5|) (-597 |#5|) $) 87)) (-3304 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-2400 (((-597 |#4|) $) 27)) (-3533 (((-110) |#4| $) 30)) (-1964 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-1687 (($ $ |#4|) 33)) (-1442 (($ $ |#4|) 32)) (-2553 (($ $ |#4|) 34)) (-2248 (((-110) $ $) 40)))
-(((-915 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -4024 ((-110) |#1|)) (-15 -3588 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -2167 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -3304 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1964 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3645 ((-110) |#1|)) (-15 -3528 ((-110) |#1| |#1|)) (-15 -2276 ((-110) |#1| |#1|)) (-15 -3660 ((-110) |#1|)) (-15 -2925 ((-110) |#1|)) (-15 -1307 ((-2 (|:| |under| |#1|) (|:| -3175 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1687 (|#1| |#1| |#4|)) (-15 -2553 (|#1| |#1| |#4|)) (-15 -1442 (|#1| |#1| |#4|)) (-15 -3533 ((-110) |#4| |#1|)) (-15 -2400 ((-597 |#4|) |#1|)) (-15 -2746 ((-597 |#4|) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-916 |#2| |#3| |#4| |#5|) (-984) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -915))
-NIL
-(-10 -8 (-15 -4024 ((-110) |#1|)) (-15 -3588 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -2167 ((-597 |#5|) (-597 |#5|) |#1|)) (-15 -3304 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -1964 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3645 ((-110) |#1|)) (-15 -3528 ((-110) |#1| |#1|)) (-15 -2276 ((-110) |#1| |#1|)) (-15 -3660 ((-110) |#1|)) (-15 -2925 ((-110) |#1|)) (-15 -1307 ((-2 (|:| |under| |#1|) (|:| -3175 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -1687 (|#1| |#1| |#4|)) (-15 -2553 (|#1| |#1| |#4|)) (-15 -1442 (|#1| |#1| |#4|)) (-15 -3533 ((-110) |#4| |#1|)) (-15 -2400 ((-597 |#4|) |#1|)) (-15 -2746 ((-597 |#4|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269)))) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269)))) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-2624 (((-1046) $) 10)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
-(((-916 |#1| |#2| |#3| |#4|) (-133) (-984) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -916))
-((-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6)))) (-3122 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-998 *3 *4 *2)) (-4 *2 (-795)))) (-2746 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-2400 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-3533 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))) (-1442 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-2553 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-1687 (*1 *1 *1 *2) (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))) (-1307 (*1 *2 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3175 *1) (|:| |upper| *1))) (-4 *1 (-916 *4 *5 *3 *6)))) (-2925 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-2276 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-3528 (*1 *2 *1 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))) (-1964 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3304 (*1 *2 *3 *1) (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-2167 (*1 *2 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)))) (-3588 (*1 *2 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)))) (-4024 (*1 *2 *1) (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-5 *2 (-110)))))
-(-13 (-1027) (-144 |t#4|) (-571 (-597 |t#4|)) (-10 -8 (-6 -4269) (-15 -3139 ((-3 $ "failed") (-597 |t#4|))) (-15 -2585 ($ (-597 |t#4|))) (-15 -3122 (|t#3| $)) (-15 -2746 ((-597 |t#3|) $)) (-15 -2400 ((-597 |t#3|) $)) (-15 -3533 ((-110) |t#3| $)) (-15 -1442 ($ $ |t#3|)) (-15 -2553 ($ $ |t#3|)) (-15 -1687 ($ $ |t#3|)) (-15 -1307 ((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |t#3|)) (-15 -2925 ((-110) $)) (IF (|has| |t#1| (-522)) (PROGN (-15 -3660 ((-110) $)) (-15 -2276 ((-110) $ $)) (-15 -3528 ((-110) $ $)) (-15 -3645 ((-110) $)) (-15 -1964 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3304 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -2167 ((-597 |t#4|) (-597 |t#4|) $)) (-15 -3588 ((-597 |t#4|) (-597 |t#4|) $)) (-15 -4024 ((-110) $))) |%noBranch|)))
-(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-1027) . T) ((-1135) . T))
-((-3043 (((-597 |#4|) |#4| |#4|) 118)) (-3444 (((-597 |#4|) (-597 |#4|) (-110)) 107 (|has| |#1| (-432))) (((-597 |#4|) (-597 |#4|)) 108 (|has| |#1| (-432)))) (-3265 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 35)) (-1516 (((-110) |#4|) 34)) (-3726 (((-597 |#4|) |#4|) 103 (|has| |#1| (-432)))) (-3755 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|)) 20)) (-2994 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|)) 22)) (-3922 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|)) 23)) (-3633 (((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|)) 73)) (-4194 (((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-2834 (((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-1224 (((-597 |#4|) (-597 |#4|)) 110)) (-3459 (((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110)) 48) (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 50)) (-2262 ((|#4| |#4| (-597 |#4|)) 49)) (-1942 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 114 (|has| |#1| (-432)))) (-3510 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 117 (|has| |#1| (-432)))) (-1820 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 116 (|has| |#1| (-432)))) (-1745 (((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|))) 87) (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 89) (((-597 |#4|) (-597 |#4|) |#4|) 121) (((-597 |#4|) |#4| |#4|) 119) (((-597 |#4|) (-597 |#4|)) 88)) (-2904 (((-597 |#4|) (-597 |#4|) (-597 |#4|)) 100 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-2806 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 41)) (-1895 (((-110) (-597 |#4|)) 62)) (-2502 (((-110) (-597 |#4|) (-597 (-597 |#4|))) 53)) (-2490 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 29)) (-3052 (((-110) |#4|) 28)) (-2476 (((-597 |#4|) (-597 |#4|)) 98 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-2126 (((-597 |#4|) (-597 |#4|)) 99 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3667 (((-597 |#4|) (-597 |#4|)) 66)) (-2524 (((-597 |#4|) (-597 |#4|)) 79)) (-1216 (((-110) (-597 |#4|) (-597 |#4|)) 51)) (-1806 (((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|)) 39)) (-3968 (((-110) |#4|) 36)))
-(((-917 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1745 ((-597 |#4|) (-597 |#4|))) (-15 -1745 ((-597 |#4|) |#4| |#4|)) (-15 -1224 ((-597 |#4|) (-597 |#4|))) (-15 -3043 ((-597 |#4|) |#4| |#4|)) (-15 -1745 ((-597 |#4|) (-597 |#4|) |#4|)) (-15 -1745 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -1745 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|)))) (-15 -1216 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2502 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -1895 ((-110) (-597 |#4|))) (-15 -3755 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|))) (-15 -2994 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -3922 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -2806 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -1516 ((-110) |#4|)) (-15 -3265 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3052 ((-110) |#4|)) (-15 -2490 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3968 ((-110) |#4|)) (-15 -1806 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3459 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3459 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110))) (-15 -2262 (|#4| |#4| (-597 |#4|))) (-15 -3667 ((-597 |#4|) (-597 |#4|))) (-15 -3633 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|))) (-15 -2524 ((-597 |#4|) (-597 |#4|))) (-15 -4194 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2834 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3726 ((-597 |#4|) |#4|)) (-15 -3444 ((-597 |#4|) (-597 |#4|))) (-15 -3444 ((-597 |#4|) (-597 |#4|) (-110))) (-15 -1942 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -1820 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3510 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -2126 ((-597 |#4|) (-597 |#4|))) (-15 -2476 ((-597 |#4|) (-597 |#4|))) (-15 -2904 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) |%noBranch|)) (-522) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -917))
-((-2904 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2476 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2126 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3510 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1820 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1942 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3444 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3444 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3726 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-2834 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-917 *5 *6 *7 *8)))) (-4194 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-597 *9)) (-5 *3 (-1 (-110) *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *1 (-917 *6 *7 *8 *9)))) (-2524 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-3633 (*1 *2 *3) (|partial| -12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1598 (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3667 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-2262 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *2)))) (-3459 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-3459 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1806 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3968 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-2490 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3052 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-3265 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-1516 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-2806 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7)))) (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))) (-3922 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-2994 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-3755 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8)))) (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))) (-1895 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))) (-2502 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *5 *6 *7 *8)))) (-1216 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-917 *4 *5 *6 *7)))) (-1745 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-597 *7) (-597 *7))) (-5 *2 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *7)))) (-1745 (*1 *2 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1745 (*1 *2 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *3)))) (-3043 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-1224 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))) (-1745 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))) (-1745 (*1 *2 *2) (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
-(-10 -7 (-15 -1745 ((-597 |#4|) (-597 |#4|))) (-15 -1745 ((-597 |#4|) |#4| |#4|)) (-15 -1224 ((-597 |#4|) (-597 |#4|))) (-15 -3043 ((-597 |#4|) |#4| |#4|)) (-15 -1745 ((-597 |#4|) (-597 |#4|) |#4|)) (-15 -1745 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -1745 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-1 (-597 |#4|) (-597 |#4|)))) (-15 -1216 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2502 ((-110) (-597 |#4|) (-597 (-597 |#4|)))) (-15 -1895 ((-110) (-597 |#4|))) (-15 -3755 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-1 (-110) |#4|) (-597 |#4|))) (-15 -2994 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -3922 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 (-1 (-110) |#4|)) (-597 |#4|))) (-15 -2806 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -1516 ((-110) |#4|)) (-15 -3265 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3052 ((-110) |#4|)) (-15 -2490 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3968 ((-110) |#4|)) (-15 -1806 ((-2 (|:| |goodPols| (-597 |#4|)) (|:| |badPols| (-597 |#4|))) (-597 |#4|))) (-15 -3459 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3459 ((-597 |#4|) (-597 |#4|) (-597 |#4|) (-110))) (-15 -2262 (|#4| |#4| (-597 |#4|))) (-15 -3667 ((-597 |#4|) (-597 |#4|))) (-15 -3633 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|))) (-15 -2524 ((-597 |#4|) (-597 |#4|))) (-15 -4194 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2834 ((-597 |#4|) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3726 ((-597 |#4|) |#4|)) (-15 -3444 ((-597 |#4|) (-597 |#4|))) (-15 -3444 ((-597 |#4|) (-597 |#4|) (-110))) (-15 -1942 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -1820 ((-597 |#4|) (-597 |#4|) (-597 |#4|))) (-15 -3510 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -2126 ((-597 |#4|) (-597 |#4|))) (-15 -2476 ((-597 |#4|) (-597 |#4|))) (-15 -2904 ((-597 |#4|) (-597 |#4|) (-597 |#4|)))) |%noBranch|) |%noBranch|))
-((-1427 (((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 19)) (-2429 (((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)) 36)) (-2899 (((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 16)))
-(((-918 |#1|) (-10 -7 (-15 -1427 ((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2899 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2429 ((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|)))) (-344)) (T -918))
-((-2429 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5))))) (-5 *1 (-918 *5)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)))) (-2899 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-637 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-918 *5)))) (-1427 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| R (-637 *6)) (|:| A (-637 *6)) (|:| |Ainv| (-637 *6)))) (-5 *1 (-918 *6)) (-5 *3 (-637 *6)))))
-(-10 -7 (-15 -1427 ((-2 (|:| R (-637 |#1|)) (|:| A (-637 |#1|)) (|:| |Ainv| (-637 |#1|))) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2899 ((-637 |#1|) (-637 |#1|) (-637 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2429 ((-597 (-2 (|:| C (-637 |#1|)) (|:| |g| (-1181 |#1|)))) (-637 |#1|) (-1181 |#1|))))
-((-3272 (((-399 |#4|) |#4|) 48)))
-(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3272 ((-399 |#4|) |#4|))) (-795) (-741) (-432) (-890 |#3| |#2| |#1|)) (T -919))
-((-3272 (*1 *2 *3) (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-432)) (-5 *2 (-399 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
-(-10 -7 (-15 -3272 ((-399 |#4|) |#4|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1511 (($ (-719)) 112 (|has| |#1| (-23)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-2027 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-2422 (($ (-597 |#1|)) 118)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) 105 (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2337 ((|#1| $) 102 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-2763 (((-110) $ (-719)) 10)) (-4109 ((|#1| $) 103 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-3168 (($ $ (-597 |#1|)) 115)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-3334 ((|#1| $ $) 106 (|has| |#1| (-984)))) (-2488 (((-862) $) 117)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-3691 (($ $ $) 104)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506)))) (($ (-597 |#1|)) 116)) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2351 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2339 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-530) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-675))) (($ $ |#1|) 107 (|has| |#1| (-675)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-920 |#1|) (-133) (-984)) (T -920))
-((-2422 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3)))) (-2488 (*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-984)) (-5 *2 (-862)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3)))) (-3691 (*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-984)))) (-3168 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-920 *3)) (-4 *3 (-984)))))
-(-13 (-1179 |t#1|) (-10 -8 (-15 -2422 ($ (-597 |t#1|))) (-15 -2488 ((-862) $)) (-15 -3260 ($ (-597 |t#1|))) (-15 -3691 ($ $ $)) (-15 -3168 ($ $ (-597 |t#1|)))))
-(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-19 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T) ((-1179 |#1|) . T))
-((-3217 (((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)) 17)))
-(((-921 |#1| |#2|) (-10 -7 (-15 -3217 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|)))) (-984) (-984)) (T -921))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-884 *6)) (-5 *1 (-921 *5 *6)))))
-(-10 -7 (-15 -3217 ((-884 |#2|) (-1 |#2| |#1|) (-884 |#1|))))
-((-2737 ((|#1| (-884 |#1|)) 13)) (-4188 ((|#1| (-884 |#1|)) 12)) (-1754 ((|#1| (-884 |#1|)) 11)) (-3905 ((|#1| (-884 |#1|)) 15)) (-3522 ((|#1| (-884 |#1|)) 21)) (-2401 ((|#1| (-884 |#1|)) 14)) (-3415 ((|#1| (-884 |#1|)) 16)) (-3886 ((|#1| (-884 |#1|)) 20)) (-3073 ((|#1| (-884 |#1|)) 19)))
-(((-922 |#1|) (-10 -7 (-15 -1754 (|#1| (-884 |#1|))) (-15 -4188 (|#1| (-884 |#1|))) (-15 -2737 (|#1| (-884 |#1|))) (-15 -2401 (|#1| (-884 |#1|))) (-15 -3905 (|#1| (-884 |#1|))) (-15 -3415 (|#1| (-884 |#1|))) (-15 -3073 (|#1| (-884 |#1|))) (-15 -3886 (|#1| (-884 |#1|))) (-15 -3522 (|#1| (-884 |#1|)))) (-984)) (T -922))
-((-3522 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3886 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3073 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3415 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-3905 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2401 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-2737 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-4188 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(-10 -7 (-15 -1754 (|#1| (-884 |#1|))) (-15 -4188 (|#1| (-884 |#1|))) (-15 -2737 (|#1| (-884 |#1|))) (-15 -2401 (|#1| (-884 |#1|))) (-15 -3905 (|#1| (-884 |#1|))) (-15 -3415 (|#1| (-884 |#1|))) (-15 -3073 (|#1| (-884 |#1|))) (-15 -3886 (|#1| (-884 |#1|))) (-15 -3522 (|#1| (-884 |#1|))))
-((-1229 (((-3 |#1| "failed") |#1|) 18)) (-2697 (((-3 |#1| "failed") |#1|) 6)) (-2481 (((-3 |#1| "failed") |#1|) 16)) (-2010 (((-3 |#1| "failed") |#1|) 4)) (-3352 (((-3 |#1| "failed") |#1|) 20)) (-3610 (((-3 |#1| "failed") |#1|) 8)) (-2120 (((-3 |#1| "failed") |#1| (-719)) 1)) (-3432 (((-3 |#1| "failed") |#1|) 3)) (-3626 (((-3 |#1| "failed") |#1|) 2)) (-3026 (((-3 |#1| "failed") |#1|) 21)) (-3517 (((-3 |#1| "failed") |#1|) 9)) (-3722 (((-3 |#1| "failed") |#1|) 19)) (-1963 (((-3 |#1| "failed") |#1|) 7)) (-1709 (((-3 |#1| "failed") |#1|) 17)) (-3765 (((-3 |#1| "failed") |#1|) 5)) (-3498 (((-3 |#1| "failed") |#1|) 24)) (-2771 (((-3 |#1| "failed") |#1|) 12)) (-1304 (((-3 |#1| "failed") |#1|) 22)) (-2198 (((-3 |#1| "failed") |#1|) 10)) (-3874 (((-3 |#1| "failed") |#1|) 26)) (-4057 (((-3 |#1| "failed") |#1|) 14)) (-3619 (((-3 |#1| "failed") |#1|) 27)) (-2655 (((-3 |#1| "failed") |#1|) 15)) (-2222 (((-3 |#1| "failed") |#1|) 25)) (-2510 (((-3 |#1| "failed") |#1|) 13)) (-3728 (((-3 |#1| "failed") |#1|) 23)) (-4071 (((-3 |#1| "failed") |#1|) 11)))
-(((-923 |#1|) (-133) (-1121)) (T -923))
-((-3619 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3874 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2222 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3498 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3728 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-1304 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3026 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3352 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3722 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-1229 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-1709 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2481 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2655 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-4057 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2510 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2771 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-4071 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2198 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3517 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3610 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-1963 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2697 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3765 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2010 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3432 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-3626 (*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))) (-2120 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(-13 (-10 -7 (-15 -2120 ((-3 |t#1| "failed") |t#1| (-719))) (-15 -3626 ((-3 |t#1| "failed") |t#1|)) (-15 -3432 ((-3 |t#1| "failed") |t#1|)) (-15 -2010 ((-3 |t#1| "failed") |t#1|)) (-15 -3765 ((-3 |t#1| "failed") |t#1|)) (-15 -2697 ((-3 |t#1| "failed") |t#1|)) (-15 -1963 ((-3 |t#1| "failed") |t#1|)) (-15 -3610 ((-3 |t#1| "failed") |t#1|)) (-15 -3517 ((-3 |t#1| "failed") |t#1|)) (-15 -2198 ((-3 |t#1| "failed") |t#1|)) (-15 -4071 ((-3 |t#1| "failed") |t#1|)) (-15 -2771 ((-3 |t#1| "failed") |t#1|)) (-15 -2510 ((-3 |t#1| "failed") |t#1|)) (-15 -4057 ((-3 |t#1| "failed") |t#1|)) (-15 -2655 ((-3 |t#1| "failed") |t#1|)) (-15 -2481 ((-3 |t#1| "failed") |t#1|)) (-15 -1709 ((-3 |t#1| "failed") |t#1|)) (-15 -1229 ((-3 |t#1| "failed") |t#1|)) (-15 -3722 ((-3 |t#1| "failed") |t#1|)) (-15 -3352 ((-3 |t#1| "failed") |t#1|)) (-15 -3026 ((-3 |t#1| "failed") |t#1|)) (-15 -1304 ((-3 |t#1| "failed") |t#1|)) (-15 -3728 ((-3 |t#1| "failed") |t#1|)) (-15 -3498 ((-3 |t#1| "failed") |t#1|)) (-15 -2222 ((-3 |t#1| "failed") |t#1|)) (-15 -3874 ((-3 |t#1| "failed") |t#1|)) (-15 -3619 ((-3 |t#1| "failed") |t#1|))))
-((-3097 ((|#4| |#4| (-597 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-2118 ((|#4| |#4| (-597 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3217 ((|#4| (-1 |#4| (-893 |#1|)) |#4|) 30)))
-(((-924 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2118 (|#4| |#4| |#3|)) (-15 -2118 (|#4| |#4| (-597 |#3|))) (-15 -3097 (|#4| |#4| |#3|)) (-15 -3097 (|#4| |#4| (-597 |#3|))) (-15 -3217 (|#4| (-1 |#4| (-893 |#1|)) |#4|))) (-984) (-741) (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099))))) (-890 (-893 |#1|) |#2| |#3|)) (T -924))
-((-3217 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-893 *4))) (-4 *4 (-984)) (-4 *2 (-890 (-893 *4) *5 *6)) (-4 *5 (-741)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *6 *2)))) (-3097 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-890 (-893 *4) *5 *6)))) (-3097 (*1 *2 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3)))) (-2118 (*1 *2 *2 *3) (-12 (-5 *3 (-597 *6)) (-4 *6 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2)) (-4 *2 (-890 (-893 *4) *5 *6)))) (-2118 (*1 *2 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)) (-15 -4007 ((-3 $ "failed") (-1099)))))) (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3)))))
-(-10 -7 (-15 -2118 (|#4| |#4| |#3|)) (-15 -2118 (|#4| |#4| (-597 |#3|))) (-15 -3097 (|#4| |#4| |#3|)) (-15 -3097 (|#4| |#4| (-597 |#3|))) (-15 -3217 (|#4| (-1 |#4| (-893 |#1|)) |#4|)))
-((-2781 ((|#2| |#3|) 35)) (-2596 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|) 73)) (-3696 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) 89)))
-(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)) (-15 -2781 (|#2| |#3|))) (-330) (-1157 |#1|) (-1157 |#2|) (-673 |#2| |#3|)) (T -925))
-((-2781 (*1 *2 *3) (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-925 *4 *2 *3 *5)) (-4 *4 (-330)) (-4 *5 (-673 *2 *3)))) (-2596 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-673 *3 *5)))) (-3696 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3220 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4)))) (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-673 *4 *5)))))
-(-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)) (-15 -2781 (|#2| |#3|)))
-((-2768 (((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530))))) 69)))
-(((-926 |#1| |#2|) (-10 -7 (-15 -2768 ((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530))))))) (-597 (-1099)) (-719)) (T -926))
-((-2768 (*1 *2 *2) (-12 (-5 *2 (-927 (-388 (-530)) (-806 *3) (-223 *4 (-719)) (-230 *3 (-388 (-530))))) (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-926 *3 *4)))))
-(-10 -7 (-15 -2768 ((-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))) (-927 (-388 (-530)) (-806 |#1|) (-223 |#2| (-719)) (-230 |#1| (-388 (-530)))))))
-((-2352 (((-110) $ $) NIL)) (-2199 (((-3 (-110) "failed") $) 69)) (-2251 (($ $) 36 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-2430 (($ $ (-3 (-110) "failed")) 70)) (-1635 (($ (-597 |#4|) |#4|) 25)) (-1424 (((-1082) $) NIL)) (-2435 (($ $) 67)) (-2624 (((-1046) $) NIL)) (-3250 (((-110) $) 68)) (-3958 (($) 30)) (-3882 ((|#4| $) 72)) (-2528 (((-597 |#4|) $) 71)) (-2366 (((-804) $) 66)) (-2248 (((-110) $ $) NIL)))
-(((-927 |#1| |#2| |#3| |#4|) (-13 (-1027) (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1635 ($ (-597 |#4|) |#4|)) (-15 -2199 ((-3 (-110) "failed") $)) (-15 -2430 ($ $ (-3 (-110) "failed"))) (-15 -3250 ((-110) $)) (-15 -2528 ((-597 |#4|) $)) (-15 -3882 (|#4| $)) (-15 -2435 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -2251 ($ $)) |%noBranch|) |%noBranch|))) (-432) (-795) (-741) (-890 |#1| |#3| |#2|)) (T -927))
-((-3958 (*1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))) (-1635 (*1 *1 *2 *3) (-12 (-5 *2 (-597 *3)) (-4 *3 (-890 *4 *6 *5)) (-4 *4 (-432)) (-4 *5 (-795)) (-4 *6 (-741)) (-5 *1 (-927 *4 *5 *6 *3)))) (-2199 (*1 *2 *1) (|partial| -12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-3250 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-2528 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-597 *6)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))) (-3882 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-927 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)))) (-2435 (*1 *1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))) (-2251 (*1 *1 *1) (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))))
-(-13 (-1027) (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1635 ($ (-597 |#4|) |#4|)) (-15 -2199 ((-3 (-110) "failed") $)) (-15 -2430 ($ $ (-3 (-110) "failed"))) (-15 -3250 ((-110) $)) (-15 -2528 ((-597 |#4|) $)) (-15 -3882 (|#4| $)) (-15 -2435 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -2251 ($ $)) |%noBranch|) |%noBranch|)))
-((-4081 (((-110) |#5| |#5|) 38)) (-1821 (((-110) |#5| |#5|) 52)) (-3000 (((-110) |#5| (-597 |#5|)) 74) (((-110) |#5| |#5|) 61)) (-1245 (((-110) (-597 |#4|) (-597 |#4|)) 58)) (-4211 (((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) 63)) (-2212 (((-1186)) 33)) (-3526 (((-1186) (-1082) (-1082) (-1082)) 29)) (-1398 (((-597 |#5|) (-597 |#5|)) 81)) (-2882 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) 79)) (-4221 (((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110)) 101)) (-1996 (((-110) |#5| |#5|) 47)) (-3287 (((-3 (-110) "failed") |#5| |#5|) 71)) (-2844 (((-110) (-597 |#4|) (-597 |#4|)) 57)) (-3641 (((-110) (-597 |#4|) (-597 |#4|)) 59)) (-1406 (((-110) (-597 |#4|) (-597 |#4|)) 60)) (-1881 (((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)) 97)) (-3534 (((-597 |#5|) (-597 |#5|)) 43)))
-(((-928 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3526 ((-1186) (-1082) (-1082) (-1082))) (-15 -2212 ((-1186))) (-15 -4081 ((-110) |#5| |#5|)) (-15 -3534 ((-597 |#5|) (-597 |#5|))) (-15 -1996 ((-110) |#5| |#5|)) (-15 -1821 ((-110) |#5| |#5|)) (-15 -1245 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2844 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3641 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1406 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3287 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3000 ((-110) |#5| |#5|)) (-15 -3000 ((-110) |#5| (-597 |#5|))) (-15 -1398 ((-597 |#5|) (-597 |#5|))) (-15 -4211 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -2882 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-15 -4221 ((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1881 ((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -928))
-((-1881 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| -2776 (-597 *9)) (|:| -2473 *4) (|:| |ineq| (-597 *9)))) (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9)) (-4 *4 (-1003 *6 *7 *8 *9)))) (-4221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| -2776 (-597 *9)) (|:| -2473 *10) (|:| |ineq| (-597 *9))))) (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))) (-2882 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2473 *7)))) (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-4211 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-3000 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-928 *5 *6 *7 *8 *3)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3287 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-3641 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1245 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1821 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3534 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-928 *3 *4 *5 *6 *7)))) (-4081 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2212 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3526 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3526 ((-1186) (-1082) (-1082) (-1082))) (-15 -2212 ((-1186))) (-15 -4081 ((-110) |#5| |#5|)) (-15 -3534 ((-597 |#5|) (-597 |#5|))) (-15 -1996 ((-110) |#5| |#5|)) (-15 -1821 ((-110) |#5| |#5|)) (-15 -1245 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2844 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3641 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1406 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3287 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3000 ((-110) |#5| |#5|)) (-15 -3000 ((-110) |#5| (-597 |#5|))) (-15 -1398 ((-597 |#5|) (-597 |#5|))) (-15 -4211 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -2882 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-15 -4221 ((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1881 ((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110))))
-((-4007 (((-1099) $) 15)) (-3417 (((-1082) $) 16)) (-1685 (($ (-1099) (-1082)) 14)) (-2366 (((-804) $) 13)))
-(((-929) (-13 (-571 (-804)) (-10 -8 (-15 -1685 ($ (-1099) (-1082))) (-15 -4007 ((-1099) $)) (-15 -3417 ((-1082) $))))) (T -929))
-((-1685 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-929)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-929)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-929)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -1685 ($ (-1099) (-1082))) (-15 -4007 ((-1099) $)) (-15 -3417 ((-1082) $))))
-((-3217 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
-(((-930 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#2| |#1|) |#3|))) (-522) (-522) (-932 |#1|) (-932 |#2|)) (T -930))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-522)) (-4 *6 (-522)) (-4 *2 (-932 *6)) (-5 *1 (-930 *5 *6 *4 *2)) (-4 *4 (-932 *5)))))
-(-10 -7 (-15 -3217 (|#4| (-1 |#2| |#1|) |#3|)))
-((-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-1099) "failed") $) 65) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) 95)) (-2585 ((|#2| $) NIL) (((-1099) $) 60) (((-388 (-530)) $) NIL) (((-530) $) 92)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 112) (((-637 |#2|) (-637 $)) 28)) (-1364 (($) 98)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 75) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 84)) (-4127 (($ $) 10)) (-2972 (((-3 $ "failed") $) 20)) (-3217 (($ (-1 |#2| |#2|) $) 22)) (-3657 (($) 16)) (-1979 (($ $) 54)) (-3289 (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-1269 (($ $) 12)) (-3260 (((-833 (-530)) $) 70) (((-833 (-360)) $) 79) (((-506) $) 40) (((-360) $) 44) (((-208) $) 47)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 90) (($ |#2|) NIL) (($ (-1099)) 57)) (-3300 (((-719)) 31)) (-2272 (((-110) $ $) 50)))
-(((-931 |#1| |#2|) (-10 -8 (-15 -2272 ((-110) |#1| |#1|)) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2366 (|#1| (-1099))) (-15 -1364 (|#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1269 (|#1| |#1|)) (-15 -4127 (|#1| |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2366 ((-804) |#1|))) (-932 |#2|) (-522)) (T -931))
-((-3300 (*1 *2) (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-931 *3 *4)) (-4 *3 (-932 *4)))))
-(-10 -8 (-15 -2272 ((-110) |#1| |#1|)) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2366 (|#1| (-1099))) (-15 -1364 (|#1|)) (-15 -1979 (|#1| |#1|)) (-15 -1269 (|#1| |#1|)) (-15 -4127 (|#1| |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -2890 ((-830 (-530) |#1|) |#1| (-833 (-530)) (-830 (-530) |#1|))) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -2329 ((-637 |#2|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1612 ((|#1| $) 136 (|has| |#1| (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 127 (|has| |#1| (-850)))) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 130 (|has| |#1| (-850)))) (-1426 (((-110) $ $) 57)) (-1867 (((-530) $) 117 (|has| |#1| (-768)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 175) (((-3 (-1099) "failed") $) 125 (|has| |#1| (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 109 (|has| |#1| (-975 (-530)))) (((-3 (-530) "failed") $) 107 (|has| |#1| (-975 (-530))))) (-2585 ((|#1| $) 174) (((-1099) $) 124 (|has| |#1| (-975 (-1099)))) (((-388 (-530)) $) 108 (|has| |#1| (-975 (-530)))) (((-530) $) 106 (|has| |#1| (-975 (-530))))) (-3590 (($ $ $) 53)) (-2329 (((-637 (-530)) (-637 $)) 149 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 148 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 147) (((-637 |#1|) (-637 $)) 146)) (-2707 (((-3 $ "failed") $) 32)) (-1364 (($) 134 (|has| |#1| (-515)))) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2514 (((-110) $) 119 (|has| |#1| (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 143 (|has| |#1| (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 142 (|has| |#1| (-827 (-360))))) (-2731 (((-110) $) 30)) (-4127 (($ $) 138)) (-1918 ((|#1| $) 140)) (-2972 (((-3 $ "failed") $) 105 (|has| |#1| (-1075)))) (-2166 (((-110) $) 118 (|has| |#1| (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2508 (($ $ $) 115 (|has| |#1| (-795)))) (-1817 (($ $ $) 114 (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) 166)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-3657 (($) 104 (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-1979 (($ $) 135 (|has| |#1| (-289)))) (-3175 ((|#1| $) 132 (|has| |#1| (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 129 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 128 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 172 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 170 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 169 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 168 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 167 (|has| |#1| (-491 (-1099) |#1|)))) (-2356 (((-719) $) 56)) (-1902 (($ $ |#1|) 173 (|has| |#1| (-268 |#1| |#1|)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-3289 (($ $) 165 (|has| |#1| (-216))) (($ $ (-719)) 163 (|has| |#1| (-216))) (($ $ (-1099)) 161 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 160 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 159 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 158 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-1269 (($ $) 137)) (-1928 ((|#1| $) 139)) (-3260 (((-833 (-530)) $) 145 (|has| |#1| (-572 (-833 (-530))))) (((-833 (-360)) $) 144 (|has| |#1| (-572 (-833 (-360))))) (((-506) $) 122 (|has| |#1| (-572 (-506)))) (((-360) $) 121 (|has| |#1| (-960))) (((-208) $) 120 (|has| |#1| (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 131 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ |#1|) 178) (($ (-1099)) 126 (|has| |#1| (-975 (-1099))))) (-3251 (((-3 $ "failed") $) 123 (-1461 (|has| |#1| (-138)) (-3380 (|has| $ (-138)) (|has| |#1| (-850)))))) (-3300 (((-719)) 28)) (-2748 ((|#1| $) 133 (|has| |#1| (-515)))) (-3944 (((-110) $ $) 37)) (-3934 (($ $) 116 (|has| |#1| (-768)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $) 164 (|has| |#1| (-216))) (($ $ (-719)) 162 (|has| |#1| (-216))) (($ $ (-1099)) 157 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 156 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 155 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 154 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2306 (((-110) $ $) 112 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 111 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 113 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 110 (|has| |#1| (-795)))) (-2364 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
-(((-932 |#1|) (-133) (-522)) (T -932))
-((-2364 (*1 *1 *2 *2) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1918 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-4127 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1269 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289)))) (-1979 (*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289)))) (-1364 (*1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-515)) (-4 *2 (-522)))) (-2748 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515)))) (-3175 (*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515)))))
-(-13 (-344) (-37 |t#1|) (-975 |t#1|) (-319 |t#1|) (-214 |t#1|) (-358 |t#1|) (-825 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2364 ($ |t#1| |t#1|)) (-15 -1918 (|t#1| $)) (-15 -1928 (|t#1| $)) (-15 -4127 ($ $)) (-15 -1269 ($ $)) (IF (|has| |t#1| (-1075)) (-6 (-1075)) |%noBranch|) (IF (|has| |t#1| (-975 (-530))) (PROGN (-6 (-975 (-530))) (-6 (-975 (-388 (-530))))) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-768)) (-6 (-768)) |%noBranch|) (IF (|has| |t#1| (-960)) (-6 (-960)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-975 (-1099))) (-6 (-975 (-1099))) |%noBranch|) (IF (|has| |t#1| (-289)) (PROGN (-15 -1612 (|t#1| $)) (-15 -1979 ($ $))) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -1364 ($)) (-15 -2748 (|t#1| $)) (-15 -3175 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-850)) (-6 (-850)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-572 (-208)) |has| |#1| (-960)) ((-572 (-360)) |has| |#1| (-960)) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-572 (-833 (-360))) |has| |#1| (-572 (-833 (-360)))) ((-572 (-833 (-530))) |has| |#1| (-572 (-833 (-530)))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) . T) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) . T) ((-289) . T) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-432) . T) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-739) |has| |#1| (-768)) ((-740) |has| |#1| (-768)) ((-742) |has| |#1| (-768)) ((-743) |has| |#1| (-768)) ((-768) |has| |#1| (-768)) ((-793) |has| |#1| (-768)) ((-795) -1461 (|has| |#1| (-795)) (|has| |#1| (-768))) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) |has| |#1| (-827 (-360))) ((-827 (-530)) |has| |#1| (-827 (-530))) ((-825 |#1|) . T) ((-850) |has| |#1| (-850)) ((-861) . T) ((-960) |has| |#1| (-960)) ((-975 (-388 (-530))) |has| |#1| (-975 (-530))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 (-1099)) |has| |#1| (-975 (-1099))) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-1075)) ((-1135) . T) ((-1139) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2889 (($ (-1066 |#1| |#2|)) 11)) (-2263 (((-1066 |#1| |#2|) $) 12)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1902 ((|#2| $ (-223 |#1| |#2|)) 16)) (-2366 (((-804) $) NIL)) (-3080 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL)))
-(((-933 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -2889 ($ (-1066 |#1| |#2|))) (-15 -2263 ((-1066 |#1| |#2|) $)) (-15 -1902 (|#2| $ (-223 |#1| |#2|))))) (-862) (-344)) (T -933))
-((-2889 (*1 *1 *2) (-12 (-5 *2 (-1066 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344)) (-5 *1 (-933 *3 *4)))) (-2263 (*1 *2 *1) (-12 (-5 *2 (-1066 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 (-223 *4 *2)) (-14 *4 (-862)) (-4 *2 (-344)) (-5 *1 (-933 *4 *2)))))
-(-13 (-21) (-10 -8 (-15 -2889 ($ (-1066 |#1| |#2|))) (-15 -2263 ((-1066 |#1| |#2|) $)) (-15 -1902 (|#2| $ (-223 |#1| |#2|)))))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-1907 (($ $) 46)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-4109 (((-719) $) 45)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3288 ((|#1| $) 44)) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3203 ((|#1| |#1| $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1540 ((|#1| $) 47)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-1371 ((|#1| $) 43)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-934 |#1|) (-133) (-1135)) (T -934))
-((-3203 (*1 *2 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-1540 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-1907 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-3288 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))) (-1371 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -3203 (|t#1| |t#1| $)) (-15 -1540 (|t#1| $)) (-15 -1907 ($ $)) (-15 -4109 ((-719) $)) (-15 -3288 (|t#1| $)) (-15 -1371 (|t#1| $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-1813 (((-110) $) 42)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#2| $) 43)) (-2180 (((-3 (-388 (-530)) "failed") $) 78)) (-3016 (((-110) $) 72)) (-3370 (((-388 (-530)) $) 76)) (-2731 (((-110) $) 41)) (-2376 ((|#2| $) 22)) (-3217 (($ (-1 |#2| |#2|) $) 19)) (-2483 (($ $) 61)) (-3289 (($ $) NIL) (($ $ (-719)) NIL) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3260 (((-506) $) 67)) (-2555 (($ $) 17)) (-2366 (((-804) $) 56) (($ (-530)) 38) (($ |#2|) 36) (($ (-388 (-530))) NIL)) (-3300 (((-719)) 10)) (-3934 ((|#2| $) 71)) (-2248 (((-110) $ $) 25)) (-2272 (((-110) $ $) 69)) (-2351 (($ $) 29) (($ $ $) 28)) (-2339 (($ $ $) 26)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL)))
-(((-935 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| (-388 (-530)))) (-15 -2272 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 -2483 (|#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3934 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2731 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-936 |#2|) (-162)) (T -935))
-((-3300 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-935 *3 *4)) (-4 *3 (-936 *4)))))
-(-10 -8 (-15 -2366 (|#1| (-388 (-530)))) (-15 -2272 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-530)) |#1|)) (-15 * (|#1| |#1| (-388 (-530)))) (-15 -2483 (|#1| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -3934 (|#2| |#1|)) (-15 -2376 (|#2| |#1|)) (-15 -2555 (|#1| |#1|)) (-15 -3217 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -2366 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2731 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 * (|#1| (-719) |#1|)) (-15 -1813 ((-110) |#1|)) (-15 * (|#1| (-862) |#1|)) (-15 -2339 (|#1| |#1| |#1|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-3139 (((-3 (-530) "failed") $) 116 (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 114 (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) 113)) (-2585 (((-530) $) 117 (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) 115 (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) 112)) (-2329 (((-637 (-530)) (-637 $)) 87 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 86 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 85) (((-637 |#1|) (-637 $)) 84)) (-2707 (((-3 $ "failed") $) 32)) (-2637 ((|#1| $) 77)) (-2180 (((-3 (-388 (-530)) "failed") $) 73 (|has| |#1| (-515)))) (-3016 (((-110) $) 75 (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) 74 (|has| |#1| (-515)))) (-2912 (($ |#1| |#1| |#1| |#1|) 78)) (-2731 (((-110) $) 30)) (-2376 ((|#1| $) 79)) (-2508 (($ $ $) 66 (|has| |#1| (-795)))) (-1817 (($ $ $) 65 (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) 88)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 70 (|has| |#1| (-344)))) (-2110 ((|#1| $) 80)) (-1702 ((|#1| $) 81)) (-3178 ((|#1| $) 82)) (-2624 (((-1046) $) 10)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 94 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 92 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) 91 (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) 90 (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) 89 (|has| |#1| (-491 (-1099) |#1|)))) (-1902 (($ $ |#1|) 95 (|has| |#1| (-268 |#1| |#1|)))) (-3289 (($ $) 111 (|has| |#1| (-216))) (($ $ (-719)) 109 (|has| |#1| (-216))) (($ $ (-1099)) 107 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 106 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 105 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 104 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-3260 (((-506) $) 71 (|has| |#1| (-572 (-506))))) (-2555 (($ $) 83)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 35) (($ (-388 (-530))) 60 (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (((-3 $ "failed") $) 72 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3934 ((|#1| $) 76 (|has| |#1| (-993)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $) 110 (|has| |#1| (-216))) (($ $ (-719)) 108 (|has| |#1| (-216))) (($ $ (-1099)) 103 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 102 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 101 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 100 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2306 (((-110) $ $) 63 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 62 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 64 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 61 (|has| |#1| (-795)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 69 (|has| |#1| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-388 (-530))) 68 (|has| |#1| (-344))) (($ (-388 (-530)) $) 67 (|has| |#1| (-344)))))
-(((-936 |#1|) (-133) (-162)) (T -936))
-((-2555 (*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-1702 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2110 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2376 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2912 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-2637 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))) (-3934 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)) (-4 *2 (-993)))) (-3016 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110)))) (-3370 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))) (-2180 (*1 *2 *1) (|partial| -12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-388 (-530))))))
-(-13 (-37 |t#1|) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-358 |t#1|) (-10 -8 (-15 -2555 ($ $)) (-15 -3178 (|t#1| $)) (-15 -1702 (|t#1| $)) (-15 -2110 (|t#1| $)) (-15 -2376 (|t#1| $)) (-15 -2912 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2637 (|t#1| $)) (IF (|has| |t#1| (-272)) (-6 (-272)) |%noBranch|) (IF (|has| |t#1| (-795)) (-6 (-795)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-226)) |%noBranch|) (IF (|has| |t#1| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-993)) (-15 -3934 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-515)) (PROGN (-15 -3016 ((-110) $)) (-15 -3370 ((-388 (-530)) $)) (-15 -2180 ((-3 (-388 (-530)) "failed") $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-344)) ((-37 |#1|) . T) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-344)) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) |has| |#1| (-344)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1461 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-491 (-1099) |#1|) |has| |#1| (-491 (-1099) |#1|)) ((-491 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-599 #0#) |has| |#1| (-344)) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-344)) ((-666 |#1|) . T) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-990 #0#) |has| |#1| (-344)) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3217 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
-(((-937 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|))) (-936 |#2|) (-162) (-936 |#4|) (-162)) (T -937))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-936 *6)) (-5 *1 (-937 *4 *5 *2 *6)) (-4 *4 (-936 *5)))))
-(-10 -7 (-15 -3217 (|#3| (-1 |#4| |#2|) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2637 ((|#1| $) 12)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-515)))) (-3016 (((-110) $) NIL (|has| |#1| (-515)))) (-3370 (((-388 (-530)) $) NIL (|has| |#1| (-515)))) (-2912 (($ |#1| |#1| |#1| |#1|) 16)) (-2731 (((-110) $) NIL)) (-2376 ((|#1| $) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-2110 ((|#1| $) 15)) (-1702 ((|#1| $) 14)) (-3178 ((|#1| $) 13)) (-2624 (((-1046) $) NIL)) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-491 (-1099) |#1|))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-491 (-1099) |#1|)))) (-1902 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3289 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2555 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3934 ((|#1| $) NIL (|has| |#1| (-993)))) (-3080 (($) 8 T CONST)) (-3093 (($) 10 T CONST)) (-3340 (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-344)))))
-(((-938 |#1|) (-936 |#1|) (-162)) (T -938))
-NIL
-(-936 |#1|)
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-1907 (($ $) 20)) (-1580 (($ (-597 |#1|)) 29)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-4109 (((-719) $) 22)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) 24)) (-2441 (($ |#1| $) 15)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3288 ((|#1| $) 23)) (-2738 ((|#1| $) 19)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3203 ((|#1| |#1| $) 14)) (-3250 (((-110) $) 17)) (-3958 (($) NIL)) (-1540 ((|#1| $) 18)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) NIL)) (-1371 ((|#1| $) 26)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-939 |#1|) (-13 (-934 |#1|) (-10 -8 (-15 -1580 ($ (-597 |#1|))))) (-1027)) (T -939))
-((-1580 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-939 *3)))))
-(-13 (-934 |#1|) (-10 -8 (-15 -1580 ($ (-597 |#1|)))))
-((-2625 (($ $) 12)) (-3741 (($ $ (-530)) 13)))
-(((-940 |#1|) (-10 -8 (-15 -2625 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-530)))) (-941)) (T -940))
-NIL
-(-10 -8 (-15 -2625 (|#1| |#1|)) (-15 -3741 (|#1| |#1| (-530))))
-((-2625 (($ $) 6)) (-3741 (($ $ (-530)) 7)) (** (($ $ (-388 (-530))) 8)))
-(((-941) (-133)) (T -941))
-((** (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-388 (-530))))) (-3741 (*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-530)))) (-2625 (*1 *1 *1) (-4 *1 (-941))))
-(-13 (-10 -8 (-15 -2625 ($ $)) (-15 -3741 ($ $ (-530))) (-15 ** ($ $ (-388 (-530))))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3508 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3446 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1276 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1863 (((-637 (-388 |#2|)) (-1181 $)) NIL) (((-637 (-388 |#2|))) NIL)) (-1367 (((-388 |#2|) $) NIL)) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| (-388 |#2|) (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3272 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1426 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3023 (((-719)) NIL (|has| (-388 |#2|) (-349)))) (-1240 (((-110)) NIL)) (-2757 (((-110) |#1|) 144) (((-110) |#2|) 149)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| (-388 |#2|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-388 |#2|) (-975 (-388 (-530))))) (((-388 |#2|) $) NIL)) (-1574 (($ (-1181 (-388 |#2|)) (-1181 $)) NIL) (($ (-1181 (-388 |#2|))) 70) (($ (-1181 |#2|) |#2|) NIL)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3590 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1984 (((-637 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-388 |#2|) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-388 |#2|))) (|:| |vec| (-1181 (-388 |#2|)))) (-637 $) (-1181 $)) NIL) (((-637 (-388 |#2|)) (-637 $)) NIL)) (-1728 (((-1181 $) (-1181 $)) NIL)) (-2134 (($ |#3|) 65) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-1789 (((-597 (-597 |#1|))) NIL (|has| |#1| (-349)))) (-3725 (((-110) |#1| |#1|) NIL)) (-2426 (((-862)) NIL)) (-1364 (($) NIL (|has| (-388 |#2|) (-349)))) (-4088 (((-110)) NIL)) (-1358 (((-110) |#1|) 56) (((-110) |#2|) 146)) (-3571 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| (-388 |#2|) (-344)))) (-1239 (($ $) NIL)) (-1677 (($) NIL (|has| (-388 |#2|) (-330)))) (-2798 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3948 (($ $ (-719)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-3295 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-2031 (((-862) $) NIL (|has| (-388 |#2|) (-330))) (((-781 (-862)) $) NIL (|has| (-388 |#2|) (-330)))) (-2731 (((-110) $) NIL)) (-2255 (((-719)) NIL)) (-1256 (((-1181 $) (-1181 $)) NIL)) (-2376 (((-388 |#2|) $) NIL)) (-4116 (((-597 (-893 |#1|)) (-1099)) NIL (|has| |#1| (-344)))) (-2972 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1359 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-1905 (((-862) $) NIL (|has| (-388 |#2|) (-349)))) (-2123 ((|#3| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1424 (((-1082) $) NIL)) (-2696 (((-637 (-388 |#2|))) 52)) (-3198 (((-637 (-388 |#2|))) 51)) (-2483 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2171 (($ (-1181 |#2|) |#2|) 71)) (-1412 (((-637 (-388 |#2|))) 50)) (-3075 (((-637 (-388 |#2|))) 49)) (-3839 (((-2 (|:| |num| (-637 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-2614 (((-2 (|:| |num| (-1181 |#2|)) (|:| |den| |#2|)) $) 77)) (-3361 (((-1181 $)) 46)) (-3696 (((-1181 $)) 45)) (-1747 (((-110) $) NIL)) (-3001 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3657 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1986 (($ (-862)) NIL (|has| (-388 |#2|) (-349)))) (-3429 (((-3 |#2| "failed")) 63)) (-2624 (((-1046) $) NIL)) (-2835 (((-719)) NIL)) (-1974 (($) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| (-388 |#2|) (-344)))) (-2204 (($ (-597 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| (-388 |#2|) (-330)))) (-2611 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2356 (((-719) $) NIL (|has| (-388 |#2|) (-344)))) (-1902 ((|#1| $ |#1| |#1|) NIL)) (-2174 (((-3 |#2| "failed")) 62)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3060 (((-388 |#2|) (-1181 $)) NIL) (((-388 |#2|)) 42)) (-1823 (((-719) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-719) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3289 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-1542 (((-637 (-388 |#2|)) (-1181 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-1781 ((|#3|) 53)) (-3406 (($) NIL (|has| (-388 |#2|) (-330)))) (-2328 (((-1181 (-388 |#2|)) $ (-1181 $)) NIL) (((-637 (-388 |#2|)) (-1181 $) (-1181 $)) NIL) (((-1181 (-388 |#2|)) $) 72) (((-637 (-388 |#2|)) (-1181 $)) NIL)) (-3260 (((-1181 (-388 |#2|)) $) NIL) (($ (-1181 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| (-388 |#2|) (-330)))) (-4123 (((-1181 $) (-1181 $)) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| (-388 |#2|) (-975 (-388 (-530)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-3251 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-1814 ((|#3| $) NIL)) (-3300 (((-719)) NIL)) (-2190 (((-110)) 60)) (-4054 (((-110) |#1|) 150) (((-110) |#2|) 151)) (-3220 (((-1181 $)) 121)) (-3944 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1831 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1684 (((-110)) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-719)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-841 (-1099))))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1461 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-530))) NIL (|has| (-388 |#2|) (-344)))))
-(((-942 |#1| |#2| |#3| |#4| |#5|) (-323 |#1| |#2| |#3|) (-1139) (-1157 |#1|) (-1157 (-388 |#2|)) (-388 |#2|) (-719)) (T -942))
+((-2974 (($ $ (-1023 $)) 7) (($ $ (-1102)) 6)))
+(((-902) (-133)) (T -902))
+((-2974 (*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-902)))) (-2974 (*1 *1 *1 *2) (-12 (-4 *1 (-902)) (-5 *2 (-1102)))))
+(-13 (-10 -8 (-15 -2974 ($ $ (-1102))) (-15 -2974 ($ $ (-1023 $)))))
+((-1806 (((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)) (-1102)) 25) (((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102))) 26) (((-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) (|:| |prim| (-1098 |#1|))) (-895 |#1|) (-1102) (-895 |#1|) (-1102)) 43)))
+(((-903 |#1|) (-10 -7 (-15 -1806 ((-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) (|:| |prim| (-1098 |#1|))) (-895 |#1|) (-1102) (-895 |#1|) (-1102))) (-15 -1806 ((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1806 ((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)) (-1102)))) (-13 (-344) (-140))) (T -903))
+((-1806 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-5 *5 (-1102)) (-4 *6 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 *6))) (|:| |prim| (-1098 *6)))) (-5 *1 (-903 *6)))) (-1806 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 *5))) (|:| |prim| (-1098 *5)))) (-5 *1 (-903 *5)))) (-1806 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-895 *5)) (-5 *4 (-1102)) (-4 *5 (-13 (-344) (-140))) (-5 *2 (-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) (|:| |prim| (-1098 *5)))) (-5 *1 (-903 *5)))))
+(-10 -7 (-15 -1806 ((-2 (|:| |coef1| (-531)) (|:| |coef2| (-531)) (|:| |prim| (-1098 |#1|))) (-895 |#1|) (-1102) (-895 |#1|) (-1102))) (-15 -1806 ((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)))) (-15 -1806 ((-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 |#1|))) (|:| |prim| (-1098 |#1|))) (-598 (-895 |#1|)) (-598 (-1102)) (-1102))))
+((-3307 (((-598 |#1|) |#1| |#1|) 42)) (-2534 (((-110) |#1|) 39)) (-3888 ((|#1| |#1|) 65)) (-2115 ((|#1| |#1|) 64)))
+(((-904 |#1|) (-10 -7 (-15 -2534 ((-110) |#1|)) (-15 -2115 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3307 ((-598 |#1|) |#1| |#1|))) (-516)) (T -904))
+((-3307 (*1 *2 *3 *3) (-12 (-5 *2 (-598 *3)) (-5 *1 (-904 *3)) (-4 *3 (-516)))) (-3888 (*1 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-516)))) (-2115 (*1 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-516)))) (-2534 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-516)))))
+(-10 -7 (-15 -2534 ((-110) |#1|)) (-15 -2115 (|#1| |#1|)) (-15 -3888 (|#1| |#1|)) (-15 -3307 ((-598 |#1|) |#1| |#1|)))
+((-4094 (((-1189) (-806)) 9)))
+(((-905) (-10 -7 (-15 -4094 ((-1189) (-806))))) (T -905))
+((-4094 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-905)))))
+(-10 -7 (-15 -4094 ((-1189) (-806))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 61 (|has| |#1| (-523)))) (-3258 (($ $) 62 (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 28)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) 24)) (-3622 (((-3 $ "failed") $) 35)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-2490 (($ $ |#1| |#2| $) 48)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) 16)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| |#2|) NIL)) (-3005 ((|#2| $) 19)) (-2736 (($ (-1 |#2| |#2|) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2462 (($ $) 23)) (-2475 ((|#1| $) 21)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 40)) (-2448 ((|#1| $) NIL)) (-1816 (($ $ |#2| |#1| $) 73 (-12 (|has| |#2| (-128)) (|has| |#1| (-523))))) (-3609 (((-3 $ "failed") $ $) 74 (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) 68 (|has| |#1| (-523)))) (-2012 ((|#2| $) 17)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) 39) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 34) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ |#2|) 31)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 15)) (-2911 (($ $ $ (-721)) 57 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 67 (|has| |#1| (-523)))) (-3035 (($) 22 T CONST)) (-3050 (($) 12 T CONST)) (-2148 (((-110) $ $) 66)) (-2263 (($ $ |#1|) 75 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) 54) (($ $ (-721)) 52)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 51) (($ $ |#1|) 50) (($ |#1| $) 49) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-906 |#1| |#2|) (-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| |#2| (-128)) (-15 -1816 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) (-986) (-742)) (T -906))
+((-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-906 *3 *2)) (-4 *2 (-128)) (-4 *3 (-523)) (-4 *3 (-986)) (-4 *2 (-742)))))
+(-13 (-307 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| |#2| (-128)) (-15 -1816 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))))) (-3818 (($ $ $) 63 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))) (-2128 (((-3 $ "failed") $ $) 50 (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))))) (-3006 (((-721)) 34 (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-1770 ((|#2| $) 21)) (-1654 ((|#1| $) 20)) (-4082 (($) NIL (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))) CONST)) (-3622 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))))) (-1381 (($) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-3481 (((-110) $) NIL (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))))) (-4103 (($ $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-1241 (($ $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-1244 (($ |#1| |#2|) 19)) (-2211 (((-864) $) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 37 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-1889 (($ (-864)) NIL (-12 (|has| |#1| (-349)) (|has| |#2| (-349))))) (-2529 (((-1049) $) NIL)) (-4164 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-3214 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2265 (((-806) $) 14)) (-3035 (($) 40 (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))) CONST)) (-3050 (($) 24 (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))) CONST)) (-2207 (((-110) $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-2184 (((-110) $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-2148 (((-110) $ $) 18)) (-2195 (((-110) $ $) NIL (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-2174 (((-110) $ $) 66 (-1435 (-12 (|has| |#1| (-743)) (|has| |#2| (-743))) (-12 (|has| |#1| (-797)) (|has| |#2| (-797)))))) (-2263 (($ $ $) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453))))) (-2250 (($ $ $) 56 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ $) 53 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))))) (-2237 (($ $ $) 43 (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743)))))) (** (($ $ (-531)) NIL (-12 (|has| |#1| (-453)) (|has| |#2| (-453)))) (($ $ (-721)) 31 (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677))))) (($ $ (-864)) NIL (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))))) (* (($ (-531) $) 60 (-12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (($ (-721) $) 46 (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))) (($ (-864) $) NIL (-1435 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-128)) (|has| |#2| (-128))) (-12 (|has| |#1| (-743)) (|has| |#2| (-743))))) (($ $ $) 27 (-1435 (-12 (|has| |#1| (-453)) (|has| |#2| (-453))) (-12 (|has| |#1| (-677)) (|has| |#2| (-677)))))))
+(((-907 |#1| |#2|) (-13 (-1030) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-677)) (IF (|has| |#2| (-677)) (-6 (-677)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-743)) (IF (|has| |#2| (-743)) (-6 (-743)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-797)) (IF (|has| |#2| (-797)) (-6 (-797)) |%noBranch|) |%noBranch|) (-15 -1244 ($ |#1| |#2|)) (-15 -1654 (|#1| $)) (-15 -1770 (|#2| $)))) (-1030) (-1030)) (T -907))
+((-1244 (*1 *1 *2 *3) (-12 (-5 *1 (-907 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-1654 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1030)))) (-1770 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-907 *3 *2)) (-4 *3 (-1030)))))
+(-13 (-1030) (-10 -8 (IF (|has| |#1| (-349)) (IF (|has| |#2| (-349)) (-6 (-349)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-677)) (IF (|has| |#2| (-677)) (-6 (-677)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-128)) (IF (|has| |#2| (-128)) (-6 (-128)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-453)) (IF (|has| |#2| (-453)) (-6 (-453)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-743)) (IF (|has| |#2| (-743)) (-6 (-743)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-797)) (IF (|has| |#2| (-797)) (-6 (-797)) |%noBranch|) |%noBranch|) (-15 -1244 ($ |#1| |#2|)) (-15 -1654 (|#1| $)) (-15 -1770 (|#2| $))))
+((-3482 (((-1034) $) 12)) (-1219 (($ (-1102) (-1034)) 13)) (-3955 (((-1102) $) 10)) (-2265 (((-806) $) 22)))
+(((-908) (-13 (-572 (-806)) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -3482 ((-1034) $)) (-15 -1219 ($ (-1102) (-1034)))))) (T -908))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-908)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-908)))) (-1219 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1034)) (-5 *1 (-908)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -3955 ((-1102) $)) (-15 -3482 ((-1034) $)) (-15 -1219 ($ (-1102) (-1034)))))
+((-2695 (((-1032 (-1102)) $) 19)) (-3257 (((-110) $) 26)) (-3524 (((-1102) $) 27)) (-3706 (((-110) $) 24)) (-2160 ((|#1| $) 25)) (-3914 (((-816 $ $) $) 34)) (-1456 (((-110) $) 33)) (-2726 (($ $ $) 12)) (-4045 (($ $) 29)) (-3077 (((-110) $) 28)) (-3745 (($ $) 10)) (-3843 (((-816 $ $) $) 36)) (-2409 (((-110) $) 35)) (-3051 (($ $ $) 13)) (-2749 (((-816 $ $) $) 38)) (-3274 (((-110) $) 37)) (-3076 (($ $ $) 14)) (-2265 (($ |#1|) 7) (($ (-1102)) 9) (((-806) $) 40 (|has| |#1| (-572 (-806))))) (-3744 (((-816 $ $) $) 32)) (-2958 (((-110) $) 30)) (-3427 (($ $ $) 11)))
+(((-909 |#1|) (-13 (-910) (-10 -8 (IF (|has| |#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (-15 -2265 ($ |#1|)) (-15 -2265 ($ (-1102))) (-15 -2695 ((-1032 (-1102)) $)) (-15 -3706 ((-110) $)) (-15 -2160 (|#1| $)) (-15 -3257 ((-110) $)) (-15 -3524 ((-1102) $)) (-15 -3077 ((-110) $)) (-15 -4045 ($ $)) (-15 -2958 ((-110) $)) (-15 -3744 ((-816 $ $) $)) (-15 -1456 ((-110) $)) (-15 -3914 ((-816 $ $) $)) (-15 -2409 ((-110) $)) (-15 -3843 ((-816 $ $) $)) (-15 -3274 ((-110) $)) (-15 -2749 ((-816 $ $) $)))) (-910)) (T -909))
+((-2265 (*1 *1 *2) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-2695 (*1 *2 *1) (-12 (-5 *2 (-1032 (-1102))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3706 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-2160 (*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))) (-3257 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-4045 (*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))) (-2958 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3744 (*1 *2 *1) (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-1456 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-2409 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3843 (*1 *2 *1) (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-3274 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))) (-2749 (*1 *2 *1) (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3)) (-4 *3 (-910)))))
+(-13 (-910) (-10 -8 (IF (|has| |#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (-15 -2265 ($ |#1|)) (-15 -2265 ($ (-1102))) (-15 -2695 ((-1032 (-1102)) $)) (-15 -3706 ((-110) $)) (-15 -2160 (|#1| $)) (-15 -3257 ((-110) $)) (-15 -3524 ((-1102) $)) (-15 -3077 ((-110) $)) (-15 -4045 ($ $)) (-15 -2958 ((-110) $)) (-15 -3744 ((-816 $ $) $)) (-15 -1456 ((-110) $)) (-15 -3914 ((-816 $ $) $)) (-15 -2409 ((-110) $)) (-15 -3843 ((-816 $ $) $)) (-15 -3274 ((-110) $)) (-15 -2749 ((-816 $ $) $))))
+((-2726 (($ $ $) 8)) (-3745 (($ $) 6)) (-3051 (($ $ $) 9)) (-3076 (($ $ $) 10)) (-3427 (($ $ $) 7)))
+(((-910) (-133)) (T -910))
+((-3076 (*1 *1 *1 *1) (-4 *1 (-910))) (-3051 (*1 *1 *1 *1) (-4 *1 (-910))) (-2726 (*1 *1 *1 *1) (-4 *1 (-910))) (-3427 (*1 *1 *1 *1) (-4 *1 (-910))) (-3745 (*1 *1 *1) (-4 *1 (-910))))
+(-13 (-10 -8 (-15 -3745 ($ $)) (-15 -3427 ($ $ $)) (-15 -2726 ($ $ $)) (-15 -3051 ($ $ $)) (-15 -3076 ($ $ $))))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-3611 (($ $ $) 43)) (-3508 (($ $ $) 44)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1241 ((|#1| $) 45)) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-911 |#1|) (-133) (-797)) (T -911))
+((-1241 (*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797)))) (-3611 (*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4273) (-15 -1241 (|t#1| $)) (-15 -3508 ($ $ $)) (-15 -3611 ($ $ $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-3857 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|) 85)) (-3720 ((|#2| |#2| |#2|) 83)) (-3216 (((-2 (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|) 87)) (-3856 (((-2 (|:| |coef1| |#2|) (|:| -2109 |#2|)) |#2| |#2|) 89)) (-3908 (((-2 (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|) 107 (|has| |#1| (-432)))) (-1506 (((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 46)) (-2666 (((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 64)) (-2196 (((-2 (|:| |coef1| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 66)) (-2436 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 78)) (-1997 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721)) 71)) (-1977 (((-2 (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|) 97)) (-2111 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721)) 74)) (-1552 (((-598 (-721)) |#2| |#2|) 82)) (-1931 ((|#1| |#2| |#2|) 42)) (-3597 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|) 105 (|has| |#1| (-432)))) (-2248 ((|#1| |#2| |#2|) 103 (|has| |#1| (-432)))) (-2893 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 44)) (-2644 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|) 63)) (-3115 ((|#1| |#2| |#2|) 61)) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|) 35)) (-3278 ((|#2| |#2| |#2| |#2| |#1|) 53)) (-3453 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 76)) (-2255 ((|#2| |#2| |#2|) 75)) (-1945 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721)) 69)) (-1754 ((|#2| |#2| |#2| (-721)) 67)) (-2109 ((|#2| |#2| |#2|) 111 (|has| |#1| (-432)))) (-3609 (((-1184 |#2|) (-1184 |#2|) |#1|) 21)) (-2100 (((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|) 39)) (-3222 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|) 95)) (-3176 ((|#1| |#2|) 92)) (-3896 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721)) 73)) (-3771 ((|#2| |#2| |#2| (-721)) 72)) (-1822 (((-598 |#2|) |#2| |#2|) 80)) (-4241 ((|#2| |#2| |#1| |#1| (-721)) 50)) (-3197 ((|#1| |#1| |#1| (-721)) 49)) (* (((-1184 |#2|) |#1| (-1184 |#2|)) 16)))
+(((-912 |#1| |#2|) (-10 -7 (-15 -3115 (|#1| |#2| |#2|)) (-15 -2644 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -2666 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -2196 ((-2 (|:| |coef1| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -1754 (|#2| |#2| |#2| (-721))) (-15 -1945 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -1997 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -3771 (|#2| |#2| |#2| (-721))) (-15 -3896 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -2111 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -2255 (|#2| |#2| |#2|)) (-15 -3453 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2436 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3720 (|#2| |#2| |#2|)) (-15 -3857 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3216 ((-2 (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3856 ((-2 (|:| |coef1| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3176 (|#1| |#2|)) (-15 -3222 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|)) (-15 -1977 ((-2 (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|)) (-15 -1822 ((-598 |#2|) |#2| |#2|)) (-15 -1552 ((-598 (-721)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -2248 (|#1| |#2| |#2|)) (-15 -3597 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|)) (-15 -3908 ((-2 (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|)) (-15 -2109 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1184 |#2|) |#1| (-1184 |#2|))) (-15 -3609 ((-1184 |#2|) (-1184 |#2|) |#1|)) (-15 -1647 ((-2 (|:| -2005 |#1|) (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|)) (-15 -2100 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|)) (-15 -3197 (|#1| |#1| |#1| (-721))) (-15 -4241 (|#2| |#2| |#1| |#1| (-721))) (-15 -3278 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1931 (|#1| |#2| |#2|)) (-15 -2893 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -1506 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|))) (-523) (-1160 |#1|)) (T -912))
+((-1506 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2893 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-1931 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))) (-3278 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-4241 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-3197 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *2 (-523)) (-5 *1 (-912 *2 *4)) (-4 *4 (-1160 *2)))) (-2100 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-1647 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2005 *4) (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3609 (*1 *2 *2 *3) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-523)) (-5 *1 (-912 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-523)) (-5 *1 (-912 *3 *4)))) (-2109 (*1 *2 *2 *2) (-12 (-4 *3 (-432)) (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-3908 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2248 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3597 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2248 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2248 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-4 *2 (-432)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))) (-1552 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 (-721))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-1822 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-1977 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3176 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3222 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3176 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3176 (*1 *2 *3) (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))) (-3856 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2109 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3216 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2109 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3857 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2109 *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3720 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-2436 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3453 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2255 (*1 *2 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))) (-2111 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))) (-3896 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))) (-3771 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-523)) (-5 *1 (-912 *4 *2)) (-4 *2 (-1160 *4)))) (-1997 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))) (-1945 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))) (-1754 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-523)) (-5 *1 (-912 *4 *2)) (-4 *2 (-1160 *4)))) (-2196 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2666 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-2644 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4))) (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))) (-3115 (*1 *2 *3 *3) (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))))
+(-10 -7 (-15 -3115 (|#1| |#2| |#2|)) (-15 -2644 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -2666 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -2196 ((-2 (|:| |coef1| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -1754 (|#2| |#2| |#2| (-721))) (-15 -1945 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -1997 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -3771 (|#2| |#2| |#2| (-721))) (-15 -3896 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -2111 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-721))) (-15 -2255 (|#2| |#2| |#2|)) (-15 -3453 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -2436 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3720 (|#2| |#2| |#2|)) (-15 -3857 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3216 ((-2 (|:| |coef2| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3856 ((-2 (|:| |coef1| |#2|) (|:| -2109 |#2|)) |#2| |#2|)) (-15 -3176 (|#1| |#2|)) (-15 -3222 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|)) (-15 -1977 ((-2 (|:| |coef2| |#2|) (|:| -3176 |#1|)) |#2|)) (-15 -1822 ((-598 |#2|) |#2| |#2|)) (-15 -1552 ((-598 (-721)) |#2| |#2|)) (IF (|has| |#1| (-432)) (PROGN (-15 -2248 (|#1| |#2| |#2|)) (-15 -3597 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|)) (-15 -3908 ((-2 (|:| |coef2| |#2|) (|:| -2248 |#1|)) |#2| |#2|)) (-15 -2109 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1184 |#2|) |#1| (-1184 |#2|))) (-15 -3609 ((-1184 |#2|) (-1184 |#2|) |#1|)) (-15 -1647 ((-2 (|:| -2005 |#1|) (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|)) (-15 -2100 ((-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) |#2| |#2|)) (-15 -3197 (|#1| |#1| |#1| (-721))) (-15 -4241 (|#2| |#2| |#1| |#1| (-721))) (-15 -3278 (|#2| |#2| |#2| |#2| |#1|)) (-15 -1931 (|#1| |#2| |#2|)) (-15 -2893 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)) (-15 -1506 ((-2 (|:| |coef2| |#2|) (|:| -3115 |#1|)) |#2| |#2|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) 27)) (-4082 (($) NIL T CONST)) (-3977 (((-598 (-598 (-531))) (-598 (-531))) 29)) (-4095 (((-531) $) 45)) (-2641 (($ (-598 (-531))) 17)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3318 (((-598 (-531)) $) 12)) (-4164 (($ $) 32)) (-2265 (((-806) $) 43) (((-598 (-531)) $) 10)) (-3035 (($) 7 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 19)) (-2237 (($ $ $) 21)) (* (($ (-864) $) NIL) (($ (-721) $) 25)))
+(((-913) (-13 (-745) (-573 (-598 (-531))) (-10 -8 (-15 -2641 ($ (-598 (-531)))) (-15 -3977 ((-598 (-598 (-531))) (-598 (-531)))) (-15 -4095 ((-531) $)) (-15 -4164 ($ $)) (-15 -2265 ((-598 (-531)) $))))) (T -913))
+((-2641 (*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-913)))) (-3977 (*1 *2 *3) (-12 (-5 *2 (-598 (-598 (-531)))) (-5 *1 (-913)) (-5 *3 (-598 (-531))))) (-4095 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-913)))) (-4164 (*1 *1 *1) (-5 *1 (-913))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-913)))))
+(-13 (-745) (-573 (-598 (-531))) (-10 -8 (-15 -2641 ($ (-598 (-531)))) (-15 -3977 ((-598 (-598 (-531))) (-598 (-531)))) (-15 -4095 ((-531) $)) (-15 -4164 ($ $)) (-15 -2265 ((-598 (-531)) $))))
+((-2263 (($ $ |#2|) 30)) (-2250 (($ $) 22) (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 15) (($ $ $) NIL) (($ $ |#2|) 20) (($ |#2| $) 19) (($ (-388 (-531)) $) 26) (($ $ (-388 (-531))) 28)))
+(((-914 |#1| |#2| |#3| |#4|) (-10 -8 (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2263 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|))) (-915 |#2| |#3| |#4|) (-986) (-742) (-797)) (T -914))
+NIL
+(-10 -8 (-15 * (|#1| |#1| (-388 (-531)))) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 -2263 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 * (|#1| (-864) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 |#3|) $) 72)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-3201 (((-110) $) 71)) (-3481 (((-110) $) 30)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| |#2|) 59) (($ $ |#3| |#2|) 74) (($ $ (-598 |#3|) (-598 |#2|)) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-2012 ((|#2| $) 62)) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45 (|has| |#1| (-162)))) (-3188 ((|#1| $ |#2|) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-915 |#1| |#2| |#3|) (-133) (-986) (-742) (-797)) (T -915))
+((-2475 (*1 *2 *1) (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *3 (-742)) (-4 *4 (-797)) (-4 *2 (-986)))) (-2462 (*1 *1 *1) (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *4 (-797)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-915 *3 *2 *4)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *2 (-742)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-915 *4 *3 *2)) (-4 *4 (-986)) (-4 *3 (-742)) (-4 *2 (-797)))) (-2669 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 *5)) (-4 *1 (-915 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-742)) (-4 *6 (-797)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-915 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-742)) (-4 *5 (-797)) (-5 *2 (-598 *5)))) (-3201 (*1 *2 *1) (-12 (-4 *1 (-915 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-742)) (-4 *5 (-797)) (-5 *2 (-110)))) (-3437 (*1 *1 *1) (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-742)) (-4 *4 (-797)))))
+(-13 (-46 |t#1| |t#2|) (-10 -8 (-15 -2669 ($ $ |t#3| |t#2|)) (-15 -2669 ($ $ (-598 |t#3|) (-598 |t#2|))) (-15 -2462 ($ $)) (-15 -2475 (|t#1| $)) (-15 -2012 (|t#2| $)) (-15 -2695 ((-598 |t#3|) $)) (-15 -3201 ((-110) $)) (-15 -3437 ($ $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2671 (((-1025 (-208)) $) 8)) (-2659 (((-1025 (-208)) $) 9)) (-2647 (((-1025 (-208)) $) 10)) (-2126 (((-598 (-598 (-886 (-208)))) $) 11)) (-2265 (((-806) $) 6)))
+(((-916) (-133)) (T -916))
+((-2126 (*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-598 (-598 (-886 (-208))))))) (-2647 (*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208))))) (-2659 (*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208))))) (-2671 (*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208))))))
+(-13 (-572 (-806)) (-10 -8 (-15 -2126 ((-598 (-598 (-886 (-208)))) $)) (-15 -2647 ((-1025 (-208)) $)) (-15 -2659 ((-1025 (-208)) $)) (-15 -2671 ((-1025 (-208)) $))))
+(((-572 (-806)) . T))
+((-2695 (((-598 |#4|) $) 23)) (-1625 (((-110) $) 48)) (-1983 (((-110) $) 47)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#4|) 36)) (-3145 (((-110) $) 49)) (-2405 (((-110) $ $) 55)) (-1657 (((-110) $ $) 58)) (-3178 (((-110) $) 53)) (-2339 (((-598 |#5|) (-598 |#5|) $) 90)) (-3360 (((-598 |#5|) (-598 |#5|) $) 87)) (-4124 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 81)) (-3951 (((-598 |#4|) $) 27)) (-4081 (((-110) |#4| $) 30)) (-3065 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 73)) (-3382 (($ $ |#4|) 33)) (-2021 (($ $ |#4|) 32)) (-3593 (($ $ |#4|) 34)) (-2148 (((-110) $ $) 40)))
+(((-917 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1983 ((-110) |#1|)) (-15 -2339 ((-598 |#5|) (-598 |#5|) |#1|)) (-15 -3360 ((-598 |#5|) (-598 |#5|) |#1|)) (-15 -4124 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3065 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3145 ((-110) |#1|)) (-15 -1657 ((-110) |#1| |#1|)) (-15 -2405 ((-110) |#1| |#1|)) (-15 -3178 ((-110) |#1|)) (-15 -1625 ((-110) |#1|)) (-15 -1332 ((-2 (|:| |under| |#1|) (|:| -2943 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3382 (|#1| |#1| |#4|)) (-15 -3593 (|#1| |#1| |#4|)) (-15 -2021 (|#1| |#1| |#4|)) (-15 -4081 ((-110) |#4| |#1|)) (-15 -3951 ((-598 |#4|) |#1|)) (-15 -2695 ((-598 |#4|) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-918 |#2| |#3| |#4| |#5|) (-986) (-743) (-797) (-1000 |#2| |#3| |#4|)) (T -917))
+NIL
+(-10 -8 (-15 -1983 ((-110) |#1|)) (-15 -2339 ((-598 |#5|) (-598 |#5|) |#1|)) (-15 -3360 ((-598 |#5|) (-598 |#5|) |#1|)) (-15 -4124 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3065 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3145 ((-110) |#1|)) (-15 -1657 ((-110) |#1| |#1|)) (-15 -2405 ((-110) |#1| |#1|)) (-15 -3178 ((-110) |#1|)) (-15 -1625 ((-110) |#1|)) (-15 -1332 ((-2 (|:| |under| |#1|) (|:| -2943 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3382 (|#1| |#1| |#4|)) (-15 -3593 (|#1| |#1| |#4|)) (-15 -2021 (|#1| |#1| |#4|)) (-15 -4081 ((-110) |#4| |#1|)) (-15 -3951 ((-598 |#4|) |#1|)) (-15 -2695 ((-598 |#4|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273)))) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273)))) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2529 (((-1049) $) 10)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273)))))
+(((-918 |#1| |#2| |#3| |#4|) (-133) (-986) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -918))
+((-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *1 (-918 *3 *4 *5 *6)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *1 (-918 *3 *4 *5 *6)))) (-4075 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-1000 *3 *4 *2)) (-4 *2 (-797)))) (-2695 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))) (-3951 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))) (-4081 (*1 *2 *3 *1) (-12 (-4 *1 (-918 *4 *5 *3 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-110)))) (-2021 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))) (-3593 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))) (-3382 (*1 *1 *1 *2) (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))) (-1332 (*1 *2 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -2943 *1) (|:| |upper| *1))) (-4 *1 (-918 *4 *5 *3 *6)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-3178 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-2405 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-1657 (*1 *2 *1 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-3145 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))) (-3065 (*1 *2 *3 *1) (-12 (-4 *1 (-918 *4 *5 *6 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-4124 (*1 *2 *3 *1) (-12 (-4 *1 (-918 *4 *5 *6 *3)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3360 (*1 *2 *2 *1) (-12 (-5 *2 (-598 *6)) (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)))) (-2339 (*1 *2 *2 *1) (-12 (-5 *2 (-598 *6)) (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)))) (-1983 (*1 *2 *1) (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-5 *2 (-110)))))
+(-13 (-1030) (-144 |t#4|) (-572 (-598 |t#4|)) (-10 -8 (-6 -4273) (-15 -3154 ((-3 $ "failed") (-598 |t#4|))) (-15 -2523 ($ (-598 |t#4|))) (-15 -4075 (|t#3| $)) (-15 -2695 ((-598 |t#3|) $)) (-15 -3951 ((-598 |t#3|) $)) (-15 -4081 ((-110) |t#3| $)) (-15 -2021 ($ $ |t#3|)) (-15 -3593 ($ $ |t#3|)) (-15 -3382 ($ $ |t#3|)) (-15 -1332 ((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |t#3|)) (-15 -1625 ((-110) $)) (IF (|has| |t#1| (-523)) (PROGN (-15 -3178 ((-110) $)) (-15 -2405 ((-110) $ $)) (-15 -1657 ((-110) $ $)) (-15 -3145 ((-110) $)) (-15 -3065 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -4124 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3360 ((-598 |t#4|) (-598 |t#4|) $)) (-15 -2339 ((-598 |t#4|) (-598 |t#4|) $)) (-15 -1983 ((-110) $))) |%noBranch|)))
+(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-1030) . T) ((-1138) . T))
+((-1453 (((-598 |#4|) |#4| |#4|) 118)) (-3244 (((-598 |#4|) (-598 |#4|) (-110)) 107 (|has| |#1| (-432))) (((-598 |#4|) (-598 |#4|)) 108 (|has| |#1| (-432)))) (-1416 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|)) 35)) (-3910 (((-110) |#4|) 34)) (-1748 (((-598 |#4|) |#4|) 103 (|has| |#1| (-432)))) (-1391 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-1 (-110) |#4|) (-598 |#4|)) 20)) (-3787 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|)) 22)) (-1254 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|)) 23)) (-2925 (((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|)) 73)) (-1305 (((-598 |#4|) (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 85)) (-1365 (((-598 |#4|) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 111)) (-2088 (((-598 |#4|) (-598 |#4|)) 110)) (-2599 (((-598 |#4|) (-598 |#4|) (-598 |#4|) (-110)) 48) (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 50)) (-2976 ((|#4| |#4| (-598 |#4|)) 49)) (-2540 (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 114 (|has| |#1| (-432)))) (-3385 (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 117 (|has| |#1| (-432)))) (-3320 (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 116 (|has| |#1| (-432)))) (-1826 (((-598 |#4|) (-598 |#4|) (-598 |#4|) (-1 (-598 |#4|) (-598 |#4|))) 87) (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 89) (((-598 |#4|) (-598 |#4|) |#4|) 121) (((-598 |#4|) |#4| |#4|) 119) (((-598 |#4|) (-598 |#4|)) 88)) (-3595 (((-598 |#4|) (-598 |#4|) (-598 |#4|)) 100 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3335 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|)) 41)) (-4097 (((-110) (-598 |#4|)) 62)) (-1714 (((-110) (-598 |#4|) (-598 (-598 |#4|))) 53)) (-1775 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|)) 29)) (-3283 (((-110) |#4|) 28)) (-4125 (((-598 |#4|) (-598 |#4|)) 98 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-4065 (((-598 |#4|) (-598 |#4|)) 99 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-3587 (((-598 |#4|) (-598 |#4|)) 66)) (-1735 (((-598 |#4|) (-598 |#4|)) 79)) (-2103 (((-110) (-598 |#4|) (-598 |#4|)) 51)) (-3661 (((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|)) 39)) (-4061 (((-110) |#4|) 36)))
+(((-919 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1826 ((-598 |#4|) (-598 |#4|))) (-15 -1826 ((-598 |#4|) |#4| |#4|)) (-15 -2088 ((-598 |#4|) (-598 |#4|))) (-15 -1453 ((-598 |#4|) |#4| |#4|)) (-15 -1826 ((-598 |#4|) (-598 |#4|) |#4|)) (-15 -1826 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -1826 ((-598 |#4|) (-598 |#4|) (-598 |#4|) (-1 (-598 |#4|) (-598 |#4|)))) (-15 -2103 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1714 ((-110) (-598 |#4|) (-598 (-598 |#4|)))) (-15 -4097 ((-110) (-598 |#4|))) (-15 -1391 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-1 (-110) |#4|) (-598 |#4|))) (-15 -3787 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|))) (-15 -1254 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|))) (-15 -3335 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -3910 ((-110) |#4|)) (-15 -1416 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -3283 ((-110) |#4|)) (-15 -1775 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -4061 ((-110) |#4|)) (-15 -3661 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -2599 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -2599 ((-598 |#4|) (-598 |#4|) (-598 |#4|) (-110))) (-15 -2976 (|#4| |#4| (-598 |#4|))) (-15 -3587 ((-598 |#4|) (-598 |#4|))) (-15 -2925 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|))) (-15 -1735 ((-598 |#4|) (-598 |#4|))) (-15 -1305 ((-598 |#4|) (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1365 ((-598 |#4|) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -1748 ((-598 |#4|) |#4|)) (-15 -3244 ((-598 |#4|) (-598 |#4|))) (-15 -3244 ((-598 |#4|) (-598 |#4|) (-110))) (-15 -2540 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -3320 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -3385 ((-598 |#4|) (-598 |#4|) (-598 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -4065 ((-598 |#4|) (-598 |#4|))) (-15 -4125 ((-598 |#4|) (-598 |#4|))) (-15 -3595 ((-598 |#4|) (-598 |#4|) (-598 |#4|)))) |%noBranch|) |%noBranch|)) (-523) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -919))
+((-3595 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-4125 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140)) (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3385 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3320 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-2540 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3244 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-110)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *7)))) (-3244 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-1748 (*1 *2 *3) (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-1365 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-919 *5 *6 *7 *8)))) (-1305 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-598 *9)) (-5 *3 (-1 (-110) *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743)) (-4 *8 (-797)) (-5 *1 (-919 *6 *7 *8 *9)))) (-1735 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-2925 (*1 *2 *3) (|partial| -12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1573 (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3587 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-2976 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *2)))) (-2599 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-598 *7)) (-5 *3 (-110)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *7)))) (-2599 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-3661 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-4061 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-1775 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3283 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-1416 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-3910 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-3335 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7)))) (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))) (-1254 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1 (-110) *8))) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))) (-3787 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1 (-110) *8))) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))) (-1391 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8)))) (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))) (-4097 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1714 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-598 *8))) (-5 *3 (-598 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *5 *6 *7 *8)))) (-2103 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1826 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-598 *7) (-598 *7))) (-5 *2 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *7)))) (-1826 (*1 *2 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-1826 (*1 *2 *2 *3) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *3)))) (-1453 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))) (-1826 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3)) (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))) (-1826 (*1 *2 *2) (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))))
+(-10 -7 (-15 -1826 ((-598 |#4|) (-598 |#4|))) (-15 -1826 ((-598 |#4|) |#4| |#4|)) (-15 -2088 ((-598 |#4|) (-598 |#4|))) (-15 -1453 ((-598 |#4|) |#4| |#4|)) (-15 -1826 ((-598 |#4|) (-598 |#4|) |#4|)) (-15 -1826 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -1826 ((-598 |#4|) (-598 |#4|) (-598 |#4|) (-1 (-598 |#4|) (-598 |#4|)))) (-15 -2103 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1714 ((-110) (-598 |#4|) (-598 (-598 |#4|)))) (-15 -4097 ((-110) (-598 |#4|))) (-15 -1391 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-1 (-110) |#4|) (-598 |#4|))) (-15 -3787 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|))) (-15 -1254 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 (-1 (-110) |#4|)) (-598 |#4|))) (-15 -3335 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -3910 ((-110) |#4|)) (-15 -1416 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -3283 ((-110) |#4|)) (-15 -1775 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -4061 ((-110) |#4|)) (-15 -3661 ((-2 (|:| |goodPols| (-598 |#4|)) (|:| |badPols| (-598 |#4|))) (-598 |#4|))) (-15 -2599 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -2599 ((-598 |#4|) (-598 |#4|) (-598 |#4|) (-110))) (-15 -2976 (|#4| |#4| (-598 |#4|))) (-15 -3587 ((-598 |#4|) (-598 |#4|))) (-15 -2925 ((-3 (-2 (|:| |bas| (-456 |#1| |#2| |#3| |#4|)) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|))) (-15 -1735 ((-598 |#4|) (-598 |#4|))) (-15 -1305 ((-598 |#4|) (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1365 ((-598 |#4|) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-432)) (PROGN (-15 -1748 ((-598 |#4|) |#4|)) (-15 -3244 ((-598 |#4|) (-598 |#4|))) (-15 -3244 ((-598 |#4|) (-598 |#4|) (-110))) (-15 -2540 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -3320 ((-598 |#4|) (-598 |#4|) (-598 |#4|))) (-15 -3385 ((-598 |#4|) (-598 |#4|) (-598 |#4|)))) |%noBranch|) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (PROGN (-15 -4065 ((-598 |#4|) (-598 |#4|))) (-15 -4125 ((-598 |#4|) (-598 |#4|))) (-15 -3595 ((-598 |#4|) (-598 |#4|) (-598 |#4|)))) |%noBranch|) |%noBranch|))
+((-2854 (((-2 (|:| R (-639 |#1|)) (|:| A (-639 |#1|)) (|:| |Ainv| (-639 |#1|))) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 19)) (-2359 (((-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|)) 36)) (-2772 (((-639 |#1|) (-639 |#1|) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|)) 16)))
+(((-920 |#1|) (-10 -7 (-15 -2854 ((-2 (|:| R (-639 |#1|)) (|:| A (-639 |#1|)) (|:| |Ainv| (-639 |#1|))) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2772 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2359 ((-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|)))) (-344)) (T -920))
+((-2359 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-598 (-2 (|:| C (-639 *5)) (|:| |g| (-1184 *5))))) (-5 *1 (-920 *5)) (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)))) (-2772 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-639 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344)) (-5 *1 (-920 *5)))) (-2854 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344)) (-5 *2 (-2 (|:| R (-639 *6)) (|:| A (-639 *6)) (|:| |Ainv| (-639 *6)))) (-5 *1 (-920 *6)) (-5 *3 (-639 *6)))))
+(-10 -7 (-15 -2854 ((-2 (|:| R (-639 |#1|)) (|:| A (-639 |#1|)) (|:| |Ainv| (-639 |#1|))) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2772 ((-639 |#1|) (-639 |#1|) (-639 |#1|) (-96 |#1|) (-1 |#1| |#1|))) (-15 -2359 ((-598 (-2 (|:| C (-639 |#1|)) (|:| |g| (-1184 |#1|)))) (-639 |#1|) (-1184 |#1|))))
+((-2956 (((-399 |#4|) |#4|) 48)))
+(((-921 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2956 ((-399 |#4|) |#4|))) (-797) (-743) (-432) (-892 |#3| |#2| |#1|)) (T -921))
+((-2956 (*1 *2 *3) (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-432)) (-5 *2 (-399 *3)) (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4)))))
+(-10 -7 (-15 -2956 ((-399 |#4|) |#4|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4222 (($ (-721)) 112 (|has| |#1| (-23)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-1976 (((-531) (-1 (-110) |#1|) $) 97) (((-531) |#1| $) 96 (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) 95 (|has| |#1| (-1030)))) (-4042 (($ (-598 |#1|)) 118)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) 105 (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1408 ((|#1| $) 102 (-12 (|has| |#1| (-986)) (|has| |#1| (-943))))) (-3332 (((-110) $ (-721)) 10)) (-2428 ((|#1| $) 103 (-12 (|has| |#1| (-986)) (|has| |#1| (-943))))) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-1846 (($ $ (-598 |#1|)) 115)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-3225 ((|#1| $ $) 106 (|has| |#1| (-986)))) (-2190 (((-864) $) 117)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2261 (($ $ $) 104)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507)))) (($ (-598 |#1|)) 116)) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 83 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 82 (|has| |#1| (-797)))) (-2250 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2237 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-531) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-677))) (($ $ |#1|) 107 (|has| |#1| (-677)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-922 |#1|) (-133) (-986)) (T -922))
+((-4042 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-922 *3)))) (-2190 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-986)) (-5 *2 (-864)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-922 *3)))) (-2261 (*1 *1 *1 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-986)))) (-1846 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *1 (-922 *3)) (-4 *3 (-986)))))
+(-13 (-1182 |t#1|) (-10 -8 (-15 -4042 ($ (-598 |t#1|))) (-15 -2190 ((-864) $)) (-15 -3318 ($ (-598 |t#1|))) (-15 -2261 ($ $ $)) (-15 -1846 ($ $ (-598 |t#1|)))))
+(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-19 |#1|) . T) ((-797) |has| |#1| (-797)) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1138) . T) ((-1182 |#1|) . T))
+((-3261 (((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)) 17)))
+(((-923 |#1| |#2|) (-10 -7 (-15 -3261 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|)))) (-986) (-986)) (T -923))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-886 *6)) (-5 *1 (-923 *5 *6)))))
+(-10 -7 (-15 -3261 ((-886 |#2|) (-1 |#2| |#1|) (-886 |#1|))))
+((-2786 ((|#1| (-886 |#1|)) 13)) (-2954 ((|#1| (-886 |#1|)) 12)) (-3153 ((|#1| (-886 |#1|)) 11)) (-3877 ((|#1| (-886 |#1|)) 15)) (-2059 ((|#1| (-886 |#1|)) 21)) (-2251 ((|#1| (-886 |#1|)) 14)) (-2307 ((|#1| (-886 |#1|)) 16)) (-2697 ((|#1| (-886 |#1|)) 20)) (-2677 ((|#1| (-886 |#1|)) 19)))
+(((-924 |#1|) (-10 -7 (-15 -3153 (|#1| (-886 |#1|))) (-15 -2954 (|#1| (-886 |#1|))) (-15 -2786 (|#1| (-886 |#1|))) (-15 -2251 (|#1| (-886 |#1|))) (-15 -3877 (|#1| (-886 |#1|))) (-15 -2307 (|#1| (-886 |#1|))) (-15 -2677 (|#1| (-886 |#1|))) (-15 -2697 (|#1| (-886 |#1|))) (-15 -2059 (|#1| (-886 |#1|)))) (-986)) (T -924))
+((-2059 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2697 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2677 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2307 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-3877 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2251 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2786 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-2954 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
+(-10 -7 (-15 -3153 (|#1| (-886 |#1|))) (-15 -2954 (|#1| (-886 |#1|))) (-15 -2786 (|#1| (-886 |#1|))) (-15 -2251 (|#1| (-886 |#1|))) (-15 -3877 (|#1| (-886 |#1|))) (-15 -2307 (|#1| (-886 |#1|))) (-15 -2677 (|#1| (-886 |#1|))) (-15 -2697 (|#1| (-886 |#1|))) (-15 -2059 (|#1| (-886 |#1|))))
+((-3511 (((-3 |#1| "failed") |#1|) 18)) (-1752 (((-3 |#1| "failed") |#1|) 6)) (-3712 (((-3 |#1| "failed") |#1|) 16)) (-1704 (((-3 |#1| "failed") |#1|) 4)) (-3605 (((-3 |#1| "failed") |#1|) 20)) (-3343 (((-3 |#1| "failed") |#1|) 8)) (-1631 (((-3 |#1| "failed") |#1| (-721)) 1)) (-2121 (((-3 |#1| "failed") |#1|) 3)) (-2340 (((-3 |#1| "failed") |#1|) 2)) (-4063 (((-3 |#1| "failed") |#1|) 21)) (-2504 (((-3 |#1| "failed") |#1|) 9)) (-4202 (((-3 |#1| "failed") |#1|) 19)) (-1227 (((-3 |#1| "failed") |#1|) 7)) (-4068 (((-3 |#1| "failed") |#1|) 17)) (-1492 (((-3 |#1| "failed") |#1|) 5)) (-2366 (((-3 |#1| "failed") |#1|) 24)) (-1742 (((-3 |#1| "failed") |#1|) 12)) (-1467 (((-3 |#1| "failed") |#1|) 22)) (-2679 (((-3 |#1| "failed") |#1|) 10)) (-3446 (((-3 |#1| "failed") |#1|) 26)) (-3965 (((-3 |#1| "failed") |#1|) 14)) (-1497 (((-3 |#1| "failed") |#1|) 27)) (-3531 (((-3 |#1| "failed") |#1|) 15)) (-4183 (((-3 |#1| "failed") |#1|) 25)) (-1823 (((-3 |#1| "failed") |#1|) 13)) (-2002 (((-3 |#1| "failed") |#1|) 23)) (-4154 (((-3 |#1| "failed") |#1|) 11)))
+(((-925 |#1|) (-133) (-1124)) (T -925))
+((-1497 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3446 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4183 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2366 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2002 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1467 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4063 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3605 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4202 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3511 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4068 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3712 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3531 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3965 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1823 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1742 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-4154 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2679 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2504 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-3343 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1227 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1752 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1492 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1704 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2121 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-2340 (*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))) (-1631 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-721)) (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(-13 (-10 -7 (-15 -1631 ((-3 |t#1| "failed") |t#1| (-721))) (-15 -2340 ((-3 |t#1| "failed") |t#1|)) (-15 -2121 ((-3 |t#1| "failed") |t#1|)) (-15 -1704 ((-3 |t#1| "failed") |t#1|)) (-15 -1492 ((-3 |t#1| "failed") |t#1|)) (-15 -1752 ((-3 |t#1| "failed") |t#1|)) (-15 -1227 ((-3 |t#1| "failed") |t#1|)) (-15 -3343 ((-3 |t#1| "failed") |t#1|)) (-15 -2504 ((-3 |t#1| "failed") |t#1|)) (-15 -2679 ((-3 |t#1| "failed") |t#1|)) (-15 -4154 ((-3 |t#1| "failed") |t#1|)) (-15 -1742 ((-3 |t#1| "failed") |t#1|)) (-15 -1823 ((-3 |t#1| "failed") |t#1|)) (-15 -3965 ((-3 |t#1| "failed") |t#1|)) (-15 -3531 ((-3 |t#1| "failed") |t#1|)) (-15 -3712 ((-3 |t#1| "failed") |t#1|)) (-15 -4068 ((-3 |t#1| "failed") |t#1|)) (-15 -3511 ((-3 |t#1| "failed") |t#1|)) (-15 -4202 ((-3 |t#1| "failed") |t#1|)) (-15 -3605 ((-3 |t#1| "failed") |t#1|)) (-15 -4063 ((-3 |t#1| "failed") |t#1|)) (-15 -1467 ((-3 |t#1| "failed") |t#1|)) (-15 -2002 ((-3 |t#1| "failed") |t#1|)) (-15 -2366 ((-3 |t#1| "failed") |t#1|)) (-15 -4183 ((-3 |t#1| "failed") |t#1|)) (-15 -3446 ((-3 |t#1| "failed") |t#1|)) (-15 -1497 ((-3 |t#1| "failed") |t#1|))))
+((-3199 ((|#4| |#4| (-598 |#3|)) 56) ((|#4| |#4| |#3|) 55)) (-1863 ((|#4| |#4| (-598 |#3|)) 23) ((|#4| |#4| |#3|) 19)) (-3261 ((|#4| (-1 |#4| (-895 |#1|)) |#4|) 30)))
+(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1863 (|#4| |#4| |#3|)) (-15 -1863 (|#4| |#4| (-598 |#3|))) (-15 -3199 (|#4| |#4| |#3|)) (-15 -3199 (|#4| |#4| (-598 |#3|))) (-15 -3261 (|#4| (-1 |#4| (-895 |#1|)) |#4|))) (-986) (-743) (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102))))) (-892 (-895 |#1|) |#2| |#3|)) (T -926))
+((-3261 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-895 *4))) (-4 *4 (-986)) (-4 *2 (-892 (-895 *4) *5 *6)) (-4 *5 (-743)) (-4 *6 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-5 *1 (-926 *4 *5 *6 *2)))) (-3199 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-4 *4 (-986)) (-4 *5 (-743)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *2 (-892 (-895 *4) *5 *6)))) (-3199 (*1 *2 *2 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-5 *1 (-926 *4 *5 *3 *2)) (-4 *2 (-892 (-895 *4) *5 *3)))) (-1863 (*1 *2 *2 *3) (-12 (-5 *3 (-598 *6)) (-4 *6 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-4 *4 (-986)) (-4 *5 (-743)) (-5 *1 (-926 *4 *5 *6 *2)) (-4 *2 (-892 (-895 *4) *5 *6)))) (-1863 (*1 *2 *2 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)) (-15 -3524 ((-3 $ "failed") (-1102)))))) (-5 *1 (-926 *4 *5 *3 *2)) (-4 *2 (-892 (-895 *4) *5 *3)))))
+(-10 -7 (-15 -1863 (|#4| |#4| |#3|)) (-15 -1863 (|#4| |#4| (-598 |#3|))) (-15 -3199 (|#4| |#4| |#3|)) (-15 -3199 (|#4| |#4| (-598 |#3|))) (-15 -3261 (|#4| (-1 |#4| (-895 |#1|)) |#4|)))
+((-4225 ((|#2| |#3|) 35)) (-2720 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|) 73)) (-2670 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) 89)))
+(((-927 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|)) (-15 -4225 (|#2| |#3|))) (-330) (-1160 |#1|) (-1160 |#2|) (-675 |#2| |#3|)) (T -927))
+((-4225 (*1 *2 *3) (-12 (-4 *3 (-1160 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-927 *4 *2 *3 *5)) (-4 *4 (-330)) (-4 *5 (-675 *2 *3)))) (-2720 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-927 *4 *3 *5 *6)) (-4 *6 (-675 *3 *5)))) (-2670 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -3523 (-639 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-639 *4)))) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-675 *4 *5)))))
+(-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|)) (-15 -4225 (|#2| |#3|)))
+((-4041 (((-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531)))) (-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531))))) 69)))
+(((-928 |#1| |#2|) (-10 -7 (-15 -4041 ((-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531)))) (-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531))))))) (-598 (-1102)) (-721)) (T -928))
+((-4041 (*1 *2 *2) (-12 (-5 *2 (-929 (-388 (-531)) (-808 *3) (-223 *4 (-721)) (-230 *3 (-388 (-531))))) (-14 *3 (-598 (-1102))) (-14 *4 (-721)) (-5 *1 (-928 *3 *4)))))
+(-10 -7 (-15 -4041 ((-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531)))) (-929 (-388 (-531)) (-808 |#1|) (-223 |#2| (-721)) (-230 |#1| (-388 (-531)))))))
+((-2247 (((-110) $ $) NIL)) (-2182 (((-3 (-110) "failed") $) 69)) (-4013 (($ $) 36 (-12 (|has| |#1| (-140)) (|has| |#1| (-289))))) (-4111 (($ $ (-3 (-110) "failed")) 70)) (-1517 (($ (-598 |#4|) |#4|) 25)) (-1521 (((-1085) $) NIL)) (-1495 (($ $) 67)) (-2529 (((-1049) $) NIL)) (-1589 (((-110) $) 68)) (-3781 (($) 30)) (-2457 ((|#4| $) 72)) (-2729 (((-598 |#4|) $) 71)) (-2265 (((-806) $) 66)) (-2148 (((-110) $ $) NIL)))
+(((-929 |#1| |#2| |#3| |#4|) (-13 (-1030) (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -1517 ($ (-598 |#4|) |#4|)) (-15 -2182 ((-3 (-110) "failed") $)) (-15 -4111 ($ $ (-3 (-110) "failed"))) (-15 -1589 ((-110) $)) (-15 -2729 ((-598 |#4|) $)) (-15 -2457 (|#4| $)) (-15 -1495 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -4013 ($ $)) |%noBranch|) |%noBranch|))) (-432) (-797) (-743) (-892 |#1| |#3| |#2|)) (T -929))
+((-3781 (*1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3)))) (-1517 (*1 *1 *2 *3) (-12 (-5 *2 (-598 *3)) (-4 *3 (-892 *4 *6 *5)) (-4 *4 (-432)) (-4 *5 (-797)) (-4 *6 (-743)) (-5 *1 (-929 *4 *5 *6 *3)))) (-2182 (*1 *2 *1) (|partial| -12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-110)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) (-4111 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) (-1589 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-110)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) (-2729 (*1 *2 *1) (-12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-598 *6)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))) (-2457 (*1 *2 *1) (-12 (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-929 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)))) (-1495 (*1 *1 *1) (-12 (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3)))) (-4013 (*1 *1 *1) (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3)))))
+(-13 (-1030) (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -1517 ($ (-598 |#4|) |#4|)) (-15 -2182 ((-3 (-110) "failed") $)) (-15 -4111 ($ $ (-3 (-110) "failed"))) (-15 -1589 ((-110) $)) (-15 -2729 ((-598 |#4|) $)) (-15 -2457 (|#4| $)) (-15 -1495 ($ $)) (IF (|has| |#1| (-289)) (IF (|has| |#1| (-140)) (-15 -4013 ($ $)) |%noBranch|) |%noBranch|)))
+((-1242 (((-110) |#5| |#5|) 38)) (-1724 (((-110) |#5| |#5|) 52)) (-2946 (((-110) |#5| (-598 |#5|)) 74) (((-110) |#5| |#5|) 61)) (-4249 (((-110) (-598 |#4|) (-598 |#4|)) 58)) (-3386 (((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) 63)) (-1837 (((-1189)) 33)) (-1564 (((-1189) (-1085) (-1085) (-1085)) 29)) (-1907 (((-598 |#5|) (-598 |#5|)) 81)) (-3783 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) 79)) (-1750 (((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110)) 101)) (-2094 (((-110) |#5| |#5|) 47)) (-2897 (((-3 (-110) "failed") |#5| |#5|) 71)) (-1396 (((-110) (-598 |#4|) (-598 |#4|)) 57)) (-2285 (((-110) (-598 |#4|) (-598 |#4|)) 59)) (-1744 (((-110) (-598 |#4|) (-598 |#4|)) 60)) (-1799 (((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)) 97)) (-3852 (((-598 |#5|) (-598 |#5|)) 43)))
+(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1564 ((-1189) (-1085) (-1085) (-1085))) (-15 -1837 ((-1189))) (-15 -1242 ((-110) |#5| |#5|)) (-15 -3852 ((-598 |#5|) (-598 |#5|))) (-15 -2094 ((-110) |#5| |#5|)) (-15 -1724 ((-110) |#5| |#5|)) (-15 -4249 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1396 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2285 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1744 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2897 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2946 ((-110) |#5| |#5|)) (-15 -2946 ((-110) |#5| (-598 |#5|))) (-15 -1907 ((-598 |#5|) (-598 |#5|))) (-15 -3386 ((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -3783 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-15 -1750 ((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -1799 ((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -930))
+((-1799 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| -2723 (-598 *9)) (|:| -2410 *4) (|:| |ineq| (-598 *9)))) (-5 *1 (-930 *6 *7 *8 *9 *4)) (-5 *3 (-598 *9)) (-4 *4 (-1005 *6 *7 *8 *9)))) (-1750 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-598 *10)) (-5 *5 (-110)) (-4 *10 (-1005 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) (-5 *2 (-598 (-2 (|:| -2723 (-598 *9)) (|:| -2410 *10) (|:| |ineq| (-598 *9))))) (-5 *1 (-930 *6 *7 *8 *9 *10)) (-5 *3 (-598 *9)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-598 (-2 (|:| |val| (-598 *6)) (|:| -2410 *7)))) (-4 *6 (-1000 *3 *4 *5)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-930 *3 *4 *5 *6 *7)))) (-3386 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-930 *3 *4 *5 *6 *7)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-930 *5 *6 *7 *8 *3)))) (-2946 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-2897 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-1744 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-2285 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-1396 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-4249 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-1724 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-2094 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-930 *3 *4 *5 *6 *7)))) (-1242 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-1837 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-930 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-1564 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1564 ((-1189) (-1085) (-1085) (-1085))) (-15 -1837 ((-1189))) (-15 -1242 ((-110) |#5| |#5|)) (-15 -3852 ((-598 |#5|) (-598 |#5|))) (-15 -2094 ((-110) |#5| |#5|)) (-15 -1724 ((-110) |#5| |#5|)) (-15 -4249 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1396 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2285 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1744 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2897 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2946 ((-110) |#5| |#5|)) (-15 -2946 ((-110) |#5| (-598 |#5|))) (-15 -1907 ((-598 |#5|) (-598 |#5|))) (-15 -3386 ((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -3783 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-15 -1750 ((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -1799 ((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110))))
+((-3524 (((-1102) $) 15)) (-3482 (((-1085) $) 16)) (-1623 (($ (-1102) (-1085)) 14)) (-2265 (((-806) $) 13)))
+(((-931) (-13 (-572 (-806)) (-10 -8 (-15 -1623 ($ (-1102) (-1085))) (-15 -3524 ((-1102) $)) (-15 -3482 ((-1085) $))))) (T -931))
+((-1623 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1085)) (-5 *1 (-931)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-931)))) (-3482 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-931)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -1623 ($ (-1102) (-1085))) (-15 -3524 ((-1102) $)) (-15 -3482 ((-1085) $))))
+((-3261 ((|#4| (-1 |#2| |#1|) |#3|) 14)))
+(((-932 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#2| |#1|) |#3|))) (-523) (-523) (-934 |#1|) (-934 |#2|)) (T -932))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-523)) (-4 *6 (-523)) (-4 *2 (-934 *6)) (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-934 *5)))))
+(-10 -7 (-15 -3261 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-1102) "failed") $) 65) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) 95)) (-2523 ((|#2| $) NIL) (((-1102) $) 60) (((-388 (-531)) $) NIL) (((-531) $) 92)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 112) (((-639 |#2|) (-639 $)) 28)) (-1381 (($) 98)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 75) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 84)) (-3027 (($ $) 10)) (-2342 (((-3 $ "failed") $) 20)) (-3261 (($ (-1 |#2| |#2|) $) 22)) (-3788 (($) 16)) (-2322 (($ $) 54)) (-3352 (($ $) NIL) (($ $ (-721)) NIL) (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 36)) (-2842 (($ $) 12)) (-3318 (((-835 (-531)) $) 70) (((-835 (-360)) $) 79) (((-507) $) 40) (((-360) $) 44) (((-208) $) 47)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 90) (($ |#2|) NIL) (($ (-1102)) 57)) (-2284 (((-721)) 31)) (-2174 (((-110) $ $) 50)))
+(((-933 |#1| |#2|) (-10 -8 (-15 -2174 ((-110) |#1| |#1|)) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2265 (|#1| (-1102))) (-15 -1381 (|#1|)) (-15 -2322 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -3027 (|#1| |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -2265 ((-806) |#1|))) (-934 |#2|) (-523)) (T -933))
+((-2284 (*1 *2) (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-933 *3 *4)) (-4 *3 (-934 *4)))))
+(-10 -8 (-15 -2174 ((-110) |#1| |#1|)) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2265 (|#1| (-1102))) (-15 -1381 (|#1|)) (-15 -2322 (|#1| |#1|)) (-15 -2842 (|#1| |#1|)) (-15 -3027 (|#1| |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -2792 ((-832 (-531) |#1|) |#1| (-835 (-531)) (-832 (-531) |#1|))) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3073 ((-639 |#2|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1317 ((|#1| $) 136 (|has| |#1| (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 127 (|has| |#1| (-852)))) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 130 (|has| |#1| (-852)))) (-2760 (((-110) $ $) 57)) (-3459 (((-531) $) 117 (|has| |#1| (-770)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 175) (((-3 (-1102) "failed") $) 125 (|has| |#1| (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) 109 (|has| |#1| (-977 (-531)))) (((-3 (-531) "failed") $) 107 (|has| |#1| (-977 (-531))))) (-2523 ((|#1| $) 174) (((-1102) $) 124 (|has| |#1| (-977 (-1102)))) (((-388 (-531)) $) 108 (|has| |#1| (-977 (-531)))) (((-531) $) 106 (|has| |#1| (-977 (-531))))) (-3650 (($ $ $) 53)) (-3073 (((-639 (-531)) (-639 $)) 149 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 148 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 147) (((-639 |#1|) (-639 $)) 146)) (-3622 (((-3 $ "failed") $) 32)) (-1381 (($) 134 (|has| |#1| (-516)))) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-1599 (((-110) $) 119 (|has| |#1| (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 143 (|has| |#1| (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 142 (|has| |#1| (-829 (-360))))) (-3481 (((-110) $) 30)) (-3027 (($ $) 138)) (-1840 ((|#1| $) 140)) (-2342 (((-3 $ "failed") $) 105 (|has| |#1| (-1078)))) (-2985 (((-110) $) 118 (|has| |#1| (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-4103 (($ $ $) 115 (|has| |#1| (-797)))) (-1241 (($ $ $) 114 (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) 166)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3788 (($) 104 (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2322 (($ $) 135 (|has| |#1| (-289)))) (-2943 ((|#1| $) 132 (|has| |#1| (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 129 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 128 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 172 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 171 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 170 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 169 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 168 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) 167 (|has| |#1| (-492 (-1102) |#1|)))) (-4100 (((-721) $) 56)) (-1785 (($ $ |#1|) 173 (|has| |#1| (-268 |#1| |#1|)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-3352 (($ $) 165 (|has| |#1| (-216))) (($ $ (-721)) 163 (|has| |#1| (-216))) (($ $ (-1102)) 161 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 160 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 159 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 158 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 151) (($ $ (-1 |#1| |#1|)) 150)) (-2842 (($ $) 137)) (-1853 ((|#1| $) 139)) (-3318 (((-835 (-531)) $) 145 (|has| |#1| (-573 (-835 (-531))))) (((-835 (-360)) $) 144 (|has| |#1| (-573 (-835 (-360))))) (((-507) $) 122 (|has| |#1| (-573 (-507)))) (((-360) $) 121 (|has| |#1| (-962))) (((-208) $) 120 (|has| |#1| (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 131 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ |#1|) 178) (($ (-1102)) 126 (|has| |#1| (-977 (-1102))))) (-2750 (((-3 $ "failed") $) 123 (-1435 (|has| |#1| (-138)) (-3427 (|has| $ (-138)) (|has| |#1| (-852)))))) (-2284 (((-721)) 28)) (-3831 ((|#1| $) 133 (|has| |#1| (-516)))) (-2587 (((-110) $ $) 37)) (-1620 (($ $) 116 (|has| |#1| (-770)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $) 164 (|has| |#1| (-216))) (($ $ (-721)) 162 (|has| |#1| (-216))) (($ $ (-1102)) 157 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 156 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 155 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 154 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 153) (($ $ (-1 |#1| |#1|)) 152)) (-2207 (((-110) $ $) 112 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 111 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 113 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 110 (|has| |#1| (-797)))) (-2263 (($ $ $) 62) (($ |#1| |#1|) 141)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64) (($ |#1| $) 177) (($ $ |#1|) 176)))
+(((-934 |#1|) (-133) (-523)) (T -934))
+((-2263 (*1 *1 *2 *2) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-1840 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-1853 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-3027 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-2842 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-289)))) (-2322 (*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-289)))) (-1381 (*1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-516)) (-4 *2 (-523)))) (-3831 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-516)))) (-2943 (*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-516)))))
+(-13 (-344) (-37 |t#1|) (-977 |t#1|) (-319 |t#1|) (-214 |t#1|) (-358 |t#1|) (-827 |t#1|) (-381 |t#1|) (-10 -8 (-15 -2263 ($ |t#1| |t#1|)) (-15 -1840 (|t#1| $)) (-15 -1853 (|t#1| $)) (-15 -3027 ($ $)) (-15 -2842 ($ $)) (IF (|has| |t#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |t#1| (-977 (-531))) (PROGN (-6 (-977 (-531))) (-6 (-977 (-388 (-531))))) |%noBranch|) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-770)) (-6 (-770)) |%noBranch|) (IF (|has| |t#1| (-962)) (-6 (-962)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-977 (-1102))) (-6 (-977 (-1102))) |%noBranch|) (IF (|has| |t#1| (-289)) (PROGN (-15 -1317 (|t#1| $)) (-15 -2322 ($ $))) |%noBranch|) (IF (|has| |t#1| (-516)) (PROGN (-15 -1381 ($)) (-15 -3831 (|t#1| $)) (-15 -2943 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-852)) (-6 (-852)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 |#1|) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-573 (-208)) |has| |#1| (-962)) ((-573 (-360)) |has| |#1| (-962)) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-573 (-835 (-360))) |has| |#1| (-573 (-835 (-360)))) ((-573 (-835 (-531))) |has| |#1| (-573 (-835 (-531)))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) . T) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) . T) ((-289) . T) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-344) . T) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-381 |#1|) . T) ((-432) . T) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-523) . T) ((-601 #0#) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-677) . T) ((-741) |has| |#1| (-770)) ((-742) |has| |#1| (-770)) ((-744) |has| |#1| (-770)) ((-745) |has| |#1| (-770)) ((-770) |has| |#1| (-770)) ((-795) |has| |#1| (-770)) ((-797) -1435 (|has| |#1| (-797)) (|has| |#1| (-770))) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-829 (-360)) |has| |#1| (-829 (-360))) ((-829 (-531)) |has| |#1| (-829 (-531))) ((-827 |#1|) . T) ((-852) |has| |#1| (-852)) ((-863) . T) ((-962) |has| |#1| (-962)) ((-977 (-388 (-531))) |has| |#1| (-977 (-531))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 (-1102)) |has| |#1| (-977 (-1102))) ((-977 |#1|) . T) ((-992 #0#) . T) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-1078)) ((-1138) . T) ((-1142) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1432 (($ (-1069 |#1| |#2|)) 11)) (-2200 (((-1069 |#1| |#2|) $) 12)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1785 ((|#2| $ (-223 |#1| |#2|)) 16)) (-2265 (((-806) $) NIL)) (-3035 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL)))
+(((-935 |#1| |#2|) (-13 (-21) (-10 -8 (-15 -1432 ($ (-1069 |#1| |#2|))) (-15 -2200 ((-1069 |#1| |#2|) $)) (-15 -1785 (|#2| $ (-223 |#1| |#2|))))) (-864) (-344)) (T -935))
+((-1432 (*1 *1 *2) (-12 (-5 *2 (-1069 *3 *4)) (-14 *3 (-864)) (-4 *4 (-344)) (-5 *1 (-935 *3 *4)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-1069 *3 *4)) (-5 *1 (-935 *3 *4)) (-14 *3 (-864)) (-4 *4 (-344)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 (-223 *4 *2)) (-14 *4 (-864)) (-4 *2 (-344)) (-5 *1 (-935 *4 *2)))))
+(-13 (-21) (-10 -8 (-15 -1432 ($ (-1069 |#1| |#2|))) (-15 -2200 ((-1069 |#1| |#2|) $)) (-15 -1785 (|#2| $ (-223 |#1| |#2|)))))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-2978 (($ $) 46)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2428 (((-721) $) 45)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2572 ((|#1| $) 44)) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-3969 ((|#1| |#1| $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-2329 ((|#1| $) 47)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-3052 ((|#1| $) 43)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-936 |#1|) (-133) (-1138)) (T -936))
+((-3969 (*1 *2 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))) (-2329 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))) (-2978 (*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) (-2572 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))) (-3052 (*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4273) (-15 -3969 (|t#1| |t#1| $)) (-15 -2329 (|t#1| $)) (-15 -2978 ($ $)) (-15 -2428 ((-721) $)) (-15 -2572 (|t#1| $)) (-15 -3052 (|t#1| $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-3019 (((-110) $) 42)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#2| "failed") $) 45)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#2| $) 43)) (-1609 (((-3 (-388 (-531)) "failed") $) 78)) (-3004 (((-110) $) 72)) (-2727 (((-388 (-531)) $) 76)) (-3481 (((-110) $) 41)) (-1899 ((|#2| $) 22)) (-3261 (($ (-1 |#2| |#2|) $) 19)) (-2422 (($ $) 61)) (-3352 (($ $) NIL) (($ $ (-721)) NIL) (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 34)) (-3318 (((-507) $) 67)) (-4164 (($ $) 17)) (-2265 (((-806) $) 56) (($ (-531)) 38) (($ |#2|) 36) (($ (-388 (-531))) NIL)) (-2284 (((-721)) 10)) (-1620 ((|#2| $) 71)) (-2148 (((-110) $ $) 25)) (-2174 (((-110) $ $) 69)) (-2250 (($ $) 29) (($ $ $) 28)) (-2237 (($ $ $) 26)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 33) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) 30) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL)))
+(((-937 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| (-388 (-531)))) (-15 -2174 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 * (|#1| |#1| (-388 (-531)))) (-15 -2422 (|#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1620 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -3481 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-938 |#2|) (-162)) (T -937))
+((-2284 (*1 *2) (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-937 *3 *4)) (-4 *3 (-938 *4)))))
+(-10 -8 (-15 -2265 (|#1| (-388 (-531)))) (-15 -2174 ((-110) |#1| |#1|)) (-15 * (|#1| (-388 (-531)) |#1|)) (-15 * (|#1| |#1| (-388 (-531)))) (-15 -2422 (|#1| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1620 (|#2| |#1|)) (-15 -1899 (|#2| |#1|)) (-15 -4164 (|#1| |#1|)) (-15 -3261 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -2265 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -3481 ((-110) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 * (|#1| (-721) |#1|)) (-15 -3019 ((-110) |#1|)) (-15 * (|#1| (-864) |#1|)) (-15 -2237 (|#1| |#1| |#1|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3154 (((-3 (-531) "failed") $) 116 (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 114 (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) 113)) (-2523 (((-531) $) 117 (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) 115 (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) 112)) (-3073 (((-639 (-531)) (-639 $)) 87 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 86 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 85) (((-639 |#1|) (-639 $)) 84)) (-3622 (((-3 $ "failed") $) 32)) (-2577 ((|#1| $) 77)) (-1609 (((-3 (-388 (-531)) "failed") $) 73 (|has| |#1| (-516)))) (-3004 (((-110) $) 75 (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) 74 (|has| |#1| (-516)))) (-1486 (($ |#1| |#1| |#1| |#1|) 78)) (-3481 (((-110) $) 30)) (-1899 ((|#1| $) 79)) (-4103 (($ $ $) 66 (|has| |#1| (-797)))) (-1241 (($ $ $) 65 (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) 88)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 70 (|has| |#1| (-344)))) (-1614 ((|#1| $) 80)) (-2600 ((|#1| $) 81)) (-2774 ((|#1| $) 82)) (-2529 (((-1049) $) 10)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 94 (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) 93 (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) 92 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) 91 (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) 90 (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) 89 (|has| |#1| (-492 (-1102) |#1|)))) (-1785 (($ $ |#1|) 95 (|has| |#1| (-268 |#1| |#1|)))) (-3352 (($ $) 111 (|has| |#1| (-216))) (($ $ (-721)) 109 (|has| |#1| (-216))) (($ $ (-1102)) 107 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 106 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 105 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 104 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 97) (($ $ (-1 |#1| |#1|)) 96)) (-3318 (((-507) $) 71 (|has| |#1| (-573 (-507))))) (-4164 (($ $) 83)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 35) (($ (-388 (-531))) 60 (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (((-3 $ "failed") $) 72 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-1620 ((|#1| $) 76 (|has| |#1| (-995)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $) 110 (|has| |#1| (-216))) (($ $ (-721)) 108 (|has| |#1| (-216))) (($ $ (-1102)) 103 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 102 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 101 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 100 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 99) (($ $ (-1 |#1| |#1|)) 98)) (-2207 (((-110) $ $) 63 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 62 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 64 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 61 (|has| |#1| (-797)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 69 (|has| |#1| (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 37) (($ |#1| $) 36) (($ $ (-388 (-531))) 68 (|has| |#1| (-344))) (($ (-388 (-531)) $) 67 (|has| |#1| (-344)))))
+(((-938 |#1|) (-133) (-162)) (T -938))
+((-4164 (*1 *1 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-2774 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-2600 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-1614 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-1899 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-1486 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-2577 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)) (-4 *2 (-995)))) (-3004 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110)))) (-2727 (*1 *2 *1) (-12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))) (-1609 (*1 *2 *1) (|partial| -12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-388 (-531))))))
+(-13 (-37 |t#1|) (-392 |t#1|) (-214 |t#1|) (-319 |t#1|) (-358 |t#1|) (-10 -8 (-15 -4164 ($ $)) (-15 -2774 (|t#1| $)) (-15 -2600 (|t#1| $)) (-15 -1614 (|t#1| $)) (-15 -1899 (|t#1| $)) (-15 -1486 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -2577 (|t#1| $)) (IF (|has| |t#1| (-272)) (-6 (-272)) |%noBranch|) (IF (|has| |t#1| (-797)) (-6 (-797)) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-226)) |%noBranch|) (IF (|has| |t#1| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-138)) |%noBranch|) (IF (|has| |t#1| (-995)) (-15 -1620 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-516)) (PROGN (-15 -3004 ((-110) $)) (-15 -2727 ((-388 (-531)) $)) (-15 -1609 ((-3 (-388 (-531)) "failed") $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-344)) ((-37 |#1|) . T) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-344)) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-214 |#1|) . T) ((-216) |has| |#1| (-216)) ((-226) |has| |#1| (-344)) ((-268 |#1| $) |has| |#1| (-268 |#1| |#1|)) ((-272) -1435 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-291 |#1|) |has| |#1| (-291 |#1|)) ((-319 |#1|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-492 (-1102) |#1|) |has| |#1| (-492 (-1102) |#1|)) ((-492 |#1| |#1|) |has| |#1| (-291 |#1|)) ((-601 #0#) |has| |#1| (-344)) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) |has| |#1| (-344)) ((-668 |#1|) . T) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-992 #0#) |has| |#1| (-344)) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-344)) (|has| |#1| (-272))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3261 ((|#3| (-1 |#4| |#2|) |#1|) 16)))
+(((-939 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|))) (-938 |#2|) (-162) (-938 |#4|) (-162)) (T -939))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162)) (-4 *2 (-938 *6)) (-5 *1 (-939 *4 *5 *2 *6)) (-4 *4 (-938 *5)))))
+(-10 -7 (-15 -3261 (|#3| (-1 |#4| |#2|) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2577 ((|#1| $) 12)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-516)))) (-3004 (((-110) $) NIL (|has| |#1| (-516)))) (-2727 (((-388 (-531)) $) NIL (|has| |#1| (-516)))) (-1486 (($ |#1| |#1| |#1| |#1|) 16)) (-3481 (((-110) $) NIL)) (-1899 ((|#1| $) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1614 ((|#1| $) 15)) (-2600 ((|#1| $) 14)) (-2774 ((|#1| $) 13)) (-2529 (((-1049) $) NIL)) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ |#1| |#1|) NIL (|has| |#1| (-291 |#1|))) (($ $ (-276 |#1|)) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-276 |#1|))) NIL (|has| |#1| (-291 |#1|))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-492 (-1102) |#1|))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-492 (-1102) |#1|)))) (-1785 (($ $ |#1|) NIL (|has| |#1| (-268 |#1| |#1|)))) (-3352 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-4164 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-1620 ((|#1| $) NIL (|has| |#1| (-995)))) (-3035 (($) 8 T CONST)) (-3050 (($) 10 T CONST)) (-4020 (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-344))) (($ (-388 (-531)) $) NIL (|has| |#1| (-344)))))
+(((-940 |#1|) (-938 |#1|) (-162)) (T -940))
+NIL
+(-938 |#1|)
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-2978 (($ $) 20)) (-1848 (($ (-598 |#1|)) 29)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2428 (((-721) $) 22)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) 24)) (-3944 (($ |#1| $) 15)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2572 ((|#1| $) 23)) (-4192 ((|#1| $) 19)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-3969 ((|#1| |#1| $) 14)) (-1589 (((-110) $) 17)) (-3781 (($) NIL)) (-2329 ((|#1| $) 18)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) NIL)) (-3052 ((|#1| $) 26)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-941 |#1|) (-13 (-936 |#1|) (-10 -8 (-15 -1848 ($ (-598 |#1|))))) (-1030)) (T -941))
+((-1848 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-941 *3)))))
+(-13 (-936 |#1|) (-10 -8 (-15 -1848 ($ (-598 |#1|)))))
+((-2563 (($ $) 12)) (-2249 (($ $ (-531)) 13)))
+(((-942 |#1|) (-10 -8 (-15 -2563 (|#1| |#1|)) (-15 -2249 (|#1| |#1| (-531)))) (-943)) (T -942))
+NIL
+(-10 -8 (-15 -2563 (|#1| |#1|)) (-15 -2249 (|#1| |#1| (-531))))
+((-2563 (($ $) 6)) (-2249 (($ $ (-531)) 7)) (** (($ $ (-388 (-531))) 8)))
+(((-943) (-133)) (T -943))
+((** (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-388 (-531))))) (-2249 (*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-531)))) (-2563 (*1 *1 *1) (-4 *1 (-943))))
+(-13 (-10 -8 (-15 -2563 ($ $)) (-15 -2249 ($ $ (-531))) (-15 ** ($ $ (-388 (-531))))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1461 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| (-388 |#2|) (-344)))) (-3258 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2921 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-1849 (((-639 (-388 |#2|)) (-1184 $)) NIL) (((-639 (-388 |#2|))) NIL)) (-1354 (((-388 |#2|) $) NIL)) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| (-388 |#2|) (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2956 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2760 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3006 (((-721)) NIL (|has| (-388 |#2|) (-349)))) (-1860 (((-110)) NIL)) (-1730 (((-110) |#1|) 144) (((-110) |#2|) 149)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| (-388 |#2|) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-3 (-388 |#2|) "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| (-388 |#2|) (-977 (-531)))) (((-388 (-531)) $) NIL (|has| (-388 |#2|) (-977 (-388 (-531))))) (((-388 |#2|) $) NIL)) (-2767 (($ (-1184 (-388 |#2|)) (-1184 $)) NIL) (($ (-1184 (-388 |#2|))) 70) (($ (-1184 |#2|) |#2|) NIL)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-388 |#2|) (-330)))) (-3650 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1982 (((-639 (-388 |#2|)) $ (-1184 $)) NIL) (((-639 (-388 |#2|)) $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-388 |#2|) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-388 |#2|))) (|:| |vec| (-1184 (-388 |#2|)))) (-639 $) (-1184 $)) NIL) (((-639 (-388 |#2|)) (-639 $)) NIL)) (-2492 (((-1184 $) (-1184 $)) NIL)) (-1760 (($ |#3|) 65) (((-3 $ "failed") (-388 |#3|)) NIL (|has| (-388 |#2|) (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-2709 (((-598 (-598 |#1|))) NIL (|has| |#1| (-349)))) (-3428 (((-110) |#1| |#1|) NIL)) (-2277 (((-864)) NIL)) (-1381 (($) NIL (|has| (-388 |#2|) (-349)))) (-2903 (((-110)) NIL)) (-2809 (((-110) |#1|) 56) (((-110) |#2|) 146)) (-3630 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| (-388 |#2|) (-344)))) (-2226 (($ $) NIL)) (-1806 (($) NIL (|has| (-388 |#2|) (-330)))) (-1971 (((-110) $) NIL (|has| (-388 |#2|) (-330)))) (-3493 (($ $ (-721)) NIL (|has| (-388 |#2|) (-330))) (($ $) NIL (|has| (-388 |#2|) (-330)))) (-2534 (((-110) $) NIL (|has| (-388 |#2|) (-344)))) (-3617 (((-864) $) NIL (|has| (-388 |#2|) (-330))) (((-783 (-864)) $) NIL (|has| (-388 |#2|) (-330)))) (-3481 (((-110) $) NIL)) (-2262 (((-721)) NIL)) (-1272 (((-1184 $) (-1184 $)) NIL)) (-1899 (((-388 |#2|) $) NIL)) (-4083 (((-598 (-895 |#1|)) (-1102)) NIL (|has| |#1| (-344)))) (-2342 (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-388 |#2|) (-344)))) (-1233 ((|#3| $) NIL (|has| (-388 |#2|) (-344)))) (-2211 (((-864) $) NIL (|has| (-388 |#2|) (-349)))) (-1749 ((|#3| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-1521 (((-1085) $) NIL)) (-1789 (((-639 (-388 |#2|))) 52)) (-1953 (((-639 (-388 |#2|))) 51)) (-2422 (($ $) NIL (|has| (-388 |#2|) (-344)))) (-1729 (($ (-1184 |#2|) |#2|) 71)) (-3519 (((-639 (-388 |#2|))) 50)) (-3970 (((-639 (-388 |#2|))) 49)) (-3594 (((-2 (|:| |num| (-639 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 86)) (-3883 (((-2 (|:| |num| (-1184 |#2|)) (|:| |den| |#2|)) $) 77)) (-2505 (((-1184 $)) 46)) (-2670 (((-1184 $)) 45)) (-3824 (((-110) $) NIL)) (-3570 (((-110) $) NIL) (((-110) $ |#1|) NIL) (((-110) $ |#2|) NIL)) (-3788 (($) NIL (|has| (-388 |#2|) (-330)) CONST)) (-1889 (($ (-864)) NIL (|has| (-388 |#2|) (-349)))) (-3667 (((-3 |#2| "failed")) 63)) (-2529 (((-1049) $) NIL)) (-2509 (((-721)) NIL)) (-1861 (($) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| (-388 |#2|) (-344)))) (-2109 (($ (-598 $)) NIL (|has| (-388 |#2|) (-344))) (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| (-388 |#2|) (-330)))) (-2552 (((-399 $) $) NIL (|has| (-388 |#2|) (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| (-388 |#2|) (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| (-388 |#2|) (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| (-388 |#2|) (-344)))) (-4100 (((-721) $) NIL (|has| (-388 |#2|) (-344)))) (-1785 ((|#1| $ |#1| |#1|) NIL)) (-3751 (((-3 |#2| "failed")) 62)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| (-388 |#2|) (-344)))) (-3176 (((-388 |#2|) (-1184 $)) NIL) (((-388 |#2|)) 42)) (-2350 (((-721) $) NIL (|has| (-388 |#2|) (-330))) (((-3 (-721) "failed") $ $) NIL (|has| (-388 |#2|) (-330)))) (-3352 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-3381 (((-639 (-388 |#2|)) (-1184 $) (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344)))) (-3608 ((|#3|) 53)) (-2498 (($) NIL (|has| (-388 |#2|) (-330)))) (-3348 (((-1184 (-388 |#2|)) $ (-1184 $)) NIL) (((-639 (-388 |#2|)) (-1184 $) (-1184 $)) NIL) (((-1184 (-388 |#2|)) $) 72) (((-639 (-388 |#2|)) (-1184 $)) NIL)) (-3318 (((-1184 (-388 |#2|)) $) NIL) (($ (-1184 (-388 |#2|))) NIL) ((|#3| $) NIL) (($ |#3|) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| (-388 |#2|) (-330)))) (-3568 (((-1184 $) (-1184 $)) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 |#2|)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| (-388 |#2|) (-977 (-388 (-531)))) (|has| (-388 |#2|) (-344)))) (($ $) NIL (|has| (-388 |#2|) (-344)))) (-2750 (($ $) NIL (|has| (-388 |#2|) (-330))) (((-3 $ "failed") $) NIL (|has| (-388 |#2|) (-138)))) (-3369 ((|#3| $) NIL)) (-2284 (((-721)) NIL)) (-1966 (((-110)) 60)) (-2935 (((-110) |#1|) 150) (((-110) |#2|) 151)) (-3523 (((-1184 $)) 121)) (-2587 (((-110) $ $) NIL (|has| (-388 |#2|) (-344)))) (-1689 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL)) (-1855 (((-110)) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1 (-388 |#2|) (-388 |#2|)) (-721)) NIL (|has| (-388 |#2|) (-344))) (($ $ (-1 (-388 |#2|) (-388 |#2|))) NIL (|has| (-388 |#2|) (-344))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| (-388 |#2|) (-344)) (|has| (-388 |#2|) (-843 (-1102))))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330)))) (($ $) NIL (-1435 (-12 (|has| (-388 |#2|) (-216)) (|has| (-388 |#2|) (-344))) (|has| (-388 |#2|) (-330))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ $) NIL (|has| (-388 |#2|) (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| (-388 |#2|) (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 |#2|)) NIL) (($ (-388 |#2|) $) NIL) (($ (-388 (-531)) $) NIL (|has| (-388 |#2|) (-344))) (($ $ (-388 (-531))) NIL (|has| (-388 |#2|) (-344)))))
+(((-944 |#1| |#2| |#3| |#4| |#5|) (-323 |#1| |#2| |#3|) (-1142) (-1160 |#1|) (-1160 (-388 |#2|)) (-388 |#2|) (-721)) (T -944))
NIL
(-323 |#1| |#2| |#3|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1554 (((-597 (-530)) $) 54)) (-2780 (($ (-597 (-530))) 62)) (-1612 (((-530) $) 40 (|has| (-530) (-289)))) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL (|has| (-530) (-768)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) 49) (((-3 (-1099) "failed") $) NIL (|has| (-530) (-975 (-1099)))) (((-3 (-388 (-530)) "failed") $) 47 (|has| (-530) (-975 (-530)))) (((-3 (-530) "failed") $) 49 (|has| (-530) (-975 (-530))))) (-2585 (((-530) $) NIL) (((-1099) $) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) NIL (|has| (-530) (-975 (-530)))) (((-530) $) NIL (|has| (-530) (-975 (-530))))) (-3590 (($ $ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| (-530) (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1364 (($) NIL (|has| (-530) (-515)))) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3914 (((-597 (-530)) $) 60)) (-2514 (((-110) $) NIL (|has| (-530) (-768)))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (|has| (-530) (-827 (-530)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (|has| (-530) (-827 (-360))))) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL)) (-1918 (((-530) $) 37)) (-2972 (((-3 $ "failed") $) NIL (|has| (-530) (-1075)))) (-2166 (((-110) $) NIL (|has| (-530) (-768)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-530) (-795)))) (-3217 (($ (-1 (-530) (-530)) $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL)) (-3657 (($) NIL (|has| (-530) (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1979 (($ $) NIL (|has| (-530) (-289))) (((-388 (-530)) $) 42)) (-2663 (((-1080 (-530)) $) 59)) (-2570 (($ (-597 (-530)) (-597 (-530))) 63)) (-3175 (((-530) $) 53 (|has| (-530) (-515)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| (-530) (-850)))) (-2611 (((-399 $) $) NIL)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-4098 (($ $ (-597 (-530)) (-597 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-530) (-530)) NIL (|has| (-530) (-291 (-530)))) (($ $ (-276 (-530))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-276 (-530)))) NIL (|has| (-530) (-291 (-530)))) (($ $ (-597 (-1099)) (-597 (-530))) NIL (|has| (-530) (-491 (-1099) (-530)))) (($ $ (-1099) (-530)) NIL (|has| (-530) (-491 (-1099) (-530))))) (-2356 (((-719) $) NIL)) (-1902 (($ $ (-530)) NIL (|has| (-530) (-268 (-530) (-530))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $) 11 (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-1269 (($ $) NIL)) (-1928 (((-530) $) 39)) (-4210 (((-597 (-530)) $) 61)) (-3260 (((-833 (-530)) $) NIL (|has| (-530) (-572 (-833 (-530))))) (((-833 (-360)) $) NIL (|has| (-530) (-572 (-833 (-360))))) (((-506) $) NIL (|has| (-530) (-572 (-506)))) (((-360) $) NIL (|has| (-530) (-960))) (((-208) $) NIL (|has| (-530) (-960)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-530) (-850))))) (-2366 (((-804) $) 77) (($ (-530)) 43) (($ $) NIL) (($ (-388 (-530))) 20) (($ (-530)) 43) (($ (-1099)) NIL (|has| (-530) (-975 (-1099)))) (((-388 (-530)) $) 18)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-530) (-850))) (|has| (-530) (-138))))) (-3300 (((-719)) 9)) (-2748 (((-530) $) 51 (|has| (-530) (-515)))) (-3944 (((-110) $ $) NIL)) (-3934 (($ $) NIL (|has| (-530) (-768)))) (-3080 (($) 10 T CONST)) (-3093 (($) 12 T CONST)) (-3340 (($ $) NIL (|has| (-530) (-216))) (($ $ (-719)) NIL (|has| (-530) (-216))) (($ $ (-1099)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| (-530) (-841 (-1099)))) (($ $ (-1 (-530) (-530)) (-719)) NIL) (($ $ (-1 (-530) (-530))) NIL)) (-2306 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2248 (((-110) $ $) 14)) (-2297 (((-110) $ $) NIL (|has| (-530) (-795)))) (-2272 (((-110) $ $) 33 (|has| (-530) (-795)))) (-2364 (($ $ $) 29) (($ (-530) (-530)) 31)) (-2351 (($ $) 15) (($ $ $) 23)) (-2339 (($ $ $) 21)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 25) (($ $ $) 27) (($ $ (-388 (-530))) NIL) (($ (-388 (-530)) $) NIL) (($ (-530) $) 25) (($ $ (-530)) NIL)))
-(((-943 |#1|) (-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1554 ((-597 (-530)) $)) (-15 -2663 ((-1080 (-530)) $)) (-15 -3914 ((-597 (-530)) $)) (-15 -4210 ((-597 (-530)) $)) (-15 -2780 ($ (-597 (-530)))) (-15 -2570 ($ (-597 (-530)) (-597 (-530)))))) (-530)) (T -943))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1979 (*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-1554 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-2663 (*1 *2 *1) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-3914 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-4210 (*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-2780 (*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))) (-2570 (*1 *1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(-13 (-932 (-530)) (-10 -8 (-15 -2366 ((-388 (-530)) $)) (-15 -1979 ((-388 (-530)) $)) (-15 -1554 ((-597 (-530)) $)) (-15 -2663 ((-1080 (-530)) $)) (-15 -3914 ((-597 (-530)) $)) (-15 -4210 ((-597 (-530)) $)) (-15 -2780 ($ (-597 (-530)))) (-15 -2570 ($ (-597 (-530)) (-597 (-530))))))
-((-4060 (((-51) (-388 (-530)) (-530)) 9)))
-(((-944) (-10 -7 (-15 -4060 ((-51) (-388 (-530)) (-530))))) (T -944))
-((-4060 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-530))) (-5 *4 (-530)) (-5 *2 (-51)) (-5 *1 (-944)))))
-(-10 -7 (-15 -4060 ((-51) (-388 (-530)) (-530))))
-((-3023 (((-530)) 13)) (-3693 (((-530)) 16)) (-2247 (((-1186) (-530)) 15)) (-2599 (((-530) (-530)) 17) (((-530)) 12)))
-(((-945) (-10 -7 (-15 -2599 ((-530))) (-15 -3023 ((-530))) (-15 -2599 ((-530) (-530))) (-15 -2247 ((-1186) (-530))) (-15 -3693 ((-530))))) (T -945))
-((-3693 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-2247 (*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-945)))) (-2599 (*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-3023 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))) (-2599 (*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
-(-10 -7 (-15 -2599 ((-530))) (-15 -3023 ((-530))) (-15 -2599 ((-530) (-530))) (-15 -2247 ((-1186) (-530))) (-15 -3693 ((-530))))
-((-1550 (((-399 |#1|) |#1|) 41)) (-2611 (((-399 |#1|) |#1|) 40)))
-(((-946 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1|))) (-1157 (-388 (-530)))) (T -946))
-((-1550 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1157 (-388 (-530)))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3)) (-4 *3 (-1157 (-388 (-530)))))))
-(-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1|)))
-((-2180 (((-3 (-388 (-530)) "failed") |#1|) 15)) (-3016 (((-110) |#1|) 14)) (-3370 (((-388 (-530)) |#1|) 10)))
-(((-947 |#1|) (-10 -7 (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|))) (-975 (-388 (-530)))) (T -947))
-((-2180 (*1 *2 *3) (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))) (-3016 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-947 *3)) (-4 *3 (-975 (-388 (-530)))))) (-3370 (*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
-(-10 -7 (-15 -3370 ((-388 (-530)) |#1|)) (-15 -3016 ((-110) |#1|)) (-15 -2180 ((-3 (-388 (-530)) "failed") |#1|)))
-((-2552 ((|#2| $ "value" |#2|) 12)) (-1902 ((|#2| $ "value") 10)) (-4153 (((-110) $ $) 18)))
-(((-948 |#1| |#2|) (-10 -8 (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -4153 ((-110) |#1| |#1|)) (-15 -1902 (|#2| |#1| "value"))) (-949 |#2|) (-1135)) (T -948))
-NIL
-(-10 -8 (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -4153 ((-110) |#1| |#1|)) (-15 -1902 (|#2| |#1| "value")))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) 7 T CONST)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-949 |#1|) (-133) (-1135)) (T -949))
-((-2557 (*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))) (-2011 (*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3417 (*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-3390 (*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))) (-2539 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))) (-4153 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-1646 (*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-4091 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *1)) (|has| *1 (-6 -4270)) (-4 *1 (-949 *3)) (-4 *3 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))) (-1615 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))))
-(-13 (-468 |t#1|) (-10 -8 (-15 -2557 ((-597 $) $)) (-15 -2011 ((-597 $) $)) (-15 -3615 ((-110) $)) (-15 -3417 (|t#1| $)) (-15 -1902 (|t#1| $ "value")) (-15 -4246 ((-110) $)) (-15 -3390 ((-597 |t#1|) $)) (-15 -2539 ((-530) $ $)) (IF (|has| |t#1| (-1027)) (PROGN (-15 -4153 ((-110) $ $)) (-15 -1646 ((-110) $ $))) |%noBranch|) (IF (|has| $ (-6 -4270)) (PROGN (-15 -4091 ($ $ (-597 $))) (-15 -2552 (|t#1| $ "value" |t#1|)) (-15 -1615 (|t#1| $ |t#1|))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-2625 (($ $) 9) (($ $ (-862)) 43) (($ (-388 (-530))) 13) (($ (-530)) 15)) (-1326 (((-3 $ "failed") (-1095 $) (-862) (-804)) 23) (((-3 $ "failed") (-1095 $) (-862)) 28)) (-3741 (($ $ (-530)) 49)) (-3300 (((-719)) 17)) (-3462 (((-597 $) (-1095 $)) NIL) (((-597 $) (-1095 (-388 (-530)))) 54) (((-597 $) (-1095 (-530))) 59) (((-597 $) (-893 $)) 63) (((-597 $) (-893 (-388 (-530)))) 67) (((-597 $) (-893 (-530))) 71)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) 47)))
-(((-950 |#1|) (-10 -8 (-15 -2625 (|#1| (-530))) (-15 -2625 (|#1| (-388 (-530)))) (-15 -2625 (|#1| |#1| (-862))) (-15 -3462 ((-597 |#1|) (-893 (-530)))) (-15 -3462 ((-597 |#1|) (-893 (-388 (-530))))) (-15 -3462 ((-597 |#1|) (-893 |#1|))) (-15 -3462 ((-597 |#1|) (-1095 (-530)))) (-15 -3462 ((-597 |#1|) (-1095 (-388 (-530))))) (-15 -3462 ((-597 |#1|) (-1095 |#1|))) (-15 -1326 ((-3 |#1| "failed") (-1095 |#1|) (-862))) (-15 -1326 ((-3 |#1| "failed") (-1095 |#1|) (-862) (-804))) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -3741 (|#1| |#1| (-530))) (-15 -2625 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -3300 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862)))) (-951)) (T -950))
-((-3300 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-950 *3)) (-4 *3 (-951)))))
-(-10 -8 (-15 -2625 (|#1| (-530))) (-15 -2625 (|#1| (-388 (-530)))) (-15 -2625 (|#1| |#1| (-862))) (-15 -3462 ((-597 |#1|) (-893 (-530)))) (-15 -3462 ((-597 |#1|) (-893 (-388 (-530))))) (-15 -3462 ((-597 |#1|) (-893 |#1|))) (-15 -3462 ((-597 |#1|) (-1095 (-530)))) (-15 -3462 ((-597 |#1|) (-1095 (-388 (-530))))) (-15 -3462 ((-597 |#1|) (-1095 |#1|))) (-15 -1326 ((-3 |#1| "failed") (-1095 |#1|) (-862))) (-15 -1326 ((-3 |#1| "failed") (-1095 |#1|) (-862) (-804))) (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -3741 (|#1| |#1| (-530))) (-15 -2625 (|#1| |#1|)) (-15 ** (|#1| |#1| (-530))) (-15 -3300 ((-719))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 87)) (-3446 (($ $) 88)) (-1276 (((-110) $) 90)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 107)) (-3272 (((-399 $) $) 108)) (-2625 (($ $) 71) (($ $ (-862)) 57) (($ (-388 (-530))) 56) (($ (-530)) 55)) (-1426 (((-110) $ $) 98)) (-1867 (((-530) $) 124)) (-2350 (($) 17 T CONST)) (-1326 (((-3 $ "failed") (-1095 $) (-862) (-804)) 65) (((-3 $ "failed") (-1095 $) (-862)) 64)) (-3139 (((-3 (-530) "failed") $) 83 (|has| (-388 (-530)) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 81 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-3 (-388 (-530)) "failed") $) 79)) (-2585 (((-530) $) 84 (|has| (-388 (-530)) (-975 (-530)))) (((-388 (-530)) $) 82 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-388 (-530)) $) 78)) (-3843 (($ $ (-804)) 54)) (-2417 (($ $ (-804)) 53)) (-3590 (($ $ $) 102)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 101)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 96)) (-3295 (((-110) $) 109)) (-2514 (((-110) $) 122)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 70)) (-2166 (((-110) $) 123)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 105)) (-2508 (($ $ $) 121)) (-1817 (($ $ $) 120)) (-3491 (((-3 (-1095 $) "failed") $) 66)) (-1631 (((-3 (-804) "failed") $) 68)) (-1965 (((-3 (-1095 $) "failed") $) 67)) (-2170 (($ (-597 $)) 94) (($ $ $) 93)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 110)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 95)) (-2204 (($ (-597 $)) 92) (($ $ $) 91)) (-2611 (((-399 $) $) 106)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 103)) (-3551 (((-3 $ "failed") $ $) 86)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 97)) (-2356 (((-719) $) 99)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 100)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 114) (($ $) 85) (($ (-388 (-530))) 80) (($ (-530)) 77) (($ (-388 (-530))) 74)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 89)) (-4136 (((-388 (-530)) $ $) 52)) (-3462 (((-597 $) (-1095 $)) 63) (((-597 $) (-1095 (-388 (-530)))) 62) (((-597 $) (-1095 (-530))) 61) (((-597 $) (-893 $)) 60) (((-597 $) (-893 (-388 (-530)))) 59) (((-597 $) (-893 (-530))) 58)) (-3934 (($ $) 125)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 118)) (-2284 (((-110) $ $) 117)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 119)) (-2272 (((-110) $ $) 116)) (-2364 (($ $ $) 115)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 111) (($ $ (-388 (-530))) 69)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ (-388 (-530)) $) 113) (($ $ (-388 (-530))) 112) (($ (-530) $) 76) (($ $ (-530)) 75) (($ (-388 (-530)) $) 73) (($ $ (-388 (-530))) 72)))
-(((-951) (-133)) (T -951))
-((-2625 (*1 *1 *1) (-4 *1 (-951))) (-1631 (*1 *2 *1) (|partial| -12 (-4 *1 (-951)) (-5 *2 (-804)))) (-1965 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))) (-3491 (*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))) (-1326 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-5 *4 (-804)) (-4 *1 (-951)))) (-1326 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-4 *1 (-951)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1095 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-3462 (*1 *2 *3) (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951)))) (-2625 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-862)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-951)))) (-2625 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-951)))) (-3843 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))) (-2417 (*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))) (-4136 (*1 *2 *1 *1) (-12 (-4 *1 (-951)) (-5 *2 (-388 (-530))))))
-(-13 (-140) (-793) (-162) (-344) (-392 (-388 (-530))) (-37 (-530)) (-37 (-388 (-530))) (-941) (-10 -8 (-15 -1631 ((-3 (-804) "failed") $)) (-15 -1965 ((-3 (-1095 $) "failed") $)) (-15 -3491 ((-3 (-1095 $) "failed") $)) (-15 -1326 ((-3 $ "failed") (-1095 $) (-862) (-804))) (-15 -1326 ((-3 $ "failed") (-1095 $) (-862))) (-15 -3462 ((-597 $) (-1095 $))) (-15 -3462 ((-597 $) (-1095 (-388 (-530))))) (-15 -3462 ((-597 $) (-1095 (-530)))) (-15 -3462 ((-597 $) (-893 $))) (-15 -3462 ((-597 $) (-893 (-388 (-530))))) (-15 -3462 ((-597 $) (-893 (-530)))) (-15 -2625 ($ $ (-862))) (-15 -2625 ($ $)) (-15 -2625 ($ (-388 (-530)))) (-15 -2625 ($ (-530))) (-15 -3843 ($ $ (-804))) (-15 -2417 ($ $ (-804))) (-15 -4136 ((-388 (-530)) $ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 #1=(-530)) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-392 (-388 (-530))) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 #1#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 #1#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-793) . T) ((-795) . T) ((-861) . T) ((-941) . T) ((-975 (-388 (-530))) . T) ((-975 (-530)) |has| (-388 (-530)) (-975 (-530))) ((-990 #0#) . T) ((-990 #1#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-3213 (((-2 (|:| |ans| |#2|) (|:| -3638 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
-(((-952 |#1| |#2|) (-10 -7 (-15 -3213 ((-2 (|:| |ans| |#2|) (|:| -3638 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-27) (-411 |#1|))) (T -952))
-((-3213 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1099)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-597 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1121) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-530)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3638 *4) (|:| |sol?| (-110)))) (-5 *1 (-952 *8 *4)))))
-(-10 -7 (-15 -3213 ((-2 (|:| |ans| |#2|) (|:| -3638 |#2|) (|:| |sol?| (-110))) (-530) |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2699 (((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
-(((-953 |#1| |#2|) (-10 -7 (-15 -2699 ((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))) (-13 (-1121) (-27) (-411 |#1|))) (T -953))
-((-2699 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1099)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-597 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1121) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3))) (-5 *3 (-530)) (-5 *2 (-597 *4)) (-5 *1 (-953 *8 *4)))))
-(-10 -7 (-15 -2699 ((-3 (-597 |#2|) "failed") (-530) |#2| |#2| |#2| (-1099) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-597 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-597 |#2|)) (-1 (-3 (-2 (|:| -2104 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
-((-2867 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2776 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|)) 30)) (-1718 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 58)) (-4177 (((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|)) 63)))
-(((-954 |#1| |#2|) (-10 -7 (-15 -1718 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -4177 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -2867 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2776 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|)))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -954))
-((-2867 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 *4))) (-5 *4 (-530)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110)))) (|:| -2776 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-954 *6 *3)))) (-4177 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110)))) (-5 *1 (-954 *4 *5)) (-5 *3 (-388 *5)))) (-1718 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6)) (|:| -4046 *6))) (-5 *1 (-954 *5 *6)) (-5 *3 (-388 *6)))))
-(-10 -7 (-15 -1718 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -4177 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -2867 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2776 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-530)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-530) (-1 |#2| |#2|))))
-((-1354 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 22)) (-3960 (((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 33)))
-(((-955 |#1| |#2|) (-10 -7 (-15 -1354 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3960 ((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)))) (-13 (-344) (-140) (-975 (-530))) (-1157 |#1|)) (T -955))
-((-3960 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4)) (-5 *2 (-597 (-388 *5))) (-5 *1 (-955 *4 *5)) (-5 *3 (-388 *5)))) (-1354 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6) (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4046 *6))) (-5 *1 (-955 *5 *6)) (-5 *3 (-388 *6)))))
-(-10 -7 (-15 -1354 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4046 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3960 ((-3 (-597 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))))
-((-3548 (((-1 |#1|) (-597 (-2 (|:| -3417 |#1|) (|:| -2001 (-530))))) 37)) (-3155 (((-1 |#1|) (-1029 |#1|)) 45)) (-1947 (((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530)) 34)))
-(((-956 |#1|) (-10 -7 (-15 -3155 ((-1 |#1|) (-1029 |#1|))) (-15 -3548 ((-1 |#1|) (-597 (-2 (|:| -3417 |#1|) (|:| -2001 (-530)))))) (-15 -1947 ((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530)))) (-1027)) (T -956))
-((-1947 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-530))) (-5 *5 (-530)) (-4 *6 (-1027)) (-5 *2 (-1 *6)) (-5 *1 (-956 *6)))) (-3548 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3417 *4) (|:| -2001 (-530))))) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1029 *4)) (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))))
-(-10 -7 (-15 -3155 ((-1 |#1|) (-1029 |#1|))) (-15 -3548 ((-1 |#1|) (-597 (-2 (|:| -3417 |#1|) (|:| -2001 (-530)))))) (-15 -1947 ((-1 |#1|) (-1181 |#1|) (-1181 (-530)) (-530))))
-((-2031 (((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
-(((-957 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2031 ((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-344) (-1157 |#1|) (-1157 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-13 (-349) (-344))) (T -957))
-((-2031 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344)) (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-388 *7))) (-4 *8 (-323 *6 *7 *4)) (-4 *9 (-13 (-349) (-344))) (-5 *2 (-719)) (-5 *1 (-957 *6 *7 *4 *8 *9)))))
-(-10 -7 (-15 -2031 ((-719) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
-((-3399 (((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 31) (((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530))) 28)) (-2956 (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530))) 33) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530))) 29) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 32) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|) 27)) (-2530 (((-597 (-388 (-530))) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) 19)) (-3814 (((-388 (-530)) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 16)))
-(((-958 |#1|) (-10 -7 (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|)) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -3814 ((-388 (-530)) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2530 ((-597 (-388 (-530))) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))))) (-1157 (-530))) (T -958))
-((-2530 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *2 (-597 (-388 (-530)))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))) (-3814 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *2 (-388 (-530))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))) (-3399 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))) (-3399 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *4 (-388 (-530))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3628 *5) (|:| -3638 *5)))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3628 *5) (|:| -3638 *5))))) (-2956 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-388 (-530))))) (-2956 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))))))
-(-10 -7 (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|)) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -3814 ((-388 (-530)) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2530 ((-597 (-388 (-530))) (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))))
-((-3399 (((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 35) (((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530))) 32)) (-2956 (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530))) 30) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530))) 26) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) 28) (((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|) 24)))
-(((-959 |#1|) (-10 -7 (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|)) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-1157 (-388 (-530)))) (T -959))
-((-3399 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))))) (-3399 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) (-5 *4 (-388 (-530))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4)))) (-2956 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3628 *5) (|:| -3638 *5)))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *5)) (-5 *4 (-2 (|:| -3628 *5) (|:| -3638 *5))))) (-2956 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-530))) (-5 *2 (-597 (-2 (|:| -3628 *4) (|:| -3638 *4)))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4)))) (-2956 (*1 *2 *3 *4) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))) (-5 *4 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))) (-2956 (*1 *2 *3) (-12 (-5 *2 (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530)))))))
-(-10 -7 (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1|)) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-388 (-530)))) (-15 -2956 ((-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-388 (-530)))) (-15 -3399 ((-3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) "failed") |#1| (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))) (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))))
-((-3260 (((-208) $) 6) (((-360) $) 9)))
-(((-960) (-133)) (T -960))
-NIL
-(-13 (-572 (-208)) (-572 (-360)))
-(((-572 (-208)) . T) ((-572 (-360)) . T))
-((-2688 (((-597 (-360)) (-893 (-530)) (-360)) 28) (((-597 (-360)) (-893 (-388 (-530))) (-360)) 27)) (-3009 (((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360)) 37)))
-(((-961) (-10 -7 (-15 -2688 ((-597 (-360)) (-893 (-388 (-530))) (-360))) (-15 -2688 ((-597 (-360)) (-893 (-530)) (-360))) (-15 -3009 ((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360))))) (T -961))
-((-3009 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-360)))) (-5 *1 (-961)) (-5 *5 (-360)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 (-360))) (-5 *1 (-961)) (-5 *4 (-360)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 (-360))) (-5 *1 (-961)) (-5 *4 (-360)))))
-(-10 -7 (-15 -2688 ((-597 (-360)) (-893 (-388 (-530))) (-360))) (-15 -2688 ((-597 (-360)) (-893 (-530)) (-360))) (-15 -3009 ((-597 (-597 (-360))) (-597 (-893 (-530))) (-597 (-1099)) (-360))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 70)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-2625 (($ $) NIL) (($ $ (-862)) NIL) (($ (-388 (-530))) NIL) (($ (-530)) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) 65)) (-2350 (($) NIL T CONST)) (-1326 (((-3 $ "failed") (-1095 $) (-862) (-804)) NIL) (((-3 $ "failed") (-1095 $) (-862)) 50)) (-3139 (((-3 (-388 (-530)) "failed") $) NIL (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-530) "failed") $) NIL (-1461 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))))) (-2585 (((-388 (-530)) $) 15 (|has| (-388 (-530)) (-975 (-388 (-530))))) (((-388 (-530)) $) 15) ((|#1| $) 108) (((-530) $) NIL (-1461 (|has| (-388 (-530)) (-975 (-530))) (|has| |#1| (-975 (-530)))))) (-3843 (($ $ (-804)) 42)) (-2417 (($ $ (-804)) 43)) (-3590 (($ $ $) NIL)) (-2891 (((-388 (-530)) $ $) 19)) (-2707 (((-3 $ "failed") $) 83)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-2514 (((-110) $) 61)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL)) (-2166 (((-110) $) 64)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3491 (((-3 (-1095 $) "failed") $) 78)) (-1631 (((-3 (-804) "failed") $) 77)) (-1965 (((-3 (-1095 $) "failed") $) 75)) (-1366 (((-3 (-994 $ (-1095 $)) "failed") $) 73)) (-2170 (($ (-597 $)) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 84)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ (-597 $)) NIL) (($ $ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2366 (((-804) $) 82) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ $) 58) (($ (-388 (-530))) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#1|) 110)) (-3300 (((-719)) NIL)) (-3944 (((-110) $ $) NIL)) (-4136 (((-388 (-530)) $ $) 25)) (-3462 (((-597 $) (-1095 $)) 56) (((-597 $) (-1095 (-388 (-530)))) NIL) (((-597 $) (-1095 (-530))) NIL) (((-597 $) (-893 $)) NIL) (((-597 $) (-893 (-388 (-530)))) NIL) (((-597 $) (-893 (-530))) NIL)) (-4107 (($ (-994 $ (-1095 $)) (-804)) 41)) (-3934 (($ $) 20)) (-3080 (($) 29 T CONST)) (-3093 (($) 35 T CONST)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 71)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 22)) (-2364 (($ $ $) 33)) (-2351 (($ $) 34) (($ $ $) 69)) (-2339 (($ $ $) 103)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL) (($ $ (-388 (-530))) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 91) (($ $ $) 96) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ (-530) $) 91) (($ $ (-530)) NIL) (($ (-388 (-530)) $) NIL) (($ $ (-388 (-530))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
-(((-962 |#1|) (-13 (-951) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -4107 ($ (-994 $ (-1095 $)) (-804))) (-15 -1366 ((-3 (-994 $ (-1095 $)) "failed") $)) (-15 -2891 ((-388 (-530)) $ $)))) (-13 (-793) (-344) (-960))) (T -962))
-((-4107 (*1 *1 *2 *3) (-12 (-5 *2 (-994 (-962 *4) (-1095 (-962 *4)))) (-5 *3 (-804)) (-5 *1 (-962 *4)) (-4 *4 (-13 (-793) (-344) (-960))))) (-1366 (*1 *2 *1) (|partial| -12 (-5 *2 (-994 (-962 *3) (-1095 (-962 *3)))) (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))) (-2891 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))))
-(-13 (-951) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -4107 ($ (-994 $ (-1095 $)) (-804))) (-15 -1366 ((-3 (-994 $ (-1095 $)) "failed") $)) (-15 -2891 ((-388 (-530)) $ $))))
-((-2880 (((-2 (|:| -2776 |#2|) (|:| -4145 (-597 |#1|))) |#2| (-597 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
-(((-963 |#1| |#2|) (-10 -7 (-15 -2880 (|#2| |#2| |#1|)) (-15 -2880 ((-2 (|:| -2776 |#2|) (|:| -4145 (-597 |#1|))) |#2| (-597 |#1|)))) (-344) (-607 |#1|)) (T -963))
-((-2880 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2776 *3) (|:| -4145 (-597 *5)))) (-5 *1 (-963 *5 *3)) (-5 *4 (-597 *5)) (-4 *3 (-607 *5)))) (-2880 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-963 *3 *2)) (-4 *2 (-607 *3)))))
-(-10 -7 (-15 -2880 (|#2| |#2| |#1|)) (-15 -2880 ((-2 (|:| -2776 |#2|) (|:| -4145 (-597 |#1|))) |#2| (-597 |#1|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1265 ((|#1| $ |#1|) 14)) (-2552 ((|#1| $ |#1|) 12)) (-2818 (($ |#1|) 10)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1902 ((|#1| $) 11)) (-4216 ((|#1| $) 13)) (-2366 (((-804) $) 21 (|has| |#1| (-1027)))) (-2248 (((-110) $ $) 9)))
-(((-964 |#1|) (-13 (-1135) (-10 -8 (-15 -2818 ($ |#1|)) (-15 -1902 (|#1| $)) (-15 -2552 (|#1| $ |#1|)) (-15 -4216 (|#1| $)) (-15 -1265 (|#1| $ |#1|)) (-15 -2248 ((-110) $ $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -964))
-((-2818 (*1 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-2552 (*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-4216 (*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-1265 (*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))) (-2248 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-964 *3)) (-4 *3 (-1135)))))
-(-13 (-1135) (-10 -8 (-15 -2818 ($ |#1|)) (-15 -1902 (|#1| $)) (-15 -2552 (|#1| $ |#1|)) (-15 -4216 (|#1| $)) (-15 -1265 (|#1| $ |#1|)) (-15 -2248 ((-110) $ $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) NIL)) (-1512 (((-597 $) (-597 |#4|)) 105) (((-597 $) (-597 |#4|) (-110)) 106) (((-597 $) (-597 |#4|) (-110) (-110)) 104) (((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110)) 107)) (-2746 (((-597 |#3|) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1785 ((|#4| |#4| $) NIL)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 99)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 54)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) 26 (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3588 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2585 (($ (-597 |#4|)) NIL)) (-3057 (((-3 $ "failed") $) 39)) (-1622 ((|#4| |#4| $) 57)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) NIL)) (-3131 (((-110) |#4| $) NIL)) (-2747 (((-110) |#4| $) NIL)) (-2984 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1767 (((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)) 119)) (-3779 (((-597 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3122 ((|#3| $) 33)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 17 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3583 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 21)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) NIL)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 97)) (-2407 (((-3 |#4| "failed") $) 37)) (-3274 (((-597 $) |#4| $) 80)) (-1404 (((-3 (-110) (-597 $)) |#4| $) NIL)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 90) (((-110) |#4| $) 52)) (-4033 (((-597 $) |#4| $) 102) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 103) (((-597 $) |#4| (-597 $)) NIL)) (-1801 (((-597 $) (-597 |#4|) (-110) (-110) (-110)) 114)) (-2721 (($ |#4| $) 70) (($ (-597 |#4|) $) 71) (((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 67)) (-1543 (((-597 |#4|) $) NIL)) (-2559 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3482 ((|#4| |#4| $) NIL)) (-1406 (((-110) $ $) NIL)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2122 ((|#4| |#4| $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 |#4| "failed") $) 35)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1372 (((-3 $ "failed") $ |#4|) 48)) (-3168 (($ $ |#4|) NIL) (((-597 $) |#4| $) 82) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 77)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 15)) (-3958 (($) 13)) (-1429 (((-719) $) NIL)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) 12)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 20)) (-1687 (($ $ |#3|) 42)) (-1442 (($ $ |#3|) 44)) (-1871 (($ $) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2730 (((-719) $) NIL (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-4208 (((-597 $) |#4| $) 79) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) NIL)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) NIL)) (-1321 (((-110) |#4| $) NIL)) (-2856 (((-110) |#3| $) 53)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-965 |#1| |#2| |#3| |#4|) (-13 (-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2721 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1801 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1767 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110))))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -965))
-((-2721 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *3))) (-5 *1 (-965 *5 *6 *7 *3)) (-4 *3 (-998 *5 *6 *7)))) (-1512 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-1512 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-1801 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8)))) (-1767 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-965 *5 *6 *7 *8))))) (-5 *1 (-965 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
-(-13 (-1003 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2721 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1801 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1767 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)))))
-((-2000 (((-597 (-637 |#1|)) (-597 (-637 |#1|))) 58) (((-637 |#1|) (-637 |#1|)) 57) (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|))) 56) (((-637 |#1|) (-637 |#1|) (-637 |#1|)) 53)) (-2009 (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862)) 52) (((-637 |#1|) (-637 |#1|) (-862)) 51)) (-3499 (((-597 (-637 (-530))) (-597 (-597 (-530)))) 68) (((-597 (-637 (-530))) (-597 (-846 (-530))) (-530)) 67) (((-637 (-530)) (-597 (-530))) 64) (((-637 (-530)) (-846 (-530)) (-530)) 63)) (-3200 (((-637 (-893 |#1|)) (-719)) 81)) (-3757 (((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862)) 37 (|has| |#1| (-6 (-4271 "*")))) (((-637 |#1|) (-637 |#1|) (-862)) 35 (|has| |#1| (-6 (-4271 "*"))))))
-(((-966 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3757 ((-637 |#1|) (-637 |#1|) (-862))) |%noBranch|) (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3757 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) |%noBranch|) (-15 -3200 ((-637 (-893 |#1|)) (-719))) (-15 -2009 ((-637 |#1|) (-637 |#1|) (-862))) (-15 -2009 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) (-15 -2000 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2000 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2000 ((-637 |#1|) (-637 |#1|))) (-15 -2000 ((-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -3499 ((-637 (-530)) (-846 (-530)) (-530))) (-15 -3499 ((-637 (-530)) (-597 (-530)))) (-15 -3499 ((-597 (-637 (-530))) (-597 (-846 (-530))) (-530))) (-15 -3499 ((-597 (-637 (-530))) (-597 (-597 (-530)))))) (-984)) (T -966))
-((-3499 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-530)))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-846 (-530)))) (-5 *4 (-530)) (-5 *2 (-597 (-637 *4))) (-5 *1 (-966 *5)) (-4 *5 (-984)))) (-3499 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-3499 (*1 *2 *3 *4) (-12 (-5 *3 (-846 (-530))) (-5 *4 (-530)) (-5 *2 (-637 *4)) (-5 *1 (-966 *5)) (-4 *5 (-984)))) (-2000 (*1 *2 *2) (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-2000 (*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-2000 (*1 *2 *2 *2) (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-2000 (*1 *2 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-2009 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-3200 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-637 (-893 *4))) (-5 *1 (-966 *4)) (-4 *4 (-984)))) (-3757 (*1 *2 *2 *3) (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (|has| *4 (-6 (-4271 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))) (-3757 (*1 *2 *2 *3) (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (|has| *4 (-6 (-4271 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))))
-(-10 -7 (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3757 ((-637 |#1|) (-637 |#1|) (-862))) |%noBranch|) (IF (|has| |#1| (-6 (-4271 "*"))) (-15 -3757 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) |%noBranch|) (-15 -3200 ((-637 (-893 |#1|)) (-719))) (-15 -2009 ((-637 |#1|) (-637 |#1|) (-862))) (-15 -2009 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-862))) (-15 -2000 ((-637 |#1|) (-637 |#1|) (-637 |#1|))) (-15 -2000 ((-597 (-637 |#1|)) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2000 ((-637 |#1|) (-637 |#1|))) (-15 -2000 ((-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -3499 ((-637 (-530)) (-846 (-530)) (-530))) (-15 -3499 ((-637 (-530)) (-597 (-530)))) (-15 -3499 ((-597 (-637 (-530))) (-597 (-846 (-530))) (-530))) (-15 -3499 ((-597 (-637 (-530))) (-597 (-597 (-530))))))
-((-3634 (((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)) 50 (|has| |#1| (-289)))) (-1489 (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))) 76 (|has| |#1| (-344))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|)) 79 (|has| |#1| (-344)))) (-3585 (((-1181 |#1|) (-597 (-1181 |#1|)) (-530)) 93 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-1219 (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862)) 85 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110)) 83 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|))) 82 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530)) 81 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-4066 (((-110) (-597 (-637 |#1|))) 71 (|has| |#1| (-344))) (((-110) (-597 (-637 |#1|)) (-530)) 73 (|has| |#1| (-344)))) (-1637 (((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|)) 48 (|has| |#1| (-289)))) (-3262 (((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|)) 34)) (-2106 (((-637 |#1|) (-1181 (-1181 |#1|))) 31)) (-2412 (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530)) 65 (|has| |#1| (-344))) (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|))) 64 (|has| |#1| (-344))) (((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530)) 69 (|has| |#1| (-344)))))
-(((-967 |#1|) (-10 -7 (-15 -2106 ((-637 |#1|) (-1181 (-1181 |#1|)))) (-15 -3262 ((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -1637 ((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -3634 ((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530))) (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530))) (-15 -4066 ((-110) (-597 (-637 |#1|)) (-530))) (-15 -4066 ((-110) (-597 (-637 |#1|)))) (-15 -1489 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -1489 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862))) (-15 -3585 ((-1181 |#1|) (-597 (-1181 |#1|)) (-530)))) |%noBranch|) |%noBranch|)) (-984)) (T -967))
-((-3585 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1181 *5))) (-5 *4 (-530)) (-5 *2 (-1181 *5)) (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)))) (-1219 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1219 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1219 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-984)) (-5 *2 (-597 (-597 (-637 *4)))) (-5 *1 (-967 *4)) (-5 *3 (-597 (-637 *4))))) (-1219 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-530)) (-4 *6 (-344)) (-4 *6 (-349)) (-4 *6 (-984)) (-5 *2 (-597 (-597 (-637 *6)))) (-5 *1 (-967 *6)) (-5 *3 (-597 (-637 *6))))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-1489 (*1 *2 *3 *4) (-12 (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5)) (-5 *3 (-597 (-637 *5))))) (-4066 (*1 *2 *3) (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *4)))) (-4066 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-4 *5 (-344)) (-4 *5 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *5)))) (-2412 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-984)))) (-2412 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-5 *1 (-967 *4)) (-4 *4 (-344)) (-4 *4 (-984)))) (-2412 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-597 (-637 *6))) (-5 *4 (-110)) (-5 *5 (-530)) (-5 *2 (-637 *6)) (-5 *1 (-967 *6)) (-4 *6 (-344)) (-4 *6 (-984)))) (-3634 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-289)) (-4 *5 (-984)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-637 *5))) (-4 *5 (-289)) (-4 *5 (-984)) (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-967 *5)) (-5 *4 (-1181 *5)))) (-3262 (*1 *2 *3 *2) (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-967 *4)))) (-2106 (*1 *2 *3) (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-984)) (-5 *2 (-637 *4)) (-5 *1 (-967 *4)))))
-(-10 -7 (-15 -2106 ((-637 |#1|) (-1181 (-1181 |#1|)))) (-15 -3262 ((-637 |#1|) (-597 (-637 |#1|)) (-637 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -1637 ((-1181 (-1181 |#1|)) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -3634 ((-637 |#1|) (-597 (-637 |#1|)) (-1181 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-110) (-530))) (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2412 ((-637 |#1|) (-597 (-637 |#1|)) (-597 (-637 |#1|)) (-530))) (-15 -4066 ((-110) (-597 (-637 |#1|)) (-530))) (-15 -4066 ((-110) (-597 (-637 |#1|)))) (-15 -1489 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 |#1|))) (-15 -1489 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-1181 (-1181 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110) (-530) (-530))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-110))) (-15 -1219 ((-597 (-597 (-637 |#1|))) (-597 (-637 |#1|)) (-862))) (-15 -3585 ((-1181 |#1|) (-597 (-1181 |#1|)) (-530)))) |%noBranch|) |%noBranch|))
-((-2285 ((|#1| (-862) |#1|) 9)))
-(((-968 |#1|) (-10 -7 (-15 -2285 (|#1| (-862) |#1|))) (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $))))) (T -968))
-((-2285 (*1 *2 *3 *2) (-12 (-5 *3 (-862)) (-5 *1 (-968 *2)) (-4 *2 (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $))))))))
-(-10 -7 (-15 -2285 (|#1| (-862) |#1|)))
-((-2437 (((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530))))) 59)) (-3770 (((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530))))) 48)) (-3416 (((-597 (-297 (-530))) (-637 (-388 (-893 (-530))))) 41)) (-1277 (((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530))))) 68)) (-1446 (((-637 (-297 (-530))) (-637 (-297 (-530)))) 34)) (-1733 (((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530))))) 62)) (-3074 (((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530))))) 66)))
-(((-969) (-10 -7 (-15 -2437 ((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530)))))) (-15 -3770 ((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530)))))) (-15 -3416 ((-597 (-297 (-530))) (-637 (-388 (-893 (-530)))))) (-15 -3074 ((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530)))))) (-15 -1446 ((-637 (-297 (-530))) (-637 (-297 (-530))))) (-15 -1733 ((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530)))))) (-15 -1277 ((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530)))))))) (T -969))
-((-1277 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))) (-1733 (*1 *2 *2) (-12 (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))) (-1446 (*1 *2 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))) (-3074 (*1 *2 *3) (|partial| -12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))) (-3416 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-297 (-530)))) (-5 *1 (-969)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *4 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)) (-5 *3 (-297 (-530))))) (-2437 (*1 *2 *3) (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530)))))))) (-5 *1 (-969)))))
-(-10 -7 (-15 -2437 ((-597 (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530)) (|:| |radvect| (-597 (-637 (-297 (-530))))))) (-637 (-388 (-893 (-530)))))) (-15 -3770 ((-597 (-637 (-297 (-530)))) (-297 (-530)) (-637 (-388 (-893 (-530)))))) (-15 -3416 ((-597 (-297 (-530))) (-637 (-388 (-893 (-530)))))) (-15 -3074 ((-3 (-637 (-297 (-530))) "failed") (-637 (-388 (-893 (-530)))))) (-15 -1446 ((-637 (-297 (-530))) (-637 (-297 (-530))))) (-15 -1733 ((-597 (-637 (-297 (-530)))) (-597 (-637 (-297 (-530)))))) (-15 -1277 ((-597 (-637 (-297 (-530)))) (-637 (-388 (-893 (-530)))))))
-((-3451 ((|#1| |#1| (-862)) 9)))
-(((-970 |#1|) (-10 -7 (-15 -3451 (|#1| |#1| (-862)))) (-13 (-1027) (-10 -8 (-15 * ($ $ $))))) (T -970))
-((-3451 (*1 *2 *2 *3) (-12 (-5 *3 (-862)) (-5 *1 (-970 *2)) (-4 *2 (-13 (-1027) (-10 -8 (-15 * ($ $ $))))))))
-(-10 -7 (-15 -3451 (|#1| |#1| (-862))))
-((-2366 ((|#1| (-293)) 11) (((-1186) |#1|) 9)))
-(((-971 |#1|) (-10 -7 (-15 -2366 ((-1186) |#1|)) (-15 -2366 (|#1| (-293)))) (-1135)) (T -971))
-((-2366 (*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-971 *2)) (-4 *2 (-1135)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-971 *3)) (-4 *3 (-1135)))))
-(-10 -7 (-15 -2366 ((-1186) |#1|)) (-15 -2366 (|#1| (-293))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2134 (($ |#4|) 25)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-2123 ((|#4| $) 27)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 46) (($ (-530)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-3300 (((-719)) 43)) (-3080 (($) 21 T CONST)) (-3093 (($) 23 T CONST)) (-2248 (((-110) $ $) 40)) (-2351 (($ $) 31) (($ $ $) NIL)) (-2339 (($ $ $) 29)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
-(((-972 |#1| |#2| |#3| |#4| |#5|) (-13 (-162) (-37 |#1|) (-10 -8 (-15 -2134 ($ |#4|)) (-15 -2366 ($ |#4|)) (-15 -2123 (|#4| $)))) (-344) (-741) (-795) (-890 |#1| |#2| |#3|) (-597 |#4|)) (T -972))
-((-2134 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5)) (-14 *6 (-597 *2)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5)) (-14 *6 (-597 *2)))) (-2123 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *4 *5)) (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-14 *6 (-597 *2)))))
-(-13 (-162) (-37 |#1|) (-10 -8 (-15 -2134 ($ |#4|)) (-15 -2366 ($ |#4|)) (-15 -2123 (|#4| $))))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-2097 (((-1186) $ (-1099) (-1099)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-1666 (((-110) (-110)) 39)) (-4103 (((-110) (-110)) 38)) (-2552 (((-51) $ (-1099) (-51)) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 (-51) "failed") (-1099) $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-1842 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-51) "failed") (-1099) $) NIL)) (-2383 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-51) $ (-1099) (-51)) NIL (|has| $ (-6 -4270)))) (-3532 (((-51) $ (-1099)) NIL)) (-3779 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1099) $) NIL (|has| (-1099) (-795)))) (-2395 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-1549 (((-1099) $) NIL (|has| (-1099) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3282 (((-597 (-1099)) $) 34)) (-3718 (((-110) (-1099) $) NIL)) (-1723 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-3567 (((-597 (-1099)) $) NIL)) (-1927 (((-110) (-1099) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3048 (((-51) $) NIL (|has| (-1099) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) "failed") (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL)) (-1522 (($ $ (-51)) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-2261 (((-597 (-51)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-51) $ (-1099)) 35) (((-51) $ (-1099) (-51)) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-2366 (((-804) $) 37 (-1461 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-973) (-13 (-1112 (-1099) (-51)) (-10 -7 (-15 -1666 ((-110) (-110))) (-15 -4103 ((-110) (-110))) (-6 -4269)))) (T -973))
-((-1666 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))) (-4103 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
-(-13 (-1112 (-1099) (-51)) (-10 -7 (-15 -1666 ((-110) (-110))) (-15 -4103 ((-110) (-110))) (-6 -4269)))
-((-2585 ((|#2| $) 10)))
-(((-974 |#1| |#2|) (-10 -8 (-15 -2585 (|#2| |#1|))) (-975 |#2|) (-1135)) (T -974))
-NIL
-(-10 -8 (-15 -2585 (|#2| |#1|)))
-((-3139 (((-3 |#1| "failed") $) 7)) (-2585 ((|#1| $) 8)) (-2366 (($ |#1|) 6)))
-(((-975 |#1|) (-133) (-1135)) (T -975))
-((-2585 (*1 *2 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))) (-3139 (*1 *2 *1) (|partial| -12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))) (-2366 (*1 *1 *2) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135)))))
-(-13 (-10 -8 (-15 -2366 ($ |t#1|)) (-15 -3139 ((-3 |t#1| "failed") $)) (-15 -2585 (|t#1| $))))
-((-3364 (((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099))) 38)))
-(((-976 |#1| |#2|) (-10 -7 (-15 -3364 ((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099))))) (-522) (-13 (-522) (-975 |#1|))) (T -976))
-((-3364 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-13 (-522) (-975 *5))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *6)))))) (-5 *1 (-976 *5 *6)))))
-(-10 -7 (-15 -3364 ((-597 (-597 (-276 (-388 (-893 |#2|))))) (-597 (-893 |#2|)) (-597 (-1099)))))
-((-2900 (((-360)) 15)) (-3155 (((-1 (-360)) (-360) (-360)) 20)) (-4046 (((-1 (-360)) (-719)) 43)) (-1456 (((-360)) 34)) (-4182 (((-1 (-360)) (-360) (-360)) 35)) (-3225 (((-360)) 26)) (-3734 (((-1 (-360)) (-360)) 27)) (-1955 (((-360) (-719)) 38)) (-3521 (((-1 (-360)) (-719)) 39)) (-1334 (((-1 (-360)) (-719) (-719)) 42)) (-3564 (((-1 (-360)) (-719) (-719)) 40)))
-(((-977) (-10 -7 (-15 -2900 ((-360))) (-15 -1456 ((-360))) (-15 -3225 ((-360))) (-15 -1955 ((-360) (-719))) (-15 -3155 ((-1 (-360)) (-360) (-360))) (-15 -4182 ((-1 (-360)) (-360) (-360))) (-15 -3734 ((-1 (-360)) (-360))) (-15 -3521 ((-1 (-360)) (-719))) (-15 -3564 ((-1 (-360)) (-719) (-719))) (-15 -1334 ((-1 (-360)) (-719) (-719))) (-15 -4046 ((-1 (-360)) (-719))))) (T -977))
-((-4046 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-1334 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-3564 (*1 *2 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-3521 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))) (-3734 (*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-4182 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-3155 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))) (-1955 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-360)) (-5 *1 (-977)))) (-3225 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))) (-1456 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))) (-2900 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
-(-10 -7 (-15 -2900 ((-360))) (-15 -1456 ((-360))) (-15 -3225 ((-360))) (-15 -1955 ((-360) (-719))) (-15 -3155 ((-1 (-360)) (-360) (-360))) (-15 -4182 ((-1 (-360)) (-360) (-360))) (-15 -3734 ((-1 (-360)) (-360))) (-15 -3521 ((-1 (-360)) (-719))) (-15 -3564 ((-1 (-360)) (-719) (-719))) (-15 -1334 ((-1 (-360)) (-719) (-719))) (-15 -4046 ((-1 (-360)) (-719))))
-((-2611 (((-399 |#1|) |#1|) 33)))
-(((-978 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1|))) (-1157 (-388 (-893 (-530))))) (T -978))
-((-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-978 *3)) (-4 *3 (-1157 (-388 (-893 (-530))))))))
-(-10 -7 (-15 -2611 ((-399 |#1|) |#1|)))
-((-1588 (((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|))) 14)))
-(((-979 |#1|) (-10 -7 (-15 -1588 ((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|))))) (-289)) (T -979))
-((-1588 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-289)) (-5 *2 (-388 (-399 (-893 *4)))) (-5 *1 (-979 *4)))))
-(-10 -7 (-15 -1588 ((-388 (-399 (-893 |#1|))) (-388 (-893 |#1|)))))
-((-2746 (((-597 (-1099)) (-388 (-893 |#1|))) 17)) (-2577 (((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099)) 24)) (-2735 (((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099)) 26)) (-2040 (((-3 (-1099) "failed") (-388 (-893 |#1|))) 20)) (-4098 (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|))))) 32) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|)))) 33) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|)))) 28) (((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|))) 29)) (-2366 (((-388 (-893 |#1|)) |#1|) 11)))
-(((-980 |#1|) (-10 -7 (-15 -2746 ((-597 (-1099)) (-388 (-893 |#1|)))) (-15 -2040 ((-3 (-1099) "failed") (-388 (-893 |#1|)))) (-15 -2577 ((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2735 ((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|))))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2366 ((-388 (-893 |#1|)) |#1|))) (-522)) (T -980))
-((-2366 (*1 *2 *3) (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-980 *3)) (-4 *3 (-522)))) (-4098 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-276 (-388 (-893 *4))))) (-5 *2 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-4098 (*1 *2 *2 *3) (-12 (-5 *3 (-276 (-388 (-893 *4)))) (-5 *2 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-4098 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-5 *4 (-597 (-388 (-893 *5)))) (-5 *2 (-388 (-893 *5))) (-4 *5 (-522)) (-5 *1 (-980 *5)))) (-4098 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099)) (-4 *4 (-522)) (-5 *1 (-980 *4)))) (-2735 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1095 (-388 (-893 *5))))) (-5 *4 (-1099)) (-5 *2 (-388 (-893 *5))) (-5 *1 (-980 *5)) (-4 *5 (-522)))) (-2577 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-388 (-1095 (-388 (-893 *5))))) (-5 *1 (-980 *5)) (-5 *3 (-388 (-893 *5))))) (-2040 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-1099)) (-5 *1 (-980 *4)))) (-2746 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-1099))) (-5 *1 (-980 *4)))))
-(-10 -7 (-15 -2746 ((-597 (-1099)) (-388 (-893 |#1|)))) (-15 -2040 ((-3 (-1099) "failed") (-388 (-893 |#1|)))) (-15 -2577 ((-388 (-1095 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2735 ((-388 (-893 |#1|)) (-388 (-1095 (-388 (-893 |#1|)))) (-1099))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-1099)) (-597 (-388 (-893 |#1|))))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-276 (-388 (-893 |#1|))))) (-15 -4098 ((-388 (-893 |#1|)) (-388 (-893 |#1|)) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2366 ((-388 (-893 |#1|)) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 (-728 |#1| (-806 |#2|)))))) (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-1512 (((-597 $) (-597 (-728 |#1| (-806 |#2|)))) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110)) NIL)) (-2746 (((-597 (-806 |#2|)) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-1785 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3544 (((-597 (-2 (|:| |val| (-728 |#1| (-806 |#2|))) (|:| -2473 $))) (-728 |#1| (-806 |#2|)) $) NIL)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ (-806 |#2|)) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 (-728 |#1| (-806 |#2|)) "failed") $ (-806 |#2|)) NIL)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) NIL (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3588 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-2585 (($ (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-3057 (((-3 $ "failed") $) NIL)) (-1622 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-2383 (($ (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-728 |#1| (-806 |#2|))) (|:| |den| |#1|)) (-728 |#1| (-806 |#2|)) $) NIL (|has| |#1| (-522)))) (-3784 (((-110) (-728 |#1| (-806 |#2|)) $ (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3252 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2134 (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $ (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $ (-728 |#1| (-806 |#2|))) NIL (|has| $ (-6 -4269))) (((-728 |#1| (-806 |#2|)) (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-1919 (((-2 (|:| -2361 (-597 (-728 |#1| (-806 |#2|)))) (|:| -2551 (-597 (-728 |#1| (-806 |#2|))))) $) NIL)) (-3131 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-2747 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-2984 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3779 (((-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3397 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3122 (((-806 |#2|) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-3583 (($ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) $) NIL)) (-2400 (((-597 (-806 |#2|)) $) NIL)) (-3533 (((-110) (-806 |#2|) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1609 (((-3 (-728 |#1| (-806 |#2|)) (-597 $)) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2991 (((-597 (-2 (|:| |val| (-728 |#1| (-806 |#2|))) (|:| -2473 $))) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2407 (((-3 (-728 |#1| (-806 |#2|)) "failed") $) NIL)) (-3274 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL)) (-1404 (((-3 (-110) (-597 $)) (-728 |#1| (-806 |#2|)) $) NIL)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-4033 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL)) (-2721 (($ (-728 |#1| (-806 |#2|)) $) NIL) (($ (-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-1543 (((-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-2559 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-3482 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-1406 (((-110) $ $) NIL)) (-1964 (((-2 (|:| |num| (-728 |#1| (-806 |#2|))) (|:| |den| |#1|)) (-728 |#1| (-806 |#2|)) $) NIL (|has| |#1| (-522)))) (-1663 (((-110) (-728 |#1| (-806 |#2|)) $) NIL) (((-110) $) NIL)) (-2122 (((-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 (-728 |#1| (-806 |#2|)) "failed") $) NIL)) (-1437 (((-3 (-728 |#1| (-806 |#2|)) "failed") (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL)) (-1372 (((-3 $ "failed") $ (-728 |#1| (-806 |#2|))) NIL)) (-3168 (($ $ (-728 |#1| (-806 |#2|))) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL)) (-1533 (((-110) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-728 |#1| (-806 |#2|))) (-597 (-728 |#1| (-806 |#2|)))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-276 (-728 |#1| (-806 |#2|)))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (($ $ (-597 (-276 (-728 |#1| (-806 |#2|))))) NIL (-12 (|has| (-728 |#1| (-806 |#2|)) (-291 (-728 |#1| (-806 |#2|)))) (|has| (-728 |#1| (-806 |#2|)) (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1429 (((-719) $) NIL)) (-2632 (((-719) (-728 |#1| (-806 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-728 |#1| (-806 |#2|)) (-1027)))) (((-719) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-728 |#1| (-806 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-728 |#1| (-806 |#2|)))) NIL)) (-1687 (($ $ (-806 |#2|)) NIL)) (-1442 (($ $ (-806 |#2|)) NIL)) (-1871 (($ $) NIL)) (-2553 (($ $ (-806 |#2|)) NIL)) (-2366 (((-804) $) NIL) (((-597 (-728 |#1| (-806 |#2|))) $) NIL)) (-2730 (((-719) $) NIL (|has| (-806 |#2|) (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 (-728 |#1| (-806 |#2|))))) "failed") (-597 (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 (-728 |#1| (-806 |#2|))))) "failed") (-597 (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|))) (-1 (-110) (-728 |#1| (-806 |#2|)) (-728 |#1| (-806 |#2|)))) NIL)) (-3095 (((-110) $ (-1 (-110) (-728 |#1| (-806 |#2|)) (-597 (-728 |#1| (-806 |#2|))))) NIL)) (-4208 (((-597 $) (-728 |#1| (-806 |#2|)) $) NIL) (((-597 $) (-728 |#1| (-806 |#2|)) (-597 $)) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) $) NIL) (((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-597 $)) NIL)) (-3889 (((-110) (-1 (-110) (-728 |#1| (-806 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 (-806 |#2|)) $) NIL)) (-1321 (((-110) (-728 |#1| (-806 |#2|)) $) NIL)) (-2856 (((-110) (-806 |#2|) $) NIL)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-981 |#1| |#2|) (-13 (-1003 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) (-10 -8 (-15 -1512 ((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110))))) (-432) (-597 (-1099))) (T -981))
-((-1512 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-981 *5 *6)))))
-(-13 (-1003 |#1| (-502 (-806 |#2|)) (-806 |#2|) (-728 |#1| (-806 |#2|))) (-10 -8 (-15 -1512 ((-597 $) (-597 (-728 |#1| (-806 |#2|))) (-110) (-110)))))
-((-3155 (((-1 (-530)) (-1022 (-530))) 33)) (-2406 (((-530) (-530) (-530) (-530) (-530)) 30)) (-1428 (((-1 (-530)) |RationalNumber|) NIL)) (-3150 (((-1 (-530)) |RationalNumber|) NIL)) (-2947 (((-1 (-530)) (-530) |RationalNumber|) NIL)))
-(((-982) (-10 -7 (-15 -3155 ((-1 (-530)) (-1022 (-530)))) (-15 -2947 ((-1 (-530)) (-530) |RationalNumber|)) (-15 -1428 ((-1 (-530)) |RationalNumber|)) (-15 -3150 ((-1 (-530)) |RationalNumber|)) (-15 -2406 ((-530) (-530) (-530) (-530) (-530))))) (T -982))
-((-2406 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-982)))) (-3150 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))) (-1428 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))) (-2947 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)) (-5 *3 (-530)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-1022 (-530))) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
-(-10 -7 (-15 -3155 ((-1 (-530)) (-1022 (-530)))) (-15 -2947 ((-1 (-530)) (-530) |RationalNumber|)) (-15 -1428 ((-1 (-530)) |RationalNumber|)) (-15 -3150 ((-1 (-530)) |RationalNumber|)) (-15 -2406 ((-530) (-530) (-530) (-530) (-530))))
-((-2366 (((-804) $) NIL) (($ (-530)) 10)))
-(((-983 |#1|) (-10 -8 (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-984)) (T -983))
-NIL
-(-10 -8 (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-984) (-133)) (T -984))
-((-3300 (*1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-719)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-984)))))
-(-13 (-991) (-675) (-599 $) (-10 -8 (-15 -3300 ((-719))) (-15 -2366 ($ (-530))) (-6 -4266)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 $) . T) ((-675) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-1621 (((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719)) 46)))
-(((-985 |#1| |#2|) (-10 -7 (-15 -1621 ((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719)))) (-1099) (-344)) (T -985))
-((-1621 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-719)) (-4 *6 (-344)) (-5 *2 (-388 (-893 *6))) (-5 *1 (-985 *5 *6)) (-14 *5 (-1099)))))
-(-10 -7 (-15 -1621 ((-388 (-893 |#2|)) (-597 |#2|) (-597 |#2|) (-719) (-719))))
-((-3053 (((-110) $) 29)) (-4040 (((-110) $) 16)) (-1796 (((-719) $) 13)) (-1810 (((-719) $) 14)) (-1362 (((-110) $) 26)) (-3589 (((-110) $) 31)))
-(((-986 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1810 ((-719) |#1|)) (-15 -1796 ((-719) |#1|)) (-15 -3589 ((-110) |#1|)) (-15 -3053 ((-110) |#1|)) (-15 -1362 ((-110) |#1|)) (-15 -4040 ((-110) |#1|))) (-987 |#2| |#3| |#4| |#5| |#6|) (-719) (-719) (-984) (-221 |#3| |#4|) (-221 |#2| |#4|)) (T -986))
-NIL
-(-10 -8 (-15 -1810 ((-719) |#1|)) (-15 -1796 ((-719) |#1|)) (-15 -3589 ((-110) |#1|)) (-15 -3053 ((-110) |#1|)) (-15 -1362 ((-110) |#1|)) (-15 -4040 ((-110) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3053 (((-110) $) 51)) (-1889 (((-3 $ "failed") $ $) 19)) (-4040 (((-110) $) 53)) (-3186 (((-110) $ (-719)) 61)) (-2350 (($) 17 T CONST)) (-1583 (($ $) 34 (|has| |#3| (-289)))) (-1325 ((|#4| $ (-530)) 39)) (-2426 (((-719) $) 33 (|has| |#3| (-522)))) (-3532 ((|#3| $ (-530) (-530)) 41)) (-3779 (((-597 |#3|) $) 68 (|has| $ (-6 -4269)))) (-1791 (((-719) $) 32 (|has| |#3| (-522)))) (-2515 (((-597 |#5|) $) 31 (|has| |#3| (-522)))) (-1796 (((-719) $) 45)) (-1810 (((-719) $) 44)) (-4027 (((-110) $ (-719)) 60)) (-3863 (((-530) $) 49)) (-3643 (((-530) $) 47)) (-2395 (((-597 |#3|) $) 69 (|has| $ (-6 -4269)))) (-4197 (((-110) |#3| $) 71 (-12 (|has| |#3| (-1027)) (|has| $ (-6 -4269))))) (-2307 (((-530) $) 48)) (-3909 (((-530) $) 46)) (-2263 (($ (-597 (-597 |#3|))) 54)) (-3583 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-2654 (((-597 (-597 |#3|)) $) 43)) (-2763 (((-110) $ (-719)) 59)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-522)))) (-1533 (((-110) (-1 (-110) |#3|) $) 66 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#3|) (-597 |#3|)) 75 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) 73 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 (-276 |#3|))) 72 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-2391 (((-110) $ $) 55)) (-3250 (((-110) $) 58)) (-3958 (($) 57)) (-1902 ((|#3| $ (-530) (-530)) 42) ((|#3| $ (-530) (-530) |#3|) 40)) (-1362 (((-110) $) 52)) (-2632 (((-719) |#3| $) 70 (-12 (|has| |#3| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#3|) $) 67 (|has| $ (-6 -4269)))) (-2579 (($ $) 56)) (-3350 ((|#5| $ (-530)) 38)) (-2366 (((-804) $) 11)) (-3889 (((-110) (-1 (-110) |#3|) $) 65 (|has| $ (-6 -4269)))) (-3589 (((-110) $) 50)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#3|) 35 (|has| |#3| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2267 (((-719) $) 62 (|has| $ (-6 -4269)))))
-(((-987 |#1| |#2| |#3| |#4| |#5|) (-133) (-719) (-719) (-984) (-221 |t#2| |t#3|) (-221 |t#1| |t#3|)) (T -987))
-((-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-2263 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *5))) (-4 *5 (-984)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-4040 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1362 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3053 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-2307 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-3643 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-3909 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))) (-1796 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))) (-1810 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))) (-2654 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-597 (-597 *5))))) (-1902 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))) (-3532 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))) (-1902 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *2 (-984)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)))) (-1325 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *2 *7)) (-4 *6 (-984)) (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))) (-3350 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *7 *2)) (-4 *6 (-984)) (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))) (-3217 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-3551 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-987 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-522)))) (-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-987 *3 *4 *2 *5 *6)) (-4 *2 (-984)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-344)))) (-1583 (*1 *1 *1) (-12 (-4 *1 (-987 *2 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))) (-2426 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-719)))) (-1791 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-719)))) (-2515 (*1 *2 *1) (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522)) (-5 *2 (-597 *7)))))
-(-13 (-109 |t#3| |t#3|) (-468 |t#3|) (-10 -8 (-6 -4269) (IF (|has| |t#3| (-162)) (-6 (-666 |t#3|)) |%noBranch|) (-15 -2263 ($ (-597 (-597 |t#3|)))) (-15 -4040 ((-110) $)) (-15 -1362 ((-110) $)) (-15 -3053 ((-110) $)) (-15 -3589 ((-110) $)) (-15 -3863 ((-530) $)) (-15 -2307 ((-530) $)) (-15 -3643 ((-530) $)) (-15 -3909 ((-530) $)) (-15 -1796 ((-719) $)) (-15 -1810 ((-719) $)) (-15 -2654 ((-597 (-597 |t#3|)) $)) (-15 -1902 (|t#3| $ (-530) (-530))) (-15 -3532 (|t#3| $ (-530) (-530))) (-15 -1902 (|t#3| $ (-530) (-530) |t#3|)) (-15 -1325 (|t#4| $ (-530))) (-15 -3350 (|t#5| $ (-530))) (-15 -3217 ($ (-1 |t#3| |t#3|) $)) (-15 -3217 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-522)) (-15 -3551 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-344)) (-15 -2364 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-289)) (-15 -1583 ($ $)) |%noBranch|) (IF (|has| |t#3| (-522)) (PROGN (-15 -2426 ((-719) $)) (-15 -1791 ((-719) $)) (-15 -2515 ((-597 |t#5|) $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-99) . T) ((-109 |#3| |#3|) . T) ((-128) . T) ((-571 (-804)) . T) ((-291 |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))) ((-468 |#3|) . T) ((-491 |#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))) ((-599 |#3|) . T) ((-666 |#3|) |has| |#3| (-162)) ((-990 |#3|) . T) ((-1027) . T) ((-1135) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3053 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-1583 (($ $) 43 (|has| |#3| (-289)))) (-1325 (((-223 |#2| |#3|) $ (-530)) 32)) (-1783 (($ (-637 |#3|)) 41)) (-2426 (((-719) $) 45 (|has| |#3| (-522)))) (-3532 ((|#3| $ (-530) (-530)) NIL)) (-3779 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-1791 (((-719) $) 47 (|has| |#3| (-522)))) (-2515 (((-597 (-223 |#1| |#3|)) $) 51 (|has| |#3| (-522)))) (-1796 (((-719) $) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#3|))) 27)) (-3583 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-2654 (((-597 (-597 |#3|)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-522)))) (-1533 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#3| $ (-530) (-530)) NIL) ((|#3| $ (-530) (-530) |#3|) NIL)) (-2488 (((-130)) 54 (|has| |#3| (-344)))) (-1362 (((-110) $) NIL)) (-2632 (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027)))) (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 63 (|has| |#3| (-572 (-506))))) (-3350 (((-223 |#1| |#3|) $ (-530)) 36)) (-2366 (((-804) $) 16) (((-637 |#3|) $) 38)) (-3889 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-3080 (($) 13 T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-988 |#1| |#2| |#3|) (-13 (-987 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-571 (-637 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (-15 -1783 ($ (-637 |#3|))) (-15 -2366 ((-637 |#3|) $)))) (-719) (-719) (-984)) (T -988))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-637 *5)) (-5 *1 (-988 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)) (-4 *5 (-984)))) (-1783 (*1 *1 *2) (-12 (-5 *2 (-637 *5)) (-4 *5 (-984)) (-5 *1 (-988 *3 *4 *5)) (-14 *3 (-719)) (-14 *4 (-719)))))
-(-13 (-987 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-571 (-637 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1188 |#3|)) |%noBranch|) (IF (|has| |#3| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|) (-15 -1783 ($ (-637 |#3|))) (-15 -2366 ((-637 |#3|) $))))
-((-2134 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3217 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
-(((-989 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3217 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2134 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-719) (-719) (-984) (-221 |#2| |#3|) (-221 |#1| |#3|) (-987 |#1| |#2| |#3| |#4| |#5|) (-984) (-221 |#2| |#7|) (-221 |#1| |#7|) (-987 |#1| |#2| |#7| |#8| |#9|)) (T -989))
-((-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-984)) (-4 *2 (-984)) (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2)) (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *12 (-987 *5 *6 *2 *10 *11)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-984)) (-4 *10 (-984)) (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *2 (-987 *5 *6 *10 *11 *12)) (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10)) (-4 *12 (-221 *5 *10)))))
-(-10 -7 (-15 -3217 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -2134 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ |#1|) 23)))
-(((-990 |#1|) (-133) (-991)) (T -990))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-991)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1981 (((-598 (-531)) $) 54)) (-2320 (($ (-598 (-531))) 62)) (-1317 (((-531) $) 40 (|has| (-531) (-289)))) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL (|has| (-531) (-770)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) 49) (((-3 (-1102) "failed") $) NIL (|has| (-531) (-977 (-1102)))) (((-3 (-388 (-531)) "failed") $) 47 (|has| (-531) (-977 (-531)))) (((-3 (-531) "failed") $) 49 (|has| (-531) (-977 (-531))))) (-2523 (((-531) $) NIL) (((-1102) $) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) NIL (|has| (-531) (-977 (-531)))) (((-531) $) NIL (|has| (-531) (-977 (-531))))) (-3650 (($ $ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| (-531) (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1381 (($) NIL (|has| (-531) (-516)))) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1311 (((-598 (-531)) $) 60)) (-1599 (((-110) $) NIL (|has| (-531) (-770)))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (|has| (-531) (-829 (-531)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (|has| (-531) (-829 (-360))))) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL)) (-1840 (((-531) $) 37)) (-2342 (((-3 $ "failed") $) NIL (|has| (-531) (-1078)))) (-2985 (((-110) $) NIL (|has| (-531) (-770)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-531) (-797)))) (-3261 (($ (-1 (-531) (-531)) $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL)) (-3788 (($) NIL (|has| (-531) (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-2322 (($ $) NIL (|has| (-531) (-289))) (((-388 (-531)) $) 42)) (-2984 (((-1083 (-531)) $) 59)) (-2638 (($ (-598 (-531)) (-598 (-531))) 63)) (-2943 (((-531) $) 53 (|has| (-531) (-516)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| (-531) (-852)))) (-2552 (((-399 $) $) NIL)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4115 (($ $ (-598 (-531)) (-598 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-531) (-531)) NIL (|has| (-531) (-291 (-531)))) (($ $ (-276 (-531))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-276 (-531)))) NIL (|has| (-531) (-291 (-531)))) (($ $ (-598 (-1102)) (-598 (-531))) NIL (|has| (-531) (-492 (-1102) (-531)))) (($ $ (-1102) (-531)) NIL (|has| (-531) (-492 (-1102) (-531))))) (-4100 (((-721) $) NIL)) (-1785 (($ $ (-531)) NIL (|has| (-531) (-268 (-531) (-531))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $) 11 (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2842 (($ $) NIL)) (-1853 (((-531) $) 39)) (-1914 (((-598 (-531)) $) 61)) (-3318 (((-835 (-531)) $) NIL (|has| (-531) (-573 (-835 (-531))))) (((-835 (-360)) $) NIL (|has| (-531) (-573 (-835 (-360))))) (((-507) $) NIL (|has| (-531) (-573 (-507)))) (((-360) $) NIL (|has| (-531) (-962))) (((-208) $) NIL (|has| (-531) (-962)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-531) (-852))))) (-2265 (((-806) $) 77) (($ (-531)) 43) (($ $) NIL) (($ (-388 (-531))) 20) (($ (-531)) 43) (($ (-1102)) NIL (|has| (-531) (-977 (-1102)))) (((-388 (-531)) $) 18)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-531) (-852))) (|has| (-531) (-138))))) (-2284 (((-721)) 9)) (-3831 (((-531) $) 51 (|has| (-531) (-516)))) (-2587 (((-110) $ $) NIL)) (-1620 (($ $) NIL (|has| (-531) (-770)))) (-3035 (($) 10 T CONST)) (-3050 (($) 12 T CONST)) (-4020 (($ $) NIL (|has| (-531) (-216))) (($ $ (-721)) NIL (|has| (-531) (-216))) (($ $ (-1102)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| (-531) (-843 (-1102)))) (($ $ (-1 (-531) (-531)) (-721)) NIL) (($ $ (-1 (-531) (-531))) NIL)) (-2207 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2148 (((-110) $ $) 14)) (-2195 (((-110) $ $) NIL (|has| (-531) (-797)))) (-2174 (((-110) $ $) 33 (|has| (-531) (-797)))) (-2263 (($ $ $) 29) (($ (-531) (-531)) 31)) (-2250 (($ $) 15) (($ $ $) 23)) (-2237 (($ $ $) 21)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 25) (($ $ $) 27) (($ $ (-388 (-531))) NIL) (($ (-388 (-531)) $) NIL) (($ (-531) $) 25) (($ $ (-531)) NIL)))
+(((-945 |#1|) (-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -1981 ((-598 (-531)) $)) (-15 -2984 ((-1083 (-531)) $)) (-15 -1311 ((-598 (-531)) $)) (-15 -1914 ((-598 (-531)) $)) (-15 -2320 ($ (-598 (-531)))) (-15 -2638 ($ (-598 (-531)) (-598 (-531)))))) (-531)) (T -945))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-2322 (*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-1981 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-2984 (*1 *2 *1) (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-1311 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-1914 (*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-2320 (*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))) (-2638 (*1 *1 *2 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))))
+(-13 (-934 (-531)) (-10 -8 (-15 -2265 ((-388 (-531)) $)) (-15 -2322 ((-388 (-531)) $)) (-15 -1981 ((-598 (-531)) $)) (-15 -2984 ((-1083 (-531)) $)) (-15 -1311 ((-598 (-531)) $)) (-15 -1914 ((-598 (-531)) $)) (-15 -2320 ($ (-598 (-531)))) (-15 -2638 ($ (-598 (-531)) (-598 (-531))))))
+((-3889 (((-51) (-388 (-531)) (-531)) 9)))
+(((-946) (-10 -7 (-15 -3889 ((-51) (-388 (-531)) (-531))))) (T -946))
+((-3889 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-531))) (-5 *4 (-531)) (-5 *2 (-51)) (-5 *1 (-946)))))
+(-10 -7 (-15 -3889 ((-51) (-388 (-531)) (-531))))
+((-3006 (((-531)) 13)) (-3991 (((-531)) 16)) (-3295 (((-1189) (-531)) 15)) (-3954 (((-531) (-531)) 17) (((-531)) 12)))
+(((-947) (-10 -7 (-15 -3954 ((-531))) (-15 -3006 ((-531))) (-15 -3954 ((-531) (-531))) (-15 -3295 ((-1189) (-531))) (-15 -3991 ((-531))))) (T -947))
+((-3991 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))) (-3295 (*1 *2 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-947)))) (-3954 (*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))) (-3006 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))) (-3954 (*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))))
+(-10 -7 (-15 -3954 ((-531))) (-15 -3006 ((-531))) (-15 -3954 ((-531) (-531))) (-15 -3295 ((-1189) (-531))) (-15 -3991 ((-531))))
+((-4184 (((-399 |#1|) |#1|) 41)) (-2552 (((-399 |#1|) |#1|) 40)))
+(((-948 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1|))) (-1160 (-388 (-531)))) (T -948))
+((-4184 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-948 *3)) (-4 *3 (-1160 (-388 (-531)))))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-948 *3)) (-4 *3 (-1160 (-388 (-531)))))))
+(-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1|)))
+((-1609 (((-3 (-388 (-531)) "failed") |#1|) 15)) (-3004 (((-110) |#1|) 14)) (-2727 (((-388 (-531)) |#1|) 10)))
+(((-949 |#1|) (-10 -7 (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|))) (-977 (-388 (-531)))) (T -949))
+((-1609 (*1 *2 *3) (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-949 *3)) (-4 *3 (-977 *2)))) (-3004 (*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-949 *3)) (-4 *3 (-977 (-388 (-531)))))) (-2727 (*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-949 *3)) (-4 *3 (-977 *2)))))
+(-10 -7 (-15 -2727 ((-388 (-531)) |#1|)) (-15 -3004 ((-110) |#1|)) (-15 -1609 ((-3 (-388 (-531)) "failed") |#1|)))
+((-2454 ((|#2| $ "value" |#2|) 12)) (-1785 ((|#2| $ "value") 10)) (-2910 (((-110) $ $) 18)))
+(((-950 |#1| |#2|) (-10 -8 (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -2910 ((-110) |#1| |#1|)) (-15 -1785 (|#2| |#1| "value"))) (-951 |#2|) (-1138)) (T -950))
+NIL
+(-10 -8 (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -2910 ((-110) |#1| |#1|)) (-15 -1785 (|#2| |#1| "value")))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) 7 T CONST)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-951 |#1|) (-133) (-1138)) (T -951))
+((-3495 (*1 *2 *1) (-12 (-4 *3 (-1138)) (-5 *2 (-598 *1)) (-4 *1 (-951 *3)))) (-1555 (*1 *2 *1) (-12 (-4 *3 (-1138)) (-5 *2 (-598 *1)) (-4 *1 (-951 *3)))) (-2672 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-3482 (*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-951 *2)) (-4 *2 (-1138)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-2132 (*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-598 *3)))) (-2357 (*1 *2 *1 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-531)))) (-2910 (*1 *2 *1 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-1478 (*1 *2 *1 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-2713 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *1)) (|has| *1 (-6 -4274)) (-4 *1 (-951 *3)) (-4 *3 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4274)) (-4 *1 (-951 *2)) (-4 *2 (-1138)))) (-2039 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-951 *2)) (-4 *2 (-1138)))))
+(-13 (-468 |t#1|) (-10 -8 (-15 -3495 ((-598 $) $)) (-15 -1555 ((-598 $) $)) (-15 -2672 ((-110) $)) (-15 -3482 (|t#1| $)) (-15 -1785 (|t#1| $ "value")) (-15 -2930 ((-110) $)) (-15 -2132 ((-598 |t#1|) $)) (-15 -2357 ((-531) $ $)) (IF (|has| |t#1| (-1030)) (PROGN (-15 -2910 ((-110) $ $)) (-15 -1478 ((-110) $ $))) |%noBranch|) (IF (|has| $ (-6 -4274)) (PROGN (-15 -2713 ($ $ (-598 $))) (-15 -2454 (|t#1| $ "value" |t#1|)) (-15 -2039 (|t#1| $ |t#1|))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-2563 (($ $) 9) (($ $ (-864)) 43) (($ (-388 (-531))) 13) (($ (-531)) 15)) (-2738 (((-3 $ "failed") (-1098 $) (-864) (-806)) 23) (((-3 $ "failed") (-1098 $) (-864)) 28)) (-2249 (($ $ (-531)) 49)) (-2284 (((-721)) 17)) (-2054 (((-598 $) (-1098 $)) NIL) (((-598 $) (-1098 (-388 (-531)))) 54) (((-598 $) (-1098 (-531))) 59) (((-598 $) (-895 $)) 63) (((-598 $) (-895 (-388 (-531)))) 67) (((-598 $) (-895 (-531))) 71)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL) (($ $ (-388 (-531))) 47)))
+(((-952 |#1|) (-10 -8 (-15 -2563 (|#1| (-531))) (-15 -2563 (|#1| (-388 (-531)))) (-15 -2563 (|#1| |#1| (-864))) (-15 -2054 ((-598 |#1|) (-895 (-531)))) (-15 -2054 ((-598 |#1|) (-895 (-388 (-531))))) (-15 -2054 ((-598 |#1|) (-895 |#1|))) (-15 -2054 ((-598 |#1|) (-1098 (-531)))) (-15 -2054 ((-598 |#1|) (-1098 (-388 (-531))))) (-15 -2054 ((-598 |#1|) (-1098 |#1|))) (-15 -2738 ((-3 |#1| "failed") (-1098 |#1|) (-864))) (-15 -2738 ((-3 |#1| "failed") (-1098 |#1|) (-864) (-806))) (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2249 (|#1| |#1| (-531))) (-15 -2563 (|#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2284 ((-721))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864)))) (-953)) (T -952))
+((-2284 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-952 *3)) (-4 *3 (-953)))))
+(-10 -8 (-15 -2563 (|#1| (-531))) (-15 -2563 (|#1| (-388 (-531)))) (-15 -2563 (|#1| |#1| (-864))) (-15 -2054 ((-598 |#1|) (-895 (-531)))) (-15 -2054 ((-598 |#1|) (-895 (-388 (-531))))) (-15 -2054 ((-598 |#1|) (-895 |#1|))) (-15 -2054 ((-598 |#1|) (-1098 (-531)))) (-15 -2054 ((-598 |#1|) (-1098 (-388 (-531))))) (-15 -2054 ((-598 |#1|) (-1098 |#1|))) (-15 -2738 ((-3 |#1| "failed") (-1098 |#1|) (-864))) (-15 -2738 ((-3 |#1| "failed") (-1098 |#1|) (-864) (-806))) (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2249 (|#1| |#1| (-531))) (-15 -2563 (|#1| |#1|)) (-15 ** (|#1| |#1| (-531))) (-15 -2284 ((-721))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 87)) (-3258 (($ $) 88)) (-2921 (((-110) $) 90)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 107)) (-2956 (((-399 $) $) 108)) (-2563 (($ $) 71) (($ $ (-864)) 57) (($ (-388 (-531))) 56) (($ (-531)) 55)) (-2760 (((-110) $ $) 98)) (-3459 (((-531) $) 124)) (-4082 (($) 17 T CONST)) (-2738 (((-3 $ "failed") (-1098 $) (-864) (-806)) 65) (((-3 $ "failed") (-1098 $) (-864)) 64)) (-3154 (((-3 (-531) "failed") $) 83 (|has| (-388 (-531)) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 81 (|has| (-388 (-531)) (-977 (-388 (-531))))) (((-3 (-388 (-531)) "failed") $) 79)) (-2523 (((-531) $) 84 (|has| (-388 (-531)) (-977 (-531)))) (((-388 (-531)) $) 82 (|has| (-388 (-531)) (-977 (-388 (-531))))) (((-388 (-531)) $) 78)) (-3401 (($ $ (-806)) 54)) (-4230 (($ $ (-806)) 53)) (-3650 (($ $ $) 102)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 101)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 96)) (-2534 (((-110) $) 109)) (-1599 (((-110) $) 122)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 70)) (-2985 (((-110) $) 123)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 105)) (-4103 (($ $ $) 121)) (-1241 (($ $ $) 120)) (-1722 (((-3 (-1098 $) "failed") $) 66)) (-2334 (((-3 (-806) "failed") $) 68)) (-1808 (((-3 (-1098 $) "failed") $) 67)) (-2078 (($ (-598 $)) 94) (($ $ $) 93)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 110)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 95)) (-2109 (($ (-598 $)) 92) (($ $ $) 91)) (-2552 (((-399 $) $) 106)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 104) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 103)) (-3609 (((-3 $ "failed") $ $) 86)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 97)) (-4100 (((-721) $) 99)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 100)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 114) (($ $) 85) (($ (-388 (-531))) 80) (($ (-531)) 77) (($ (-388 (-531))) 74)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 89)) (-4148 (((-388 (-531)) $ $) 52)) (-2054 (((-598 $) (-1098 $)) 63) (((-598 $) (-1098 (-388 (-531)))) 62) (((-598 $) (-1098 (-531))) 61) (((-598 $) (-895 $)) 60) (((-598 $) (-895 (-388 (-531)))) 59) (((-598 $) (-895 (-531))) 58)) (-1620 (($ $) 125)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 118)) (-2184 (((-110) $ $) 117)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 119)) (-2174 (((-110) $ $) 116)) (-2263 (($ $ $) 115)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 111) (($ $ (-388 (-531))) 69)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ (-388 (-531)) $) 113) (($ $ (-388 (-531))) 112) (($ (-531) $) 76) (($ $ (-531)) 75) (($ (-388 (-531)) $) 73) (($ $ (-388 (-531))) 72)))
+(((-953) (-133)) (T -953))
+((-2563 (*1 *1 *1) (-4 *1 (-953))) (-2334 (*1 *2 *1) (|partial| -12 (-4 *1 (-953)) (-5 *2 (-806)))) (-1808 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098 *1)) (-4 *1 (-953)))) (-1722 (*1 *2 *1) (|partial| -12 (-5 *2 (-1098 *1)) (-4 *1 (-953)))) (-2738 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1098 *1)) (-5 *3 (-864)) (-5 *4 (-806)) (-4 *1 (-953)))) (-2738 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1098 *1)) (-5 *3 (-864)) (-4 *1 (-953)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-953)) (-5 *2 (-598 *1)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1098 (-388 (-531)))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-1098 (-531))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-953)) (-5 *2 (-598 *1)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) (-2054 (*1 *2 *3) (-12 (-5 *3 (-895 (-531))) (-5 *2 (-598 *1)) (-4 *1 (-953)))) (-2563 (*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-864)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-4 *1 (-953)))) (-2563 (*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-953)))) (-3401 (*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-806)))) (-4230 (*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-806)))) (-4148 (*1 *2 *1 *1) (-12 (-4 *1 (-953)) (-5 *2 (-388 (-531))))))
+(-13 (-140) (-795) (-162) (-344) (-392 (-388 (-531))) (-37 (-531)) (-37 (-388 (-531))) (-943) (-10 -8 (-15 -2334 ((-3 (-806) "failed") $)) (-15 -1808 ((-3 (-1098 $) "failed") $)) (-15 -1722 ((-3 (-1098 $) "failed") $)) (-15 -2738 ((-3 $ "failed") (-1098 $) (-864) (-806))) (-15 -2738 ((-3 $ "failed") (-1098 $) (-864))) (-15 -2054 ((-598 $) (-1098 $))) (-15 -2054 ((-598 $) (-1098 (-388 (-531))))) (-15 -2054 ((-598 $) (-1098 (-531)))) (-15 -2054 ((-598 $) (-895 $))) (-15 -2054 ((-598 $) (-895 (-388 (-531))))) (-15 -2054 ((-598 $) (-895 (-531)))) (-15 -2563 ($ $ (-864))) (-15 -2563 ($ $)) (-15 -2563 ($ (-388 (-531)))) (-15 -2563 ($ (-531))) (-15 -3401 ($ $ (-806))) (-15 -4230 ($ $ (-806))) (-15 -4148 ((-388 (-531)) $ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 #1=(-531)) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 #1# #1#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-392 (-388 (-531))) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 #1#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 #1#) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-795) . T) ((-797) . T) ((-863) . T) ((-943) . T) ((-977 (-388 (-531))) . T) ((-977 (-531)) |has| (-388 (-531)) (-977 (-531))) ((-992 #0#) . T) ((-992 #1#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T))
+((-1313 (((-2 (|:| |ans| |#2|) (|:| -3157 |#2|) (|:| |sol?| (-110))) (-531) |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 66)))
+(((-954 |#1| |#2|) (-10 -7 (-15 -1313 ((-2 (|:| |ans| |#2|) (|:| -3157 |#2|) (|:| |sol?| (-110))) (-531) |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-27) (-411 |#1|))) (T -954))
+((-1313 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1102)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-598 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1124) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-797) (-140) (-977 *3) (-594 *3))) (-5 *3 (-531)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3157 *4) (|:| |sol?| (-110)))) (-5 *1 (-954 *8 *4)))))
+(-10 -7 (-15 -1313 ((-2 (|:| |ans| |#2|) (|:| -3157 |#2|) (|:| |sol?| (-110))) (-531) |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3160 (((-3 (-598 |#2|) "failed") (-531) |#2| |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) 53)))
+(((-955 |#1| |#2|) (-10 -7 (-15 -3160 ((-3 (-598 |#2|) "failed") (-531) |#2| |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)))) (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))) (-13 (-1124) (-27) (-411 |#1|))) (T -955))
+((-3160 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1102)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-598 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1124) (-27) (-411 *8))) (-4 *8 (-13 (-432) (-797) (-140) (-977 *3) (-594 *3))) (-5 *3 (-531)) (-5 *2 (-598 *4)) (-5 *1 (-955 *8 *4)))))
+(-10 -7 (-15 -3160 ((-3 (-598 |#2|) "failed") (-531) |#2| |#2| |#2| (-1102) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-598 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (-598 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|))))
+((-3108 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2723 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-531)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-531) (-1 |#2| |#2|)) 30)) (-2497 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 58)) (-3749 (((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|)) 63)))
+(((-956 |#1| |#2|) (-10 -7 (-15 -2497 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3749 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -3108 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2723 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-531)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-531) (-1 |#2| |#2|)))) (-13 (-344) (-140) (-977 (-531))) (-1160 |#1|)) (T -956))
+((-3108 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1160 *6)) (-4 *6 (-13 (-344) (-140) (-977 *4))) (-5 *4 (-531)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110)))) (|:| -2723 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-956 *6 *3)))) (-3749 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110)))) (-5 *1 (-956 *4 *5)) (-5 *3 (-388 *5)))) (-2497 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6)) (|:| -4073 *6))) (-5 *1 (-956 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -2497 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |c| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -3749 ((-2 (|:| |ans| (-388 |#2|)) (|:| |nosol| (-110))) (-388 |#2|) (-388 |#2|))) (-15 -3108 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-110)))) (|:| -2723 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-531)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-531) (-1 |#2| |#2|))))
+((-2637 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|)) 22)) (-2114 (((-3 (-598 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)) 33)))
+(((-957 |#1| |#2|) (-10 -7 (-15 -2637 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2114 ((-3 (-598 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|)))) (-13 (-344) (-140) (-977 (-531))) (-1160 |#1|)) (T -957))
+((-2114 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4)) (-5 *2 (-598 (-388 *5))) (-5 *1 (-957 *4 *5)) (-5 *3 (-388 *5)))) (-2637 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6) (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4073 *6))) (-5 *1 (-957 *5 *6)) (-5 *3 (-388 *6)))))
+(-10 -7 (-15 -2637 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-388 |#2|)) (|:| |h| |#2|) (|:| |c1| (-388 |#2|)) (|:| |c2| (-388 |#2|)) (|:| -4073 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|) (-1 |#2| |#2|))) (-15 -2114 ((-3 (-598 (-388 |#2|)) "failed") (-388 |#2|) (-388 |#2|) (-388 |#2|))))
+((-3190 (((-1 |#1|) (-598 (-2 (|:| -3482 |#1|) (|:| -3449 (-531))))) 37)) (-2014 (((-1 |#1|) (-1032 |#1|)) 45)) (-1565 (((-1 |#1|) (-1184 |#1|) (-1184 (-531)) (-531)) 34)))
+(((-958 |#1|) (-10 -7 (-15 -2014 ((-1 |#1|) (-1032 |#1|))) (-15 -3190 ((-1 |#1|) (-598 (-2 (|:| -3482 |#1|) (|:| -3449 (-531)))))) (-15 -1565 ((-1 |#1|) (-1184 |#1|) (-1184 (-531)) (-531)))) (-1030)) (T -958))
+((-1565 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1184 *6)) (-5 *4 (-1184 (-531))) (-5 *5 (-531)) (-4 *6 (-1030)) (-5 *2 (-1 *6)) (-5 *1 (-958 *6)))) (-3190 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -3482 *4) (|:| -3449 (-531))))) (-4 *4 (-1030)) (-5 *2 (-1 *4)) (-5 *1 (-958 *4)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1032 *4)) (-4 *4 (-1030)) (-5 *2 (-1 *4)) (-5 *1 (-958 *4)))))
+(-10 -7 (-15 -2014 ((-1 |#1|) (-1032 |#1|))) (-15 -3190 ((-1 |#1|) (-598 (-2 (|:| -3482 |#1|) (|:| -3449 (-531)))))) (-15 -1565 ((-1 |#1|) (-1184 |#1|) (-1184 (-531)) (-531))))
+((-3617 (((-721) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23)))
+(((-959 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3617 ((-721) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-344) (-1160 |#1|) (-1160 (-388 |#2|)) (-323 |#1| |#2| |#3|) (-13 (-349) (-344))) (T -959))
+((-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344)) (-4 *7 (-1160 *6)) (-4 *4 (-1160 (-388 *7))) (-4 *8 (-323 *6 *7 *4)) (-4 *9 (-13 (-349) (-344))) (-5 *2 (-721)) (-5 *1 (-959 *6 *7 *4 *8 *9)))))
+(-10 -7 (-15 -3617 ((-721) (-317 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|))))
+((-2522 (((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 31) (((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531))) 28)) (-2085 (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531))) 33) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531))) 29) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 32) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|) 27)) (-2553 (((-598 (-388 (-531))) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) 19)) (-1357 (((-388 (-531)) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 16)))
+(((-960 |#1|) (-10 -7 (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|)) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531)))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -1357 ((-388 (-531)) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2553 ((-598 (-388 (-531))) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))))) (-1160 (-531))) (T -960))
+((-2553 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *2 (-598 (-388 (-531)))) (-5 *1 (-960 *4)) (-4 *4 (-1160 (-531))))) (-1357 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *2 (-388 (-531))) (-5 *1 (-960 *4)) (-4 *4 (-1160 (-531))))) (-2522 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))))) (-2522 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *4 (-388 (-531))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))))) (-2085 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-531))) (-5 *2 (-598 (-2 (|:| -3144 *5) (|:| -3157 *5)))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) (-5 *4 (-2 (|:| -3144 *5) (|:| -3157 *5))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) (-5 *4 (-388 (-531))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) (-5 *4 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-2085 (*1 *2 *3) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))))))
+(-10 -7 (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|)) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531)))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -1357 ((-388 (-531)) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2553 ((-598 (-388 (-531))) (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))))
+((-2522 (((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 35) (((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531))) 32)) (-2085 (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531))) 30) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531))) 26) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) 28) (((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|) 24)))
+(((-961 |#1|) (-10 -7 (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|)) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531)))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-1160 (-388 (-531)))) (T -961))
+((-2522 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531)))))) (-2522 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) (-5 *4 (-388 (-531))) (-5 *1 (-961 *3)) (-4 *3 (-1160 *4)))) (-2085 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-388 (-531))) (-5 *2 (-598 (-2 (|:| -3144 *5) (|:| -3157 *5)))) (-5 *1 (-961 *3)) (-4 *3 (-1160 *5)) (-5 *4 (-2 (|:| -3144 *5) (|:| -3157 *5))))) (-2085 (*1 *2 *3 *4) (-12 (-5 *4 (-388 (-531))) (-5 *2 (-598 (-2 (|:| -3144 *4) (|:| -3157 *4)))) (-5 *1 (-961 *3)) (-4 *3 (-1160 *4)))) (-2085 (*1 *2 *3 *4) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531)))) (-5 *4 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))) (-2085 (*1 *2 *3) (-12 (-5 *2 (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531)))))))
+(-10 -7 (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1|)) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-388 (-531)))) (-15 -2085 ((-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-388 (-531)))) (-15 -2522 ((-3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) "failed") |#1| (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))) (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))))
+((-3318 (((-208) $) 6) (((-360) $) 9)))
+(((-962) (-133)) (T -962))
+NIL
+(-13 (-573 (-208)) (-573 (-360)))
+(((-573 (-208)) . T) ((-573 (-360)) . T))
+((-1871 (((-598 (-360)) (-895 (-531)) (-360)) 28) (((-598 (-360)) (-895 (-388 (-531))) (-360)) 27)) (-1489 (((-598 (-598 (-360))) (-598 (-895 (-531))) (-598 (-1102)) (-360)) 37)))
+(((-963) (-10 -7 (-15 -1871 ((-598 (-360)) (-895 (-388 (-531))) (-360))) (-15 -1871 ((-598 (-360)) (-895 (-531)) (-360))) (-15 -1489 ((-598 (-598 (-360))) (-598 (-895 (-531))) (-598 (-1102)) (-360))))) (T -963))
+((-1489 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-598 (-1102))) (-5 *2 (-598 (-598 (-360)))) (-5 *1 (-963)) (-5 *5 (-360)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-531))) (-5 *2 (-598 (-360))) (-5 *1 (-963)) (-5 *4 (-360)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *2 (-598 (-360))) (-5 *1 (-963)) (-5 *4 (-360)))))
+(-10 -7 (-15 -1871 ((-598 (-360)) (-895 (-388 (-531))) (-360))) (-15 -1871 ((-598 (-360)) (-895 (-531)) (-360))) (-15 -1489 ((-598 (-598 (-360))) (-598 (-895 (-531))) (-598 (-1102)) (-360))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 70)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2563 (($ $) NIL) (($ $ (-864)) NIL) (($ (-388 (-531))) NIL) (($ (-531)) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) 65)) (-4082 (($) NIL T CONST)) (-2738 (((-3 $ "failed") (-1098 $) (-864) (-806)) NIL) (((-3 $ "failed") (-1098 $) (-864)) 50)) (-3154 (((-3 (-388 (-531)) "failed") $) NIL (|has| (-388 (-531)) (-977 (-388 (-531))))) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#1| "failed") $) 107) (((-3 (-531) "failed") $) NIL (-1435 (|has| (-388 (-531)) (-977 (-531))) (|has| |#1| (-977 (-531)))))) (-2523 (((-388 (-531)) $) 15 (|has| (-388 (-531)) (-977 (-388 (-531))))) (((-388 (-531)) $) 15) ((|#1| $) 108) (((-531) $) NIL (-1435 (|has| (-388 (-531)) (-977 (-531))) (|has| |#1| (-977 (-531)))))) (-3401 (($ $ (-806)) 42)) (-4230 (($ $ (-806)) 43)) (-3650 (($ $ $) NIL)) (-2613 (((-388 (-531)) $ $) 19)) (-3622 (((-3 $ "failed") $) 83)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-1599 (((-110) $) 61)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL)) (-2985 (((-110) $) 64)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-1722 (((-3 (-1098 $) "failed") $) 78)) (-2334 (((-3 (-806) "failed") $) 77)) (-1808 (((-3 (-1098 $) "failed") $) 75)) (-4195 (((-3 (-996 $ (-1098 $)) "failed") $) 73)) (-2078 (($ (-598 $)) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 84)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ (-598 $)) NIL) (($ $ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-2265 (((-806) $) 82) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ $) 58) (($ (-388 (-531))) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ |#1|) 110)) (-2284 (((-721)) NIL)) (-2587 (((-110) $ $) NIL)) (-4148 (((-388 (-531)) $ $) 25)) (-2054 (((-598 $) (-1098 $)) 56) (((-598 $) (-1098 (-388 (-531)))) NIL) (((-598 $) (-1098 (-531))) NIL) (((-598 $) (-895 $)) NIL) (((-598 $) (-895 (-388 (-531)))) NIL) (((-598 $) (-895 (-531))) NIL)) (-3122 (($ (-996 $ (-1098 $)) (-806)) 41)) (-1620 (($ $) 20)) (-3035 (($) 29 T CONST)) (-3050 (($) 35 T CONST)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 71)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 22)) (-2263 (($ $ $) 33)) (-2250 (($ $) 34) (($ $ $) 69)) (-2237 (($ $ $) 103)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL) (($ $ (-388 (-531))) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 91) (($ $ $) 96) (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ (-531) $) 91) (($ $ (-531)) NIL) (($ (-388 (-531)) $) NIL) (($ $ (-388 (-531))) NIL) (($ |#1| $) 95) (($ $ |#1|) NIL)))
+(((-964 |#1|) (-13 (-953) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -3122 ($ (-996 $ (-1098 $)) (-806))) (-15 -4195 ((-3 (-996 $ (-1098 $)) "failed") $)) (-15 -2613 ((-388 (-531)) $ $)))) (-13 (-795) (-344) (-962))) (T -964))
+((-3122 (*1 *1 *2 *3) (-12 (-5 *2 (-996 (-964 *4) (-1098 (-964 *4)))) (-5 *3 (-806)) (-5 *1 (-964 *4)) (-4 *4 (-13 (-795) (-344) (-962))))) (-4195 (*1 *2 *1) (|partial| -12 (-5 *2 (-996 (-964 *3) (-1098 (-964 *3)))) (-5 *1 (-964 *3)) (-4 *3 (-13 (-795) (-344) (-962))))) (-2613 (*1 *2 *1 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-964 *3)) (-4 *3 (-13 (-795) (-344) (-962))))))
+(-13 (-953) (-392 |#1|) (-37 |#1|) (-10 -8 (-15 -3122 ($ (-996 $ (-1098 $)) (-806))) (-15 -4195 ((-3 (-996 $ (-1098 $)) "failed") $)) (-15 -2613 ((-388 (-531)) $ $))))
+((-2291 (((-2 (|:| -2723 |#2|) (|:| -4155 (-598 |#1|))) |#2| (-598 |#1|)) 20) ((|#2| |#2| |#1|) 15)))
+(((-965 |#1| |#2|) (-10 -7 (-15 -2291 (|#2| |#2| |#1|)) (-15 -2291 ((-2 (|:| -2723 |#2|) (|:| -4155 (-598 |#1|))) |#2| (-598 |#1|)))) (-344) (-609 |#1|)) (T -965))
+((-2291 (*1 *2 *3 *4) (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2723 *3) (|:| -4155 (-598 *5)))) (-5 *1 (-965 *5 *3)) (-5 *4 (-598 *5)) (-4 *3 (-609 *5)))) (-2291 (*1 *2 *2 *3) (-12 (-4 *3 (-344)) (-5 *1 (-965 *3 *2)) (-4 *2 (-609 *3)))))
+(-10 -7 (-15 -2291 (|#2| |#2| |#1|)) (-15 -2291 ((-2 (|:| -2723 |#2|) (|:| -4155 (-598 |#1|))) |#2| (-598 |#1|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3359 ((|#1| $ |#1|) 14)) (-2454 ((|#1| $ |#1|) 12)) (-1683 (($ |#1|) 10)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1785 ((|#1| $) 11)) (-3686 ((|#1| $) 13)) (-2265 (((-806) $) 21 (|has| |#1| (-1030)))) (-2148 (((-110) $ $) 9)))
+(((-966 |#1|) (-13 (-1138) (-10 -8 (-15 -1683 ($ |#1|)) (-15 -1785 (|#1| $)) (-15 -2454 (|#1| $ |#1|)) (-15 -3686 (|#1| $)) (-15 -3359 (|#1| $ |#1|)) (-15 -2148 ((-110) $ $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) (-1138)) (T -966))
+((-1683 (*1 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-2454 (*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-3686 (*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-3359 (*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))) (-2148 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-966 *3)) (-4 *3 (-1138)))))
+(-13 (-1138) (-10 -8 (-15 -1683 ($ |#1|)) (-15 -1785 (|#1| $)) (-15 -2454 (|#1| $ |#1|)) (-15 -3686 (|#1| $)) (-15 -3359 (|#1| $ |#1|)) (-15 -2148 ((-110) $ $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) NIL)) (-2855 (((-598 $) (-598 |#4|)) 105) (((-598 $) (-598 |#4|) (-110)) 106) (((-598 $) (-598 |#4|) (-110) (-110)) 104) (((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110)) 107)) (-2695 (((-598 |#3|) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3911 ((|#4| |#4| $) NIL)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 99)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 54)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) 26 (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2339 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) NIL)) (-2523 (($ (-598 |#4|)) NIL)) (-3062 (((-3 $ "failed") $) 39)) (-3785 ((|#4| |#4| $) 57)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 73 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2551 ((|#4| |#4| $) NIL)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) NIL)) (-2950 (((-110) |#4| $) NIL)) (-1428 (((-110) |#4| $) NIL)) (-2213 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1988 (((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110)) 119)) (-2227 (((-598 |#4|) $) 16 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4075 ((|#3| $) 33)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 17 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2680 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 21)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) NIL)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 97)) (-2309 (((-3 |#4| "failed") $) 37)) (-2918 (((-598 $) |#4| $) 80)) (-1568 (((-3 (-110) (-598 $)) |#4| $) NIL)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 90) (((-110) |#4| $) 52)) (-1301 (((-598 $) |#4| $) 102) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) 103) (((-598 $) |#4| (-598 $)) NIL)) (-1434 (((-598 $) (-598 |#4|) (-110) (-110) (-110)) 114)) (-2106 (($ |#4| $) 70) (($ (-598 |#4|) $) 71) (((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 67)) (-1979 (((-598 |#4|) $) NIL)) (-2009 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1279 ((|#4| |#4| $) NIL)) (-1744 (((-110) $ $) NIL)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3044 ((|#4| |#4| $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 |#4| "failed") $) 35)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3032 (((-3 $ "failed") $ |#4|) 48)) (-1846 (($ $ |#4|) NIL) (((-598 $) |#4| $) 82) (((-598 $) |#4| (-598 $)) NIL) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) 77)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 15)) (-3781 (($) 13)) (-2012 (((-721) $) NIL)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) 12)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 20)) (-3382 (($ $ |#3|) 42)) (-2021 (($ $ |#3|) 44)) (-2862 (($ $) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) 31) (((-598 |#4|) $) 40)) (-3873 (((-721) $) NIL (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) NIL)) (-3777 (((-598 $) |#4| $) 79) (((-598 $) |#4| (-598 $)) NIL) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) NIL)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) NIL)) (-3695 (((-110) |#4| $) NIL)) (-1697 (((-110) |#3| $) 53)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-967 |#1| |#2| |#3| |#4|) (-13 (-1005 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2106 ((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110))) (-15 -1434 ((-598 $) (-598 |#4|) (-110) (-110) (-110))) (-15 -1988 ((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110))))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -967))
+((-2106 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-967 *5 *6 *7 *3))) (-5 *1 (-967 *5 *6 *7 *3)) (-4 *3 (-1000 *5 *6 *7)))) (-2855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-2855 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-1434 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8)))) (-1988 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-598 *8)) (|:| |towers| (-598 (-967 *5 *6 *7 *8))))) (-5 *1 (-967 *5 *6 *7 *8)) (-5 *3 (-598 *8)))))
+(-13 (-1005 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2106 ((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110))) (-15 -1434 ((-598 $) (-598 |#4|) (-110) (-110) (-110))) (-15 -1988 ((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110)))))
+((-3198 (((-598 (-639 |#1|)) (-598 (-639 |#1|))) 58) (((-639 |#1|) (-639 |#1|)) 57) (((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-598 (-639 |#1|))) 56) (((-639 |#1|) (-639 |#1|) (-639 |#1|)) 53)) (-3499 (((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864)) 52) (((-639 |#1|) (-639 |#1|) (-864)) 51)) (-1903 (((-598 (-639 (-531))) (-598 (-598 (-531)))) 68) (((-598 (-639 (-531))) (-598 (-848 (-531))) (-531)) 67) (((-639 (-531)) (-598 (-531))) 64) (((-639 (-531)) (-848 (-531)) (-531)) 63)) (-3479 (((-639 (-895 |#1|)) (-721)) 81)) (-3674 (((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864)) 37 (|has| |#1| (-6 (-4275 "*")))) (((-639 |#1|) (-639 |#1|) (-864)) 35 (|has| |#1| (-6 (-4275 "*"))))))
+(((-968 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4275 "*"))) (-15 -3674 ((-639 |#1|) (-639 |#1|) (-864))) |%noBranch|) (IF (|has| |#1| (-6 (-4275 "*"))) (-15 -3674 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864))) |%noBranch|) (-15 -3479 ((-639 (-895 |#1|)) (-721))) (-15 -3499 ((-639 |#1|) (-639 |#1|) (-864))) (-15 -3499 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864))) (-15 -3198 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -3198 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -3198 ((-639 |#1|) (-639 |#1|))) (-15 -3198 ((-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -1903 ((-639 (-531)) (-848 (-531)) (-531))) (-15 -1903 ((-639 (-531)) (-598 (-531)))) (-15 -1903 ((-598 (-639 (-531))) (-598 (-848 (-531))) (-531))) (-15 -1903 ((-598 (-639 (-531))) (-598 (-598 (-531)))))) (-986)) (T -968))
+((-1903 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-531)))) (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-968 *4)) (-4 *4 (-986)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-848 (-531)))) (-5 *4 (-531)) (-5 *2 (-598 (-639 *4))) (-5 *1 (-968 *5)) (-4 *5 (-986)))) (-1903 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-968 *4)) (-4 *4 (-986)))) (-1903 (*1 *2 *3 *4) (-12 (-5 *3 (-848 (-531))) (-5 *4 (-531)) (-5 *2 (-639 *4)) (-5 *1 (-968 *5)) (-4 *5 (-986)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-598 (-639 *3))) (-4 *3 (-986)) (-5 *1 (-968 *3)))) (-3198 (*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-968 *3)))) (-3198 (*1 *2 *2 *2) (-12 (-5 *2 (-598 (-639 *3))) (-4 *3 (-986)) (-5 *1 (-968 *3)))) (-3198 (*1 *2 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-968 *3)))) (-3499 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-639 *4))) (-5 *3 (-864)) (-4 *4 (-986)) (-5 *1 (-968 *4)))) (-3499 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-864)) (-4 *4 (-986)) (-5 *1 (-968 *4)))) (-3479 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-639 (-895 *4))) (-5 *1 (-968 *4)) (-4 *4 (-986)))) (-3674 (*1 *2 *2 *3) (-12 (-5 *2 (-598 (-639 *4))) (-5 *3 (-864)) (|has| *4 (-6 (-4275 "*"))) (-4 *4 (-986)) (-5 *1 (-968 *4)))) (-3674 (*1 *2 *2 *3) (-12 (-5 *2 (-639 *4)) (-5 *3 (-864)) (|has| *4 (-6 (-4275 "*"))) (-4 *4 (-986)) (-5 *1 (-968 *4)))))
+(-10 -7 (IF (|has| |#1| (-6 (-4275 "*"))) (-15 -3674 ((-639 |#1|) (-639 |#1|) (-864))) |%noBranch|) (IF (|has| |#1| (-6 (-4275 "*"))) (-15 -3674 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864))) |%noBranch|) (-15 -3479 ((-639 (-895 |#1|)) (-721))) (-15 -3499 ((-639 |#1|) (-639 |#1|) (-864))) (-15 -3499 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-864))) (-15 -3198 ((-639 |#1|) (-639 |#1|) (-639 |#1|))) (-15 -3198 ((-598 (-639 |#1|)) (-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -3198 ((-639 |#1|) (-639 |#1|))) (-15 -3198 ((-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -1903 ((-639 (-531)) (-848 (-531)) (-531))) (-15 -1903 ((-639 (-531)) (-598 (-531)))) (-15 -1903 ((-598 (-639 (-531))) (-598 (-848 (-531))) (-531))) (-15 -1903 ((-598 (-639 (-531))) (-598 (-598 (-531))))))
+((-1692 (((-639 |#1|) (-598 (-639 |#1|)) (-1184 |#1|)) 50 (|has| |#1| (-289)))) (-2040 (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 (-1184 |#1|))) 76 (|has| |#1| (-344))) (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 |#1|)) 79 (|has| |#1| (-344)))) (-1475 (((-1184 |#1|) (-598 (-1184 |#1|)) (-531)) 93 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-3713 (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-864)) 85 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110)) 83 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|))) 82 (-12 (|has| |#1| (-344)) (|has| |#1| (-349)))) (((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110) (-531) (-531)) 81 (-12 (|has| |#1| (-344)) (|has| |#1| (-349))))) (-3979 (((-110) (-598 (-639 |#1|))) 71 (|has| |#1| (-344))) (((-110) (-598 (-639 |#1|)) (-531)) 73 (|has| |#1| (-344)))) (-3882 (((-1184 (-1184 |#1|)) (-598 (-639 |#1|)) (-1184 |#1|)) 48 (|has| |#1| (-289)))) (-3450 (((-639 |#1|) (-598 (-639 |#1|)) (-639 |#1|)) 34)) (-3915 (((-639 |#1|) (-1184 (-1184 |#1|))) 31)) (-1768 (((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-531)) 65 (|has| |#1| (-344))) (((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|))) 64 (|has| |#1| (-344))) (((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-110) (-531)) 69 (|has| |#1| (-344)))))
+(((-969 |#1|) (-10 -7 (-15 -3915 ((-639 |#1|) (-1184 (-1184 |#1|)))) (-15 -3450 ((-639 |#1|) (-598 (-639 |#1|)) (-639 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -3882 ((-1184 (-1184 |#1|)) (-598 (-639 |#1|)) (-1184 |#1|))) (-15 -1692 ((-639 |#1|) (-598 (-639 |#1|)) (-1184 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-110) (-531))) (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-531))) (-15 -3979 ((-110) (-598 (-639 |#1|)) (-531))) (-15 -3979 ((-110) (-598 (-639 |#1|)))) (-15 -2040 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 |#1|))) (-15 -2040 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 (-1184 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110) (-531) (-531))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-864))) (-15 -1475 ((-1184 |#1|) (-598 (-1184 |#1|)) (-531)))) |%noBranch|) |%noBranch|)) (-986)) (T -969))
+((-1475 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1184 *5))) (-5 *4 (-531)) (-5 *2 (-1184 *5)) (-5 *1 (-969 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)) (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) (-5 *3 (-598 (-639 *5))))) (-3713 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)) (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) (-5 *3 (-598 (-639 *5))))) (-3713 (*1 *2 *3) (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-986)) (-5 *2 (-598 (-598 (-639 *4)))) (-5 *1 (-969 *4)) (-5 *3 (-598 (-639 *4))))) (-3713 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-110)) (-5 *5 (-531)) (-4 *6 (-344)) (-4 *6 (-349)) (-4 *6 (-986)) (-5 *2 (-598 (-598 (-639 *6)))) (-5 *1 (-969 *6)) (-5 *3 (-598 (-639 *6))))) (-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-1184 (-1184 *5))) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) (-5 *3 (-598 (-639 *5))))) (-2040 (*1 *2 *3 *4) (-12 (-5 *4 (-1184 *5)) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5)) (-5 *3 (-598 (-639 *5))))) (-3979 (*1 *2 *3) (-12 (-5 *3 (-598 (-639 *4))) (-4 *4 (-344)) (-4 *4 (-986)) (-5 *2 (-110)) (-5 *1 (-969 *4)))) (-3979 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-531)) (-4 *5 (-344)) (-4 *5 (-986)) (-5 *2 (-110)) (-5 *1 (-969 *5)))) (-1768 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-531)) (-5 *2 (-639 *5)) (-5 *1 (-969 *5)) (-4 *5 (-344)) (-4 *5 (-986)))) (-1768 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-639 *4))) (-5 *2 (-639 *4)) (-5 *1 (-969 *4)) (-4 *4 (-344)) (-4 *4 (-986)))) (-1768 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-598 (-639 *6))) (-5 *4 (-110)) (-5 *5 (-531)) (-5 *2 (-639 *6)) (-5 *1 (-969 *6)) (-4 *6 (-344)) (-4 *6 (-986)))) (-1692 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-1184 *5)) (-4 *5 (-289)) (-4 *5 (-986)) (-5 *2 (-639 *5)) (-5 *1 (-969 *5)))) (-3882 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-639 *5))) (-4 *5 (-289)) (-4 *5 (-986)) (-5 *2 (-1184 (-1184 *5))) (-5 *1 (-969 *5)) (-5 *4 (-1184 *5)))) (-3450 (*1 *2 *3 *2) (-12 (-5 *3 (-598 (-639 *4))) (-5 *2 (-639 *4)) (-4 *4 (-986)) (-5 *1 (-969 *4)))) (-3915 (*1 *2 *3) (-12 (-5 *3 (-1184 (-1184 *4))) (-4 *4 (-986)) (-5 *2 (-639 *4)) (-5 *1 (-969 *4)))))
+(-10 -7 (-15 -3915 ((-639 |#1|) (-1184 (-1184 |#1|)))) (-15 -3450 ((-639 |#1|) (-598 (-639 |#1|)) (-639 |#1|))) (IF (|has| |#1| (-289)) (PROGN (-15 -3882 ((-1184 (-1184 |#1|)) (-598 (-639 |#1|)) (-1184 |#1|))) (-15 -1692 ((-639 |#1|) (-598 (-639 |#1|)) (-1184 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-110) (-531))) (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -1768 ((-639 |#1|) (-598 (-639 |#1|)) (-598 (-639 |#1|)) (-531))) (-15 -3979 ((-110) (-598 (-639 |#1|)) (-531))) (-15 -3979 ((-110) (-598 (-639 |#1|)))) (-15 -2040 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 |#1|))) (-15 -2040 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-1184 (-1184 |#1|))))) |%noBranch|) (IF (|has| |#1| (-349)) (IF (|has| |#1| (-344)) (PROGN (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110) (-531) (-531))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-110))) (-15 -3713 ((-598 (-598 (-639 |#1|))) (-598 (-639 |#1|)) (-864))) (-15 -1475 ((-1184 |#1|) (-598 (-1184 |#1|)) (-531)))) |%noBranch|) |%noBranch|))
+((-2257 ((|#1| (-864) |#1|) 9)))
+(((-970 |#1|) (-10 -7 (-15 -2257 (|#1| (-864) |#1|))) (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $))))) (T -970))
+((-2257 (*1 *2 *3 *2) (-12 (-5 *3 (-864)) (-5 *1 (-970 *2)) (-4 *2 (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $))))))))
+(-10 -7 (-15 -2257 (|#1| (-864) |#1|)))
+((-1304 (((-598 (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) (|:| |radvect| (-598 (-639 (-297 (-531))))))) (-639 (-388 (-895 (-531))))) 59)) (-2303 (((-598 (-639 (-297 (-531)))) (-297 (-531)) (-639 (-388 (-895 (-531))))) 48)) (-4129 (((-598 (-297 (-531))) (-639 (-388 (-895 (-531))))) 41)) (-3020 (((-598 (-639 (-297 (-531)))) (-639 (-388 (-895 (-531))))) 68)) (-3758 (((-639 (-297 (-531))) (-639 (-297 (-531)))) 34)) (-1978 (((-598 (-639 (-297 (-531)))) (-598 (-639 (-297 (-531))))) 62)) (-4187 (((-3 (-639 (-297 (-531))) "failed") (-639 (-388 (-895 (-531))))) 66)))
+(((-971) (-10 -7 (-15 -1304 ((-598 (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) (|:| |radvect| (-598 (-639 (-297 (-531))))))) (-639 (-388 (-895 (-531)))))) (-15 -2303 ((-598 (-639 (-297 (-531)))) (-297 (-531)) (-639 (-388 (-895 (-531)))))) (-15 -4129 ((-598 (-297 (-531))) (-639 (-388 (-895 (-531)))))) (-15 -4187 ((-3 (-639 (-297 (-531))) "failed") (-639 (-388 (-895 (-531)))))) (-15 -3758 ((-639 (-297 (-531))) (-639 (-297 (-531))))) (-15 -1978 ((-598 (-639 (-297 (-531)))) (-598 (-639 (-297 (-531)))))) (-15 -3020 ((-598 (-639 (-297 (-531)))) (-639 (-388 (-895 (-531)))))))) (T -971))
+((-3020 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)))) (-3758 (*1 *2 *2) (-12 (-5 *2 (-639 (-297 (-531)))) (-5 *1 (-971)))) (-4187 (*1 *2 *3) (|partial| -12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-639 (-297 (-531)))) (-5 *1 (-971)))) (-4129 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-297 (-531)))) (-5 *1 (-971)))) (-2303 (*1 *2 *3 *4) (-12 (-5 *4 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)) (-5 *3 (-297 (-531))))) (-1304 (*1 *2 *3) (-12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) (|:| |radvect| (-598 (-639 (-297 (-531)))))))) (-5 *1 (-971)))))
+(-10 -7 (-15 -1304 ((-598 (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531)) (|:| |radvect| (-598 (-639 (-297 (-531))))))) (-639 (-388 (-895 (-531)))))) (-15 -2303 ((-598 (-639 (-297 (-531)))) (-297 (-531)) (-639 (-388 (-895 (-531)))))) (-15 -4129 ((-598 (-297 (-531))) (-639 (-388 (-895 (-531)))))) (-15 -4187 ((-3 (-639 (-297 (-531))) "failed") (-639 (-388 (-895 (-531)))))) (-15 -3758 ((-639 (-297 (-531))) (-639 (-297 (-531))))) (-15 -1978 ((-598 (-639 (-297 (-531)))) (-598 (-639 (-297 (-531)))))) (-15 -3020 ((-598 (-639 (-297 (-531)))) (-639 (-388 (-895 (-531)))))))
+((-2646 ((|#1| |#1| (-864)) 9)))
+(((-972 |#1|) (-10 -7 (-15 -2646 (|#1| |#1| (-864)))) (-13 (-1030) (-10 -8 (-15 * ($ $ $))))) (T -972))
+((-2646 (*1 *2 *2 *3) (-12 (-5 *3 (-864)) (-5 *1 (-972 *2)) (-4 *2 (-13 (-1030) (-10 -8 (-15 * ($ $ $))))))))
+(-10 -7 (-15 -2646 (|#1| |#1| (-864))))
+((-2265 ((|#1| (-293)) 11) (((-1189) |#1|) 9)))
+(((-973 |#1|) (-10 -7 (-15 -2265 ((-1189) |#1|)) (-15 -2265 (|#1| (-293)))) (-1138)) (T -973))
+((-2265 (*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-973 *2)) (-4 *2 (-1138)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-973 *3)) (-4 *3 (-1138)))))
+(-10 -7 (-15 -2265 ((-1189) |#1|)) (-15 -2265 (|#1| (-293))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-1760 (($ |#4|) 25)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-1749 ((|#4| $) 27)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 46) (($ (-531)) NIL) (($ |#1|) NIL) (($ |#4|) 26)) (-2284 (((-721)) 43)) (-3035 (($) 21 T CONST)) (-3050 (($) 23 T CONST)) (-2148 (((-110) $ $) 40)) (-2250 (($ $) 31) (($ $ $) NIL)) (-2237 (($ $ $) 29)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 36) (($ $ $) 33) (($ |#1| $) 38) (($ $ |#1|) NIL)))
+(((-974 |#1| |#2| |#3| |#4| |#5|) (-13 (-162) (-37 |#1|) (-10 -8 (-15 -1760 ($ |#4|)) (-15 -2265 ($ |#4|)) (-15 -1749 (|#4| $)))) (-344) (-743) (-797) (-892 |#1| |#2| |#3|) (-598 |#4|)) (T -974))
+((-1760 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-892 *3 *4 *5)) (-14 *6 (-598 *2)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-892 *3 *4 *5)) (-14 *6 (-598 *2)))) (-1749 (*1 *2 *1) (-12 (-4 *2 (-892 *3 *4 *5)) (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-14 *6 (-598 *2)))))
+(-13 (-162) (-37 |#1|) (-10 -8 (-15 -1760 ($ |#4|)) (-15 -2265 ($ |#4|)) (-15 -1749 (|#4| $))))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-3137 (((-1189) $ (-1102) (-1102)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2565 (((-110) (-110)) 39)) (-2260 (((-110) (-110)) 38)) (-2454 (((-51) $ (-1102) (-51)) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 (-51) "failed") (-1102) $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2717 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-3 (-51) "failed") (-1102) $) NIL)) (-2283 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-51) $ (-1102) (-51)) NIL (|has| $ (-6 -4274)))) (-2627 (((-51) $ (-1102)) NIL)) (-2227 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1102) $) NIL (|has| (-1102) (-797)))) (-2445 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-2327 (((-1102) $) NIL (|has| (-1102) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-3345 (((-598 (-1102)) $) 34)) (-1727 (((-110) (-1102) $) NIL)) (-3540 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-3765 (((-598 (-1102)) $) NIL)) (-3059 (((-110) (-1102) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-3046 (((-51) $) NIL (|has| (-1102) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) "failed") (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL)) (-3742 (($ $ (-51)) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-51)) (-598 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-598 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-3163 (((-598 (-51)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-51) $ (-1102)) 35) (((-51) $ (-1102) (-51)) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-721) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030)))) (((-721) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-2265 (((-806) $) 37 (-1435 (|has| (-51) (-572 (-806))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-975) (-13 (-1115 (-1102) (-51)) (-10 -7 (-15 -2565 ((-110) (-110))) (-15 -2260 ((-110) (-110))) (-6 -4273)))) (T -975))
+((-2565 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-975)))) (-2260 (*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-975)))))
+(-13 (-1115 (-1102) (-51)) (-10 -7 (-15 -2565 ((-110) (-110))) (-15 -2260 ((-110) (-110))) (-6 -4273)))
+((-2523 ((|#2| $) 10)))
+(((-976 |#1| |#2|) (-10 -8 (-15 -2523 (|#2| |#1|))) (-977 |#2|) (-1138)) (T -976))
+NIL
+(-10 -8 (-15 -2523 (|#2| |#1|)))
+((-3154 (((-3 |#1| "failed") $) 7)) (-2523 ((|#1| $) 8)) (-2265 (($ |#1|) 6)))
+(((-977 |#1|) (-133) (-1138)) (T -977))
+((-2523 (*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1138)))) (-3154 (*1 *2 *1) (|partial| -12 (-4 *1 (-977 *2)) (-4 *2 (-1138)))) (-2265 (*1 *1 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1138)))))
+(-13 (-10 -8 (-15 -2265 ($ |t#1|)) (-15 -3154 ((-3 |t#1| "failed") $)) (-15 -2523 (|t#1| $))))
+((-2560 (((-598 (-598 (-276 (-388 (-895 |#2|))))) (-598 (-895 |#2|)) (-598 (-1102))) 38)))
+(((-978 |#1| |#2|) (-10 -7 (-15 -2560 ((-598 (-598 (-276 (-388 (-895 |#2|))))) (-598 (-895 |#2|)) (-598 (-1102))))) (-523) (-13 (-523) (-977 |#1|))) (T -978))
+((-2560 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-4 *6 (-13 (-523) (-977 *5))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *6)))))) (-5 *1 (-978 *5 *6)))))
+(-10 -7 (-15 -2560 ((-598 (-598 (-276 (-388 (-895 |#2|))))) (-598 (-895 |#2|)) (-598 (-1102)))))
+((-2866 (((-360)) 15)) (-2014 (((-1 (-360)) (-360) (-360)) 20)) (-4073 (((-1 (-360)) (-721)) 43)) (-1572 (((-360)) 34)) (-4216 (((-1 (-360)) (-360) (-360)) 35)) (-1542 (((-360)) 26)) (-3155 (((-1 (-360)) (-360)) 27)) (-1839 (((-360) (-721)) 38)) (-2471 (((-1 (-360)) (-721)) 39)) (-1327 (((-1 (-360)) (-721) (-721)) 42)) (-1312 (((-1 (-360)) (-721) (-721)) 40)))
+(((-979) (-10 -7 (-15 -2866 ((-360))) (-15 -1572 ((-360))) (-15 -1542 ((-360))) (-15 -1839 ((-360) (-721))) (-15 -2014 ((-1 (-360)) (-360) (-360))) (-15 -4216 ((-1 (-360)) (-360) (-360))) (-15 -3155 ((-1 (-360)) (-360))) (-15 -2471 ((-1 (-360)) (-721))) (-15 -1312 ((-1 (-360)) (-721) (-721))) (-15 -1327 ((-1 (-360)) (-721) (-721))) (-15 -4073 ((-1 (-360)) (-721))))) (T -979))
+((-4073 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) (-1327 (*1 *2 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) (-1312 (*1 *2 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) (-2471 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))) (-3155 (*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))) (-4216 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))) (-2014 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))) (-1839 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-360)) (-5 *1 (-979)))) (-1542 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979)))) (-1572 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979)))) (-2866 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979)))))
+(-10 -7 (-15 -2866 ((-360))) (-15 -1572 ((-360))) (-15 -1542 ((-360))) (-15 -1839 ((-360) (-721))) (-15 -2014 ((-1 (-360)) (-360) (-360))) (-15 -4216 ((-1 (-360)) (-360) (-360))) (-15 -3155 ((-1 (-360)) (-360))) (-15 -2471 ((-1 (-360)) (-721))) (-15 -1312 ((-1 (-360)) (-721) (-721))) (-15 -1327 ((-1 (-360)) (-721) (-721))) (-15 -4073 ((-1 (-360)) (-721))))
+((-2552 (((-399 |#1|) |#1|) 33)))
+(((-980 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1|))) (-1160 (-388 (-895 (-531))))) (T -980))
+((-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-980 *3)) (-4 *3 (-1160 (-388 (-895 (-531))))))))
+(-10 -7 (-15 -2552 ((-399 |#1|) |#1|)))
+((-1583 (((-388 (-399 (-895 |#1|))) (-388 (-895 |#1|))) 14)))
+(((-981 |#1|) (-10 -7 (-15 -1583 ((-388 (-399 (-895 |#1|))) (-388 (-895 |#1|))))) (-289)) (T -981))
+((-1583 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-289)) (-5 *2 (-388 (-399 (-895 *4)))) (-5 *1 (-981 *4)))))
+(-10 -7 (-15 -1583 ((-388 (-399 (-895 |#1|))) (-388 (-895 |#1|)))))
+((-2695 (((-598 (-1102)) (-388 (-895 |#1|))) 17)) (-2516 (((-388 (-1098 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102)) 24)) (-2682 (((-388 (-895 |#1|)) (-388 (-1098 (-388 (-895 |#1|)))) (-1102)) 26)) (-3471 (((-3 (-1102) "failed") (-388 (-895 |#1|))) 20)) (-4115 (((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-276 (-388 (-895 |#1|))))) 32) (((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|)))) 33) (((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-1102)) (-598 (-388 (-895 |#1|)))) 28) (((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|))) 29)) (-2265 (((-388 (-895 |#1|)) |#1|) 11)))
+(((-982 |#1|) (-10 -7 (-15 -2695 ((-598 (-1102)) (-388 (-895 |#1|)))) (-15 -3471 ((-3 (-1102) "failed") (-388 (-895 |#1|)))) (-15 -2516 ((-388 (-1098 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102))) (-15 -2682 ((-388 (-895 |#1|)) (-388 (-1098 (-388 (-895 |#1|)))) (-1102))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-1102)) (-598 (-388 (-895 |#1|))))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -2265 ((-388 (-895 |#1|)) |#1|))) (-523)) (T -982))
+((-2265 (*1 *2 *3) (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-982 *3)) (-4 *3 (-523)))) (-4115 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-276 (-388 (-895 *4))))) (-5 *2 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *1 (-982 *4)))) (-4115 (*1 *2 *2 *3) (-12 (-5 *3 (-276 (-388 (-895 *4)))) (-5 *2 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *1 (-982 *4)))) (-4115 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-598 (-1102))) (-5 *4 (-598 (-388 (-895 *5)))) (-5 *2 (-388 (-895 *5))) (-4 *5 (-523)) (-5 *1 (-982 *5)))) (-4115 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-388 (-895 *4))) (-5 *3 (-1102)) (-4 *4 (-523)) (-5 *1 (-982 *4)))) (-2682 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-1098 (-388 (-895 *5))))) (-5 *4 (-1102)) (-5 *2 (-388 (-895 *5))) (-5 *1 (-982 *5)) (-4 *5 (-523)))) (-2516 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-523)) (-5 *2 (-388 (-1098 (-388 (-895 *5))))) (-5 *1 (-982 *5)) (-5 *3 (-388 (-895 *5))))) (-3471 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-1102)) (-5 *1 (-982 *4)))) (-2695 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-598 (-1102))) (-5 *1 (-982 *4)))))
+(-10 -7 (-15 -2695 ((-598 (-1102)) (-388 (-895 |#1|)))) (-15 -3471 ((-3 (-1102) "failed") (-388 (-895 |#1|)))) (-15 -2516 ((-388 (-1098 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102))) (-15 -2682 ((-388 (-895 |#1|)) (-388 (-1098 (-388 (-895 |#1|)))) (-1102))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-1102)) (-598 (-388 (-895 |#1|))))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-276 (-388 (-895 |#1|))))) (-15 -4115 ((-388 (-895 |#1|)) (-388 (-895 |#1|)) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -2265 ((-388 (-895 |#1|)) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 (-730 |#1| (-808 |#2|)))))) (-598 (-730 |#1| (-808 |#2|)))) NIL)) (-2855 (((-598 $) (-598 (-730 |#1| (-808 |#2|)))) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-110)) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-110) (-110)) NIL)) (-2695 (((-598 (-808 |#2|)) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-3911 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-3240 (((-598 (-2 (|:| |val| (-730 |#1| (-808 |#2|))) (|:| -2410 $))) (-730 |#1| (-808 |#2|)) $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ (-808 |#2|)) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 (-730 |#1| (-808 |#2|)) "failed") $ (-808 |#2|)) NIL)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) NIL (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))) $ (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL)) (-2339 (((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|))) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 (-730 |#1| (-808 |#2|)))) NIL)) (-2523 (($ (-598 (-730 |#1| (-808 |#2|)))) NIL)) (-3062 (((-3 $ "failed") $) NIL)) (-3785 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030))))) (-2283 (($ (-730 |#1| (-808 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (($ (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-730 |#1| (-808 |#2|))) (|:| |den| |#1|)) (-730 |#1| (-808 |#2|)) $) NIL (|has| |#1| (-523)))) (-2125 (((-110) (-730 |#1| (-808 |#2|)) $ (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL)) (-2551 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-1760 (((-730 |#1| (-808 |#2|)) (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $ (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (((-730 |#1| (-808 |#2|)) (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $ (-730 |#1| (-808 |#2|))) NIL (|has| $ (-6 -4273))) (((-730 |#1| (-808 |#2|)) (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $ (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL)) (-4160 (((-2 (|:| -2259 (-598 (-730 |#1| (-808 |#2|)))) (|:| -1833 (-598 (-730 |#1| (-808 |#2|))))) $) NIL)) (-2950 (((-110) (-730 |#1| (-808 |#2|)) $) NIL)) (-1428 (((-110) (-730 |#1| (-808 |#2|)) $) NIL)) (-2213 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-2227 (((-598 (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1426 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-4075 (((-808 |#2|) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-730 |#1| (-808 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030))))) (-2680 (($ (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) $) NIL)) (-3951 (((-598 (-808 |#2|)) $) NIL)) (-4081 (((-110) (-808 |#2|) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2068 (((-3 (-730 |#1| (-808 |#2|)) (-598 $)) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-2255 (((-598 (-2 (|:| |val| (-730 |#1| (-808 |#2|))) (|:| -2410 $))) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-2309 (((-3 (-730 |#1| (-808 |#2|)) "failed") $) NIL)) (-2918 (((-598 $) (-730 |#1| (-808 |#2|)) $) NIL)) (-1568 (((-3 (-110) (-598 $)) (-730 |#1| (-808 |#2|)) $) NIL)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) (-730 |#1| (-808 |#2|)) $) NIL)) (-1301 (((-598 $) (-730 |#1| (-808 |#2|)) $) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) $) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-598 $)) NIL) (((-598 $) (-730 |#1| (-808 |#2|)) (-598 $)) NIL)) (-2106 (($ (-730 |#1| (-808 |#2|)) $) NIL) (($ (-598 (-730 |#1| (-808 |#2|))) $) NIL)) (-1979 (((-598 (-730 |#1| (-808 |#2|))) $) NIL)) (-2009 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-1279 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-1744 (((-110) $ $) NIL)) (-3065 (((-2 (|:| |num| (-730 |#1| (-808 |#2|))) (|:| |den| |#1|)) (-730 |#1| (-808 |#2|)) $) NIL (|has| |#1| (-523)))) (-2421 (((-110) (-730 |#1| (-808 |#2|)) $) NIL) (((-110) $) NIL)) (-3044 (((-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 (-730 |#1| (-808 |#2|)) "failed") $) NIL)) (-4190 (((-3 (-730 |#1| (-808 |#2|)) "failed") (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL)) (-3032 (((-3 $ "failed") $ (-730 |#1| (-808 |#2|))) NIL)) (-1846 (($ $ (-730 |#1| (-808 |#2|))) NIL) (((-598 $) (-730 |#1| (-808 |#2|)) $) NIL) (((-598 $) (-730 |#1| (-808 |#2|)) (-598 $)) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) $) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-598 $)) NIL)) (-2294 (((-110) (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-730 |#1| (-808 |#2|))) (-598 (-730 |#1| (-808 |#2|)))) NIL (-12 (|has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (($ $ (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|))) NIL (-12 (|has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (($ $ (-276 (-730 |#1| (-808 |#2|)))) NIL (-12 (|has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (($ $ (-598 (-276 (-730 |#1| (-808 |#2|))))) NIL (-12 (|has| (-730 |#1| (-808 |#2|)) (-291 (-730 |#1| (-808 |#2|)))) (|has| (-730 |#1| (-808 |#2|)) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-2012 (((-721) $) NIL)) (-2539 (((-721) (-730 |#1| (-808 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-730 |#1| (-808 |#2|)) (-1030)))) (((-721) (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-730 |#1| (-808 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-730 |#1| (-808 |#2|)))) NIL)) (-3382 (($ $ (-808 |#2|)) NIL)) (-2021 (($ $ (-808 |#2|)) NIL)) (-2862 (($ $) NIL)) (-3593 (($ $ (-808 |#2|)) NIL)) (-2265 (((-806) $) NIL) (((-598 (-730 |#1| (-808 |#2|))) $) NIL)) (-3873 (((-721) $) NIL (|has| (-808 |#2|) (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 (-730 |#1| (-808 |#2|))))) "failed") (-598 (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 (-730 |#1| (-808 |#2|))))) "failed") (-598 (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|))) (-1 (-110) (-730 |#1| (-808 |#2|)) (-730 |#1| (-808 |#2|)))) NIL)) (-1363 (((-110) $ (-1 (-110) (-730 |#1| (-808 |#2|)) (-598 (-730 |#1| (-808 |#2|))))) NIL)) (-3777 (((-598 $) (-730 |#1| (-808 |#2|)) $) NIL) (((-598 $) (-730 |#1| (-808 |#2|)) (-598 $)) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) $) NIL) (((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-598 $)) NIL)) (-2060 (((-110) (-1 (-110) (-730 |#1| (-808 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 (-808 |#2|)) $) NIL)) (-3695 (((-110) (-730 |#1| (-808 |#2|)) $) NIL)) (-1697 (((-110) (-808 |#2|) $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-983 |#1| |#2|) (-13 (-1005 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) (-10 -8 (-15 -2855 ((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-110) (-110))))) (-432) (-598 (-1102))) (T -983))
+((-2855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432)) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-983 *5 *6)))))
+(-13 (-1005 |#1| (-503 (-808 |#2|)) (-808 |#2|) (-730 |#1| (-808 |#2|))) (-10 -8 (-15 -2855 ((-598 $) (-598 (-730 |#1| (-808 |#2|))) (-110) (-110)))))
+((-2014 (((-1 (-531)) (-1025 (-531))) 33)) (-3580 (((-531) (-531) (-531) (-531) (-531)) 30)) (-2364 (((-1 (-531)) |RationalNumber|) NIL)) (-2345 (((-1 (-531)) |RationalNumber|) NIL)) (-2589 (((-1 (-531)) (-531) |RationalNumber|) NIL)))
+(((-984) (-10 -7 (-15 -2014 ((-1 (-531)) (-1025 (-531)))) (-15 -2589 ((-1 (-531)) (-531) |RationalNumber|)) (-15 -2364 ((-1 (-531)) |RationalNumber|)) (-15 -2345 ((-1 (-531)) |RationalNumber|)) (-15 -3580 ((-531) (-531) (-531) (-531) (-531))))) (T -984))
+((-3580 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-984)))) (-2345 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)))) (-2364 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)))) (-2589 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)) (-5 *3 (-531)))) (-2014 (*1 *2 *3) (-12 (-5 *3 (-1025 (-531))) (-5 *2 (-1 (-531))) (-5 *1 (-984)))))
+(-10 -7 (-15 -2014 ((-1 (-531)) (-1025 (-531)))) (-15 -2589 ((-1 (-531)) (-531) |RationalNumber|)) (-15 -2364 ((-1 (-531)) |RationalNumber|)) (-15 -2345 ((-1 (-531)) |RationalNumber|)) (-15 -3580 ((-531) (-531) (-531) (-531) (-531))))
+((-2265 (((-806) $) NIL) (($ (-531)) 10)))
+(((-985 |#1|) (-10 -8 (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-986)) (T -985))
+NIL
+(-10 -8 (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-986) (-133)) (T -986))
+((-2284 (*1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-721)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-986)))))
+(-13 (-993) (-677) (-601 $) (-10 -8 (-15 -2284 ((-721))) (-15 -2265 ($ (-531))) (-6 -4270)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 $) . T) ((-677) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3476 (((-388 (-895 |#2|)) (-598 |#2|) (-598 |#2|) (-721) (-721)) 46)))
+(((-987 |#1| |#2|) (-10 -7 (-15 -3476 ((-388 (-895 |#2|)) (-598 |#2|) (-598 |#2|) (-721) (-721)))) (-1102) (-344)) (T -987))
+((-3476 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-721)) (-4 *6 (-344)) (-5 *2 (-388 (-895 *6))) (-5 *1 (-987 *5 *6)) (-14 *5 (-1102)))))
+(-10 -7 (-15 -3476 ((-388 (-895 |#2|)) (-598 |#2|) (-598 |#2|) (-721) (-721))))
+((-2719 (((-110) $) 29)) (-1878 (((-110) $) 16)) (-1548 (((-721) $) 13)) (-1557 (((-721) $) 14)) (-1439 (((-110) $) 26)) (-2116 (((-110) $) 31)))
+(((-988 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -8 (-15 -1557 ((-721) |#1|)) (-15 -1548 ((-721) |#1|)) (-15 -2116 ((-110) |#1|)) (-15 -2719 ((-110) |#1|)) (-15 -1439 ((-110) |#1|)) (-15 -1878 ((-110) |#1|))) (-989 |#2| |#3| |#4| |#5| |#6|) (-721) (-721) (-986) (-221 |#3| |#4|) (-221 |#2| |#4|)) (T -988))
+NIL
+(-10 -8 (-15 -1557 ((-721) |#1|)) (-15 -1548 ((-721) |#1|)) (-15 -2116 ((-110) |#1|)) (-15 -2719 ((-110) |#1|)) (-15 -1439 ((-110) |#1|)) (-15 -1878 ((-110) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2719 (((-110) $) 51)) (-2128 (((-3 $ "failed") $ $) 19)) (-1878 (((-110) $) 53)) (-4058 (((-110) $ (-721)) 61)) (-4082 (($) 17 T CONST)) (-2800 (($ $) 34 (|has| |#3| (-289)))) (-4011 ((|#4| $ (-531)) 39)) (-2277 (((-721) $) 33 (|has| |#3| (-523)))) (-2627 ((|#3| $ (-531) (-531)) 41)) (-2227 (((-598 |#3|) $) 68 (|has| $ (-6 -4273)))) (-4091 (((-721) $) 32 (|has| |#3| (-523)))) (-3001 (((-598 |#5|) $) 31 (|has| |#3| (-523)))) (-1548 (((-721) $) 45)) (-1557 (((-721) $) 44)) (-3280 (((-110) $ (-721)) 60)) (-1271 (((-531) $) 49)) (-1665 (((-531) $) 47)) (-2445 (((-598 |#3|) $) 69 (|has| $ (-6 -4273)))) (-1883 (((-110) |#3| $) 71 (-12 (|has| |#3| (-1030)) (|has| $ (-6 -4273))))) (-2527 (((-531) $) 48)) (-2394 (((-531) $) 46)) (-2200 (($ (-598 (-598 |#3|))) 54)) (-2680 (($ (-1 |#3| |#3|) $) 64 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#3| |#3|) $) 63) (($ (-1 |#3| |#3| |#3|) $ $) 37)) (-3924 (((-598 (-598 |#3|)) $) 43)) (-3332 (((-110) $ (-721)) 59)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ |#3|) 36 (|has| |#3| (-523)))) (-2294 (((-110) (-1 (-110) |#3|) $) 66 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#3|) (-598 |#3|)) 75 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ |#3| |#3|) 74 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-276 |#3|)) 73 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-598 (-276 |#3|))) 72 (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))) (-2019 (((-110) $ $) 55)) (-1589 (((-110) $) 58)) (-3781 (($) 57)) (-1785 ((|#3| $ (-531) (-531)) 42) ((|#3| $ (-531) (-531) |#3|) 40)) (-1439 (((-110) $) 52)) (-2539 (((-721) |#3| $) 70 (-12 (|has| |#3| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#3|) $) 67 (|has| $ (-6 -4273)))) (-2480 (($ $) 56)) (-3431 ((|#5| $ (-531)) 38)) (-2265 (((-806) $) 11)) (-2060 (((-110) (-1 (-110) |#3|) $) 65 (|has| $ (-6 -4273)))) (-2116 (((-110) $) 50)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#3|) 35 (|has| |#3| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#3| $) 23) (($ $ |#3|) 26)) (-2167 (((-721) $) 62 (|has| $ (-6 -4273)))))
+(((-989 |#1| |#2| |#3| |#4| |#5|) (-133) (-721) (-721) (-986) (-221 |t#2| |t#3|) (-221 |t#1| |t#3|)) (T -989))
+((-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-2200 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *5))) (-4 *5 (-986)) (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-1878 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1439 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-2719 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-2116 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))) (-1271 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))) (-2527 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))) (-1665 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))) (-2394 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))) (-1548 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-721)))) (-1557 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-721)))) (-3924 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-598 (-598 *5))))) (-1785 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-986)))) (-2627 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-986)))) (-1785 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) (-4 *2 (-986)) (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)))) (-4011 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *6 *2 *7)) (-4 *6 (-986)) (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))) (-3431 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *6 *7 *2)) (-4 *6 (-986)) (-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)))) (-3609 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-989 *3 *4 *2 *5 *6)) (-4 *2 (-986)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-523)))) (-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-989 *3 *4 *2 *5 *6)) (-4 *2 (-986)) (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-344)))) (-2800 (*1 *1 *1) (-12 (-4 *1 (-989 *2 *3 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))) (-2277 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-721)))) (-4091 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-721)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523)) (-5 *2 (-598 *7)))))
+(-13 (-109 |t#3| |t#3|) (-468 |t#3|) (-10 -8 (-6 -4273) (IF (|has| |t#3| (-162)) (-6 (-668 |t#3|)) |%noBranch|) (-15 -2200 ($ (-598 (-598 |t#3|)))) (-15 -1878 ((-110) $)) (-15 -1439 ((-110) $)) (-15 -2719 ((-110) $)) (-15 -2116 ((-110) $)) (-15 -1271 ((-531) $)) (-15 -2527 ((-531) $)) (-15 -1665 ((-531) $)) (-15 -2394 ((-531) $)) (-15 -1548 ((-721) $)) (-15 -1557 ((-721) $)) (-15 -3924 ((-598 (-598 |t#3|)) $)) (-15 -1785 (|t#3| $ (-531) (-531))) (-15 -2627 (|t#3| $ (-531) (-531))) (-15 -1785 (|t#3| $ (-531) (-531) |t#3|)) (-15 -4011 (|t#4| $ (-531))) (-15 -3431 (|t#5| $ (-531))) (-15 -3261 ($ (-1 |t#3| |t#3|) $)) (-15 -3261 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-523)) (-15 -3609 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-344)) (-15 -2263 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-289)) (-15 -2800 ($ $)) |%noBranch|) (IF (|has| |t#3| (-523)) (PROGN (-15 -2277 ((-721) $)) (-15 -4091 ((-721) $)) (-15 -3001 ((-598 |t#5|) $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-99) . T) ((-109 |#3| |#3|) . T) ((-128) . T) ((-572 (-806)) . T) ((-291 |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))) ((-468 |#3|) . T) ((-492 |#3| |#3|) -12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))) ((-601 |#3|) . T) ((-668 |#3|) |has| |#3| (-162)) ((-992 |#3|) . T) ((-1030) . T) ((-1138) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2719 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-2800 (($ $) 43 (|has| |#3| (-289)))) (-4011 (((-223 |#2| |#3|) $ (-531)) 32)) (-2172 (($ (-639 |#3|)) 41)) (-2277 (((-721) $) 45 (|has| |#3| (-523)))) (-2627 ((|#3| $ (-531) (-531)) NIL)) (-2227 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-4091 (((-721) $) 47 (|has| |#3| (-523)))) (-3001 (((-598 (-223 |#1| |#3|)) $) 51 (|has| |#3| (-523)))) (-1548 (((-721) $) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#3|))) 27)) (-2680 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) NIL)) (-3924 (((-598 (-598 |#3|)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#3|) NIL (|has| |#3| (-523)))) (-2294 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#3|) (-598 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-598 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#3| $ (-531) (-531)) NIL) ((|#3| $ (-531) (-531) |#3|) NIL)) (-2190 (((-130)) 54 (|has| |#3| (-344)))) (-1439 (((-110) $) NIL)) (-2539 (((-721) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030)))) (((-721) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 63 (|has| |#3| (-573 (-507))))) (-3431 (((-223 |#1| |#3|) $ (-531)) 36)) (-2265 (((-806) $) 16) (((-639 |#3|) $) 38)) (-2060 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-3035 (($) 13 T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#3| $) NIL) (($ $ |#3|) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-990 |#1| |#2| |#3|) (-13 (-989 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-572 (-639 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1191 |#3|)) |%noBranch|) (IF (|has| |#3| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (-15 -2172 ($ (-639 |#3|))) (-15 -2265 ((-639 |#3|) $)))) (-721) (-721) (-986)) (T -990))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-639 *5)) (-5 *1 (-990 *3 *4 *5)) (-14 *3 (-721)) (-14 *4 (-721)) (-4 *5 (-986)))) (-2172 (*1 *1 *2) (-12 (-5 *2 (-639 *5)) (-4 *5 (-986)) (-5 *1 (-990 *3 *4 *5)) (-14 *3 (-721)) (-14 *4 (-721)))))
+(-13 (-989 |#1| |#2| |#3| (-223 |#2| |#3|) (-223 |#1| |#3|)) (-572 (-639 |#3|)) (-10 -8 (IF (|has| |#3| (-344)) (-6 (-1191 |#3|)) |%noBranch|) (IF (|has| |#3| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|) (-15 -2172 ($ (-639 |#3|))) (-15 -2265 ((-639 |#3|) $))))
+((-1760 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 34)) (-3261 ((|#10| (-1 |#7| |#3|) |#6|) 32)))
+(((-991 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -3261 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1760 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-721) (-721) (-986) (-221 |#2| |#3|) (-221 |#1| |#3|) (-989 |#1| |#2| |#3| |#4| |#5|) (-986) (-221 |#2| |#7|) (-221 |#1| |#7|) (-989 |#1| |#2| |#7| |#8| |#9|)) (T -991))
+((-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-986)) (-4 *2 (-986)) (-14 *5 (-721)) (-14 *6 (-721)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2)) (-5 *1 (-991 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-989 *5 *6 *7 *8 *9)) (-4 *12 (-989 *5 *6 *2 *10 *11)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-986)) (-4 *10 (-986)) (-14 *5 (-721)) (-14 *6 (-721)) (-4 *8 (-221 *6 *7)) (-4 *9 (-221 *5 *7)) (-4 *2 (-989 *5 *6 *10 *11 *12)) (-5 *1 (-991 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-989 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10)) (-4 *12 (-221 *5 *10)))))
+(-10 -7 (-15 -3261 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -1760 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ |#1|) 23)))
+(((-992 |#1|) (-133) (-993)) (T -992))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-993)))))
(-13 (-21) (-10 -8 (-15 * ($ $ |t#1|))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-991) (-133)) (T -991))
-NIL
-(-13 (-21) (-1039))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-571 (-804)) . T) ((-1039) . T) ((-1027) . T))
-((-1951 (($ $) 16)) (-2963 (($ $) 22)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 49)) (-2376 (($ $) 24)) (-1979 (($ $) 11)) (-3175 (($ $) 38)) (-3260 (((-360) $) NIL) (((-208) $) NIL) (((-833 (-360)) $) 33)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL) (($ (-388 (-530))) 28) (($ (-530)) NIL) (($ (-388 (-530))) 28)) (-3300 (((-719)) 8)) (-2748 (($ $) 39)))
-(((-992 |#1|) (-10 -8 (-15 -2963 (|#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2366 ((-804) |#1|))) (-993)) (T -992))
-((-3300 (*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-992 *3)) (-4 *3 (-993)))))
-(-10 -8 (-15 -2963 (|#1| |#1|)) (-15 -1951 (|#1| |#1|)) (-15 -1979 (|#1| |#1|)) (-15 -3175 (|#1| |#1|)) (-15 -2748 (|#1| |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -2890 ((-830 (-360) |#1|) |#1| (-833 (-360)) (-830 (-360) |#1|))) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 -3260 ((-208) |#1|)) (-15 -3260 ((-360) |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -3300 ((-719))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1612 (((-530) $) 86)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1951 (($ $) 84)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-2625 (($ $) 94)) (-1426 (((-110) $ $) 57)) (-1867 (((-530) $) 111)) (-2350 (($) 17 T CONST)) (-2963 (($ $) 83)) (-3139 (((-3 (-530) "failed") $) 99) (((-3 (-388 (-530)) "failed") $) 96)) (-2585 (((-530) $) 98) (((-388 (-530)) $) 95)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3295 (((-110) $) 68)) (-2514 (((-110) $) 109)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 90)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 93)) (-2376 (($ $) 89)) (-2166 (((-110) $) 110)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2508 (($ $ $) 108)) (-1817 (($ $ $) 107)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-1979 (($ $) 85)) (-3175 (($ $) 87)) (-2611 (((-399 $) $) 71)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-3260 (((-360) $) 102) (((-208) $) 101) (((-833 (-360)) $) 91)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ (-530)) 100) (($ (-388 (-530))) 97)) (-3300 (((-719)) 28)) (-2748 (($ $) 88)) (-3944 (((-110) $ $) 37)) (-3934 (($ $) 112)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2306 (((-110) $ $) 105)) (-2284 (((-110) $ $) 104)) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 106)) (-2272 (((-110) $ $) 103)) (-2364 (($ $ $) 62)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66) (($ $ (-388 (-530))) 92)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
(((-993) (-133)) (T -993))
-((-3934 (*1 *1 *1) (-4 *1 (-993))) (-2376 (*1 *1 *1) (-4 *1 (-993))) (-2748 (*1 *1 *1) (-4 *1 (-993))) (-3175 (*1 *1 *1) (-4 *1 (-993))) (-1612 (*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-530)))) (-1979 (*1 *1 *1) (-4 *1 (-993))) (-1951 (*1 *1 *1) (-4 *1 (-993))) (-2963 (*1 *1 *1) (-4 *1 (-993))))
-(-13 (-344) (-793) (-960) (-975 (-530)) (-975 (-388 (-530))) (-941) (-572 (-833 (-360))) (-827 (-360)) (-140) (-10 -8 (-15 -2376 ($ $)) (-15 -2748 ($ $)) (-15 -3175 ($ $)) (-15 -1612 ((-530) $)) (-15 -1979 ($ $)) (-15 -1951 ($ $)) (-15 -2963 ($ $)) (-15 -3934 ($ $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-571 (-804)) . T) ((-162) . T) ((-572 (-208)) . T) ((-572 (-360)) . T) ((-572 (-833 (-360))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 $) . T) ((-675) . T) ((-739) . T) ((-740) . T) ((-742) . T) ((-743) . T) ((-793) . T) ((-795) . T) ((-827 (-360)) . T) ((-861) . T) ((-941) . T) ((-960) . T) ((-975 (-388 (-530))) . T) ((-975 (-530)) . T) ((-990 #0#) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) |#2| $) 23)) (-3023 ((|#1| $) 10)) (-1867 (((-530) |#2| $) 88)) (-1326 (((-3 $ "failed") |#2| (-862)) 57)) (-3638 ((|#1| $) 28)) (-2891 ((|#1| |#2| $ |#1|) 37)) (-3399 (($ $) 25)) (-2707 (((-3 |#2| "failed") |#2| $) 87)) (-2514 (((-110) |#2| $) NIL)) (-2166 (((-110) |#2| $) NIL)) (-3786 (((-110) |#2| $) 24)) (-2913 ((|#1| $) 89)) (-3628 ((|#1| $) 27)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1781 ((|#2| $) 79)) (-2366 (((-804) $) 70)) (-4136 ((|#1| |#2| $ |#1|) 38)) (-3462 (((-597 $) |#2|) 59)) (-2248 (((-110) $ $) 74)))
-(((-994 |#1| |#2|) (-13 (-1000 |#1| |#2|) (-10 -8 (-15 -3628 (|#1| $)) (-15 -3638 (|#1| $)) (-15 -3023 (|#1| $)) (-15 -2913 (|#1| $)) (-15 -3399 ($ $)) (-15 -3786 ((-110) |#2| $)) (-15 -2891 (|#1| |#2| $ |#1|)))) (-13 (-793) (-344)) (-1157 |#1|)) (T -994))
-((-2891 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3628 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3638 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3023 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-2913 (*1 *2 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3399 (*1 *1 *1) (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3)) (-4 *3 (-1157 *2)))) (-3786 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-793) (-344))) (-5 *2 (-110)) (-5 *1 (-994 *4 *3)) (-4 *3 (-1157 *4)))))
-(-13 (-1000 |#1| |#2|) (-10 -8 (-15 -3628 (|#1| $)) (-15 -3638 (|#1| $)) (-15 -3023 (|#1| $)) (-15 -2913 (|#1| $)) (-15 -3399 ($ $)) (-15 -3786 ((-110) |#2| $)) (-15 -2891 (|#1| |#2| $ |#1|))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2660 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1531 (($ $ $ $) NIL)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-4207 (($ $ $) NIL)) (-2350 (($) NIL T CONST)) (-3621 (($ (-1099)) 10) (($ (-530)) 7)) (-3139 (((-3 (-530) "failed") $) NIL)) (-2585 (((-530) $) NIL)) (-3590 (($ $ $) NIL)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-637 (-530)) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL)) (-3016 (((-110) $) NIL)) (-3370 (((-388 (-530)) $) NIL)) (-1364 (($) NIL) (($ $) NIL)) (-3571 (($ $ $) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2411 (($ $ $) NIL)) (-2514 (((-110) $) NIL)) (-2937 (($ $ $) NIL)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-2731 (((-110) $) NIL)) (-3457 (((-110) $) NIL)) (-2972 (((-3 $ "failed") $) NIL)) (-2166 (((-110) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1999 (($ $ $ $) NIL)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3103 (($ $) NIL)) (-4109 (($ $) NIL)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-3972 (($ $ $) NIL)) (-3657 (($) NIL T CONST)) (-3820 (($ $) NIL)) (-2624 (((-1046) $) NIL) (($ $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1303 (($ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1725 (($ $) NIL)) (-2579 (($ $) NIL)) (-3260 (((-530) $) 16) (((-506) $) NIL) (((-833 (-530)) $) NIL) (((-360) $) NIL) (((-208) $) NIL) (($ (-1099)) 9)) (-2366 (((-804) $) 20) (($ (-530)) 6) (($ $) NIL) (($ (-530)) 6)) (-3300 (((-719)) NIL)) (-3918 (((-110) $ $) NIL)) (-2947 (($ $ $) NIL)) (-1510 (($) NIL)) (-3944 (((-110) $ $) NIL)) (-3998 (($ $ $ $) NIL)) (-3934 (($ $) NIL)) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) NIL)) (-2351 (($ $) 19) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL)))
-(((-995) (-13 (-515) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -3260 ($ (-1099))) (-15 -3621 ($ (-1099))) (-15 -3621 ($ (-530)))))) (T -995))
-((-3260 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))) (-3621 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-995)))))
-(-13 (-515) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -3260 ($ (-1099))) (-15 -3621 ($ (-1099))) (-15 -3621 ($ (-530)))))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-2097 (((-1186) $ (-1099) (-1099)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2273 (($) 9)) (-2552 (((-51) $ (-1099) (-51)) NIL)) (-4084 (($ $) 30)) (-1579 (($ $) 28)) (-4159 (($ $) 27)) (-2034 (($ $) 29)) (-1388 (($ $) 32)) (-3935 (($ $) 33)) (-2713 (($ $) 26)) (-3587 (($ $) 31)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) 25 (|has| $ (-6 -4269)))) (-2767 (((-3 (-51) "failed") (-1099) $) 40)) (-2350 (($) NIL T CONST)) (-1312 (($) 7)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-1842 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) 50 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-3 (-51) "failed") (-1099) $) NIL)) (-2383 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269)))) (-3197 (((-3 (-1082) "failed") $ (-1082) (-530)) 59)) (-3592 (((-51) $ (-1099) (-51)) NIL (|has| $ (-6 -4270)))) (-3532 (((-51) $ (-1099)) NIL)) (-3779 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1099) $) NIL (|has| (-1099) (-795)))) (-2395 (((-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) 35 (|has| $ (-6 -4269))) (((-597 (-51)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-1549 (((-1099) $) NIL (|has| (-1099) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4270))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-3282 (((-597 (-1099)) $) NIL)) (-3718 (((-110) (-1099) $) NIL)) (-1723 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) 43)) (-3567 (((-597 (-1099)) $) NIL)) (-1927 (((-110) (-1099) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-2843 (((-360) $ (-1099)) 49)) (-3379 (((-597 (-1082)) $ (-1082)) 60)) (-3048 (((-51) $) NIL (|has| (-1099) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) "failed") (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL)) (-1522 (($ $ (-51)) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL (-12 (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-291 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (($ $ (-597 (-51)) (-597 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027)))) (($ $ (-597 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027))))) (-2261 (((-597 (-51)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-51) $ (-1099)) NIL) (((-51) $ (-1099) (-51)) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-3714 (($ $ (-1099)) 51)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027)))) (((-719) (-51) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-51) (-1027)))) (((-719) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) 37)) (-3483 (($ $ $) 38)) (-2366 (((-804) $) NIL (-1461 (|has| (-51) (-571 (-804))) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-571 (-804)))))) (-1436 (($ $ (-1099) (-360)) 47)) (-2382 (($ $ (-1099) (-360)) 48)) (-2242 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 (-1099)) (|:| -1874 (-51)))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-51) (-1027)) (|has| (-2 (|:| -3078 (-1099)) (|:| -1874 (-51))) (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-996) (-13 (-1112 (-1099) (-51)) (-10 -8 (-15 -3483 ($ $ $)) (-15 -1312 ($)) (-15 -2713 ($ $)) (-15 -4159 ($ $)) (-15 -1579 ($ $)) (-15 -2034 ($ $)) (-15 -3587 ($ $)) (-15 -4084 ($ $)) (-15 -1388 ($ $)) (-15 -3935 ($ $)) (-15 -1436 ($ $ (-1099) (-360))) (-15 -2382 ($ $ (-1099) (-360))) (-15 -2843 ((-360) $ (-1099))) (-15 -3379 ((-597 (-1082)) $ (-1082))) (-15 -3714 ($ $ (-1099))) (-15 -2273 ($)) (-15 -3197 ((-3 (-1082) "failed") $ (-1082) (-530))) (-6 -4269)))) (T -996))
-((-3483 (*1 *1 *1 *1) (-5 *1 (-996))) (-1312 (*1 *1) (-5 *1 (-996))) (-2713 (*1 *1 *1) (-5 *1 (-996))) (-4159 (*1 *1 *1) (-5 *1 (-996))) (-1579 (*1 *1 *1) (-5 *1 (-996))) (-2034 (*1 *1 *1) (-5 *1 (-996))) (-3587 (*1 *1 *1) (-5 *1 (-996))) (-4084 (*1 *1 *1) (-5 *1 (-996))) (-1388 (*1 *1 *1) (-5 *1 (-996))) (-3935 (*1 *1 *1) (-5 *1 (-996))) (-1436 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))) (-2382 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))) (-2843 (*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-360)) (-5 *1 (-996)))) (-3379 (*1 *2 *1 *3) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-996)) (-5 *3 (-1082)))) (-3714 (*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-996)))) (-2273 (*1 *1) (-5 *1 (-996))) (-3197 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-996)))))
-(-13 (-1112 (-1099) (-51)) (-10 -8 (-15 -3483 ($ $ $)) (-15 -1312 ($)) (-15 -2713 ($ $)) (-15 -4159 ($ $)) (-15 -1579 ($ $)) (-15 -2034 ($ $)) (-15 -3587 ($ $)) (-15 -4084 ($ $)) (-15 -1388 ($ $)) (-15 -3935 ($ $)) (-15 -1436 ($ $ (-1099) (-360))) (-15 -2382 ($ $ (-1099) (-360))) (-15 -2843 ((-360) $ (-1099))) (-15 -3379 ((-597 (-1082)) $ (-1082))) (-15 -3714 ($ $ (-1099))) (-15 -2273 ($)) (-15 -3197 ((-3 (-1082) "failed") $ (-1082) (-530))) (-6 -4269)))
-((-2133 (($ $) 45)) (-3627 (((-110) $ $) 74)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-893 (-388 (-530)))) 227) (((-3 $ "failed") (-893 (-530))) 226) (((-3 $ "failed") (-893 |#2|)) 229)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL) ((|#4| $) NIL) (($ (-893 (-388 (-530)))) 215) (($ (-893 (-530))) 211) (($ (-893 |#2|)) 231)) (-2562 (($ $) NIL) (($ $ |#4|) 43)) (-3784 (((-110) $ $) 112) (((-110) $ (-597 $)) 113)) (-1943 (((-110) $) 56)) (-2504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 107)) (-4122 (($ $) 138)) (-2651 (($ $) 134)) (-4224 (($ $) 133)) (-4170 (($ $ $) 79) (($ $ $ |#4|) 84)) (-3535 (($ $ $) 82) (($ $ $ |#4|) 86)) (-3397 (((-110) $ $) 121) (((-110) $ (-597 $)) 122)) (-3122 ((|#4| $) 33)) (-2938 (($ $ $) 110)) (-1841 (((-110) $) 55)) (-1419 (((-719) $) 35)) (-3975 (($ $) 152)) (-3630 (($ $) 149)) (-2922 (((-597 $) $) 68)) (-3384 (($ $) 57)) (-2036 (($ $) 145)) (-2467 (((-597 $) $) 65)) (-3777 (($ $) 59)) (-2533 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4237 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4003 (-719))) $ $) 111)) (-1420 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $) 108) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $ |#4|) 109)) (-4223 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $) 104) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $ |#4|) 105)) (-2456 (($ $ $) 89) (($ $ $ |#4|) 95)) (-2824 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3162 (((-597 $) $) 51)) (-2559 (((-110) $ $) 118) (((-110) $ (-597 $)) 119)) (-3482 (($ $ $) 103)) (-3657 (($ $) 37)) (-1406 (((-110) $ $) 72)) (-1663 (((-110) $ $) 114) (((-110) $ (-597 $)) 116)) (-2122 (($ $ $) 101)) (-2846 (($ $) 40)) (-2204 ((|#2| |#2| $) 142) (($ (-597 $)) NIL) (($ $ $) NIL)) (-2150 (($ $ |#2|) NIL) (($ $ $) 131)) (-3792 (($ $ |#2|) 126) (($ $ $) 129)) (-1581 (($ $) 48)) (-3434 (($ $) 52)) (-3260 (((-833 (-360)) $) NIL) (((-833 (-530)) $) NIL) (((-506) $) NIL) (($ (-893 (-388 (-530)))) 217) (($ (-893 (-530))) 213) (($ (-893 |#2|)) 228) (((-1082) $) 250) (((-893 |#2|) $) 162)) (-2366 (((-804) $) 30) (($ (-530)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-893 |#2|) $) 163) (($ (-388 (-530))) NIL) (($ $) NIL)) (-3264 (((-3 (-110) "failed") $ $) 71)))
-(((-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 ((-893 |#2|) |#1|)) (-15 -3260 ((-893 |#2|) |#1|)) (-15 -3260 ((-1082) |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -2036 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -2204 (|#2| |#2| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#2|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -2651 (|#1| |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -3260 (|#1| (-893 |#2|))) (-15 -2585 (|#1| (-893 |#2|))) (-15 -3139 ((-3 |#1| "failed") (-893 |#2|))) (-15 -3260 (|#1| (-893 (-530)))) (-15 -2585 (|#1| (-893 (-530)))) (-15 -3139 ((-3 |#1| "failed") (-893 (-530)))) (-15 -3260 (|#1| (-893 (-388 (-530))))) (-15 -2585 (|#1| (-893 (-388 (-530))))) (-15 -3139 ((-3 |#1| "failed") (-893 (-388 (-530))))) (-15 -3482 (|#1| |#1| |#1|)) (-15 -2122 (|#1| |#1| |#1|)) (-15 -4237 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4003 (-719))) |#1| |#1|)) (-15 -2938 (|#1| |#1| |#1|)) (-15 -2504 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -4223 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -4223 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1| |#4|)) (-15 -2456 (|#1| |#1| |#1| |#4|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -3535 (|#1| |#1| |#1| |#4|)) (-15 -4170 (|#1| |#1| |#1| |#4|)) (-15 -3535 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#1| |#1|)) (-15 -3397 ((-110) |#1| (-597 |#1|))) (-15 -3397 ((-110) |#1| |#1|)) (-15 -2559 ((-110) |#1| (-597 |#1|))) (-15 -2559 ((-110) |#1| |#1|)) (-15 -1663 ((-110) |#1| (-597 |#1|))) (-15 -1663 ((-110) |#1| |#1|)) (-15 -3784 ((-110) |#1| (-597 |#1|))) (-15 -3784 ((-110) |#1| |#1|)) (-15 -3627 ((-110) |#1| |#1|)) (-15 -1406 ((-110) |#1| |#1|)) (-15 -3264 ((-3 (-110) "failed") |#1| |#1|)) (-15 -2922 ((-597 |#1|) |#1|)) (-15 -2467 ((-597 |#1|) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -1943 ((-110) |#1|)) (-15 -1841 ((-110) |#1|)) (-15 -2562 (|#1| |#1| |#4|)) (-15 -2533 (|#1| |#1| |#4|)) (-15 -3434 (|#1| |#1|)) (-15 -3162 ((-597 |#1|) |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2846 (|#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -1419 ((-719) |#1|)) (-15 -3122 (|#4| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2585 (|#4| |#1|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -2366 (|#1| |#4|)) (-15 -2533 (|#2| |#1|)) (-15 -2562 (|#1| |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-998 |#2| |#3| |#4|) (-984) (-741) (-795)) (T -997))
-NIL
-(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2204 (|#1| |#1| |#1|)) (-15 -2204 (|#1| (-597 |#1|))) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 ((-893 |#2|) |#1|)) (-15 -3260 ((-893 |#2|) |#1|)) (-15 -3260 ((-1082) |#1|)) (-15 -3975 (|#1| |#1|)) (-15 -3630 (|#1| |#1|)) (-15 -2036 (|#1| |#1|)) (-15 -4122 (|#1| |#1|)) (-15 -2204 (|#2| |#2| |#1|)) (-15 -2150 (|#1| |#1| |#1|)) (-15 -3792 (|#1| |#1| |#1|)) (-15 -2150 (|#1| |#1| |#2|)) (-15 -3792 (|#1| |#1| |#2|)) (-15 -2651 (|#1| |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -3260 (|#1| (-893 |#2|))) (-15 -2585 (|#1| (-893 |#2|))) (-15 -3139 ((-3 |#1| "failed") (-893 |#2|))) (-15 -3260 (|#1| (-893 (-530)))) (-15 -2585 (|#1| (-893 (-530)))) (-15 -3139 ((-3 |#1| "failed") (-893 (-530)))) (-15 -3260 (|#1| (-893 (-388 (-530))))) (-15 -2585 (|#1| (-893 (-388 (-530))))) (-15 -3139 ((-3 |#1| "failed") (-893 (-388 (-530))))) (-15 -3482 (|#1| |#1| |#1|)) (-15 -2122 (|#1| |#1| |#1|)) (-15 -4237 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -4003 (-719))) |#1| |#1|)) (-15 -2938 (|#1| |#1| |#1|)) (-15 -2504 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -1420 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -4223 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -3304 |#1|)) |#1| |#1| |#4|)) (-15 -4223 ((-2 (|:| -2065 |#1|) (|:| |gap| (-719)) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1| |#4|)) (-15 -2456 (|#1| |#1| |#1| |#4|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2456 (|#1| |#1| |#1|)) (-15 -3535 (|#1| |#1| |#1| |#4|)) (-15 -4170 (|#1| |#1| |#1| |#4|)) (-15 -3535 (|#1| |#1| |#1|)) (-15 -4170 (|#1| |#1| |#1|)) (-15 -3397 ((-110) |#1| (-597 |#1|))) (-15 -3397 ((-110) |#1| |#1|)) (-15 -2559 ((-110) |#1| (-597 |#1|))) (-15 -2559 ((-110) |#1| |#1|)) (-15 -1663 ((-110) |#1| (-597 |#1|))) (-15 -1663 ((-110) |#1| |#1|)) (-15 -3784 ((-110) |#1| (-597 |#1|))) (-15 -3784 ((-110) |#1| |#1|)) (-15 -3627 ((-110) |#1| |#1|)) (-15 -1406 ((-110) |#1| |#1|)) (-15 -3264 ((-3 (-110) "failed") |#1| |#1|)) (-15 -2922 ((-597 |#1|) |#1|)) (-15 -2467 ((-597 |#1|) |#1|)) (-15 -3777 (|#1| |#1|)) (-15 -3384 (|#1| |#1|)) (-15 -1943 ((-110) |#1|)) (-15 -1841 ((-110) |#1|)) (-15 -2562 (|#1| |#1| |#4|)) (-15 -2533 (|#1| |#1| |#4|)) (-15 -3434 (|#1| |#1|)) (-15 -3162 ((-597 |#1|) |#1|)) (-15 -1581 (|#1| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2846 (|#1| |#1|)) (-15 -3657 (|#1| |#1|)) (-15 -1419 ((-719) |#1|)) (-15 -3122 (|#4| |#1|)) (-15 -3260 ((-506) |#1|)) (-15 -3260 ((-833 (-530)) |#1|)) (-15 -3260 ((-833 (-360)) |#1|)) (-15 -2585 (|#4| |#1|)) (-15 -3139 ((-3 |#4| "failed") |#1|)) (-15 -2366 (|#1| |#4|)) (-15 -2533 (|#2| |#1|)) (-15 -2562 (|#1| |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 |#3|) $) 108)) (-2577 (((-1095 $) $ |#3|) 123) (((-1095 |#1|) $) 122)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85 (|has| |#1| (-522)))) (-3446 (($ $) 86 (|has| |#1| (-522)))) (-1276 (((-110) $) 88 (|has| |#1| (-522)))) (-3471 (((-719) $) 110) (((-719) $ (-597 |#3|)) 109)) (-2133 (($ $) 269)) (-3627 (((-110) $ $) 255)) (-1889 (((-3 $ "failed") $ $) 19)) (-3950 (($ $ $) 214 (|has| |#1| (-522)))) (-2540 (((-597 $) $ $) 209 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) 98 (|has| |#1| (-850)))) (-3544 (($ $) 96 (|has| |#1| (-432)))) (-3272 (((-399 $) $) 95 (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-530)) "failed") $) 160 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 158 (|has| |#1| (-975 (-530)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-893 (-388 (-530)))) 229 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (((-3 $ "failed") (-893 (-530))) 226 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (((-3 $ "failed") (-893 |#1|)) 223 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-37 (-530)))) (|has| |#3| (-572 (-1099)))) (-12 (-3676 (|has| |#1| (-515))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (-3676 (|has| |#1| (-932 (-530)))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))))) (-2585 ((|#1| $) 163) (((-388 (-530)) $) 159 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 157 (|has| |#1| (-975 (-530)))) ((|#3| $) 133) (($ (-893 (-388 (-530)))) 228 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (($ (-893 (-530))) 225 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (($ (-893 |#1|)) 222 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (-3676 (|has| |#1| (-37 (-530)))) (|has| |#3| (-572 (-1099)))) (-12 (-3676 (|has| |#1| (-515))) (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (-3676 (|has| |#1| (-932 (-530)))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))))) (-3388 (($ $ $ |#3|) 106 (|has| |#1| (-162))) (($ $ $) 210 (|has| |#1| (-522)))) (-2562 (($ $) 152) (($ $ |#3|) 264)) (-2329 (((-637 (-530)) (-637 $)) 132 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 131 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 130) (((-637 |#1|) (-637 $)) 129)) (-3784 (((-110) $ $) 254) (((-110) $ (-597 $)) 253)) (-2707 (((-3 $ "failed") $) 32)) (-1943 (((-110) $) 262)) (-2504 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 234)) (-4122 (($ $) 203 (|has| |#1| (-432)))) (-1239 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2548 (((-597 $) $) 107)) (-3295 (((-110) $) 94 (|has| |#1| (-850)))) (-2651 (($ $) 219 (|has| |#1| (-522)))) (-4224 (($ $) 220 (|has| |#1| (-522)))) (-4170 (($ $ $) 246) (($ $ $ |#3|) 244)) (-3535 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2410 (($ $ |#1| |#2| $) 170)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 82 (-12 (|has| |#3| (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 81 (-12 (|has| |#3| (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 167)) (-3397 (((-110) $ $) 248) (((-110) $ (-597 $)) 247)) (-2793 (($ $ $ $ $) 205 (|has| |#1| (-522)))) (-3122 ((|#3| $) 273)) (-2735 (($ (-1095 |#1|) |#3|) 115) (($ (-1095 $) |#3|) 114)) (-2469 (((-597 $) $) 124)) (-3668 (((-110) $) 150)) (-2725 (($ |#1| |#2|) 151) (($ $ |#3| (-719)) 117) (($ $ (-597 |#3|) (-597 (-719))) 116)) (-2938 (($ $ $) 233)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) 118)) (-1841 (((-110) $) 263)) (-2944 ((|#2| $) 168) (((-719) $ |#3|) 120) (((-597 (-719)) $ (-597 |#3|)) 119)) (-2508 (($ $ $) 77 (|has| |#1| (-795)))) (-1419 (((-719) $) 272)) (-1817 (($ $ $) 76 (|has| |#1| (-795)))) (-3756 (($ (-1 |#2| |#2|) $) 169)) (-3217 (($ (-1 |#1| |#1|) $) 149)) (-2040 (((-3 |#3| "failed") $) 121)) (-3975 (($ $) 200 (|has| |#1| (-432)))) (-3630 (($ $) 201 (|has| |#1| (-432)))) (-2922 (((-597 $) $) 258)) (-3384 (($ $) 261)) (-2036 (($ $) 202 (|has| |#1| (-432)))) (-2467 (((-597 $) $) 259)) (-3777 (($ $) 260)) (-2521 (($ $) 147)) (-2533 ((|#1| $) 146) (($ $ |#3|) 265)) (-2170 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-4237 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4003 (-719))) $ $) 232)) (-1420 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $) 236) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $ |#3|) 235)) (-4223 (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $) 238) (((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $ |#3|) 237)) (-2456 (($ $ $) 242) (($ $ $ |#3|) 240)) (-2824 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1424 (((-1082) $) 9)) (-2991 (($ $ $) 208 (|has| |#1| (-522)))) (-3162 (((-597 $) $) 267)) (-1862 (((-3 (-597 $) "failed") $) 112)) (-1534 (((-3 (-597 $) "failed") $) 113)) (-1487 (((-3 (-2 (|:| |var| |#3|) (|:| -3194 (-719))) "failed") $) 111)) (-2559 (((-110) $ $) 250) (((-110) $ (-597 $)) 249)) (-3482 (($ $ $) 230)) (-3657 (($ $) 271)) (-1406 (((-110) $ $) 256)) (-1663 (((-110) $ $) 252) (((-110) $ (-597 $)) 251)) (-2122 (($ $ $) 231)) (-2846 (($ $) 270)) (-2624 (((-1046) $) 10)) (-2177 (((-2 (|:| -2204 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-522)))) (-3936 (((-2 (|:| -2204 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-522)))) (-2494 (((-110) $) 164)) (-2505 ((|#1| $) 165)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 93 (|has| |#1| (-432)))) (-2204 ((|#1| |#1| $) 204 (|has| |#1| (-432))) (($ (-597 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 99 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 97 (|has| |#1| (-850)))) (-2408 (((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-522)))) (-3551 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-2150 (($ $ |#1|) 217 (|has| |#1| (-522))) (($ $ $) 215 (|has| |#1| (-522)))) (-3792 (($ $ |#1|) 218 (|has| |#1| (-522))) (($ $ $) 216 (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-597 $) (-597 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-597 |#3|) (-597 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-597 |#3|) (-597 $)) 136)) (-3060 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3289 (($ $ |#3|) 40) (($ $ (-597 |#3|)) 39) (($ $ |#3| (-719)) 38) (($ $ (-597 |#3|) (-597 (-719))) 37)) (-1429 ((|#2| $) 148) (((-719) $ |#3|) 128) (((-597 (-719)) $ (-597 |#3|)) 127)) (-1581 (($ $) 268)) (-3434 (($ $) 266)) (-3260 (((-833 (-360)) $) 80 (-12 (|has| |#3| (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 79 (-12 (|has| |#3| (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 78 (-12 (|has| |#3| (-572 (-506))) (|has| |#1| (-572 (-506))))) (($ (-893 (-388 (-530)))) 227 (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099))))) (($ (-893 (-530))) 224 (-1461 (-12 (-3676 (|has| |#1| (-37 (-388 (-530))))) (|has| |#1| (-37 (-530))) (|has| |#3| (-572 (-1099)))) (-12 (|has| |#1| (-37 (-388 (-530)))) (|has| |#3| (-572 (-1099)))))) (($ (-893 |#1|)) 221 (|has| |#3| (-572 (-1099)))) (((-1082) $) 199 (-12 (|has| |#1| (-975 (-530))) (|has| |#3| (-572 (-1099))))) (((-893 |#1|) $) 198 (|has| |#3| (-572 (-1099))))) (-3829 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 102 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-893 |#1|) $) 197 (|has| |#3| (-572 (-1099)))) (($ (-388 (-530))) 70 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 83 (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) 166)) (-4085 ((|#1| $ |#2|) 153) (($ $ |#3| (-719)) 126) (($ $ (-597 |#3|) (-597 (-719))) 125)) (-3251 (((-3 $ "failed") $) 71 (-1461 (-3380 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 171 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 87 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3264 (((-3 (-110) "failed") $ $) 257)) (-3093 (($) 29 T CONST)) (-1271 (($ $ $ $ (-719)) 206 (|has| |#1| (-522)))) (-3984 (($ $ $ (-719)) 207 (|has| |#1| (-522)))) (-3340 (($ $ |#3|) 36) (($ $ (-597 |#3|)) 35) (($ $ |#3| (-719)) 34) (($ $ (-597 |#3|) (-597 (-719))) 33)) (-2306 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 73 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 72 (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 156 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 155 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-998 |#1| |#2| |#3|) (-133) (-984) (-741) (-795)) (T -998))
-((-3122 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-1419 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-719)))) (-3657 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2846 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-1581 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3162 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-3434 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2533 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2562 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-1943 (*1 *2 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3384 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2467 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-2922 (*1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-3264 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3627 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3784 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3784 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-1663 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-1663 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-2559 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-2559 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-3397 (*1 *2 *1 *1) (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110)))) (-3397 (*1 *2 *1 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)))) (-4170 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3535 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4170 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-3535 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2456 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2824 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-2456 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-2824 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *2 (-795)))) (-4223 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -3304 *1))) (-4 *1 (-998 *3 *4 *5)))) (-4223 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -3304 *1))) (-4 *1 (-998 *4 *5 *3)))) (-1420 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-998 *3 *4 *5)))) (-1420 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-998 *4 *5 *3)))) (-2504 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-998 *3 *4 *5)))) (-2938 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-4237 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4003 (-719)))) (-4 *1 (-998 *3 *4 *5)))) (-2122 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3482 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)))) (-3139 (*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-2585 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))) (-3139 (*1 *1 *2) (|partial| -1461 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-2585 (*1 *1 *2) (-1461 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3260 (*1 *1 *2) (-1461 (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3139 (*1 *1 *2) (|partial| -1461 (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-3676 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-515))) (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))))) (-2585 (*1 *1 *2) (-1461 (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-3676 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-515))) (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))) (-12 (-5 *2 (-893 *3)) (-12 (-3676 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099)))) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741)) (-4 *5 (-795))))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *5 (-572 (-1099))) (-4 *4 (-741)) (-4 *5 (-795)))) (-4224 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2651 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3792 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2150 (*1 *1 *1 *2) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3792 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2150 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3950 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2408 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2204 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-998 *3 *4 *5)))) (-3936 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2204 *1) (|:| |coef1| *1))) (-4 *1 (-998 *3 *4 *5)))) (-2177 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-2 (|:| -2204 *1) (|:| |coef2| *1))) (-4 *1 (-998 *3 *4 *5)))) (-3388 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2540 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))) (-2991 (*1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-3984 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))) (-1271 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))) (-2793 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-522)))) (-2204 (*1 *2 *2 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-4122 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-2036 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3630 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))) (-3975 (*1 *1 *1) (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-432)))))
-(-13 (-890 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3122 (|t#3| $)) (-15 -1419 ((-719) $)) (-15 -3657 ($ $)) (-15 -2846 ($ $)) (-15 -2133 ($ $)) (-15 -1581 ($ $)) (-15 -3162 ((-597 $) $)) (-15 -3434 ($ $)) (-15 -2533 ($ $ |t#3|)) (-15 -2562 ($ $ |t#3|)) (-15 -1841 ((-110) $)) (-15 -1943 ((-110) $)) (-15 -3384 ($ $)) (-15 -3777 ($ $)) (-15 -2467 ((-597 $) $)) (-15 -2922 ((-597 $) $)) (-15 -3264 ((-3 (-110) "failed") $ $)) (-15 -1406 ((-110) $ $)) (-15 -3627 ((-110) $ $)) (-15 -3784 ((-110) $ $)) (-15 -3784 ((-110) $ (-597 $))) (-15 -1663 ((-110) $ $)) (-15 -1663 ((-110) $ (-597 $))) (-15 -2559 ((-110) $ $)) (-15 -2559 ((-110) $ (-597 $))) (-15 -3397 ((-110) $ $)) (-15 -3397 ((-110) $ (-597 $))) (-15 -4170 ($ $ $)) (-15 -3535 ($ $ $)) (-15 -4170 ($ $ $ |t#3|)) (-15 -3535 ($ $ $ |t#3|)) (-15 -2456 ($ $ $)) (-15 -2824 ($ $ $)) (-15 -2456 ($ $ $ |t#3|)) (-15 -2824 ($ $ $ |t#3|)) (-15 -4223 ((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $)) (-15 -4223 ((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -3304 $)) $ $ |t#3|)) (-15 -1420 ((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -1420 ((-2 (|:| -2065 $) (|:| |gap| (-719)) (|:| -1324 $) (|:| -3304 $)) $ $ |t#3|)) (-15 -2504 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -2938 ($ $ $)) (-15 -4237 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -4003 (-719))) $ $)) (-15 -2122 ($ $ $)) (-15 -3482 ($ $ $)) (IF (|has| |t#3| (-572 (-1099))) (PROGN (-6 (-571 (-893 |t#1|))) (-6 (-572 (-893 |t#1|))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -3139 ((-3 $ "failed") (-893 (-388 (-530))))) (-15 -2585 ($ (-893 (-388 (-530))))) (-15 -3260 ($ (-893 (-388 (-530))))) (-15 -3139 ((-3 $ "failed") (-893 (-530)))) (-15 -2585 ($ (-893 (-530)))) (-15 -3260 ($ (-893 (-530)))) (IF (|has| |t#1| (-932 (-530))) |%noBranch| (PROGN (-15 -3139 ((-3 $ "failed") (-893 |t#1|))) (-15 -2585 ($ (-893 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-530))) (IF (|has| |t#1| (-37 (-388 (-530)))) |%noBranch| (PROGN (-15 -3139 ((-3 $ "failed") (-893 (-530)))) (-15 -2585 ($ (-893 (-530)))) (-15 -3260 ($ (-893 (-530)))) (IF (|has| |t#1| (-515)) |%noBranch| (PROGN (-15 -3139 ((-3 $ "failed") (-893 |t#1|))) (-15 -2585 ($ (-893 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-530))) |%noBranch| (IF (|has| |t#1| (-37 (-388 (-530)))) |%noBranch| (PROGN (-15 -3139 ((-3 $ "failed") (-893 |t#1|))) (-15 -2585 ($ (-893 |t#1|)))))) (-15 -3260 ($ (-893 |t#1|))) (IF (|has| |t#1| (-975 (-530))) (-6 (-572 (-1082))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-15 -4224 ($ $)) (-15 -2651 ($ $)) (-15 -3792 ($ $ |t#1|)) (-15 -2150 ($ $ |t#1|)) (-15 -3792 ($ $ $)) (-15 -2150 ($ $ $)) (-15 -3950 ($ $ $)) (-15 -2408 ((-2 (|:| -2204 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3936 ((-2 (|:| -2204 $) (|:| |coef1| $)) $ $)) (-15 -2177 ((-2 (|:| -2204 $) (|:| |coef2| $)) $ $)) (-15 -3388 ($ $ $)) (-15 -2540 ((-597 $) $ $)) (-15 -2991 ($ $ $)) (-15 -3984 ($ $ $ (-719))) (-15 -1271 ($ $ $ $ (-719))) (-15 -2793 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -2204 (|t#1| |t#1| $)) (-15 -4122 ($ $)) (-15 -2036 ($ $)) (-15 -3630 ($ $)) (-15 -3975 ($ $))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-571 (-893 |#1|)) |has| |#3| (-572 (-1099))) ((-162) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| |#1| (-572 (-506))) (|has| |#3| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#3| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#3| (-572 (-833 (-530))))) ((-572 (-893 |#1|)) |has| |#3| (-572 (-1099))) ((-572 (-1082)) -12 (|has| |#1| (-975 (-530))) (|has| |#3| (-572 (-1099)))) ((-272) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-850)) (|has| |#1| (-432))) ((-491 |#3| |#1|) . T) ((-491 |#3| $) . T) ((-491 $ $) . T) ((-522) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 |#3|) . T) ((-827 (-360)) -12 (|has| |#1| (-827 (-360))) (|has| |#3| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-827 (-530))) (|has| |#3| (-827 (-530)))) ((-890 |#1| |#2| |#3|) . T) ((-850) |has| |#1| (-850)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 |#1|) . T) ((-975 |#3|) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) |has| |#1| (-850)))
-((-1813 (((-110) |#3| $) 13)) (-1326 (((-3 $ "failed") |#3| (-862)) 23)) (-2707 (((-3 |#3| "failed") |#3| $) 38)) (-2514 (((-110) |#3| $) 16)) (-2166 (((-110) |#3| $) 14)))
-(((-999 |#1| |#2| |#3|) (-10 -8 (-15 -1326 ((-3 |#1| "failed") |#3| (-862))) (-15 -2707 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2514 ((-110) |#3| |#1|)) (-15 -2166 ((-110) |#3| |#1|)) (-15 -1813 ((-110) |#3| |#1|))) (-1000 |#2| |#3|) (-13 (-793) (-344)) (-1157 |#2|)) (T -999))
-NIL
-(-10 -8 (-15 -1326 ((-3 |#1| "failed") |#3| (-862))) (-15 -2707 ((-3 |#3| "failed") |#3| |#1|)) (-15 -2514 ((-110) |#3| |#1|)) (-15 -2166 ((-110) |#3| |#1|)) (-15 -1813 ((-110) |#3| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) |#2| $) 21)) (-1867 (((-530) |#2| $) 22)) (-1326 (((-3 $ "failed") |#2| (-862)) 15)) (-2891 ((|#1| |#2| $ |#1|) 13)) (-2707 (((-3 |#2| "failed") |#2| $) 18)) (-2514 (((-110) |#2| $) 19)) (-2166 (((-110) |#2| $) 20)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1781 ((|#2| $) 17)) (-2366 (((-804) $) 11)) (-4136 ((|#1| |#2| $ |#1|) 14)) (-3462 (((-597 $) |#2|) 16)) (-2248 (((-110) $ $) 6)))
-(((-1000 |#1| |#2|) (-133) (-13 (-793) (-344)) (-1157 |t#1|)) (T -1000))
-((-1867 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-530)))) (-1813 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-2166 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-2514 (*1 *2 *3 *1) (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-110)))) (-2707 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1157 *3)))) (-1781 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344))) (-4 *2 (-1157 *3)))) (-3462 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-597 *1)) (-4 *1 (-1000 *4 *3)))) (-1326 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-862)) (-4 *4 (-13 (-793) (-344))) (-4 *1 (-1000 *4 *2)) (-4 *2 (-1157 *4)))) (-4136 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1157 *2)))) (-2891 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344))) (-4 *3 (-1157 *2)))))
-(-13 (-1027) (-10 -8 (-15 -1867 ((-530) |t#2| $)) (-15 -1813 ((-110) |t#2| $)) (-15 -2166 ((-110) |t#2| $)) (-15 -2514 ((-110) |t#2| $)) (-15 -2707 ((-3 |t#2| "failed") |t#2| $)) (-15 -1781 (|t#2| $)) (-15 -3462 ((-597 $) |t#2|)) (-15 -1326 ((-3 $ "failed") |t#2| (-862))) (-15 -4136 (|t#1| |t#2| $ |t#1|)) (-15 -2891 (|t#1| |t#2| $ |t#1|))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2500 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719)) 96)) (-2535 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719)) 56)) (-4141 (((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719)) 87)) (-2249 (((-719) (-597 |#4|) (-597 |#5|)) 27)) (-2280 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719)) 58) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110)) 60)) (-3850 (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110)) 78) (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110)) 79)) (-3260 (((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) 82)) (-3920 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-110)) 55)) (-3204 (((-719) (-597 |#4|) (-597 |#5|)) 19)))
-(((-1001 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3204 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -2249 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -3920 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-110))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -2500 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719))) (-15 -3260 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -4141 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1001))
-((-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9)))) (-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082)) (-5 *1 (-1001 *4 *5 *6 *7 *8)))) (-2500 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-597 *11)) (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2473 *11)))))) (-5 *6 (-719)) (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2473 *11)))) (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9)) (-4 *11 (-1003 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-5 *1 (-1001 *7 *8 *9 *10 *11)))) (-3850 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-3850 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-2280 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2280 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-2280 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *7 *8 *9 *3 *4)) (-4 *4 (-1003 *7 *8 *9 *3)))) (-2535 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-3920 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3204 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -2249 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -3920 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-110))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -2500 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719))) (-15 -3260 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -4141 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719))))
-((-3131 (((-110) |#5| $) 21)) (-2747 (((-110) |#5| $) 24)) (-2984 (((-110) |#5| $) 16) (((-110) $) 45)) (-4033 (((-597 $) |#5| $) NIL) (((-597 $) (-597 |#5|) $) 77) (((-597 $) (-597 |#5|) (-597 $)) 75) (((-597 $) |#5| (-597 $)) 78)) (-3168 (($ $ |#5|) NIL) (((-597 $) |#5| $) NIL) (((-597 $) |#5| (-597 $)) 60) (((-597 $) (-597 |#5|) $) 62) (((-597 $) (-597 |#5|) (-597 $)) 64)) (-4208 (((-597 $) |#5| $) NIL) (((-597 $) |#5| (-597 $)) 54) (((-597 $) (-597 |#5|) $) 56) (((-597 $) (-597 |#5|) (-597 $)) 58)) (-1321 (((-110) |#5| $) 27)))
-(((-1002 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3168 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -3168 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -3168 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -3168 ((-597 |#1|) |#5| |#1|)) (-15 -4208 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -4208 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -4208 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -4208 ((-597 |#1|) |#5| |#1|)) (-15 -4033 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -4033 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -4033 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -4033 ((-597 |#1|) |#5| |#1|)) (-15 -2747 ((-110) |#5| |#1|)) (-15 -2984 ((-110) |#1|)) (-15 -1321 ((-110) |#5| |#1|)) (-15 -3131 ((-110) |#5| |#1|)) (-15 -2984 ((-110) |#5| |#1|)) (-15 -3168 (|#1| |#1| |#5|))) (-1003 |#2| |#3| |#4| |#5|) (-432) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -1002))
-NIL
-(-10 -8 (-15 -3168 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -3168 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -3168 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -3168 ((-597 |#1|) |#5| |#1|)) (-15 -4208 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -4208 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -4208 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -4208 ((-597 |#1|) |#5| |#1|)) (-15 -4033 ((-597 |#1|) |#5| (-597 |#1|))) (-15 -4033 ((-597 |#1|) (-597 |#5|) (-597 |#1|))) (-15 -4033 ((-597 |#1|) (-597 |#5|) |#1|)) (-15 -4033 ((-597 |#1|) |#5| |#1|)) (-15 -2747 ((-110) |#5| |#1|)) (-15 -2984 ((-110) |#1|)) (-15 -1321 ((-110) |#5| |#1|)) (-15 -3131 ((-110) |#5| |#1|)) (-15 -2984 ((-110) |#5| |#1|)) (-15 -3168 (|#1| |#1| |#5|)))
-((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 126)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3131 (((-110) |#4| $) 136)) (-2747 (((-110) |#4| $) 133)) (-2984 (((-110) |#4| $) 137) (((-110) $) 134)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 127)) (-2407 (((-3 |#4| "failed") $) 83)) (-3274 (((-597 $) |#4| $) 129)) (-1404 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-4033 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-2721 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-4208 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-1321 (((-110) |#4| $) 135)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
-(((-1003 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -1003))
-((-2984 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3131 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-1321 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2984 (*1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2747 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-1404 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 (-110) (-597 *1))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3017 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3017 (*1 *2 *3 *1) (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3274 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-1609 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 *3 (-597 *1))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-2991 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3544 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *1)))) (-4 *1 (-1003 *4 *5 *6 *3)))) (-4033 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-4033 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-4033 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-4208 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-4208 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-4208 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-4208 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-2721 (*1 *1 *2 *1) (-12 (-4 *1 (-1003 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2721 (*1 *1 *2 *1) (-12 (-5 *2 (-597 *6)) (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)))) (-3168 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)))) (-3168 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)))) (-3168 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *7)))) (-3168 (*1 *2 *3 *2) (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)))) (-1512 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1003 *5 *6 *7 *8)))))
-(-13 (-1129 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2984 ((-110) |t#4| $)) (-15 -3131 ((-110) |t#4| $)) (-15 -1321 ((-110) |t#4| $)) (-15 -2984 ((-110) $)) (-15 -2747 ((-110) |t#4| $)) (-15 -1404 ((-3 (-110) (-597 $)) |t#4| $)) (-15 -3017 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |t#4| $)) (-15 -3017 ((-110) |t#4| $)) (-15 -3274 ((-597 $) |t#4| $)) (-15 -1609 ((-3 |t#4| (-597 $)) |t#4| |t#4| $)) (-15 -2991 ((-597 (-2 (|:| |val| |t#4|) (|:| -2473 $))) |t#4| |t#4| $)) (-15 -3544 ((-597 (-2 (|:| |val| |t#4|) (|:| -2473 $))) |t#4| $)) (-15 -4033 ((-597 $) |t#4| $)) (-15 -4033 ((-597 $) (-597 |t#4|) $)) (-15 -4033 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -4033 ((-597 $) |t#4| (-597 $))) (-15 -4208 ((-597 $) |t#4| $)) (-15 -4208 ((-597 $) |t#4| (-597 $))) (-15 -4208 ((-597 $) (-597 |t#4|) $)) (-15 -4208 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -2721 ($ |t#4| $)) (-15 -2721 ($ (-597 |t#4|) $)) (-15 -3168 ((-597 $) |t#4| $)) (-15 -3168 ((-597 $) |t#4| (-597 $))) (-15 -3168 ((-597 $) (-597 |t#4|) $)) (-15 -3168 ((-597 $) (-597 |t#4|) (-597 $))) (-15 -1512 ((-597 $) (-597 |t#4|) (-110)))))
-(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1135) . T))
-((-3110 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|) 81)) (-3079 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|) 113)) (-3737 (((-597 |#5|) |#4| |#5|) 70)) (-2021 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-3033 (((-1186)) 37)) (-1308 (((-1186)) 26)) (-3058 (((-1186) (-1082) (-1082) (-1082)) 33)) (-2802 (((-1186) (-1082) (-1082) (-1082)) 22)) (-1681 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|) 96)) (-2842 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110)) 107) (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-2335 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|) 102)))
-(((-1004 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2802 ((-1186) (-1082) (-1082) (-1082))) (-15 -1308 ((-1186))) (-15 -3058 ((-1186) (-1082) (-1082) (-1082))) (-15 -3033 ((-1186))) (-15 -1681 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -2842 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -2842 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110))) (-15 -2335 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -3079 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -2021 ((-110) |#4| |#5|)) (-15 -2021 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3737 ((-597 |#5|) |#4| |#5|)) (-15 -3110 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1004))
-((-3110 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3737 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2021 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2021 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3079 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2335 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9)))) (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795)) (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2473 *9)))) (-5 *1 (-1004 *6 *7 *4 *8 *9)))) (-2842 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1004 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-1681 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))) (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3033 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3058 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1308 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-2802 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2802 ((-1186) (-1082) (-1082) (-1082))) (-15 -1308 ((-1186))) (-15 -3058 ((-1186) (-1082) (-1082) (-1082))) (-15 -3033 ((-1186))) (-15 -1681 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -2842 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -2842 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110))) (-15 -2335 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -3079 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -2021 ((-110) |#4| |#5|)) (-15 -2021 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3737 ((-597 |#5|) |#4| |#5|)) (-15 -3110 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|)))
-((-2352 (((-110) $ $) NIL)) (-3907 (((-1099) $) 8)) (-1424 (((-1082) $) 16)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 13)))
-(((-1005 |#1|) (-13 (-1027) (-10 -8 (-15 -3907 ((-1099) $)))) (-1099)) (T -1005))
-((-3907 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1005 *3)) (-14 *3 *2))))
-(-13 (-1027) (-10 -8 (-15 -3907 ((-1099) $))))
-((-2352 (((-110) $ $) NIL)) (-2598 (($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|))) 33)) (-1938 (($ |#3| |#3|) 22) (($ |#3| |#3| (-597 (-1099))) 20)) (-1491 ((|#3| $) 13)) (-3139 (((-3 (-276 |#3|) "failed") $) 58)) (-2585 (((-276 |#3|) $) NIL)) (-3735 (((-597 (-1099)) $) 16)) (-2144 (((-833 |#1|) $) 11)) (-1478 ((|#3| $) 12)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1902 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-862)) 39)) (-2366 (((-804) $) 86) (($ (-276 |#3|)) 21)) (-2248 (((-110) $ $) 36)))
-(((-1006 |#1| |#2| |#3|) (-13 (-1027) (-268 |#3| |#3|) (-975 (-276 |#3|)) (-10 -8 (-15 -1938 ($ |#3| |#3|)) (-15 -1938 ($ |#3| |#3| (-597 (-1099)))) (-15 -2598 ($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|)))) (-15 -2144 ((-833 |#1|) $)) (-15 -1478 (|#3| $)) (-15 -1491 (|#3| $)) (-15 -1902 (|#3| $ |#3| (-862))) (-15 -3735 ((-597 (-1099)) $)))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -1006))
-((-1938 (*1 *1 *2 *2) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))) (-1938 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-2598 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1 (-110) (-597 *6))) (-4 *6 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *6)))) (-2144 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 *2))) (-5 *2 (-833 *3)) (-5 *1 (-1006 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 *2))))) (-1478 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))))) (-1491 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1006 *3 *4 *2)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))))) (-1902 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1006 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))) (-3735 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *2 (-597 (-1099))) (-5 *1 (-1006 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
-(-13 (-1027) (-268 |#3| |#3|) (-975 (-276 |#3|)) (-10 -8 (-15 -1938 ($ |#3| |#3|)) (-15 -1938 ($ |#3| |#3| (-597 (-1099)))) (-15 -2598 ($ $ (-597 (-1099)) (-1 (-110) (-597 |#3|)))) (-15 -2144 ((-833 |#1|) $)) (-15 -1478 (|#3| $)) (-15 -1491 (|#3| $)) (-15 -1902 (|#3| $ |#3| (-862))) (-15 -3735 ((-597 (-1099)) $))))
-((-2352 (((-110) $ $) NIL)) (-2563 (($ (-597 (-1006 |#1| |#2| |#3|))) 13)) (-3704 (((-597 (-1006 |#1| |#2| |#3|)) $) 20)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1902 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-862)) 26)) (-2366 (((-804) $) 16)) (-2248 (((-110) $ $) 19)))
-(((-1007 |#1| |#2| |#3|) (-13 (-1027) (-268 |#3| |#3|) (-10 -8 (-15 -2563 ($ (-597 (-1006 |#1| |#2| |#3|)))) (-15 -3704 ((-597 (-1006 |#1| |#2| |#3|)) $)) (-15 -1902 (|#3| $ |#3| (-862))))) (-1027) (-13 (-984) (-827 |#1|) (-795) (-572 (-833 |#1|))) (-13 (-411 |#2|) (-827 |#1|) (-572 (-833 |#1|)))) (T -1007))
-((-2563 (*1 *1 *2) (-12 (-5 *2 (-597 (-1006 *3 *4 *5))) (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))) (-5 *1 (-1007 *3 *4 *5)))) (-3704 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3)))) (-5 *2 (-597 (-1006 *3 *4 *5))) (-5 *1 (-1007 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))) (-1902 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-862)) (-4 *4 (-1027)) (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4)))) (-5 *1 (-1007 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))))
-(-13 (-1027) (-268 |#3| |#3|) (-10 -8 (-15 -2563 ($ (-597 (-1006 |#1| |#2| |#3|)))) (-15 -3704 ((-597 (-1006 |#1| |#2| |#3|)) $)) (-15 -1902 (|#3| $ |#3| (-862)))))
-((-3654 (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)) 75) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|))) 77) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110)) 76)))
-(((-1008 |#1| |#2|) (-10 -7 (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)))) (-13 (-289) (-140)) (-597 (-1099))) (T -1008))
-((-3654 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))))) (-3654 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4)))))) (-5 *1 (-1008 *4 *5)) (-5 *3 (-597 (-893 *4))) (-14 *5 (-597 (-1099))))) (-3654 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))))))
-(-10 -7 (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3654 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))))
-((-2611 (((-399 |#3|) |#3|) 18)))
-(((-1009 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-399 |#3|) |#3|))) (-1157 (-388 (-530))) (-13 (-344) (-140) (-673 (-388 (-530)) |#1|)) (-1157 |#2|)) (T -1009))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-13 (-344) (-140) (-673 (-388 (-530)) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1009 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -2611 ((-399 |#3|) |#3|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 126)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-344)))) (-3446 (($ $) NIL (|has| |#1| (-344)))) (-1276 (((-110) $) NIL (|has| |#1| (-344)))) (-1863 (((-637 |#1|) (-1181 $)) NIL) (((-637 |#1|)) 115)) (-1367 ((|#1| $) 119)) (-3143 (((-1109 (-862) (-719)) (-530)) NIL (|has| |#1| (-330)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3023 (((-719)) 40 (|has| |#1| (-349)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-1574 (($ (-1181 |#1|) (-1181 $)) NIL) (($ (-1181 |#1|)) 43)) (-1853 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-1984 (((-637 |#1|) $ (-1181 $)) NIL) (((-637 |#1|) $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 106) (((-637 |#1|) (-637 $)) 101)) (-2134 (($ |#2|) 61) (((-3 $ "failed") (-388 |#2|)) NIL (|has| |#1| (-344)))) (-2707 (((-3 $ "failed") $) NIL)) (-2426 (((-862)) 77)) (-1364 (($) 44 (|has| |#1| (-349)))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1677 (($) NIL (|has| |#1| (-330)))) (-2798 (((-110) $) NIL (|has| |#1| (-330)))) (-3948 (($ $ (-719)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-2031 (((-862) $) NIL (|has| |#1| (-330))) (((-781 (-862)) $) NIL (|has| |#1| (-330)))) (-2731 (((-110) $) NIL)) (-2376 ((|#1| $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-1359 ((|#2| $) 84 (|has| |#1| (-344)))) (-1905 (((-862) $) 131 (|has| |#1| (-349)))) (-2123 ((|#2| $) 58)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-3657 (($) NIL (|has| |#1| (-330)) CONST)) (-1986 (($ (-862)) 125 (|has| |#1| (-349)))) (-2624 (((-1046) $) NIL)) (-1974 (($) 121)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2480 (((-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))) NIL (|has| |#1| (-330)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3060 ((|#1| (-1181 $)) NIL) ((|#1|) 109)) (-1823 (((-719) $) NIL (|has| |#1| (-330))) (((-3 (-719) "failed") $ $) NIL (|has| |#1| (-330)))) (-3289 (($ $) NIL (-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) NIL (-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1 |#1| |#1|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-1542 (((-637 |#1|) (-1181 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-1781 ((|#2|) 73)) (-3406 (($) NIL (|has| |#1| (-330)))) (-2328 (((-1181 |#1|) $ (-1181 $)) 89) (((-637 |#1|) (-1181 $) (-1181 $)) NIL) (((-1181 |#1|) $) 71) (((-637 |#1|) (-1181 $)) 85)) (-3260 (((-1181 |#1|) $) NIL) (($ (-1181 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (|has| |#1| (-330)))) (-2366 (((-804) $) 57) (($ (-530)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-344))) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-344)) (|has| |#1| (-975 (-388 (-530))))))) (-3251 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-1814 ((|#2| $) 82)) (-3300 (((-719)) 75)) (-3220 (((-1181 $)) 81)) (-3944 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3080 (($) 30 T CONST)) (-3093 (($) 19 T CONST)) (-3340 (($ $) NIL (-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-719)) NIL (-1461 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-841 (-1099))))) (($ $ (-1 |#1| |#1|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-2248 (((-110) $ $) 63)) (-2364 (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) 67) (($ $ $) NIL)) (-2339 (($ $ $) 65)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-388 (-530)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-530))) NIL (|has| |#1| (-344)))))
-(((-1010 |#1| |#2| |#3|) (-673 |#1| |#2|) (-162) (-1157 |#1|) |#2|) (T -1010))
-NIL
-(-673 |#1| |#2|)
-((-2611 (((-399 |#3|) |#3|) 19)))
-(((-1011 |#1| |#2| |#3|) (-10 -7 (-15 -2611 ((-399 |#3|) |#3|))) (-1157 (-388 (-893 (-530)))) (-13 (-344) (-140) (-673 (-388 (-893 (-530))) |#1|)) (-1157 |#2|)) (T -1011))
-((-2611 (*1 *2 *3) (-12 (-4 *4 (-1157 (-388 (-893 (-530))))) (-4 *5 (-13 (-344) (-140) (-673 (-388 (-893 (-530))) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1011 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(-10 -7 (-15 -2611 ((-399 |#3|) |#3|)))
-((-2352 (((-110) $ $) NIL)) (-2508 (($ $ $) 14)) (-1817 (($ $ $) 15)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2491 (($) 6)) (-3260 (((-1099) $) 18)) (-2366 (((-804) $) 12)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 13)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 8)))
-(((-1012) (-13 (-795) (-10 -8 (-15 -2491 ($)) (-15 -3260 ((-1099) $))))) (T -1012))
-((-2491 (*1 *1) (-5 *1 (-1012))) (-3260 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1012)))))
-(-13 (-795) (-10 -8 (-15 -2491 ($)) (-15 -3260 ((-1099) $))))
-((-3780 ((|#1| |#1| (-1 (-530) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-110) |#1|)) 20)) (-1898 (((-1186)) 15)) (-2581 (((-597 |#1|)) 9)))
-(((-1013 |#1|) (-10 -7 (-15 -1898 ((-1186))) (-15 -2581 ((-597 |#1|))) (-15 -3780 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3780 (|#1| |#1| (-1 (-530) |#1| |#1|)))) (-129)) (T -1013))
-((-3780 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-530) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))) (-3780 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))) (-2581 (*1 *2) (-12 (-5 *2 (-597 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))) (-1898 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))))
-(-10 -7 (-15 -1898 ((-1186))) (-15 -2581 ((-597 |#1|))) (-15 -3780 (|#1| |#1| (-1 (-110) |#1|))) (-15 -3780 (|#1| |#1| (-1 (-530) |#1| |#1|))))
-((-1376 (($ (-106) $) 16)) (-3475 (((-3 (-106) "failed") (-1099) $) 15)) (-3958 (($) 7)) (-2620 (($) 17)) (-3901 (($) 18)) (-1274 (((-597 (-164)) $) 10)) (-2366 (((-804) $) 21)))
-(((-1014) (-13 (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1274 ((-597 (-164)) $)) (-15 -3475 ((-3 (-106) "failed") (-1099) $)) (-15 -1376 ($ (-106) $)) (-15 -2620 ($)) (-15 -3901 ($))))) (T -1014))
-((-3958 (*1 *1) (-5 *1 (-1014))) (-1274 (*1 *2 *1) (-12 (-5 *2 (-597 (-164))) (-5 *1 (-1014)))) (-3475 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-1014)))) (-1376 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1014)))) (-2620 (*1 *1) (-5 *1 (-1014))) (-3901 (*1 *1) (-5 *1 (-1014))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3958 ($)) (-15 -1274 ((-597 (-164)) $)) (-15 -3475 ((-3 (-106) "failed") (-1099) $)) (-15 -1376 ($ (-106) $)) (-15 -2620 ($)) (-15 -3901 ($))))
-((-3365 (((-1181 (-637 |#1|)) (-597 (-637 |#1|))) 42) (((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|))) 63) (((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|)))) 79)) (-2328 (((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|))) 36)))
-(((-1015 |#1|) (-10 -7 (-15 -3365 ((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|))))) (-15 -3365 ((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|)))) (-15 -3365 ((-1181 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2328 ((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|))))) (-344)) (T -1015))
-((-2328 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-637 *5))) (-5 *3 (-637 *5)) (-4 *5 (-344)) (-5 *2 (-1181 *5)) (-5 *1 (-1015 *5)))) (-3365 (*1 *2 *3) (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-1015 *4)))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-4 *5 (-344)) (-5 *2 (-1181 (-637 (-893 *5)))) (-5 *1 (-1015 *5)) (-5 *4 (-637 (-893 *5))))) (-3365 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-1099))) (-4 *5 (-344)) (-5 *2 (-1181 (-637 (-388 (-893 *5))))) (-5 *1 (-1015 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
-(-10 -7 (-15 -3365 ((-1181 (-637 (-388 (-893 |#1|)))) (-597 (-1099)) (-637 (-388 (-893 |#1|))))) (-15 -3365 ((-1181 (-637 (-893 |#1|))) (-597 (-1099)) (-637 (-893 |#1|)))) (-15 -3365 ((-1181 (-637 |#1|)) (-597 (-637 |#1|)))) (-15 -2328 ((-1181 |#1|) (-637 |#1|) (-597 (-637 |#1|)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1772 (((-597 (-719)) $) NIL) (((-597 (-719)) $ (-1099)) NIL)) (-2001 (((-719) $) NIL) (((-719) $ (-1099)) NIL)) (-2746 (((-597 (-1017 (-1099))) $) NIL)) (-2577 (((-1095 $) $ (-1017 (-1099))) NIL) (((-1095 |#1|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1017 (-1099)))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3373 (($ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1017 (-1099)) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL) (((-3 (-1051 |#1| (-1099)) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1017 (-1099)) $) NIL) (((-1099) $) NIL) (((-1051 |#1| (-1099)) $) NIL)) (-3388 (($ $ $ (-1017 (-1099))) NIL (|has| |#1| (-162)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1017 (-1099))) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 (-1017 (-1099))) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1017 (-1099)) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1017 (-1099)) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ (-1099)) NIL) (((-719) $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2735 (($ (-1095 |#1|) (-1017 (-1099))) NIL) (($ (-1095 $) (-1017 (-1099))) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-502 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1017 (-1099))) NIL)) (-2944 (((-502 (-1017 (-1099))) $) NIL) (((-719) $ (-1017 (-1099))) NIL) (((-597 (-719)) $ (-597 (-1017 (-1099)))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 (-1017 (-1099))) (-502 (-1017 (-1099)))) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3135 (((-1 $ (-719)) (-1099)) NIL) (((-1 $ (-719)) $) NIL (|has| |#1| (-216)))) (-2040 (((-3 (-1017 (-1099)) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2948 (((-1017 (-1099)) $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2003 (((-110) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1017 (-1099))) (|:| -3194 (-719))) "failed") $) NIL)) (-2384 (($ $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1017 (-1099)) |#1|) NIL) (($ $ (-597 (-1017 (-1099))) (-597 |#1|)) NIL) (($ $ (-1017 (-1099)) $) NIL) (($ $ (-597 (-1017 (-1099))) (-597 $)) NIL) (($ $ (-1099) $) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 $)) NIL (|has| |#1| (-216))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-216))) (($ $ (-597 (-1099)) (-597 |#1|)) NIL (|has| |#1| (-216)))) (-3060 (($ $ (-1017 (-1099))) NIL (|has| |#1| (-162)))) (-3289 (($ $ (-1017 (-1099))) NIL) (($ $ (-597 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3353 (((-597 (-1099)) $) NIL)) (-1429 (((-502 (-1017 (-1099))) $) NIL) (((-719) $ (-1017 (-1099))) NIL) (((-597 (-719)) $ (-597 (-1017 (-1099)))) NIL) (((-719) $ (-1099)) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1017 (-1099)) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1017 (-1099))) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-1017 (-1099))) NIL) (($ (-1099)) NIL) (($ (-1051 |#1| (-1099))) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-502 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1017 (-1099))) NIL) (($ $ (-597 (-1017 (-1099)))) NIL) (($ $ (-1017 (-1099)) (-719)) NIL) (($ $ (-597 (-1017 (-1099))) (-597 (-719))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-719)) NIL (|has| |#1| (-216))) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1016 |#1|) (-13 (-235 |#1| (-1099) (-1017 (-1099)) (-502 (-1017 (-1099)))) (-975 (-1051 |#1| (-1099)))) (-984)) (T -1016))
-NIL
-(-13 (-235 |#1| (-1099) (-1017 (-1099)) (-502 (-1017 (-1099)))) (-975 (-1051 |#1| (-1099))))
-((-2352 (((-110) $ $) NIL)) (-2001 (((-719) $) NIL)) (-4007 ((|#1| $) 10)) (-3139 (((-3 |#1| "failed") $) NIL)) (-2585 ((|#1| $) NIL)) (-2031 (((-719) $) 11)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-3135 (($ |#1| (-719)) 9)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-3289 (($ $) NIL) (($ $ (-719)) NIL)) (-2366 (((-804) $) NIL) (($ |#1|) NIL)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 15)))
-(((-1017 |#1|) (-248 |#1|) (-795)) (T -1017))
+NIL
+(-13 (-21) (-1042))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-128) . T) ((-572 (-806)) . T) ((-1042) . T) ((-1030) . T))
+((-2796 (($ $) 16)) (-1694 (($ $) 22)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 49)) (-1899 (($ $) 24)) (-2322 (($ $) 11)) (-2943 (($ $) 38)) (-3318 (((-360) $) NIL) (((-208) $) NIL) (((-835 (-360)) $) 33)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL) (($ (-388 (-531))) 28) (($ (-531)) NIL) (($ (-388 (-531))) 28)) (-2284 (((-721)) 8)) (-3831 (($ $) 39)))
+(((-994 |#1|) (-10 -8 (-15 -1694 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2322 (|#1| |#1|)) (-15 -2943 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -1899 (|#1| |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -2265 ((-806) |#1|))) (-995)) (T -994))
+((-2284 (*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-994 *3)) (-4 *3 (-995)))))
+(-10 -8 (-15 -1694 (|#1| |#1|)) (-15 -2796 (|#1| |#1|)) (-15 -2322 (|#1| |#1|)) (-15 -2943 (|#1| |#1|)) (-15 -3831 (|#1| |#1|)) (-15 -1899 (|#1| |#1|)) (-15 -2792 ((-832 (-360) |#1|) |#1| (-835 (-360)) (-832 (-360) |#1|))) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 -3318 ((-208) |#1|)) (-15 -3318 ((-360) |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2284 ((-721))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1317 (((-531) $) 86)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2796 (($ $) 84)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2563 (($ $) 94)) (-2760 (((-110) $ $) 57)) (-3459 (((-531) $) 111)) (-4082 (($) 17 T CONST)) (-1694 (($ $) 83)) (-3154 (((-3 (-531) "failed") $) 99) (((-3 (-388 (-531)) "failed") $) 96)) (-2523 (((-531) $) 98) (((-388 (-531)) $) 95)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-2534 (((-110) $) 68)) (-1599 (((-110) $) 109)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 90)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 93)) (-1899 (($ $) 89)) (-2985 (((-110) $) 110)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-4103 (($ $ $) 108)) (-1241 (($ $ $) 107)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2322 (($ $) 85)) (-2943 (($ $) 87)) (-2552 (((-399 $) $) 71)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-3318 (((-360) $) 102) (((-208) $) 101) (((-835 (-360)) $) 91)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ (-531)) 100) (($ (-388 (-531))) 97)) (-2284 (((-721)) 28)) (-3831 (($ $) 88)) (-2587 (((-110) $ $) 37)) (-1620 (($ $) 112)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2207 (((-110) $ $) 105)) (-2184 (((-110) $ $) 104)) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 106)) (-2174 (((-110) $ $) 103)) (-2263 (($ $ $) 62)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66) (($ $ (-388 (-531))) 92)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64)))
+(((-995) (-133)) (T -995))
+((-1620 (*1 *1 *1) (-4 *1 (-995))) (-1899 (*1 *1 *1) (-4 *1 (-995))) (-3831 (*1 *1 *1) (-4 *1 (-995))) (-2943 (*1 *1 *1) (-4 *1 (-995))) (-1317 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-531)))) (-2322 (*1 *1 *1) (-4 *1 (-995))) (-2796 (*1 *1 *1) (-4 *1 (-995))) (-1694 (*1 *1 *1) (-4 *1 (-995))))
+(-13 (-344) (-795) (-962) (-977 (-531)) (-977 (-388 (-531))) (-943) (-573 (-835 (-360))) (-829 (-360)) (-140) (-10 -8 (-15 -1899 ($ $)) (-15 -3831 ($ $)) (-15 -2943 ($ $)) (-15 -1317 ((-531) $)) (-15 -2322 ($ $)) (-15 -2796 ($ $)) (-15 -1694 ($ $)) (-15 -1620 ($ $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 $ $) . T) ((-128) . T) ((-140) . T) ((-572 (-806)) . T) ((-162) . T) ((-573 (-208)) . T) ((-573 (-360)) . T) ((-573 (-835 (-360))) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 $) . T) ((-677) . T) ((-741) . T) ((-742) . T) ((-744) . T) ((-745) . T) ((-795) . T) ((-797) . T) ((-829 (-360)) . T) ((-863) . T) ((-943) . T) ((-962) . T) ((-977 (-388 (-531))) . T) ((-977 (-531)) . T) ((-992 #0#) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) |#2| $) 23)) (-3006 ((|#1| $) 10)) (-3459 (((-531) |#2| $) 88)) (-2738 (((-3 $ "failed") |#2| (-864)) 57)) (-3157 ((|#1| $) 28)) (-2613 ((|#1| |#2| $ |#1|) 37)) (-2522 (($ $) 25)) (-3622 (((-3 |#2| "failed") |#2| $) 87)) (-1599 (((-110) |#2| $) NIL)) (-2985 (((-110) |#2| $) NIL)) (-2718 (((-110) |#2| $) 24)) (-4092 ((|#1| $) 89)) (-3144 ((|#1| $) 27)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3608 ((|#2| $) 79)) (-2265 (((-806) $) 70)) (-4148 ((|#1| |#2| $ |#1|) 38)) (-2054 (((-598 $) |#2|) 59)) (-2148 (((-110) $ $) 74)))
+(((-996 |#1| |#2|) (-13 (-1002 |#1| |#2|) (-10 -8 (-15 -3144 (|#1| $)) (-15 -3157 (|#1| $)) (-15 -3006 (|#1| $)) (-15 -4092 (|#1| $)) (-15 -2522 ($ $)) (-15 -2718 ((-110) |#2| $)) (-15 -2613 (|#1| |#2| $ |#1|)))) (-13 (-795) (-344)) (-1160 |#1|)) (T -996))
+((-2613 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-3144 (*1 *2 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-3157 (*1 *2 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-3006 (*1 *2 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-4092 (*1 *2 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-2522 (*1 *1 *1) (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3)) (-4 *3 (-1160 *2)))) (-2718 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-795) (-344))) (-5 *2 (-110)) (-5 *1 (-996 *4 *3)) (-4 *3 (-1160 *4)))))
+(-13 (-1002 |#1| |#2|) (-10 -8 (-15 -3144 (|#1| $)) (-15 -3157 (|#1| $)) (-15 -3006 (|#1| $)) (-15 -4092 (|#1| $)) (-15 -2522 ($ $)) (-15 -2718 ((-110) |#2| $)) (-15 -2613 (|#1| |#2| $ |#1|))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2464 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $ $ $) NIL)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-3709 (($ $ $) NIL)) (-4082 (($) NIL T CONST)) (-2055 (($ (-1102)) 10) (($ (-531)) 7)) (-3154 (((-3 (-531) "failed") $) NIL)) (-2523 (((-531) $) NIL)) (-3650 (($ $ $) NIL)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-639 (-531)) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL)) (-3004 (((-110) $) NIL)) (-2727 (((-388 (-531)) $) NIL)) (-1381 (($) NIL) (($ $) NIL)) (-3630 (($ $ $) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3013 (($ $ $ $) NIL)) (-2033 (($ $ $) NIL)) (-1599 (((-110) $) NIL)) (-2555 (($ $ $) NIL)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL)) (-3481 (((-110) $) NIL)) (-4250 (((-110) $) NIL)) (-2342 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-3233 (($ $ $ $) NIL)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-3107 (($ $) NIL)) (-2428 (($ $) NIL)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-4098 (($ $ $) NIL)) (-3788 (($) NIL T CONST)) (-3906 (($ $) NIL)) (-2529 (((-1049) $) NIL) (($ $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1569 (($ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-1651 (($ $) NIL)) (-2480 (($ $) NIL)) (-3318 (((-531) $) 16) (((-507) $) NIL) (((-835 (-531)) $) NIL) (((-360) $) NIL) (((-208) $) NIL) (($ (-1102)) 9)) (-2265 (((-806) $) 20) (($ (-531)) 6) (($ $) NIL) (($ (-531)) 6)) (-2284 (((-721)) NIL)) (-2070 (((-110) $ $) NIL)) (-2589 (($ $ $) NIL)) (-3276 (($) NIL)) (-2587 (((-110) $ $) NIL)) (-2392 (($ $ $ $) NIL)) (-1620 (($ $) NIL)) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) NIL)) (-2250 (($ $) 19) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL)))
+(((-997) (-13 (-516) (-10 -8 (-6 -4260) (-6 -4265) (-6 -4261) (-15 -3318 ($ (-1102))) (-15 -2055 ($ (-1102))) (-15 -2055 ($ (-531)))))) (T -997))
+((-3318 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-997)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-997)))) (-2055 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-997)))))
+(-13 (-516) (-10 -8 (-6 -4260) (-6 -4265) (-6 -4261) (-15 -3318 ($ (-1102))) (-15 -2055 ($ (-1102))) (-15 -2055 ($ (-531)))))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-3137 (((-1189) $ (-1102) (-1102)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-1720 (($) 9)) (-2454 (((-51) $ (-1102) (-51)) NIL)) (-1394 (($ $) 30)) (-2203 (($ $) 28)) (-1236 (($ $) 27)) (-3814 (($ $) 29)) (-3227 (($ $) 32)) (-3726 (($ $) 33)) (-1442 (($ $) 26)) (-2740 (($ $) 31)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) 25 (|has| $ (-6 -4273)))) (-2714 (((-3 (-51) "failed") (-1102) $) 40)) (-4082 (($) NIL T CONST)) (-2512 (($) 7)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2717 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) 50 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-3 (-51) "failed") (-1102) $) NIL)) (-2283 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273)))) (-2548 (((-3 (-1085) "failed") $ (-1085) (-531)) 59)) (-2693 (((-51) $ (-1102) (-51)) NIL (|has| $ (-6 -4274)))) (-2627 (((-51) $ (-1102)) NIL)) (-2227 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1102) $) NIL (|has| (-1102) (-797)))) (-2445 (((-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) 35 (|has| $ (-6 -4273))) (((-598 (-51)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-2327 (((-1102) $) NIL (|has| (-1102) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4274))) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL) (($ (-1 (-51) (-51)) $) NIL) (($ (-1 (-51) (-51) (-51)) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-3345 (((-598 (-1102)) $) NIL)) (-1727 (((-110) (-1102) $) NIL)) (-3540 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) 43)) (-3765 (((-598 (-1102)) $) NIL)) (-3059 (((-110) (-1102) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2699 (((-360) $ (-1102)) 49)) (-3690 (((-598 (-1085)) $ (-1085)) 60)) (-3046 (((-51) $) NIL (|has| (-1102) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) "failed") (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL)) (-3742 (($ $ (-51)) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL (-12 (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-291 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (($ $ (-598 (-51)) (-598 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-276 (-51))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030)))) (($ $ (-598 (-276 (-51)))) NIL (-12 (|has| (-51) (-291 (-51))) (|has| (-51) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030))))) (-3163 (((-598 (-51)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-51) $ (-1102)) NIL) (((-51) $ (-1102) (-51)) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-3282 (($ $ (-1102)) 51)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030)))) (((-721) (-51) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-51) (-1030)))) (((-721) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) 37)) (-3536 (($ $ $) 38)) (-2265 (((-806) $) NIL (-1435 (|has| (-51) (-572 (-806))) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-572 (-806)))))) (-2566 (($ $ (-1102) (-360)) 47)) (-2734 (($ $ (-1102) (-360)) 48)) (-2524 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 (-1102)) (|:| -1798 (-51)))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) (-51)) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-51) (-1030)) (|has| (-2 (|:| -3033 (-1102)) (|:| -1798 (-51))) (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-998) (-13 (-1115 (-1102) (-51)) (-10 -8 (-15 -3536 ($ $ $)) (-15 -2512 ($)) (-15 -1442 ($ $)) (-15 -1236 ($ $)) (-15 -2203 ($ $)) (-15 -3814 ($ $)) (-15 -2740 ($ $)) (-15 -1394 ($ $)) (-15 -3227 ($ $)) (-15 -3726 ($ $)) (-15 -2566 ($ $ (-1102) (-360))) (-15 -2734 ($ $ (-1102) (-360))) (-15 -2699 ((-360) $ (-1102))) (-15 -3690 ((-598 (-1085)) $ (-1085))) (-15 -3282 ($ $ (-1102))) (-15 -1720 ($)) (-15 -2548 ((-3 (-1085) "failed") $ (-1085) (-531))) (-6 -4273)))) (T -998))
+((-3536 (*1 *1 *1 *1) (-5 *1 (-998))) (-2512 (*1 *1) (-5 *1 (-998))) (-1442 (*1 *1 *1) (-5 *1 (-998))) (-1236 (*1 *1 *1) (-5 *1 (-998))) (-2203 (*1 *1 *1) (-5 *1 (-998))) (-3814 (*1 *1 *1) (-5 *1 (-998))) (-2740 (*1 *1 *1) (-5 *1 (-998))) (-1394 (*1 *1 *1) (-5 *1 (-998))) (-3227 (*1 *1 *1) (-5 *1 (-998))) (-3726 (*1 *1 *1) (-5 *1 (-998))) (-2566 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-360)) (-5 *1 (-998)))) (-2734 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-360)) (-5 *1 (-998)))) (-2699 (*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-360)) (-5 *1 (-998)))) (-3690 (*1 *2 *1 *3) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-998)) (-5 *3 (-1085)))) (-3282 (*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-998)))) (-1720 (*1 *1) (-5 *1 (-998))) (-2548 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-998)))))
+(-13 (-1115 (-1102) (-51)) (-10 -8 (-15 -3536 ($ $ $)) (-15 -2512 ($)) (-15 -1442 ($ $)) (-15 -1236 ($ $)) (-15 -2203 ($ $)) (-15 -3814 ($ $)) (-15 -2740 ($ $)) (-15 -1394 ($ $)) (-15 -3227 ($ $)) (-15 -3726 ($ $)) (-15 -2566 ($ $ (-1102) (-360))) (-15 -2734 ($ $ (-1102) (-360))) (-15 -2699 ((-360) $ (-1102))) (-15 -3690 ((-598 (-1085)) $ (-1085))) (-15 -3282 ($ $ (-1102))) (-15 -1720 ($)) (-15 -2548 ((-3 (-1085) "failed") $ (-1085) (-531))) (-6 -4273)))
+((-2072 (($ $) 45)) (-1993 (((-110) $ $) 74)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 |#4| "failed") $) NIL) (((-3 $ "failed") (-895 (-388 (-531)))) 227) (((-3 $ "failed") (-895 (-531))) 226) (((-3 $ "failed") (-895 |#2|)) 229)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL) (((-531) $) NIL) ((|#4| $) NIL) (($ (-895 (-388 (-531)))) 215) (($ (-895 (-531))) 211) (($ (-895 |#2|)) 231)) (-2500 (($ $) NIL) (($ $ |#4|) 43)) (-2125 (((-110) $ $) 112) (((-110) $ (-598 $)) 113)) (-4009 (((-110) $) 56)) (-1647 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 107)) (-4228 (($ $) 138)) (-3230 (($ $) 134)) (-3592 (($ $) 133)) (-2579 (($ $ $) 79) (($ $ $ |#4|) 84)) (-1879 (($ $ $) 82) (($ $ $ |#4|) 86)) (-1426 (((-110) $ $) 121) (((-110) $ (-598 $)) 122)) (-4075 ((|#4| $) 33)) (-4174 (($ $ $) 110)) (-1448 (((-110) $) 55)) (-3096 (((-721) $) 35)) (-2376 (($ $) 152)) (-3773 (($ $) 149)) (-1680 (((-598 $) $) 68)) (-3577 (($ $) 57)) (-1246 (($ $) 145)) (-3029 (((-598 $) $) 65)) (-3546 (($ $) 59)) (-2475 ((|#2| $) NIL) (($ $ |#4|) 38)) (-4165 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3158 (-721))) $ $) 111)) (-1547 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $) 108) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $ |#4|) 109)) (-1716 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $) 104) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $ |#4|) 105)) (-2847 (($ $ $) 89) (($ $ $ |#4|) 95)) (-3146 (($ $ $) 90) (($ $ $ |#4|) 96)) (-3337 (((-598 $) $) 51)) (-2009 (((-110) $ $) 118) (((-110) $ (-598 $)) 119)) (-1279 (($ $ $) 103)) (-3788 (($ $) 37)) (-1744 (((-110) $ $) 72)) (-2421 (((-110) $ $) 114) (((-110) $ (-598 $)) 116)) (-3044 (($ $ $) 101)) (-3162 (($ $) 40)) (-2109 ((|#2| |#2| $) 142) (($ (-598 $)) NIL) (($ $ $) NIL)) (-2209 (($ $ |#2|) NIL) (($ $ $) 131)) (-2004 (($ $ |#2|) 126) (($ $ $) 129)) (-3637 (($ $) 48)) (-3451 (($ $) 52)) (-3318 (((-835 (-360)) $) NIL) (((-835 (-531)) $) NIL) (((-507) $) NIL) (($ (-895 (-388 (-531)))) 217) (($ (-895 (-531))) 213) (($ (-895 |#2|)) 228) (((-1085) $) 250) (((-895 |#2|) $) 162)) (-2265 (((-806) $) 30) (($ (-531)) NIL) (($ |#2|) NIL) (($ |#4|) NIL) (((-895 |#2|) $) 163) (($ (-388 (-531))) NIL) (($ $) NIL)) (-2316 (((-3 (-110) "failed") $ $) 71)))
+(((-999 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 ((-895 |#2|) |#1|)) (-15 -3318 ((-895 |#2|) |#1|)) (-15 -3318 ((-1085) |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -2109 (|#2| |#2| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -2004 (|#1| |#1| |#1|)) (-15 -2209 (|#1| |#1| |#2|)) (-15 -2004 (|#1| |#1| |#2|)) (-15 -3230 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3318 (|#1| (-895 |#2|))) (-15 -2523 (|#1| (-895 |#2|))) (-15 -3154 ((-3 |#1| "failed") (-895 |#2|))) (-15 -3318 (|#1| (-895 (-531)))) (-15 -2523 (|#1| (-895 (-531)))) (-15 -3154 ((-3 |#1| "failed") (-895 (-531)))) (-15 -3318 (|#1| (-895 (-388 (-531))))) (-15 -2523 (|#1| (-895 (-388 (-531))))) (-15 -3154 ((-3 |#1| "failed") (-895 (-388 (-531))))) (-15 -1279 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -4165 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3158 (-721))) |#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -1647 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1716 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1716 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1| |#4|)) (-15 -2847 (|#1| |#1| |#1| |#4|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -1879 (|#1| |#1| |#1| |#4|)) (-15 -2579 (|#1| |#1| |#1| |#4|)) (-15 -1879 (|#1| |#1| |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -1426 ((-110) |#1| (-598 |#1|))) (-15 -1426 ((-110) |#1| |#1|)) (-15 -2009 ((-110) |#1| (-598 |#1|))) (-15 -2009 ((-110) |#1| |#1|)) (-15 -2421 ((-110) |#1| (-598 |#1|))) (-15 -2421 ((-110) |#1| |#1|)) (-15 -2125 ((-110) |#1| (-598 |#1|))) (-15 -2125 ((-110) |#1| |#1|)) (-15 -1993 ((-110) |#1| |#1|)) (-15 -1744 ((-110) |#1| |#1|)) (-15 -2316 ((-3 (-110) "failed") |#1| |#1|)) (-15 -1680 ((-598 |#1|) |#1|)) (-15 -3029 ((-598 |#1|) |#1|)) (-15 -3546 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -4009 ((-110) |#1|)) (-15 -1448 ((-110) |#1|)) (-15 -2500 (|#1| |#1| |#4|)) (-15 -2475 (|#1| |#1| |#4|)) (-15 -3451 (|#1| |#1|)) (-15 -3337 ((-598 |#1|) |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3096 ((-721) |#1|)) (-15 -4075 (|#4| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2523 (|#4| |#1|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -2265 (|#1| |#4|)) (-15 -2475 (|#2| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-1000 |#2| |#3| |#4|) (-986) (-743) (-797)) (T -999))
+NIL
+(-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2109 (|#1| |#1| |#1|)) (-15 -2109 (|#1| (-598 |#1|))) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 ((-895 |#2|) |#1|)) (-15 -3318 ((-895 |#2|) |#1|)) (-15 -3318 ((-1085) |#1|)) (-15 -2376 (|#1| |#1|)) (-15 -3773 (|#1| |#1|)) (-15 -1246 (|#1| |#1|)) (-15 -4228 (|#1| |#1|)) (-15 -2109 (|#2| |#2| |#1|)) (-15 -2209 (|#1| |#1| |#1|)) (-15 -2004 (|#1| |#1| |#1|)) (-15 -2209 (|#1| |#1| |#2|)) (-15 -2004 (|#1| |#1| |#2|)) (-15 -3230 (|#1| |#1|)) (-15 -3592 (|#1| |#1|)) (-15 -3318 (|#1| (-895 |#2|))) (-15 -2523 (|#1| (-895 |#2|))) (-15 -3154 ((-3 |#1| "failed") (-895 |#2|))) (-15 -3318 (|#1| (-895 (-531)))) (-15 -2523 (|#1| (-895 (-531)))) (-15 -3154 ((-3 |#1| "failed") (-895 (-531)))) (-15 -3318 (|#1| (-895 (-388 (-531))))) (-15 -2523 (|#1| (-895 (-388 (-531))))) (-15 -3154 ((-3 |#1| "failed") (-895 (-388 (-531))))) (-15 -1279 (|#1| |#1| |#1|)) (-15 -3044 (|#1| |#1| |#1|)) (-15 -4165 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3158 (-721))) |#1| |#1|)) (-15 -4174 (|#1| |#1| |#1|)) (-15 -1647 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1547 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1716 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -4124 |#1|)) |#1| |#1| |#4|)) (-15 -1716 ((-2 (|:| -2005 |#1|) (|:| |gap| (-721)) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -3146 (|#1| |#1| |#1| |#4|)) (-15 -2847 (|#1| |#1| |#1| |#4|)) (-15 -3146 (|#1| |#1| |#1|)) (-15 -2847 (|#1| |#1| |#1|)) (-15 -1879 (|#1| |#1| |#1| |#4|)) (-15 -2579 (|#1| |#1| |#1| |#4|)) (-15 -1879 (|#1| |#1| |#1|)) (-15 -2579 (|#1| |#1| |#1|)) (-15 -1426 ((-110) |#1| (-598 |#1|))) (-15 -1426 ((-110) |#1| |#1|)) (-15 -2009 ((-110) |#1| (-598 |#1|))) (-15 -2009 ((-110) |#1| |#1|)) (-15 -2421 ((-110) |#1| (-598 |#1|))) (-15 -2421 ((-110) |#1| |#1|)) (-15 -2125 ((-110) |#1| (-598 |#1|))) (-15 -2125 ((-110) |#1| |#1|)) (-15 -1993 ((-110) |#1| |#1|)) (-15 -1744 ((-110) |#1| |#1|)) (-15 -2316 ((-3 (-110) "failed") |#1| |#1|)) (-15 -1680 ((-598 |#1|) |#1|)) (-15 -3029 ((-598 |#1|) |#1|)) (-15 -3546 (|#1| |#1|)) (-15 -3577 (|#1| |#1|)) (-15 -4009 ((-110) |#1|)) (-15 -1448 ((-110) |#1|)) (-15 -2500 (|#1| |#1| |#4|)) (-15 -2475 (|#1| |#1| |#4|)) (-15 -3451 (|#1| |#1|)) (-15 -3337 ((-598 |#1|) |#1|)) (-15 -3637 (|#1| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -3162 (|#1| |#1|)) (-15 -3788 (|#1| |#1|)) (-15 -3096 ((-721) |#1|)) (-15 -4075 (|#4| |#1|)) (-15 -3318 ((-507) |#1|)) (-15 -3318 ((-835 (-531)) |#1|)) (-15 -3318 ((-835 (-360)) |#1|)) (-15 -2523 (|#4| |#1|)) (-15 -3154 ((-3 |#4| "failed") |#1|)) (-15 -2265 (|#1| |#4|)) (-15 -2475 (|#2| |#1|)) (-15 -2500 (|#1| |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 |#3|) $) 108)) (-2516 (((-1098 $) $ |#3|) 123) (((-1098 |#1|) $) 122)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85 (|has| |#1| (-523)))) (-3258 (($ $) 86 (|has| |#1| (-523)))) (-2921 (((-110) $) 88 (|has| |#1| (-523)))) (-4109 (((-721) $) 110) (((-721) $ (-598 |#3|)) 109)) (-2072 (($ $) 269)) (-1993 (((-110) $ $) 255)) (-2128 (((-3 $ "failed") $ $) 19)) (-3720 (($ $ $) 214 (|has| |#1| (-523)))) (-1954 (((-598 $) $ $) 209 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) 98 (|has| |#1| (-852)))) (-3240 (($ $) 96 (|has| |#1| (-432)))) (-2956 (((-399 $) $) 95 (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 101 (|has| |#1| (-852)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-531)) "failed") $) 160 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 158 (|has| |#1| (-977 (-531)))) (((-3 |#3| "failed") $) 134) (((-3 $ "failed") (-895 (-388 (-531)))) 229 (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))) (((-3 $ "failed") (-895 (-531))) 226 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102)))))) (((-3 $ "failed") (-895 |#1|)) 223 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-37 (-531)))) (|has| |#3| (-573 (-1102)))) (-12 (-3745 (|has| |#1| (-516))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (-3745 (|has| |#1| (-934 (-531)))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))))) (-2523 ((|#1| $) 163) (((-388 (-531)) $) 159 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 157 (|has| |#1| (-977 (-531)))) ((|#3| $) 133) (($ (-895 (-388 (-531)))) 228 (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))) (($ (-895 (-531))) 225 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102)))))) (($ (-895 |#1|)) 222 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (-3745 (|has| |#1| (-37 (-531)))) (|has| |#3| (-573 (-1102)))) (-12 (-3745 (|has| |#1| (-516))) (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (-3745 (|has| |#1| (-934 (-531)))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))))) (-3115 (($ $ $ |#3|) 106 (|has| |#1| (-162))) (($ $ $) 210 (|has| |#1| (-523)))) (-2500 (($ $) 152) (($ $ |#3|) 264)) (-3073 (((-639 (-531)) (-639 $)) 132 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 131 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 130) (((-639 |#1|) (-639 $)) 129)) (-2125 (((-110) $ $) 254) (((-110) $ (-598 $)) 253)) (-3622 (((-3 $ "failed") $) 32)) (-4009 (((-110) $) 262)) (-1647 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 234)) (-4228 (($ $) 203 (|has| |#1| (-432)))) (-2226 (($ $) 174 (|has| |#1| (-432))) (($ $ |#3|) 103 (|has| |#1| (-432)))) (-2488 (((-598 $) $) 107)) (-2534 (((-110) $) 94 (|has| |#1| (-852)))) (-3230 (($ $) 219 (|has| |#1| (-523)))) (-3592 (($ $) 220 (|has| |#1| (-523)))) (-2579 (($ $ $) 246) (($ $ $ |#3|) 244)) (-1879 (($ $ $) 245) (($ $ $ |#3|) 243)) (-2490 (($ $ |#1| |#2| $) 170)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 82 (-12 (|has| |#3| (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 81 (-12 (|has| |#3| (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 167)) (-1426 (((-110) $ $) 248) (((-110) $ (-598 $)) 247)) (-2418 (($ $ $ $ $) 205 (|has| |#1| (-523)))) (-4075 ((|#3| $) 273)) (-2682 (($ (-1098 |#1|) |#3|) 115) (($ (-1098 $) |#3|) 114)) (-1230 (((-598 $) $) 124)) (-3380 (((-110) $) 150)) (-2669 (($ |#1| |#2|) 151) (($ $ |#3| (-721)) 117) (($ $ (-598 |#3|) (-598 (-721))) 116)) (-4174 (($ $ $) 233)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) 118)) (-1448 (((-110) $) 263)) (-3005 ((|#2| $) 168) (((-721) $ |#3|) 120) (((-598 (-721)) $ (-598 |#3|)) 119)) (-4103 (($ $ $) 77 (|has| |#1| (-797)))) (-3096 (((-721) $) 272)) (-1241 (($ $ $) 76 (|has| |#1| (-797)))) (-2736 (($ (-1 |#2| |#2|) $) 169)) (-3261 (($ (-1 |#1| |#1|) $) 149)) (-3471 (((-3 |#3| "failed") $) 121)) (-2376 (($ $) 200 (|has| |#1| (-432)))) (-3773 (($ $) 201 (|has| |#1| (-432)))) (-1680 (((-598 $) $) 258)) (-3577 (($ $) 261)) (-1246 (($ $) 202 (|has| |#1| (-432)))) (-3029 (((-598 $) $) 259)) (-3546 (($ $) 260)) (-2462 (($ $) 147)) (-2475 ((|#1| $) 146) (($ $ |#3|) 265)) (-2078 (($ (-598 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-4165 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3158 (-721))) $ $) 232)) (-1547 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $) 236) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $ |#3|) 235)) (-1716 (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $) 238) (((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $ |#3|) 237)) (-2847 (($ $ $) 242) (($ $ $ |#3|) 240)) (-3146 (($ $ $) 241) (($ $ $ |#3|) 239)) (-1521 (((-1085) $) 9)) (-2255 (($ $ $) 208 (|has| |#1| (-523)))) (-3337 (((-598 $) $) 267)) (-3443 (((-3 (-598 $) "failed") $) 112)) (-2077 (((-3 (-598 $) "failed") $) 113)) (-3448 (((-3 (-2 (|:| |var| |#3|) (|:| -1790 (-721))) "failed") $) 111)) (-2009 (((-110) $ $) 250) (((-110) $ (-598 $)) 249)) (-1279 (($ $ $) 230)) (-3788 (($ $) 271)) (-1744 (((-110) $ $) 256)) (-2421 (((-110) $ $) 252) (((-110) $ (-598 $)) 251)) (-3044 (($ $ $) 231)) (-3162 (($ $) 270)) (-2529 (((-1049) $) 10)) (-3002 (((-2 (|:| -2109 $) (|:| |coef2| $)) $ $) 211 (|has| |#1| (-523)))) (-2362 (((-2 (|:| -2109 $) (|:| |coef1| $)) $ $) 212 (|has| |#1| (-523)))) (-2435 (((-110) $) 164)) (-2448 ((|#1| $) 165)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 93 (|has| |#1| (-432)))) (-2109 ((|#1| |#1| $) 204 (|has| |#1| (-432))) (($ (-598 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 100 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 99 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 97 (|has| |#1| (-852)))) (-3075 (((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 213 (|has| |#1| (-523)))) (-3609 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-2209 (($ $ |#1|) 217 (|has| |#1| (-523))) (($ $ $) 215 (|has| |#1| (-523)))) (-2004 (($ $ |#1|) 218 (|has| |#1| (-523))) (($ $ $) 216 (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-598 $) (-598 $)) 140) (($ $ |#3| |#1|) 139) (($ $ (-598 |#3|) (-598 |#1|)) 138) (($ $ |#3| $) 137) (($ $ (-598 |#3|) (-598 $)) 136)) (-3176 (($ $ |#3|) 105 (|has| |#1| (-162)))) (-3352 (($ $ |#3|) 40) (($ $ (-598 |#3|)) 39) (($ $ |#3| (-721)) 38) (($ $ (-598 |#3|) (-598 (-721))) 37)) (-2012 ((|#2| $) 148) (((-721) $ |#3|) 128) (((-598 (-721)) $ (-598 |#3|)) 127)) (-3637 (($ $) 268)) (-3451 (($ $) 266)) (-3318 (((-835 (-360)) $) 80 (-12 (|has| |#3| (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) 79 (-12 (|has| |#3| (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) 78 (-12 (|has| |#3| (-573 (-507))) (|has| |#1| (-573 (-507))))) (($ (-895 (-388 (-531)))) 227 (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102))))) (($ (-895 (-531))) 224 (-1435 (-12 (-3745 (|has| |#1| (-37 (-388 (-531))))) (|has| |#1| (-37 (-531))) (|has| |#3| (-573 (-1102)))) (-12 (|has| |#1| (-37 (-388 (-531)))) (|has| |#3| (-573 (-1102)))))) (($ (-895 |#1|)) 221 (|has| |#3| (-573 (-1102)))) (((-1085) $) 199 (-12 (|has| |#1| (-977 (-531))) (|has| |#3| (-573 (-1102))))) (((-895 |#1|) $) 198 (|has| |#3| (-573 (-1102))))) (-1767 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ |#3|) 104 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 102 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 161) (($ |#3|) 135) (((-895 |#1|) $) 197 (|has| |#3| (-573 (-1102)))) (($ (-388 (-531))) 70 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531)))))) (($ $) 83 (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) 166)) (-3188 ((|#1| $ |#2|) 153) (($ $ |#3| (-721)) 126) (($ $ (-598 |#3|) (-598 (-721))) 125)) (-2750 (((-3 $ "failed") $) 71 (-1435 (-3427 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 171 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 87 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-2316 (((-3 (-110) "failed") $ $) 257)) (-3050 (($) 29 T CONST)) (-3135 (($ $ $ $ (-721)) 206 (|has| |#1| (-523)))) (-1705 (($ $ $ (-721)) 207 (|has| |#1| (-523)))) (-4020 (($ $ |#3|) 36) (($ $ (-598 |#3|)) 35) (($ $ |#3| (-721)) 34) (($ $ (-598 |#3|) (-598 (-721))) 33)) (-2207 (((-110) $ $) 74 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 73 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 75 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 72 (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 156 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 155 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-1000 |#1| |#2| |#3|) (-133) (-986) (-743) (-797)) (T -1000))
+((-4075 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-3096 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-721)))) (-3788 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3162 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-2072 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3637 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3337 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))) (-3451 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-2475 (*1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-2500 (*1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-1448 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-4009 (*1 *2 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-3577 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3546 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3029 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))) (-1680 (*1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))) (-2316 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-1744 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-1993 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-2125 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-2125 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) (-2421 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-2421 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) (-2009 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-2009 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) (-1426 (*1 *2 *1 *1) (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110)))) (-1426 (*1 *2 *1 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)))) (-2579 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-1879 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-2579 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-1879 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-2847 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3146 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-2847 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-3146 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *2 (-797)))) (-1716 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -4124 *1))) (-4 *1 (-1000 *3 *4 *5)))) (-1716 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -4124 *1))) (-4 *1 (-1000 *4 *5 *3)))) (-1547 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1000 *3 *4 *5)))) (-1547 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1000 *4 *5 *3)))) (-1647 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1000 *3 *4 *5)))) (-4174 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-4165 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3158 (-721)))) (-4 *1 (-1000 *3 *4 *5)))) (-3044 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-1279 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)))) (-3154 (*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))) (-2523 (*1 *1 *2) (-12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))) (-3154 (*1 *1 *2) (|partial| -1435 (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) (-2523 (*1 *1 *2) (-1435 (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) (-3318 (*1 *1 *2) (-1435 (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5)) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))))) (-3154 (*1 *1 *2) (|partial| -1435 (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-3745 (-4 *3 (-37 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-516))) (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-934 (-531)))) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))))) (-2523 (*1 *1 *2) (-1435 (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-3745 (-4 *3 (-37 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-516))) (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))) (-12 (-5 *2 (-895 *3)) (-12 (-3745 (-4 *3 (-934 (-531)))) (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102)))) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743)) (-4 *5 (-797))))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *5 (-573 (-1102))) (-4 *4 (-743)) (-4 *5 (-797)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-3230 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2004 (*1 *1 *1 *2) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2209 (*1 *1 *1 *2) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2004 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2209 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-3720 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-3075 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2109 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1000 *3 *4 *5)))) (-2362 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2109 *1) (|:| |coef1| *1))) (-4 *1 (-1000 *3 *4 *5)))) (-3002 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-2 (|:| -2109 *1) (|:| |coef2| *1))) (-4 *1 (-1000 *3 *4 *5)))) (-3115 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-1954 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))) (-2255 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-1705 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *3 (-523)))) (-3135 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *3 (-523)))) (-2418 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-523)))) (-2109 (*1 *2 *2 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-1246 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-3773 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))) (-2376 (*1 *1 *1) (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-432)))))
+(-13 (-892 |t#1| |t#2| |t#3|) (-10 -8 (-15 -4075 (|t#3| $)) (-15 -3096 ((-721) $)) (-15 -3788 ($ $)) (-15 -3162 ($ $)) (-15 -2072 ($ $)) (-15 -3637 ($ $)) (-15 -3337 ((-598 $) $)) (-15 -3451 ($ $)) (-15 -2475 ($ $ |t#3|)) (-15 -2500 ($ $ |t#3|)) (-15 -1448 ((-110) $)) (-15 -4009 ((-110) $)) (-15 -3577 ($ $)) (-15 -3546 ($ $)) (-15 -3029 ((-598 $) $)) (-15 -1680 ((-598 $) $)) (-15 -2316 ((-3 (-110) "failed") $ $)) (-15 -1744 ((-110) $ $)) (-15 -1993 ((-110) $ $)) (-15 -2125 ((-110) $ $)) (-15 -2125 ((-110) $ (-598 $))) (-15 -2421 ((-110) $ $)) (-15 -2421 ((-110) $ (-598 $))) (-15 -2009 ((-110) $ $)) (-15 -2009 ((-110) $ (-598 $))) (-15 -1426 ((-110) $ $)) (-15 -1426 ((-110) $ (-598 $))) (-15 -2579 ($ $ $)) (-15 -1879 ($ $ $)) (-15 -2579 ($ $ $ |t#3|)) (-15 -1879 ($ $ $ |t#3|)) (-15 -2847 ($ $ $)) (-15 -3146 ($ $ $)) (-15 -2847 ($ $ $ |t#3|)) (-15 -3146 ($ $ $ |t#3|)) (-15 -1716 ((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $)) (-15 -1716 ((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -4124 $)) $ $ |t#3|)) (-15 -1547 ((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -1547 ((-2 (|:| -2005 $) (|:| |gap| (-721)) (|:| -2937 $) (|:| -4124 $)) $ $ |t#3|)) (-15 -1647 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -4174 ($ $ $)) (-15 -4165 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3158 (-721))) $ $)) (-15 -3044 ($ $ $)) (-15 -1279 ($ $ $)) (IF (|has| |t#3| (-573 (-1102))) (PROGN (-6 (-572 (-895 |t#1|))) (-6 (-573 (-895 |t#1|))) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -3154 ((-3 $ "failed") (-895 (-388 (-531))))) (-15 -2523 ($ (-895 (-388 (-531))))) (-15 -3318 ($ (-895 (-388 (-531))))) (-15 -3154 ((-3 $ "failed") (-895 (-531)))) (-15 -2523 ($ (-895 (-531)))) (-15 -3318 ($ (-895 (-531)))) (IF (|has| |t#1| (-934 (-531))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-895 |t#1|))) (-15 -2523 ($ (-895 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-37 (-531))) (IF (|has| |t#1| (-37 (-388 (-531)))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-895 (-531)))) (-15 -2523 ($ (-895 (-531)))) (-15 -3318 ($ (-895 (-531)))) (IF (|has| |t#1| (-516)) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-895 |t#1|))) (-15 -2523 ($ (-895 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-37 (-531))) |%noBranch| (IF (|has| |t#1| (-37 (-388 (-531)))) |%noBranch| (PROGN (-15 -3154 ((-3 $ "failed") (-895 |t#1|))) (-15 -2523 ($ (-895 |t#1|)))))) (-15 -3318 ($ (-895 |t#1|))) (IF (|has| |t#1| (-977 (-531))) (-6 (-573 (-1085))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-15 -3592 ($ $)) (-15 -3230 ($ $)) (-15 -2004 ($ $ |t#1|)) (-15 -2209 ($ $ |t#1|)) (-15 -2004 ($ $ $)) (-15 -2209 ($ $ $)) (-15 -3720 ($ $ $)) (-15 -3075 ((-2 (|:| -2109 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2362 ((-2 (|:| -2109 $) (|:| |coef1| $)) $ $)) (-15 -3002 ((-2 (|:| -2109 $) (|:| |coef2| $)) $ $)) (-15 -3115 ($ $ $)) (-15 -1954 ((-598 $) $ $)) (-15 -2255 ($ $ $)) (-15 -1705 ($ $ $ (-721))) (-15 -3135 ($ $ $ $ (-721))) (-15 -2418 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (PROGN (-15 -2109 (|t#1| |t#1| $)) (-15 -4228 ($ $)) (-15 -1246 ($ $)) (-15 -3773 ($ $)) (-15 -2376 ($ $))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-572 (-895 |#1|)) |has| |#3| (-573 (-1102))) ((-162) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-573 (-507)) -12 (|has| |#1| (-573 (-507))) (|has| |#3| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#3| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#3| (-573 (-835 (-531))))) ((-573 (-895 |#1|)) |has| |#3| (-573 (-1102))) ((-573 (-1085)) -12 (|has| |#1| (-977 (-531))) (|has| |#3| (-573 (-1102)))) ((-272) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-291 $) . T) ((-307 |#1| |#2|) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-852)) (|has| |#1| (-432))) ((-492 |#3| |#1|) . T) ((-492 |#3| $) . T) ((-492 $ $) . T) ((-523) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432))) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 |#3|) . T) ((-829 (-360)) -12 (|has| |#1| (-829 (-360))) (|has| |#3| (-829 (-360)))) ((-829 (-531)) -12 (|has| |#1| (-829 (-531))) (|has| |#3| (-829 (-531)))) ((-892 |#1| |#2| |#3|) . T) ((-852) |has| |#1| (-852)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 |#1|) . T) ((-977 |#3|) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) |has| |#1| (-852)))
+((-3019 (((-110) |#3| $) 13)) (-2738 (((-3 $ "failed") |#3| (-864)) 23)) (-3622 (((-3 |#3| "failed") |#3| $) 38)) (-1599 (((-110) |#3| $) 16)) (-2985 (((-110) |#3| $) 14)))
+(((-1001 |#1| |#2| |#3|) (-10 -8 (-15 -2738 ((-3 |#1| "failed") |#3| (-864))) (-15 -3622 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1599 ((-110) |#3| |#1|)) (-15 -2985 ((-110) |#3| |#1|)) (-15 -3019 ((-110) |#3| |#1|))) (-1002 |#2| |#3|) (-13 (-795) (-344)) (-1160 |#2|)) (T -1001))
+NIL
+(-10 -8 (-15 -2738 ((-3 |#1| "failed") |#3| (-864))) (-15 -3622 ((-3 |#3| "failed") |#3| |#1|)) (-15 -1599 ((-110) |#3| |#1|)) (-15 -2985 ((-110) |#3| |#1|)) (-15 -3019 ((-110) |#3| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) |#2| $) 21)) (-3459 (((-531) |#2| $) 22)) (-2738 (((-3 $ "failed") |#2| (-864)) 15)) (-2613 ((|#1| |#2| $ |#1|) 13)) (-3622 (((-3 |#2| "failed") |#2| $) 18)) (-1599 (((-110) |#2| $) 19)) (-2985 (((-110) |#2| $) 20)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3608 ((|#2| $) 17)) (-2265 (((-806) $) 11)) (-4148 ((|#1| |#2| $ |#1|) 14)) (-2054 (((-598 $) |#2|) 16)) (-2148 (((-110) $ $) 6)))
+(((-1002 |#1| |#2|) (-133) (-13 (-795) (-344)) (-1160 |t#1|)) (T -1002))
+((-3459 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-531)))) (-3019 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-110)))) (-2985 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-110)))) (-1599 (*1 *2 *3 *1) (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-110)))) (-3622 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-13 (-795) (-344))) (-4 *2 (-1160 *3)))) (-3608 (*1 *2 *1) (-12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-13 (-795) (-344))) (-4 *2 (-1160 *3)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-598 *1)) (-4 *1 (-1002 *4 *3)))) (-2738 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-864)) (-4 *4 (-13 (-795) (-344))) (-4 *1 (-1002 *4 *2)) (-4 *2 (-1160 *4)))) (-4148 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1002 *2 *3)) (-4 *2 (-13 (-795) (-344))) (-4 *3 (-1160 *2)))) (-2613 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1002 *2 *3)) (-4 *2 (-13 (-795) (-344))) (-4 *3 (-1160 *2)))))
+(-13 (-1030) (-10 -8 (-15 -3459 ((-531) |t#2| $)) (-15 -3019 ((-110) |t#2| $)) (-15 -2985 ((-110) |t#2| $)) (-15 -1599 ((-110) |t#2| $)) (-15 -3622 ((-3 |t#2| "failed") |t#2| $)) (-15 -3608 (|t#2| $)) (-15 -2054 ((-598 $) |t#2|)) (-15 -2738 ((-3 $ "failed") |t#2| (-864))) (-15 -4148 (|t#1| |t#2| $ |t#1|)) (-15 -2613 (|t#1| |t#2| $ |t#1|))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-3602 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721)) 96)) (-3565 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721)) 56)) (-4180 (((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)) 87)) (-2884 (((-721) (-598 |#4|) (-598 |#5|)) 27)) (-2056 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 59) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721)) 58) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110)) 60)) (-4044 (((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110)) 78) (((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110)) 79)) (-3318 (((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) 82)) (-2970 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-110)) 55)) (-1501 (((-721) (-598 |#4|) (-598 |#5|)) 19)))
+(((-1003 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1501 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2884 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2970 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-110))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3602 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721))) (-15 -3318 ((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -4180 ((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -1003))
+((-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) (-5 *4 (-721)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-1189)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1085)) (-5 *1 (-1003 *4 *5 *6 *7 *8)))) (-3602 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-598 *11)) (|:| |todo| (-598 (-2 (|:| |val| *3) (|:| -2410 *11)))))) (-5 *6 (-721)) (-5 *2 (-598 (-2 (|:| |val| (-598 *10)) (|:| -2410 *11)))) (-5 *3 (-598 *10)) (-5 *4 (-598 *11)) (-4 *10 (-1000 *7 *8 *9)) (-4 *11 (-1005 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-743)) (-4 *9 (-797)) (-5 *1 (-1003 *7 *8 *9 *10 *11)))) (-4044 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) (-4044 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) (-2056 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2056 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-2056 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-721)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-743)) (-4 *9 (-797)) (-4 *3 (-1000 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *7 *8 *9 *3 *4)) (-4 *4 (-1005 *7 *8 *9 *3)))) (-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-2970 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-2884 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1003 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1501 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2884 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2970 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-110))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3602 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721))) (-15 -3318 ((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -4180 ((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721))))
+((-2950 (((-110) |#5| $) 21)) (-1428 (((-110) |#5| $) 24)) (-2213 (((-110) |#5| $) 16) (((-110) $) 45)) (-1301 (((-598 $) |#5| $) NIL) (((-598 $) (-598 |#5|) $) 77) (((-598 $) (-598 |#5|) (-598 $)) 75) (((-598 $) |#5| (-598 $)) 78)) (-1846 (($ $ |#5|) NIL) (((-598 $) |#5| $) NIL) (((-598 $) |#5| (-598 $)) 60) (((-598 $) (-598 |#5|) $) 62) (((-598 $) (-598 |#5|) (-598 $)) 64)) (-3777 (((-598 $) |#5| $) NIL) (((-598 $) |#5| (-598 $)) 54) (((-598 $) (-598 |#5|) $) 56) (((-598 $) (-598 |#5|) (-598 $)) 58)) (-3695 (((-110) |#5| $) 27)))
+(((-1004 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -1846 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -1846 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -1846 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -1846 ((-598 |#1|) |#5| |#1|)) (-15 -3777 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -3777 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -3777 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -3777 ((-598 |#1|) |#5| |#1|)) (-15 -1301 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -1301 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -1301 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -1301 ((-598 |#1|) |#5| |#1|)) (-15 -1428 ((-110) |#5| |#1|)) (-15 -2213 ((-110) |#1|)) (-15 -3695 ((-110) |#5| |#1|)) (-15 -2950 ((-110) |#5| |#1|)) (-15 -2213 ((-110) |#5| |#1|)) (-15 -1846 (|#1| |#1| |#5|))) (-1005 |#2| |#3| |#4| |#5|) (-432) (-743) (-797) (-1000 |#2| |#3| |#4|)) (T -1004))
+NIL
+(-10 -8 (-15 -1846 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -1846 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -1846 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -1846 ((-598 |#1|) |#5| |#1|)) (-15 -3777 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -3777 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -3777 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -3777 ((-598 |#1|) |#5| |#1|)) (-15 -1301 ((-598 |#1|) |#5| (-598 |#1|))) (-15 -1301 ((-598 |#1|) (-598 |#5|) (-598 |#1|))) (-15 -1301 ((-598 |#1|) (-598 |#5|) |#1|)) (-15 -1301 ((-598 |#1|) |#5| |#1|)) (-15 -1428 ((-110) |#5| |#1|)) (-15 -2213 ((-110) |#1|)) (-15 -3695 ((-110) |#5| |#1|)) (-15 -2950 ((-110) |#5| |#1|)) (-15 -2213 ((-110) |#5| |#1|)) (-15 -1846 (|#1| |#1| |#5|)))
+((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86) (((-598 $) (-598 |#4|) (-110)) 111)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 126)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2950 (((-110) |#4| $) 136)) (-1428 (((-110) |#4| $) 133)) (-2213 (((-110) |#4| $) 137) (((-110) $) 134)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) 128)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 127)) (-2309 (((-3 |#4| "failed") $) 83)) (-2918 (((-598 $) |#4| $) 129)) (-1568 (((-3 (-110) (-598 $)) |#4| $) 132)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-1301 (((-598 $) |#4| $) 125) (((-598 $) (-598 |#4|) $) 124) (((-598 $) (-598 |#4|) (-598 $)) 123) (((-598 $) |#4| (-598 $)) 122)) (-2106 (($ |#4| $) 117) (($ (-598 |#4|) $) 116)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77) (((-598 $) |#4| $) 115) (((-598 $) |#4| (-598 $)) 114) (((-598 $) (-598 |#4|) $) 113) (((-598 $) (-598 |#4|) (-598 $)) 112)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-3777 (((-598 $) |#4| $) 121) (((-598 $) |#4| (-598 $)) 120) (((-598 $) (-598 |#4|) $) 119) (((-598 $) (-598 |#4|) (-598 $)) 118)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-3695 (((-110) |#4| $) 135)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273)))))
+(((-1005 |#1| |#2| |#3| |#4|) (-133) (-432) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -1005))
+((-2213 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2950 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-3695 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2213 (*1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-1428 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-1568 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-3 (-110) (-598 *1))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-2648 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *1)))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-2648 (*1 *2 *3 *1) (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2918 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)))) (-2068 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-3 *3 (-598 *1))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-2255 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *1)))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-3240 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *1)))) (-4 *1 (-1005 *4 *5 *6 *3)))) (-1301 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)))) (-1301 (*1 *2 *3 *1) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *7)))) (-1301 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)))) (-1301 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) (-3777 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)))) (-3777 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) (-3777 (*1 *2 *3 *1) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *7)))) (-3777 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)))) (-2106 (*1 *1 *2 *1) (-12 (-4 *1 (-1005 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-2106 (*1 *1 *2 *1) (-12 (-5 *2 (-598 *6)) (-4 *1 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)))) (-1846 (*1 *2 *3 *1) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)))) (-1846 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)))) (-1846 (*1 *2 *3 *1) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *7)))) (-1846 (*1 *2 *3 *2) (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)))) (-2855 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1005 *5 *6 *7 *8)))))
+(-13 (-1132 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -2213 ((-110) |t#4| $)) (-15 -2950 ((-110) |t#4| $)) (-15 -3695 ((-110) |t#4| $)) (-15 -2213 ((-110) $)) (-15 -1428 ((-110) |t#4| $)) (-15 -1568 ((-3 (-110) (-598 $)) |t#4| $)) (-15 -2648 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |t#4| $)) (-15 -2648 ((-110) |t#4| $)) (-15 -2918 ((-598 $) |t#4| $)) (-15 -2068 ((-3 |t#4| (-598 $)) |t#4| |t#4| $)) (-15 -2255 ((-598 (-2 (|:| |val| |t#4|) (|:| -2410 $))) |t#4| |t#4| $)) (-15 -3240 ((-598 (-2 (|:| |val| |t#4|) (|:| -2410 $))) |t#4| $)) (-15 -1301 ((-598 $) |t#4| $)) (-15 -1301 ((-598 $) (-598 |t#4|) $)) (-15 -1301 ((-598 $) (-598 |t#4|) (-598 $))) (-15 -1301 ((-598 $) |t#4| (-598 $))) (-15 -3777 ((-598 $) |t#4| $)) (-15 -3777 ((-598 $) |t#4| (-598 $))) (-15 -3777 ((-598 $) (-598 |t#4|) $)) (-15 -3777 ((-598 $) (-598 |t#4|) (-598 $))) (-15 -2106 ($ |t#4| $)) (-15 -2106 ($ (-598 |t#4|) $)) (-15 -1846 ((-598 $) |t#4| $)) (-15 -1846 ((-598 $) |t#4| (-598 $))) (-15 -1846 ((-598 $) (-598 |t#4|) $)) (-15 -1846 ((-598 $) (-598 |t#4|) (-598 $))) (-15 -2855 ((-598 $) (-598 |t#4|) (-110)))))
+(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1132 |#1| |#2| |#3| |#4|) . T) ((-1138) . T))
+((-4126 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|) 81)) (-2118 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|) 113)) (-3659 (((-598 |#5|) |#4| |#5|) 70)) (-3624 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-4108 (((-1189)) 37)) (-2098 (((-1189)) 26)) (-2747 (((-1189) (-1085) (-1085) (-1085)) 33)) (-3260 (((-1189) (-1085) (-1085) (-1085)) 22)) (-2928 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|) 96)) (-4026 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110)) 107) (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-3947 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|) 102)))
+(((-1006 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3260 ((-1189) (-1085) (-1085) (-1085))) (-15 -2098 ((-1189))) (-15 -2747 ((-1189) (-1085) (-1085) (-1085))) (-15 -4108 ((-1189))) (-15 -2928 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -4026 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -4026 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110))) (-15 -3947 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -2118 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -3624 ((-110) |#4| |#5|)) (-15 -3624 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3659 ((-598 |#5|) |#4| |#5|)) (-15 -4126 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -1006))
+((-4126 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3659 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3624 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2118 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3947 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-4026 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) (-5 *5 (-110)) (-4 *8 (-1000 *6 *7 *4)) (-4 *9 (-1005 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *4 (-797)) (-5 *2 (-598 (-2 (|:| |val| *8) (|:| -2410 *9)))) (-5 *1 (-1006 *6 *7 *4 *8 *9)))) (-4026 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1006 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-2928 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))) (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-4108 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-2747 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-2098 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-3260 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3260 ((-1189) (-1085) (-1085) (-1085))) (-15 -2098 ((-1189))) (-15 -2747 ((-1189) (-1085) (-1085) (-1085))) (-15 -4108 ((-1189))) (-15 -2928 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -4026 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -4026 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110))) (-15 -3947 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -2118 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -3624 ((-110) |#4| |#5|)) (-15 -3624 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3659 ((-598 |#5|) |#4| |#5|)) (-15 -4126 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|)))
+((-2247 (((-110) $ $) NIL)) (-3955 (((-1102) $) 8)) (-1521 (((-1085) $) 16)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 13)))
+(((-1007 |#1|) (-13 (-1030) (-10 -8 (-15 -3955 ((-1102) $)))) (-1102)) (T -1007))
+((-3955 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1007 *3)) (-14 *3 *2))))
+(-13 (-1030) (-10 -8 (-15 -3955 ((-1102) $))))
+((-2247 (((-110) $ $) NIL)) (-2583 (($ $ (-598 (-1102)) (-1 (-110) (-598 |#3|))) 33)) (-1867 (($ |#3| |#3|) 22) (($ |#3| |#3| (-598 (-1102))) 20)) (-1493 ((|#3| $) 13)) (-3154 (((-3 (-276 |#3|) "failed") $) 58)) (-2523 (((-276 |#3|) $) NIL)) (-2674 (((-598 (-1102)) $) 16)) (-2052 (((-835 |#1|) $) 11)) (-1484 ((|#3| $) 12)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1785 ((|#3| $ |#3|) 27) ((|#3| $ |#3| (-864)) 39)) (-2265 (((-806) $) 86) (($ (-276 |#3|)) 21)) (-2148 (((-110) $ $) 36)))
+(((-1008 |#1| |#2| |#3|) (-13 (-1030) (-268 |#3| |#3|) (-977 (-276 |#3|)) (-10 -8 (-15 -1867 ($ |#3| |#3|)) (-15 -1867 ($ |#3| |#3| (-598 (-1102)))) (-15 -2583 ($ $ (-598 (-1102)) (-1 (-110) (-598 |#3|)))) (-15 -2052 ((-835 |#1|) $)) (-15 -1484 (|#3| $)) (-15 -1493 (|#3| $)) (-15 -1785 (|#3| $ |#3| (-864))) (-15 -2674 ((-598 (-1102)) $)))) (-1030) (-13 (-986) (-829 |#1|) (-797) (-573 (-835 |#1|))) (-13 (-411 |#2|) (-829 |#1|) (-573 (-835 |#1|)))) (T -1008))
+((-1867 (*1 *1 *2 *2) (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) (-5 *1 (-1008 *3 *4 *2)) (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))))) (-1867 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-1008 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) (-2583 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-1 (-110) (-598 *6))) (-4 *6 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-1008 *4 *5 *6)))) (-2052 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 *2))) (-5 *2 (-835 *3)) (-5 *1 (-1008 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-829 *3) (-573 *2))))) (-1484 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) (-5 *1 (-1008 *3 *4 *2)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))))) (-1493 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) (-5 *1 (-1008 *3 *4 *2)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))))) (-1785 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-864)) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-1008 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))) (-2674 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) (-5 *2 (-598 (-1102))) (-5 *1 (-1008 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))))))
+(-13 (-1030) (-268 |#3| |#3|) (-977 (-276 |#3|)) (-10 -8 (-15 -1867 ($ |#3| |#3|)) (-15 -1867 ($ |#3| |#3| (-598 (-1102)))) (-15 -2583 ($ $ (-598 (-1102)) (-1 (-110) (-598 |#3|)))) (-15 -2052 ((-835 |#1|) $)) (-15 -1484 (|#3| $)) (-15 -1493 (|#3| $)) (-15 -1785 (|#3| $ |#3| (-864))) (-15 -2674 ((-598 (-1102)) $))))
+((-2247 (((-110) $ $) NIL)) (-2545 (($ (-598 (-1008 |#1| |#2| |#3|))) 13)) (-3800 (((-598 (-1008 |#1| |#2| |#3|)) $) 20)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1785 ((|#3| $ |#3|) 23) ((|#3| $ |#3| (-864)) 26)) (-2265 (((-806) $) 16)) (-2148 (((-110) $ $) 19)))
+(((-1009 |#1| |#2| |#3|) (-13 (-1030) (-268 |#3| |#3|) (-10 -8 (-15 -2545 ($ (-598 (-1008 |#1| |#2| |#3|)))) (-15 -3800 ((-598 (-1008 |#1| |#2| |#3|)) $)) (-15 -1785 (|#3| $ |#3| (-864))))) (-1030) (-13 (-986) (-829 |#1|) (-797) (-573 (-835 |#1|))) (-13 (-411 |#2|) (-829 |#1|) (-573 (-835 |#1|)))) (T -1009))
+((-2545 (*1 *1 *2) (-12 (-5 *2 (-598 (-1008 *3 *4 *5))) (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))) (-5 *1 (-1009 *3 *4 *5)))) (-3800 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3)))) (-5 *2 (-598 (-1008 *3 *4 *5))) (-5 *1 (-1009 *3 *4 *5)) (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))))) (-1785 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-864)) (-4 *4 (-1030)) (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4)))) (-5 *1 (-1009 *4 *5 *2)) (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))))
+(-13 (-1030) (-268 |#3| |#3|) (-10 -8 (-15 -2545 ($ (-598 (-1008 |#1| |#2| |#3|)))) (-15 -3800 ((-598 (-1008 |#1| |#2| |#3|)) $)) (-15 -1785 (|#3| $ |#3| (-864)))))
+((-2660 (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110)) 75) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|))) 77) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110)) 76)))
+(((-1010 |#1| |#2|) (-10 -7 (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110))) (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110)))) (-13 (-289) (-140)) (-598 (-1102))) (T -1010))
+((-2660 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1010 *5 *6)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))))) (-2660 (*1 *2 *3) (-12 (-4 *4 (-13 (-289) (-140))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) (-5 *1 (-1010 *4 *5)) (-5 *3 (-598 (-895 *4))) (-14 *5 (-598 (-1102))))) (-2660 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1010 *5 *6)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))))))
+(-10 -7 (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110))) (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -2660 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110))))
+((-2552 (((-399 |#3|) |#3|) 18)))
+(((-1011 |#1| |#2| |#3|) (-10 -7 (-15 -2552 ((-399 |#3|) |#3|))) (-1160 (-388 (-531))) (-13 (-344) (-140) (-675 (-388 (-531)) |#1|)) (-1160 |#2|)) (T -1011))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-13 (-344) (-140) (-675 (-388 (-531)) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1011 *4 *5 *3)) (-4 *3 (-1160 *5)))))
+(-10 -7 (-15 -2552 ((-399 |#3|) |#3|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 126)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-344)))) (-3258 (($ $) NIL (|has| |#1| (-344)))) (-2921 (((-110) $) NIL (|has| |#1| (-344)))) (-1849 (((-639 |#1|) (-1184 $)) NIL) (((-639 |#1|)) 115)) (-1354 ((|#1| $) 119)) (-3646 (((-1112 (-864) (-721)) (-531)) NIL (|has| |#1| (-330)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3006 (((-721)) 40 (|has| |#1| (-349)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2767 (($ (-1184 |#1|) (-1184 $)) NIL) (($ (-1184 |#1|)) 43)) (-1485 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-330)))) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-1982 (((-639 |#1|) $ (-1184 $)) NIL) (((-639 |#1|) $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 106) (((-639 |#1|) (-639 $)) 101)) (-1760 (($ |#2|) 61) (((-3 $ "failed") (-388 |#2|)) NIL (|has| |#1| (-344)))) (-3622 (((-3 $ "failed") $) NIL)) (-2277 (((-864)) 77)) (-1381 (($) 44 (|has| |#1| (-349)))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-1806 (($) NIL (|has| |#1| (-330)))) (-1971 (((-110) $) NIL (|has| |#1| (-330)))) (-3493 (($ $ (-721)) NIL (|has| |#1| (-330))) (($ $) NIL (|has| |#1| (-330)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3617 (((-864) $) NIL (|has| |#1| (-330))) (((-783 (-864)) $) NIL (|has| |#1| (-330)))) (-3481 (((-110) $) NIL)) (-1899 ((|#1| $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-330)))) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-1233 ((|#2| $) 84 (|has| |#1| (-344)))) (-2211 (((-864) $) 131 (|has| |#1| (-349)))) (-1749 ((|#2| $) 58)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-3788 (($) NIL (|has| |#1| (-330)) CONST)) (-1889 (($ (-864)) 125 (|has| |#1| (-349)))) (-2529 (((-1049) $) NIL)) (-1861 (($) 121)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2272 (((-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))) NIL (|has| |#1| (-330)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3176 ((|#1| (-1184 $)) NIL) ((|#1|) 109)) (-2350 (((-721) $) NIL (|has| |#1| (-330))) (((-3 (-721) "failed") $ $) NIL (|has| |#1| (-330)))) (-3352 (($ $) NIL (-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-721)) NIL (-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-1 |#1| |#1|) (-721)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3381 (((-639 |#1|) (-1184 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-3608 ((|#2|) 73)) (-2498 (($) NIL (|has| |#1| (-330)))) (-3348 (((-1184 |#1|) $ (-1184 $)) 89) (((-639 |#1|) (-1184 $) (-1184 $)) NIL) (((-1184 |#1|) $) 71) (((-639 |#1|) (-1184 $)) 85)) (-3318 (((-1184 |#1|) $) NIL) (($ (-1184 |#1|)) NIL) ((|#2| $) NIL) (($ |#2|) NIL)) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (|has| |#1| (-330)))) (-2265 (((-806) $) 57) (($ (-531)) 53) (($ |#1|) 54) (($ $) NIL (|has| |#1| (-344))) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-344)) (|has| |#1| (-977 (-388 (-531))))))) (-2750 (($ $) NIL (|has| |#1| (-330))) (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3369 ((|#2| $) 82)) (-2284 (((-721)) 75)) (-3523 (((-1184 $)) 81)) (-2587 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3035 (($) 30 T CONST)) (-3050 (($) 19 T CONST)) (-4020 (($ $) NIL (-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-721)) NIL (-1435 (-12 (|has| |#1| (-216)) (|has| |#1| (-344))) (|has| |#1| (-330)))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-344)) (|has| |#1| (-843 (-1102))))) (($ $ (-1 |#1| |#1|) (-721)) NIL (|has| |#1| (-344))) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-344)))) (-2148 (((-110) $ $) 63)) (-2263 (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) 67) (($ $ $) NIL)) (-2237 (($ $ $) 65)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 51) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 48) (($ (-388 (-531)) $) NIL (|has| |#1| (-344))) (($ $ (-388 (-531))) NIL (|has| |#1| (-344)))))
+(((-1012 |#1| |#2| |#3|) (-675 |#1| |#2|) (-162) (-1160 |#1|) |#2|) (T -1012))
+NIL
+(-675 |#1| |#2|)
+((-2552 (((-399 |#3|) |#3|) 19)))
+(((-1013 |#1| |#2| |#3|) (-10 -7 (-15 -2552 ((-399 |#3|) |#3|))) (-1160 (-388 (-895 (-531)))) (-13 (-344) (-140) (-675 (-388 (-895 (-531))) |#1|)) (-1160 |#2|)) (T -1013))
+((-2552 (*1 *2 *3) (-12 (-4 *4 (-1160 (-388 (-895 (-531))))) (-4 *5 (-13 (-344) (-140) (-675 (-388 (-895 (-531))) *4))) (-5 *2 (-399 *3)) (-5 *1 (-1013 *4 *5 *3)) (-4 *3 (-1160 *5)))))
+(-10 -7 (-15 -2552 ((-399 |#3|) |#3|)))
+((-2247 (((-110) $ $) NIL)) (-4103 (($ $ $) 14)) (-1241 (($ $ $) 15)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3606 (($) 6)) (-3318 (((-1102) $) 18)) (-2265 (((-806) $) 12)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 13)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 8)))
+(((-1014) (-13 (-797) (-10 -8 (-15 -3606 ($)) (-15 -3318 ((-1102) $))))) (T -1014))
+((-3606 (*1 *1) (-5 *1 (-1014))) (-3318 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1014)))))
+(-13 (-797) (-10 -8 (-15 -3606 ($)) (-15 -3318 ((-1102) $))))
+((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (((-1107) $) 14)) (-2148 (((-110) $ $) 6)))
+(((-1015) (-133)) (T -1015))
+NIL
+(-13 (-91))
+(((-91) . T) ((-99) . T) ((-572 (-806)) . T) ((-572 (-1107)) . T) ((-1030) . T))
+((-1862 ((|#1| |#1| (-1 (-531) |#1| |#1|)) 24) ((|#1| |#1| (-1 (-110) |#1|)) 20)) (-1825 (((-1189)) 15)) (-1865 (((-598 |#1|)) 9)))
+(((-1016 |#1|) (-10 -7 (-15 -1825 ((-1189))) (-15 -1865 ((-598 |#1|))) (-15 -1862 (|#1| |#1| (-1 (-110) |#1|))) (-15 -1862 (|#1| |#1| (-1 (-531) |#1| |#1|)))) (-129)) (T -1016))
+((-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-531) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1016 *2)))) (-1862 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1016 *2)))) (-1865 (*1 *2) (-12 (-5 *2 (-598 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-129)))) (-1825 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1016 *3)) (-4 *3 (-129)))))
+(-10 -7 (-15 -1825 ((-1189))) (-15 -1865 ((-598 |#1|))) (-15 -1862 (|#1| |#1| (-1 (-110) |#1|))) (-15 -1862 (|#1| |#1| (-1 (-531) |#1| |#1|))))
+((-2808 (($ (-106) $) 16)) (-2933 (((-3 (-106) "failed") (-1102) $) 15)) (-3781 (($) 7)) (-2895 (($) 17)) (-2731 (($) 18)) (-1590 (((-598 (-164)) $) 10)) (-2265 (((-806) $) 21)))
+(((-1017) (-13 (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -1590 ((-598 (-164)) $)) (-15 -2933 ((-3 (-106) "failed") (-1102) $)) (-15 -2808 ($ (-106) $)) (-15 -2895 ($)) (-15 -2731 ($))))) (T -1017))
+((-3781 (*1 *1) (-5 *1 (-1017))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-598 (-164))) (-5 *1 (-1017)))) (-2933 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-106)) (-5 *1 (-1017)))) (-2808 (*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1017)))) (-2895 (*1 *1) (-5 *1 (-1017))) (-2731 (*1 *1) (-5 *1 (-1017))))
+(-13 (-572 (-806)) (-10 -8 (-15 -3781 ($)) (-15 -1590 ((-598 (-164)) $)) (-15 -2933 ((-3 (-106) "failed") (-1102) $)) (-15 -2808 ($ (-106) $)) (-15 -2895 ($)) (-15 -2731 ($))))
+((-2550 (((-1184 (-639 |#1|)) (-598 (-639 |#1|))) 42) (((-1184 (-639 (-895 |#1|))) (-598 (-1102)) (-639 (-895 |#1|))) 63) (((-1184 (-639 (-388 (-895 |#1|)))) (-598 (-1102)) (-639 (-388 (-895 |#1|)))) 79)) (-3348 (((-1184 |#1|) (-639 |#1|) (-598 (-639 |#1|))) 36)))
+(((-1018 |#1|) (-10 -7 (-15 -2550 ((-1184 (-639 (-388 (-895 |#1|)))) (-598 (-1102)) (-639 (-388 (-895 |#1|))))) (-15 -2550 ((-1184 (-639 (-895 |#1|))) (-598 (-1102)) (-639 (-895 |#1|)))) (-15 -2550 ((-1184 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -3348 ((-1184 |#1|) (-639 |#1|) (-598 (-639 |#1|))))) (-344)) (T -1018))
+((-3348 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-639 *5))) (-5 *3 (-639 *5)) (-4 *5 (-344)) (-5 *2 (-1184 *5)) (-5 *1 (-1018 *5)))) (-2550 (*1 *2 *3) (-12 (-5 *3 (-598 (-639 *4))) (-4 *4 (-344)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-1018 *4)))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1102))) (-4 *5 (-344)) (-5 *2 (-1184 (-639 (-895 *5)))) (-5 *1 (-1018 *5)) (-5 *4 (-639 (-895 *5))))) (-2550 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-1102))) (-4 *5 (-344)) (-5 *2 (-1184 (-639 (-388 (-895 *5))))) (-5 *1 (-1018 *5)) (-5 *4 (-639 (-388 (-895 *5)))))))
+(-10 -7 (-15 -2550 ((-1184 (-639 (-388 (-895 |#1|)))) (-598 (-1102)) (-639 (-388 (-895 |#1|))))) (-15 -2550 ((-1184 (-639 (-895 |#1|))) (-598 (-1102)) (-639 (-895 |#1|)))) (-15 -2550 ((-1184 (-639 |#1|)) (-598 (-639 |#1|)))) (-15 -3348 ((-1184 |#1|) (-639 |#1|) (-598 (-639 |#1|)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1584 (((-598 (-721)) $) NIL) (((-598 (-721)) $ (-1102)) NIL)) (-3449 (((-721) $) NIL) (((-721) $ (-1102)) NIL)) (-2695 (((-598 (-1020 (-1102))) $) NIL)) (-2516 (((-1098 $) $ (-1020 (-1102))) NIL) (((-1098 |#1|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1020 (-1102)))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-1524 (($ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1020 (-1102)) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL) (((-3 (-1054 |#1| (-1102)) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1020 (-1102)) $) NIL) (((-1102) $) NIL) (((-1054 |#1| (-1102)) $) NIL)) (-3115 (($ $ $ (-1020 (-1102))) NIL (|has| |#1| (-162)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ (-1020 (-1102))) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 (-1020 (-1102))) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1020 (-1102)) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1020 (-1102)) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ (-1102)) NIL) (((-721) $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2682 (($ (-1098 |#1|) (-1020 (-1102))) NIL) (($ (-1098 $) (-1020 (-1102))) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-503 (-1020 (-1102)))) NIL) (($ $ (-1020 (-1102)) (-721)) NIL) (($ $ (-598 (-1020 (-1102))) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1020 (-1102))) NIL)) (-3005 (((-503 (-1020 (-1102))) $) NIL) (((-721) $ (-1020 (-1102))) NIL) (((-598 (-721)) $ (-598 (-1020 (-1102)))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 (-1020 (-1102))) (-503 (-1020 (-1102)))) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-4252 (((-1 $ (-721)) (-1102)) NIL) (((-1 $ (-721)) $) NIL (|has| |#1| (-216)))) (-3471 (((-3 (-1020 (-1102)) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2941 (((-1020 (-1102)) $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-1921 (((-110) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1020 (-1102))) (|:| -1790 (-721))) "failed") $) NIL)) (-2319 (($ $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1020 (-1102)) |#1|) NIL) (($ $ (-598 (-1020 (-1102))) (-598 |#1|)) NIL) (($ $ (-1020 (-1102)) $) NIL) (($ $ (-598 (-1020 (-1102))) (-598 $)) NIL) (($ $ (-1102) $) NIL (|has| |#1| (-216))) (($ $ (-598 (-1102)) (-598 $)) NIL (|has| |#1| (-216))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-216))) (($ $ (-598 (-1102)) (-598 |#1|)) NIL (|has| |#1| (-216)))) (-3176 (($ $ (-1020 (-1102))) NIL (|has| |#1| (-162)))) (-3352 (($ $ (-1020 (-1102))) NIL) (($ $ (-598 (-1020 (-1102)))) NIL) (($ $ (-1020 (-1102)) (-721)) NIL) (($ $ (-598 (-1020 (-1102))) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-3288 (((-598 (-1102)) $) NIL)) (-2012 (((-503 (-1020 (-1102))) $) NIL) (((-721) $ (-1020 (-1102))) NIL) (((-598 (-721)) $ (-598 (-1020 (-1102)))) NIL) (((-721) $ (-1102)) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1020 (-1102)) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1020 (-1102)) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1020 (-1102)) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) NIL (|has| |#1| (-432))) (($ $ (-1020 (-1102))) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-1020 (-1102))) NIL) (($ (-1102)) NIL) (($ (-1054 |#1| (-1102))) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-503 (-1020 (-1102)))) NIL) (($ $ (-1020 (-1102)) (-721)) NIL) (($ $ (-598 (-1020 (-1102))) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1020 (-1102))) NIL) (($ $ (-598 (-1020 (-1102)))) NIL) (($ $ (-1020 (-1102)) (-721)) NIL) (($ $ (-598 (-1020 (-1102))) (-598 (-721))) NIL) (($ $) NIL (|has| |#1| (-216))) (($ $ (-721)) NIL (|has| |#1| (-216))) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1019 |#1|) (-13 (-235 |#1| (-1102) (-1020 (-1102)) (-503 (-1020 (-1102)))) (-977 (-1054 |#1| (-1102)))) (-986)) (T -1019))
+NIL
+(-13 (-235 |#1| (-1102) (-1020 (-1102)) (-503 (-1020 (-1102)))) (-977 (-1054 |#1| (-1102))))
+((-2247 (((-110) $ $) NIL)) (-3449 (((-721) $) NIL)) (-3524 ((|#1| $) 10)) (-3154 (((-3 |#1| "failed") $) NIL)) (-2523 ((|#1| $) NIL)) (-3617 (((-721) $) 11)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-4252 (($ |#1| (-721)) 9)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3352 (($ $) NIL) (($ $ (-721)) NIL)) (-2265 (((-806) $) NIL) (($ |#1|) NIL)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 15)))
+(((-1020 |#1|) (-248 |#1|) (-797)) (T -1020))
NIL
(-248 |#1|)
-((-3217 (((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|)) 24 (|has| |#1| (-793))) (((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|)) 14)))
-(((-1018 |#1| |#2|) (-10 -7 (-15 -3217 ((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) (IF (|has| |#1| (-793)) (-15 -3217 ((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) |%noBranch|)) (-1135) (-1135)) (T -1018))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1022 *5)) (-4 *5 (-793)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-597 *6)) (-5 *1 (-1018 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1022 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1022 *6)) (-5 *1 (-1018 *5 *6)))))
-(-10 -7 (-15 -3217 ((-1022 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) (IF (|has| |#1| (-793)) (-15 -3217 ((-597 |#2|) (-1 |#2| |#1|) (-1022 |#1|))) |%noBranch|))
-((-3217 (((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|)) 19)))
-(((-1019 |#1| |#2|) (-10 -7 (-15 -3217 ((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|)))) (-1135) (-1135)) (T -1019))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1020 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1020 *6)) (-5 *1 (-1019 *5 *6)))))
-(-10 -7 (-15 -3217 ((-1020 |#2|) (-1 |#2| |#1|) (-1020 |#1|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-4007 (((-1099) $) 11)) (-2525 (((-1022 |#1|) $) 12)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1685 (($ (-1099) (-1022 |#1|)) 10)) (-2366 (((-804) $) 20 (|has| |#1| (-1027)))) (-2248 (((-110) $ $) 15 (|has| |#1| (-1027)))))
-(((-1020 |#1|) (-13 (-1135) (-10 -8 (-15 -1685 ($ (-1099) (-1022 |#1|))) (-15 -4007 ((-1099) $)) (-15 -2525 ((-1022 |#1|) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -1020))
-((-1685 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1022 *4)) (-4 *4 (-1135)) (-5 *1 (-1020 *4)))) (-4007 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1020 *3)) (-4 *3 (-1135)))) (-2525 (*1 *2 *1) (-12 (-5 *2 (-1022 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1135)))))
-(-13 (-1135) (-10 -8 (-15 -1685 ($ (-1099) (-1022 |#1|))) (-15 -4007 ((-1099) $)) (-15 -2525 ((-1022 |#1|) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
-((-2525 (($ |#1| |#1|) 7)) (-2594 ((|#1| $) 10)) (-2059 ((|#1| $) 12)) (-2070 (((-530) $) 8)) (-3884 ((|#1| $) 9)) (-2081 ((|#1| $) 11)) (-3260 (($ |#1|) 6)) (-3848 (($ |#1| |#1|) 14)) (-2022 (($ $ (-530)) 13)))
-(((-1021 |#1|) (-133) (-1135)) (T -1021))
-((-3848 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-2022 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1021 *3)) (-4 *3 (-1135)))) (-2059 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-2081 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-3884 (*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-2070 (*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))) (-2525 (*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(-13 (-1135) (-10 -8 (-15 -3848 ($ |t#1| |t#1|)) (-15 -2022 ($ $ (-530))) (-15 -2059 (|t#1| $)) (-15 -2081 (|t#1| $)) (-15 -2594 (|t#1| $)) (-15 -3884 (|t#1| $)) (-15 -2070 ((-530) $)) (-15 -2525 ($ |t#1| |t#1|)) (-15 -3260 ($ |t#1|))))
-(((-1135) . T))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2525 (($ |#1| |#1|) 15)) (-3217 (((-597 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-793)))) (-2594 ((|#1| $) 10)) (-2059 ((|#1| $) 9)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2070 (((-530) $) 14)) (-3884 ((|#1| $) 12)) (-2081 ((|#1| $) 11)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2246 (((-597 |#1|) $) 36 (|has| |#1| (-793))) (((-597 |#1|) (-597 $)) 35 (|has| |#1| (-793)))) (-3260 (($ |#1|) 26)) (-2366 (((-804) $) 25 (|has| |#1| (-1027)))) (-3848 (($ |#1| |#1|) 8)) (-2022 (($ $ (-530)) 16)) (-2248 (((-110) $ $) 19 (|has| |#1| (-1027)))))
-(((-1022 |#1|) (-13 (-1021 |#1|) (-10 -7 (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-597 |#1|))) |%noBranch|))) (-1135)) (T -1022))
-NIL
-(-13 (-1021 |#1|) (-10 -7 (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-597 |#1|))) |%noBranch|)))
-((-2525 (($ |#1| |#1|) 7)) (-3217 ((|#2| (-1 |#1| |#1|) $) 16)) (-2594 ((|#1| $) 10)) (-2059 ((|#1| $) 12)) (-2070 (((-530) $) 8)) (-3884 ((|#1| $) 9)) (-2081 ((|#1| $) 11)) (-2246 ((|#2| (-597 $)) 18) ((|#2| $) 17)) (-3260 (($ |#1|) 6)) (-3848 (($ |#1| |#1|) 14)) (-2022 (($ $ (-530)) 13)))
-(((-1023 |#1| |#2|) (-133) (-793) (-1073 |t#1|)) (T -1023))
-((-2246 (*1 *2 *3) (-12 (-5 *3 (-597 *1)) (-4 *1 (-1023 *4 *2)) (-4 *4 (-793)) (-4 *2 (-1073 *4)))) (-2246 (*1 *2 *1) (-12 (-4 *1 (-1023 *3 *2)) (-4 *3 (-793)) (-4 *2 (-1073 *3)))) (-3217 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1023 *4 *2)) (-4 *4 (-793)) (-4 *2 (-1073 *4)))))
-(-13 (-1021 |t#1|) (-10 -8 (-15 -2246 (|t#2| (-597 $))) (-15 -2246 (|t#2| $)) (-15 -3217 (|t#2| (-1 |t#1| |t#1|) $))))
-(((-1021 |#1|) . T) ((-1135) . T))
-((-4204 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-1746 (($ $ $) 10)) (-1252 (($ $ $) NIL) (($ $ |#2|) 15)))
-(((-1024 |#1| |#2|) (-10 -8 (-15 -4204 (|#1| |#2| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#2|)) (-15 -1252 (|#1| |#1| |#1|))) (-1025 |#2|) (-1027)) (T -1024))
-NIL
-(-10 -8 (-15 -4204 (|#1| |#2| |#1|)) (-15 -4204 (|#1| |#1| |#2|)) (-15 -4204 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1252 (|#1| |#1| |#2|)) (-15 -1252 (|#1| |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-4204 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-1746 (($ $ $) 20)) (-2431 (((-110) $ $) 19)) (-3186 (((-110) $ (-719)) 35)) (-1243 (($) 25) (($ (-597 |#1|)) 24)) (-2283 (($ (-1 (-110) |#1|) $) 56 (|has| $ (-6 -4269)))) (-2350 (($) 36 T CONST)) (-3077 (($ $) 59 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 58 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4269)))) (-3779 (((-597 |#1|) $) 43 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) 28)) (-4027 (((-110) $ (-719)) 34)) (-2395 (((-597 |#1|) $) 44 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 46 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 38)) (-2763 (((-110) $ (-719)) 33)) (-1424 (((-1082) $) 9)) (-4033 (($ $ $) 23)) (-2624 (((-1046) $) 10)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 52)) (-1533 (((-110) (-1 (-110) |#1|) $) 41 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#1|) (-597 |#1|)) 50 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 48 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-276 |#1|))) 47 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 29)) (-3250 (((-110) $) 32)) (-3958 (($) 31)) (-1252 (($ $ $) 22) (($ $ |#1|) 21)) (-2632 (((-719) |#1| $) 45 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#1|) $) 42 (|has| $ (-6 -4269)))) (-2579 (($ $) 30)) (-3260 (((-506) $) 60 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 51)) (-2366 (((-804) $) 11)) (-3381 (($) 27) (($ (-597 |#1|)) 26)) (-3889 (((-110) (-1 (-110) |#1|) $) 40 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 37 (|has| $ (-6 -4269)))))
-(((-1025 |#1|) (-133) (-1027)) (T -1025))
-((-2822 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-3381 (*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-3381 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3)))) (-1243 (*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1243 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3)))) (-4033 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1252 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1252 (*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-1746 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-2431 (*1 *2 *1 *1) (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))) (-4204 (*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-4204 (*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))) (-4204 (*1 *1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(-13 (-1027) (-144 |t#1|) (-10 -8 (-6 -4259) (-15 -2822 ((-110) $ $)) (-15 -3381 ($)) (-15 -3381 ($ (-597 |t#1|))) (-15 -1243 ($)) (-15 -1243 ($ (-597 |t#1|))) (-15 -4033 ($ $ $)) (-15 -1252 ($ $ $)) (-15 -1252 ($ $ |t#1|)) (-15 -1746 ($ $ $)) (-15 -2431 ((-110) $ $)) (-15 -4204 ($ $ $)) (-15 -4204 ($ $ |t#1|)) (-15 -4204 ($ |t#1| $))))
-(((-33) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) . T) ((-1135) . T))
-((-1424 (((-1082) $) 10)) (-2624 (((-1046) $) 8)))
-(((-1026 |#1|) (-10 -8 (-15 -1424 ((-1082) |#1|)) (-15 -2624 ((-1046) |#1|))) (-1027)) (T -1026))
-NIL
-(-10 -8 (-15 -1424 ((-1082) |#1|)) (-15 -2624 ((-1046) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
-(((-1027) (-133)) (T -1027))
-((-2624 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1046)))) (-1424 (*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1082)))))
-(-13 (-99) (-571 (-804)) (-10 -8 (-15 -2624 ((-1046) $)) (-15 -1424 ((-1082) $))))
-(((-99) . T) ((-571 (-804)) . T))
-((-2352 (((-110) $ $) NIL)) (-3023 (((-719)) 30)) (-1808 (($ (-597 (-862))) 52)) (-1980 (((-3 $ "failed") $ (-862) (-862)) 58)) (-1364 (($) 32)) (-4197 (((-110) (-862) $) 35)) (-1905 (((-862) $) 50)) (-1424 (((-1082) $) NIL)) (-1986 (($ (-862)) 31)) (-4157 (((-3 $ "failed") $ (-862)) 55)) (-2624 (((-1046) $) NIL)) (-3067 (((-1181 $)) 40)) (-3496 (((-597 (-862)) $) 24)) (-2903 (((-719) $ (-862) (-862)) 56)) (-2366 (((-804) $) 29)) (-2248 (((-110) $ $) 21)))
-(((-1028 |#1| |#2|) (-13 (-349) (-10 -8 (-15 -4157 ((-3 $ "failed") $ (-862))) (-15 -1980 ((-3 $ "failed") $ (-862) (-862))) (-15 -3496 ((-597 (-862)) $)) (-15 -1808 ($ (-597 (-862)))) (-15 -3067 ((-1181 $))) (-15 -4197 ((-110) (-862) $)) (-15 -2903 ((-719) $ (-862) (-862))))) (-862) (-862)) (T -1028))
-((-4157 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1980 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3496 (*1 *2 *1) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-1808 (*1 *1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-3067 (*1 *2) (-12 (-5 *2 (-1181 (-1028 *3 *4))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862)))) (-4197 (*1 *2 *3 *1) (-12 (-5 *3 (-862)) (-5 *2 (-110)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-2903 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-719)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
-(-13 (-349) (-10 -8 (-15 -4157 ((-3 $ "failed") $ (-862))) (-15 -1980 ((-3 $ "failed") $ (-862) (-862))) (-15 -3496 ((-597 (-862)) $)) (-15 -1808 ($ (-597 (-862)))) (-15 -3067 ((-1181 $))) (-15 -4197 ((-110) (-862) $)) (-15 -2903 ((-719) $ (-862) (-862)))))
-((-2352 (((-110) $ $) NIL)) (-2673 (($) NIL (|has| |#1| (-349)))) (-4204 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-1746 (($ $ $) 72)) (-2431 (((-110) $ $) 73)) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#1| (-349)))) (-1243 (($ (-597 |#1|)) NIL) (($) 13)) (-2901 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1842 (($ |#1| $) 67 (|has| $ (-6 -4269))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4269)))) (-1364 (($) NIL (|has| |#1| (-349)))) (-3779 (((-597 |#1|) $) 19 (|has| $ (-6 -4269)))) (-2822 (((-110) $ $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2508 ((|#1| $) 57 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 66 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1817 ((|#1| $) 55 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 34)) (-1905 (((-862) $) NIL (|has| |#1| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-4033 (($ $ $) 70)) (-1723 ((|#1| $) 25)) (-2441 (($ |#1| $) 65)) (-1986 (($ (-862)) NIL (|has| |#1| (-349)))) (-2624 (((-1046) $) NIL)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 31)) (-2738 ((|#1| $) 27)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 21)) (-3958 (($) 11)) (-1252 (($ $ |#1|) NIL) (($ $ $) 71)) (-1560 (($) NIL) (($ (-597 |#1|)) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 16)) (-3260 (((-506) $) 52 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 61)) (-3801 (($ $) NIL (|has| |#1| (-349)))) (-2366 (((-804) $) NIL)) (-1418 (((-719) $) NIL)) (-3381 (($ (-597 |#1|)) NIL) (($) 12)) (-2242 (($ (-597 |#1|)) NIL)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 54)) (-2267 (((-719) $) 10 (|has| $ (-6 -4269)))))
-(((-1029 |#1|) (-406 |#1|) (-1027)) (T -1029))
+((-3261 (((-598 |#2|) (-1 |#2| |#1|) (-1025 |#1|)) 24 (|has| |#1| (-795))) (((-1025 |#2|) (-1 |#2| |#1|) (-1025 |#1|)) 14)))
+(((-1021 |#1| |#2|) (-10 -7 (-15 -3261 ((-1025 |#2|) (-1 |#2| |#1|) (-1025 |#1|))) (IF (|has| |#1| (-795)) (-15 -3261 ((-598 |#2|) (-1 |#2| |#1|) (-1025 |#1|))) |%noBranch|)) (-1138) (-1138)) (T -1021))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1025 *5)) (-4 *5 (-795)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-598 *6)) (-5 *1 (-1021 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1025 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1025 *6)) (-5 *1 (-1021 *5 *6)))))
+(-10 -7 (-15 -3261 ((-1025 |#2|) (-1 |#2| |#1|) (-1025 |#1|))) (IF (|has| |#1| (-795)) (-15 -3261 ((-598 |#2|) (-1 |#2| |#1|) (-1025 |#1|))) |%noBranch|))
+((-3261 (((-1023 |#2|) (-1 |#2| |#1|) (-1023 |#1|)) 19)))
+(((-1022 |#1| |#2|) (-10 -7 (-15 -3261 ((-1023 |#2|) (-1 |#2| |#1|) (-1023 |#1|)))) (-1138) (-1138)) (T -1022))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1023 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1023 *6)) (-5 *1 (-1022 *5 *6)))))
+(-10 -7 (-15 -3261 ((-1023 |#2|) (-1 |#2| |#1|) (-1023 |#1|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3524 (((-1102) $) 11)) (-1347 (((-1025 |#1|) $) 12)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-1623 (($ (-1102) (-1025 |#1|)) 10)) (-2265 (((-806) $) 20 (|has| |#1| (-1030)))) (-2148 (((-110) $ $) 15 (|has| |#1| (-1030)))))
+(((-1023 |#1|) (-13 (-1138) (-10 -8 (-15 -1623 ($ (-1102) (-1025 |#1|))) (-15 -3524 ((-1102) $)) (-15 -1347 ((-1025 |#1|) $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) (-1138)) (T -1023))
+((-1623 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1025 *4)) (-4 *4 (-1138)) (-5 *1 (-1023 *4)))) (-3524 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1023 *3)) (-4 *3 (-1138)))) (-1347 (*1 *2 *1) (-12 (-5 *2 (-1025 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1138)))))
+(-13 (-1138) (-10 -8 (-15 -1623 ($ (-1102) (-1025 |#1|))) (-15 -3524 ((-1102) $)) (-15 -1347 ((-1025 |#1|) $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|)))
+((-1347 (($ |#1| |#1|) 7)) (-1915 ((|#1| $) 10)) (-1963 ((|#1| $) 12)) (-1973 (((-531) $) 8)) (-4189 ((|#1| $) 9)) (-1984 ((|#1| $) 11)) (-3318 (($ |#1|) 6)) (-3941 (($ |#1| |#1|) 14)) (-1929 (($ $ (-531)) 13)))
+(((-1024 |#1|) (-133) (-1138)) (T -1024))
+((-3941 (*1 *1 *2 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-1929 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1024 *3)) (-4 *3 (-1138)))) (-1963 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-1984 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-1915 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-4189 (*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-1973 (*1 *2 *1) (-12 (-4 *1 (-1024 *3)) (-4 *3 (-1138)) (-5 *2 (-531)))) (-1347 (*1 *1 *2 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))))
+(-13 (-1138) (-10 -8 (-15 -3941 ($ |t#1| |t#1|)) (-15 -1929 ($ $ (-531))) (-15 -1963 (|t#1| $)) (-15 -1984 (|t#1| $)) (-15 -1915 (|t#1| $)) (-15 -4189 (|t#1| $)) (-15 -1973 ((-531) $)) (-15 -1347 ($ |t#1| |t#1|)) (-15 -3318 ($ |t#1|))))
+(((-1138) . T))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1347 (($ |#1| |#1|) 15)) (-3261 (((-598 |#1|) (-1 |#1| |#1|) $) 38 (|has| |#1| (-795)))) (-1915 ((|#1| $) 10)) (-1963 ((|#1| $) 9)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-1973 (((-531) $) 14)) (-4189 ((|#1| $) 12)) (-1984 ((|#1| $) 11)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2140 (((-598 |#1|) $) 36 (|has| |#1| (-795))) (((-598 |#1|) (-598 $)) 35 (|has| |#1| (-795)))) (-3318 (($ |#1|) 26)) (-2265 (((-806) $) 25 (|has| |#1| (-1030)))) (-3941 (($ |#1| |#1|) 8)) (-1929 (($ $ (-531)) 16)) (-2148 (((-110) $ $) 19 (|has| |#1| (-1030)))))
+(((-1025 |#1|) (-13 (-1024 |#1|) (-10 -7 (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-1026 |#1| (-598 |#1|))) |%noBranch|))) (-1138)) (T -1025))
+NIL
+(-13 (-1024 |#1|) (-10 -7 (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-1026 |#1| (-598 |#1|))) |%noBranch|)))
+((-1347 (($ |#1| |#1|) 7)) (-3261 ((|#2| (-1 |#1| |#1|) $) 16)) (-1915 ((|#1| $) 10)) (-1963 ((|#1| $) 12)) (-1973 (((-531) $) 8)) (-4189 ((|#1| $) 9)) (-1984 ((|#1| $) 11)) (-2140 ((|#2| (-598 $)) 18) ((|#2| $) 17)) (-3318 (($ |#1|) 6)) (-3941 (($ |#1| |#1|) 14)) (-1929 (($ $ (-531)) 13)))
+(((-1026 |#1| |#2|) (-133) (-795) (-1076 |t#1|)) (T -1026))
+((-2140 (*1 *2 *3) (-12 (-5 *3 (-598 *1)) (-4 *1 (-1026 *4 *2)) (-4 *4 (-795)) (-4 *2 (-1076 *4)))) (-2140 (*1 *2 *1) (-12 (-4 *1 (-1026 *3 *2)) (-4 *3 (-795)) (-4 *2 (-1076 *3)))) (-3261 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1026 *4 *2)) (-4 *4 (-795)) (-4 *2 (-1076 *4)))))
+(-13 (-1024 |t#1|) (-10 -8 (-15 -2140 (|t#2| (-598 $))) (-15 -2140 (|t#2| $)) (-15 -3261 (|t#2| (-1 |t#1| |t#1|) $))))
+(((-1024 |#1|) . T) ((-1138) . T))
+((-4210 (($ $ $) NIL) (($ $ |#2|) 13) (($ |#2| $) 14)) (-3252 (($ $ $) 10)) (-1786 (($ $ $) NIL) (($ $ |#2|) 15)))
+(((-1027 |#1| |#2|) (-10 -8 (-15 -4210 (|#1| |#2| |#1|)) (-15 -4210 (|#1| |#1| |#2|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#2|)) (-15 -1786 (|#1| |#1| |#1|))) (-1028 |#2|) (-1030)) (T -1027))
+NIL
+(-10 -8 (-15 -4210 (|#1| |#2| |#1|)) (-15 -4210 (|#1| |#1| |#2|)) (-15 -4210 (|#1| |#1| |#1|)) (-15 -3252 (|#1| |#1| |#1|)) (-15 -1786 (|#1| |#1| |#2|)) (-15 -1786 (|#1| |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-4210 (($ $ $) 18) (($ $ |#1|) 17) (($ |#1| $) 16)) (-3252 (($ $ $) 20)) (-3890 (((-110) $ $) 19)) (-4058 (((-110) $ (-721)) 35)) (-1245 (($) 25) (($ (-598 |#1|)) 24)) (-2177 (($ (-1 (-110) |#1|) $) 56 (|has| $ (-6 -4273)))) (-4082 (($) 36 T CONST)) (-3086 (($ $) 59 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 58 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 55 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 57 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 54 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 53 (|has| $ (-6 -4273)))) (-2227 (((-598 |#1|) $) 43 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) 28)) (-3280 (((-110) $ (-721)) 34)) (-2445 (((-598 |#1|) $) 44 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 46 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 39 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 38)) (-3332 (((-110) $ (-721)) 33)) (-1521 (((-1085) $) 9)) (-1301 (($ $ $) 23)) (-2529 (((-1049) $) 10)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 52)) (-2294 (((-110) (-1 (-110) |#1|) $) 41 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#1|) (-598 |#1|)) 50 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 49 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 48 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 (-276 |#1|))) 47 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 29)) (-1589 (((-110) $) 32)) (-3781 (($) 31)) (-1786 (($ $ $) 22) (($ $ |#1|) 21)) (-2539 (((-721) |#1| $) 45 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#1|) $) 42 (|has| $ (-6 -4273)))) (-2480 (($ $) 30)) (-3318 (((-507) $) 60 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 51)) (-2265 (((-806) $) 11)) (-3445 (($) 27) (($ (-598 |#1|)) 26)) (-2060 (((-110) (-1 (-110) |#1|) $) 40 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 37 (|has| $ (-6 -4273)))))
+(((-1028 |#1|) (-133) (-1030)) (T -1028))
+((-2170 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-3445 (*1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-3445 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-1028 *3)))) (-1245 (*1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-1245 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-1028 *3)))) (-1301 (*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-1786 (*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-1786 (*1 *1 *1 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-3252 (*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-3890 (*1 *2 *1 *1) (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1030)) (-5 *2 (-110)))) (-4210 (*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-4210 (*1 *1 *1 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))) (-4210 (*1 *1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))))
+(-13 (-1030) (-144 |t#1|) (-10 -8 (-6 -4263) (-15 -2170 ((-110) $ $)) (-15 -3445 ($)) (-15 -3445 ($ (-598 |t#1|))) (-15 -1245 ($)) (-15 -1245 ($ (-598 |t#1|))) (-15 -1301 ($ $ $)) (-15 -1786 ($ $ $)) (-15 -1786 ($ $ |t#1|)) (-15 -3252 ($ $ $)) (-15 -3890 ((-110) $ $)) (-15 -4210 ($ $ $)) (-15 -4210 ($ $ |t#1|)) (-15 -4210 ($ |t#1| $))))
+(((-33) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) . T) ((-1138) . T))
+((-1521 (((-1085) $) 10)) (-2529 (((-1049) $) 8)))
+(((-1029 |#1|) (-10 -8 (-15 -1521 ((-1085) |#1|)) (-15 -2529 ((-1049) |#1|))) (-1030)) (T -1029))
+NIL
+(-10 -8 (-15 -1521 ((-1085) |#1|)) (-15 -2529 ((-1049) |#1|)))
+((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)))
+(((-1030) (-133)) (T -1030))
+((-2529 (*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-1049)))) (-1521 (*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-1085)))))
+(-13 (-99) (-572 (-806)) (-10 -8 (-15 -2529 ((-1049) $)) (-15 -1521 ((-1085) $))))
+(((-99) . T) ((-572 (-806)) . T))
+((-2247 (((-110) $ $) NIL)) (-3006 (((-721)) 30)) (-1821 (($ (-598 (-864))) 52)) (-2845 (((-3 $ "failed") $ (-864) (-864)) 58)) (-1381 (($) 32)) (-1883 (((-110) (-864) $) 35)) (-2211 (((-864) $) 50)) (-1521 (((-1085) $) NIL)) (-1889 (($ (-864)) 31)) (-2892 (((-3 $ "failed") $ (-864)) 55)) (-2529 (((-1049) $) NIL)) (-2732 (((-1184 $)) 40)) (-1371 (((-598 (-864)) $) 24)) (-1784 (((-721) $ (-864) (-864)) 56)) (-2265 (((-806) $) 29)) (-2148 (((-110) $ $) 21)))
+(((-1031 |#1| |#2|) (-13 (-349) (-10 -8 (-15 -2892 ((-3 $ "failed") $ (-864))) (-15 -2845 ((-3 $ "failed") $ (-864) (-864))) (-15 -1371 ((-598 (-864)) $)) (-15 -1821 ($ (-598 (-864)))) (-15 -2732 ((-1184 $))) (-15 -1883 ((-110) (-864) $)) (-15 -1784 ((-721) $ (-864) (-864))))) (-864) (-864)) (T -1031))
+((-2892 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-864)) (-5 *1 (-1031 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-2845 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-864)) (-5 *1 (-1031 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-1371 (*1 *2 *1) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-2732 (*1 *2) (-12 (-5 *2 (-1184 (-1031 *3 *4))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864)))) (-1883 (*1 *2 *3 *1) (-12 (-5 *3 (-864)) (-5 *2 (-110)) (-5 *1 (-1031 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-1784 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-721)) (-5 *1 (-1031 *4 *5)) (-14 *4 *3) (-14 *5 *3))))
+(-13 (-349) (-10 -8 (-15 -2892 ((-3 $ "failed") $ (-864))) (-15 -2845 ((-3 $ "failed") $ (-864) (-864))) (-15 -1371 ((-598 (-864)) $)) (-15 -1821 ($ (-598 (-864)))) (-15 -2732 ((-1184 $))) (-15 -1883 ((-110) (-864) $)) (-15 -1784 ((-721) $ (-864) (-864)))))
+((-2247 (((-110) $ $) NIL)) (-3847 (($) NIL (|has| |#1| (-349)))) (-4210 (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ $ $) 74)) (-3252 (($ $ $) 72)) (-3890 (((-110) $ $) 73)) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#1| (-349)))) (-1245 (($ (-598 |#1|)) NIL) (($) 13)) (-2245 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2717 (($ |#1| $) 67 (|has| $ (-6 -4273))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4273)))) (-1381 (($) NIL (|has| |#1| (-349)))) (-2227 (((-598 |#1|) $) 19 (|has| $ (-6 -4273)))) (-2170 (((-110) $ $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-4103 ((|#1| $) 57 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 66 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-1241 ((|#1| $) 55 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 34)) (-2211 (((-864) $) NIL (|has| |#1| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-1301 (($ $ $) 70)) (-3540 ((|#1| $) 25)) (-3944 (($ |#1| $) 65)) (-1889 (($ (-864)) NIL (|has| |#1| (-349)))) (-2529 (((-1049) $) NIL)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 31)) (-4192 ((|#1| $) 27)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 21)) (-3781 (($) 11)) (-1786 (($ $ |#1|) NIL) (($ $ $) 71)) (-2543 (($) NIL) (($ (-598 |#1|)) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 16)) (-3318 (((-507) $) 52 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 61)) (-1595 (($ $) NIL (|has| |#1| (-349)))) (-2265 (((-806) $) NIL)) (-4112 (((-721) $) NIL)) (-3445 (($ (-598 |#1|)) NIL) (($) 12)) (-2524 (($ (-598 |#1|)) NIL)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 54)) (-2167 (((-721) $) 10 (|has| $ (-6 -4273)))))
+(((-1032 |#1|) (-406 |#1|) (-1030)) (T -1032))
NIL
(-406 |#1|)
-((-2352 (((-110) $ $) 7)) (-4201 (((-110) $) 32)) (-3747 ((|#2| $) 27)) (-2872 (((-110) $) 33)) (-3166 ((|#1| $) 28)) (-2709 (((-110) $) 35)) (-3815 (((-110) $) 37)) (-1529 (((-110) $) 34)) (-1424 (((-1082) $) 9)) (-1298 (((-110) $) 31)) (-3771 ((|#3| $) 26)) (-2624 (((-1046) $) 10)) (-2826 (((-110) $) 30)) (-3018 ((|#4| $) 25)) (-3964 ((|#5| $) 24)) (-2776 (((-110) $ $) 38)) (-1902 (($ $ (-530)) 14) (($ $ (-597 (-530))) 13)) (-2681 (((-597 $) $) 29)) (-3260 (($ (-597 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2366 (((-804) $) 11)) (-2960 (($ $) 16)) (-2950 (($ $) 17)) (-2181 (((-110) $) 36)) (-2248 (((-110) $ $) 6)) (-2267 (((-530) $) 15)))
-(((-1030 |#1| |#2| |#3| |#4| |#5|) (-133) (-1027) (-1027) (-1027) (-1027) (-1027)) (T -1030))
-((-2776 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-3815 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2181 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2709 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-1529 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2826 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))) (-2681 (*1 *2 *1) (-12 (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)))) (-3166 (*1 *2 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3771 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3018 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3964 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *2 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *2 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *2 (-1027)) (-4 *6 (-1027)))) (-3260 (*1 *1 *2) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))) (-2950 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-2960 (*1 *1 *1) (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-530)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2776 ((-110) $ $)) (-15 -3815 ((-110) $)) (-15 -2181 ((-110) $)) (-15 -2709 ((-110) $)) (-15 -1529 ((-110) $)) (-15 -2872 ((-110) $)) (-15 -4201 ((-110) $)) (-15 -1298 ((-110) $)) (-15 -2826 ((-110) $)) (-15 -2681 ((-597 $) $)) (-15 -3166 (|t#1| $)) (-15 -3747 (|t#2| $)) (-15 -3771 (|t#3| $)) (-15 -3018 (|t#4| $)) (-15 -3964 (|t#5| $)) (-15 -3260 ($ (-597 $))) (-15 -3260 ($ |t#1|)) (-15 -3260 ($ |t#2|)) (-15 -3260 ($ |t#3|)) (-15 -3260 ($ |t#4|)) (-15 -3260 ($ |t#5|)) (-15 -2950 ($ $)) (-15 -2960 ($ $)) (-15 -2267 ((-530) $)) (-15 -1902 ($ $ (-530))) (-15 -1902 ($ $ (-597 (-530))))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL)) (-4201 (((-110) $) NIL)) (-3747 (((-1099) $) NIL)) (-2872 (((-110) $) NIL)) (-3166 (((-1082) $) NIL)) (-2709 (((-110) $) NIL)) (-3815 (((-110) $) NIL)) (-1529 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-1298 (((-110) $) NIL)) (-3771 (((-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-2826 (((-110) $) NIL)) (-3018 (((-208) $) NIL)) (-3964 (((-804) $) NIL)) (-2776 (((-110) $ $) NIL)) (-1902 (($ $ (-530)) NIL) (($ $ (-597 (-530))) NIL)) (-2681 (((-597 $) $) NIL)) (-3260 (($ (-597 $)) NIL) (($ (-1082)) NIL) (($ (-1099)) NIL) (($ (-530)) NIL) (($ (-208)) NIL) (($ (-804)) NIL)) (-2366 (((-804) $) NIL)) (-2960 (($ $) NIL)) (-2950 (($ $) NIL)) (-2181 (((-110) $) NIL)) (-2248 (((-110) $ $) NIL)) (-2267 (((-530) $) NIL)))
-(((-1031) (-1030 (-1082) (-1099) (-530) (-208) (-804))) (T -1031))
-NIL
-(-1030 (-1082) (-1099) (-530) (-208) (-804))
-((-2352 (((-110) $ $) NIL)) (-4201 (((-110) $) 38)) (-3747 ((|#2| $) 42)) (-2872 (((-110) $) 37)) (-3166 ((|#1| $) 41)) (-2709 (((-110) $) 35)) (-3815 (((-110) $) 14)) (-1529 (((-110) $) 36)) (-1424 (((-1082) $) NIL)) (-1298 (((-110) $) 39)) (-3771 ((|#3| $) 44)) (-2624 (((-1046) $) NIL)) (-2826 (((-110) $) 40)) (-3018 ((|#4| $) 43)) (-3964 ((|#5| $) 45)) (-2776 (((-110) $ $) 34)) (-1902 (($ $ (-530)) 56) (($ $ (-597 (-530))) 58)) (-2681 (((-597 $) $) 22)) (-3260 (($ (-597 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2366 (((-804) $) 23)) (-2960 (($ $) 21)) (-2950 (($ $) 52)) (-2181 (((-110) $) 18)) (-2248 (((-110) $ $) 33)) (-2267 (((-530) $) 54)))
-(((-1032 |#1| |#2| |#3| |#4| |#5|) (-1030 |#1| |#2| |#3| |#4| |#5|) (-1027) (-1027) (-1027) (-1027) (-1027)) (T -1032))
-NIL
-(-1030 |#1| |#2| |#3| |#4| |#5|)
-((-3176 (((-1186) $) 23)) (-3623 (($ (-1099) (-415) |#2|) 11)) (-2366 (((-804) $) 16)))
-(((-1033 |#1| |#2|) (-13 (-376) (-10 -8 (-15 -3623 ($ (-1099) (-415) |#2|)))) (-795) (-411 |#1|)) (T -1033))
-((-3623 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1099)) (-5 *3 (-415)) (-4 *5 (-795)) (-5 *1 (-1033 *5 *4)) (-4 *4 (-411 *5)))))
-(-13 (-376) (-10 -8 (-15 -3623 ($ (-1099) (-415) |#2|))))
-((-4081 (((-110) |#5| |#5|) 38)) (-1821 (((-110) |#5| |#5|) 52)) (-3000 (((-110) |#5| (-597 |#5|)) 75) (((-110) |#5| |#5|) 61)) (-1245 (((-110) (-597 |#4|) (-597 |#4|)) 58)) (-4211 (((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) 63)) (-2212 (((-1186)) 33)) (-3526 (((-1186) (-1082) (-1082) (-1082)) 29)) (-1398 (((-597 |#5|) (-597 |#5|)) 82)) (-2882 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) 80)) (-4221 (((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110)) 102)) (-1996 (((-110) |#5| |#5|) 47)) (-3287 (((-3 (-110) "failed") |#5| |#5|) 71)) (-2844 (((-110) (-597 |#4|) (-597 |#4|)) 57)) (-3641 (((-110) (-597 |#4|) (-597 |#4|)) 59)) (-1406 (((-110) (-597 |#4|) (-597 |#4|)) 60)) (-1881 (((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)) 98)) (-3534 (((-597 |#5|) (-597 |#5|)) 43)))
-(((-1034 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3526 ((-1186) (-1082) (-1082) (-1082))) (-15 -2212 ((-1186))) (-15 -4081 ((-110) |#5| |#5|)) (-15 -3534 ((-597 |#5|) (-597 |#5|))) (-15 -1996 ((-110) |#5| |#5|)) (-15 -1821 ((-110) |#5| |#5|)) (-15 -1245 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2844 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3641 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1406 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3287 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3000 ((-110) |#5| |#5|)) (-15 -3000 ((-110) |#5| (-597 |#5|))) (-15 -1398 ((-597 |#5|) (-597 |#5|))) (-15 -4211 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -2882 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-15 -4221 ((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1881 ((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1034))
-((-1881 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| -2776 (-597 *9)) (|:| -2473 *4) (|:| |ineq| (-597 *9)))) (-5 *1 (-1034 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9)) (-4 *4 (-1003 *6 *7 *8 *9)))) (-4221 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| -2776 (-597 *9)) (|:| -2473 *10) (|:| |ineq| (-597 *9))))) (-5 *1 (-1034 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))) (-2882 (*1 *2 *2) (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2473 *7)))) (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-4211 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)))) (-1398 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-3000 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1034 *5 *6 *7 *8 *3)))) (-3000 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3287 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1406 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-3641 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-2844 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1245 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1821 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-1996 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-3534 (*1 *2 *2) (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))) (-4081 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))) (-2212 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3526 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(-10 -7 (-15 -3526 ((-1186) (-1082) (-1082) (-1082))) (-15 -2212 ((-1186))) (-15 -4081 ((-110) |#5| |#5|)) (-15 -3534 ((-597 |#5|) (-597 |#5|))) (-15 -1996 ((-110) |#5| |#5|)) (-15 -1821 ((-110) |#5| |#5|)) (-15 -1245 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -2844 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3641 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -1406 ((-110) (-597 |#4|) (-597 |#4|))) (-15 -3287 ((-3 (-110) "failed") |#5| |#5|)) (-15 -3000 ((-110) |#5| |#5|)) (-15 -3000 ((-110) |#5| (-597 |#5|))) (-15 -1398 ((-597 |#5|) (-597 |#5|))) (-15 -4211 ((-110) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -2882 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-15 -4221 ((-597 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|)))) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -1881 ((-3 (-2 (|:| -2776 (-597 |#4|)) (|:| -2473 |#5|) (|:| |ineq| (-597 |#4|))) "failed") (-597 |#4|) |#5| (-597 |#4|) (-110) (-110) (-110) (-110) (-110))))
-((-2675 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|) 96)) (-1541 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|) 72)) (-1822 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|) 91)) (-1981 (((-597 |#5|) |#4| |#5|) 110)) (-3946 (((-597 |#5|) |#4| |#5|) 117)) (-4162 (((-597 |#5|) |#4| |#5|) 118)) (-3387 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 97)) (-1734 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 116)) (-1561 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-3420 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110)) 84) (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-2051 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|) 79)) (-3033 (((-1186)) 37)) (-1308 (((-1186)) 26)) (-3058 (((-1186) (-1082) (-1082) (-1082)) 33)) (-2802 (((-1186) (-1082) (-1082) (-1082)) 22)))
-(((-1035 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2802 ((-1186) (-1082) (-1082) (-1082))) (-15 -1308 ((-1186))) (-15 -3058 ((-1186) (-1082) (-1082) (-1082))) (-15 -3033 ((-1186))) (-15 -1541 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -3420 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3420 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110))) (-15 -2051 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -1822 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -1561 ((-110) |#4| |#5|)) (-15 -3387 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -1981 ((-597 |#5|) |#4| |#5|)) (-15 -1734 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3946 ((-597 |#5|) |#4| |#5|)) (-15 -1561 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -4162 ((-597 |#5|) |#4| |#5|)) (-15 -2675 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1003 |#1| |#2| |#3| |#4|)) (T -1035))
-((-2675 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-4162 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1561 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3946 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1734 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1981 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3387 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1561 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-1822 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-2051 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3420 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9)))) (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795)) (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2473 *9)))) (-5 *1 (-1035 *6 *7 *4 *8 *9)))) (-3420 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1035 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3)))) (-1541 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))) (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))) (-3033 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-3058 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))) (-1308 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186)) (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))) (-2802 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186)) (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(-10 -7 (-15 -2802 ((-1186) (-1082) (-1082) (-1082))) (-15 -1308 ((-1186))) (-15 -3058 ((-1186) (-1082) (-1082) (-1082))) (-15 -3033 ((-1186))) (-15 -1541 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -3420 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -3420 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) |#3| (-110))) (-15 -2051 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -1822 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#4| |#5|)) (-15 -1561 ((-110) |#4| |#5|)) (-15 -3387 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -1981 ((-597 |#5|) |#4| |#5|)) (-15 -1734 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -3946 ((-597 |#5|) |#4| |#5|)) (-15 -1561 ((-597 (-2 (|:| |val| (-110)) (|:| -2473 |#5|))) |#4| |#5|)) (-15 -4162 ((-597 |#5|) |#4| |#5|)) (-15 -2675 ((-597 (-2 (|:| |val| |#4|) (|:| -2473 |#5|))) |#4| |#5|)))
-((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 126)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3131 (((-110) |#4| $) 136)) (-2747 (((-110) |#4| $) 133)) (-2984 (((-110) |#4| $) 137) (((-110) $) 134)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 127)) (-2407 (((-3 |#4| "failed") $) 83)) (-3274 (((-597 $) |#4| $) 129)) (-1404 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-4033 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-2721 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-4208 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-1321 (((-110) |#4| $) 135)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
-(((-1036 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -1036))
-NIL
-(-13 (-1003 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1003 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1135) . T))
-((-1689 (((-597 (-530)) (-530) (-530) (-530)) 22)) (-2006 (((-597 (-530)) (-530) (-530) (-530)) 12)) (-3489 (((-597 (-530)) (-530) (-530) (-530)) 18)) (-2558 (((-530) (-530) (-530)) 9)) (-2976 (((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530)) 46) (((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530)) 41)) (-3230 (((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110)) 28)) (-1661 (((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530))) 45)) (-3030 (((-637 (-530)) (-597 (-530)) (-597 (-530))) 33)) (-4248 (((-597 (-637 (-530))) (-597 (-530))) 35)) (-1744 (((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530))) 49)) (-2200 (((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530))) 57)))
-(((-1037) (-10 -7 (-15 -2200 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -1744 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -4248 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -3030 ((-637 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -1661 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -3230 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110))) (-15 -2976 ((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530))) (-15 -2976 ((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530))) (-15 -2558 ((-530) (-530) (-530))) (-15 -3489 ((-597 (-530)) (-530) (-530) (-530))) (-15 -2006 ((-597 (-530)) (-530) (-530) (-530))) (-15 -1689 ((-597 (-530)) (-530) (-530) (-530))))) (T -1037))
-((-1689 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-2006 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-3489 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))) (-2558 (*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1037)))) (-2976 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-597 (-530))) (-5 *4 (-530)) (-5 *1 (-1037)))) (-2976 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-530)) (-5 *1 (-1037)))) (-3230 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *3 (-110)) (-5 *1 (-1037)))) (-1661 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-637 (-530))) (-5 *3 (-597 (-530))) (-5 *1 (-1037)))) (-3030 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-1037)))) (-1744 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *3 (-637 (-530))) (-5 *1 (-1037)))) (-2200 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
-(-10 -7 (-15 -2200 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -1744 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -4248 ((-597 (-637 (-530))) (-597 (-530)))) (-15 -3030 ((-637 (-530)) (-597 (-530)) (-597 (-530)))) (-15 -1661 ((-637 (-530)) (-597 (-530)) (-597 (-530)) (-637 (-530)))) (-15 -3230 ((-597 (-530)) (-597 (-530)) (-597 (-530)) (-110))) (-15 -2976 ((-1181 (-530)) (-1181 (-530)) (-1181 (-530)) (-530))) (-15 -2976 ((-1181 (-530)) (-597 (-530)) (-1181 (-530)) (-530))) (-15 -2558 ((-530) (-530) (-530))) (-15 -3489 ((-597 (-530)) (-530) (-530) (-530))) (-15 -2006 ((-597 (-530)) (-530) (-530) (-530))) (-15 -1689 ((-597 (-530)) (-530) (-530) (-530))))
-((** (($ $ (-862)) 10)))
-(((-1038 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-862)))) (-1039)) (T -1038))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-862))))
-((-2352 (((-110) $ $) 7)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)) (** (($ $ (-862)) 13)) (* (($ $ $) 14)))
-(((-1039) (-133)) (T -1039))
-((* (*1 *1 *1 *1) (-4 *1 (-1039))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-862)))))
-(-13 (-1027) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-862)))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-2352 (((-110) $ $) NIL (|has| |#3| (-1027)))) (-1813 (((-110) $) NIL (|has| |#3| (-128)))) (-3930 (($ (-862)) NIL (|has| |#3| (-984)))) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3418 (($ $ $) NIL (|has| |#3| (-741)))) (-1889 (((-3 $ "failed") $ $) NIL (|has| |#3| (-128)))) (-3186 (((-110) $ (-719)) NIL)) (-3023 (((-719)) NIL (|has| |#3| (-349)))) (-1867 (((-530) $) NIL (|has| |#3| (-793)))) (-2552 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1027)))) (-2585 (((-530) $) NIL (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027)))) (((-388 (-530)) $) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) ((|#3| $) NIL (|has| |#3| (-1027)))) (-2329 (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#3| (-593 (-530))) (|has| |#3| (-984)))) (((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) NIL (|has| |#3| (-984))) (((-637 |#3|) (-637 $)) NIL (|has| |#3| (-984)))) (-2707 (((-3 $ "failed") $) NIL (|has| |#3| (-675)))) (-1364 (($) NIL (|has| |#3| (-349)))) (-3592 ((|#3| $ (-530) |#3|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#3| $ (-530)) 12)) (-2514 (((-110) $) NIL (|has| |#3| (-793)))) (-3779 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL (|has| |#3| (-675)))) (-2166 (((-110) $) NIL (|has| |#3| (-793)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2395 (((-597 |#3|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-3583 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#3| |#3|) $) NIL)) (-1905 (((-862) $) NIL (|has| |#3| (-349)))) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#3| (-1027)))) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-1986 (($ (-862)) NIL (|has| |#3| (-349)))) (-2624 (((-1046) $) NIL (|has| |#3| (-1027)))) (-3048 ((|#3| $) NIL (|has| (-530) (-795)))) (-1522 (($ $ |#3|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027)))) (($ $ (-597 |#3|) (-597 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2261 (((-597 |#3|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#3| $ (-530) |#3|) NIL) ((|#3| $ (-530)) NIL)) (-3334 ((|#3| $ $) NIL (|has| |#3| (-984)))) (-2658 (($ (-1181 |#3|)) NIL)) (-2488 (((-130)) NIL (|has| |#3| (-344)))) (-3289 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984)))) (-2632 (((-719) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269))) (((-719) |#3| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#3| (-1027))))) (-2579 (($ $) NIL)) (-2366 (((-1181 |#3|) $) NIL) (($ (-530)) NIL (-1461 (-12 (|has| |#3| (-975 (-530))) (|has| |#3| (-1027))) (|has| |#3| (-984)))) (($ (-388 (-530))) NIL (-12 (|has| |#3| (-975 (-388 (-530)))) (|has| |#3| (-1027)))) (($ |#3|) NIL (|has| |#3| (-1027))) (((-804) $) NIL (|has| |#3| (-571 (-804))))) (-3300 (((-719)) NIL (|has| |#3| (-984)))) (-3889 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4269)))) (-3934 (($ $) NIL (|has| |#3| (-793)))) (-3080 (($) NIL (|has| |#3| (-128)) CONST)) (-3093 (($) NIL (|has| |#3| (-675)) CONST)) (-3340 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-719)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-984)))) (($ $ (-1099)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#3| (-841 (-1099))) (|has| |#3| (-984)))) (($ $ (-1 |#3| |#3|) (-719)) NIL (|has| |#3| (-984))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-984)))) (-2306 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2284 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2248 (((-110) $ $) NIL (|has| |#3| (-1027)))) (-2297 (((-110) $ $) NIL (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2272 (((-110) $ $) 17 (-1461 (|has| |#3| (-741)) (|has| |#3| (-793))))) (-2364 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2351 (($ $ $) NIL (|has| |#3| (-984))) (($ $) NIL (|has| |#3| (-984)))) (-2339 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-719)) NIL (|has| |#3| (-675))) (($ $ (-862)) NIL (|has| |#3| (-675)))) (* (($ (-530) $) NIL (|has| |#3| (-984))) (($ $ $) NIL (|has| |#3| (-675))) (($ $ |#3|) NIL (|has| |#3| (-675))) (($ |#3| $) NIL (|has| |#3| (-675))) (($ (-719) $) NIL (|has| |#3| (-128))) (($ (-862) $) NIL (|has| |#3| (-25)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1040 |#1| |#2| |#3|) (-221 |#1| |#3|) (-719) (-719) (-741)) (T -1040))
+((-2247 (((-110) $ $) 7)) (-1660 (((-110) $) 32)) (-3287 ((|#2| $) 27)) (-1700 (((-110) $) 33)) (-3149 ((|#1| $) 28)) (-3342 (((-110) $) 35)) (-3922 (((-110) $) 37)) (-2169 (((-110) $) 34)) (-1521 (((-1085) $) 9)) (-1939 (((-110) $) 31)) (-3310 ((|#3| $) 26)) (-2529 (((-1049) $) 10)) (-1298 (((-110) $) 30)) (-2947 ((|#4| $) 25)) (-3486 ((|#5| $) 24)) (-2723 (((-110) $ $) 38)) (-1785 (($ $ (-531)) 14) (($ $ (-598 (-531))) 13)) (-2625 (((-598 $) $) 29)) (-3318 (($ (-598 $)) 23) (($ |#1|) 22) (($ |#2|) 21) (($ |#3|) 20) (($ |#4|) 19) (($ |#5|) 18)) (-2265 (((-806) $) 11)) (-2929 (($ $) 16)) (-2919 (($ $) 17)) (-1331 (((-110) $) 36)) (-2148 (((-110) $ $) 6)) (-2167 (((-531) $) 15)))
+(((-1033 |#1| |#2| |#3| |#4| |#5|) (-133) (-1030) (-1030) (-1030) (-1030) (-1030)) (T -1033))
+((-2723 (*1 *2 *1 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-3922 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1331 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-3342 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-2169 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1700 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1660 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1939 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-1298 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))) (-2625 (*1 *2 *1) (-12 (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-598 *1)) (-4 *1 (-1033 *3 *4 *5 *6 *7)))) (-3149 (*1 *2 *1) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-3287 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *2 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-3310 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-2947 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *2 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *2)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *3 *2 *4 *5 *6)) (-4 *3 (-1030)) (-4 *2 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *2 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *3 *4 *5 *2 *6)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *2 (-1030)) (-4 *6 (-1030)))) (-3318 (*1 *1 *2) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *2)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))) (-2919 (*1 *1 *1) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-2929 (*1 *1 *1) (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))) (-2167 (*1 *2 *1) (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-531)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)))))
+(-13 (-1030) (-10 -8 (-15 -2723 ((-110) $ $)) (-15 -3922 ((-110) $)) (-15 -1331 ((-110) $)) (-15 -3342 ((-110) $)) (-15 -2169 ((-110) $)) (-15 -1700 ((-110) $)) (-15 -1660 ((-110) $)) (-15 -1939 ((-110) $)) (-15 -1298 ((-110) $)) (-15 -2625 ((-598 $) $)) (-15 -3149 (|t#1| $)) (-15 -3287 (|t#2| $)) (-15 -3310 (|t#3| $)) (-15 -2947 (|t#4| $)) (-15 -3486 (|t#5| $)) (-15 -3318 ($ (-598 $))) (-15 -3318 ($ |t#1|)) (-15 -3318 ($ |t#2|)) (-15 -3318 ($ |t#3|)) (-15 -3318 ($ |t#4|)) (-15 -3318 ($ |t#5|)) (-15 -2919 ($ $)) (-15 -2929 ($ $)) (-15 -2167 ((-531) $)) (-15 -1785 ($ $ (-531))) (-15 -1785 ($ $ (-598 (-531))))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL)) (-1660 (((-110) $) NIL)) (-3287 (((-1102) $) NIL)) (-1700 (((-110) $) NIL)) (-3149 (((-1085) $) NIL)) (-3342 (((-110) $) NIL)) (-3922 (((-110) $) NIL)) (-2169 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-1939 (((-110) $) NIL)) (-3310 (((-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-1298 (((-110) $) NIL)) (-2947 (((-208) $) NIL)) (-3486 (((-806) $) NIL)) (-2723 (((-110) $ $) NIL)) (-1785 (($ $ (-531)) NIL) (($ $ (-598 (-531))) NIL)) (-2625 (((-598 $) $) NIL)) (-3318 (($ (-598 $)) NIL) (($ (-1085)) NIL) (($ (-1102)) NIL) (($ (-531)) NIL) (($ (-208)) NIL) (($ (-806)) NIL)) (-2265 (((-806) $) NIL)) (-2929 (($ $) NIL)) (-2919 (($ $) NIL)) (-1331 (((-110) $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-531) $) NIL)))
+(((-1034) (-1033 (-1085) (-1102) (-531) (-208) (-806))) (T -1034))
+NIL
+(-1033 (-1085) (-1102) (-531) (-208) (-806))
+((-2247 (((-110) $ $) NIL)) (-1660 (((-110) $) 38)) (-3287 ((|#2| $) 42)) (-1700 (((-110) $) 37)) (-3149 ((|#1| $) 41)) (-3342 (((-110) $) 35)) (-3922 (((-110) $) 14)) (-2169 (((-110) $) 36)) (-1521 (((-1085) $) NIL)) (-1939 (((-110) $) 39)) (-3310 ((|#3| $) 44)) (-2529 (((-1049) $) NIL)) (-1298 (((-110) $) 40)) (-2947 ((|#4| $) 43)) (-3486 ((|#5| $) 45)) (-2723 (((-110) $ $) 34)) (-1785 (($ $ (-531)) 56) (($ $ (-598 (-531))) 58)) (-2625 (((-598 $) $) 22)) (-3318 (($ (-598 $)) 46) (($ |#1|) 47) (($ |#2|) 48) (($ |#3|) 49) (($ |#4|) 50) (($ |#5|) 51)) (-2265 (((-806) $) 23)) (-2929 (($ $) 21)) (-2919 (($ $) 52)) (-1331 (((-110) $) 18)) (-2148 (((-110) $ $) 33)) (-2167 (((-531) $) 54)))
+(((-1035 |#1| |#2| |#3| |#4| |#5|) (-1033 |#1| |#2| |#3| |#4| |#5|) (-1030) (-1030) (-1030) (-1030) (-1030)) (T -1035))
+NIL
+(-1033 |#1| |#2| |#3| |#4| |#5|)
+((-3206 (((-1189) $) 23)) (-3187 (($ (-1102) (-415) |#2|) 11)) (-2265 (((-806) $) 16)))
+(((-1036 |#1| |#2|) (-13 (-376) (-10 -8 (-15 -3187 ($ (-1102) (-415) |#2|)))) (-797) (-411 |#1|)) (T -1036))
+((-3187 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1102)) (-5 *3 (-415)) (-4 *5 (-797)) (-5 *1 (-1036 *5 *4)) (-4 *4 (-411 *5)))))
+(-13 (-376) (-10 -8 (-15 -3187 ($ (-1102) (-415) |#2|))))
+((-1242 (((-110) |#5| |#5|) 38)) (-1724 (((-110) |#5| |#5|) 52)) (-2946 (((-110) |#5| (-598 |#5|)) 75) (((-110) |#5| |#5|) 61)) (-4249 (((-110) (-598 |#4|) (-598 |#4|)) 58)) (-3386 (((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) 63)) (-1837 (((-1189)) 33)) (-1564 (((-1189) (-1085) (-1085) (-1085)) 29)) (-1907 (((-598 |#5|) (-598 |#5|)) 82)) (-3783 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) 80)) (-1750 (((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110)) 102)) (-2094 (((-110) |#5| |#5|) 47)) (-2897 (((-3 (-110) "failed") |#5| |#5|) 71)) (-1396 (((-110) (-598 |#4|) (-598 |#4|)) 57)) (-2285 (((-110) (-598 |#4|) (-598 |#4|)) 59)) (-1744 (((-110) (-598 |#4|) (-598 |#4|)) 60)) (-1799 (((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)) 98)) (-3852 (((-598 |#5|) (-598 |#5|)) 43)))
+(((-1037 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1564 ((-1189) (-1085) (-1085) (-1085))) (-15 -1837 ((-1189))) (-15 -1242 ((-110) |#5| |#5|)) (-15 -3852 ((-598 |#5|) (-598 |#5|))) (-15 -2094 ((-110) |#5| |#5|)) (-15 -1724 ((-110) |#5| |#5|)) (-15 -4249 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1396 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2285 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1744 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2897 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2946 ((-110) |#5| |#5|)) (-15 -2946 ((-110) |#5| (-598 |#5|))) (-15 -1907 ((-598 |#5|) (-598 |#5|))) (-15 -3386 ((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -3783 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-15 -1750 ((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -1799 ((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -1037))
+((-1799 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| -2723 (-598 *9)) (|:| -2410 *4) (|:| |ineq| (-598 *9)))) (-5 *1 (-1037 *6 *7 *8 *9 *4)) (-5 *3 (-598 *9)) (-4 *4 (-1005 *6 *7 *8 *9)))) (-1750 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-598 *10)) (-5 *5 (-110)) (-4 *10 (-1005 *6 *7 *8 *9)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8)) (-5 *2 (-598 (-2 (|:| -2723 (-598 *9)) (|:| -2410 *10) (|:| |ineq| (-598 *9))))) (-5 *1 (-1037 *6 *7 *8 *9 *10)) (-5 *3 (-598 *9)))) (-3783 (*1 *2 *2) (-12 (-5 *2 (-598 (-2 (|:| |val| (-598 *6)) (|:| -2410 *7)))) (-4 *6 (-1000 *3 *4 *5)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-1037 *3 *4 *5 *6 *7)))) (-3386 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)))) (-1907 (*1 *2 *2) (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-1037 *3 *4 *5 *6 *7)))) (-2946 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1037 *5 *6 *7 *8 *3)))) (-2946 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-2897 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-1744 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-2285 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-1396 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-4249 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-1724 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-2094 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-3852 (*1 *2 *2) (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-1037 *3 *4 *5 *6 *7)))) (-1242 (*1 *2 *3 *3) (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))) (-1837 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-1564 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(-10 -7 (-15 -1564 ((-1189) (-1085) (-1085) (-1085))) (-15 -1837 ((-1189))) (-15 -1242 ((-110) |#5| |#5|)) (-15 -3852 ((-598 |#5|) (-598 |#5|))) (-15 -2094 ((-110) |#5| |#5|)) (-15 -1724 ((-110) |#5| |#5|)) (-15 -4249 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1396 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2285 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -1744 ((-110) (-598 |#4|) (-598 |#4|))) (-15 -2897 ((-3 (-110) "failed") |#5| |#5|)) (-15 -2946 ((-110) |#5| |#5|)) (-15 -2946 ((-110) |#5| (-598 |#5|))) (-15 -1907 ((-598 |#5|) (-598 |#5|))) (-15 -3386 ((-110) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -3783 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-15 -1750 ((-598 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|)))) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -1799 ((-3 (-2 (|:| -2723 (-598 |#4|)) (|:| -2410 |#5|) (|:| |ineq| (-598 |#4|))) "failed") (-598 |#4|) |#5| (-598 |#4|) (-110) (-110) (-110) (-110) (-110))))
+((-1901 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|) 96)) (-3487 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|) 72)) (-2596 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|) 91)) (-1343 (((-598 |#5|) |#4| |#5|) 110)) (-4071 (((-598 |#5|) |#4| |#5|) 117)) (-3613 (((-598 |#5|) |#4| |#5|) 118)) (-3281 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 97)) (-2805 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 116)) (-1375 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|) 46) (((-110) |#4| |#5|) 53)) (-1864 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110)) 84) (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110)) 50)) (-3324 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|) 79)) (-4108 (((-1189)) 37)) (-2098 (((-1189)) 26)) (-2747 (((-1189) (-1085) (-1085) (-1085)) 33)) (-3260 (((-1189) (-1085) (-1085) (-1085)) 22)))
+(((-1038 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3260 ((-1189) (-1085) (-1085) (-1085))) (-15 -2098 ((-1189))) (-15 -2747 ((-1189) (-1085) (-1085) (-1085))) (-15 -4108 ((-1189))) (-15 -3487 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -1864 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -1864 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110))) (-15 -3324 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -2596 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -1375 ((-110) |#4| |#5|)) (-15 -3281 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -1343 ((-598 |#5|) |#4| |#5|)) (-15 -2805 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -4071 ((-598 |#5|) |#4| |#5|)) (-15 -1375 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3613 ((-598 |#5|) |#4| |#5|)) (-15 -1901 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1005 |#1| |#2| |#3| |#4|)) (T -1038))
+((-1901 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3613 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-1375 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-4071 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2805 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-1343 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4)) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3281 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-1375 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-2596 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-3324 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-1864 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) (-5 *5 (-110)) (-4 *8 (-1000 *6 *7 *4)) (-4 *9 (-1005 *6 *7 *4 *8)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *4 (-797)) (-5 *2 (-598 (-2 (|:| |val| *8) (|:| -2410 *9)))) (-5 *1 (-1038 *6 *7 *4 *8 *9)))) (-1864 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3)))) (-3487 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))) (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))) (-4108 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1038 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-2747 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1038 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))) (-2098 (*1 *2) (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189)) (-5 *1 (-1038 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))) (-3260 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189)) (-5 *1 (-1038 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(-10 -7 (-15 -3260 ((-1189) (-1085) (-1085) (-1085))) (-15 -2098 ((-1189))) (-15 -2747 ((-1189) (-1085) (-1085) (-1085))) (-15 -4108 ((-1189))) (-15 -3487 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -1864 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5| (-110) (-110))) (-15 -1864 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) |#3| (-110))) (-15 -3324 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -2596 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#4| |#5|)) (-15 -1375 ((-110) |#4| |#5|)) (-15 -3281 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -1343 ((-598 |#5|) |#4| |#5|)) (-15 -2805 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -4071 ((-598 |#5|) |#4| |#5|)) (-15 -1375 ((-598 (-2 (|:| |val| (-110)) (|:| -2410 |#5|))) |#4| |#5|)) (-15 -3613 ((-598 |#5|) |#4| |#5|)) (-15 -1901 ((-598 (-2 (|:| |val| |#4|) (|:| -2410 |#5|))) |#4| |#5|)))
+((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86) (((-598 $) (-598 |#4|) (-110)) 111)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 126)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2950 (((-110) |#4| $) 136)) (-1428 (((-110) |#4| $) 133)) (-2213 (((-110) |#4| $) 137) (((-110) $) 134)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) 128)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 127)) (-2309 (((-3 |#4| "failed") $) 83)) (-2918 (((-598 $) |#4| $) 129)) (-1568 (((-3 (-110) (-598 $)) |#4| $) 132)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-1301 (((-598 $) |#4| $) 125) (((-598 $) (-598 |#4|) $) 124) (((-598 $) (-598 |#4|) (-598 $)) 123) (((-598 $) |#4| (-598 $)) 122)) (-2106 (($ |#4| $) 117) (($ (-598 |#4|) $) 116)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77) (((-598 $) |#4| $) 115) (((-598 $) |#4| (-598 $)) 114) (((-598 $) (-598 |#4|) $) 113) (((-598 $) (-598 |#4|) (-598 $)) 112)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-3777 (((-598 $) |#4| $) 121) (((-598 $) |#4| (-598 $)) 120) (((-598 $) (-598 |#4|) $) 119) (((-598 $) (-598 |#4|) (-598 $)) 118)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-3695 (((-110) |#4| $) 135)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273)))))
+(((-1039 |#1| |#2| |#3| |#4|) (-133) (-432) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -1039))
+NIL
+(-13 (-1005 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1005 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1132 |#1| |#2| |#3| |#4|) . T) ((-1138) . T))
+((-3733 (((-598 (-531)) (-531) (-531) (-531)) 22)) (-2630 (((-598 (-531)) (-531) (-531) (-531)) 12)) (-2561 (((-598 (-531)) (-531) (-531) (-531)) 18)) (-2396 (((-531) (-531) (-531)) 9)) (-4076 (((-1184 (-531)) (-598 (-531)) (-1184 (-531)) (-531)) 46) (((-1184 (-531)) (-1184 (-531)) (-1184 (-531)) (-531)) 41)) (-1920 (((-598 (-531)) (-598 (-531)) (-598 (-531)) (-110)) 28)) (-1329 (((-639 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531))) 45)) (-3263 (((-639 (-531)) (-598 (-531)) (-598 (-531))) 33)) (-3205 (((-598 (-639 (-531))) (-598 (-531))) 35)) (-3542 (((-598 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531))) 49)) (-2901 (((-639 (-531)) (-598 (-531)) (-598 (-531)) (-598 (-531))) 57)))
+(((-1040) (-10 -7 (-15 -2901 ((-639 (-531)) (-598 (-531)) (-598 (-531)) (-598 (-531)))) (-15 -3542 ((-598 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531)))) (-15 -3205 ((-598 (-639 (-531))) (-598 (-531)))) (-15 -3263 ((-639 (-531)) (-598 (-531)) (-598 (-531)))) (-15 -1329 ((-639 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531)))) (-15 -1920 ((-598 (-531)) (-598 (-531)) (-598 (-531)) (-110))) (-15 -4076 ((-1184 (-531)) (-1184 (-531)) (-1184 (-531)) (-531))) (-15 -4076 ((-1184 (-531)) (-598 (-531)) (-1184 (-531)) (-531))) (-15 -2396 ((-531) (-531) (-531))) (-15 -2561 ((-598 (-531)) (-531) (-531) (-531))) (-15 -2630 ((-598 (-531)) (-531) (-531) (-531))) (-15 -3733 ((-598 (-531)) (-531) (-531) (-531))))) (T -1040))
+((-3733 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))) (-2630 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))) (-2561 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))) (-2396 (*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1040)))) (-4076 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1184 (-531))) (-5 *3 (-598 (-531))) (-5 *4 (-531)) (-5 *1 (-1040)))) (-4076 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1184 (-531))) (-5 *3 (-531)) (-5 *1 (-1040)))) (-1920 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *3 (-110)) (-5 *1 (-1040)))) (-1329 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-639 (-531))) (-5 *3 (-598 (-531))) (-5 *1 (-1040)))) (-3263 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-1040)))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-1040)))) (-3542 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *3 (-639 (-531))) (-5 *1 (-1040)))) (-2901 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-1040)))))
+(-10 -7 (-15 -2901 ((-639 (-531)) (-598 (-531)) (-598 (-531)) (-598 (-531)))) (-15 -3542 ((-598 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531)))) (-15 -3205 ((-598 (-639 (-531))) (-598 (-531)))) (-15 -3263 ((-639 (-531)) (-598 (-531)) (-598 (-531)))) (-15 -1329 ((-639 (-531)) (-598 (-531)) (-598 (-531)) (-639 (-531)))) (-15 -1920 ((-598 (-531)) (-598 (-531)) (-598 (-531)) (-110))) (-15 -4076 ((-1184 (-531)) (-1184 (-531)) (-1184 (-531)) (-531))) (-15 -4076 ((-1184 (-531)) (-598 (-531)) (-1184 (-531)) (-531))) (-15 -2396 ((-531) (-531) (-531))) (-15 -2561 ((-598 (-531)) (-531) (-531) (-531))) (-15 -2630 ((-598 (-531)) (-531) (-531) (-531))) (-15 -3733 ((-598 (-531)) (-531) (-531) (-531))))
+((** (($ $ (-864)) 10)))
+(((-1041 |#1|) (-10 -8 (-15 ** (|#1| |#1| (-864)))) (-1042)) (T -1041))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-864))))
+((-2247 (((-110) $ $) 7)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)) (** (($ $ (-864)) 13)) (* (($ $ $) 14)))
+(((-1042) (-133)) (T -1042))
+((* (*1 *1 *1 *1) (-4 *1 (-1042))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-864)))))
+(-13 (-1030) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-864)))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-2247 (((-110) $ $) NIL (|has| |#3| (-1030)))) (-3019 (((-110) $) NIL (|has| |#3| (-128)))) (-1685 (($ (-864)) NIL (|has| |#3| (-986)))) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3818 (($ $ $) NIL (|has| |#3| (-743)))) (-2128 (((-3 $ "failed") $ $) NIL (|has| |#3| (-128)))) (-4058 (((-110) $ (-721)) NIL)) (-3006 (((-721)) NIL (|has| |#3| (-349)))) (-3459 (((-531) $) NIL (|has| |#3| (-795)))) (-2454 ((|#3| $ (-531) |#3|) NIL (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030)))) (((-3 |#3| "failed") $) NIL (|has| |#3| (-1030)))) (-2523 (((-531) $) NIL (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030)))) (((-388 (-531)) $) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030)))) ((|#3| $) NIL (|has| |#3| (-1030)))) (-3073 (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#3| (-594 (-531))) (|has| |#3| (-986)))) (((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 $) (-1184 $)) NIL (|has| |#3| (-986))) (((-639 |#3|) (-639 $)) NIL (|has| |#3| (-986)))) (-3622 (((-3 $ "failed") $) NIL (|has| |#3| (-677)))) (-1381 (($) NIL (|has| |#3| (-349)))) (-2693 ((|#3| $ (-531) |#3|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#3| $ (-531)) 12)) (-1599 (((-110) $) NIL (|has| |#3| (-795)))) (-2227 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL (|has| |#3| (-677)))) (-2985 (((-110) $) NIL (|has| |#3| (-795)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2445 (((-598 |#3|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2680 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#3| |#3|) $) NIL)) (-2211 (((-864) $) NIL (|has| |#3| (-349)))) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#3| (-1030)))) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-1889 (($ (-864)) NIL (|has| |#3| (-349)))) (-2529 (((-1049) $) NIL (|has| |#3| (-1030)))) (-3046 ((|#3| $) NIL (|has| (-531) (-797)))) (-3742 (($ $ |#3|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#3|))) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-276 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030)))) (($ $ (-598 |#3|) (-598 |#3|)) NIL (-12 (|has| |#3| (-291 |#3|)) (|has| |#3| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-3163 (((-598 |#3|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#3| $ (-531) |#3|) NIL) ((|#3| $ (-531)) NIL)) (-3225 ((|#3| $ $) NIL (|has| |#3| (-986)))) (-2602 (($ (-1184 |#3|)) NIL)) (-2190 (((-130)) NIL (|has| |#3| (-344)))) (-3352 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1 |#3| |#3|) (-721)) NIL (|has| |#3| (-986))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-986)))) (-2539 (((-721) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273))) (((-721) |#3| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#3| (-1030))))) (-2480 (($ $) NIL)) (-2265 (((-1184 |#3|) $) NIL) (($ (-531)) NIL (-1435 (-12 (|has| |#3| (-977 (-531))) (|has| |#3| (-1030))) (|has| |#3| (-986)))) (($ (-388 (-531))) NIL (-12 (|has| |#3| (-977 (-388 (-531)))) (|has| |#3| (-1030)))) (($ |#3|) NIL (|has| |#3| (-1030))) (((-806) $) NIL (|has| |#3| (-572 (-806))))) (-2284 (((-721)) NIL (|has| |#3| (-986)))) (-2060 (((-110) (-1 (-110) |#3|) $) NIL (|has| $ (-6 -4273)))) (-1620 (($ $) NIL (|has| |#3| (-795)))) (-3035 (($) NIL (|has| |#3| (-128)) CONST)) (-3050 (($) NIL (|has| |#3| (-677)) CONST)) (-4020 (($ $) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $ (-721)) NIL (-12 (|has| |#3| (-216)) (|has| |#3| (-986)))) (($ $ (-1102)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#3| (-843 (-1102))) (|has| |#3| (-986)))) (($ $ (-1 |#3| |#3|) (-721)) NIL (|has| |#3| (-986))) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-986)))) (-2207 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2184 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2148 (((-110) $ $) NIL (|has| |#3| (-1030)))) (-2195 (((-110) $ $) NIL (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2174 (((-110) $ $) 17 (-1435 (|has| |#3| (-743)) (|has| |#3| (-795))))) (-2263 (($ $ |#3|) NIL (|has| |#3| (-344)))) (-2250 (($ $ $) NIL (|has| |#3| (-986))) (($ $) NIL (|has| |#3| (-986)))) (-2237 (($ $ $) NIL (|has| |#3| (-25)))) (** (($ $ (-721)) NIL (|has| |#3| (-677))) (($ $ (-864)) NIL (|has| |#3| (-677)))) (* (($ (-531) $) NIL (|has| |#3| (-986))) (($ $ $) NIL (|has| |#3| (-677))) (($ $ |#3|) NIL (|has| |#3| (-677))) (($ |#3| $) NIL (|has| |#3| (-677))) (($ (-721) $) NIL (|has| |#3| (-128))) (($ (-864) $) NIL (|has| |#3| (-25)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1043 |#1| |#2| |#3|) (-221 |#1| |#3|) (-721) (-721) (-743)) (T -1043))
NIL
(-221 |#1| |#3|)
-((-3244 (((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 37)) (-2438 (((-530) (-1154 |#2| |#1|)) 69 (|has| |#1| (-432)))) (-2037 (((-530) (-1154 |#2| |#1|)) 54)) (-3104 (((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 45)) (-3670 (((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 68 (|has| |#1| (-432)))) (-3835 (((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 48)) (-2788 (((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|)) 53)))
-(((-1041 |#1| |#2|) (-10 -7 (-15 -3244 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -3104 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -3835 ((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2788 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2037 ((-530) (-1154 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3670 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2438 ((-530) (-1154 |#2| |#1|)))) |%noBranch|)) (-768) (-1099)) (T -1041))
-((-2438 (*1 *2 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-3670 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-2037 (*1 *2 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-2788 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))) (-3835 (*1 *2 *3 *3) (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 *4)) (-5 *1 (-1041 *4 *5)))) (-3104 (*1 *2 *3 *3) (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))) (-3244 (*1 *2 *3 *3) (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4))) (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
-(-10 -7 (-15 -3244 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -3104 ((-597 (-1154 |#2| |#1|)) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -3835 ((-597 |#1|) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2788 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2037 ((-530) (-1154 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -3670 ((-530) (-1154 |#2| |#1|) (-1154 |#2| |#1|))) (-15 -2438 ((-530) (-1154 |#2| |#1|)))) |%noBranch|))
-((-1867 (((-3 (-530) "failed") |#2| (-1099) |#2| (-1082)) 17) (((-3 (-530) "failed") |#2| (-1099) (-788 |#2|)) 15) (((-3 (-530) "failed") |#2|) 54)))
-(((-1042 |#1| |#2|) (-10 -7 (-15 -1867 ((-3 (-530) "failed") |#2|)) (-15 -1867 ((-3 (-530) "failed") |#2| (-1099) (-788 |#2|))) (-15 -1867 ((-3 (-530) "failed") |#2| (-1099) |#2| (-1082)))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|))) (T -1042))
-((-1867 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-1082)) (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *6 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))))) (-1867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6))) (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *6 *3)))) (-1867 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432))) (-5 *2 (-530)) (-5 *1 (-1042 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))))
-(-10 -7 (-15 -1867 ((-3 (-530) "failed") |#2|)) (-15 -1867 ((-3 (-530) "failed") |#2| (-1099) (-788 |#2|))) (-15 -1867 ((-3 (-530) "failed") |#2| (-1099) |#2| (-1082))))
-((-1867 (((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082)) 35) (((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|)))) 30) (((-3 (-530) "failed") (-388 (-893 |#1|))) 13)))
-(((-1043 |#1|) (-10 -7 (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)))) (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|))))) (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082)))) (-432)) (T -1043))
-((-1867 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1099)) (-5 *5 (-1082)) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6)))) (-1867 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 (-388 (-893 *6)))) (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6)))) (-1867 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *4)))))
-(-10 -7 (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)))) (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-788 (-388 (-893 |#1|))))) (-15 -1867 ((-3 (-530) "failed") (-388 (-893 |#1|)) (-1099) (-388 (-893 |#1|)) (-1082))))
-((-2352 (((-110) $ $) NIL)) (-1779 (((-171) $) 8)) (-1722 (((-597 (-171)) $) 10)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 19)) (-2248 (((-110) $ $) 13)))
-(((-1044) (-13 (-1027) (-10 -8 (-15 -1779 ((-171) $)) (-15 -1722 ((-597 (-171)) $))))) (T -1044))
-((-1779 (*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1044)))) (-1722 (*1 *2 *1) (-12 (-5 *2 (-597 (-171))) (-5 *1 (-1044)))))
-(-13 (-1027) (-10 -8 (-15 -1779 ((-171) $)) (-15 -1722 ((-597 (-171)) $))))
-((-2251 (((-297 (-530)) (-47)) 12)))
-(((-1045) (-10 -7 (-15 -2251 ((-297 (-530)) (-47))))) (T -1045))
-((-2251 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-530))) (-5 *1 (-1045)))))
-(-10 -7 (-15 -2251 ((-297 (-530)) (-47))))
-((-2352 (((-110) $ $) NIL)) (-2522 (($ $) 41)) (-1813 (((-110) $) 65)) (-3085 (($ $ $) 48)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-2660 (($ $ $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1531 (($ $ $ $) 74)) (-3544 (($ $) NIL)) (-3272 (((-399 $) $) NIL)) (-1426 (((-110) $ $) NIL)) (-1867 (((-530) $) NIL)) (-4207 (($ $ $) 71)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL)) (-2585 (((-530) $) NIL)) (-3590 (($ $ $) 59)) (-2329 (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 79) (((-637 (-530)) (-637 $)) 28)) (-2707 (((-3 $ "failed") $) NIL)) (-2180 (((-3 (-388 (-530)) "failed") $) NIL)) (-3016 (((-110) $) NIL)) (-3370 (((-388 (-530)) $) NIL)) (-1364 (($) 82) (($ $) 83)) (-3571 (($ $ $) 58)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL)) (-3295 (((-110) $) NIL)) (-3547 (($ $ $ $) NIL)) (-2411 (($ $ $) 80)) (-2514 (((-110) $) NIL)) (-2937 (($ $ $) NIL)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL)) (-2731 (((-110) $) 66)) (-3457 (((-110) $) 64)) (-3676 (($ $) 42)) (-2972 (((-3 $ "failed") $) NIL)) (-2166 (((-110) $) 75)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1999 (($ $ $ $) 72)) (-2508 (($ $ $) 68) (($) 39)) (-1817 (($ $ $) 67) (($) 38)) (-3103 (($ $) NIL)) (-4109 (($ $) 70)) (-2170 (($ $ $) NIL) (($ (-597 $)) NIL)) (-1424 (((-1082) $) NIL)) (-3972 (($ $ $) NIL)) (-3657 (($) NIL T CONST)) (-3820 (($ $) 50)) (-2624 (((-1046) $) NIL) (($ $) 69)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL)) (-2204 (($ $ $) 62) (($ (-597 $)) NIL)) (-1303 (($ $) NIL)) (-2611 (((-399 $) $) NIL)) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL)) (-3551 (((-3 $ "failed") $ $) NIL)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL)) (-1403 (((-110) $) NIL)) (-2356 (((-719) $) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 61)) (-3289 (($ $ (-719)) NIL) (($ $) NIL)) (-1725 (($ $) 51)) (-2579 (($ $) NIL)) (-3260 (((-530) $) 32) (((-506) $) NIL) (((-833 (-530)) $) NIL) (((-360) $) NIL) (((-208) $) NIL)) (-2366 (((-804) $) 31) (($ (-530)) 81) (($ $) NIL) (($ (-530)) 81)) (-3300 (((-719)) NIL)) (-3918 (((-110) $ $) NIL)) (-2947 (($ $ $) NIL)) (-1510 (($) 37)) (-3944 (((-110) $ $) NIL)) (-3998 (($ $ $ $) 73)) (-3934 (($ $) 63)) (-1262 (($ $ $) 44)) (-3080 (($) 35 T CONST)) (-1547 (($ $ $) 47)) (-3093 (($) 36 T CONST)) (-3987 (((-1082) $) 21) (((-1082) $ (-110)) 23) (((-1186) (-770) $) 24) (((-1186) (-770) $ (-110)) 25)) (-1559 (($ $) 45)) (-3340 (($ $ (-719)) NIL) (($ $) NIL)) (-1536 (($ $ $) 46)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 40)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 49)) (-1253 (($ $ $) 43)) (-2351 (($ $) 52) (($ $ $) 54)) (-2339 (($ $ $) 53)) (** (($ $ (-862)) NIL) (($ $ (-719)) 57)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 34) (($ $ $) 55)))
-(((-1046) (-13 (-515) (-612) (-776) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -1817 ($)) (-15 -2508 ($)) (-15 -3676 ($ $)) (-15 -2522 ($ $)) (-15 -1253 ($ $ $)) (-15 -1262 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -1559 ($ $)) (-15 -1536 ($ $ $)) (-15 -1547 ($ $ $))))) (T -1046))
-((-1262 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1253 (*1 *1 *1 *1) (-5 *1 (-1046))) (-2522 (*1 *1 *1) (-5 *1 (-1046))) (-1817 (*1 *1) (-5 *1 (-1046))) (-2508 (*1 *1) (-5 *1 (-1046))) (-3676 (*1 *1 *1) (-5 *1 (-1046))) (-3085 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1559 (*1 *1 *1) (-5 *1 (-1046))) (-1536 (*1 *1 *1 *1) (-5 *1 (-1046))) (-1547 (*1 *1 *1 *1) (-5 *1 (-1046))))
-(-13 (-515) (-612) (-776) (-10 -8 (-6 -4256) (-6 -4261) (-6 -4257) (-15 -1817 ($)) (-15 -2508 ($)) (-15 -3676 ($ $)) (-15 -2522 ($ $)) (-15 -1253 ($ $ $)) (-15 -1262 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -1559 ($ $)) (-15 -1536 ($ $ $)) (-15 -1547 ($ $ $))))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1598 ((|#1| $) 44)) (-3186 (((-110) $ (-719)) 8)) (-2350 (($) 7 T CONST)) (-3684 ((|#1| |#1| $) 46)) (-2176 ((|#1| $) 45)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-1723 ((|#1| $) 39)) (-2441 (($ |#1| $) 40)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-2738 ((|#1| $) 41)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-4218 (((-719) $) 43)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) 42)) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-1047 |#1|) (-133) (-1135)) (T -1047))
-((-3684 (*1 *2 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-2176 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-1598 (*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))) (-4218 (*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
-(-13 (-104 |t#1|) (-10 -8 (-6 -4269) (-15 -3684 (|t#1| |t#1| $)) (-15 -2176 (|t#1| $)) (-15 -1598 (|t#1| $)) (-15 -4218 ((-719) $))))
-(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-1367 ((|#3| $) 76)) (-3139 (((-3 (-530) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2585 (((-530) $) NIL) (((-388 (-530)) $) NIL) ((|#3| $) 37)) (-2329 (((-637 (-530)) (-637 $)) NIL) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL) (((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 $) (-1181 $)) 73) (((-637 |#3|) (-637 $)) 65)) (-3289 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099)) NIL) (($ $ (-719)) NIL) (($ $) NIL)) (-3896 ((|#3| $) 78)) (-3614 ((|#4| $) 32)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ |#3|) 16)) (** (($ $ (-862)) NIL) (($ $ (-719)) 15) (($ $ (-530)) 82)))
-(((-1048 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 -3896 (|#3| |#1|)) (-15 -1367 (|#3| |#1|)) (-15 -3614 (|#4| |#1|)) (-15 -2329 ((-637 |#3|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -2366 (|#1| |#3|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2366 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -2366 ((-804) |#1|))) (-1049 |#2| |#3| |#4| |#5|) (-719) (-984) (-221 |#2| |#3|) (-221 |#2| |#3|)) (T -1048))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-530))) (-15 -3896 (|#3| |#1|)) (-15 -1367 (|#3| |#1|)) (-15 -3614 (|#4| |#1|)) (-15 -2329 ((-637 |#3|) (-637 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 |#3|)) (|:| |vec| (-1181 |#3|))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 |#1|) (-1181 |#1|))) (-15 -2329 ((-637 (-530)) (-637 |#1|))) (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -2366 (|#1| |#3|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-530) |#1|)) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|) (-719))) (-15 -3289 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2366 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1367 ((|#2| $) 70)) (-3053 (((-110) $) 110)) (-1889 (((-3 $ "failed") $ $) 19)) (-4040 (((-110) $) 108)) (-3186 (((-110) $ (-719)) 100)) (-1570 (($ |#2|) 73)) (-2350 (($) 17 T CONST)) (-1583 (($ $) 127 (|has| |#2| (-289)))) (-1325 ((|#3| $ (-530)) 122)) (-3139 (((-3 (-530) "failed") $) 84 (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) 82 (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) 79)) (-2585 (((-530) $) 85 (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) 83 (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) 78)) (-2329 (((-637 (-530)) (-637 $)) 77 (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 76 (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 75) (((-637 |#2|) (-637 $)) 74)) (-2707 (((-3 $ "failed") $) 32)) (-2426 (((-719) $) 128 (|has| |#2| (-522)))) (-3532 ((|#2| $ (-530) (-530)) 120)) (-3779 (((-597 |#2|) $) 93 (|has| $ (-6 -4269)))) (-2731 (((-110) $) 30)) (-1791 (((-719) $) 129 (|has| |#2| (-522)))) (-2515 (((-597 |#4|) $) 130 (|has| |#2| (-522)))) (-1796 (((-719) $) 116)) (-1810 (((-719) $) 117)) (-4027 (((-110) $ (-719)) 101)) (-2714 ((|#2| $) 65 (|has| |#2| (-6 (-4271 "*"))))) (-3863 (((-530) $) 112)) (-3643 (((-530) $) 114)) (-2395 (((-597 |#2|) $) 92 (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) 90 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2307 (((-530) $) 113)) (-3909 (((-530) $) 115)) (-2263 (($ (-597 (-597 |#2|))) 107)) (-3583 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-2654 (((-597 (-597 |#2|)) $) 118)) (-2763 (((-110) $ (-719)) 102)) (-1424 (((-1082) $) 9)) (-1991 (((-3 $ "failed") $) 64 (|has| |#2| (-344)))) (-2624 (((-1046) $) 10)) (-3551 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-522)))) (-1533 (((-110) (-1 (-110) |#2|) $) 95 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) 89 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 88 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) 106)) (-3250 (((-110) $) 103)) (-3958 (($) 104)) (-1902 ((|#2| $ (-530) (-530) |#2|) 121) ((|#2| $ (-530) (-530)) 119)) (-3289 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-719)) 49) (($ $ (-597 (-1099)) (-597 (-719))) 42 (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) 41 (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) 40 (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) 39 (|has| |#2| (-841 (-1099)))) (($ $ (-719)) 37 (|has| |#2| (-216))) (($ $) 35 (|has| |#2| (-216)))) (-3896 ((|#2| $) 69)) (-2128 (($ (-597 |#2|)) 72)) (-1362 (((-110) $) 109)) (-3614 ((|#3| $) 71)) (-2338 ((|#2| $) 66 (|has| |#2| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#2|) $) 94 (|has| $ (-6 -4269))) (((-719) |#2| $) 91 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 105)) (-3350 ((|#4| $ (-530)) 123)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 81 (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) 80)) (-3300 (((-719)) 28)) (-3889 (((-110) (-1 (-110) |#2|) $) 96 (|has| $ (-6 -4269)))) (-3589 (((-110) $) 111)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-719)) 47) (($ $ (-597 (-1099)) (-597 (-719))) 46 (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) 45 (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) 44 (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) 43 (|has| |#2| (-841 (-1099)))) (($ $ (-719)) 38 (|has| |#2| (-216))) (($ $) 36 (|has| |#2| (-216)))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#2|) 126 (|has| |#2| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 63 (|has| |#2| (-344)))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-2267 (((-719) $) 99 (|has| $ (-6 -4269)))))
-(((-1049 |#1| |#2| |#3| |#4|) (-133) (-719) (-984) (-221 |t#1| |t#2|) (-221 |t#1| |t#2|)) (T -1049))
-((-1570 (*1 *1 *2) (-12 (-4 *2 (-984)) (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)))) (-2128 (*1 *1 *2) (-12 (-5 *2 (-597 *4)) (-4 *4 (-984)) (-4 *1 (-1049 *3 *4 *5 *6)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))) (-3614 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (-1367 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))) (-3896 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1049 *3 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *2 (-221 *3 *4)) (-4 *5 (-221 *3 *4)))) (-2338 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))) (-2714 (*1 *2 *1) (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))) (-1991 (*1 *1 *1) (|partial| -12 (-4 *1 (-1049 *2 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1049 *3 *4 *5 *6)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344)))))
-(-13 (-214 |t#2|) (-109 |t#2| |t#2|) (-987 |t#1| |t#1| |t#2| |t#3| |t#4|) (-392 |t#2|) (-358 |t#2|) (-10 -8 (IF (|has| |t#2| (-162)) (-6 (-666 |t#2|)) |%noBranch|) (-15 -1570 ($ |t#2|)) (-15 -2128 ($ (-597 |t#2|))) (-15 -3614 (|t#3| $)) (-15 -1367 (|t#2| $)) (-15 -3896 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4271 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -2338 (|t#2| $)) (-15 -2714 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-344)) (PROGN (-15 -1991 ((-3 $ "failed") $)) (-15 ** ($ $ (-530)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4271 "*"))) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-214 |#2|) . T) ((-216) |has| |#2| (-216)) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-358 |#2|) . T) ((-392 |#2|) . T) ((-468 |#2|) . T) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-599 |#2|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#2| (-593 (-530))) ((-593 |#2|) . T) ((-666 |#2|) -1461 (|has| |#2| (-162)) (|has| |#2| (-6 (-4271 "*")))) ((-675) . T) ((-841 (-1099)) |has| |#2| (-841 (-1099))) ((-987 |#1| |#1| |#2| |#3| |#4|) . T) ((-975 (-388 (-530))) |has| |#2| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#2| (-975 (-530))) ((-975 |#2|) . T) ((-990 |#2|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1135) . T))
-((-2571 ((|#4| |#4|) 70)) (-3730 ((|#4| |#4|) 65)) (-1650 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|) 78)) (-3545 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-1355 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
-(((-1050 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3730 (|#4| |#4|)) (-15 -1355 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2571 (|#4| |#4|)) (-15 -3545 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1650 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|))) (-289) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -1050))
-((-1650 (*1 *2 *3 *4) (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4)))) (-5 *1 (-1050 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))) (-3545 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-2571 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-1355 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))) (-3730 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(-10 -7 (-15 -3730 (|#4| |#4|)) (-15 -1355 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -2571 (|#4| |#4|)) (-15 -3545 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -1650 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3220 (-597 |#3|))) |#4| |#3|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 17)) (-2746 (((-597 |#2|) $) 159)) (-2577 (((-1095 $) $ |#2|) 54) (((-1095 |#1|) $) 43)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 108 (|has| |#1| (-522)))) (-3446 (($ $) 110 (|has| |#1| (-522)))) (-1276 (((-110) $) 112 (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 |#2|)) 192)) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) 156) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 |#2| "failed") $) NIL)) (-2585 ((|#1| $) 154) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) ((|#2| $) NIL)) (-3388 (($ $ $ |#2|) NIL (|has| |#1| (-162)))) (-2562 (($ $) 196)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) 82)) (-1239 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-502 |#2|) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#1| (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#1| (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2731 (((-110) $) 19)) (-3579 (((-719) $) 26)) (-2735 (($ (-1095 |#1|) |#2|) 48) (($ (-1095 $) |#2|) 64)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) 32)) (-2725 (($ |#1| (-502 |#2|)) 71) (($ $ |#2| (-719)) 52) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ |#2|) NIL)) (-2944 (((-502 |#2|) $) 186) (((-719) $ |#2|) 187) (((-597 (-719)) $ (-597 |#2|)) 188)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-502 |#2|) (-502 |#2|)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 120)) (-2040 (((-3 |#2| "failed") $) 161)) (-2521 (($ $) 195)) (-2533 ((|#1| $) 37)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| |#2|) (|:| -3194 (-719))) "failed") $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 33)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 138 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) 143 (|has| |#1| (-432))) (($ $ $) 130 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#1| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-850)))) (-3551 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-522)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-597 |#2|) (-597 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-597 |#2|) (-597 $)) 176)) (-3060 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3289 (($ $ |#2|) 194) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1429 (((-502 |#2|) $) 182) (((-719) $ |#2|) 178) (((-597 (-719)) $ (-597 |#2|)) 180)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| |#1| (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| |#1| (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| |#1| (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#1| $) 126 (|has| |#1| (-432))) (($ $ |#2|) 129 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-2366 (((-804) $) 149) (($ (-530)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3441 (((-597 |#1|) $) 152)) (-4085 ((|#1| $ (-502 |#2|)) 73) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 79)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) 115 (|has| |#1| (-522)))) (-3080 (($) 12 T CONST)) (-3093 (($) 14 T CONST)) (-3340 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 97)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 124 (|has| |#1| (-344)))) (-2351 (($ $) 85) (($ $ $) 95)) (-2339 (($ $ $) 49)) (** (($ $ (-862)) 102) (($ $ (-719)) 100)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 88) (($ $ $) 65) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
-(((-1051 |#1| |#2|) (-890 |#1| (-502 |#2|) |#2|) (-984) (-795)) (T -1051))
-NIL
-(-890 |#1| (-502 |#2|) |#2|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-2386 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-2409 (($ $) 147 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1761 (((-893 |#1|) $ (-719)) NIL) (((-893 |#1|) $ (-719) (-719)) NIL)) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $ |#2|) NIL) (((-719) $ |#2| (-719)) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3668 (((-110) $) NIL)) (-2725 (($ $ (-597 |#2|) (-597 (-502 |#2|))) NIL) (($ $ |#2| (-502 |#2|)) NIL) (($ |#1| (-502 |#2|)) NIL) (($ $ |#2| (-719)) 58) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) 113 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-1545 (($ $ |#2|) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-1368 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-388 (-530)))))) (-3168 (($ $ (-719)) 15)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2853 (($ $) 111 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (($ $ |#2| $) 97) (($ $ (-597 |#2|) (-597 $)) 90) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL)) (-3289 (($ $ |#2|) 100) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-1429 (((-502 |#2|) $) NIL)) (-2420 (((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|))) 79)) (-2421 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 145 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 17)) (-2366 (((-804) $) 182) (($ (-530)) NIL) (($ |#1|) 44 (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#2|) 65) (($ |#3|) 63)) (-4085 ((|#1| $ (-502 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL) ((|#3| $ (-719)) 42)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-2459 (($ $) 155 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 151 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 159 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-3632 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 157 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 153 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 10 T CONST)) (-3340 (($ $ |#2|) NIL) (($ $ (-597 |#2|)) NIL) (($ $ |#2| (-719)) NIL) (($ $ (-597 |#2|) (-597 (-719))) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) 184 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 61)) (** (($ $ (-862)) NIL) (($ $ (-719)) 70) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 103 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 60) (($ $ (-388 (-530))) 108 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 106 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
-(((-1052 |#1| |#2| |#3|) (-13 (-689 |#1| |#2|) (-10 -8 (-15 -4085 (|#3| $ (-719))) (-15 -2366 ($ |#2|)) (-15 -2366 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2420 ((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ |#2| |#1|)) (-15 -1368 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-984) (-795) (-890 |#1| (-502 |#2|) |#2|)) (T -1052))
-((-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *2 (-890 *4 (-502 *5) *5)) (-5 *1 (-1052 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-795)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1052 *3 *2 *4)) (-4 *4 (-890 *3 (-502 *2) *2)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2)) (-4 *2 (-890 *3 (-502 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2)) (-4 *2 (-890 *3 (-502 *4) *4)))) (-2420 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1080 *7))) (-4 *6 (-795)) (-4 *7 (-890 *5 (-502 *6) *6)) (-4 *5 (-984)) (-5 *2 (-1 (-1080 *7) *7)) (-5 *1 (-1052 *5 *6 *7)))) (-1545 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1052 *3 *2 *4)) (-4 *4 (-890 *3 (-502 *2) *2)))) (-1368 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1052 *4 *3 *5))) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)) (-4 *3 (-795)) (-5 *1 (-1052 *4 *3 *5)) (-4 *5 (-890 *4 (-502 *3) *3)))))
-(-13 (-689 |#1| |#2|) (-10 -8 (-15 -4085 (|#3| $ (-719))) (-15 -2366 ($ |#2|)) (-15 -2366 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -2420 ((-1 (-1080 |#3|) |#3|) (-597 |#2|) (-597 (-1080 |#3|)))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ |#2| |#1|)) (-15 -1368 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
-((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86) (((-597 $) (-597 |#4|) (-110)) 111)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 126)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3131 (((-110) |#4| $) 136)) (-2747 (((-110) |#4| $) 133)) (-2984 (((-110) |#4| $) 137) (((-110) $) 134)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) 128)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 127)) (-2407 (((-3 |#4| "failed") $) 83)) (-3274 (((-597 $) |#4| $) 129)) (-1404 (((-3 (-110) (-597 $)) |#4| $) 132)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-4033 (((-597 $) |#4| $) 125) (((-597 $) (-597 |#4|) $) 124) (((-597 $) (-597 |#4|) (-597 $)) 123) (((-597 $) |#4| (-597 $)) 122)) (-2721 (($ |#4| $) 117) (($ (-597 |#4|) $) 116)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77) (((-597 $) |#4| $) 115) (((-597 $) |#4| (-597 $)) 114) (((-597 $) (-597 |#4|) $) 113) (((-597 $) (-597 |#4|) (-597 $)) 112)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-4208 (((-597 $) |#4| $) 121) (((-597 $) |#4| (-597 $)) 120) (((-597 $) (-597 |#4|) $) 119) (((-597 $) (-597 |#4|) (-597 $)) 118)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-1321 (((-110) |#4| $) 135)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
-(((-1053 |#1| |#2| |#3| |#4|) (-133) (-432) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -1053))
-NIL
-(-13 (-1036 |t#1| |t#2| |t#3| |t#4|) (-732 |t#1| |t#2| |t#3| |t#4|))
-(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-732 |#1| |#2| |#3| |#4|) . T) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1003 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1036 |#1| |#2| |#3| |#4|) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1135) . T))
-((-2688 (((-597 |#2|) |#1|) 12)) (-3789 (((-597 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-597 |#2|) |#1|) 52)) (-3394 (((-597 |#2|) |#2| |#2| |#2|) 39) (((-597 |#2|) |#1|) 50)) (-2057 ((|#2| |#1|) 46)) (-3594 (((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-1739 (((-597 |#2|) |#2| |#2|) 38) (((-597 |#2|) |#1|) 49)) (-1977 (((-597 |#2|) |#2| |#2| |#2| |#2|) 40) (((-597 |#2|) |#1|) 51)) (-4234 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-1924 ((|#2| |#2| |#2| |#2|) 43)) (-3402 ((|#2| |#2| |#2|) 42)) (-1552 ((|#2| |#2| |#2| |#2| |#2|) 44)))
-(((-1054 |#1| |#2|) (-10 -7 (-15 -2688 ((-597 |#2|) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -3594 ((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1739 ((-597 |#2|) |#1|)) (-15 -3394 ((-597 |#2|) |#1|)) (-15 -1977 ((-597 |#2|) |#1|)) (-15 -3789 ((-597 |#2|) |#1|)) (-15 -1739 ((-597 |#2|) |#2| |#2|)) (-15 -3394 ((-597 |#2|) |#2| |#2| |#2|)) (-15 -1977 ((-597 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3789 ((-597 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3402 (|#2| |#2| |#2|)) (-15 -1924 (|#2| |#2| |#2| |#2|)) (-15 -1552 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4234 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1157 |#2|) (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (T -1054))
-((-4234 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-1552 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-1924 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-3402 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-3789 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-1977 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-3394 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-1739 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))) (-3789 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-1977 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-3394 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-1739 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))) (-3594 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-2 (|:| |solns| (-597 *5)) (|:| |maps| (-597 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1054 *3 *5)) (-4 *3 (-1157 *5)))) (-2057 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530))))))) (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -2688 ((-597 |#2|) |#1|)) (-15 -2057 (|#2| |#1|)) (-15 -3594 ((-2 (|:| |solns| (-597 |#2|)) (|:| |maps| (-597 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -1739 ((-597 |#2|) |#1|)) (-15 -3394 ((-597 |#2|) |#1|)) (-15 -1977 ((-597 |#2|) |#1|)) (-15 -3789 ((-597 |#2|) |#1|)) (-15 -1739 ((-597 |#2|) |#2| |#2|)) (-15 -3394 ((-597 |#2|) |#2| |#2| |#2|)) (-15 -1977 ((-597 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3789 ((-597 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3402 (|#2| |#2| |#2|)) (-15 -1924 (|#2| |#2| |#2| |#2|)) (-15 -1552 (|#2| |#2| |#2| |#2| |#2|)) (-15 -4234 (|#2| |#2| |#2| |#2| |#2| |#2|)))
-((-2732 (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|))))) 95) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099))) 94) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|)))) 92) (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 90) (((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|)))) 75) (((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099)) 76) (((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|))) 70) (((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099)) 59)) (-2253 (((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 88) (((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099)) 43)) (-1351 (((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099)) 98) (((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099)) 97)))
-(((-1055 |#1|) (-10 -7 (-15 -2732 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2253 ((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -2253 ((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1351 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -1351 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099)))) (-13 (-289) (-795) (-140))) (T -1055))
-((-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-1351 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-297 *5)))) (-5 *1 (-1055 *5)))) (-2253 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-297 *5))) (-5 *1 (-1055 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-597 (-276 (-388 (-893 *4))))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-276 (-388 (-893 *5))))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-276 (-388 (-893 *4)))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1055 *5)))) (-2732 (*1 *2 *3) (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4)))) (-2732 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1055 *5)))))
-(-10 -7 (-15 -2732 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)) (-1099))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-388 (-893 |#1|)))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -2732 ((-597 (-276 (-297 |#1|))) (-276 (-388 (-893 |#1|))))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-388 (-893 |#1|))))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -2732 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2253 ((-597 (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -2253 ((-597 (-597 (-297 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -1351 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -1351 ((-1089 (-597 (-297 |#1|)) (-597 (-276 (-297 |#1|)))) (-388 (-893 |#1|)) (-1099))))
-((-1377 (((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530)) 29)) (-3834 (((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|)))) 40)))
-(((-1056 |#1|) (-10 -7 (-15 -3834 ((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))))) (-15 -1377 ((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530)))) (-13 (-522) (-795))) (T -1056))
-((-1377 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-388 (-1095 (-297 *5)))) (-5 *3 (-1181 (-297 *5))) (-5 *4 (-530)) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-1056 *5)))) (-3834 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-388 (-1095 (-297 *3)))) (-4 *3 (-13 (-522) (-795))) (-5 *1 (-1056 *3)))))
-(-10 -7 (-15 -3834 ((-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))) (-388 (-1095 (-297 |#1|))))) (-15 -1377 ((-388 (-1095 (-297 |#1|))) (-1181 (-297 |#1|)) (-388 (-1095 (-297 |#1|))) (-530))))
-((-2688 (((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099))) 224) (((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099)) 20) (((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099)) 26) (((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|))) 25) (((-597 (-276 (-297 |#1|))) (-297 |#1|)) 21)))
-(((-1057 |#1|) (-10 -7 (-15 -2688 ((-597 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099))) (-15 -2688 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099))))) (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (T -1057))
-((-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1057 *5)) (-5 *3 (-597 (-276 (-297 *5)))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5)) (-5 *3 (-297 *5)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5)) (-5 *3 (-276 (-297 *5))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4)) (-5 *3 (-276 (-297 *4))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140))) (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4)) (-5 *3 (-297 *4)))))
-(-10 -7 (-15 -2688 ((-597 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1099))) (-15 -2688 ((-597 (-276 (-297 |#1|))) (-297 |#1|) (-1099))) (-15 -2688 ((-597 (-597 (-276 (-297 |#1|)))) (-597 (-276 (-297 |#1|))) (-597 (-1099)))))
-((-3414 ((|#2| |#2|) 20 (|has| |#1| (-795))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 17)) (-3894 ((|#2| |#2|) 19 (|has| |#1| (-795))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 16)))
-(((-1058 |#1| |#2|) (-10 -7 (-15 -3894 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3414 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-795)) (PROGN (-15 -3894 (|#2| |#2|)) (-15 -3414 (|#2| |#2|))) |%noBranch|)) (-1135) (-13 (-563 (-530) |#1|) (-10 -7 (-6 -4269) (-6 -4270)))) (T -1058))
-((-3414 (*1 *2 *2) (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3894 (*1 *2 *2) (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2)) (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3414 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2)) (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4269) (-6 -4270)))))) (-3894 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2)) (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4269) (-6 -4270)))))))
-(-10 -7 (-15 -3894 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3414 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-795)) (PROGN (-15 -3894 (|#2| |#2|)) (-15 -3414 (|#2| |#2|))) |%noBranch|))
-((-2352 (((-110) $ $) NIL)) (-3082 (((-1088 3 |#1|) $) 107)) (-3530 (((-110) $) 72)) (-1940 (($ $ (-597 (-884 |#1|))) 20) (($ $ (-597 (-597 |#1|))) 75) (($ (-597 (-884 |#1|))) 74) (((-597 (-884 |#1|)) $) 73)) (-3309 (((-110) $) 41)) (-2422 (($ $ (-884 |#1|)) 46) (($ $ (-597 |#1|)) 51) (($ $ (-719)) 53) (($ (-884 |#1|)) 47) (((-884 |#1|) $) 45)) (-1497 (((-2 (|:| -2214 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $) 105)) (-2633 (((-719) $) 26)) (-2255 (((-719) $) 25)) (-3405 (($ $ (-719) (-884 |#1|)) 39)) (-1301 (((-110) $) 82)) (-3952 (($ $ (-597 (-597 (-884 |#1|))) (-597 (-161)) (-161)) 89) (($ $ (-597 (-597 (-597 |#1|))) (-597 (-161)) (-161)) 91) (($ $ (-597 (-597 (-884 |#1|))) (-110) (-110)) 85) (($ $ (-597 (-597 (-597 |#1|))) (-110) (-110)) 93) (($ (-597 (-597 (-884 |#1|)))) 86) (($ (-597 (-597 (-884 |#1|))) (-110) (-110)) 87) (((-597 (-597 (-884 |#1|))) $) 84)) (-3683 (($ (-597 $)) 28) (($ $ $) 29)) (-1228 (((-597 (-161)) $) 102)) (-3395 (((-597 (-884 |#1|)) $) 96)) (-1719 (((-597 (-597 (-161))) $) 101)) (-3233 (((-597 (-597 (-597 (-884 |#1|)))) $) NIL)) (-2917 (((-597 (-597 (-597 (-719)))) $) 99)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2911 (((-719) $ (-597 (-884 |#1|))) 37)) (-2183 (((-110) $) 54)) (-3663 (($ $ (-597 (-884 |#1|))) 56) (($ $ (-597 (-597 |#1|))) 62) (($ (-597 (-884 |#1|))) 57) (((-597 (-884 |#1|)) $) 55)) (-3767 (($) 23) (($ (-1088 3 |#1|)) 24)) (-2579 (($ $) 35)) (-2440 (((-597 $) $) 34)) (-1331 (($ (-597 $)) 31)) (-1565 (((-597 $) $) 33)) (-2366 (((-804) $) 111)) (-3932 (((-110) $) 64)) (-3563 (($ $ (-597 (-884 |#1|))) 66) (($ $ (-597 (-597 |#1|))) 69) (($ (-597 (-884 |#1|))) 67) (((-597 (-884 |#1|)) $) 65)) (-3015 (($ $) 106)) (-2248 (((-110) $ $) NIL)))
-(((-1059 |#1|) (-1060 |#1|) (-984)) (T -1059))
-NIL
-(-1060 |#1|)
-((-2352 (((-110) $ $) 7)) (-3082 (((-1088 3 |#1|) $) 13)) (-3530 (((-110) $) 29)) (-1940 (($ $ (-597 (-884 |#1|))) 33) (($ $ (-597 (-597 |#1|))) 32) (($ (-597 (-884 |#1|))) 31) (((-597 (-884 |#1|)) $) 30)) (-3309 (((-110) $) 44)) (-2422 (($ $ (-884 |#1|)) 49) (($ $ (-597 |#1|)) 48) (($ $ (-719)) 47) (($ (-884 |#1|)) 46) (((-884 |#1|) $) 45)) (-1497 (((-2 (|:| -2214 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $) 15)) (-2633 (((-719) $) 58)) (-2255 (((-719) $) 59)) (-3405 (($ $ (-719) (-884 |#1|)) 50)) (-1301 (((-110) $) 21)) (-3952 (($ $ (-597 (-597 (-884 |#1|))) (-597 (-161)) (-161)) 28) (($ $ (-597 (-597 (-597 |#1|))) (-597 (-161)) (-161)) 27) (($ $ (-597 (-597 (-884 |#1|))) (-110) (-110)) 26) (($ $ (-597 (-597 (-597 |#1|))) (-110) (-110)) 25) (($ (-597 (-597 (-884 |#1|)))) 24) (($ (-597 (-597 (-884 |#1|))) (-110) (-110)) 23) (((-597 (-597 (-884 |#1|))) $) 22)) (-3683 (($ (-597 $)) 57) (($ $ $) 56)) (-1228 (((-597 (-161)) $) 16)) (-3395 (((-597 (-884 |#1|)) $) 20)) (-1719 (((-597 (-597 (-161))) $) 17)) (-3233 (((-597 (-597 (-597 (-884 |#1|)))) $) 18)) (-2917 (((-597 (-597 (-597 (-719)))) $) 19)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2911 (((-719) $ (-597 (-884 |#1|))) 51)) (-2183 (((-110) $) 39)) (-3663 (($ $ (-597 (-884 |#1|))) 43) (($ $ (-597 (-597 |#1|))) 42) (($ (-597 (-884 |#1|))) 41) (((-597 (-884 |#1|)) $) 40)) (-3767 (($) 61) (($ (-1088 3 |#1|)) 60)) (-2579 (($ $) 52)) (-2440 (((-597 $) $) 53)) (-1331 (($ (-597 $)) 55)) (-1565 (((-597 $) $) 54)) (-2366 (((-804) $) 11)) (-3932 (((-110) $) 34)) (-3563 (($ $ (-597 (-884 |#1|))) 38) (($ $ (-597 (-597 |#1|))) 37) (($ (-597 (-884 |#1|))) 36) (((-597 (-884 |#1|)) $) 35)) (-3015 (($ $) 14)) (-2248 (((-110) $ $) 6)))
-(((-1060 |#1|) (-133) (-984)) (T -1060))
-((-2366 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-804)))) (-3767 (*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-3767 (*1 *1 *2) (-12 (-5 *2 (-1088 3 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2255 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-2633 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3683 (*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-1331 (*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-1565 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))) (-2440 (*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))) (-2579 (*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-2911 (*1 *2 *1 *3) (-12 (-5 *3 (-597 (-884 *4))) (-4 *1 (-1060 *4)) (-4 *4 (-984)) (-5 *2 (-719)))) (-3405 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-884 *4)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2422 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-2422 (*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-2422 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-884 *3)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3663 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3663 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-3663 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-2183 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3563 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-3563 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-3563 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-3932 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-1940 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))) (-1940 (*1 *1 *2) (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-1940 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3952 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-597 (-884 *5)))) (-5 *3 (-597 (-161))) (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))) (-3952 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-597 (-161))) (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))) (-3952 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-3952 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-110)) (-4 *1 (-1060 *4)) (-4 *4 (-984)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 *3)))) (-4 *3 (-984)) (-4 *1 (-1060 *3)))) (-3952 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *4 (-984)) (-4 *1 (-1060 *4)))) (-3952 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-884 *3)))))) (-1301 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))) (-3395 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-597 (-719))))))) (-3233 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-597 (-884 *3))))))) (-1719 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-161)))))) (-1228 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-161))))) (-1497 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2214 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719)))))) (-3015 (*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))) (-3082 (*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-1088 3 *3)))))
-(-13 (-1027) (-10 -8 (-15 -3767 ($)) (-15 -3767 ($ (-1088 3 |t#1|))) (-15 -2255 ((-719) $)) (-15 -2633 ((-719) $)) (-15 -3683 ($ (-597 $))) (-15 -3683 ($ $ $)) (-15 -1331 ($ (-597 $))) (-15 -1565 ((-597 $) $)) (-15 -2440 ((-597 $) $)) (-15 -2579 ($ $)) (-15 -2911 ((-719) $ (-597 (-884 |t#1|)))) (-15 -3405 ($ $ (-719) (-884 |t#1|))) (-15 -2422 ($ $ (-884 |t#1|))) (-15 -2422 ($ $ (-597 |t#1|))) (-15 -2422 ($ $ (-719))) (-15 -2422 ($ (-884 |t#1|))) (-15 -2422 ((-884 |t#1|) $)) (-15 -3309 ((-110) $)) (-15 -3663 ($ $ (-597 (-884 |t#1|)))) (-15 -3663 ($ $ (-597 (-597 |t#1|)))) (-15 -3663 ($ (-597 (-884 |t#1|)))) (-15 -3663 ((-597 (-884 |t#1|)) $)) (-15 -2183 ((-110) $)) (-15 -3563 ($ $ (-597 (-884 |t#1|)))) (-15 -3563 ($ $ (-597 (-597 |t#1|)))) (-15 -3563 ($ (-597 (-884 |t#1|)))) (-15 -3563 ((-597 (-884 |t#1|)) $)) (-15 -3932 ((-110) $)) (-15 -1940 ($ $ (-597 (-884 |t#1|)))) (-15 -1940 ($ $ (-597 (-597 |t#1|)))) (-15 -1940 ($ (-597 (-884 |t#1|)))) (-15 -1940 ((-597 (-884 |t#1|)) $)) (-15 -3530 ((-110) $)) (-15 -3952 ($ $ (-597 (-597 (-884 |t#1|))) (-597 (-161)) (-161))) (-15 -3952 ($ $ (-597 (-597 (-597 |t#1|))) (-597 (-161)) (-161))) (-15 -3952 ($ $ (-597 (-597 (-884 |t#1|))) (-110) (-110))) (-15 -3952 ($ $ (-597 (-597 (-597 |t#1|))) (-110) (-110))) (-15 -3952 ($ (-597 (-597 (-884 |t#1|))))) (-15 -3952 ($ (-597 (-597 (-884 |t#1|))) (-110) (-110))) (-15 -3952 ((-597 (-597 (-884 |t#1|))) $)) (-15 -1301 ((-110) $)) (-15 -3395 ((-597 (-884 |t#1|)) $)) (-15 -2917 ((-597 (-597 (-597 (-719)))) $)) (-15 -3233 ((-597 (-597 (-597 (-884 |t#1|)))) $)) (-15 -1719 ((-597 (-597 (-161))) $)) (-15 -1228 ((-597 (-161)) $)) (-15 -1497 ((-2 (|:| -2214 (-719)) (|:| |curves| (-719)) (|:| |polygons| (-719)) (|:| |constructs| (-719))) $)) (-15 -3015 ($ $)) (-15 -3082 ((-1088 3 |t#1|) $)) (-15 -2366 ((-804) $))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-3119 (((-597 (-1104)) (-1082)) 9)))
-(((-1061) (-10 -7 (-15 -3119 ((-597 (-1104)) (-1082))))) (T -1061))
-((-3119 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-1061)))))
-(-10 -7 (-15 -3119 ((-597 (-1104)) (-1082))))
-((-2154 (((-1186) (-597 (-804))) 23) (((-1186) (-804)) 22)) (-2464 (((-1186) (-597 (-804))) 21) (((-1186) (-804)) 20)) (-3176 (((-1186) (-597 (-804))) 19) (((-1186) (-804)) 11) (((-1186) (-1082) (-804)) 17)))
-(((-1062) (-10 -7 (-15 -3176 ((-1186) (-1082) (-804))) (-15 -3176 ((-1186) (-804))) (-15 -2464 ((-1186) (-804))) (-15 -2154 ((-1186) (-804))) (-15 -3176 ((-1186) (-597 (-804)))) (-15 -2464 ((-1186) (-597 (-804)))) (-15 -2154 ((-1186) (-597 (-804)))))) (T -1062))
-((-2154 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2154 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-2464 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3176 (*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))) (-3176 (*1 *2 *3 *4) (-12 (-5 *3 (-1082)) (-5 *4 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062)))))
-(-10 -7 (-15 -3176 ((-1186) (-1082) (-804))) (-15 -3176 ((-1186) (-804))) (-15 -2464 ((-1186) (-804))) (-15 -2154 ((-1186) (-804))) (-15 -3176 ((-1186) (-597 (-804)))) (-15 -2464 ((-1186) (-597 (-804)))) (-15 -2154 ((-1186) (-597 (-804)))))
-((-1751 (($ $ $) 10)) (-2101 (($ $) 9)) (-2323 (($ $ $) 13)) (-3981 (($ $ $) 15)) (-2790 (($ $ $) 12)) (-1374 (($ $ $) 14)) (-3179 (($ $) 17)) (-1607 (($ $) 16)) (-3934 (($ $) 6)) (-3187 (($ $ $) 11) (($ $) 7)) (-3564 (($ $ $) 8)))
-(((-1063) (-133)) (T -1063))
-((-3179 (*1 *1 *1) (-4 *1 (-1063))) (-1607 (*1 *1 *1) (-4 *1 (-1063))) (-3981 (*1 *1 *1 *1) (-4 *1 (-1063))) (-1374 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2323 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2790 (*1 *1 *1 *1) (-4 *1 (-1063))) (-3187 (*1 *1 *1 *1) (-4 *1 (-1063))) (-1751 (*1 *1 *1 *1) (-4 *1 (-1063))) (-2101 (*1 *1 *1) (-4 *1 (-1063))) (-3564 (*1 *1 *1 *1) (-4 *1 (-1063))) (-3187 (*1 *1 *1) (-4 *1 (-1063))) (-3934 (*1 *1 *1) (-4 *1 (-1063))))
-(-13 (-10 -8 (-15 -3934 ($ $)) (-15 -3187 ($ $)) (-15 -3564 ($ $ $)) (-15 -2101 ($ $)) (-15 -1751 ($ $ $)) (-15 -3187 ($ $ $)) (-15 -2790 ($ $ $)) (-15 -2323 ($ $ $)) (-15 -1374 ($ $ $)) (-15 -3981 ($ $ $)) (-15 -1607 ($ $)) (-15 -3179 ($ $))))
-((-2352 (((-110) $ $) 41)) (-3417 ((|#1| $) 15)) (-2616 (((-110) $ $ (-1 (-110) |#2| |#2|)) 36)) (-2199 (((-110) $) 17)) (-3013 (($ $ |#1|) 28)) (-1668 (($ $ (-110)) 30)) (-1600 (($ $) 31)) (-3375 (($ $ |#2|) 29)) (-1424 (((-1082) $) NIL)) (-2064 (((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|)) 35)) (-2624 (((-1046) $) NIL)) (-3250 (((-110) $) 14)) (-3958 (($) 10)) (-2579 (($ $) 27)) (-2377 (($ |#1| |#2| (-110)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2473 |#2|))) 21) (((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|)))) 24) (((-597 $) |#1| (-597 |#2|)) 26)) (-2078 ((|#2| $) 16)) (-2366 (((-804) $) 50)) (-2248 (((-110) $ $) 39)))
-(((-1064 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3958 ($)) (-15 -3250 ((-110) $)) (-15 -3417 (|#1| $)) (-15 -2078 (|#2| $)) (-15 -2199 ((-110) $)) (-15 -2377 ($ |#1| |#2| (-110))) (-15 -2377 ($ |#1| |#2|)) (-15 -2377 ($ (-2 (|:| |val| |#1|) (|:| -2473 |#2|)))) (-15 -2377 ((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))))) (-15 -2377 ((-597 $) |#1| (-597 |#2|))) (-15 -2579 ($ $)) (-15 -3013 ($ $ |#1|)) (-15 -3375 ($ $ |#2|)) (-15 -1668 ($ $ (-110))) (-15 -1600 ($ $)) (-15 -2064 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -2616 ((-110) $ $ (-1 (-110) |#2| |#2|))))) (-13 (-1027) (-33)) (-13 (-1027) (-33))) (T -1064))
-((-3958 (*1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3250 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-3417 (*1 *2 *1) (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3)) (-4 *3 (-13 (-1027) (-33))))) (-2078 (*1 *2 *1) (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33))))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2 *3) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2473 *4))) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *4)))) (-2377 (*1 *2 *3) (-12 (-5 *3 (-597 (-2 (|:| |val| *4) (|:| -2473 *5)))) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-597 (-1064 *4 *5))) (-5 *1 (-1064 *4 *5)))) (-2377 (*1 *2 *3 *4) (-12 (-5 *4 (-597 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-597 (-1064 *3 *5))) (-5 *1 (-1064 *3 *5)) (-4 *3 (-13 (-1027) (-33))))) (-2579 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3013 (*1 *1 *1 *2) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-3375 (*1 *1 *1 *2) (-12 (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33))) (-4 *2 (-13 (-1027) (-33))))) (-1668 (*1 *1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-1600 (*1 *1 *1) (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2064 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *5 *6)))) (-2616 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))))))
-(-13 (-1027) (-10 -8 (-15 -3958 ($)) (-15 -3250 ((-110) $)) (-15 -3417 (|#1| $)) (-15 -2078 (|#2| $)) (-15 -2199 ((-110) $)) (-15 -2377 ($ |#1| |#2| (-110))) (-15 -2377 ($ |#1| |#2|)) (-15 -2377 ($ (-2 (|:| |val| |#1|) (|:| -2473 |#2|)))) (-15 -2377 ((-597 $) (-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))))) (-15 -2377 ((-597 $) |#1| (-597 |#2|))) (-15 -2579 ($ $)) (-15 -3013 ($ $ |#1|)) (-15 -3375 ($ $ |#2|)) (-15 -1668 ($ $ (-110))) (-15 -1600 ($ $)) (-15 -2064 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -2616 ((-110) $ $ (-1 (-110) |#2| |#2|)))))
-((-2352 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-3417 (((-1064 |#1| |#2|) $) 25)) (-4113 (($ $) 76)) (-2321 (((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|)) 85)) (-1966 (($ $ $ (-597 (-1064 |#1| |#2|))) 90) (($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|)) 91)) (-3186 (((-110) $ (-719)) NIL)) (-1615 (((-1064 |#1| |#2|) $ (-1064 |#1| |#2|)) 43 (|has| $ (-6 -4270)))) (-2552 (((-1064 |#1| |#2|) $ "value" (-1064 |#1| |#2|)) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-1851 (((-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))) $) 80)) (-1842 (($ (-1064 |#1| |#2|) $) 39)) (-2383 (($ (-1064 |#1| |#2|) $) 31)) (-3779 (((-597 (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 51)) (-2308 (((-110) (-1064 |#1| |#2|) $) 82)) (-1646 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 (-1064 |#1| |#2|)) $) 55 (|has| $ (-6 -4269)))) (-4197 (((-110) (-1064 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-1064 |#1| |#2|) (-1027))))) (-3583 (($ (-1 (-1064 |#1| |#2|) (-1064 |#1| |#2|)) $) 47 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-1064 |#1| |#2|) (-1064 |#1| |#2|)) $) 46)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 (-1064 |#1| |#2|)) $) 53)) (-3615 (((-110) $) 42)) (-1424 (((-1082) $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-2624 (((-1046) $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-2653 (((-3 $ "failed") $) 75)) (-1533 (((-110) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-1064 |#1| |#2|)))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-276 (-1064 |#1| |#2|))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-1064 |#1| |#2|) (-1064 |#1| |#2|)) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027)))) (($ $ (-597 (-1064 |#1| |#2|)) (-597 (-1064 |#1| |#2|))) NIL (-12 (|has| (-1064 |#1| |#2|) (-291 (-1064 |#1| |#2|))) (|has| (-1064 |#1| |#2|) (-1027))))) (-2391 (((-110) $ $) 50)) (-3250 (((-110) $) 22)) (-3958 (($) 24)) (-1902 (((-1064 |#1| |#2|) $ "value") NIL)) (-2539 (((-530) $ $) NIL)) (-4246 (((-110) $) 44)) (-2632 (((-719) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4269))) (((-719) (-1064 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-1064 |#1| |#2|) (-1027))))) (-2579 (($ $) 49)) (-2377 (($ (-1064 |#1| |#2|)) 9) (($ |#1| |#2| (-597 $)) 12) (($ |#1| |#2| (-597 (-1064 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-597 |#2|)) 17)) (-2908 (((-597 |#2|) $) 81)) (-2366 (((-804) $) 73 (|has| (-1064 |#1| |#2|) (-571 (-804))))) (-2557 (((-597 $) $) 28)) (-4153 (((-110) $ $) NIL (|has| (-1064 |#1| |#2|) (-1027)))) (-3889 (((-110) (-1 (-110) (-1064 |#1| |#2|)) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 64 (|has| (-1064 |#1| |#2|) (-1027)))) (-2267 (((-719) $) 58 (|has| $ (-6 -4269)))))
-(((-1065 |#1| |#2|) (-13 (-949 (-1064 |#1| |#2|)) (-10 -8 (-6 -4270) (-6 -4269) (-15 -2653 ((-3 $ "failed") $)) (-15 -4113 ($ $)) (-15 -2377 ($ (-1064 |#1| |#2|))) (-15 -2377 ($ |#1| |#2| (-597 $))) (-15 -2377 ($ |#1| |#2| (-597 (-1064 |#1| |#2|)))) (-15 -2377 ($ |#1| |#2| |#1| (-597 |#2|))) (-15 -2908 ((-597 |#2|) $)) (-15 -1851 ((-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))) $)) (-15 -2308 ((-110) (-1064 |#1| |#2|) $)) (-15 -2321 ((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2383 ($ (-1064 |#1| |#2|) $)) (-15 -1842 ($ (-1064 |#1| |#2|) $)) (-15 -1966 ($ $ $ (-597 (-1064 |#1| |#2|)))) (-15 -1966 ($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|))))) (-13 (-1027) (-33)) (-13 (-1027) (-33))) (T -1065))
-((-2653 (*1 *1 *1) (|partial| -12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-4113 (*1 *1 *1) (-12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-597 (-1065 *2 *3))) (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))))) (-2377 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-597 (-1064 *2 *3))) (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1065 *2 *3)))) (-2377 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-597 *3)) (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33))))) (-2908 (*1 *2 *1) (-12 (-5 *2 (-597 *4)) (-5 *1 (-1065 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-1851 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4)))) (-5 *1 (-1065 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))) (-2308 (*1 *2 *3 *1) (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *4 *5)))) (-2321 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1064 *5 *6)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *5 *6)))) (-2383 (*1 *1 *2 *1) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1842 (*1 *1 *2 *1) (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1966 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-597 (-1064 *3 *4))) (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))) (-1966 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-1064 *4 *5))) (-5 *3 (-1 (-110) *5 *5)) (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33))) (-5 *1 (-1065 *4 *5)))))
-(-13 (-949 (-1064 |#1| |#2|)) (-10 -8 (-6 -4270) (-6 -4269) (-15 -2653 ((-3 $ "failed") $)) (-15 -4113 ($ $)) (-15 -2377 ($ (-1064 |#1| |#2|))) (-15 -2377 ($ |#1| |#2| (-597 $))) (-15 -2377 ($ |#1| |#2| (-597 (-1064 |#1| |#2|)))) (-15 -2377 ($ |#1| |#2| |#1| (-597 |#2|))) (-15 -2908 ((-597 |#2|) $)) (-15 -1851 ((-597 (-2 (|:| |val| |#1|) (|:| -2473 |#2|))) $)) (-15 -2308 ((-110) (-1064 |#1| |#2|) $)) (-15 -2321 ((-110) (-1064 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2383 ($ (-1064 |#1| |#2|) $)) (-15 -1842 ($ (-1064 |#1| |#2|) $)) (-15 -1966 ($ $ $ (-597 (-1064 |#1| |#2|)))) (-15 -1966 ($ $ $ (-597 (-1064 |#1| |#2|)) (-1 (-110) |#2| |#2|)))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-4114 (($ $) NIL)) (-1367 ((|#2| $) NIL)) (-3053 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2477 (($ (-637 |#2|)) 47)) (-4040 (((-110) $) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-1570 (($ |#2|) 9)) (-2350 (($) NIL T CONST)) (-1583 (($ $) 60 (|has| |#2| (-289)))) (-1325 (((-223 |#1| |#2|) $ (-530)) 34)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 |#2| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) ((|#2| $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) 74)) (-2426 (((-719) $) 62 (|has| |#2| (-522)))) (-3532 ((|#2| $ (-530) (-530)) NIL)) (-3779 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-2731 (((-110) $) NIL)) (-1791 (((-719) $) 64 (|has| |#2| (-522)))) (-2515 (((-597 (-223 |#1| |#2|)) $) 68 (|has| |#2| (-522)))) (-1796 (((-719) $) NIL)) (-1810 (((-719) $) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-2714 ((|#2| $) 58 (|has| |#2| (-6 (-4271 "*"))))) (-3863 (((-530) $) NIL)) (-3643 (((-530) $) NIL)) (-2395 (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2307 (((-530) $) NIL)) (-3909 (((-530) $) NIL)) (-2263 (($ (-597 (-597 |#2|))) 29)) (-3583 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-2654 (((-597 (-597 |#2|)) $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1991 (((-3 $ "failed") $) 71 (|has| |#2| (-344)))) (-2624 (((-1046) $) NIL)) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522)))) (-1533 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ (-530) (-530) |#2|) NIL) ((|#2| $ (-530) (-530)) NIL)) (-3289 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-3896 ((|#2| $) NIL)) (-2128 (($ (-597 |#2|)) 42)) (-1362 (((-110) $) NIL)) (-3614 (((-223 |#1| |#2|) $) NIL)) (-2338 ((|#2| $) 56 (|has| |#2| (-6 (-4271 "*"))))) (-2632 (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 83 (|has| |#2| (-572 (-506))))) (-3350 (((-223 |#1| |#2|) $ (-530)) 36)) (-2366 (((-804) $) 39) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#2| (-975 (-388 (-530))))) (($ |#2|) NIL) (((-637 |#2|) $) 44)) (-3300 (((-719)) 17)) (-3889 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-3589 (((-110) $) NIL)) (-3080 (($) 11 T CONST)) (-3093 (($) 14 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-719)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) 54) (($ $ (-530)) 73 (|has| |#2| (-344)))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) 50) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) 52)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1066 |#1| |#2|) (-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-10 -8 (-15 -4114 ($ $)) (-15 -2477 ($ (-637 |#2|))) (-15 -2366 ((-637 |#2|) $)) (IF (|has| |#2| (-6 (-4271 "*"))) (-6 -4258) |%noBranch|) (IF (|has| |#2| (-6 (-4271 "*"))) (IF (|has| |#2| (-6 -4266)) (-6 -4266) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|))) (-719) (-984)) (T -1066))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-637 *4)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-719)) (-4 *4 (-984)))) (-4114 (*1 *1 *1) (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-719)) (-4 *3 (-984)))) (-2477 (*1 *1 *2) (-12 (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-719)))))
-(-13 (-1049 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-571 (-637 |#2|)) (-10 -8 (-15 -4114 ($ $)) (-15 -2477 ($ (-637 |#2|))) (-15 -2366 ((-637 |#2|) $)) (IF (|has| |#2| (-6 (-4271 "*"))) (-6 -4258) |%noBranch|) (IF (|has| |#2| (-6 (-4271 "*"))) (IF (|has| |#2| (-6 -4266)) (-6 -4266) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-572 (-506))) (-6 (-572 (-506))) |%noBranch|)))
-((-3910 (($ $) 19)) (-2879 (($ $ (-137)) 10) (($ $ (-134)) 14)) (-3034 (((-110) $ $) 24)) (-1502 (($ $) 17)) (-1902 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (($ $ $) 29)) (-2366 (($ (-137)) 27) (((-804) $) NIL)))
-(((-1067 |#1|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -1902 (|#1| |#1| |#1|)) (-15 -2879 (|#1| |#1| (-134))) (-15 -2879 (|#1| |#1| (-137))) (-15 -2366 (|#1| (-137))) (-15 -3034 ((-110) |#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -1902 ((-137) |#1| (-530))) (-15 -1902 ((-137) |#1| (-530) (-137)))) (-1068)) (T -1067))
-NIL
-(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -1902 (|#1| |#1| |#1|)) (-15 -2879 (|#1| |#1| (-134))) (-15 -2879 (|#1| |#1| (-137))) (-15 -2366 (|#1| (-137))) (-15 -3034 ((-110) |#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -1502 (|#1| |#1|)) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -1902 ((-137) |#1| (-530))) (-15 -1902 ((-137) |#1| (-530) (-137))))
-((-2352 (((-110) $ $) 19 (|has| (-137) (-1027)))) (-2289 (($ $) 120)) (-3910 (($ $) 121)) (-2879 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3014 (((-110) $ $) 118)) (-2996 (((-110) $ $ (-530)) 117)) (-1489 (((-597 $) $ (-137)) 110) (((-597 $) $ (-134)) 109)) (-2741 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-795)))) (-1627 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| (-137) (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 (((-137) $ (-530) (-137)) 52 (|has| $ (-6 -4270))) (((-137) $ (-1148 (-530)) (-137)) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2865 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3782 (($ $ (-1148 (-530)) $) 114)) (-3077 (($ $) 78 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-137) $) 77 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4269)))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4269)))) (-3592 (((-137) $ (-530) (-137)) 53 (|has| $ (-6 -4270)))) (-3532 (((-137) $ (-530)) 51)) (-3034 (((-110) $ $) 119)) (-2027 (((-530) (-1 (-110) (-137)) $) 97) (((-530) (-137) $) 96 (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 95 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 113) (((-530) (-134) $ (-530)) 112)) (-3779 (((-597 (-137)) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-137)) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| (-137) (-795)))) (-3683 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| (-137) (-795)))) (-3754 (((-110) $ $ (-137)) 115)) (-2918 (((-719) $ $ (-137)) 116)) (-3583 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-2794 (($ $) 122)) (-1502 (($ $) 123)) (-2763 (((-110) $ (-719)) 10)) (-2875 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-1424 (((-1082) $) 22 (|has| (-137) (-1027)))) (-4028 (($ (-137) $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| (-137) (-1027)))) (-3048 (((-137) $) 42 (|has| (-530) (-795)))) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-1522 (($ $ (-137)) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2261 (((-597 (-137)) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 (((-137) $ (-530) (-137)) 50) (((-137) $ (-530)) 49) (($ $ (-1148 (-530))) 63) (($ $ $) 102)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4269))) (((-719) (-137) $) 28 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| (-137) (-572 (-506))))) (-2377 (($ (-597 (-137))) 70)) (-3483 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (($ (-137)) 111) (((-804) $) 18 (|has| (-137) (-571 (-804))))) (-3889 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| (-137) (-795)))) (-2284 (((-110) $ $) 83 (|has| (-137) (-795)))) (-2248 (((-110) $ $) 20 (|has| (-137) (-1027)))) (-2297 (((-110) $ $) 85 (|has| (-137) (-795)))) (-2272 (((-110) $ $) 82 (|has| (-137) (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-1068) (-133)) (T -1068))
-((-1502 (*1 *1 *1) (-4 *1 (-1068))) (-2794 (*1 *1 *1) (-4 *1 (-1068))) (-3910 (*1 *1 *1) (-4 *1 (-1068))) (-2289 (*1 *1 *1) (-4 *1 (-1068))) (-3034 (*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))) (-3014 (*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))) (-2996 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-530)) (-5 *2 (-110)))) (-2918 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-719)))) (-3754 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-110)))) (-3782 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1148 (-530))))) (-2027 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)))) (-2027 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)) (-5 *3 (-134)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1068)))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))) (-1489 (*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))) (-2879 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-2879 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-2875 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-2875 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-2865 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))) (-2865 (*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134)))) (-1902 (*1 *1 *1 *1) (-4 *1 (-1068))))
-(-13 (-19 (-137)) (-10 -8 (-15 -1502 ($ $)) (-15 -2794 ($ $)) (-15 -3910 ($ $)) (-15 -2289 ($ $)) (-15 -3034 ((-110) $ $)) (-15 -3014 ((-110) $ $)) (-15 -2996 ((-110) $ $ (-530))) (-15 -2918 ((-719) $ $ (-137))) (-15 -3754 ((-110) $ $ (-137))) (-15 -3782 ($ $ (-1148 (-530)) $)) (-15 -2027 ((-530) $ $ (-530))) (-15 -2027 ((-530) (-134) $ (-530))) (-15 -2366 ($ (-137))) (-15 -1489 ((-597 $) $ (-137))) (-15 -1489 ((-597 $) $ (-134))) (-15 -2879 ($ $ (-137))) (-15 -2879 ($ $ (-134))) (-15 -2875 ($ $ (-137))) (-15 -2875 ($ $ (-134))) (-15 -2865 ($ $ (-137))) (-15 -2865 ($ $ (-134))) (-15 -1902 ($ $ $))))
-(((-33) . T) ((-99) -1461 (|has| (-137) (-1027)) (|has| (-137) (-795))) ((-571 (-804)) -1461 (|has| (-137) (-1027)) (|has| (-137) (-795)) (|has| (-137) (-571 (-804)))) ((-144 #0=(-137)) . T) ((-572 (-506)) |has| (-137) (-572 (-506))) ((-268 #1=(-530) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-354 #0#) . T) ((-468 #0#) . T) ((-563 #1# #0#) . T) ((-491 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-602 #0#) . T) ((-19 #0#) . T) ((-795) |has| (-137) (-795)) ((-1027) -1461 (|has| (-137) (-1027)) (|has| (-137) (-795))) ((-1135) . T))
-((-2500 (((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719)) 94)) (-2535 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719)) 54)) (-4141 (((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719)) 85)) (-2249 (((-719) (-597 |#4|) (-597 |#5|)) 27)) (-2280 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719)) 56) (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110)) 58)) (-3850 (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110)) 76) (((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110)) 77)) (-3260 (((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) 80)) (-3920 (((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|) 53)) (-3204 (((-719) (-597 |#4|) (-597 |#5|)) 19)))
-(((-1069 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3204 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -2249 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -3920 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -2500 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719))) (-15 -3260 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -4141 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719)))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|) (-1036 |#1| |#2| |#3| |#4|)) (T -1069))
-((-4141 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9)))) (-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8))) (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082)) (-5 *1 (-1069 *4 *5 *6 *7 *8)))) (-2500 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-597 *11)) (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2473 *11)))))) (-5 *6 (-719)) (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2473 *11)))) (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9)) (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-5 *1 (-1069 *7 *8 *9 *10 *11)))) (-3850 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-3850 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-2280 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2280 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-2280 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741)) (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3)))) (-2535 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2535 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *3 (-998 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3)))) (-3920 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-597 *4)) (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4)))))) (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))) (-2249 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))) (-3204 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(-10 -7 (-15 -3204 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -2249 ((-719) (-597 |#4|) (-597 |#5|))) (-15 -3920 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2535 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719) (-110))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5| (-719))) (-15 -2280 ((-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) |#4| |#5|)) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110))) (-15 -3850 ((-597 |#5|) (-597 |#4|) (-597 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -2500 ((-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-597 |#4|) (-597 |#5|) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-2 (|:| |done| (-597 |#5|)) (|:| |todo| (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))))) (-719))) (-15 -3260 ((-1082) (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|)))) (-15 -4141 ((-1186) (-597 (-2 (|:| |val| (-597 |#4|)) (|:| -2473 |#5|))) (-719))))
-((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) NIL)) (-1512 (((-597 $) (-597 |#4|)) 110) (((-597 $) (-597 |#4|) (-110)) 111) (((-597 $) (-597 |#4|) (-110) (-110)) 109) (((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110)) 112)) (-2746 (((-597 |#3|) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1785 ((|#4| |#4| $) NIL)) (-3544 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| $) 84)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 62)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) 26 (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3588 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2585 (($ (-597 |#4|)) NIL)) (-3057 (((-3 $ "failed") $) 39)) (-1622 ((|#4| |#4| $) 65)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) NIL)) (-3131 (((-110) |#4| $) NIL)) (-2747 (((-110) |#4| $) NIL)) (-2984 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1767 (((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)) 124)) (-3779 (((-597 |#4|) $) 16 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3122 ((|#3| $) 33)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 17 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3583 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 21)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-1609 (((-3 |#4| (-597 $)) |#4| |#4| $) NIL)) (-2991 (((-597 (-2 (|:| |val| |#4|) (|:| -2473 $))) |#4| |#4| $) 103)) (-2407 (((-3 |#4| "failed") $) 37)) (-3274 (((-597 $) |#4| $) 88)) (-1404 (((-3 (-110) (-597 $)) |#4| $) NIL)) (-3017 (((-597 (-2 (|:| |val| (-110)) (|:| -2473 $))) |#4| $) 98) (((-110) |#4| $) 53)) (-4033 (((-597 $) |#4| $) 107) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 108) (((-597 $) |#4| (-597 $)) NIL)) (-1801 (((-597 $) (-597 |#4|) (-110) (-110) (-110)) 119)) (-2721 (($ |#4| $) 75) (($ (-597 |#4|) $) 76) (((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 74)) (-1543 (((-597 |#4|) $) NIL)) (-2559 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3482 ((|#4| |#4| $) NIL)) (-1406 (((-110) $ $) NIL)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2122 ((|#4| |#4| $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 |#4| "failed") $) 35)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1372 (((-3 $ "failed") $ |#4|) 48)) (-3168 (($ $ |#4|) NIL) (((-597 $) |#4| $) 90) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) 86)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 15)) (-3958 (($) 13)) (-1429 (((-719) $) NIL)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) 12)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 20)) (-1687 (($ $ |#3|) 42)) (-1442 (($ $ |#3|) 44)) (-1871 (($ $) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) 31) (((-597 |#4|) $) 40)) (-2730 (((-719) $) NIL (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-4208 (((-597 $) |#4| $) 54) (((-597 $) |#4| (-597 $)) NIL) (((-597 $) (-597 |#4|) $) NIL) (((-597 $) (-597 |#4|) (-597 $)) NIL)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) NIL)) (-1321 (((-110) |#4| $) NIL)) (-2856 (((-110) |#3| $) 61)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1070 |#1| |#2| |#3| |#4|) (-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2721 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1801 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1767 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110))))) (-432) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -1070))
-((-2721 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *3))) (-5 *1 (-1070 *5 *6 *7 *3)) (-4 *3 (-998 *5 *6 *7)))) (-1512 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-1512 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-1801 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))) (-1767 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-1070 *5 *6 *7 *8))))) (-5 *1 (-1070 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
-(-13 (-1036 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2721 ((-597 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110))) (-15 -1512 ((-597 $) (-597 |#4|) (-110) (-110) (-110) (-110))) (-15 -1801 ((-597 $) (-597 |#4|) (-110) (-110) (-110))) (-15 -1767 ((-2 (|:| |val| (-597 |#4|)) (|:| |towers| (-597 $))) (-597 |#4|) (-110) (-110)))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1598 ((|#1| $) 34)) (-3887 (($ (-597 |#1|)) 39)) (-3186 (((-110) $ (-719)) NIL)) (-2350 (($) NIL T CONST)) (-3684 ((|#1| |#1| $) 36)) (-2176 ((|#1| $) 32)) (-3779 (((-597 |#1|) $) 18 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 22)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-1723 ((|#1| $) 35)) (-2441 (($ |#1| $) 37)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2738 ((|#1| $) 33)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 31)) (-3958 (($) 38)) (-4218 (((-719) $) 29)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 27)) (-2366 (((-804) $) 14 (|has| |#1| (-571 (-804))))) (-2242 (($ (-597 |#1|)) NIL)) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 17 (|has| |#1| (-1027)))) (-2267 (((-719) $) 30 (|has| $ (-6 -4269)))))
-(((-1071 |#1|) (-13 (-1047 |#1|) (-10 -8 (-15 -3887 ($ (-597 |#1|))))) (-1135)) (T -1071))
-((-3887 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1071 *3)))))
-(-13 (-1047 |#1|) (-10 -8 (-15 -3887 ($ (-597 |#1|)))))
-((-2552 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1148 (-530)) |#2|) 44) ((|#2| $ (-530) |#2|) 41)) (-1230 (((-110) $) 12)) (-3583 (($ (-1 |#2| |#2|) $) 39)) (-3048 ((|#2| $) NIL) (($ $ (-719)) 17)) (-1522 (($ $ |#2|) 40)) (-4083 (((-110) $) 11)) (-1902 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1148 (-530))) 31) ((|#2| $ (-530)) 23) ((|#2| $ (-530) |#2|) NIL)) (-1328 (($ $ $) 47) (($ $ |#2|) NIL)) (-3483 (($ $ $) 33) (($ |#2| $) NIL) (($ (-597 $)) 36) (($ $ |#2|) NIL)))
-(((-1072 |#1| |#2|) (-10 -8 (-15 -1230 ((-110) |#1|)) (-15 -4083 ((-110) |#1|)) (-15 -2552 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -1522 (|#1| |#1| |#2|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -3483 (|#1| (-597 |#1|))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -2552 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -2552 (|#2| |#1| "last" |#2|)) (-15 -2552 (|#1| |#1| "rest" |#1|)) (-15 -2552 (|#2| |#1| "first" |#2|)) (-15 -1328 (|#1| |#1| |#2|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1902 (|#2| |#1| "last")) (-15 -1902 (|#1| |#1| "rest")) (-15 -3048 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "first")) (-15 -3048 (|#2| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#1|)) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|))) (-1073 |#2|) (-1135)) (T -1072))
-NIL
-(-10 -8 (-15 -1230 ((-110) |#1|)) (-15 -4083 ((-110) |#1|)) (-15 -2552 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530) |#2|)) (-15 -1902 (|#2| |#1| (-530))) (-15 -1522 (|#1| |#1| |#2|)) (-15 -3483 (|#1| |#1| |#2|)) (-15 -3483 (|#1| (-597 |#1|))) (-15 -1902 (|#1| |#1| (-1148 (-530)))) (-15 -2552 (|#2| |#1| (-1148 (-530)) |#2|)) (-15 -2552 (|#2| |#1| "last" |#2|)) (-15 -2552 (|#1| |#1| "rest" |#1|)) (-15 -2552 (|#2| |#1| "first" |#2|)) (-15 -1328 (|#1| |#1| |#2|)) (-15 -1328 (|#1| |#1| |#1|)) (-15 -1902 (|#2| |#1| "last")) (-15 -1902 (|#1| |#1| "rest")) (-15 -3048 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "first")) (-15 -3048 (|#2| |#1|)) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#1|)) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3583 (|#1| (-1 |#2| |#2|) |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3254 ((|#1| $) 65)) (-2133 (($ $) 67)) (-2097 (((-1186) $ (-530) (-530)) 97 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 52 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 56 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 117 (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) 86 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4269)))) (-3245 ((|#1| $) 66)) (-2350 (($) 7 T CONST)) (-3057 (($ $) 73) (($ $ (-719)) 71)) (-3077 (($ $) 99 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4269))) (($ |#1| $) 100 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3592 ((|#1| $ (-530) |#1|) 85 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 87)) (-1230 (((-110) $) 83)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) 108)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 95 (|has| (-530) (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 94 (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 70) (($ $ (-719)) 68)) (-4028 (($ $ $ (-530)) 116) (($ |#1| $ (-530)) 115)) (-3567 (((-597 (-530)) $) 92)) (-1927 (((-110) (-530) $) 91)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 76) (($ $ (-719)) 74)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-1522 (($ $ |#1|) 96 (|has| $ (-6 -4270)))) (-4083 (((-110) $) 84)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 90)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1148 (-530))) 112) ((|#1| $ (-530)) 89) ((|#1| $ (-530) |#1|) 88)) (-2539 (((-530) $ $) 44)) (-1843 (($ $ (-1148 (-530))) 114) (($ $ (-530)) 113)) (-4246 (((-110) $) 46)) (-3697 (($ $) 62)) (-3301 (($ $) 59 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 63)) (-2004 (($ $) 64)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-3260 (((-506) $) 98 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 107)) (-1328 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-3483 (($ $ $) 78) (($ |#1| $) 77) (($ (-597 $)) 110) (($ $ |#1|) 109)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-1073 |#1|) (-133) (-1135)) (T -1073))
-((-4083 (*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))) (-1230 (*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(-13 (-1169 |t#1|) (-602 |t#1|) (-10 -8 (-15 -4083 ((-110) $)) (-15 -1230 ((-110) $))))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T) ((-1169 |#1|) . T))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) NIL)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1074 |#1| |#2| |#3|) (-1112 |#1| |#2|) (-1027) (-1027) |#2|) (T -1074))
-NIL
-(-1112 |#1| |#2|)
-((-2352 (((-110) $ $) 7)) (-2972 (((-3 $ "failed") $) 13)) (-1424 (((-1082) $) 9)) (-3657 (($) 14 T CONST)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11)) (-2248 (((-110) $ $) 6)))
-(((-1075) (-133)) (T -1075))
-((-3657 (*1 *1) (-4 *1 (-1075))) (-2972 (*1 *1 *1) (|partial| -4 *1 (-1075))))
-(-13 (-1027) (-10 -8 (-15 -3657 ($) -2708) (-15 -2972 ((-3 $ "failed") $))))
-(((-99) . T) ((-571 (-804)) . T) ((-1027) . T))
-((-1976 (((-1080 |#1|) (-1080 |#1|)) 17)) (-1858 (((-1080 |#1|) (-1080 |#1|)) 13)) (-1740 (((-1080 |#1|) (-1080 |#1|) (-530) (-530)) 20)) (-3348 (((-1080 |#1|) (-1080 |#1|)) 15)))
-(((-1076 |#1|) (-10 -7 (-15 -1858 ((-1080 |#1|) (-1080 |#1|))) (-15 -3348 ((-1080 |#1|) (-1080 |#1|))) (-15 -1976 ((-1080 |#1|) (-1080 |#1|))) (-15 -1740 ((-1080 |#1|) (-1080 |#1|) (-530) (-530)))) (-13 (-522) (-140))) (T -1076))
-((-1740 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1076 *4)))) (-1976 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))) (-3348 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))) (-1858 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1076 *3)))))
-(-10 -7 (-15 -1858 ((-1080 |#1|) (-1080 |#1|))) (-15 -3348 ((-1080 |#1|) (-1080 |#1|))) (-15 -1976 ((-1080 |#1|) (-1080 |#1|))) (-15 -1740 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))))
-((-3483 (((-1080 |#1|) (-1080 (-1080 |#1|))) 15)))
-(((-1077 |#1|) (-10 -7 (-15 -3483 ((-1080 |#1|) (-1080 (-1080 |#1|))))) (-1135)) (T -1077))
-((-3483 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1077 *4)) (-4 *4 (-1135)))))
-(-10 -7 (-15 -3483 ((-1080 |#1|) (-1080 (-1080 |#1|)))))
-((-2753 (((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)) 25)) (-2134 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)) 26)) (-3217 (((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|)) 16)))
-(((-1078 |#1| |#2|) (-10 -7 (-15 -3217 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|))) (-15 -2753 ((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))) (-15 -2134 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|)))) (-1135) (-1135)) (T -1078))
-((-2134 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1080 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-1078 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1080 *6)) (-4 *6 (-1135)) (-4 *3 (-1135)) (-5 *2 (-1080 *3)) (-5 *1 (-1078 *6 *3)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1080 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1080 *6)) (-5 *1 (-1078 *5 *6)))))
-(-10 -7 (-15 -3217 ((-1080 |#2|) (-1 |#2| |#1|) (-1080 |#1|))) (-15 -2753 ((-1080 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))) (-15 -2134 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1080 |#1|))))
-((-3217 (((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|)) 21)))
-(((-1079 |#1| |#2| |#3|) (-10 -7 (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|)))) (-1135) (-1135) (-1135)) (T -1079))
-((-3217 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1080 *6)) (-5 *5 (-1080 *7)) (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8)) (-5 *1 (-1079 *6 *7 *8)))))
-(-10 -7 (-15 -3217 ((-1080 |#3|) (-1 |#3| |#1| |#2|) (-1080 |#1|) (-1080 |#2|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) NIL)) (-3254 ((|#1| $) NIL)) (-2133 (($ $) 51)) (-2097 (((-1186) $ (-530) (-530)) 76 (|has| $ (-6 -4270)))) (-1776 (($ $ (-530)) 110 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-3063 (((-804) $) 41 (|has| |#1| (-1027)))) (-3327 (((-110)) 40 (|has| |#1| (-1027)))) (-1615 ((|#1| $ |#1|) NIL (|has| $ (-6 -4270)))) (-1886 (($ $ $) 98 (|has| $ (-6 -4270))) (($ $ (-530) $) 122)) (-3312 ((|#1| $ |#1|) 107 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 102 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4270))) (($ $ "rest" $) 106 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 89 (|has| $ (-6 -4270))) ((|#1| $ (-530) |#1|) 55 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 58)) (-3245 ((|#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3552 (($ $) 14)) (-3057 (($ $) 29) (($ $ (-719)) 88)) (-1408 (((-110) (-597 |#1|) $) 116 (|has| |#1| (-1027)))) (-4095 (($ (-597 |#1|)) 112)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) 57)) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-1230 (((-110) $) NIL)) (-3779 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-2187 (((-1186) (-530) $) 121 (|has| |#1| (-1027)))) (-3811 (((-719) $) 118)) (-2011 (((-597 $) $) NIL)) (-1646 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-2763 (((-110) $ (-719)) NIL)) (-3390 (((-597 |#1|) $) NIL)) (-3615 (((-110) $) NIL)) (-3746 (($ $) 90)) (-3504 (((-110) $) 13)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2407 ((|#1| $) NIL) (($ $ (-719)) NIL)) (-4028 (($ $ $ (-530)) NIL) (($ |#1| $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) 74)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2208 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-2195 ((|#1| $) 10)) (-3048 ((|#1| $) 28) (($ $ (-719)) 49)) (-1894 (((-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719))) (-719) $) 25)) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2257 (($ (-1 (-110) |#1|) $) 126)) (-2271 (($ (-1 (-110) |#1|) $) 127)) (-1522 (($ $ |#1|) 68 (|has| $ (-6 -4270)))) (-3168 (($ $ (-530)) 32)) (-4083 (((-110) $) 72)) (-2002 (((-110) $) 12)) (-1296 (((-110) $) 117)) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 20)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) 15)) (-3958 (($) 43)) (-1902 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1148 (-530))) NIL) ((|#1| $ (-530)) 54) ((|#1| $ (-530) |#1|) NIL)) (-2539 (((-530) $ $) 48)) (-1843 (($ $ (-1148 (-530))) NIL) (($ $ (-530)) NIL)) (-2313 (($ (-1 $)) 47)) (-4246 (((-110) $) 69)) (-3697 (($ $) 70)) (-3301 (($ $) 99 (|has| $ (-6 -4270)))) (-2754 (((-719) $) NIL)) (-2004 (($ $) NIL)) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 44)) (-3260 (((-506) $) NIL (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 53)) (-1640 (($ |#1| $) 97)) (-1328 (($ $ $) 100 (|has| $ (-6 -4270))) (($ $ |#1|) 101 (|has| $ (-6 -4270)))) (-3483 (($ $ $) 78) (($ |#1| $) 45) (($ (-597 $)) 83) (($ $ |#1|) 77)) (-4050 (($ $) 50)) (-2366 (($ (-597 |#1|)) 111) (((-804) $) 42 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) NIL)) (-4153 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 114 (|has| |#1| (-1027)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1080 |#1|) (-13 (-624 |#1|) (-10 -8 (-6 -4270) (-15 -2366 ($ (-597 |#1|))) (-15 -4095 ($ (-597 |#1|))) (IF (|has| |#1| (-1027)) (-15 -1408 ((-110) (-597 |#1|) $)) |%noBranch|) (-15 -1894 ((-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719))) (-719) $)) (-15 -2313 ($ (-1 $))) (-15 -1640 ($ |#1| $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2187 ((-1186) (-530) $)) (-15 -3063 ((-804) $)) (-15 -3327 ((-110)))) |%noBranch|) (-15 -1886 ($ $ (-530) $)) (-15 -2208 ($ (-1 |#1|))) (-15 -2208 ($ (-1 |#1| |#1|) |#1|)) (-15 -2257 ($ (-1 (-110) |#1|) $)) (-15 -2271 ($ (-1 (-110) |#1|) $)))) (-1135)) (T -1080))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-4095 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-1408 (*1 *2 *3 *1) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110)) (-5 *1 (-1080 *4)))) (-1894 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719)))) (-5 *1 (-1080 *4)) (-4 *4 (-1135)) (-5 *3 (-719)))) (-2313 (*1 *1 *2) (-12 (-5 *2 (-1 (-1080 *3))) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))) (-1640 (*1 *1 *2 *1) (-12 (-5 *1 (-1080 *2)) (-4 *2 (-1135)))) (-2187 (*1 *2 *3 *1) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1080 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1080 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)))) (-3327 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1080 *3)) (-4 *3 (-1027)) (-4 *3 (-1135)))) (-1886 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))) (-2208 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2208 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2257 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))) (-2271 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(-13 (-624 |#1|) (-10 -8 (-6 -4270) (-15 -2366 ($ (-597 |#1|))) (-15 -4095 ($ (-597 |#1|))) (IF (|has| |#1| (-1027)) (-15 -1408 ((-110) (-597 |#1|) $)) |%noBranch|) (-15 -1894 ((-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719))) (-719) $)) (-15 -2313 ($ (-1 $))) (-15 -1640 ($ |#1| $)) (IF (|has| |#1| (-1027)) (PROGN (-15 -2187 ((-1186) (-530) $)) (-15 -3063 ((-804) $)) (-15 -3327 ((-110)))) |%noBranch|) (-15 -1886 ($ $ (-530) $)) (-15 -2208 ($ (-1 |#1|))) (-15 -2208 ($ (-1 |#1| |#1|) |#1|)) (-15 -2257 ($ (-1 (-110) |#1|) $)) (-15 -2271 ($ (-1 (-110) |#1|) $))))
-((-2352 (((-110) $ $) 19)) (-2289 (($ $) 120)) (-3910 (($ $) 121)) (-2879 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-3014 (((-110) $ $) 118)) (-2996 (((-110) $ $ (-530)) 117)) (-3166 (($ (-530)) 127)) (-1489 (((-597 $) $ (-137)) 110) (((-597 $) $ (-134)) 109)) (-2741 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-795)))) (-1627 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| (-137) (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 (((-137) $ (-530) (-137)) 52 (|has| $ (-6 -4270))) (((-137) $ (-1148 (-530)) (-137)) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-2865 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3782 (($ $ (-1148 (-530)) $) 114)) (-3077 (($ $) 78 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ (-137) $) 77 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4269)))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4269)))) (-3592 (((-137) $ (-530) (-137)) 53 (|has| $ (-6 -4270)))) (-3532 (((-137) $ (-530)) 51)) (-3034 (((-110) $ $) 119)) (-2027 (((-530) (-1 (-110) (-137)) $) 97) (((-530) (-137) $) 96 (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) 95 (|has| (-137) (-1027))) (((-530) $ $ (-530)) 113) (((-530) (-134) $ (-530)) 112)) (-3779 (((-597 (-137)) $) 30 (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-137)) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| (-137) (-795)))) (-3683 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| (-137) (-795)))) (-3754 (((-110) $ $ (-137)) 115)) (-2918 (((-719) $ $ (-137)) 116)) (-3583 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-2794 (($ $) 122)) (-1502 (($ $) 123)) (-2763 (((-110) $ (-719)) 10)) (-2875 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-1424 (((-1082) $) 22)) (-4028 (($ (-137) $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21)) (-3048 (((-137) $) 42 (|has| (-530) (-795)))) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-1522 (($ $ (-137)) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2261 (((-597 (-137)) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 (((-137) $ (-530) (-137)) 50) (((-137) $ (-530)) 49) (($ $ (-1148 (-530))) 63) (($ $ $) 102)) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-2632 (((-719) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4269))) (((-719) (-137) $) 28 (-12 (|has| (-137) (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| (-137) (-572 (-506))))) (-2377 (($ (-597 (-137))) 70)) (-3483 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (($ (-137)) 111) (((-804) $) 18)) (-3889 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4269)))) (-3987 (((-1082) $) 131) (((-1082) $ (-110)) 130) (((-1186) (-770) $) 129) (((-1186) (-770) $ (-110)) 128)) (-2306 (((-110) $ $) 84 (|has| (-137) (-795)))) (-2284 (((-110) $ $) 83 (|has| (-137) (-795)))) (-2248 (((-110) $ $) 20)) (-2297 (((-110) $ $) 85 (|has| (-137) (-795)))) (-2272 (((-110) $ $) 82 (|has| (-137) (-795)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-1081) (-133)) (T -1081))
-((-3166 (*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1081)))))
-(-13 (-1068) (-1027) (-776) (-10 -8 (-15 -3166 ($ (-530)))))
-(((-33) . T) ((-99) . T) ((-571 (-804)) . T) ((-144 #0=(-137)) . T) ((-572 (-506)) |has| (-137) (-572 (-506))) ((-268 #1=(-530) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-354 #0#) . T) ((-468 #0#) . T) ((-563 #1# #0#) . T) ((-491 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))) ((-602 #0#) . T) ((-19 #0#) . T) ((-776) . T) ((-795) |has| (-137) (-795)) ((-1027) . T) ((-1068) . T) ((-1135) . T))
-((-2352 (((-110) $ $) NIL)) (-2289 (($ $) NIL)) (-3910 (($ $) NIL)) (-2879 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-3014 (((-110) $ $) NIL)) (-2996 (((-110) $ $ (-530)) NIL)) (-3166 (($ (-530)) 7)) (-1489 (((-597 $) $ (-137)) NIL) (((-597 $) $ (-134)) NIL)) (-2741 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-795)))) (-1627 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| (-137) (-795))))) (-1307 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4270))) (((-137) $ (-1148 (-530)) (-137)) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-2865 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3782 (($ $ (-1148 (-530)) $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2383 (($ (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4269))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3592 (((-137) $ (-530) (-137)) NIL (|has| $ (-6 -4270)))) (-3532 (((-137) $ (-530)) NIL)) (-3034 (((-110) $ $) NIL)) (-2027 (((-530) (-1 (-110) (-137)) $) NIL) (((-530) (-137) $) NIL (|has| (-137) (-1027))) (((-530) (-137) $ (-530)) NIL (|has| (-137) (-1027))) (((-530) $ $ (-530)) NIL) (((-530) (-134) $ (-530)) NIL)) (-3779 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-3538 (($ (-719) (-137)) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| (-137) (-795)))) (-3683 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-795)))) (-2395 (((-597 (-137)) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| (-137) (-795)))) (-3754 (((-110) $ $ (-137)) NIL)) (-2918 (((-719) $ $ (-137)) NIL)) (-3583 (($ (-1 (-137) (-137)) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-2794 (($ $) NIL)) (-1502 (($ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-2875 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1424 (((-1082) $) NIL)) (-4028 (($ (-137) $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-137) $) NIL (|has| (-530) (-795)))) (-1437 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-1522 (($ $ (-137)) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027)))) (($ $ (-597 (-137)) (-597 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-2261 (((-597 (-137)) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 (((-137) $ (-530) (-137)) NIL) (((-137) $ (-530)) NIL) (($ $ (-1148 (-530))) NIL) (($ $ $) NIL)) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-2632 (((-719) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269))) (((-719) (-137) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-137) (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-137) (-572 (-506))))) (-2377 (($ (-597 (-137))) NIL)) (-3483 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (($ (-137)) NIL) (((-804) $) NIL)) (-3889 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4269)))) (-3987 (((-1082) $) 18) (((-1082) $ (-110)) 20) (((-1186) (-770) $) 21) (((-1186) (-770) $ (-110)) 22)) (-2306 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2284 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2272 (((-110) $ $) NIL (|has| (-137) (-795)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1082) (-1081)) (T -1082))
-NIL
-(-1081)
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-2097 (((-1186) $ (-1082) (-1082)) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-1082) |#1|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#1| "failed") (-1082) $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#1| "failed") (-1082) $) NIL)) (-2383 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-1082) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-1082)) NIL)) (-3779 (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-1082) $) NIL (|has| (-1082) (-795)))) (-2395 (((-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-1082) $) NIL (|has| (-1082) (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3282 (((-597 (-1082)) $) NIL)) (-3718 (((-110) (-1082) $) NIL)) (-1723 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-3567 (((-597 (-1082)) $) NIL)) (-1927 (((-110) (-1082) $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-3048 ((|#1| $) NIL (|has| (-1082) (-795)))) (-1437 (((-3 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) "failed") (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL (-12 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-291 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-1082)) NIL) ((|#1| $ (-1082) |#1|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-571 (-804))) (|has| |#1| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 (-1082)) (|:| -1874 |#1|)) (-1027)) (|has| |#1| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1083 |#1|) (-13 (-1112 (-1082) |#1|) (-10 -7 (-6 -4269))) (-1027)) (T -1083))
-NIL
-(-13 (-1112 (-1082) |#1|) (-10 -7 (-6 -4269)))
-((-1494 (((-1080 |#1|) (-1080 |#1|)) 77)) (-2707 (((-3 (-1080 |#1|) "failed") (-1080 |#1|)) 37)) (-2455 (((-1080 |#1|) (-388 (-530)) (-1080 |#1|)) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4003 (((-1080 |#1|) |#1| (-1080 |#1|)) 127 (|has| |#1| (-344)))) (-1273 (((-1080 |#1|) (-1080 |#1|)) 90)) (-1294 (((-1080 (-530)) (-530)) 57)) (-4058 (((-1080 |#1|) (-1080 (-1080 |#1|))) 109 (|has| |#1| (-37 (-388 (-530)))))) (-2427 (((-1080 |#1|) (-530) (-530) (-1080 |#1|)) 95)) (-3940 (((-1080 |#1|) |#1| (-530)) 45)) (-3617 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 60)) (-1852 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 124 (|has| |#1| (-344)))) (-1530 (((-1080 |#1|) |#1| (-1 (-1080 |#1|))) 108 (|has| |#1| (-37 (-388 (-530)))))) (-1378 (((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|))) 125 (|has| |#1| (-344)))) (-4078 (((-1080 |#1|) (-1080 |#1|)) 89)) (-2677 (((-1080 |#1|) (-1080 |#1|)) 76)) (-3635 (((-1080 |#1|) (-530) (-530) (-1080 |#1|)) 96)) (-1545 (((-1080 |#1|) |#1| (-1080 |#1|)) 105 (|has| |#1| (-37 (-388 (-530)))))) (-2146 (((-1080 (-530)) (-530)) 56)) (-3967 (((-1080 |#1|) |#1|) 59)) (-4090 (((-1080 |#1|) (-1080 |#1|) (-530) (-530)) 92)) (-1703 (((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|)) 66)) (-3551 (((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|)) 35)) (-2795 (((-1080 |#1|) (-1080 |#1|)) 91)) (-4098 (((-1080 |#1|) (-1080 |#1|) |#1|) 71)) (-2018 (((-1080 |#1|) (-1080 |#1|)) 62)) (-1225 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 72)) (-2366 (((-1080 |#1|) |#1|) 67)) (-2642 (((-1080 |#1|) (-1080 (-1080 |#1|))) 82)) (-2364 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 36)) (-2351 (((-1080 |#1|) (-1080 |#1|)) 21) (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 23)) (-2339 (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 17)) (* (((-1080 |#1|) (-1080 |#1|) |#1|) 29) (((-1080 |#1|) |#1| (-1080 |#1|)) 26) (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 27)))
-(((-1084 |#1|) (-10 -7 (-15 -2339 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2351 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2351 ((-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -3551 ((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|))) (-15 -2364 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2707 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3940 ((-1080 |#1|) |#1| (-530))) (-15 -2146 ((-1080 (-530)) (-530))) (-15 -1294 ((-1080 (-530)) (-530))) (-15 -3967 ((-1080 |#1|) |#1|)) (-15 -3617 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2018 ((-1080 |#1|) (-1080 |#1|))) (-15 -1703 ((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|))) (-15 -2366 ((-1080 |#1|) |#1|)) (-15 -4098 ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -1225 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2677 ((-1080 |#1|) (-1080 |#1|))) (-15 -1494 ((-1080 |#1|) (-1080 |#1|))) (-15 -2642 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -4078 ((-1080 |#1|) (-1080 |#1|))) (-15 -1273 ((-1080 |#1|) (-1080 |#1|))) (-15 -2795 ((-1080 |#1|) (-1080 |#1|))) (-15 -4090 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))) (-15 -2427 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (-15 -3635 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 -1530 ((-1080 |#1|) |#1| (-1 (-1080 |#1|)))) (-15 -4058 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -2455 ((-1080 |#1|) (-388 (-530)) (-1080 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1852 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1378 ((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|)))) (-15 -4003 ((-1080 |#1|) |#1| (-1080 |#1|)))) |%noBranch|)) (-984)) (T -1084))
-((-4003 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1378 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-530))) (-5 *5 (-1 (-1080 *4))) (-4 *4 (-344)) (-4 *4 (-984)) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)))) (-1852 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2455 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *4)) (-4 *4 (-37 *3)) (-4 *4 (-984)) (-5 *3 (-388 (-530))) (-5 *1 (-1084 *4)))) (-4058 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))) (-1530 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1080 *3))) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))) (-1545 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3635 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-2427 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-4090 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-2795 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1273 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-4078 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2642 (*1 *2 *3) (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)) (-4 *4 (-984)))) (-1494 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2677 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-1225 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-4098 (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2366 (*1 *2 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-1703 (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *4)) (-5 *3 (-1 *4 (-530))) (-4 *4 (-984)) (-5 *1 (-1084 *4)))) (-2018 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3617 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3967 (*1 *2 *3) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-1294 (*1 *2 *3) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984)) (-5 *3 (-530)))) (-2146 (*1 *2 *3) (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984)) (-5 *3 (-530)))) (-3940 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))) (-2707 (*1 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2364 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-3551 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2351 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2351 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))) (-2339 (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
-(-10 -7 (-15 -2339 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2351 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2351 ((-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 * ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 * ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -3551 ((-3 (-1080 |#1|) "failed") (-1080 |#1|) (-1080 |#1|))) (-15 -2364 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2707 ((-3 (-1080 |#1|) "failed") (-1080 |#1|))) (-15 -3940 ((-1080 |#1|) |#1| (-530))) (-15 -2146 ((-1080 (-530)) (-530))) (-15 -1294 ((-1080 (-530)) (-530))) (-15 -3967 ((-1080 |#1|) |#1|)) (-15 -3617 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2018 ((-1080 |#1|) (-1080 |#1|))) (-15 -1703 ((-1080 |#1|) (-1 |#1| (-530)) (-1080 |#1|))) (-15 -2366 ((-1080 |#1|) |#1|)) (-15 -4098 ((-1080 |#1|) (-1080 |#1|) |#1|)) (-15 -1225 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2677 ((-1080 |#1|) (-1080 |#1|))) (-15 -1494 ((-1080 |#1|) (-1080 |#1|))) (-15 -2642 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -4078 ((-1080 |#1|) (-1080 |#1|))) (-15 -1273 ((-1080 |#1|) (-1080 |#1|))) (-15 -2795 ((-1080 |#1|) (-1080 |#1|))) (-15 -4090 ((-1080 |#1|) (-1080 |#1|) (-530) (-530))) (-15 -2427 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (-15 -3635 ((-1080 |#1|) (-530) (-530) (-1080 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ((-1080 |#1|) |#1| (-1080 |#1|))) (-15 -1530 ((-1080 |#1|) |#1| (-1 (-1080 |#1|)))) (-15 -4058 ((-1080 |#1|) (-1080 (-1080 |#1|)))) (-15 -2455 ((-1080 |#1|) (-388 (-530)) (-1080 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1852 ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -1378 ((-1080 |#1|) (-1 |#1| (-530)) |#1| (-1 (-1080 |#1|)))) (-15 -4003 ((-1080 |#1|) |#1| (-1080 |#1|)))) |%noBranch|))
-((-2386 (((-1080 |#1|) (-1080 |#1|)) 57)) (-2244 (((-1080 |#1|) (-1080 |#1|)) 39)) (-2360 (((-1080 |#1|) (-1080 |#1|)) 53)) (-2219 (((-1080 |#1|) (-1080 |#1|)) 35)) (-2409 (((-1080 |#1|) (-1080 |#1|)) 60)) (-2269 (((-1080 |#1|) (-1080 |#1|)) 42)) (-2168 (((-1080 |#1|) (-1080 |#1|)) 31)) (-2853 (((-1080 |#1|) (-1080 |#1|)) 27)) (-2421 (((-1080 |#1|) (-1080 |#1|)) 61)) (-2281 (((-1080 |#1|) (-1080 |#1|)) 43)) (-2398 (((-1080 |#1|) (-1080 |#1|)) 58)) (-2254 (((-1080 |#1|) (-1080 |#1|)) 40)) (-2373 (((-1080 |#1|) (-1080 |#1|)) 55)) (-2231 (((-1080 |#1|) (-1080 |#1|)) 37)) (-2459 (((-1080 |#1|) (-1080 |#1|)) 65)) (-2314 (((-1080 |#1|) (-1080 |#1|)) 47)) (-2434 (((-1080 |#1|) (-1080 |#1|)) 63)) (-2293 (((-1080 |#1|) (-1080 |#1|)) 45)) (-2485 (((-1080 |#1|) (-1080 |#1|)) 68)) (-2334 (((-1080 |#1|) (-1080 |#1|)) 50)) (-3632 (((-1080 |#1|) (-1080 |#1|)) 69)) (-2347 (((-1080 |#1|) (-1080 |#1|)) 51)) (-2472 (((-1080 |#1|) (-1080 |#1|)) 67)) (-2324 (((-1080 |#1|) (-1080 |#1|)) 49)) (-2446 (((-1080 |#1|) (-1080 |#1|)) 66)) (-2304 (((-1080 |#1|) (-1080 |#1|)) 48)) (** (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 33)))
-(((-1085 |#1|) (-10 -7 (-15 -2853 ((-1080 |#1|) (-1080 |#1|))) (-15 -2168 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2219 ((-1080 |#1|) (-1080 |#1|))) (-15 -2231 ((-1080 |#1|) (-1080 |#1|))) (-15 -2244 ((-1080 |#1|) (-1080 |#1|))) (-15 -2254 ((-1080 |#1|) (-1080 |#1|))) (-15 -2269 ((-1080 |#1|) (-1080 |#1|))) (-15 -2281 ((-1080 |#1|) (-1080 |#1|))) (-15 -2293 ((-1080 |#1|) (-1080 |#1|))) (-15 -2304 ((-1080 |#1|) (-1080 |#1|))) (-15 -2314 ((-1080 |#1|) (-1080 |#1|))) (-15 -2324 ((-1080 |#1|) (-1080 |#1|))) (-15 -2334 ((-1080 |#1|) (-1080 |#1|))) (-15 -2347 ((-1080 |#1|) (-1080 |#1|))) (-15 -2360 ((-1080 |#1|) (-1080 |#1|))) (-15 -2373 ((-1080 |#1|) (-1080 |#1|))) (-15 -2386 ((-1080 |#1|) (-1080 |#1|))) (-15 -2398 ((-1080 |#1|) (-1080 |#1|))) (-15 -2409 ((-1080 |#1|) (-1080 |#1|))) (-15 -2421 ((-1080 |#1|) (-1080 |#1|))) (-15 -2434 ((-1080 |#1|) (-1080 |#1|))) (-15 -2446 ((-1080 |#1|) (-1080 |#1|))) (-15 -2459 ((-1080 |#1|) (-1080 |#1|))) (-15 -2472 ((-1080 |#1|) (-1080 |#1|))) (-15 -2485 ((-1080 |#1|) (-1080 |#1|))) (-15 -3632 ((-1080 |#1|) (-1080 |#1|)))) (-37 (-388 (-530)))) (T -1085))
-((-3632 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2472 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2446 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2421 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2254 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2168 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1085 *3)))))
-(-10 -7 (-15 -2853 ((-1080 |#1|) (-1080 |#1|))) (-15 -2168 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2219 ((-1080 |#1|) (-1080 |#1|))) (-15 -2231 ((-1080 |#1|) (-1080 |#1|))) (-15 -2244 ((-1080 |#1|) (-1080 |#1|))) (-15 -2254 ((-1080 |#1|) (-1080 |#1|))) (-15 -2269 ((-1080 |#1|) (-1080 |#1|))) (-15 -2281 ((-1080 |#1|) (-1080 |#1|))) (-15 -2293 ((-1080 |#1|) (-1080 |#1|))) (-15 -2304 ((-1080 |#1|) (-1080 |#1|))) (-15 -2314 ((-1080 |#1|) (-1080 |#1|))) (-15 -2324 ((-1080 |#1|) (-1080 |#1|))) (-15 -2334 ((-1080 |#1|) (-1080 |#1|))) (-15 -2347 ((-1080 |#1|) (-1080 |#1|))) (-15 -2360 ((-1080 |#1|) (-1080 |#1|))) (-15 -2373 ((-1080 |#1|) (-1080 |#1|))) (-15 -2386 ((-1080 |#1|) (-1080 |#1|))) (-15 -2398 ((-1080 |#1|) (-1080 |#1|))) (-15 -2409 ((-1080 |#1|) (-1080 |#1|))) (-15 -2421 ((-1080 |#1|) (-1080 |#1|))) (-15 -2434 ((-1080 |#1|) (-1080 |#1|))) (-15 -2446 ((-1080 |#1|) (-1080 |#1|))) (-15 -2459 ((-1080 |#1|) (-1080 |#1|))) (-15 -2472 ((-1080 |#1|) (-1080 |#1|))) (-15 -2485 ((-1080 |#1|) (-1080 |#1|))) (-15 -3632 ((-1080 |#1|) (-1080 |#1|))))
-((-2386 (((-1080 |#1|) (-1080 |#1|)) 100)) (-2244 (((-1080 |#1|) (-1080 |#1|)) 64)) (-1603 (((-2 (|:| -2360 (-1080 |#1|)) (|:| -2373 (-1080 |#1|))) (-1080 |#1|)) 96)) (-2360 (((-1080 |#1|) (-1080 |#1|)) 97)) (-2087 (((-2 (|:| -2219 (-1080 |#1|)) (|:| -2231 (-1080 |#1|))) (-1080 |#1|)) 53)) (-2219 (((-1080 |#1|) (-1080 |#1|)) 54)) (-2409 (((-1080 |#1|) (-1080 |#1|)) 102)) (-2269 (((-1080 |#1|) (-1080 |#1|)) 71)) (-2168 (((-1080 |#1|) (-1080 |#1|)) 39)) (-2853 (((-1080 |#1|) (-1080 |#1|)) 36)) (-2421 (((-1080 |#1|) (-1080 |#1|)) 103)) (-2281 (((-1080 |#1|) (-1080 |#1|)) 72)) (-2398 (((-1080 |#1|) (-1080 |#1|)) 101)) (-2254 (((-1080 |#1|) (-1080 |#1|)) 67)) (-2373 (((-1080 |#1|) (-1080 |#1|)) 98)) (-2231 (((-1080 |#1|) (-1080 |#1|)) 55)) (-2459 (((-1080 |#1|) (-1080 |#1|)) 111)) (-2314 (((-1080 |#1|) (-1080 |#1|)) 86)) (-2434 (((-1080 |#1|) (-1080 |#1|)) 105)) (-2293 (((-1080 |#1|) (-1080 |#1|)) 82)) (-2485 (((-1080 |#1|) (-1080 |#1|)) 115)) (-2334 (((-1080 |#1|) (-1080 |#1|)) 90)) (-3632 (((-1080 |#1|) (-1080 |#1|)) 117)) (-2347 (((-1080 |#1|) (-1080 |#1|)) 92)) (-2472 (((-1080 |#1|) (-1080 |#1|)) 113)) (-2324 (((-1080 |#1|) (-1080 |#1|)) 88)) (-2446 (((-1080 |#1|) (-1080 |#1|)) 107)) (-2304 (((-1080 |#1|) (-1080 |#1|)) 84)) (** (((-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) 40)))
-(((-1086 |#1|) (-10 -7 (-15 -2853 ((-1080 |#1|) (-1080 |#1|))) (-15 -2168 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2087 ((-2 (|:| -2219 (-1080 |#1|)) (|:| -2231 (-1080 |#1|))) (-1080 |#1|))) (-15 -2219 ((-1080 |#1|) (-1080 |#1|))) (-15 -2231 ((-1080 |#1|) (-1080 |#1|))) (-15 -2244 ((-1080 |#1|) (-1080 |#1|))) (-15 -2254 ((-1080 |#1|) (-1080 |#1|))) (-15 -2269 ((-1080 |#1|) (-1080 |#1|))) (-15 -2281 ((-1080 |#1|) (-1080 |#1|))) (-15 -2293 ((-1080 |#1|) (-1080 |#1|))) (-15 -2304 ((-1080 |#1|) (-1080 |#1|))) (-15 -2314 ((-1080 |#1|) (-1080 |#1|))) (-15 -2324 ((-1080 |#1|) (-1080 |#1|))) (-15 -2334 ((-1080 |#1|) (-1080 |#1|))) (-15 -2347 ((-1080 |#1|) (-1080 |#1|))) (-15 -1603 ((-2 (|:| -2360 (-1080 |#1|)) (|:| -2373 (-1080 |#1|))) (-1080 |#1|))) (-15 -2360 ((-1080 |#1|) (-1080 |#1|))) (-15 -2373 ((-1080 |#1|) (-1080 |#1|))) (-15 -2386 ((-1080 |#1|) (-1080 |#1|))) (-15 -2398 ((-1080 |#1|) (-1080 |#1|))) (-15 -2409 ((-1080 |#1|) (-1080 |#1|))) (-15 -2421 ((-1080 |#1|) (-1080 |#1|))) (-15 -2434 ((-1080 |#1|) (-1080 |#1|))) (-15 -2446 ((-1080 |#1|) (-1080 |#1|))) (-15 -2459 ((-1080 |#1|) (-1080 |#1|))) (-15 -2472 ((-1080 |#1|) (-1080 |#1|))) (-15 -2485 ((-1080 |#1|) (-1080 |#1|))) (-15 -3632 ((-1080 |#1|) (-1080 |#1|)))) (-37 (-388 (-530)))) (T -1086))
-((-3632 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2485 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2472 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2459 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2446 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2434 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2421 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2409 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2398 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2386 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2373 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2360 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-1603 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-2 (|:| -2360 (-1080 *4)) (|:| -2373 (-1080 *4)))) (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))) (-2347 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2334 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2324 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2314 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2304 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2281 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2269 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2254 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2231 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2219 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2087 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-2 (|:| -2219 (-1080 *4)) (|:| -2231 (-1080 *4)))) (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2168 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))) (-2853 (*1 *2 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1086 *3)))))
-(-10 -7 (-15 -2853 ((-1080 |#1|) (-1080 |#1|))) (-15 -2168 ((-1080 |#1|) (-1080 |#1|))) (-15 ** ((-1080 |#1|) (-1080 |#1|) (-1080 |#1|))) (-15 -2087 ((-2 (|:| -2219 (-1080 |#1|)) (|:| -2231 (-1080 |#1|))) (-1080 |#1|))) (-15 -2219 ((-1080 |#1|) (-1080 |#1|))) (-15 -2231 ((-1080 |#1|) (-1080 |#1|))) (-15 -2244 ((-1080 |#1|) (-1080 |#1|))) (-15 -2254 ((-1080 |#1|) (-1080 |#1|))) (-15 -2269 ((-1080 |#1|) (-1080 |#1|))) (-15 -2281 ((-1080 |#1|) (-1080 |#1|))) (-15 -2293 ((-1080 |#1|) (-1080 |#1|))) (-15 -2304 ((-1080 |#1|) (-1080 |#1|))) (-15 -2314 ((-1080 |#1|) (-1080 |#1|))) (-15 -2324 ((-1080 |#1|) (-1080 |#1|))) (-15 -2334 ((-1080 |#1|) (-1080 |#1|))) (-15 -2347 ((-1080 |#1|) (-1080 |#1|))) (-15 -1603 ((-2 (|:| -2360 (-1080 |#1|)) (|:| -2373 (-1080 |#1|))) (-1080 |#1|))) (-15 -2360 ((-1080 |#1|) (-1080 |#1|))) (-15 -2373 ((-1080 |#1|) (-1080 |#1|))) (-15 -2386 ((-1080 |#1|) (-1080 |#1|))) (-15 -2398 ((-1080 |#1|) (-1080 |#1|))) (-15 -2409 ((-1080 |#1|) (-1080 |#1|))) (-15 -2421 ((-1080 |#1|) (-1080 |#1|))) (-15 -2434 ((-1080 |#1|) (-1080 |#1|))) (-15 -2446 ((-1080 |#1|) (-1080 |#1|))) (-15 -2459 ((-1080 |#1|) (-1080 |#1|))) (-15 -2472 ((-1080 |#1|) (-1080 |#1|))) (-15 -2485 ((-1080 |#1|) (-1080 |#1|))) (-15 -3632 ((-1080 |#1|) (-1080 |#1|))))
-((-1875 (((-899 |#2|) |#2| |#2|) 35)) (-1239 ((|#2| |#2| |#1|) 19 (|has| |#1| (-289)))))
-(((-1087 |#1| |#2|) (-10 -7 (-15 -1875 ((-899 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -1239 (|#2| |#2| |#1|)) |%noBranch|)) (-522) (-1157 |#1|)) (T -1087))
-((-1239 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-1087 *3 *2)) (-4 *2 (-1157 *3)))) (-1875 (*1 *2 *3 *3) (-12 (-4 *4 (-522)) (-5 *2 (-899 *3)) (-5 *1 (-1087 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -1875 ((-899 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -1239 (|#2| |#2| |#1|)) |%noBranch|))
-((-2352 (((-110) $ $) NIL)) (-2102 (($ $ (-597 (-719))) 67)) (-3082 (($) 26)) (-1873 (($ $) 42)) (-2026 (((-597 $) $) 51)) (-2073 (((-110) $) 16)) (-3733 (((-597 (-884 |#2|)) $) 74)) (-3360 (($ $) 68)) (-1601 (((-719) $) 37)) (-3538 (($) 25)) (-3044 (($ $ (-597 (-719)) (-884 |#2|)) 60) (($ $ (-597 (-719)) (-719)) 61) (($ $ (-719) (-884 |#2|)) 63)) (-3683 (($ $ $) 48) (($ (-597 $)) 50)) (-1679 (((-719) $) 75)) (-3615 (((-110) $) 15)) (-1424 (((-1082) $) NIL)) (-3386 (((-110) $) 18)) (-2624 (((-1046) $) NIL)) (-3035 (((-161) $) 73)) (-3507 (((-884 |#2|) $) 69)) (-3739 (((-719) $) 70)) (-1316 (((-110) $) 72)) (-1879 (($ $ (-597 (-719)) (-161)) 66)) (-3404 (($ $) 43)) (-2366 (((-804) $) 86)) (-3389 (($ $ (-597 (-719)) (-110)) 65)) (-2557 (((-597 $) $) 11)) (-1838 (($ $ (-719)) 36)) (-1628 (($ $) 32)) (-2572 (($ $ $ (-884 |#2|) (-719)) 56)) (-3497 (($ $ (-884 |#2|)) 55)) (-2100 (($ $ (-597 (-719)) (-884 |#2|)) 54) (($ $ (-597 (-719)) (-719)) 58) (((-719) $ (-884 |#2|)) 59)) (-2248 (((-110) $ $) 80)))
-(((-1088 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -3615 ((-110) $)) (-15 -2073 ((-110) $)) (-15 -3386 ((-110) $)) (-15 -3538 ($)) (-15 -3082 ($)) (-15 -1628 ($ $)) (-15 -1838 ($ $ (-719))) (-15 -2557 ((-597 $) $)) (-15 -1601 ((-719) $)) (-15 -1873 ($ $)) (-15 -3404 ($ $)) (-15 -3683 ($ $ $)) (-15 -3683 ($ (-597 $))) (-15 -2026 ((-597 $) $)) (-15 -2100 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -3497 ($ $ (-884 |#2|))) (-15 -2572 ($ $ $ (-884 |#2|) (-719))) (-15 -3044 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -2100 ($ $ (-597 (-719)) (-719))) (-15 -3044 ($ $ (-597 (-719)) (-719))) (-15 -2100 ((-719) $ (-884 |#2|))) (-15 -3044 ($ $ (-719) (-884 |#2|))) (-15 -3389 ($ $ (-597 (-719)) (-110))) (-15 -1879 ($ $ (-597 (-719)) (-161))) (-15 -2102 ($ $ (-597 (-719)))) (-15 -3507 ((-884 |#2|) $)) (-15 -3739 ((-719) $)) (-15 -1316 ((-110) $)) (-15 -3035 ((-161) $)) (-15 -1679 ((-719) $)) (-15 -3360 ($ $)) (-15 -3733 ((-597 (-884 |#2|)) $)))) (-862) (-984)) (T -1088))
-((-3615 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2073 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3386 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3538 (*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3082 (*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-1628 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-1838 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2557 (*1 *2 *1) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1601 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1873 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3404 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3683 (*1 *1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3683 (*1 *1 *2) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2026 (*1 *2 *1) (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-2100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3497 (*1 *1 *1 *2) (-12 (-5 *2 (-884 *4)) (-4 *4 (-984)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)))) (-2572 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-884 *5)) (-5 *3 (-719)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-2100 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-3044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-2100 (*1 *2 *1 *3) (-12 (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *2 (-719)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))) (-3389 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-110)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-1879 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-597 (-719))) (-5 *3 (-161)) (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)) (-4 *5 (-984)))) (-2102 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3507 (*1 *2 *1) (-12 (-5 *2 (-884 *4)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3739 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1316 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3035 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-1679 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))) (-3360 (*1 *1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))) (-3733 (*1 *2 *1) (-12 (-5 *2 (-597 (-884 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862)) (-4 *4 (-984)))))
-(-13 (-1027) (-10 -8 (-15 -3615 ((-110) $)) (-15 -2073 ((-110) $)) (-15 -3386 ((-110) $)) (-15 -3538 ($)) (-15 -3082 ($)) (-15 -1628 ($ $)) (-15 -1838 ($ $ (-719))) (-15 -2557 ((-597 $) $)) (-15 -1601 ((-719) $)) (-15 -1873 ($ $)) (-15 -3404 ($ $)) (-15 -3683 ($ $ $)) (-15 -3683 ($ (-597 $))) (-15 -2026 ((-597 $) $)) (-15 -2100 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -3497 ($ $ (-884 |#2|))) (-15 -2572 ($ $ $ (-884 |#2|) (-719))) (-15 -3044 ($ $ (-597 (-719)) (-884 |#2|))) (-15 -2100 ($ $ (-597 (-719)) (-719))) (-15 -3044 ($ $ (-597 (-719)) (-719))) (-15 -2100 ((-719) $ (-884 |#2|))) (-15 -3044 ($ $ (-719) (-884 |#2|))) (-15 -3389 ($ $ (-597 (-719)) (-110))) (-15 -1879 ($ $ (-597 (-719)) (-161))) (-15 -2102 ($ $ (-597 (-719)))) (-15 -3507 ((-884 |#2|) $)) (-15 -3739 ((-719) $)) (-15 -1316 ((-110) $)) (-15 -3035 ((-161) $)) (-15 -1679 ((-719) $)) (-15 -3360 ($ $)) (-15 -3733 ((-597 (-884 |#2|)) $))))
-((-2352 (((-110) $ $) NIL)) (-1491 ((|#2| $) 11)) (-1478 ((|#1| $) 10)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2377 (($ |#1| |#2|) 9)) (-2366 (((-804) $) 16)) (-2248 (((-110) $ $) NIL)))
-(((-1089 |#1| |#2|) (-13 (-1027) (-10 -8 (-15 -2377 ($ |#1| |#2|)) (-15 -1478 (|#1| $)) (-15 -1491 (|#2| $)))) (-1027) (-1027)) (T -1089))
-((-2377 (*1 *1 *2 *3) (-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-1478 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1027)))) (-1491 (*1 *2 *1) (-12 (-4 *2 (-1027)) (-5 *1 (-1089 *3 *2)) (-4 *3 (-1027)))))
-(-13 (-1027) (-10 -8 (-15 -2377 ($ |#1| |#2|)) (-15 -1478 (|#1| $)) (-15 -1491 (|#2| $))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 11)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-3446 (($ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1276 (((-110) $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1951 (($ $ (-530)) NIL) (($ $ (-530) (-530)) 66)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) NIL)) (-3045 (((-1097 |#1| |#2| |#3|) $) 36)) (-3666 (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 29)) (-2805 (((-1097 |#1| |#2| |#3|) $) 30)) (-2386 (($ $) 107 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 83 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) 103 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 79 (|has| |#1| (-37 (-388 (-530)))))) (-1867 (((-530) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) 111 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 87 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1099) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-530) "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-2585 (((-1097 |#1| |#2| |#3|) $) 131) (((-1099) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-530) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-3239 (($ $) 34) (($ (-530) $) 35)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-1097 |#1| |#2| |#3|)) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-1097 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1097 |#1| |#2| |#3|)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344))))) (-2707 (((-3 $ "failed") $) 48)) (-2874 (((-388 (-893 |#1|)) $ (-530)) 65 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 67 (|has| |#1| (-522)))) (-1364 (($) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-2514 (((-110) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3555 (((-110) $) 25)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-827 (-530))) (|has| |#1| (-344)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-827 (-360))) (|has| |#1| (-344))))) (-2031 (((-530) $) NIL) (((-530) $ (-530)) 24)) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL (|has| |#1| (-344)))) (-1918 (((-1097 |#1| |#2| |#3|) $) 38 (|has| |#1| (-344)))) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2972 (((-3 $ "failed") $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))))) (-2166 (((-110) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3081 (($ $ (-862)) NIL)) (-4219 (($ (-1 |#1| (-530)) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-530)) 18) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-2508 (($ $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-1817 (($ $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2168 (($ $) 72 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2817 (($ (-530) (-1097 |#1| |#2| |#3|)) 33)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 70 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 71 (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1979 (($ $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-3175 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-530)) 145)) (-3551 (((-3 $ "failed") $ $) 49 (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) 73 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-491 (-1099) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-491 (-1099) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-276 (-1097 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1097 |#1| |#2| |#3|)) (-597 (-1097 |#1| |#2| |#3|))) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-291 (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) NIL) (($ $ $) 54 (|has| (-530) (-1039))) (($ $ (-1097 |#1| |#2| |#3|)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-268 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1177 |#2|)) 51) (($ $ (-719)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 50 (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-1269 (($ $) NIL (|has| |#1| (-344)))) (-1928 (((-1097 |#1| |#2| |#3|) $) 41 (|has| |#1| (-344)))) (-1429 (((-530) $) 37)) (-2421 (($ $) 113 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 89 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 109 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 85 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 105 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 81 (|has| |#1| (-37 (-388 (-530)))))) (-3260 (((-506) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-506))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) 149) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1097 |#1| |#2| |#3|)) 27) (($ (-1177 |#2|)) 23) (($ (-1099)) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (($ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522)))) (($ (-388 (-530))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-530))))))) (-4085 ((|#1| $ (-530)) 68)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 12)) (-2748 (((-1097 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2459 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 95 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-2434 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 91 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 99 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 101 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 97 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 93 (|has| |#1| (-37 (-388 (-530)))))) (-3934 (($ $) NIL (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3080 (($) 20 T CONST)) (-3093 (($) 16 T CONST)) (-3340 (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2306 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2284 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2272 (((-110) $ $) NIL (-1461 (-12 (|has| (-1097 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1097 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 44 (|has| |#1| (-344))) (($ (-1097 |#1| |#2| |#3|) (-1097 |#1| |#2| |#3|)) 45 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 21)) (** (($ $ (-862)) NIL) (($ $ (-719)) 53) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) 74 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 128 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1097 |#1| |#2| |#3|)) 43 (|has| |#1| (-344))) (($ (-1097 |#1| |#2| |#3|) $) 42 (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1090 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1090))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1143 |#1| (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-3426 ((|#2| |#2| (-1020 |#2|)) 26) ((|#2| |#2| (-1099)) 28)))
-(((-1091 |#1| |#2|) (-10 -7 (-15 -3426 (|#2| |#2| (-1099))) (-15 -3426 (|#2| |#2| (-1020 |#2|)))) (-13 (-522) (-795) (-975 (-530)) (-593 (-530))) (-13 (-411 |#1|) (-151) (-27) (-1121))) (T -1091))
-((-3426 (*1 *2 *2 *3) (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1121))) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1091 *4 *2)))) (-3426 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1091 *4 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1121))))))
-(-10 -7 (-15 -3426 (|#2| |#2| (-1099))) (-15 -3426 (|#2| |#2| (-1020 |#2|))))
-((-3426 (((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|)))) 31) (((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|))) 44) (((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099)) 33) (((-388 (-893 |#1|)) (-893 |#1|) (-1099)) 36)))
-(((-1092 |#1|) (-10 -7 (-15 -3426 ((-388 (-893 |#1|)) (-893 |#1|) (-1099))) (-15 -3426 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -3426 ((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|)))) (-15 -3426 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|)))))) (-13 (-522) (-795) (-975 (-530)))) (T -1092))
-((-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5))) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-3 *3 (-297 *5))) (-5 *1 (-1092 *5)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1020 (-893 *5))) (-5 *3 (-893 *5)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-388 *3)) (-5 *1 (-1092 *5)))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-3 (-388 (-893 *5)) (-297 *5))) (-5 *1 (-1092 *5)) (-5 *3 (-388 (-893 *5))))) (-3426 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-388 (-893 *5))) (-5 *1 (-1092 *5)) (-5 *3 (-893 *5)))))
-(-10 -7 (-15 -3426 ((-388 (-893 |#1|)) (-893 |#1|) (-1099))) (-15 -3426 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1099))) (-15 -3426 ((-388 (-893 |#1|)) (-893 |#1|) (-1020 (-893 |#1|)))) (-15 -3426 ((-3 (-388 (-893 |#1|)) (-297 |#1|)) (-388 (-893 |#1|)) (-1020 (-388 (-893 |#1|))))))
-((-3217 (((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)) 13)))
-(((-1093 |#1| |#2|) (-10 -7 (-15 -3217 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|)))) (-984) (-984)) (T -1093))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-5 *2 (-1095 *6)) (-5 *1 (-1093 *5 *6)))))
-(-10 -7 (-15 -3217 ((-1095 |#2|) (-1 |#2| |#1|) (-1095 |#1|))))
-((-3272 (((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))) 51)) (-2611 (((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))) 52)))
-(((-1094 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))) (-15 -3272 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|))))) (-741) (-795) (-432) (-890 |#3| |#1| |#2|)) (T -1094))
-((-3272 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7))))) (-2611 (*1 *2 *3) (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432)) (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7)))) (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7))))))
-(-10 -7 (-15 -2611 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))) (-15 -3272 ((-399 (-1095 (-388 |#4|))) (-1095 (-388 |#4|)))))
-((-2352 (((-110) $ $) 137)) (-1813 (((-110) $) 28)) (-1825 (((-1181 |#1|) $ (-719)) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-1370 (($ (-1095 |#1|)) NIL)) (-2577 (((-1095 $) $ (-1012)) 58) (((-1095 |#1|) $) 47)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) 132 (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3950 (($ $ $) 126 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) 71 (|has| |#1| (-850)))) (-3544 (($ $) NIL (|has| |#1| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 91 (|has| |#1| (-850)))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3269 (($ $ (-719)) 40)) (-3778 (($ $ (-719)) 41)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2585 ((|#1| $) NIL) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-1012) $) NIL)) (-3388 (($ $ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $ $) 128 (|has| |#1| (-162)))) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) 56)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) NIL) (((-637 |#1|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-1350 (($ $ $) 104)) (-1903 (($ $ $) NIL (|has| |#1| (-522)))) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-1239 (($ $) 133 (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-719) $) 45)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2589 (((-804) $ (-804)) 117)) (-2031 (((-719) $ $) NIL (|has| |#1| (-522)))) (-2731 (((-110) $) 30)) (-3579 (((-719) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#1| (-1075)))) (-2735 (($ (-1095 |#1|) (-1012)) 49) (($ (-1095 $) (-1012)) 65)) (-3081 (($ $ (-719)) 32)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) 63) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) NIL) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 121)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2609 (((-1095 |#1|) $) NIL)) (-2040 (((-3 (-1012) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) 52)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1424 (((-1082) $) NIL)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) 39)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) 31)) (-2505 ((|#1| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 79 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-432))) (($ $ $) 135 (|has| |#1| (-432)))) (-1641 (($ $ (-719) |#1| $) 99)) (-3845 (((-399 (-1095 $)) (-1095 $)) 77 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 76 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 84 (|has| |#1| (-850)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#1|) NIL) (($ $ (-597 (-1012)) (-597 |#1|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) 35)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 138 (|has| |#1| (-344)))) (-3060 (($ $ (-1012)) NIL (|has| |#1| (-162))) ((|#1| $) 124 (|has| |#1| (-162)))) (-3289 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-1429 (((-719) $) 54) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) 130 (|has| |#1| (-432))) (($ $ (-1012)) NIL (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-850))))) (-1331 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-522)))) (-2366 (((-804) $) 118) (($ (-530)) NIL) (($ |#1|) 53) (($ (-1012)) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) 26 (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 15 T CONST)) (-3093 (($) 16 T CONST)) (-3340 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) 96)) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 139 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 66)) (** (($ $ (-862)) 14) (($ $ (-719)) 12)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 25) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
-(((-1095 |#1|) (-13 (-1157 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-804))) (-15 -1641 ($ $ (-719) |#1| $)))) (-984)) (T -1095))
-((-2589 (*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))) (-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))))
-(-13 (-1157 |#1|) (-10 -8 (-15 -2589 ((-804) $ (-804))) (-15 -1641 ($ $ (-719) |#1| $))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 11)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1097 |#1| |#2| |#3|) "failed") $) 36)) (-2585 (((-1090 |#1| |#2| |#3|) $) NIL) (((-1097 |#1| |#2| |#3|) $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2185 (((-388 (-530)) $) 55)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-2457 (($ (-388 (-530)) (-1090 |#1| |#2| |#3|)) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) 20) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3393 (((-1090 |#1| |#2| |#3|) $) 41)) (-1707 (((-3 (-1090 |#1| |#2| |#3|) "failed") $) NIL)) (-2817 (((-1090 |#1| |#2| |#3|) $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 39 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 38)) (-1429 (((-388 (-530)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) 58) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1090 |#1| |#2| |#3|)) 30) (($ (-1097 |#1| |#2| |#3|)) 31) (($ (-1177 |#2|)) 26) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 12)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 22 T CONST)) (-3093 (($) 16 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 24)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1096 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1090 |#1| |#2| |#3|)) (-975 (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1096))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1164 |#1| (-1090 |#1| |#2| |#3|)) (-975 (-1097 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 125)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 116)) (-1971 (((-1154 |#2| |#1|) $ (-719)) 63)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-719)) 79) (($ $ (-719) (-719)) 76)) (-3678 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 102)) (-2386 (($ $) 169 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 145 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) 165 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 115) (($ (-1080 |#1|)) 110)) (-2409 (($ $) 173 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 149 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) 23)) (-3745 (($ $) 26)) (-1761 (((-893 |#1|) $ (-719)) 75) (((-893 |#1|) $ (-719) (-719)) 77)) (-3555 (((-110) $) 120)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $) 122) (((-719) $ (-719)) 124)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL)) (-4219 (($ (-1 |#1| (-530)) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) 13) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-1545 (($ $) 129 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-3168 (($ $ (-719)) 15)) (-3551 (((-3 $ "failed") $ $) 24 (|has| |#1| (-522)))) (-2853 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1902 ((|#1| $ (-719)) 119) (($ $ $) 128 (|has| (-719) (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $ (-1177 |#2|)) 29)) (-1429 (((-719) $) NIL)) (-2421 (($ $) 175 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 151 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 171 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 147 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 167 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 143 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) 201) (($ (-530)) NIL) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 126 (|has| |#1| (-162))) (($ (-1154 |#2| |#1|)) 51) (($ (-1177 |#2|)) 32)) (-3441 (((-1080 |#1|) $) 98)) (-4085 ((|#1| $ (-719)) 118)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 54)) (-2459 (($ $) 181 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 157 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 177 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 153 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 185 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 161 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-719)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 187 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 163 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 183 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 159 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 179 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 155 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 17 T CONST)) (-3093 (($) 19 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) 194)) (-2339 (($ $ $) 31)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#1|) 198 (|has| |#1| (-344))) (($ $ $) 134 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 137 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1097 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-10 -8 (-15 -2366 ($ (-1154 |#2| |#1|))) (-15 -1971 ((-1154 |#2| |#1|) $ (-719))) (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1097))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-1097 *3 *4 *5)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1097 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1172 |#1|) (-10 -8 (-15 -2366 ($ (-1154 |#2| |#1|))) (-15 -1971 ((-1154 |#2| |#1|) $ (-719))) (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2366 (((-804) $) 27) (($ (-1099)) 29)) (-1461 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 40)) (-1451 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 33) (($ $) 34)) (-3125 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 35)) (-3115 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 37)) (-3107 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 36)) (-3096 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 38)) (-3805 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 39)))
-(((-1098) (-13 (-571 (-804)) (-10 -8 (-15 -2366 ($ (-1099))) (-15 -3125 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3107 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3115 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3096 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1461 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3805 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1451 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1451 ($ $))))) (T -1098))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1098)))) (-3125 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3107 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3115 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3096 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1461 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-3805 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1451 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098)))) (-5 *1 (-1098)))) (-1451 (*1 *1 *1) (-5 *1 (-1098))))
-(-13 (-571 (-804)) (-10 -8 (-15 -2366 ($ (-1099))) (-15 -3125 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3107 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3115 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3096 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1461 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3805 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1451 ($ (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1451 ($ $))))
-((-2352 (((-110) $ $) NIL)) (-3620 (($ $ (-597 (-804))) 59)) (-2139 (($ $ (-597 (-804))) 57)) (-3166 (((-1082) $) 84)) (-4119 (((-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))) $) 87)) (-1815 (((-110) $) 22)) (-3266 (($ $ (-597 (-597 (-804)))) 56) (($ $ (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804))))) 82)) (-2350 (($) 124 T CONST)) (-3911 (((-1186)) 106)) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 66) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 73)) (-3538 (($) 95) (($ $) 101)) (-3907 (($ $) 83)) (-2508 (($ $ $) NIL)) (-1817 (($ $ $) NIL)) (-2939 (((-597 $) $) 107)) (-1424 (((-1082) $) 90)) (-2624 (((-1046) $) NIL)) (-1902 (($ $ (-597 (-804))) 58)) (-3260 (((-506) $) 46) (((-1099) $) 47) (((-833 (-530)) $) 77) (((-833 (-360)) $) 75)) (-2366 (((-804) $) 53) (($ (-1082)) 48)) (-3906 (($ $ (-597 (-804))) 60)) (-3987 (((-1082) $) 33) (((-1082) $ (-110)) 34) (((-1186) (-770) $) 35) (((-1186) (-770) $ (-110)) 36)) (-2306 (((-110) $ $) NIL)) (-2284 (((-110) $ $) NIL)) (-2248 (((-110) $ $) 49)) (-2297 (((-110) $ $) NIL)) (-2272 (((-110) $ $) 50)))
-(((-1099) (-13 (-795) (-572 (-506)) (-776) (-572 (-1099)) (-572 (-833 (-530))) (-572 (-833 (-360))) (-827 (-530)) (-827 (-360)) (-10 -8 (-15 -3538 ($)) (-15 -3538 ($ $)) (-15 -3911 ((-1186))) (-15 -2366 ($ (-1082))) (-15 -3907 ($ $)) (-15 -1815 ((-110) $)) (-15 -4119 ((-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))) $)) (-15 -3266 ($ $ (-597 (-597 (-804))))) (-15 -3266 ($ $ (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))))) (-15 -2139 ($ $ (-597 (-804)))) (-15 -3620 ($ $ (-597 (-804)))) (-15 -3906 ($ $ (-597 (-804)))) (-15 -1902 ($ $ (-597 (-804)))) (-15 -3166 ((-1082) $)) (-15 -2939 ((-597 $) $)) (-15 -2350 ($) -2708)))) (T -1099))
-((-3538 (*1 *1) (-5 *1 (-1099))) (-3538 (*1 *1 *1) (-5 *1 (-1099))) (-3911 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1099)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1099)))) (-3907 (*1 *1 *1) (-5 *1 (-1099))) (-1815 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1099)))) (-4119 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804))))) (-5 *1 (-1099)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-1099)))) (-3266 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804))))) (-5 *1 (-1099)))) (-2139 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3620 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3906 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))) (-3166 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1099)))) (-2939 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1099)))) (-2350 (*1 *1) (-5 *1 (-1099))))
-(-13 (-795) (-572 (-506)) (-776) (-572 (-1099)) (-572 (-833 (-530))) (-572 (-833 (-360))) (-827 (-530)) (-827 (-360)) (-10 -8 (-15 -3538 ($)) (-15 -3538 ($ $)) (-15 -3911 ((-1186))) (-15 -2366 ($ (-1082))) (-15 -3907 ($ $)) (-15 -1815 ((-110) $)) (-15 -4119 ((-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))) $)) (-15 -3266 ($ $ (-597 (-597 (-804))))) (-15 -3266 ($ $ (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804))) (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804))) (|:| |args| (-597 (-804)))))) (-15 -2139 ($ $ (-597 (-804)))) (-15 -3620 ($ $ (-597 (-804)))) (-15 -3906 ($ $ (-597 (-804)))) (-15 -1902 ($ $ (-597 (-804)))) (-15 -3166 ((-1082) $)) (-15 -2939 ((-597 $) $)) (-15 -2350 ($) -2708)))
-((-1538 (((-1181 |#1|) |#1| (-862)) 16) (((-1181 |#1|) (-597 |#1|)) 20)))
-(((-1100 |#1|) (-10 -7 (-15 -1538 ((-1181 |#1|) (-597 |#1|))) (-15 -1538 ((-1181 |#1|) |#1| (-862)))) (-984)) (T -1100))
-((-1538 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-1181 *3)) (-5 *1 (-1100 *3)) (-4 *3 (-984)))) (-1538 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4)) (-5 *1 (-1100 *4)))))
-(-10 -7 (-15 -1538 ((-1181 |#1|) (-597 |#1|))) (-15 -1538 ((-1181 |#1|) |#1| (-862))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| |#1| (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#1| (-975 (-388 (-530))))) (((-3 |#1| "failed") $) NIL)) (-2585 (((-530) $) NIL (|has| |#1| (-975 (-530)))) (((-388 (-530)) $) NIL (|has| |#1| (-975 (-388 (-530))))) ((|#1| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1239 (($ $) NIL (|has| |#1| (-432)))) (-2410 (($ $ |#1| (-911) $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-911)) NIL)) (-2944 (((-911) $) NIL)) (-3756 (($ (-1 (-911) (-911)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#1| $) NIL)) (-1641 (($ $ (-911) |#1| $) NIL (-12 (|has| (-911) (-128)) (|has| |#1| (-522))))) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-522)))) (-1429 (((-911) $) NIL)) (-3829 ((|#1| $) NIL (|has| |#1| (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) NIL) (($ (-388 (-530))) NIL (-1461 (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-975 (-388 (-530))))))) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ (-911)) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#1| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3080 (($) 9 T CONST)) (-3093 (($) 14 T CONST)) (-2248 (((-110) $ $) 16)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 19)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1101 |#1|) (-13 (-307 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| (-911) (-128)) (-15 -1641 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984)) (T -1101))
-((-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-911)) (-4 *2 (-128)) (-5 *1 (-1101 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(-13 (-307 |#1| (-911)) (-10 -8 (IF (|has| |#1| (-522)) (IF (|has| (-911) (-128)) (-15 -1641 ($ $ (-911) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
-((-4140 (((-1103) (-1099) $) 25)) (-3542 (($) 29)) (-2178 (((-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-1099) $) 22)) (-4217 (((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")) $) 41) (((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) 42) (((-1186) (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) 43)) (-2142 (((-1186) (-1099)) 58)) (-1720 (((-1186) (-1099) $) 55) (((-1186) (-1099)) 56) (((-1186)) 57)) (-2864 (((-1186) (-1099)) 37)) (-1380 (((-1099)) 36)) (-3958 (($) 34)) (-2363 (((-418) (-1099) (-418) (-1099) $) 45) (((-418) (-597 (-1099)) (-418) (-1099) $) 49) (((-418) (-1099) (-418)) 46) (((-418) (-1099) (-418) (-1099)) 50)) (-4111 (((-1099)) 35)) (-2366 (((-804) $) 28)) (-2432 (((-1186)) 30) (((-1186) (-1099)) 33)) (-2641 (((-597 (-1099)) (-1099) $) 24)) (-2888 (((-1186) (-1099) (-597 (-1099)) $) 38) (((-1186) (-1099) (-597 (-1099))) 39) (((-1186) (-597 (-1099))) 40)))
-(((-1102) (-13 (-571 (-804)) (-10 -8 (-15 -3542 ($)) (-15 -2432 ((-1186))) (-15 -2432 ((-1186) (-1099))) (-15 -2363 ((-418) (-1099) (-418) (-1099) $)) (-15 -2363 ((-418) (-597 (-1099)) (-418) (-1099) $)) (-15 -2363 ((-418) (-1099) (-418))) (-15 -2363 ((-418) (-1099) (-418) (-1099))) (-15 -2864 ((-1186) (-1099))) (-15 -4111 ((-1099))) (-15 -1380 ((-1099))) (-15 -2888 ((-1186) (-1099) (-597 (-1099)) $)) (-15 -2888 ((-1186) (-1099) (-597 (-1099)))) (-15 -2888 ((-1186) (-597 (-1099)))) (-15 -4217 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")) $)) (-15 -4217 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")))) (-15 -4217 ((-1186) (-3 (|:| |fst| (-415)) (|:| -3020 "void")))) (-15 -1720 ((-1186) (-1099) $)) (-15 -1720 ((-1186) (-1099))) (-15 -1720 ((-1186))) (-15 -2142 ((-1186) (-1099))) (-15 -3958 ($)) (-15 -2178 ((-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-1099) $)) (-15 -2641 ((-597 (-1099)) (-1099) $)) (-15 -4140 ((-1103) (-1099) $))))) (T -1102))
-((-3542 (*1 *1) (-5 *1 (-1102))) (-2432 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2432 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2363 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-2363 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *4 (-1099)) (-5 *1 (-1102)))) (-2363 (*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-2363 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102)))) (-2864 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4111 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))) (-1380 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))) (-2888 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2888 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2888 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4217 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1099)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4217 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-4217 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-1720 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-1720 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-1720 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))) (-2142 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))) (-3958 (*1 *1) (-5 *1 (-1102))) (-2178 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *1 (-1102)))) (-2641 (*1 *2 *3 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1102)) (-5 *3 (-1099)))) (-4140 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1103)) (-5 *1 (-1102)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -3542 ($)) (-15 -2432 ((-1186))) (-15 -2432 ((-1186) (-1099))) (-15 -2363 ((-418) (-1099) (-418) (-1099) $)) (-15 -2363 ((-418) (-597 (-1099)) (-418) (-1099) $)) (-15 -2363 ((-418) (-1099) (-418))) (-15 -2363 ((-418) (-1099) (-418) (-1099))) (-15 -2864 ((-1186) (-1099))) (-15 -4111 ((-1099))) (-15 -1380 ((-1099))) (-15 -2888 ((-1186) (-1099) (-597 (-1099)) $)) (-15 -2888 ((-1186) (-1099) (-597 (-1099)))) (-15 -2888 ((-1186) (-597 (-1099)))) (-15 -4217 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")) $)) (-15 -4217 ((-1186) (-1099) (-3 (|:| |fst| (-415)) (|:| -3020 "void")))) (-15 -4217 ((-1186) (-3 (|:| |fst| (-415)) (|:| -3020 "void")))) (-15 -1720 ((-1186) (-1099) $)) (-15 -1720 ((-1186) (-1099))) (-15 -1720 ((-1186))) (-15 -2142 ((-1186) (-1099))) (-15 -3958 ($)) (-15 -2178 ((-3 (|:| |fst| (-415)) (|:| -3020 "void")) (-1099) $)) (-15 -2641 ((-597 (-1099)) (-1099) $)) (-15 -4140 ((-1103) (-1099) $))))
-((-3611 (((-597 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $) 59)) (-3812 (((-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $) 43)) (-3137 (($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418))))) 17)) (-2142 (((-1186) $) 67)) (-2586 (((-597 (-1099)) $) 22)) (-3828 (((-1031) $) 55)) (-1213 (((-418) (-1099) $) 27)) (-2147 (((-597 (-1099)) $) 30)) (-3958 (($) 19)) (-2363 (((-418) (-597 (-1099)) (-418) $) 25) (((-418) (-1099) (-418) $) 24)) (-2366 (((-804) $) 9) (((-1109 (-1099) (-418)) $) 13)))
-(((-1103) (-13 (-571 (-804)) (-10 -8 (-15 -2366 ((-1109 (-1099) (-418)) $)) (-15 -3958 ($)) (-15 -2363 ((-418) (-597 (-1099)) (-418) $)) (-15 -2363 ((-418) (-1099) (-418) $)) (-15 -1213 ((-418) (-1099) $)) (-15 -2586 ((-597 (-1099)) $)) (-15 -3812 ((-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $)) (-15 -2147 ((-597 (-1099)) $)) (-15 -3611 ((-597 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $)) (-15 -3828 ((-1031) $)) (-15 -2142 ((-1186) $)) (-15 -3137 ($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418))))))))) (T -1103))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-1109 (-1099) (-418))) (-5 *1 (-1103)))) (-3958 (*1 *1) (-5 *1 (-1103))) (-2363 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *1 (-1103)))) (-2363 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1103)))) (-1213 (*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-418)) (-5 *1 (-1103)))) (-2586 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))) (-3812 (*1 *2 *3 *1) (-12 (-5 *3 (-415)) (-5 *2 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) (-5 *1 (-1103)))) (-2147 (*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))) (-3611 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))))) (-5 *1 (-1103)))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1103)))) (-2142 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1103)))) (-3137 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418))))) (-5 *1 (-1103)))))
-(-13 (-571 (-804)) (-10 -8 (-15 -2366 ((-1109 (-1099) (-418)) $)) (-15 -3958 ($)) (-15 -2363 ((-418) (-597 (-1099)) (-418) $)) (-15 -2363 ((-418) (-1099) (-418) $)) (-15 -1213 ((-418) (-1099) $)) (-15 -2586 ((-597 (-1099)) $)) (-15 -3812 ((-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))) (-415) $)) (-15 -2147 ((-597 (-1099)) $)) (-15 -3611 ((-597 (-597 (-3 (|:| -3907 (-1099)) (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))) $)) (-15 -3828 ((-1031) $)) (-15 -2142 ((-1186) $)) (-15 -3137 ($ (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418))))))))
-((-2352 (((-110) $ $) NIL)) (-1272 (((-110) $) 42)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2671 (((-3 (-530) (-208) (-1099) (-1082) $) $) 50)) (-1566 (((-597 $) $) 55)) (-3260 (((-1031) $) 24) (($ (-1031)) 25)) (-2951 (((-110) $) 52)) (-2366 (((-804) $) NIL) (($ (-530)) 26) (((-530) $) 28) (($ (-208)) 29) (((-208) $) 31) (($ (-1099)) 32) (((-1099) $) 34) (($ (-1082)) 35) (((-1082) $) 37)) (-3071 (((-110) $ (|[\|\|]| (-530))) 11) (((-110) $ (|[\|\|]| (-208))) 15) (((-110) $ (|[\|\|]| (-1099))) 23) (((-110) $ (|[\|\|]| (-1082))) 19)) (-4121 (($ (-1099) (-597 $)) 39) (($ $ (-597 $)) 40)) (-2612 (((-530) $) 27) (((-208) $) 30) (((-1099) $) 33) (((-1082) $) 36)) (-2248 (((-110) $ $) 7)))
-(((-1104) (-13 (-1176) (-1027) (-10 -8 (-15 -3260 ((-1031) $)) (-15 -3260 ($ (-1031))) (-15 -2366 ($ (-530))) (-15 -2366 ((-530) $)) (-15 -2612 ((-530) $)) (-15 -2366 ($ (-208))) (-15 -2366 ((-208) $)) (-15 -2612 ((-208) $)) (-15 -2366 ($ (-1099))) (-15 -2366 ((-1099) $)) (-15 -2612 ((-1099) $)) (-15 -2366 ($ (-1082))) (-15 -2366 ((-1082) $)) (-15 -2612 ((-1082) $)) (-15 -4121 ($ (-1099) (-597 $))) (-15 -4121 ($ $ (-597 $))) (-15 -1272 ((-110) $)) (-15 -2671 ((-3 (-530) (-208) (-1099) (-1082) $) $)) (-15 -1566 ((-597 $) $)) (-15 -2951 ((-110) $)) (-15 -3071 ((-110) $ (|[\|\|]| (-530)))) (-15 -3071 ((-110) $ (|[\|\|]| (-208)))) (-15 -3071 ((-110) $ (|[\|\|]| (-1099)))) (-15 -3071 ((-110) $ (|[\|\|]| (-1082))))))) (T -1104))
-((-3260 (*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1104)))) (-3260 (*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-1104)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1104)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-2612 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104)))) (-4121 (*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-1104))) (-5 *1 (-1104)))) (-4121 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))) (-1272 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))) (-2671 (*1 *2 *1) (-12 (-5 *2 (-3 (-530) (-208) (-1099) (-1082) (-1104))) (-5 *1 (-1104)))) (-1566 (*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))) (-2951 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-110)) (-5 *1 (-1104)))) (-3071 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-110)) (-5 *1 (-1104)))))
-(-13 (-1176) (-1027) (-10 -8 (-15 -3260 ((-1031) $)) (-15 -3260 ($ (-1031))) (-15 -2366 ($ (-530))) (-15 -2366 ((-530) $)) (-15 -2612 ((-530) $)) (-15 -2366 ($ (-208))) (-15 -2366 ((-208) $)) (-15 -2612 ((-208) $)) (-15 -2366 ($ (-1099))) (-15 -2366 ((-1099) $)) (-15 -2612 ((-1099) $)) (-15 -2366 ($ (-1082))) (-15 -2366 ((-1082) $)) (-15 -2612 ((-1082) $)) (-15 -4121 ($ (-1099) (-597 $))) (-15 -4121 ($ $ (-597 $))) (-15 -1272 ((-110) $)) (-15 -2671 ((-3 (-530) (-208) (-1099) (-1082) $) $)) (-15 -1566 ((-597 $) $)) (-15 -2951 ((-110) $)) (-15 -3071 ((-110) $ (|[\|\|]| (-530)))) (-15 -3071 ((-110) $ (|[\|\|]| (-208)))) (-15 -3071 ((-110) $ (|[\|\|]| (-1099)))) (-15 -3071 ((-110) $ (|[\|\|]| (-1082))))))
-((-2333 (((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 57)) (-2688 (((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|)))) 69) (((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|))) 65) (((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099)) 70) (((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099)) 64) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|))))) 93) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|)))) 92) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099))) 94) (((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099))) 91)))
-(((-1105 |#1|) (-10 -7 (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))))) (-15 -2333 ((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099))))) (-522)) (T -1105))
-((-2333 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-893 *5)))) (-5 *1 (-1105 *5)))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4))))) (-5 *1 (-1105 *4)) (-5 *3 (-276 (-388 (-893 *4)))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4))))) (-5 *1 (-1105 *4)) (-5 *3 (-388 (-893 *4))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5)) (-5 *3 (-276 (-388 (-893 *5)))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-1099)) (-4 *5 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5)) (-5 *3 (-388 (-893 *5))))) (-2688 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4)) (-5 *3 (-597 (-276 (-388 (-893 *4))))))) (-2688 (*1 *2 *3) (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4)))) (-2688 (*1 *2 *3 *4) (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5)) (-5 *3 (-597 (-276 (-388 (-893 *5))))))) (-2688 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099))) (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5)))))
-(-10 -7 (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))) (-597 (-1099)))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-388 (-893 |#1|))))) (-15 -2688 ((-597 (-597 (-276 (-388 (-893 |#1|))))) (-597 (-276 (-388 (-893 |#1|)))))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)) (-1099))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))) (-1099))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-388 (-893 |#1|)))) (-15 -2688 ((-597 (-276 (-388 (-893 |#1|)))) (-276 (-388 (-893 |#1|))))) (-15 -2333 ((-597 (-597 (-893 |#1|))) (-597 (-388 (-893 |#1|))) (-597 (-1099)))))
-((-3463 (((-1082)) 7)) (-3838 (((-1082)) 9)) (-2967 (((-1186) (-1082)) 11)) (-2151 (((-1082)) 8)))
-(((-1106) (-10 -7 (-15 -3463 ((-1082))) (-15 -2151 ((-1082))) (-15 -3838 ((-1082))) (-15 -2967 ((-1186) (-1082))))) (T -1106))
-((-2967 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1106)))) (-3838 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))) (-2151 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))) (-3463 (*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
-(-10 -7 (-15 -3463 ((-1082))) (-15 -2151 ((-1082))) (-15 -3838 ((-1082))) (-15 -2967 ((-1186) (-1082))))
-((-1885 (((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|)))) 38)) (-1577 (((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|))) 24)) (-3624 (((-1108 (-597 |#1|)) (-597 |#1|)) 34)) (-3319 (((-597 (-597 |#1|)) (-597 |#1|)) 30)) (-1336 (((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|)))) 37)) (-3716 (((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|)))) 36)) (-1356 (((-597 (-597 |#1|)) (-597 (-597 |#1|))) 28)) (-1991 (((-597 |#1|) (-597 |#1|)) 31)) (-3456 (((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|)))) 18)) (-1248 (((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|)))) 16)) (-2604 (((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|))) 14)) (-3731 (((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|)))) 39)) (-2840 (((-597 (-597 |#1|)) (-1108 (-597 |#1|))) 41)))
-(((-1107 |#1|) (-10 -7 (-15 -2604 ((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|)))) (-15 -1248 ((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -3456 ((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -1885 ((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -3731 ((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -2840 ((-597 (-597 |#1|)) (-1108 (-597 |#1|)))) (-15 -1577 ((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)))) (-15 -3624 ((-1108 (-597 |#1|)) (-597 |#1|))) (-15 -1356 ((-597 (-597 |#1|)) (-597 (-597 |#1|)))) (-15 -3319 ((-597 (-597 |#1|)) (-597 |#1|))) (-15 -1991 ((-597 |#1|) (-597 |#1|))) (-15 -3716 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))))) (-15 -1336 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|)))))) (-795)) (T -1107))
-((-1336 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-2 (|:| |f1| (-597 *4)) (|:| |f2| (-597 (-597 (-597 *4)))) (|:| |f3| (-597 (-597 *4))) (|:| |f4| (-597 (-597 (-597 *4)))))) (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 (-597 *4)))))) (-3716 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-795)) (-5 *3 (-597 *6)) (-5 *5 (-597 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-597 *5)) (|:| |f3| *5) (|:| |f4| (-597 *5)))) (-5 *1 (-1107 *6)) (-5 *4 (-597 *5)))) (-1991 (*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-1107 *3)))) (-3319 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)) (-5 *3 (-597 *4)))) (-1356 (*1 *2 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-795)) (-5 *1 (-1107 *3)))) (-3624 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-1108 (-597 *4))) (-5 *1 (-1107 *4)) (-5 *3 (-597 *4)))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 (-597 *4)))) (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 *4))))) (-2840 (*1 *2 *3) (-12 (-5 *3 (-1108 (-597 *4))) (-4 *4 (-795)) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)) (-4 *4 (-795)))) (-1885 (*1 *2 *2 *3) (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4))) (-4 *4 (-795)) (-5 *1 (-1107 *4)))) (-3456 (*1 *2 *3 *2) (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *1 (-1107 *4)))) (-1248 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-597 *5)) (-4 *5 (-795)) (-5 *1 (-1107 *5)))) (-2604 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-795)) (-5 *4 (-597 *6)) (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-597 *4)))) (-5 *1 (-1107 *6)) (-5 *5 (-597 *4)))))
-(-10 -7 (-15 -2604 ((-2 (|:| |fs| (-110)) (|:| |sd| (-597 |#1|)) (|:| |td| (-597 (-597 |#1|)))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 |#1|)))) (-15 -1248 ((-597 (-597 (-597 |#1|))) (-1 (-110) |#1| |#1|) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -3456 ((-597 (-597 (-597 |#1|))) (-597 |#1|) (-597 (-597 (-597 |#1|))))) (-15 -1885 ((-597 (-597 |#1|)) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -3731 ((-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))))) (-15 -2840 ((-597 (-597 |#1|)) (-1108 (-597 |#1|)))) (-15 -1577 ((-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)))) (-15 -3624 ((-1108 (-597 |#1|)) (-597 |#1|))) (-15 -1356 ((-597 (-597 |#1|)) (-597 (-597 |#1|)))) (-15 -3319 ((-597 (-597 |#1|)) (-597 |#1|))) (-15 -1991 ((-597 |#1|) (-597 |#1|))) (-15 -3716 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 |#1|) (-597 (-597 (-597 |#1|))) (-597 (-597 |#1|)) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))) (-597 (-597 (-597 |#1|))))) (-15 -1336 ((-2 (|:| |f1| (-597 |#1|)) (|:| |f2| (-597 (-597 (-597 |#1|)))) (|:| |f3| (-597 (-597 |#1|))) (|:| |f4| (-597 (-597 (-597 |#1|))))) (-597 (-597 (-597 |#1|))))))
-((-1632 (($ (-597 (-597 |#1|))) 10)) (-2654 (((-597 (-597 |#1|)) $) 11)) (-2366 (((-804) $) 26)))
-(((-1108 |#1|) (-10 -8 (-15 -1632 ($ (-597 (-597 |#1|)))) (-15 -2654 ((-597 (-597 |#1|)) $)) (-15 -2366 ((-804) $))) (-1027)) (T -1108))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))) (-2654 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 *3))) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))) (-1632 (*1 *1 *2) (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-1108 *3)))))
-(-10 -8 (-15 -1632 ($ (-597 (-597 |#1|)))) (-15 -2654 ((-597 (-597 |#1|)) $)) (-15 -2366 ((-804) $)))
-((-2352 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3527 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2097 (((-1186) $ |#1| |#1|) NIL (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#2| $ |#1| |#2|) NIL)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) NIL)) (-2350 (($) NIL T CONST)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) NIL)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) NIL)) (-4010 ((|#1| $) NIL (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-597 |#2|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-1549 ((|#1| $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3282 (((-597 |#1|) $) NIL)) (-3718 (((-110) |#1| $) NIL)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-3567 (((-597 |#1|) $) NIL)) (-1927 (((-110) |#1| $) NIL)) (-2624 (((-1046) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-3048 ((|#2| $) NIL (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL)) (-1522 (($ $ |#2|) NIL (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-1560 (($) NIL) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) NIL (-12 (|has| $ (-6 -4269)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (((-719) |#2| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027)))) (((-719) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-2366 (((-804) $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804))) (|has| |#2| (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) NIL)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) NIL (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) NIL (-1461 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| |#2| (-1027))))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1109 |#1| |#2|) (-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269))) (-1027) (-1027)) (T -1109))
-NIL
-(-13 (-1112 |#1| |#2|) (-10 -7 (-6 -4269)))
-((-2129 ((|#1| (-597 |#1|)) 32)) (-1946 ((|#1| |#1| (-530)) 18)) (-3992 (((-1095 |#1|) |#1| (-862)) 15)))
-(((-1110 |#1|) (-10 -7 (-15 -2129 (|#1| (-597 |#1|))) (-15 -3992 ((-1095 |#1|) |#1| (-862))) (-15 -1946 (|#1| |#1| (-530)))) (-344)) (T -1110))
-((-1946 (*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))) (-3992 (*1 *2 *3 *4) (-12 (-5 *4 (-862)) (-5 *2 (-1095 *3)) (-5 *1 (-1110 *3)) (-4 *3 (-344)))) (-2129 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
-(-10 -7 (-15 -2129 (|#1| (-597 |#1|))) (-15 -3992 ((-1095 |#1|) |#1| (-862))) (-15 -1946 (|#1| |#1| (-530))))
-((-3527 (($) 10) (($ (-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)))) 14)) (-1842 (($ (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 61) (($ (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-3779 (((-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) 39) (((-597 |#3|) $) 41)) (-3583 (($ (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3217 (($ (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-1723 (((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 54)) (-2441 (($ (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 16)) (-3567 (((-597 |#2|) $) 19)) (-1927 (((-110) |#2| $) 59)) (-1437 (((-3 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) "failed") (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) 58)) (-2738 (((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) 63)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 67)) (-2261 (((-597 |#3|) $) 43)) (-1902 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) NIL) (((-719) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) $) NIL) (((-719) |#3| $) NIL) (((-719) (-1 (-110) |#3|) $) 68)) (-2366 (((-804) $) 27)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 65)) (-2248 (((-110) $ $) 49)))
-(((-1111 |#1| |#2| |#3|) (-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3527 (|#1| (-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))))) (-15 -3527 (|#1|)) (-15 -3217 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3583 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#3|) |#1|)) (-15 -3779 ((-597 |#3|) |#1|)) (-15 -2632 ((-719) |#3| |#1|)) (-15 -1902 (|#3| |#1| |#2| |#3|)) (-15 -1902 (|#3| |#1| |#2|)) (-15 -2261 ((-597 |#3|) |#1|)) (-15 -1927 ((-110) |#2| |#1|)) (-15 -3567 ((-597 |#2|) |#1|)) (-15 -1842 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1842 (|#1| (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1842 (|#1| (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -1437 ((-3 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) "failed") (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1723 ((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2441 (|#1| (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2738 ((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2632 ((-719) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -3779 ((-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -2632 ((-719) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1533 ((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3889 ((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3583 (|#1| (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3217 (|#1| (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|))) (-1112 |#2| |#3|) (-1027) (-1027)) (T -1111))
-NIL
-(-10 -8 (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -3217 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -3527 (|#1| (-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))))) (-15 -3527 (|#1|)) (-15 -3217 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3583 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -3889 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -1533 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2632 ((-719) (-1 (-110) |#3|) |#1|)) (-15 -3779 ((-597 |#3|) |#1|)) (-15 -2632 ((-719) |#3| |#1|)) (-15 -1902 (|#3| |#1| |#2| |#3|)) (-15 -1902 (|#3| |#1| |#2|)) (-15 -2261 ((-597 |#3|) |#1|)) (-15 -1927 ((-110) |#2| |#1|)) (-15 -3567 ((-597 |#2|) |#1|)) (-15 -1842 ((-3 |#3| "failed") |#2| |#1|)) (-15 -1842 (|#1| (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1842 (|#1| (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -1437 ((-3 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) "failed") (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1723 ((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2441 (|#1| (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2738 ((-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -2632 ((-719) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) |#1|)) (-15 -3779 ((-597 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -2632 ((-719) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -1533 ((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3889 ((-110) (-1 (-110) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3583 (|#1| (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)) (-15 -3217 (|#1| (-1 (-2 (|:| -3078 |#2|) (|:| -1874 |#3|)) (-2 (|:| -3078 |#2|) (|:| -1874 |#3|))) |#1|)))
-((-2352 (((-110) $ $) 19 (-1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3527 (($) 72) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 71)) (-2097 (((-1186) $ |#1| |#1|) 99 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#2| $ |#1| |#2|) 73)) (-2901 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 45 (|has| $ (-6 -4269)))) (-2283 (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 55 (|has| $ (-6 -4269)))) (-2767 (((-3 |#2| "failed") |#1| $) 61)) (-2350 (($) 7 T CONST)) (-3077 (($ $) 58 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269))))) (-1842 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 47 (|has| $ (-6 -4269))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 46 (|has| $ (-6 -4269))) (((-3 |#2| "failed") |#1| $) 62)) (-2383 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 54 (|has| $ (-6 -4269)))) (-2134 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 56 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 53 (|has| $ (-6 -4269))) (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 52 (|has| $ (-6 -4269)))) (-3592 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4270)))) (-3532 ((|#2| $ |#1|) 88)) (-3779 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 30 (|has| $ (-6 -4269))) (((-597 |#2|) $) 79 (|has| $ (-6 -4269)))) (-4027 (((-110) $ (-719)) 9)) (-4010 ((|#1| $) 96 (|has| |#1| (-795)))) (-2395 (((-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 29 (|has| $ (-6 -4269))) (((-597 |#2|) $) 80 (|has| $ (-6 -4269)))) (-4197 (((-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269))))) (-1549 ((|#1| $) 95 (|has| |#1| (-795)))) (-3583 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 34 (|has| $ (-6 -4270))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4270)))) (-3217 (($ (-1 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-2763 (((-110) $ (-719)) 10)) (-1424 (((-1082) $) 22 (-1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3282 (((-597 |#1|) $) 63)) (-3718 (((-110) |#1| $) 64)) (-1723 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 39)) (-2441 (($ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 40)) (-3567 (((-597 |#1|) $) 93)) (-1927 (((-110) |#1| $) 92)) (-2624 (((-1046) $) 21 (-1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-3048 ((|#2| $) 97 (|has| |#1| (-795)))) (-1437 (((-3 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) "failed") (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 51)) (-1522 (($ $ |#2|) 98 (|has| $ (-6 -4270)))) (-2738 (((-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 41)) (-1533 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 32 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))))) 26 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-276 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 25 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) 24 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 23 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)))) (($ $ (-597 |#2|) (-597 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027)))) (($ $ (-597 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4269)) (|has| |#2| (-1027))))) (-2261 (((-597 |#2|) $) 91)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-1560 (($) 49) (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 48)) (-2632 (((-719) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 31 (|has| $ (-6 -4269))) (((-719) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| $ (-6 -4269)))) (((-719) |#2| $) 81 (-12 (|has| |#2| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4269)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 59 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))))) (-2377 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 50)) (-2366 (((-804) $) 18 (-1461 (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))))) (-2242 (($ (-597 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) 42)) (-3889 (((-110) (-1 (-110) (-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) $) 33 (|has| $ (-6 -4269))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (-1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-1112 |#1| |#2|) (-133) (-1027) (-1027)) (T -1112))
-((-2552 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))) (-3527 (*1 *1) (-12 (-4 *1 (-1112 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))) (-3527 (*1 *1 *2) (-12 (-5 *2 (-597 (-2 (|:| -3078 *3) (|:| -1874 *4)))) (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *1 (-1112 *3 *4)))) (-3217 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1112 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
-(-13 (-568 |t#1| |t#2|) (-563 |t#1| |t#2|) (-10 -8 (-15 -2552 (|t#2| $ |t#1| |t#2|)) (-15 -3527 ($)) (-15 -3527 ($ (-597 (-2 (|:| -3078 |t#1|) (|:| -1874 |t#2|))))) (-15 -3217 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
-(((-33) . T) ((-104 #0=(-2 (|:| -3078 |#1|) (|:| -1874 |#2|))) . T) ((-99) -1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-571 (-804)) -1461 (|has| |#2| (-1027)) (|has| |#2| (-571 (-804))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-571 (-804)))) ((-144 #0#) . T) ((-572 (-506)) |has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-572 (-506))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 #0#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-468 #0#) . T) ((-468 |#2|) . T) ((-563 |#1| |#2|) . T) ((-491 #0# #0#) -12 (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-291 (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)))) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-491 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1027))) ((-568 |#1| |#2|) . T) ((-1027) -1461 (|has| |#2| (-1027)) (|has| (-2 (|:| -3078 |#1|) (|:| -1874 |#2|)) (-1027))) ((-1135) . T))
-((-1385 (((-110)) 24)) (-1763 (((-1186) (-1082)) 26)) (-4150 (((-110)) 36)) (-3425 (((-1186)) 34)) (-3022 (((-1186) (-1082) (-1082)) 25)) (-3769 (((-110)) 37)) (-2441 (((-1186) |#1| |#2|) 44)) (-4135 (((-1186)) 20)) (-3612 (((-3 |#2| "failed") |#1|) 42)) (-2014 (((-1186)) 35)))
-(((-1113 |#1| |#2|) (-10 -7 (-15 -4135 ((-1186))) (-15 -3022 ((-1186) (-1082) (-1082))) (-15 -1763 ((-1186) (-1082))) (-15 -3425 ((-1186))) (-15 -2014 ((-1186))) (-15 -1385 ((-110))) (-15 -4150 ((-110))) (-15 -3769 ((-110))) (-15 -3612 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-1186) |#1| |#2|))) (-1027) (-1027)) (T -1113))
-((-2441 (*1 *2 *3 *4) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3612 (*1 *2 *3) (|partial| -12 (-4 *2 (-1027)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1027)))) (-3769 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-4150 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-1385 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-2014 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-3425 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)))) (-3022 (*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027)))) (-4135 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027)))))
-(-10 -7 (-15 -4135 ((-1186))) (-15 -3022 ((-1186) (-1082) (-1082))) (-15 -1763 ((-1186) (-1082))) (-15 -3425 ((-1186))) (-15 -2014 ((-1186))) (-15 -1385 ((-110))) (-15 -4150 ((-110))) (-15 -3769 ((-110))) (-15 -3612 ((-3 |#2| "failed") |#1|)) (-15 -2441 ((-1186) |#1| |#2|)))
-((-2759 (((-1082) (-1082)) 18)) (-3888 (((-51) (-1082)) 21)))
-(((-1114) (-10 -7 (-15 -3888 ((-51) (-1082))) (-15 -2759 ((-1082) (-1082))))) (T -1114))
-((-2759 (*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1114)))) (-3888 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-1114)))))
-(-10 -7 (-15 -3888 ((-51) (-1082))) (-15 -2759 ((-1082) (-1082))))
-((-2366 (((-1116) |#1|) 11)))
-(((-1115 |#1|) (-10 -7 (-15 -2366 ((-1116) |#1|))) (-1027)) (T -1115))
-((-2366 (*1 *2 *3) (-12 (-5 *2 (-1116)) (-5 *1 (-1115 *3)) (-4 *3 (-1027)))))
-(-10 -7 (-15 -2366 ((-1116) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-3294 (((-597 (-1082)) $) 34)) (-3256 (((-597 (-1082)) $ (-597 (-1082))) 37)) (-1464 (((-597 (-1082)) $ (-597 (-1082))) 36)) (-2998 (((-597 (-1082)) $ (-597 (-1082))) 38)) (-3897 (((-597 (-1082)) $) 33)) (-3538 (($) 22)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2484 (((-597 (-1082)) $) 35)) (-2388 (((-1186) $ (-530)) 29) (((-1186) $) 30)) (-3260 (($ (-804) (-530)) 26) (($ (-804) (-530) (-804)) NIL)) (-2366 (((-804) $) 40) (($ (-804)) 24)) (-2248 (((-110) $ $) NIL)))
-(((-1116) (-13 (-1027) (-10 -8 (-15 -2366 ($ (-804))) (-15 -3260 ($ (-804) (-530))) (-15 -3260 ($ (-804) (-530) (-804))) (-15 -2388 ((-1186) $ (-530))) (-15 -2388 ((-1186) $)) (-15 -2484 ((-597 (-1082)) $)) (-15 -3294 ((-597 (-1082)) $)) (-15 -3538 ($)) (-15 -3897 ((-597 (-1082)) $)) (-15 -2998 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3256 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -1464 ((-597 (-1082)) $ (-597 (-1082))))))) (T -1116))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1116)))) (-3260 (*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-1116)))) (-3260 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-1116)))) (-2388 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1116)))) (-2388 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1116)))) (-2484 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3294 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3538 (*1 *1) (-5 *1 (-1116))) (-3897 (*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-2998 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-3256 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))) (-1464 (*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(-13 (-1027) (-10 -8 (-15 -2366 ($ (-804))) (-15 -3260 ($ (-804) (-530))) (-15 -3260 ($ (-804) (-530) (-804))) (-15 -2388 ((-1186) $ (-530))) (-15 -2388 ((-1186) $)) (-15 -2484 ((-597 (-1082)) $)) (-15 -3294 ((-597 (-1082)) $)) (-15 -3538 ($)) (-15 -3897 ((-597 (-1082)) $)) (-15 -2998 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -3256 ((-597 (-1082)) $ (-597 (-1082)))) (-15 -1464 ((-597 (-1082)) $ (-597 (-1082))))))
-((-2352 (((-110) $ $) NIL)) (-1891 (((-1082) $ (-1082)) 17) (((-1082) $) 16)) (-3753 (((-1082) $ (-1082)) 15)) (-3102 (($ $ (-1082)) NIL)) (-2583 (((-3 (-1082) "failed") $) 11)) (-2369 (((-1082) $) 8)) (-3806 (((-3 (-1082) "failed") $) 12)) (-1214 (((-1082) $) 9)) (-2551 (($ (-369)) NIL) (($ (-369) (-1082)) NIL)) (-3907 (((-369) $) NIL)) (-1424 (((-1082) $) NIL)) (-3816 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2130 (((-110) $) 18)) (-2366 (((-804) $) NIL)) (-3422 (($ $) NIL)) (-2248 (((-110) $ $) NIL)))
-(((-1117) (-13 (-345 (-369) (-1082)) (-10 -8 (-15 -1891 ((-1082) $ (-1082))) (-15 -1891 ((-1082) $)) (-15 -2369 ((-1082) $)) (-15 -2583 ((-3 (-1082) "failed") $)) (-15 -3806 ((-3 (-1082) "failed") $)) (-15 -2130 ((-110) $))))) (T -1117))
-((-1891 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-1891 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-2369 (*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-2583 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-3806 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))) (-2130 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1117)))))
-(-13 (-345 (-369) (-1082)) (-10 -8 (-15 -1891 ((-1082) $ (-1082))) (-15 -1891 ((-1082) $)) (-15 -2369 ((-1082) $)) (-15 -2583 ((-3 (-1082) "failed") $)) (-15 -3806 ((-3 (-1082) "failed") $)) (-15 -2130 ((-110) $))))
-((-1867 (((-3 (-530) "failed") |#1|) 19)) (-1671 (((-3 (-530) "failed") |#1|) 14)) (-3183 (((-530) (-1082)) 28)))
-(((-1118 |#1|) (-10 -7 (-15 -1867 ((-3 (-530) "failed") |#1|)) (-15 -1671 ((-3 (-530) "failed") |#1|)) (-15 -3183 ((-530) (-1082)))) (-984)) (T -1118))
-((-3183 (*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-1118 *4)) (-4 *4 (-984)))) (-1671 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))) (-1867 (*1 *2 *3) (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
-(-10 -7 (-15 -1867 ((-3 (-530) "failed") |#1|)) (-15 -1671 ((-3 (-530) "failed") |#1|)) (-15 -3183 ((-530) (-1082))))
-((-1797 (((-1059 (-208))) 9)))
-(((-1119) (-10 -7 (-15 -1797 ((-1059 (-208)))))) (T -1119))
-((-1797 (*1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1119)))))
-(-10 -7 (-15 -1797 ((-1059 (-208)))))
-((-1948 (($) 11)) (-2459 (($ $) 35)) (-2434 (($ $) 33)) (-2293 (($ $) 25)) (-2485 (($ $) 17)) (-3632 (($ $) 15)) (-2472 (($ $) 19)) (-2324 (($ $) 30)) (-2446 (($ $) 34)) (-2304 (($ $) 29)))
-(((-1120 |#1|) (-10 -8 (-15 -1948 (|#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2304 (|#1| |#1|))) (-1121)) (T -1120))
-NIL
-(-10 -8 (-15 -1948 (|#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)))
-((-2386 (($ $) 26)) (-2244 (($ $) 11)) (-2360 (($ $) 27)) (-2219 (($ $) 10)) (-2409 (($ $) 28)) (-2269 (($ $) 9)) (-1948 (($) 16)) (-2168 (($ $) 19)) (-2853 (($ $) 18)) (-2421 (($ $) 29)) (-2281 (($ $) 8)) (-2398 (($ $) 30)) (-2254 (($ $) 7)) (-2373 (($ $) 31)) (-2231 (($ $) 6)) (-2459 (($ $) 20)) (-2314 (($ $) 32)) (-2434 (($ $) 21)) (-2293 (($ $) 33)) (-2485 (($ $) 22)) (-2334 (($ $) 34)) (-3632 (($ $) 23)) (-2347 (($ $) 35)) (-2472 (($ $) 24)) (-2324 (($ $) 36)) (-2446 (($ $) 25)) (-2304 (($ $) 37)) (** (($ $ $) 17)))
-(((-1121) (-133)) (T -1121))
-((-1948 (*1 *1) (-4 *1 (-1121))))
-(-13 (-1124) (-93) (-471) (-34) (-266) (-10 -8 (-15 -1948 ($))))
-(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-1124) . T))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-3417 ((|#1| $) 17)) (-1638 (($ |#1| (-597 $)) 23) (($ (-597 |#1|)) 27) (($ |#1|) 25)) (-3186 (((-110) $ (-719)) 48)) (-1615 ((|#1| $ |#1|) 14 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 13 (|has| $ (-6 -4270)))) (-2350 (($) NIL T CONST)) (-3779 (((-597 |#1|) $) 52 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 43)) (-1646 (((-110) $ $) 33 (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) 41)) (-2395 (((-597 |#1|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 51 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3583 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 22)) (-2763 (((-110) $ (-719)) 40)) (-3390 (((-597 |#1|) $) 37)) (-3615 (((-110) $) 36)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-1533 (((-110) (-1 (-110) |#1|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 74)) (-3250 (((-110) $) 9)) (-3958 (($) 10)) (-1902 ((|#1| $ "value") NIL)) (-2539 (((-530) $ $) 32)) (-1553 (((-597 $) $) 59)) (-3516 (((-110) $ $) 77)) (-1944 (((-597 $) $) 72)) (-1575 (($ $) 73)) (-4246 (((-110) $) 56)) (-2632 (((-719) (-1 (-110) |#1|) $) 20 (|has| $ (-6 -4269))) (((-719) |#1| $) 16 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2579 (($ $) 58)) (-2366 (((-804) $) 61 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 12)) (-4153 (((-110) $ $) 29 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 49 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 28 (|has| |#1| (-1027)))) (-2267 (((-719) $) 39 (|has| $ (-6 -4269)))))
-(((-1122 |#1|) (-13 (-949 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -1638 ($ |#1| (-597 $))) (-15 -1638 ($ (-597 |#1|))) (-15 -1638 ($ |#1|)) (-15 -4246 ((-110) $)) (-15 -1575 ($ $)) (-15 -1944 ((-597 $) $)) (-15 -3516 ((-110) $ $)) (-15 -1553 ((-597 $) $)))) (-1027)) (T -1122))
-((-4246 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-1638 (*1 *1 *2 *3) (-12 (-5 *3 (-597 (-1122 *2))) (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-1122 *3)))) (-1638 (*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-1575 (*1 *1 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))) (-1944 (*1 *2 *1) (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-3516 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))) (-1553 (*1 *2 *1) (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(-13 (-949 |#1|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -1638 ($ |#1| (-597 $))) (-15 -1638 ($ (-597 |#1|))) (-15 -1638 ($ |#1|)) (-15 -4246 ((-110) $)) (-15 -1575 ($ $)) (-15 -1944 ((-597 $) $)) (-15 -3516 ((-110) $ $)) (-15 -1553 ((-597 $) $))))
-((-2244 (($ $) 15)) (-2269 (($ $) 12)) (-2281 (($ $) 10)) (-2254 (($ $) 17)))
-(((-1123 |#1|) (-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2244 (|#1| |#1|))) (-1124)) (T -1123))
-NIL
-(-10 -8 (-15 -2254 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2244 (|#1| |#1|)))
-((-2244 (($ $) 11)) (-2219 (($ $) 10)) (-2269 (($ $) 9)) (-2281 (($ $) 8)) (-2254 (($ $) 7)) (-2231 (($ $) 6)))
+((-3402 (((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 37)) (-3988 (((-531) (-1157 |#2| |#1|)) 69 (|has| |#1| (-432)))) (-3221 (((-531) (-1157 |#2| |#1|)) 54)) (-1601 (((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 45)) (-1769 (((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 68 (|has| |#1| (-432)))) (-4101 (((-598 |#1|) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 48)) (-2538 (((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|)) 53)))
+(((-1044 |#1| |#2|) (-10 -7 (-15 -3402 ((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -1601 ((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -4101 ((-598 |#1|) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -2538 ((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -3221 ((-531) (-1157 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -1769 ((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -3988 ((-531) (-1157 |#2| |#1|)))) |%noBranch|)) (-770) (-1102)) (T -1044))
+((-3988 (*1 *2 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-432)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))) (-1769 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-432)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))) (-3221 (*1 *2 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))) (-2538 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))) (-4101 (*1 *2 *3 *3) (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 *4)) (-5 *1 (-1044 *4 *5)))) (-1601 (*1 *2 *3 *3) (-12 (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 (-1157 *5 *4))) (-5 *1 (-1044 *4 *5)) (-5 *3 (-1157 *5 *4)))) (-3402 (*1 *2 *3 *3) (-12 (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 (-1157 *5 *4))) (-5 *1 (-1044 *4 *5)) (-5 *3 (-1157 *5 *4)))))
+(-10 -7 (-15 -3402 ((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -1601 ((-598 (-1157 |#2| |#1|)) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -4101 ((-598 |#1|) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -2538 ((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -3221 ((-531) (-1157 |#2| |#1|))) (IF (|has| |#1| (-432)) (PROGN (-15 -1769 ((-531) (-1157 |#2| |#1|) (-1157 |#2| |#1|))) (-15 -3988 ((-531) (-1157 |#2| |#1|)))) |%noBranch|))
+((-3459 (((-3 (-531) "failed") |#2| (-1102) |#2| (-1085)) 17) (((-3 (-531) "failed") |#2| (-1102) (-790 |#2|)) 15) (((-3 (-531) "failed") |#2|) 54)))
+(((-1045 |#1| |#2|) (-10 -7 (-15 -3459 ((-3 (-531) "failed") |#2|)) (-15 -3459 ((-3 (-531) "failed") |#2| (-1102) (-790 |#2|))) (-15 -3459 ((-3 (-531) "failed") |#2| (-1102) |#2| (-1085)))) (-13 (-523) (-797) (-977 (-531)) (-594 (-531)) (-432)) (-13 (-27) (-1124) (-411 |#1|))) (T -1045))
+((-3459 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-1085)) (-4 *6 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) (-5 *2 (-531)) (-5 *1 (-1045 *6 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))))) (-3459 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-790 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6))) (-4 *6 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) (-5 *2 (-531)) (-5 *1 (-1045 *6 *3)))) (-3459 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432))) (-5 *2 (-531)) (-5 *1 (-1045 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))))
+(-10 -7 (-15 -3459 ((-3 (-531) "failed") |#2|)) (-15 -3459 ((-3 (-531) "failed") |#2| (-1102) (-790 |#2|))) (-15 -3459 ((-3 (-531) "failed") |#2| (-1102) |#2| (-1085))))
+((-3459 (((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)) (-1085)) 35) (((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-790 (-388 (-895 |#1|)))) 30) (((-3 (-531) "failed") (-388 (-895 |#1|))) 13)))
+(((-1046 |#1|) (-10 -7 (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)))) (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-790 (-388 (-895 |#1|))))) (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)) (-1085)))) (-432)) (T -1046))
+((-3459 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-388 (-895 *6))) (-5 *4 (-1102)) (-5 *5 (-1085)) (-4 *6 (-432)) (-5 *2 (-531)) (-5 *1 (-1046 *6)))) (-3459 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-790 (-388 (-895 *6)))) (-5 *3 (-388 (-895 *6))) (-4 *6 (-432)) (-5 *2 (-531)) (-5 *1 (-1046 *6)))) (-3459 (*1 *2 *3) (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-432)) (-5 *2 (-531)) (-5 *1 (-1046 *4)))))
+(-10 -7 (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)))) (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-790 (-388 (-895 |#1|))))) (-15 -3459 ((-3 (-531) "failed") (-388 (-895 |#1|)) (-1102) (-388 (-895 |#1|)) (-1085))))
+((-2247 (((-110) $ $) NIL)) (-1671 (((-1107) $) 10)) (-1619 (((-598 (-1107)) $) 11)) (-1424 (($ (-598 (-1107)) (-1107)) 9)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 20)) (-2148 (((-110) $ $) 14)))
+(((-1047) (-13 (-1030) (-10 -8 (-15 -1424 ($ (-598 (-1107)) (-1107))) (-15 -1671 ((-1107) $)) (-15 -1619 ((-598 (-1107)) $))))) (T -1047))
+((-1424 (*1 *1 *2 *3) (-12 (-5 *2 (-598 (-1107))) (-5 *3 (-1107)) (-5 *1 (-1047)))) (-1671 (*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-1047)))) (-1619 (*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1047)))))
+(-13 (-1030) (-10 -8 (-15 -1424 ($ (-598 (-1107)) (-1107))) (-15 -1671 ((-1107) $)) (-15 -1619 ((-598 (-1107)) $))))
+((-4013 (((-297 (-531)) (-47)) 12)))
+(((-1048) (-10 -7 (-15 -4013 ((-297 (-531)) (-47))))) (T -1048))
+((-4013 (*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-531))) (-5 *1 (-1048)))))
+(-10 -7 (-15 -4013 ((-297 (-531)) (-47))))
+((-2247 (((-110) $ $) NIL)) (-1813 (($ $) 41)) (-3019 (((-110) $) 65)) (-3082 (($ $ $) 48)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2464 (($ $ $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-2377 (($ $ $ $) 74)) (-3240 (($ $) NIL)) (-2956 (((-399 $) $) NIL)) (-2760 (((-110) $ $) NIL)) (-3459 (((-531) $) NIL)) (-3709 (($ $ $) 71)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL)) (-2523 (((-531) $) NIL)) (-3650 (($ $ $) 59)) (-3073 (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 79) (((-639 (-531)) (-639 $)) 28)) (-3622 (((-3 $ "failed") $) NIL)) (-1609 (((-3 (-388 (-531)) "failed") $) NIL)) (-3004 (((-110) $) NIL)) (-2727 (((-388 (-531)) $) NIL)) (-1381 (($) 82) (($ $) 83)) (-3630 (($ $ $) 58)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL)) (-2534 (((-110) $) NIL)) (-3013 (($ $ $ $) NIL)) (-2033 (($ $ $) 80)) (-1599 (((-110) $) NIL)) (-2555 (($ $ $) NIL)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL)) (-3481 (((-110) $) 66)) (-4250 (((-110) $) 64)) (-3745 (($ $) 42)) (-2342 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) 75)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-3233 (($ $ $ $) 72)) (-4103 (($ $ $) 68) (($) 39)) (-1241 (($ $ $) 67) (($) 38)) (-3107 (($ $) NIL)) (-2428 (($ $) 70)) (-2078 (($ $ $) NIL) (($ (-598 $)) NIL)) (-1521 (((-1085) $) NIL)) (-4098 (($ $ $) NIL)) (-3788 (($) NIL T CONST)) (-3906 (($ $) 50)) (-2529 (((-1049) $) NIL) (($ $) 69)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL)) (-2109 (($ $ $) 62) (($ (-598 $)) NIL)) (-1569 (($ $) NIL)) (-2552 (((-399 $) $) NIL)) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL)) (-3609 (((-3 $ "failed") $ $) NIL)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL)) (-1787 (((-110) $) NIL)) (-4100 (((-721) $) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 61)) (-3352 (($ $ (-721)) NIL) (($ $) NIL)) (-1651 (($ $) 51)) (-2480 (($ $) NIL)) (-3318 (((-531) $) 32) (((-507) $) NIL) (((-835 (-531)) $) NIL) (((-360) $) NIL) (((-208) $) NIL)) (-2265 (((-806) $) 31) (($ (-531)) 81) (($ $) NIL) (($ (-531)) 81)) (-2284 (((-721)) NIL)) (-2070 (((-110) $ $) NIL)) (-2589 (($ $ $) NIL)) (-3276 (($) 37)) (-2587 (((-110) $ $) NIL)) (-2392 (($ $ $ $) 73)) (-1620 (($ $) 63)) (-1868 (($ $ $) 44)) (-3035 (($) 35 T CONST)) (-4251 (($ $ $) 47)) (-3050 (($) 36 T CONST)) (-4231 (((-1085) $) 21) (((-1085) $ (-110)) 23) (((-1189) (-772) $) 24) (((-1189) (-772) $ (-110)) 25)) (-1223 (($ $) 45)) (-4020 (($ $ (-721)) NIL) (($ $) NIL)) (-4240 (($ $ $) 46)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 40)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 49)) (-1854 (($ $ $) 43)) (-2250 (($ $) 52) (($ $ $) 54)) (-2237 (($ $ $) 53)) (** (($ $ (-864)) NIL) (($ $ (-721)) 57)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 34) (($ $ $) 55)))
+(((-1049) (-13 (-516) (-614) (-778) (-10 -8 (-6 -4260) (-6 -4265) (-6 -4261) (-15 -1241 ($)) (-15 -4103 ($)) (-15 -3745 ($ $)) (-15 -1813 ($ $)) (-15 -1854 ($ $ $)) (-15 -1868 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -1223 ($ $)) (-15 -4240 ($ $ $)) (-15 -4251 ($ $ $))))) (T -1049))
+((-1868 (*1 *1 *1 *1) (-5 *1 (-1049))) (-1854 (*1 *1 *1 *1) (-5 *1 (-1049))) (-1813 (*1 *1 *1) (-5 *1 (-1049))) (-1241 (*1 *1) (-5 *1 (-1049))) (-4103 (*1 *1) (-5 *1 (-1049))) (-3745 (*1 *1 *1) (-5 *1 (-1049))) (-3082 (*1 *1 *1 *1) (-5 *1 (-1049))) (-1223 (*1 *1 *1) (-5 *1 (-1049))) (-4240 (*1 *1 *1 *1) (-5 *1 (-1049))) (-4251 (*1 *1 *1 *1) (-5 *1 (-1049))))
+(-13 (-516) (-614) (-778) (-10 -8 (-6 -4260) (-6 -4265) (-6 -4261) (-15 -1241 ($)) (-15 -4103 ($)) (-15 -3745 ($ $)) (-15 -1813 ($ $)) (-15 -1854 ($ $ $)) (-15 -1868 ($ $ $)) (-15 -3082 ($ $ $)) (-15 -1223 ($ $)) (-15 -4240 ($ $ $)) (-15 -4251 ($ $ $))))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-1573 ((|#1| $) 44)) (-4058 (((-110) $ (-721)) 8)) (-4082 (($) 7 T CONST)) (-3196 ((|#1| |#1| $) 46)) (-4205 ((|#1| $) 45)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-3540 ((|#1| $) 39)) (-3944 (($ |#1| $) 40)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-4192 ((|#1| $) 41)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1216 (((-721) $) 43)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) 42)) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-1050 |#1|) (-133) (-1138)) (T -1050))
+((-3196 (*1 *2 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))) (-4205 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))) (-1573 (*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))) (-1216 (*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))))
+(-13 (-104 |t#1|) (-10 -8 (-6 -4273) (-15 -3196 (|t#1| |t#1| $)) (-15 -4205 (|t#1| $)) (-15 -1573 (|t#1| $)) (-15 -1216 ((-721) $))))
+(((-33) . T) ((-104 |#1|) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-1354 ((|#3| $) 76)) (-3154 (((-3 (-531) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 |#3| "failed") $) 40)) (-2523 (((-531) $) NIL) (((-388 (-531)) $) NIL) ((|#3| $) 37)) (-3073 (((-639 (-531)) (-639 $)) NIL) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL) (((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 $) (-1184 $)) 73) (((-639 |#3|) (-639 $)) 65)) (-3352 (($ $ (-1 |#3| |#3|)) 19) (($ $ (-1 |#3| |#3|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102)) NIL) (($ $ (-721)) NIL) (($ $) NIL)) (-2806 ((|#3| $) 78)) (-2823 ((|#4| $) 32)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ |#3|) 16)) (** (($ $ (-864)) NIL) (($ $ (-721)) 15) (($ $ (-531)) 82)))
+(((-1051 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 ** (|#1| |#1| (-531))) (-15 -2806 (|#3| |#1|)) (-15 -1354 (|#3| |#1|)) (-15 -2823 (|#4| |#1|)) (-15 -3073 ((-639 |#3|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -2265 (|#1| |#3|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|) (-721))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2265 (|#1| (-531))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))) (-15 -2265 ((-806) |#1|))) (-1052 |#2| |#3| |#4| |#5|) (-721) (-986) (-221 |#2| |#3|) (-221 |#2| |#3|)) (T -1051))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-531))) (-15 -2806 (|#3| |#1|)) (-15 -1354 (|#3| |#1|)) (-15 -2823 (|#4| |#1|)) (-15 -3073 ((-639 |#3|) (-639 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 |#3|)) (|:| |vec| (-1184 |#3|))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 |#1|) (-1184 |#1|))) (-15 -3073 ((-639 (-531)) (-639 |#1|))) (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -2265 (|#1| |#3|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-531) |#1|)) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|) (-721))) (-15 -3352 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2265 (|#1| (-531))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1354 ((|#2| $) 70)) (-2719 (((-110) $) 110)) (-2128 (((-3 $ "failed") $ $) 19)) (-1878 (((-110) $) 108)) (-4058 (((-110) $ (-721)) 100)) (-3264 (($ |#2|) 73)) (-4082 (($) 17 T CONST)) (-2800 (($ $) 127 (|has| |#2| (-289)))) (-4011 ((|#3| $ (-531)) 122)) (-3154 (((-3 (-531) "failed") $) 84 (|has| |#2| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) 82 (|has| |#2| (-977 (-388 (-531))))) (((-3 |#2| "failed") $) 79)) (-2523 (((-531) $) 85 (|has| |#2| (-977 (-531)))) (((-388 (-531)) $) 83 (|has| |#2| (-977 (-388 (-531))))) ((|#2| $) 78)) (-3073 (((-639 (-531)) (-639 $)) 77 (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 76 (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 75) (((-639 |#2|) (-639 $)) 74)) (-3622 (((-3 $ "failed") $) 32)) (-2277 (((-721) $) 128 (|has| |#2| (-523)))) (-2627 ((|#2| $ (-531) (-531)) 120)) (-2227 (((-598 |#2|) $) 93 (|has| $ (-6 -4273)))) (-3481 (((-110) $) 30)) (-4091 (((-721) $) 129 (|has| |#2| (-523)))) (-3001 (((-598 |#4|) $) 130 (|has| |#2| (-523)))) (-1548 (((-721) $) 116)) (-1557 (((-721) $) 117)) (-3280 (((-110) $ (-721)) 101)) (-2803 ((|#2| $) 65 (|has| |#2| (-6 (-4275 "*"))))) (-1271 (((-531) $) 112)) (-1665 (((-531) $) 114)) (-2445 (((-598 |#2|) $) 92 (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) 90 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2527 (((-531) $) 113)) (-2394 (((-531) $) 115)) (-2200 (($ (-598 (-598 |#2|))) 107)) (-2680 (($ (-1 |#2| |#2|) $) 97 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2| |#2|) $ $) 124) (($ (-1 |#2| |#2|) $) 98)) (-3924 (((-598 (-598 |#2|)) $) 118)) (-3332 (((-110) $ (-721)) 102)) (-1521 (((-1085) $) 9)) (-2147 (((-3 $ "failed") $) 64 (|has| |#2| (-344)))) (-2529 (((-1049) $) 10)) (-3609 (((-3 $ "failed") $ |#2|) 125 (|has| |#2| (-523)))) (-2294 (((-110) (-1 (-110) |#2|) $) 95 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) 89 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 88 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 87 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) 106)) (-1589 (((-110) $) 103)) (-3781 (($) 104)) (-1785 ((|#2| $ (-531) (-531) |#2|) 121) ((|#2| $ (-531) (-531)) 119)) (-3352 (($ $ (-1 |#2| |#2|)) 50) (($ $ (-1 |#2| |#2|) (-721)) 49) (($ $ (-598 (-1102)) (-598 (-721))) 42 (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) 41 (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) 40 (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) 39 (|has| |#2| (-843 (-1102)))) (($ $ (-721)) 37 (|has| |#2| (-216))) (($ $) 35 (|has| |#2| (-216)))) (-2806 ((|#2| $) 69)) (-3223 (($ (-598 |#2|)) 72)) (-1439 (((-110) $) 109)) (-2823 ((|#3| $) 71)) (-3253 ((|#2| $) 66 (|has| |#2| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#2|) $) 94 (|has| $ (-6 -4273))) (((-721) |#2| $) 91 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 105)) (-3431 ((|#4| $ (-531)) 123)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 81 (|has| |#2| (-977 (-388 (-531))))) (($ |#2|) 80)) (-2284 (((-721)) 28)) (-2060 (((-110) (-1 (-110) |#2|) $) 96 (|has| $ (-6 -4273)))) (-2116 (((-110) $) 111)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) 48) (($ $ (-1 |#2| |#2|) (-721)) 47) (($ $ (-598 (-1102)) (-598 (-721))) 46 (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) 45 (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) 44 (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) 43 (|has| |#2| (-843 (-1102)))) (($ $ (-721)) 38 (|has| |#2| (-216))) (($ $) 36 (|has| |#2| (-216)))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#2|) 126 (|has| |#2| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 63 (|has| |#2| (-344)))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#2|) 132) (($ |#2| $) 131) ((|#4| $ |#4|) 68) ((|#3| |#3| $) 67)) (-2167 (((-721) $) 99 (|has| $ (-6 -4273)))))
+(((-1052 |#1| |#2| |#3| |#4|) (-133) (-721) (-986) (-221 |t#1| |t#2|) (-221 |t#1| |t#2|)) (T -1052))
+((-3264 (*1 *1 *2) (-12 (-4 *2 (-986)) (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)))) (-3223 (*1 *1 *2) (-12 (-5 *2 (-598 *4)) (-4 *4 (-986)) (-4 *1 (-1052 *3 *4 *5 *6)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))) (-2823 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *4 *2 *5)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (-1354 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-986)))) (-2806 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (-4 *2 (-986)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1052 *3 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) (-4 *2 (-221 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1052 *3 *4 *2 *5)) (-4 *4 (-986)) (-4 *2 (-221 *3 *4)) (-4 *5 (-221 *3 *4)))) (-3253 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) (-2803 (*1 *2 *1) (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2)) (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))) (-2147 (*1 *1 *1) (|partial| -12 (-4 *1 (-1052 *2 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1052 *3 *4 *5 *6)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344)))))
+(-13 (-214 |t#2|) (-109 |t#2| |t#2|) (-989 |t#1| |t#1| |t#2| |t#3| |t#4|) (-392 |t#2|) (-358 |t#2|) (-10 -8 (IF (|has| |t#2| (-162)) (-6 (-668 |t#2|)) |%noBranch|) (-15 -3264 ($ |t#2|)) (-15 -3223 ($ (-598 |t#2|))) (-15 -2823 (|t#3| $)) (-15 -1354 (|t#2| $)) (-15 -2806 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4275 "*"))) (PROGN (-6 (-37 |t#2|)) (-15 -3253 (|t#2| $)) (-15 -2803 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-344)) (PROGN (-15 -2147 ((-3 $ "failed") $)) (-15 ** ($ $ (-531)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-33) . T) ((-37 |#2|) |has| |#2| (-6 (-4275 "*"))) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-572 (-806)) . T) ((-214 |#2|) . T) ((-216) |has| |#2| (-216)) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-358 |#2|) . T) ((-392 |#2|) . T) ((-468 |#2|) . T) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-601 |#2|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#2| (-594 (-531))) ((-594 |#2|) . T) ((-668 |#2|) -1435 (|has| |#2| (-162)) (|has| |#2| (-6 (-4275 "*")))) ((-677) . T) ((-843 (-1102)) |has| |#2| (-843 (-1102))) ((-989 |#1| |#1| |#2| |#3| |#4|) . T) ((-977 (-388 (-531))) |has| |#2| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#2| (-977 (-531))) ((-977 |#2|) . T) ((-992 |#2|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1138) . T))
+((-1275 ((|#4| |#4|) 70)) (-3098 ((|#4| |#4|) 65)) (-3850 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|) 78)) (-1655 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 69)) (-4238 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 67)))
+(((-1053 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3098 (|#4| |#4|)) (-15 -4238 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1275 (|#4| |#4|)) (-15 -1655 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3850 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|))) (-289) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|)) (T -1053))
+((-3850 (*1 *2 *3 *4) (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4)))) (-5 *1 (-1053 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))) (-1655 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1053 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-1275 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1053 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-4238 (*1 *2 *3) (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1053 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))) (-3098 (*1 *2 *2) (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1053 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))))
+(-10 -7 (-15 -3098 (|#4| |#4|)) (-15 -4238 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -1275 (|#4| |#4|)) (-15 -1655 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3850 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -3523 (-598 |#3|))) |#4| |#3|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 17)) (-2695 (((-598 |#2|) $) 159)) (-2516 (((-1098 $) $ |#2|) 54) (((-1098 |#1|) $) 43)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 108 (|has| |#1| (-523)))) (-3258 (($ $) 110 (|has| |#1| (-523)))) (-2921 (((-110) $) 112 (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 |#2|)) 192)) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) 156) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 |#2| "failed") $) NIL)) (-2523 ((|#1| $) 154) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) ((|#2| $) NIL)) (-3115 (($ $ $ |#2|) NIL (|has| |#1| (-162)))) (-2500 (($ $) 196)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) 82)) (-2226 (($ $) NIL (|has| |#1| (-432))) (($ $ |#2|) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-503 |#2|) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| |#1| (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| |#1| (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3481 (((-110) $) 19)) (-3517 (((-721) $) 26)) (-2682 (($ (-1098 |#1|) |#2|) 48) (($ (-1098 $) |#2|) 64)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) 32)) (-2669 (($ |#1| (-503 |#2|)) 71) (($ $ |#2| (-721)) 52) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ |#2|) NIL)) (-3005 (((-503 |#2|) $) 186) (((-721) $ |#2|) 187) (((-598 (-721)) $ (-598 |#2|)) 188)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-503 |#2|) (-503 |#2|)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 120)) (-3471 (((-3 |#2| "failed") $) 161)) (-2462 (($ $) 195)) (-2475 ((|#1| $) 37)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| |#2|) (|:| -1790 (-721))) "failed") $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 33)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 138 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) 143 (|has| |#1| (-432))) (($ $ $) 130 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#1| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-852)))) (-3609 (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ $) 118 (|has| |#1| (-523)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ |#2| |#1|) 164) (($ $ (-598 |#2|) (-598 |#1|)) 177) (($ $ |#2| $) 163) (($ $ (-598 |#2|) (-598 $)) 176)) (-3176 (($ $ |#2|) NIL (|has| |#1| (-162)))) (-3352 (($ $ |#2|) 194) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2012 (((-503 |#2|) $) 182) (((-721) $ |#2|) 178) (((-598 (-721)) $ (-598 |#2|)) 180)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| |#1| (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| |#1| (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| |#1| (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#1| $) 126 (|has| |#1| (-432))) (($ $ |#2|) 129 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2265 (((-806) $) 149) (($ (-531)) 76) (($ |#1|) 77) (($ |#2|) 28) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2708 (((-598 |#1|) $) 152)) (-3188 ((|#1| $ (-503 |#2|)) 73) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 79)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) 115 (|has| |#1| (-523)))) (-3035 (($) 12 T CONST)) (-3050 (($) 14 T CONST)) (-4020 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 97)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 124 (|has| |#1| (-344)))) (-2250 (($ $) 85) (($ $ $) 95)) (-2237 (($ $ $) 49)) (** (($ $ (-864)) 102) (($ $ (-721)) 100)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 88) (($ $ $) 65) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 90) (($ $ |#1|) NIL)))
+(((-1054 |#1| |#2|) (-892 |#1| (-503 |#2|) |#2|) (-986) (-797)) (T -1054))
+NIL
+(-892 |#1| (-503 |#2|) |#2|)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2367 (($ $) 143 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2391 (($ $) 147 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3383 (((-895 |#1|) $ (-721)) NIL) (((-895 |#1|) $ (-721) (-721)) NIL)) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $ |#2|) NIL) (((-721) $ |#2| (-721)) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3380 (((-110) $) NIL)) (-2669 (($ $ (-598 |#2|) (-598 (-503 |#2|))) NIL) (($ $ |#2| (-503 |#2|)) NIL) (($ |#1| (-503 |#2|)) NIL) (($ $ |#2| (-721)) 58) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) 113 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1788 (($ $ |#2|) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ |#2| |#1|) 166 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-4003 (($ (-1 $) |#2| |#1|) 165 (|has| |#1| (-37 (-388 (-531)))))) (-1846 (($ $ (-721)) 15)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-2798 (($ $) 111 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (($ $ |#2| $) 97) (($ $ (-598 |#2|) (-598 $)) 90) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL)) (-3352 (($ $ |#2|) 100) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2012 (((-503 |#2|) $) NIL)) (-3417 (((-1 (-1083 |#3|) |#3|) (-598 |#2|) (-598 (-1083 |#3|))) 79)) (-2403 (($ $) 149 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 145 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 17)) (-2265 (((-806) $) 182) (($ (-531)) NIL) (($ |#1|) 44 (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#2|) 65) (($ |#3|) 63)) (-3188 ((|#1| $ (-503 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL) ((|#3| $ (-721)) 42)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-2442 (($ $) 155 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 151 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 159 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2753 (($ $) 161 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 157 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 153 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 10 T CONST)) (-4020 (($ $ |#2|) NIL) (($ $ (-598 |#2|)) NIL) (($ $ |#2| (-721)) NIL) (($ $ (-598 |#2|) (-598 (-721))) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) 184 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 61)) (** (($ $ (-864)) NIL) (($ $ (-721)) 70) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 103 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 60) (($ $ (-388 (-531))) 108 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 106 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 47) (($ $ |#1|) 48) (($ |#3| $) 46)))
+(((-1055 |#1| |#2| |#3|) (-13 (-691 |#1| |#2|) (-10 -8 (-15 -3188 (|#3| $ (-721))) (-15 -2265 ($ |#2|)) (-15 -2265 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3417 ((-1 (-1083 |#3|) |#3|) (-598 |#2|) (-598 (-1083 |#3|)))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ |#2| |#1|)) (-15 -4003 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-986) (-797) (-892 |#1| (-503 |#2|) |#2|)) (T -1055))
+((-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *2 (-892 *4 (-503 *5) *5)) (-5 *1 (-1055 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-797)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *2 (-797)) (-5 *1 (-1055 *3 *2 *4)) (-4 *4 (-892 *3 (-503 *2) *2)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-5 *1 (-1055 *3 *4 *2)) (-4 *2 (-892 *3 (-503 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-5 *1 (-1055 *3 *4 *2)) (-4 *2 (-892 *3 (-503 *4) *4)))) (-3417 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-1083 *7))) (-4 *6 (-797)) (-4 *7 (-892 *5 (-503 *6) *6)) (-4 *5 (-986)) (-5 *2 (-1 (-1083 *7) *7)) (-5 *1 (-1055 *5 *6 *7)))) (-1788 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-4 *2 (-797)) (-5 *1 (-1055 *3 *2 *4)) (-4 *4 (-892 *3 (-503 *2) *2)))) (-4003 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1055 *4 *3 *5))) (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986)) (-4 *3 (-797)) (-5 *1 (-1055 *4 *3 *5)) (-4 *5 (-892 *4 (-503 *3) *3)))))
+(-13 (-691 |#1| |#2|) (-10 -8 (-15 -3188 (|#3| $ (-721))) (-15 -2265 ($ |#2|)) (-15 -2265 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3417 ((-1 (-1083 |#3|) |#3|) (-598 |#2|) (-598 (-1083 |#3|)))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ |#2| |#1|)) (-15 -4003 ($ (-1 $) |#2| |#1|))) |%noBranch|)))
+((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86) (((-598 $) (-598 |#4|) (-110)) 111)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 126)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2950 (((-110) |#4| $) 136)) (-1428 (((-110) |#4| $) 133)) (-2213 (((-110) |#4| $) 137) (((-110) $) 134)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) 128)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 127)) (-2309 (((-3 |#4| "failed") $) 83)) (-2918 (((-598 $) |#4| $) 129)) (-1568 (((-3 (-110) (-598 $)) |#4| $) 132)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 131) (((-110) |#4| $) 130)) (-1301 (((-598 $) |#4| $) 125) (((-598 $) (-598 |#4|) $) 124) (((-598 $) (-598 |#4|) (-598 $)) 123) (((-598 $) |#4| (-598 $)) 122)) (-2106 (($ |#4| $) 117) (($ (-598 |#4|) $) 116)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77) (((-598 $) |#4| $) 115) (((-598 $) |#4| (-598 $)) 114) (((-598 $) (-598 |#4|) $) 113) (((-598 $) (-598 |#4|) (-598 $)) 112)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-3777 (((-598 $) |#4| $) 121) (((-598 $) |#4| (-598 $)) 120) (((-598 $) (-598 |#4|) $) 119) (((-598 $) (-598 |#4|) (-598 $)) 118)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-3695 (((-110) |#4| $) 135)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273)))))
+(((-1056 |#1| |#2| |#3| |#4|) (-133) (-432) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -1056))
+NIL
+(-13 (-1039 |t#1| |t#2| |t#3| |t#4|) (-734 |t#1| |t#2| |t#3| |t#4|))
+(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-734 |#1| |#2| |#3| |#4|) . T) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1005 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1039 |#1| |#2| |#3| |#4|) . T) ((-1132 |#1| |#2| |#3| |#4|) . T) ((-1138) . T))
+((-1871 (((-598 |#2|) |#1|) 12)) (-1766 (((-598 |#2|) |#2| |#2| |#2| |#2| |#2|) 41) (((-598 |#2|) |#1|) 52)) (-3372 (((-598 |#2|) |#2| |#2| |#2|) 39) (((-598 |#2|) |#1|) 50)) (-2197 ((|#2| |#1|) 46)) (-1543 (((-2 (|:| |solns| (-598 |#2|)) (|:| |maps| (-598 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 17)) (-3364 (((-598 |#2|) |#2| |#2|) 38) (((-598 |#2|) |#1|) 49)) (-1374 (((-598 |#2|) |#2| |#2| |#2| |#2|) 40) (((-598 |#2|) |#1|) 51)) (-1728 ((|#2| |#2| |#2| |#2| |#2| |#2|) 45)) (-3111 ((|#2| |#2| |#2| |#2|) 43)) (-2440 ((|#2| |#2| |#2|) 42)) (-3066 ((|#2| |#2| |#2| |#2| |#2|) 44)))
+(((-1057 |#1| |#2|) (-10 -7 (-15 -1871 ((-598 |#2|) |#1|)) (-15 -2197 (|#2| |#1|)) (-15 -1543 ((-2 (|:| |solns| (-598 |#2|)) (|:| |maps| (-598 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3364 ((-598 |#2|) |#1|)) (-15 -3372 ((-598 |#2|) |#1|)) (-15 -1374 ((-598 |#2|) |#1|)) (-15 -1766 ((-598 |#2|) |#1|)) (-15 -3364 ((-598 |#2|) |#2| |#2|)) (-15 -3372 ((-598 |#2|) |#2| |#2| |#2|)) (-15 -1374 ((-598 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1766 ((-598 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2440 (|#2| |#2| |#2|)) (-15 -3111 (|#2| |#2| |#2| |#2|)) (-15 -3066 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1728 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1160 |#2|) (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (T -1057))
+((-1728 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-3066 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-3111 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-2440 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-1766 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))) (-1374 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))) (-3372 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))) (-3364 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))) (-1766 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) (-1374 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) (-3372 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) (-3364 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))) (-1543 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-2 (|:| |solns| (-598 *5)) (|:| |maps| (-598 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1057 *3 *5)) (-4 *3 (-1160 *5)))) (-2197 (*1 *2 *3) (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531))))))) (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -1871 ((-598 |#2|) |#1|)) (-15 -2197 (|#2| |#1|)) (-15 -1543 ((-2 (|:| |solns| (-598 |#2|)) (|:| |maps| (-598 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3364 ((-598 |#2|) |#1|)) (-15 -3372 ((-598 |#2|) |#1|)) (-15 -1374 ((-598 |#2|) |#1|)) (-15 -1766 ((-598 |#2|) |#1|)) (-15 -3364 ((-598 |#2|) |#2| |#2|)) (-15 -3372 ((-598 |#2|) |#2| |#2| |#2|)) (-15 -1374 ((-598 |#2|) |#2| |#2| |#2| |#2|)) (-15 -1766 ((-598 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -2440 (|#2| |#2| |#2|)) (-15 -3111 (|#2| |#2| |#2| |#2|)) (-15 -3066 (|#2| |#2| |#2| |#2| |#2|)) (-15 -1728 (|#2| |#2| |#2| |#2| |#2| |#2|)))
+((-1681 (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|))))) 95) (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102))) 94) (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|)))) 92) (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))) (-598 (-1102))) 90) (((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|)))) 75) (((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))) (-1102)) 76) (((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|))) 70) (((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)) (-1102)) 59)) (-3878 (((-598 (-598 (-297 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102))) 88) (((-598 (-297 |#1|)) (-388 (-895 |#1|)) (-1102)) 43)) (-3084 (((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-388 (-895 |#1|)) (-1102)) 98) (((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102)) 97)))
+(((-1058 |#1|) (-10 -7 (-15 -1681 ((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102)))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -3878 ((-598 (-297 |#1|)) (-388 (-895 |#1|)) (-1102))) (-15 -3878 ((-598 (-598 (-297 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -3084 ((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -3084 ((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-388 (-895 |#1|)) (-1102)))) (-13 (-289) (-797) (-140))) (T -1058))
+((-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-1092 (-598 (-297 *5)) (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) (-3084 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-895 *5)))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-1092 (-598 (-297 *5)) (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) (-3878 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-297 *5)))) (-5 *1 (-1058 *5)))) (-3878 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-297 *5))) (-5 *1 (-1058 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-598 (-276 (-388 (-895 *4))))) (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *4))))) (-5 *1 (-1058 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-276 (-388 (-895 *5))))) (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-598 (-388 (-895 *4)))) (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *4))))) (-5 *1 (-1058 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-276 (-388 (-895 *4)))) (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1058 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-276 (-388 (-895 *5)))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1058 *5)))) (-1681 (*1 *2 *3) (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1058 *4)))) (-1681 (*1 *2 *3 *4) (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1058 *5)))))
+(-10 -7 (-15 -1681 ((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)) (-1102))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-388 (-895 |#1|)))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -1681 ((-598 (-276 (-297 |#1|))) (-276 (-388 (-895 |#1|))))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-388 (-895 |#1|))))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102)))) (-15 -1681 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -3878 ((-598 (-297 |#1|)) (-388 (-895 |#1|)) (-1102))) (-15 -3878 ((-598 (-598 (-297 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -3084 ((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -3084 ((-1092 (-598 (-297 |#1|)) (-598 (-276 (-297 |#1|)))) (-388 (-895 |#1|)) (-1102))))
+((-3461 (((-388 (-1098 (-297 |#1|))) (-1184 (-297 |#1|)) (-388 (-1098 (-297 |#1|))) (-531)) 29)) (-2546 (((-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|)))) 40)))
+(((-1059 |#1|) (-10 -7 (-15 -2546 ((-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))))) (-15 -3461 ((-388 (-1098 (-297 |#1|))) (-1184 (-297 |#1|)) (-388 (-1098 (-297 |#1|))) (-531)))) (-13 (-523) (-797))) (T -1059))
+((-3461 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-388 (-1098 (-297 *5)))) (-5 *3 (-1184 (-297 *5))) (-5 *4 (-531)) (-4 *5 (-13 (-523) (-797))) (-5 *1 (-1059 *5)))) (-2546 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-388 (-1098 (-297 *3)))) (-4 *3 (-13 (-523) (-797))) (-5 *1 (-1059 *3)))))
+(-10 -7 (-15 -2546 ((-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))) (-388 (-1098 (-297 |#1|))))) (-15 -3461 ((-388 (-1098 (-297 |#1|))) (-1184 (-297 |#1|)) (-388 (-1098 (-297 |#1|))) (-531))))
+((-1871 (((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-297 |#1|))) (-598 (-1102))) 224) (((-598 (-276 (-297 |#1|))) (-297 |#1|) (-1102)) 20) (((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1102)) 26) (((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|))) 25) (((-598 (-276 (-297 |#1|))) (-297 |#1|)) 21)))
+(((-1060 |#1|) (-10 -7 (-15 -1871 ((-598 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1102))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-297 |#1|) (-1102))) (-15 -1871 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-297 |#1|))) (-598 (-1102))))) (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (T -1060))
+((-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-1102))) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1060 *5)) (-5 *3 (-598 (-276 (-297 *5)))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-297 *5)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1060 *5)) (-5 *3 (-276 (-297 *5))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-276 (-297 *4))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140))) (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1060 *4)) (-5 *3 (-297 *4)))))
+(-10 -7 (-15 -1871 ((-598 (-276 (-297 |#1|))) (-297 |#1|))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-276 (-297 |#1|)) (-1102))) (-15 -1871 ((-598 (-276 (-297 |#1|))) (-297 |#1|) (-1102))) (-15 -1871 ((-598 (-598 (-276 (-297 |#1|)))) (-598 (-276 (-297 |#1|))) (-598 (-1102)))))
+((-3809 ((|#2| |#2|) 20 (|has| |#1| (-797))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 17)) (-1382 ((|#2| |#2|) 19 (|has| |#1| (-797))) ((|#2| |#2| (-1 (-110) |#1| |#1|)) 16)))
+(((-1061 |#1| |#2|) (-10 -7 (-15 -1382 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3809 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-797)) (PROGN (-15 -1382 (|#2| |#2|)) (-15 -3809 (|#2| |#2|))) |%noBranch|)) (-1138) (-13 (-564 (-531) |#1|) (-10 -7 (-6 -4273) (-6 -4274)))) (T -1061))
+((-3809 (*1 *2 *2) (-12 (-4 *3 (-797)) (-4 *3 (-1138)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-13 (-564 (-531) *3) (-10 -7 (-6 -4273) (-6 -4274)))))) (-1382 (*1 *2 *2) (-12 (-4 *3 (-797)) (-4 *3 (-1138)) (-5 *1 (-1061 *3 *2)) (-4 *2 (-13 (-564 (-531) *3) (-10 -7 (-6 -4273) (-6 -4274)))))) (-3809 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-1061 *4 *2)) (-4 *2 (-13 (-564 (-531) *4) (-10 -7 (-6 -4273) (-6 -4274)))))) (-1382 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-1061 *4 *2)) (-4 *2 (-13 (-564 (-531) *4) (-10 -7 (-6 -4273) (-6 -4274)))))))
+(-10 -7 (-15 -1382 (|#2| |#2| (-1 (-110) |#1| |#1|))) (-15 -3809 (|#2| |#2| (-1 (-110) |#1| |#1|))) (IF (|has| |#1| (-797)) (PROGN (-15 -1382 (|#2| |#2|)) (-15 -3809 (|#2| |#2|))) |%noBranch|))
+((-2247 (((-110) $ $) NIL)) (-1841 (((-1091 3 |#1|) $) 107)) (-2868 (((-110) $) 72)) (-3292 (($ $ (-598 (-886 |#1|))) 20) (($ $ (-598 (-598 |#1|))) 75) (($ (-598 (-886 |#1|))) 74) (((-598 (-886 |#1|)) $) 73)) (-1231 (((-110) $) 41)) (-4042 (($ $ (-886 |#1|)) 46) (($ $ (-598 |#1|)) 51) (($ $ (-721)) 53) (($ (-886 |#1|)) 47) (((-886 |#1|) $) 45)) (-3265 (((-2 (|:| -1943 (-721)) (|:| |curves| (-721)) (|:| |polygons| (-721)) (|:| |constructs| (-721))) $) 105)) (-3422 (((-721) $) 26)) (-2262 (((-721) $) 25)) (-3235 (($ $ (-721) (-886 |#1|)) 39)) (-2622 (((-110) $) 82)) (-2046 (($ $ (-598 (-598 (-886 |#1|))) (-598 (-161)) (-161)) 89) (($ $ (-598 (-598 (-598 |#1|))) (-598 (-161)) (-161)) 91) (($ $ (-598 (-598 (-886 |#1|))) (-110) (-110)) 85) (($ $ (-598 (-598 (-598 |#1|))) (-110) (-110)) 93) (($ (-598 (-598 (-886 |#1|)))) 86) (($ (-598 (-598 (-886 |#1|))) (-110) (-110)) 87) (((-598 (-598 (-886 |#1|))) $) 84)) (-3508 (($ (-598 $)) 28) (($ $ $) 29)) (-1526 (((-598 (-161)) $) 102)) (-3507 (((-598 (-886 |#1|)) $) 96)) (-3101 (((-598 (-598 (-161))) $) 101)) (-1249 (((-598 (-598 (-598 (-886 |#1|)))) $) NIL)) (-2127 (((-598 (-598 (-598 (-721)))) $) 99)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1794 (((-721) $ (-598 (-886 |#1|))) 37)) (-2775 (((-110) $) 54)) (-2430 (($ $ (-598 (-886 |#1|))) 56) (($ $ (-598 (-598 |#1|))) 62) (($ (-598 (-886 |#1|))) 57) (((-598 (-886 |#1|)) $) 55)) (-2758 (($) 23) (($ (-1091 3 |#1|)) 24)) (-2480 (($ $) 35)) (-4171 (((-598 $) $) 34)) (-2960 (($ (-598 $)) 31)) (-3015 (((-598 $) $) 33)) (-2265 (((-806) $) 111)) (-1482 (((-110) $) 64)) (-2872 (($ $ (-598 (-886 |#1|))) 66) (($ $ (-598 (-598 |#1|))) 69) (($ (-598 (-886 |#1|))) 67) (((-598 (-886 |#1|)) $) 65)) (-1321 (($ $) 106)) (-2148 (((-110) $ $) NIL)))
+(((-1062 |#1|) (-1063 |#1|) (-986)) (T -1062))
+NIL
+(-1063 |#1|)
+((-2247 (((-110) $ $) 7)) (-1841 (((-1091 3 |#1|) $) 13)) (-2868 (((-110) $) 29)) (-3292 (($ $ (-598 (-886 |#1|))) 33) (($ $ (-598 (-598 |#1|))) 32) (($ (-598 (-886 |#1|))) 31) (((-598 (-886 |#1|)) $) 30)) (-1231 (((-110) $) 44)) (-4042 (($ $ (-886 |#1|)) 49) (($ $ (-598 |#1|)) 48) (($ $ (-721)) 47) (($ (-886 |#1|)) 46) (((-886 |#1|) $) 45)) (-3265 (((-2 (|:| -1943 (-721)) (|:| |curves| (-721)) (|:| |polygons| (-721)) (|:| |constructs| (-721))) $) 15)) (-3422 (((-721) $) 58)) (-2262 (((-721) $) 59)) (-3235 (($ $ (-721) (-886 |#1|)) 50)) (-2622 (((-110) $) 21)) (-2046 (($ $ (-598 (-598 (-886 |#1|))) (-598 (-161)) (-161)) 28) (($ $ (-598 (-598 (-598 |#1|))) (-598 (-161)) (-161)) 27) (($ $ (-598 (-598 (-886 |#1|))) (-110) (-110)) 26) (($ $ (-598 (-598 (-598 |#1|))) (-110) (-110)) 25) (($ (-598 (-598 (-886 |#1|)))) 24) (($ (-598 (-598 (-886 |#1|))) (-110) (-110)) 23) (((-598 (-598 (-886 |#1|))) $) 22)) (-3508 (($ (-598 $)) 57) (($ $ $) 56)) (-1526 (((-598 (-161)) $) 16)) (-3507 (((-598 (-886 |#1|)) $) 20)) (-3101 (((-598 (-598 (-161))) $) 17)) (-1249 (((-598 (-598 (-598 (-886 |#1|)))) $) 18)) (-2127 (((-598 (-598 (-598 (-721)))) $) 19)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-1794 (((-721) $ (-598 (-886 |#1|))) 51)) (-2775 (((-110) $) 39)) (-2430 (($ $ (-598 (-886 |#1|))) 43) (($ $ (-598 (-598 |#1|))) 42) (($ (-598 (-886 |#1|))) 41) (((-598 (-886 |#1|)) $) 40)) (-2758 (($) 61) (($ (-1091 3 |#1|)) 60)) (-2480 (($ $) 52)) (-4171 (((-598 $) $) 53)) (-2960 (($ (-598 $)) 55)) (-3015 (((-598 $) $) 54)) (-2265 (((-806) $) 11)) (-1482 (((-110) $) 34)) (-2872 (($ $ (-598 (-886 |#1|))) 38) (($ $ (-598 (-598 |#1|))) 37) (($ (-598 (-886 |#1|))) 36) (((-598 (-886 |#1|)) $) 35)) (-1321 (($ $) 14)) (-2148 (((-110) $ $) 6)))
+(((-1063 |#1|) (-133) (-986)) (T -1063))
+((-2265 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-806)))) (-2758 (*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) (-2758 (*1 *1 *2) (-12 (-5 *2 (-1091 3 *3)) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-2262 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-721)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-3508 (*1 *1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) (-2960 (*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-3015 (*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)))) (-4171 (*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)))) (-2480 (*1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) (-1794 (*1 *2 *1 *3) (-12 (-5 *3 (-598 (-886 *4))) (-4 *1 (-1063 *4)) (-4 *4 (-986)) (-5 *2 (-721)))) (-3235 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-886 *4)) (-4 *1 (-1063 *4)) (-4 *4 (-986)))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-4042 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-4042 (*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-4042 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-886 *3)))) (-1231 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-2430 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-2430 (*1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-2430 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) (-2775 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-2872 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-2872 (*1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) (-1482 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-3292 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))) (-3292 (*1 *1 *2) (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) (-2868 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-2046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-598 (-886 *5)))) (-5 *3 (-598 (-161))) (-5 *4 (-161)) (-4 *1 (-1063 *5)) (-4 *5 (-986)))) (-2046 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-598 (-598 (-598 *5)))) (-5 *3 (-598 (-161))) (-5 *4 (-161)) (-4 *1 (-1063 *5)) (-4 *5 (-986)))) (-2046 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-598 (-598 (-886 *4)))) (-5 *3 (-110)) (-4 *1 (-1063 *4)) (-4 *4 (-986)))) (-2046 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-598 (-598 (-598 *4)))) (-5 *3 (-110)) (-4 *1 (-1063 *4)) (-4 *4 (-986)))) (-2046 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 *3)))) (-4 *3 (-986)) (-4 *1 (-1063 *3)))) (-2046 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-598 (-598 (-886 *4)))) (-5 *3 (-110)) (-4 *4 (-986)) (-4 *1 (-1063 *4)))) (-2046 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-886 *3)))))) (-2622 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))) (-3507 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))) (-2127 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-598 (-721))))))) (-1249 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-598 (-886 *3))))))) (-3101 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-161)))))) (-1526 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-161))))) (-3265 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -1943 (-721)) (|:| |curves| (-721)) (|:| |polygons| (-721)) (|:| |constructs| (-721)))))) (-1321 (*1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))) (-1841 (*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-1091 3 *3)))))
+(-13 (-1030) (-10 -8 (-15 -2758 ($)) (-15 -2758 ($ (-1091 3 |t#1|))) (-15 -2262 ((-721) $)) (-15 -3422 ((-721) $)) (-15 -3508 ($ (-598 $))) (-15 -3508 ($ $ $)) (-15 -2960 ($ (-598 $))) (-15 -3015 ((-598 $) $)) (-15 -4171 ((-598 $) $)) (-15 -2480 ($ $)) (-15 -1794 ((-721) $ (-598 (-886 |t#1|)))) (-15 -3235 ($ $ (-721) (-886 |t#1|))) (-15 -4042 ($ $ (-886 |t#1|))) (-15 -4042 ($ $ (-598 |t#1|))) (-15 -4042 ($ $ (-721))) (-15 -4042 ($ (-886 |t#1|))) (-15 -4042 ((-886 |t#1|) $)) (-15 -1231 ((-110) $)) (-15 -2430 ($ $ (-598 (-886 |t#1|)))) (-15 -2430 ($ $ (-598 (-598 |t#1|)))) (-15 -2430 ($ (-598 (-886 |t#1|)))) (-15 -2430 ((-598 (-886 |t#1|)) $)) (-15 -2775 ((-110) $)) (-15 -2872 ($ $ (-598 (-886 |t#1|)))) (-15 -2872 ($ $ (-598 (-598 |t#1|)))) (-15 -2872 ($ (-598 (-886 |t#1|)))) (-15 -2872 ((-598 (-886 |t#1|)) $)) (-15 -1482 ((-110) $)) (-15 -3292 ($ $ (-598 (-886 |t#1|)))) (-15 -3292 ($ $ (-598 (-598 |t#1|)))) (-15 -3292 ($ (-598 (-886 |t#1|)))) (-15 -3292 ((-598 (-886 |t#1|)) $)) (-15 -2868 ((-110) $)) (-15 -2046 ($ $ (-598 (-598 (-886 |t#1|))) (-598 (-161)) (-161))) (-15 -2046 ($ $ (-598 (-598 (-598 |t#1|))) (-598 (-161)) (-161))) (-15 -2046 ($ $ (-598 (-598 (-886 |t#1|))) (-110) (-110))) (-15 -2046 ($ $ (-598 (-598 (-598 |t#1|))) (-110) (-110))) (-15 -2046 ($ (-598 (-598 (-886 |t#1|))))) (-15 -2046 ($ (-598 (-598 (-886 |t#1|))) (-110) (-110))) (-15 -2046 ((-598 (-598 (-886 |t#1|))) $)) (-15 -2622 ((-110) $)) (-15 -3507 ((-598 (-886 |t#1|)) $)) (-15 -2127 ((-598 (-598 (-598 (-721)))) $)) (-15 -1249 ((-598 (-598 (-598 (-886 |t#1|)))) $)) (-15 -3101 ((-598 (-598 (-161))) $)) (-15 -1526 ((-598 (-161)) $)) (-15 -3265 ((-2 (|:| -1943 (-721)) (|:| |curves| (-721)) (|:| |polygons| (-721)) (|:| |constructs| (-721))) $)) (-15 -1321 ($ $)) (-15 -1841 ((-1091 3 |t#1|) $)) (-15 -2265 ((-806) $))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-3093 (((-598 (-1107)) (-1085)) 9)))
+(((-1064) (-10 -7 (-15 -3093 ((-598 (-1107)) (-1085))))) (T -1064))
+((-3093 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-598 (-1107))) (-5 *1 (-1064)))))
+(-10 -7 (-15 -3093 ((-598 (-1107)) (-1085))))
+((-2289 (((-1189) (-598 (-806))) 23) (((-1189) (-806)) 22)) (-2702 (((-1189) (-598 (-806))) 21) (((-1189) (-806)) 20)) (-3206 (((-1189) (-598 (-806))) 19) (((-1189) (-806)) 11) (((-1189) (-1085) (-806)) 17)))
+(((-1065) (-10 -7 (-15 -3206 ((-1189) (-1085) (-806))) (-15 -3206 ((-1189) (-806))) (-15 -2702 ((-1189) (-806))) (-15 -2289 ((-1189) (-806))) (-15 -3206 ((-1189) (-598 (-806)))) (-15 -2702 ((-1189) (-598 (-806)))) (-15 -2289 ((-1189) (-598 (-806)))))) (T -1065))
+((-2289 (*1 *2 *3) (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-2289 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-2702 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))) (-3206 (*1 *2 *3 *4) (-12 (-5 *3 (-1085)) (-5 *4 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065)))))
+(-10 -7 (-15 -3206 ((-1189) (-1085) (-806))) (-15 -3206 ((-1189) (-806))) (-15 -2702 ((-1189) (-806))) (-15 -2289 ((-1189) (-806))) (-15 -3206 ((-1189) (-598 (-806)))) (-15 -2702 ((-1189) (-598 (-806)))) (-15 -2289 ((-1189) (-598 (-806)))))
+((-1690 (($ $ $) 10)) (-2188 (($ $) 9)) (-3031 (($ $ $) 13)) (-2143 (($ $ $) 15)) (-1702 (($ $ $) 12)) (-2081 (($ $ $) 14)) (-3558 (($ $) 17)) (-2336 (($ $) 16)) (-1620 (($ $) 6)) (-3926 (($ $ $) 11) (($ $) 7)) (-1312 (($ $ $) 8)))
+(((-1066) (-133)) (T -1066))
+((-3558 (*1 *1 *1) (-4 *1 (-1066))) (-2336 (*1 *1 *1) (-4 *1 (-1066))) (-2143 (*1 *1 *1 *1) (-4 *1 (-1066))) (-2081 (*1 *1 *1 *1) (-4 *1 (-1066))) (-3031 (*1 *1 *1 *1) (-4 *1 (-1066))) (-1702 (*1 *1 *1 *1) (-4 *1 (-1066))) (-3926 (*1 *1 *1 *1) (-4 *1 (-1066))) (-1690 (*1 *1 *1 *1) (-4 *1 (-1066))) (-2188 (*1 *1 *1) (-4 *1 (-1066))) (-1312 (*1 *1 *1 *1) (-4 *1 (-1066))) (-3926 (*1 *1 *1) (-4 *1 (-1066))) (-1620 (*1 *1 *1) (-4 *1 (-1066))))
+(-13 (-10 -8 (-15 -1620 ($ $)) (-15 -3926 ($ $)) (-15 -1312 ($ $ $)) (-15 -2188 ($ $)) (-15 -1690 ($ $ $)) (-15 -3926 ($ $ $)) (-15 -1702 ($ $ $)) (-15 -3031 ($ $ $)) (-15 -2081 ($ $ $)) (-15 -2143 ($ $ $)) (-15 -2336 ($ $)) (-15 -3558 ($ $))))
+((-2247 (((-110) $ $) 41)) (-3482 ((|#1| $) 15)) (-3424 (((-110) $ $ (-1 (-110) |#2| |#2|)) 36)) (-2182 (((-110) $) 17)) (-3053 (($ $ |#1|) 28)) (-3578 (($ $ (-110)) 30)) (-2908 (($ $) 31)) (-2795 (($ $ |#2|) 29)) (-1521 (((-1085) $) NIL)) (-2853 (((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|)) 35)) (-2529 (((-1049) $) NIL)) (-1589 (((-110) $) 14)) (-3781 (($) 10)) (-2480 (($ $) 27)) (-2274 (($ |#1| |#2| (-110)) 18) (($ |#1| |#2|) 19) (($ (-2 (|:| |val| |#1|) (|:| -2410 |#2|))) 21) (((-598 $) (-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|)))) 24) (((-598 $) |#1| (-598 |#2|)) 26)) (-2017 ((|#2| $) 16)) (-2265 (((-806) $) 50)) (-2148 (((-110) $ $) 39)))
+(((-1067 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -3781 ($)) (-15 -1589 ((-110) $)) (-15 -3482 (|#1| $)) (-15 -2017 (|#2| $)) (-15 -2182 ((-110) $)) (-15 -2274 ($ |#1| |#2| (-110))) (-15 -2274 ($ |#1| |#2|)) (-15 -2274 ($ (-2 (|:| |val| |#1|) (|:| -2410 |#2|)))) (-15 -2274 ((-598 $) (-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))))) (-15 -2274 ((-598 $) |#1| (-598 |#2|))) (-15 -2480 ($ $)) (-15 -3053 ($ $ |#1|)) (-15 -2795 ($ $ |#2|)) (-15 -3578 ($ $ (-110))) (-15 -2908 ($ $)) (-15 -2853 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -3424 ((-110) $ $ (-1 (-110) |#2| |#2|))))) (-13 (-1030) (-33)) (-13 (-1030) (-33))) (T -1067))
+((-3781 (*1 *1) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-1589 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-3482 (*1 *2 *1) (-12 (-4 *2 (-13 (-1030) (-33))) (-5 *1 (-1067 *2 *3)) (-4 *3 (-13 (-1030) (-33))))) (-2017 (*1 *2 *1) (-12 (-4 *2 (-13 (-1030) (-33))) (-5 *1 (-1067 *3 *2)) (-4 *3 (-13 (-1030) (-33))))) (-2182 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2 *3) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2410 *4))) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1067 *3 *4)))) (-2274 (*1 *2 *3) (-12 (-5 *3 (-598 (-2 (|:| |val| *4) (|:| -2410 *5)))) (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-598 (-1067 *4 *5))) (-5 *1 (-1067 *4 *5)))) (-2274 (*1 *2 *3 *4) (-12 (-5 *4 (-598 *5)) (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-598 (-1067 *3 *5))) (-5 *1 (-1067 *3 *5)) (-4 *3 (-13 (-1030) (-33))))) (-2480 (*1 *1 *1) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-3053 (*1 *1 *1 *2) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2795 (*1 *1 *1 *2) (-12 (-5 *1 (-1067 *3 *2)) (-4 *3 (-13 (-1030) (-33))) (-4 *2 (-13 (-1030) (-33))))) (-3578 (*1 *1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-2908 (*1 *1 *1) (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2853 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1030) (-33))) (-4 *6 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1067 *5 *6)))) (-3424 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1067 *4 *5)) (-4 *4 (-13 (-1030) (-33))))))
+(-13 (-1030) (-10 -8 (-15 -3781 ($)) (-15 -1589 ((-110) $)) (-15 -3482 (|#1| $)) (-15 -2017 (|#2| $)) (-15 -2182 ((-110) $)) (-15 -2274 ($ |#1| |#2| (-110))) (-15 -2274 ($ |#1| |#2|)) (-15 -2274 ($ (-2 (|:| |val| |#1|) (|:| -2410 |#2|)))) (-15 -2274 ((-598 $) (-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))))) (-15 -2274 ((-598 $) |#1| (-598 |#2|))) (-15 -2480 ($ $)) (-15 -3053 ($ $ |#1|)) (-15 -2795 ($ $ |#2|)) (-15 -3578 ($ $ (-110))) (-15 -2908 ($ $)) (-15 -2853 ((-110) $ $ (-1 (-110) |#1| |#1|) (-1 (-110) |#2| |#2|))) (-15 -3424 ((-110) $ $ (-1 (-110) |#2| |#2|)))))
+((-2247 (((-110) $ $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-3482 (((-1067 |#1| |#2|) $) 25)) (-2467 (($ $) 76)) (-1975 (((-110) (-1067 |#1| |#2|) $ (-1 (-110) |#2| |#2|)) 85)) (-1433 (($ $ $ (-598 (-1067 |#1| |#2|))) 90) (($ $ $ (-598 (-1067 |#1| |#2|)) (-1 (-110) |#2| |#2|)) 91)) (-4058 (((-110) $ (-721)) NIL)) (-2039 (((-1067 |#1| |#2|) $ (-1067 |#1| |#2|)) 43 (|has| $ (-6 -4274)))) (-2454 (((-1067 |#1| |#2|) $ "value" (-1067 |#1| |#2|)) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-1725 (((-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))) $) 80)) (-2717 (($ (-1067 |#1| |#2|) $) 39)) (-2283 (($ (-1067 |#1| |#2|) $) 31)) (-2227 (((-598 (-1067 |#1| |#2|)) $) NIL (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 51)) (-1957 (((-110) (-1067 |#1| |#2|) $) 82)) (-1478 (((-110) $ $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 (-1067 |#1| |#2|)) $) 55 (|has| $ (-6 -4273)))) (-1883 (((-110) (-1067 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-1067 |#1| |#2|) (-1030))))) (-2680 (($ (-1 (-1067 |#1| |#2|) (-1067 |#1| |#2|)) $) 47 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-1067 |#1| |#2|) (-1067 |#1| |#2|)) $) 46)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 (-1067 |#1| |#2|)) $) 53)) (-2672 (((-110) $) 42)) (-1521 (((-1085) $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-2529 (((-1049) $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-1251 (((-3 $ "failed") $) 75)) (-2294 (((-110) (-1 (-110) (-1067 |#1| |#2|)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-1067 |#1| |#2|)))) NIL (-12 (|has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))) (|has| (-1067 |#1| |#2|) (-1030)))) (($ $ (-276 (-1067 |#1| |#2|))) NIL (-12 (|has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))) (|has| (-1067 |#1| |#2|) (-1030)))) (($ $ (-1067 |#1| |#2|) (-1067 |#1| |#2|)) NIL (-12 (|has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))) (|has| (-1067 |#1| |#2|) (-1030)))) (($ $ (-598 (-1067 |#1| |#2|)) (-598 (-1067 |#1| |#2|))) NIL (-12 (|has| (-1067 |#1| |#2|) (-291 (-1067 |#1| |#2|))) (|has| (-1067 |#1| |#2|) (-1030))))) (-2019 (((-110) $ $) 50)) (-1589 (((-110) $) 22)) (-3781 (($) 24)) (-1785 (((-1067 |#1| |#2|) $ "value") NIL)) (-2357 (((-531) $ $) NIL)) (-2930 (((-110) $) 44)) (-2539 (((-721) (-1 (-110) (-1067 |#1| |#2|)) $) NIL (|has| $ (-6 -4273))) (((-721) (-1067 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-1067 |#1| |#2|) (-1030))))) (-2480 (($ $) 49)) (-2274 (($ (-1067 |#1| |#2|)) 9) (($ |#1| |#2| (-598 $)) 12) (($ |#1| |#2| (-598 (-1067 |#1| |#2|))) 14) (($ |#1| |#2| |#1| (-598 |#2|)) 17)) (-2858 (((-598 |#2|) $) 81)) (-2265 (((-806) $) 73 (|has| (-1067 |#1| |#2|) (-572 (-806))))) (-3495 (((-598 $) $) 28)) (-2910 (((-110) $ $) NIL (|has| (-1067 |#1| |#2|) (-1030)))) (-2060 (((-110) (-1 (-110) (-1067 |#1| |#2|)) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 64 (|has| (-1067 |#1| |#2|) (-1030)))) (-2167 (((-721) $) 58 (|has| $ (-6 -4273)))))
+(((-1068 |#1| |#2|) (-13 (-951 (-1067 |#1| |#2|)) (-10 -8 (-6 -4274) (-6 -4273) (-15 -1251 ((-3 $ "failed") $)) (-15 -2467 ($ $)) (-15 -2274 ($ (-1067 |#1| |#2|))) (-15 -2274 ($ |#1| |#2| (-598 $))) (-15 -2274 ($ |#1| |#2| (-598 (-1067 |#1| |#2|)))) (-15 -2274 ($ |#1| |#2| |#1| (-598 |#2|))) (-15 -2858 ((-598 |#2|) $)) (-15 -1725 ((-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))) $)) (-15 -1957 ((-110) (-1067 |#1| |#2|) $)) (-15 -1975 ((-110) (-1067 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2283 ($ (-1067 |#1| |#2|) $)) (-15 -2717 ($ (-1067 |#1| |#2|) $)) (-15 -1433 ($ $ $ (-598 (-1067 |#1| |#2|)))) (-15 -1433 ($ $ $ (-598 (-1067 |#1| |#2|)) (-1 (-110) |#2| |#2|))))) (-13 (-1030) (-33)) (-13 (-1030) (-33))) (T -1068))
+((-1251 (*1 *1 *1) (|partial| -12 (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2467 (*1 *1 *1) (-12 (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2) (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-598 (-1068 *2 *3))) (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))))) (-2274 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-598 (-1067 *2 *3))) (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33))) (-5 *1 (-1068 *2 *3)))) (-2274 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-1030) (-33))) (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33))))) (-2858 (*1 *2 *1) (-12 (-5 *2 (-598 *4)) (-5 *1 (-1068 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-1725 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4)))) (-5 *1 (-1068 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))) (-1957 (*1 *2 *3 *1) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1068 *4 *5)))) (-1975 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1067 *5 *6)) (-5 *4 (-1 (-110) *6 *6)) (-4 *5 (-13 (-1030) (-33))) (-4 *6 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1068 *5 *6)))) (-2283 (*1 *1 *2 *1) (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) (-2717 (*1 *1 *2 *1) (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) (-1433 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-598 (-1067 *3 *4))) (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))) (-1433 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-1067 *4 *5))) (-5 *3 (-1 (-110) *5 *5)) (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33))) (-5 *1 (-1068 *4 *5)))))
+(-13 (-951 (-1067 |#1| |#2|)) (-10 -8 (-6 -4274) (-6 -4273) (-15 -1251 ((-3 $ "failed") $)) (-15 -2467 ($ $)) (-15 -2274 ($ (-1067 |#1| |#2|))) (-15 -2274 ($ |#1| |#2| (-598 $))) (-15 -2274 ($ |#1| |#2| (-598 (-1067 |#1| |#2|)))) (-15 -2274 ($ |#1| |#2| |#1| (-598 |#2|))) (-15 -2858 ((-598 |#2|) $)) (-15 -1725 ((-598 (-2 (|:| |val| |#1|) (|:| -2410 |#2|))) $)) (-15 -1957 ((-110) (-1067 |#1| |#2|) $)) (-15 -1975 ((-110) (-1067 |#1| |#2|) $ (-1 (-110) |#2| |#2|))) (-15 -2283 ($ (-1067 |#1| |#2|) $)) (-15 -2717 ($ (-1067 |#1| |#2|) $)) (-15 -1433 ($ $ $ (-598 (-1067 |#1| |#2|)))) (-15 -1433 ($ $ $ (-598 (-1067 |#1| |#2|)) (-1 (-110) |#2| |#2|)))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2096 (($ $) NIL)) (-1354 ((|#2| $) NIL)) (-2719 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4000 (($ (-639 |#2|)) 47)) (-1878 (((-110) $) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-3264 (($ |#2|) 9)) (-4082 (($) NIL T CONST)) (-2800 (($ $) 60 (|has| |#2| (-289)))) (-4011 (((-223 |#1| |#2|) $ (-531)) 34)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 |#2| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) ((|#2| $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) 74)) (-2277 (((-721) $) 62 (|has| |#2| (-523)))) (-2627 ((|#2| $ (-531) (-531)) NIL)) (-2227 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3481 (((-110) $) NIL)) (-4091 (((-721) $) 64 (|has| |#2| (-523)))) (-3001 (((-598 (-223 |#1| |#2|)) $) 68 (|has| |#2| (-523)))) (-1548 (((-721) $) NIL)) (-1557 (((-721) $) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-2803 ((|#2| $) 58 (|has| |#2| (-6 (-4275 "*"))))) (-1271 (((-531) $) NIL)) (-1665 (((-531) $) NIL)) (-2445 (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2527 (((-531) $) NIL)) (-2394 (((-531) $) NIL)) (-2200 (($ (-598 (-598 |#2|))) 29)) (-2680 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#2| |#2| |#2|) $ $) NIL) (($ (-1 |#2| |#2|) $) NIL)) (-3924 (((-598 (-598 |#2|)) $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2147 (((-3 $ "failed") $) 71 (|has| |#2| (-344)))) (-2529 (((-1049) $) NIL)) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523)))) (-2294 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ (-531) (-531) |#2|) NIL) ((|#2| $ (-531) (-531)) NIL)) (-3352 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2806 ((|#2| $) NIL)) (-3223 (($ (-598 |#2|)) 42)) (-1439 (((-110) $) NIL)) (-2823 (((-223 |#1| |#2|) $) NIL)) (-3253 ((|#2| $) 56 (|has| |#2| (-6 (-4275 "*"))))) (-2539 (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 83 (|has| |#2| (-573 (-507))))) (-3431 (((-223 |#1| |#2|) $ (-531)) 36)) (-2265 (((-806) $) 39) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#2| (-977 (-388 (-531))))) (($ |#2|) NIL) (((-639 |#2|) $) 44)) (-2284 (((-721)) 17)) (-2060 (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2116 (((-110) $) NIL)) (-3035 (($) 11 T CONST)) (-3050 (($) 14 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-721)) NIL (|has| |#2| (-216))) (($ $) NIL (|has| |#2| (-216)))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) 54) (($ $ (-531)) 73 (|has| |#2| (-344)))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#2|) NIL) (($ |#2| $) NIL) (((-223 |#1| |#2|) $ (-223 |#1| |#2|)) 50) (((-223 |#1| |#2|) (-223 |#1| |#2|) $) 52)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1069 |#1| |#2|) (-13 (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-572 (-639 |#2|)) (-10 -8 (-15 -2096 ($ $)) (-15 -4000 ($ (-639 |#2|))) (-15 -2265 ((-639 |#2|) $)) (IF (|has| |#2| (-6 (-4275 "*"))) (-6 -4262) |%noBranch|) (IF (|has| |#2| (-6 (-4275 "*"))) (IF (|has| |#2| (-6 -4270)) (-6 -4270) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|))) (-721) (-986)) (T -1069))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-639 *4)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-721)) (-4 *4 (-986)))) (-2096 (*1 *1 *1) (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-721)) (-4 *3 (-986)))) (-4000 (*1 *1 *2) (-12 (-5 *2 (-639 *4)) (-4 *4 (-986)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-721)))))
+(-13 (-1052 |#1| |#2| (-223 |#1| |#2|) (-223 |#1| |#2|)) (-572 (-639 |#2|)) (-10 -8 (-15 -2096 ($ $)) (-15 -4000 ($ (-639 |#2|))) (-15 -2265 ((-639 |#2|) $)) (IF (|has| |#2| (-6 (-4275 "*"))) (-6 -4262) |%noBranch|) (IF (|has| |#2| (-6 (-4275 "*"))) (IF (|has| |#2| (-6 -4270)) (-6 -4270) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-573 (-507))) (-6 (-573 (-507))) |%noBranch|)))
+((-4102 (($ $) 19)) (-3634 (($ $ (-137)) 10) (($ $ (-134)) 14)) (-3009 (((-110) $ $) 24)) (-2559 (($ $) 17)) (-1785 (((-137) $ (-531) (-137)) NIL) (((-137) $ (-531)) NIL) (($ $ (-1151 (-531))) NIL) (($ $ $) 29)) (-2265 (($ (-137)) 27) (((-806) $) NIL)))
+(((-1070 |#1|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#1| (-134))) (-15 -3634 (|#1| |#1| (-137))) (-15 -2265 (|#1| (-137))) (-15 -3009 ((-110) |#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -1785 ((-137) |#1| (-531))) (-15 -1785 ((-137) |#1| (-531) (-137)))) (-1071)) (T -1070))
+NIL
+(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -1785 (|#1| |#1| |#1|)) (-15 -3634 (|#1| |#1| (-134))) (-15 -3634 (|#1| |#1| (-137))) (-15 -2265 (|#1| (-137))) (-15 -3009 ((-110) |#1| |#1|)) (-15 -4102 (|#1| |#1|)) (-15 -2559 (|#1| |#1|)) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -1785 ((-137) |#1| (-531))) (-15 -1785 ((-137) |#1| (-531) (-137))))
+((-2247 (((-110) $ $) 19 (|has| (-137) (-1030)))) (-2815 (($ $) 120)) (-4102 (($ $) 121)) (-3634 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-2982 (((-110) $ $) 118)) (-2955 (((-110) $ $ (-531)) 117)) (-2040 (((-598 $) $ (-137)) 110) (((-598 $) $ (-134)) 109)) (-3202 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-797)))) (-2375 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| (-137) (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 (((-137) $ (-531) (-137)) 52 (|has| $ (-6 -4274))) (((-137) $ (-1151 (-531)) (-137)) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2810 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-2407 (($ $ (-1151 (-531)) $) 114)) (-3086 (($ $) 78 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-137) $) 77 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4273)))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4273)))) (-2693 (((-137) $ (-531) (-137)) 53 (|has| $ (-6 -4274)))) (-2627 (((-137) $ (-531)) 51)) (-3009 (((-110) $ $) 119)) (-1976 (((-531) (-1 (-110) (-137)) $) 97) (((-531) (-137) $) 96 (|has| (-137) (-1030))) (((-531) (-137) $ (-531)) 95 (|has| (-137) (-1030))) (((-531) $ $ (-531)) 113) (((-531) (-134) $ (-531)) 112)) (-2227 (((-598 (-137)) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-137)) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| (-137) (-797)))) (-3508 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| (-137) (-797)))) (-3816 (((-110) $ $ (-137)) 115)) (-2869 (((-721) $ $ (-137)) 116)) (-2680 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-1659 (($ $) 122)) (-2559 (($ $) 123)) (-3332 (((-110) $ (-721)) 10)) (-2821 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-1521 (((-1085) $) 22 (|has| (-137) (-1030)))) (-4059 (($ (-137) $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| (-137) (-1030)))) (-3046 (((-137) $) 42 (|has| (-531) (-797)))) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-3742 (($ $ (-137)) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-137)) (-598 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-3163 (((-598 (-137)) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 (((-137) $ (-531) (-137)) 50) (((-137) $ (-531)) 49) (($ $ (-1151 (-531))) 63) (($ $ $) 102)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4273))) (((-721) (-137) $) 28 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| (-137) (-573 (-507))))) (-2274 (($ (-598 (-137))) 70)) (-3536 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (($ (-137)) 111) (((-806) $) 18 (|has| (-137) (-572 (-806))))) (-2060 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| (-137) (-797)))) (-2184 (((-110) $ $) 83 (|has| (-137) (-797)))) (-2148 (((-110) $ $) 20 (|has| (-137) (-1030)))) (-2195 (((-110) $ $) 85 (|has| (-137) (-797)))) (-2174 (((-110) $ $) 82 (|has| (-137) (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-1071) (-133)) (T -1071))
+((-2559 (*1 *1 *1) (-4 *1 (-1071))) (-1659 (*1 *1 *1) (-4 *1 (-1071))) (-4102 (*1 *1 *1) (-4 *1 (-1071))) (-2815 (*1 *1 *1) (-4 *1 (-1071))) (-3009 (*1 *2 *1 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-110)))) (-2982 (*1 *2 *1 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-110)))) (-2955 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-531)) (-5 *2 (-110)))) (-2869 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-137)) (-5 *2 (-721)))) (-3816 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-137)) (-5 *2 (-110)))) (-2407 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-1151 (-531))))) (-1976 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-531)))) (-1976 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-531)) (-5 *3 (-134)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1071)))) (-2040 (*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-598 *1)) (-4 *1 (-1071)))) (-2040 (*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-598 *1)) (-4 *1 (-1071)))) (-3634 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))) (-3634 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) (-2821 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))) (-2821 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) (-2810 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))) (-2810 (*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134)))) (-1785 (*1 *1 *1 *1) (-4 *1 (-1071))))
+(-13 (-19 (-137)) (-10 -8 (-15 -2559 ($ $)) (-15 -1659 ($ $)) (-15 -4102 ($ $)) (-15 -2815 ($ $)) (-15 -3009 ((-110) $ $)) (-15 -2982 ((-110) $ $)) (-15 -2955 ((-110) $ $ (-531))) (-15 -2869 ((-721) $ $ (-137))) (-15 -3816 ((-110) $ $ (-137))) (-15 -2407 ($ $ (-1151 (-531)) $)) (-15 -1976 ((-531) $ $ (-531))) (-15 -1976 ((-531) (-134) $ (-531))) (-15 -2265 ($ (-137))) (-15 -2040 ((-598 $) $ (-137))) (-15 -2040 ((-598 $) $ (-134))) (-15 -3634 ($ $ (-137))) (-15 -3634 ($ $ (-134))) (-15 -2821 ($ $ (-137))) (-15 -2821 ($ $ (-134))) (-15 -2810 ($ $ (-137))) (-15 -2810 ($ $ (-134))) (-15 -1785 ($ $ $))))
+(((-33) . T) ((-99) -1435 (|has| (-137) (-1030)) (|has| (-137) (-797))) ((-572 (-806)) -1435 (|has| (-137) (-1030)) (|has| (-137) (-797)) (|has| (-137) (-572 (-806)))) ((-144 #0=(-137)) . T) ((-573 (-507)) |has| (-137) (-573 (-507))) ((-268 #1=(-531) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))) ((-354 #0#) . T) ((-468 #0#) . T) ((-564 #1# #0#) . T) ((-492 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))) ((-604 #0#) . T) ((-19 #0#) . T) ((-797) |has| (-137) (-797)) ((-1030) -1435 (|has| (-137) (-1030)) (|has| (-137) (-797))) ((-1138) . T))
+((-3602 (((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721)) 94)) (-3565 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 55) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721)) 54)) (-4180 (((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)) 85)) (-2884 (((-721) (-598 |#4|) (-598 |#5|)) 27)) (-2056 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 57) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721)) 56) (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110)) 58)) (-4044 (((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110)) 76) (((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110)) 77)) (-3318 (((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) 80)) (-2970 (((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|) 53)) (-1501 (((-721) (-598 |#4|) (-598 |#5|)) 19)))
+(((-1072 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1501 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2884 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2970 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3602 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721))) (-15 -3318 ((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -4180 ((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721)))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|) (-1039 |#1| |#2| |#3| |#4|)) (T -1072))
+((-4180 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9)))) (-5 *4 (-721)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-1189)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8))) (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1039 *4 *5 *6 *7)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1085)) (-5 *1 (-1072 *4 *5 *6 *7 *8)))) (-3602 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-598 *11)) (|:| |todo| (-598 (-2 (|:| |val| *3) (|:| -2410 *11)))))) (-5 *6 (-721)) (-5 *2 (-598 (-2 (|:| |val| (-598 *10)) (|:| -2410 *11)))) (-5 *3 (-598 *10)) (-5 *4 (-598 *11)) (-4 *10 (-1000 *7 *8 *9)) (-4 *11 (-1039 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-743)) (-4 *9 (-797)) (-5 *1 (-1072 *7 *8 *9 *10 *11)))) (-4044 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-4044 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-2056 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))) (-2056 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1039 *6 *7 *8 *3)))) (-2056 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-721)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-743)) (-4 *9 (-797)) (-4 *3 (-1000 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *7 *8 *9 *3 *4)) (-4 *4 (-1039 *7 *8 *9 *3)))) (-3565 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))) (-3565 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *3 (-1000 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1039 *6 *7 *8 *3)))) (-2970 (*1 *2 *3 *4) (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-598 *4)) (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4)))))) (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))) (-2884 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))) (-1501 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))))
+(-10 -7 (-15 -1501 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2884 ((-721) (-598 |#4|) (-598 |#5|))) (-15 -2970 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -3565 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721) (-110))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5| (-721))) (-15 -2056 ((-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) |#4| |#5|)) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110))) (-15 -4044 ((-598 |#5|) (-598 |#4|) (-598 |#5|) (-110) (-110) (-110) (-110) (-110))) (-15 -3602 ((-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-598 |#4|) (-598 |#5|) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-2 (|:| |done| (-598 |#5|)) (|:| |todo| (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))))) (-721))) (-15 -3318 ((-1085) (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|)))) (-15 -4180 ((-1189) (-598 (-2 (|:| |val| (-598 |#4|)) (|:| -2410 |#5|))) (-721))))
+((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) NIL)) (-2855 (((-598 $) (-598 |#4|)) 110) (((-598 $) (-598 |#4|) (-110)) 111) (((-598 $) (-598 |#4|) (-110) (-110)) 109) (((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110)) 112)) (-2695 (((-598 |#3|) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3911 ((|#4| |#4| $) NIL)) (-3240 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| $) 84)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 62)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) 26 (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-2339 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) NIL)) (-2523 (($ (-598 |#4|)) NIL)) (-3062 (((-3 $ "failed") $) 39)) (-3785 ((|#4| |#4| $) 65)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 78 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2551 ((|#4| |#4| $) NIL)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) NIL)) (-2950 (((-110) |#4| $) NIL)) (-1428 (((-110) |#4| $) NIL)) (-2213 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1988 (((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110)) 124)) (-2227 (((-598 |#4|) $) 16 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4075 ((|#3| $) 33)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 17 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 25 (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2680 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 21)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2068 (((-3 |#4| (-598 $)) |#4| |#4| $) NIL)) (-2255 (((-598 (-2 (|:| |val| |#4|) (|:| -2410 $))) |#4| |#4| $) 103)) (-2309 (((-3 |#4| "failed") $) 37)) (-2918 (((-598 $) |#4| $) 88)) (-1568 (((-3 (-110) (-598 $)) |#4| $) NIL)) (-2648 (((-598 (-2 (|:| |val| (-110)) (|:| -2410 $))) |#4| $) 98) (((-110) |#4| $) 53)) (-1301 (((-598 $) |#4| $) 107) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) 108) (((-598 $) |#4| (-598 $)) NIL)) (-1434 (((-598 $) (-598 |#4|) (-110) (-110) (-110)) 119)) (-2106 (($ |#4| $) 75) (($ (-598 |#4|) $) 76) (((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110)) 74)) (-1979 (((-598 |#4|) $) NIL)) (-2009 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1279 ((|#4| |#4| $) NIL)) (-1744 (((-110) $ $) NIL)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3044 ((|#4| |#4| $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 |#4| "failed") $) 35)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3032 (((-3 $ "failed") $ |#4|) 48)) (-1846 (($ $ |#4|) NIL) (((-598 $) |#4| $) 90) (((-598 $) |#4| (-598 $)) NIL) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) 86)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 15)) (-3781 (($) 13)) (-2012 (((-721) $) NIL)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) 12)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 20)) (-3382 (($ $ |#3|) 42)) (-2021 (($ $ |#3|) 44)) (-2862 (($ $) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) 31) (((-598 |#4|) $) 40)) (-3873 (((-721) $) NIL (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) NIL) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) NIL)) (-3777 (((-598 $) |#4| $) 54) (((-598 $) |#4| (-598 $)) NIL) (((-598 $) (-598 |#4|) $) NIL) (((-598 $) (-598 |#4|) (-598 $)) NIL)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) NIL)) (-3695 (((-110) |#4| $) NIL)) (-1697 (((-110) |#3| $) 61)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1073 |#1| |#2| |#3| |#4|) (-13 (-1039 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2106 ((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110))) (-15 -1434 ((-598 $) (-598 |#4|) (-110) (-110) (-110))) (-15 -1988 ((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110))))) (-432) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -1073))
+((-2106 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-1073 *5 *6 *7 *3))) (-5 *1 (-1073 *5 *6 *7 *3)) (-4 *3 (-1000 *5 *6 *7)))) (-2855 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))) (-2855 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))) (-1434 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))) (-1988 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-598 *8)) (|:| |towers| (-598 (-1073 *5 *6 *7 *8))))) (-5 *1 (-1073 *5 *6 *7 *8)) (-5 *3 (-598 *8)))))
+(-13 (-1039 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -2106 ((-598 $) |#4| $ (-110) (-110) (-110) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110))) (-15 -2855 ((-598 $) (-598 |#4|) (-110) (-110) (-110) (-110))) (-15 -1434 ((-598 $) (-598 |#4|) (-110) (-110) (-110))) (-15 -1988 ((-2 (|:| |val| (-598 |#4|)) (|:| |towers| (-598 $))) (-598 |#4|) (-110) (-110)))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1573 ((|#1| $) 34)) (-2751 (($ (-598 |#1|)) 39)) (-4058 (((-110) $ (-721)) NIL)) (-4082 (($) NIL T CONST)) (-3196 ((|#1| |#1| $) 36)) (-4205 ((|#1| $) 32)) (-2227 (((-598 |#1|) $) 18 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 22)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-3540 ((|#1| $) 35)) (-3944 (($ |#1| $) 37)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-4192 ((|#1| $) 33)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 31)) (-3781 (($) 38)) (-1216 (((-721) $) 29)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 27)) (-2265 (((-806) $) 14 (|has| |#1| (-572 (-806))))) (-2524 (($ (-598 |#1|)) NIL)) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 17 (|has| |#1| (-1030)))) (-2167 (((-721) $) 30 (|has| $ (-6 -4273)))))
+(((-1074 |#1|) (-13 (-1050 |#1|) (-10 -8 (-15 -2751 ($ (-598 |#1|))))) (-1138)) (T -1074))
+((-2751 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1074 *3)))))
+(-13 (-1050 |#1|) (-10 -8 (-15 -2751 ($ (-598 |#1|)))))
+((-2454 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) NIL) (($ $ "rest" $) NIL) ((|#2| $ "last" |#2|) NIL) ((|#2| $ (-1151 (-531)) |#2|) 44) ((|#2| $ (-531) |#2|) 41)) (-2141 (((-110) $) 12)) (-2680 (($ (-1 |#2| |#2|) $) 39)) (-3046 ((|#2| $) NIL) (($ $ (-721)) 17)) (-3742 (($ $ |#2|) 40)) (-2765 (((-110) $) 11)) (-1785 ((|#2| $ "value") NIL) ((|#2| $ "first") NIL) (($ $ "rest") NIL) ((|#2| $ "last") NIL) (($ $ (-1151 (-531))) 31) ((|#2| $ (-531)) 23) ((|#2| $ (-531) |#2|) NIL)) (-1818 (($ $ $) 47) (($ $ |#2|) NIL)) (-3536 (($ $ $) 33) (($ |#2| $) NIL) (($ (-598 $)) 36) (($ $ |#2|) NIL)))
+(((-1075 |#1| |#2|) (-10 -8 (-15 -2141 ((-110) |#1|)) (-15 -2765 ((-110) |#1|)) (-15 -2454 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -3742 (|#1| |#1| |#2|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -3536 (|#1| (-598 |#1|))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -2454 (|#2| |#1| (-1151 (-531)) |#2|)) (-15 -2454 (|#2| |#1| "last" |#2|)) (-15 -2454 (|#1| |#1| "rest" |#1|)) (-15 -2454 (|#2| |#1| "first" |#2|)) (-15 -1818 (|#1| |#1| |#2|)) (-15 -1818 (|#1| |#1| |#1|)) (-15 -1785 (|#2| |#1| "last")) (-15 -1785 (|#1| |#1| "rest")) (-15 -3046 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "first")) (-15 -3046 (|#2| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -1785 (|#2| |#1| "value")) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|))) (-1076 |#2|) (-1138)) (T -1075))
+NIL
+(-10 -8 (-15 -2141 ((-110) |#1|)) (-15 -2765 ((-110) |#1|)) (-15 -2454 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531) |#2|)) (-15 -1785 (|#2| |#1| (-531))) (-15 -3742 (|#1| |#1| |#2|)) (-15 -3536 (|#1| |#1| |#2|)) (-15 -3536 (|#1| (-598 |#1|))) (-15 -1785 (|#1| |#1| (-1151 (-531)))) (-15 -2454 (|#2| |#1| (-1151 (-531)) |#2|)) (-15 -2454 (|#2| |#1| "last" |#2|)) (-15 -2454 (|#1| |#1| "rest" |#1|)) (-15 -2454 (|#2| |#1| "first" |#2|)) (-15 -1818 (|#1| |#1| |#2|)) (-15 -1818 (|#1| |#1| |#1|)) (-15 -1785 (|#2| |#1| "last")) (-15 -1785 (|#1| |#1| "rest")) (-15 -3046 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "first")) (-15 -3046 (|#2| |#1|)) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -1785 (|#2| |#1| "value")) (-15 -2680 (|#1| (-1 |#2| |#2|) |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-3308 ((|#1| $) 65)) (-2072 (($ $) 67)) (-3137 (((-1189) $ (-531) (-531)) 97 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 52 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 56 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) 54 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 58 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4274))) (($ $ "rest" $) 55 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 117 (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) 86 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 102 (|has| $ (-6 -4273)))) (-3297 ((|#1| $) 66)) (-4082 (($) 7 T CONST)) (-3062 (($ $) 73) (($ $ (-721)) 71)) (-3086 (($ $) 99 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-1 (-110) |#1|) $) 103 (|has| $ (-6 -4273))) (($ |#1| $) 100 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) 105 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 104 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 101 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2693 ((|#1| $ (-531) |#1|) 85 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 87)) (-2141 (((-110) $) 83)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) 108)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 95 (|has| (-531) (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 94 (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 111)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 70) (($ $ (-721)) 68)) (-4059 (($ $ $ (-531)) 116) (($ |#1| $ (-531)) 115)) (-3765 (((-598 (-531)) $) 92)) (-3059 (((-110) (-531) $) 91)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 76) (($ $ (-721)) 74)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 106)) (-3742 (($ $ |#1|) 96 (|has| $ (-6 -4274)))) (-2765 (((-110) $) 84)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 93 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 90)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69) (($ $ (-1151 (-531))) 112) ((|#1| $ (-531)) 89) ((|#1| $ (-531) |#1|) 88)) (-2357 (((-531) $ $) 44)) (-1723 (($ $ (-1151 (-531))) 114) (($ $ (-531)) 113)) (-2930 (((-110) $) 46)) (-1958 (($ $) 62)) (-2980 (($ $) 59 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 63)) (-2874 (($ $) 64)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-3318 (((-507) $) 98 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 107)) (-1818 (($ $ $) 61 (|has| $ (-6 -4274))) (($ $ |#1|) 60 (|has| $ (-6 -4274)))) (-3536 (($ $ $) 78) (($ |#1| $) 77) (($ (-598 $)) 110) (($ $ |#1|) 109)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-1076 |#1|) (-133) (-1138)) (T -1076))
+((-2765 (*1 *2 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))) (-2141 (*1 *2 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))))
+(-13 (-1172 |t#1|) (-604 |t#1|) (-10 -8 (-15 -2765 ((-110) $)) (-15 -2141 ((-110) $))))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T) ((-1172 |#1|) . T))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) NIL)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1077 |#1| |#2| |#3|) (-1115 |#1| |#2|) (-1030) (-1030) |#2|) (T -1077))
+NIL
+(-1115 |#1| |#2|)
+((-2247 (((-110) $ $) 7)) (-2342 (((-3 $ "failed") $) 13)) (-1521 (((-1085) $) 9)) (-3788 (($) 14 T CONST)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11)) (-2148 (((-110) $ $) 6)))
+(((-1078) (-133)) (T -1078))
+((-3788 (*1 *1) (-4 *1 (-1078))) (-2342 (*1 *1 *1) (|partial| -4 *1 (-1078))))
+(-13 (-1030) (-10 -8 (-15 -3788 ($) -2651) (-15 -2342 ((-3 $ "failed") $))))
+(((-99) . T) ((-572 (-806)) . T) ((-1030) . T))
+((-1792 (((-1083 |#1|) (-1083 |#1|)) 17)) (-1283 (((-1083 |#1|) (-1083 |#1|)) 13)) (-4244 (((-1083 |#1|) (-1083 |#1|) (-531) (-531)) 20)) (-3350 (((-1083 |#1|) (-1083 |#1|)) 15)))
+(((-1079 |#1|) (-10 -7 (-15 -1283 ((-1083 |#1|) (-1083 |#1|))) (-15 -3350 ((-1083 |#1|) (-1083 |#1|))) (-15 -1792 ((-1083 |#1|) (-1083 |#1|))) (-15 -4244 ((-1083 |#1|) (-1083 |#1|) (-531) (-531)))) (-13 (-523) (-140))) (T -1079))
+((-4244 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1079 *4)))) (-1792 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1079 *3)))) (-3350 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1079 *3)))) (-1283 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1079 *3)))))
+(-10 -7 (-15 -1283 ((-1083 |#1|) (-1083 |#1|))) (-15 -3350 ((-1083 |#1|) (-1083 |#1|))) (-15 -1792 ((-1083 |#1|) (-1083 |#1|))) (-15 -4244 ((-1083 |#1|) (-1083 |#1|) (-531) (-531))))
+((-3536 (((-1083 |#1|) (-1083 (-1083 |#1|))) 15)))
+(((-1080 |#1|) (-10 -7 (-15 -3536 ((-1083 |#1|) (-1083 (-1083 |#1|))))) (-1138)) (T -1080))
+((-3536 (*1 *2 *3) (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1080 *4)) (-4 *4 (-1138)))))
+(-10 -7 (-15 -3536 ((-1083 |#1|) (-1083 (-1083 |#1|)))))
+((-3203 (((-1083 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|)) 25)) (-1760 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|)) 26)) (-3261 (((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|)) 16)))
+(((-1081 |#1| |#2|) (-10 -7 (-15 -3261 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|))) (-15 -3203 ((-1083 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|))) (-15 -1760 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|)))) (-1138) (-1138)) (T -1081))
+((-1760 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1083 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-1081 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1083 *6)) (-4 *6 (-1138)) (-4 *3 (-1138)) (-5 *2 (-1083 *3)) (-5 *1 (-1081 *6 *3)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6)))))
+(-10 -7 (-15 -3261 ((-1083 |#2|) (-1 |#2| |#1|) (-1083 |#1|))) (-15 -3203 ((-1083 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|))) (-15 -1760 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1083 |#1|))))
+((-3261 (((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-1083 |#2|)) 21)))
+(((-1082 |#1| |#2| |#3|) (-10 -7 (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-1083 |#2|)))) (-1138) (-1138) (-1138)) (T -1082))
+((-3261 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1083 *6)) (-5 *5 (-1083 *7)) (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8)) (-5 *1 (-1082 *6 *7 *8)))))
+(-10 -7 (-15 -3261 ((-1083 |#3|) (-1 |#3| |#1| |#2|) (-1083 |#1|) (-1083 |#2|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) NIL)) (-3308 ((|#1| $) NIL)) (-2072 (($ $) 51)) (-3137 (((-1189) $ (-531) (-531)) 76 (|has| $ (-6 -4274)))) (-2300 (($ $ (-531)) 110 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-1834 (((-806) $) 41 (|has| |#1| (-1030)))) (-3357 (((-110)) 40 (|has| |#1| (-1030)))) (-2039 ((|#1| $ |#1|) NIL (|has| $ (-6 -4274)))) (-1998 (($ $ $) 98 (|has| $ (-6 -4274))) (($ $ (-531) $) 122)) (-2136 ((|#1| $ |#1|) 107 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 102 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 104 (|has| $ (-6 -4274))) (($ $ "rest" $) 106 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 109 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 89 (|has| $ (-6 -4274))) ((|#1| $ (-531) |#1|) 55 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 58)) (-3297 ((|#1| $) NIL)) (-4082 (($) NIL T CONST)) (-1969 (($ $) 14)) (-3062 (($ $) 29) (($ $ (-721)) 88)) (-3148 (((-110) (-598 |#1|) $) 116 (|has| |#1| (-1030)))) (-2851 (($ (-598 |#1|)) 112)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) 57)) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-2141 (((-110) $) NIL)) (-2227 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-2131 (((-1189) (-531) $) 121 (|has| |#1| (-1030)))) (-3971 (((-721) $) 118)) (-1555 (((-598 $) $) NIL)) (-1478 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 73 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 63) (($ (-1 |#1| |#1| |#1|) $ $) 67)) (-3332 (((-110) $ (-721)) NIL)) (-2132 (((-598 |#1|) $) NIL)) (-2672 (((-110) $) NIL)) (-1630 (($ $) 90)) (-2952 (((-110) $) 13)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2309 ((|#1| $) NIL) (($ $ (-721)) NIL)) (-4059 (($ $ $ (-531)) NIL) (($ |#1| $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) 74)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2107 (($ (-1 |#1|)) 124) (($ (-1 |#1| |#1|) |#1|) 125)) (-1366 ((|#1| $) 10)) (-3046 ((|#1| $) 28) (($ $ (-721)) 49)) (-2437 (((-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721))) (-721) $) 25)) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-2153 (($ (-1 (-110) |#1|) $) 126)) (-2164 (($ (-1 (-110) |#1|) $) 127)) (-3742 (($ $ |#1|) 68 (|has| $ (-6 -4274)))) (-1846 (($ $ (-531)) 32)) (-2765 (((-110) $) 72)) (-3339 (((-110) $) 12)) (-1643 (((-110) $) 117)) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 20)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) 15)) (-3781 (($) 43)) (-1785 ((|#1| $ "value") NIL) ((|#1| $ "first") NIL) (($ $ "rest") NIL) ((|#1| $ "last") NIL) (($ $ (-1151 (-531))) NIL) ((|#1| $ (-531)) 54) ((|#1| $ (-531) |#1|) NIL)) (-2357 (((-531) $ $) 48)) (-1723 (($ $ (-1151 (-531))) NIL) (($ $ (-531)) NIL)) (-2419 (($ (-1 $)) 47)) (-2930 (((-110) $) 69)) (-1958 (($ $) 70)) (-2980 (($ $) 99 (|has| $ (-6 -4274)))) (-3124 (((-721) $) NIL)) (-2874 (($ $) NIL)) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 44)) (-3318 (((-507) $) NIL (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 53)) (-1566 (($ |#1| $) 97)) (-1818 (($ $ $) 100 (|has| $ (-6 -4274))) (($ $ |#1|) 101 (|has| $ (-6 -4274)))) (-3536 (($ $ $) 78) (($ |#1| $) 45) (($ (-598 $)) 83) (($ $ |#1|) 77)) (-3437 (($ $) 50)) (-2265 (($ (-598 |#1|)) 111) (((-806) $) 42 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) NIL)) (-2910 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 114 (|has| |#1| (-1030)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1083 |#1|) (-13 (-626 |#1|) (-10 -8 (-6 -4274) (-15 -2265 ($ (-598 |#1|))) (-15 -2851 ($ (-598 |#1|))) (IF (|has| |#1| (-1030)) (-15 -3148 ((-110) (-598 |#1|) $)) |%noBranch|) (-15 -2437 ((-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721))) (-721) $)) (-15 -2419 ($ (-1 $))) (-15 -1566 ($ |#1| $)) (IF (|has| |#1| (-1030)) (PROGN (-15 -2131 ((-1189) (-531) $)) (-15 -1834 ((-806) $)) (-15 -3357 ((-110)))) |%noBranch|) (-15 -1998 ($ $ (-531) $)) (-15 -2107 ($ (-1 |#1|))) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2153 ($ (-1 (-110) |#1|) $)) (-15 -2164 ($ (-1 (-110) |#1|) $)))) (-1138)) (T -1083))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-2851 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-3148 (*1 *2 *3 *1) (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-4 *4 (-1138)) (-5 *2 (-110)) (-5 *1 (-1083 *4)))) (-2437 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721)))) (-5 *1 (-1083 *4)) (-4 *4 (-1138)) (-5 *3 (-721)))) (-2419 (*1 *1 *2) (-12 (-5 *2 (-1 (-1083 *3))) (-5 *1 (-1083 *3)) (-4 *3 (-1138)))) (-1566 (*1 *1 *2 *1) (-12 (-5 *1 (-1083 *2)) (-4 *2 (-1138)))) (-2131 (*1 *2 *3 *1) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1083 *4)) (-4 *4 (-1030)) (-4 *4 (-1138)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1083 *3)) (-4 *3 (-1030)) (-4 *3 (-1138)))) (-3357 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1083 *3)) (-4 *3 (-1030)) (-4 *3 (-1138)))) (-1998 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1083 *3)) (-4 *3 (-1138)))) (-2107 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-2107 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-2153 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))) (-2164 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))))
+(-13 (-626 |#1|) (-10 -8 (-6 -4274) (-15 -2265 ($ (-598 |#1|))) (-15 -2851 ($ (-598 |#1|))) (IF (|has| |#1| (-1030)) (-15 -3148 ((-110) (-598 |#1|) $)) |%noBranch|) (-15 -2437 ((-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721))) (-721) $)) (-15 -2419 ($ (-1 $))) (-15 -1566 ($ |#1| $)) (IF (|has| |#1| (-1030)) (PROGN (-15 -2131 ((-1189) (-531) $)) (-15 -1834 ((-806) $)) (-15 -3357 ((-110)))) |%noBranch|) (-15 -1998 ($ $ (-531) $)) (-15 -2107 ($ (-1 |#1|))) (-15 -2107 ($ (-1 |#1| |#1|) |#1|)) (-15 -2153 ($ (-1 (-110) |#1|) $)) (-15 -2164 ($ (-1 (-110) |#1|) $))))
+((-2247 (((-110) $ $) 19)) (-2815 (($ $) 120)) (-4102 (($ $) 121)) (-3634 (($ $ (-137)) 108) (($ $ (-134)) 107)) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-2982 (((-110) $ $) 118)) (-2955 (((-110) $ $ (-531)) 117)) (-3149 (($ (-531)) 127)) (-2040 (((-598 $) $ (-137)) 110) (((-598 $) $ (-134)) 109)) (-3202 (((-110) (-1 (-110) (-137) (-137)) $) 98) (((-110) $) 92 (|has| (-137) (-797)))) (-2375 (($ (-1 (-110) (-137) (-137)) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| (-137) (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) (-137) (-137)) $) 99) (($ $) 93 (|has| (-137) (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 (((-137) $ (-531) (-137)) 52 (|has| $ (-6 -4274))) (((-137) $ (-1151 (-531)) (-137)) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-137)) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-2810 (($ $ (-137)) 104) (($ $ (-134)) 103)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-2407 (($ $ (-1151 (-531)) $) 114)) (-3086 (($ $) 78 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ (-137) $) 77 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-137)) $) 74 (|has| $ (-6 -4273)))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) 76 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) 73 (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $) 72 (|has| $ (-6 -4273)))) (-2693 (((-137) $ (-531) (-137)) 53 (|has| $ (-6 -4274)))) (-2627 (((-137) $ (-531)) 51)) (-3009 (((-110) $ $) 119)) (-1976 (((-531) (-1 (-110) (-137)) $) 97) (((-531) (-137) $) 96 (|has| (-137) (-1030))) (((-531) (-137) $ (-531)) 95 (|has| (-137) (-1030))) (((-531) $ $ (-531)) 113) (((-531) (-134) $ (-531)) 112)) (-2227 (((-598 (-137)) $) 30 (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-137)) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| (-137) (-797)))) (-3508 (($ (-1 (-110) (-137) (-137)) $ $) 101) (($ $ $) 94 (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) 27 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| (-137) (-797)))) (-3816 (((-110) $ $ (-137)) 115)) (-2869 (((-721) $ $ (-137)) 116)) (-2680 (($ (-1 (-137) (-137)) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) 35) (($ (-1 (-137) (-137) (-137)) $ $) 64)) (-1659 (($ $) 122)) (-2559 (($ $) 123)) (-3332 (((-110) $ (-721)) 10)) (-2821 (($ $ (-137)) 106) (($ $ (-134)) 105)) (-1521 (((-1085) $) 22)) (-4059 (($ (-137) $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21)) (-3046 (((-137) $) 42 (|has| (-531) (-797)))) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) 71)) (-3742 (($ $ (-137)) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-137)) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-137)))) 26 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) 25 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) 24 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-137)) (-598 (-137))) 23 (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) (-137) $) 45 (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-3163 (((-598 (-137)) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 (((-137) $ (-531) (-137)) 50) (((-137) $ (-531)) 49) (($ $ (-1151 (-531))) 63) (($ $ $) 102)) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2539 (((-721) (-1 (-110) (-137)) $) 31 (|has| $ (-6 -4273))) (((-721) (-137) $) 28 (-12 (|has| (-137) (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| (-137) (-573 (-507))))) (-2274 (($ (-598 (-137))) 70)) (-3536 (($ $ (-137)) 68) (($ (-137) $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (($ (-137)) 111) (((-806) $) 18)) (-2060 (((-110) (-1 (-110) (-137)) $) 33 (|has| $ (-6 -4273)))) (-4231 (((-1085) $) 131) (((-1085) $ (-110)) 130) (((-1189) (-772) $) 129) (((-1189) (-772) $ (-110)) 128)) (-2207 (((-110) $ $) 84 (|has| (-137) (-797)))) (-2184 (((-110) $ $) 83 (|has| (-137) (-797)))) (-2148 (((-110) $ $) 20)) (-2195 (((-110) $ $) 85 (|has| (-137) (-797)))) (-2174 (((-110) $ $) 82 (|has| (-137) (-797)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-1084) (-133)) (T -1084))
+((-3149 (*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1084)))))
+(-13 (-1071) (-1030) (-778) (-10 -8 (-15 -3149 ($ (-531)))))
+(((-33) . T) ((-99) . T) ((-572 (-806)) . T) ((-144 #0=(-137)) . T) ((-573 (-507)) |has| (-137) (-573 (-507))) ((-268 #1=(-531) #0#) . T) ((-270 #1# #0#) . T) ((-291 #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))) ((-354 #0#) . T) ((-468 #0#) . T) ((-564 #1# #0#) . T) ((-492 #0# #0#) -12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))) ((-604 #0#) . T) ((-19 #0#) . T) ((-778) . T) ((-797) |has| (-137) (-797)) ((-1030) . T) ((-1071) . T) ((-1138) . T))
+((-2247 (((-110) $ $) NIL)) (-2815 (($ $) NIL)) (-4102 (($ $) NIL)) (-3634 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-2982 (((-110) $ $) NIL)) (-2955 (((-110) $ $ (-531)) NIL)) (-3149 (($ (-531)) 7)) (-2040 (((-598 $) $ (-137)) NIL) (((-598 $) $ (-134)) NIL)) (-3202 (((-110) (-1 (-110) (-137) (-137)) $) NIL) (((-110) $) NIL (|has| (-137) (-797)))) (-2375 (($ (-1 (-110) (-137) (-137)) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| (-137) (-797))))) (-1332 (($ (-1 (-110) (-137) (-137)) $) NIL) (($ $) NIL (|has| (-137) (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 (((-137) $ (-531) (-137)) NIL (|has| $ (-6 -4274))) (((-137) $ (-1151 (-531)) (-137)) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-2810 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-2407 (($ $ (-1151 (-531)) $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2283 (($ (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (($ (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-137) (-1 (-137) (-137) (-137)) $ (-137) (-137)) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030)))) (((-137) (-1 (-137) (-137) (-137)) $ (-137)) NIL (|has| $ (-6 -4273))) (((-137) (-1 (-137) (-137) (-137)) $) NIL (|has| $ (-6 -4273)))) (-2693 (((-137) $ (-531) (-137)) NIL (|has| $ (-6 -4274)))) (-2627 (((-137) $ (-531)) NIL)) (-3009 (((-110) $ $) NIL)) (-1976 (((-531) (-1 (-110) (-137)) $) NIL) (((-531) (-137) $) NIL (|has| (-137) (-1030))) (((-531) (-137) $ (-531)) NIL (|has| (-137) (-1030))) (((-531) $ $ (-531)) NIL) (((-531) (-134) $ (-531)) NIL)) (-2227 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-3010 (($ (-721) (-137)) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| (-137) (-797)))) (-3508 (($ (-1 (-110) (-137) (-137)) $ $) NIL) (($ $ $) NIL (|has| (-137) (-797)))) (-2445 (((-598 (-137)) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| (-137) (-797)))) (-3816 (((-110) $ $ (-137)) NIL)) (-2869 (((-721) $ $ (-137)) NIL)) (-2680 (($ (-1 (-137) (-137)) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-137) (-137)) $) NIL) (($ (-1 (-137) (-137) (-137)) $ $) NIL)) (-1659 (($ $) NIL)) (-2559 (($ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-2821 (($ $ (-137)) NIL) (($ $ (-134)) NIL)) (-1521 (((-1085) $) NIL)) (-4059 (($ (-137) $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-137) $) NIL (|has| (-531) (-797)))) (-4190 (((-3 (-137) "failed") (-1 (-110) (-137)) $) NIL)) (-3742 (($ $ (-137)) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-137)))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-276 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-137) (-137)) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030)))) (($ $ (-598 (-137)) (-598 (-137))) NIL (-12 (|has| (-137) (-291 (-137))) (|has| (-137) (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-3163 (((-598 (-137)) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 (((-137) $ (-531) (-137)) NIL) (((-137) $ (-531)) NIL) (($ $ (-1151 (-531))) NIL) (($ $ $) NIL)) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2539 (((-721) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273))) (((-721) (-137) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-137) (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-137) (-573 (-507))))) (-2274 (($ (-598 (-137))) NIL)) (-3536 (($ $ (-137)) NIL) (($ (-137) $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (($ (-137)) NIL) (((-806) $) NIL)) (-2060 (((-110) (-1 (-110) (-137)) $) NIL (|has| $ (-6 -4273)))) (-4231 (((-1085) $) 18) (((-1085) $ (-110)) 20) (((-1189) (-772) $) 21) (((-1189) (-772) $ (-110)) 22)) (-2207 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2184 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2174 (((-110) $ $) NIL (|has| (-137) (-797)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1085) (-1084)) (T -1085))
+NIL
+(-1084)
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)) (|has| |#1| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-3137 (((-1189) $ (-1085) (-1085)) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-1085) |#1|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#1| "failed") (-1085) $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#1| "failed") (-1085) $) NIL)) (-2283 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-1085) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-1085)) NIL)) (-2227 (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2445 (((-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-1085) $) NIL (|has| (-1085) (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL) (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)) (|has| |#1| (-1030))))) (-3345 (((-598 (-1085)) $) NIL)) (-1727 (((-110) (-1085) $) NIL)) (-3540 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-3765 (((-598 (-1085)) $) NIL)) (-3059 (((-110) (-1085) $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)) (|has| |#1| (-1030))))) (-3046 ((|#1| $) NIL (|has| (-1085) (-797)))) (-4190 (((-3 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) "failed") (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL (-12 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-291 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-1085)) NIL) ((|#1| $ (-1085) |#1|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-572 (-806))) (|has| |#1| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 (-1085)) (|:| -1798 |#1|)) (-1030)) (|has| |#1| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1086 |#1|) (-13 (-1115 (-1085) |#1|) (-10 -7 (-6 -4273))) (-1030)) (T -1086))
+NIL
+(-13 (-1115 (-1085) |#1|) (-10 -7 (-6 -4273)))
+((-3853 (((-1083 |#1|) (-1083 |#1|)) 77)) (-3622 (((-3 (-1083 |#1|) "failed") (-1083 |#1|)) 37)) (-3269 (((-1083 |#1|) (-388 (-531)) (-1083 |#1|)) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3158 (((-1083 |#1|) |#1| (-1083 |#1|)) 127 (|has| |#1| (-344)))) (-3128 (((-1083 |#1|) (-1083 |#1|)) 90)) (-2221 (((-1083 (-531)) (-531)) 57)) (-2380 (((-1083 |#1|) (-1083 (-1083 |#1|))) 109 (|has| |#1| (-37 (-388 (-531)))))) (-3714 (((-1083 |#1|) (-531) (-531) (-1083 |#1|)) 95)) (-4007 (((-1083 |#1|) |#1| (-531)) 45)) (-3378 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 60)) (-1645 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 124 (|has| |#1| (-344)))) (-3870 (((-1083 |#1|) |#1| (-1 (-1083 |#1|))) 108 (|has| |#1| (-37 (-388 (-531)))))) (-1774 (((-1083 |#1|) (-1 |#1| (-531)) |#1| (-1 (-1083 |#1|))) 125 (|has| |#1| (-344)))) (-1656 (((-1083 |#1|) (-1083 |#1|)) 89)) (-2971 (((-1083 |#1|) (-1083 |#1|)) 76)) (-3721 (((-1083 |#1|) (-531) (-531) (-1083 |#1|)) 96)) (-1788 (((-1083 |#1|) |#1| (-1083 |#1|)) 105 (|has| |#1| (-37 (-388 (-531)))))) (-2690 (((-1083 (-531)) (-531)) 56)) (-4150 (((-1083 |#1|) |#1|) 59)) (-2942 (((-1083 |#1|) (-1083 |#1|) (-531) (-531)) 92)) (-2194 (((-1083 |#1|) (-1 |#1| (-531)) (-1083 |#1|)) 66)) (-3609 (((-3 (-1083 |#1|) "failed") (-1083 |#1|) (-1083 |#1|)) 35)) (-1352 (((-1083 |#1|) (-1083 |#1|)) 91)) (-4115 (((-1083 |#1|) (-1083 |#1|) |#1|) 71)) (-2654 (((-1083 |#1|) (-1083 |#1|)) 62)) (-3990 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 72)) (-2265 (((-1083 |#1|) |#1|) 67)) (-3599 (((-1083 |#1|) (-1083 (-1083 |#1|))) 82)) (-2263 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 36)) (-2250 (((-1083 |#1|) (-1083 |#1|)) 21) (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 23)) (-2237 (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 17)) (* (((-1083 |#1|) (-1083 |#1|) |#1|) 29) (((-1083 |#1|) |#1| (-1083 |#1|)) 26) (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 27)))
+(((-1087 |#1|) (-10 -7 (-15 -2237 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2250 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2250 ((-1083 |#1|) (-1083 |#1|))) (-15 * ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 * ((-1083 |#1|) |#1| (-1083 |#1|))) (-15 * ((-1083 |#1|) (-1083 |#1|) |#1|)) (-15 -3609 ((-3 (-1083 |#1|) "failed") (-1083 |#1|) (-1083 |#1|))) (-15 -2263 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3622 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -4007 ((-1083 |#1|) |#1| (-531))) (-15 -2690 ((-1083 (-531)) (-531))) (-15 -2221 ((-1083 (-531)) (-531))) (-15 -4150 ((-1083 |#1|) |#1|)) (-15 -3378 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2654 ((-1083 |#1|) (-1083 |#1|))) (-15 -2194 ((-1083 |#1|) (-1 |#1| (-531)) (-1083 |#1|))) (-15 -2265 ((-1083 |#1|) |#1|)) (-15 -4115 ((-1083 |#1|) (-1083 |#1|) |#1|)) (-15 -3990 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2971 ((-1083 |#1|) (-1083 |#1|))) (-15 -3853 ((-1083 |#1|) (-1083 |#1|))) (-15 -3599 ((-1083 |#1|) (-1083 (-1083 |#1|)))) (-15 -1656 ((-1083 |#1|) (-1083 |#1|))) (-15 -3128 ((-1083 |#1|) (-1083 |#1|))) (-15 -1352 ((-1083 |#1|) (-1083 |#1|))) (-15 -2942 ((-1083 |#1|) (-1083 |#1|) (-531) (-531))) (-15 -3714 ((-1083 |#1|) (-531) (-531) (-1083 |#1|))) (-15 -3721 ((-1083 |#1|) (-531) (-531) (-1083 |#1|))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ((-1083 |#1|) |#1| (-1083 |#1|))) (-15 -3870 ((-1083 |#1|) |#1| (-1 (-1083 |#1|)))) (-15 -2380 ((-1083 |#1|) (-1083 (-1083 |#1|)))) (-15 -3269 ((-1083 |#1|) (-388 (-531)) (-1083 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1645 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -1774 ((-1083 |#1|) (-1 |#1| (-531)) |#1| (-1 (-1083 |#1|)))) (-15 -3158 ((-1083 |#1|) |#1| (-1083 |#1|)))) |%noBranch|)) (-986)) (T -1087))
+((-3158 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-1774 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-531))) (-5 *5 (-1 (-1083 *4))) (-4 *4 (-344)) (-4 *4 (-986)) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)))) (-1645 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3269 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *4)) (-4 *4 (-37 *3)) (-4 *4 (-986)) (-5 *3 (-388 (-531))) (-5 *1 (-1087 *4)))) (-2380 (*1 *2 *3) (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)) (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986)))) (-3870 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1083 *3))) (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)))) (-1788 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3721 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) (-5 *1 (-1087 *4)))) (-3714 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) (-5 *1 (-1087 *4)))) (-2942 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986)) (-5 *1 (-1087 *4)))) (-1352 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3128 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3599 (*1 *2 *3) (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)) (-4 *4 (-986)))) (-3853 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2971 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3990 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-4115 (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2265 (*1 *2 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986)))) (-2194 (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *4)) (-5 *3 (-1 *4 (-531))) (-4 *4 (-986)) (-5 *1 (-1087 *4)))) (-2654 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3378 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-4150 (*1 *2 *3) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986)))) (-2221 (*1 *2 *3) (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-1087 *4)) (-4 *4 (-986)) (-5 *3 (-531)))) (-2690 (*1 *2 *3) (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-1087 *4)) (-4 *4 (-986)) (-5 *3 (-531)))) (-4007 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986)))) (-3622 (*1 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2263 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-3609 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2250 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2250 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))) (-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))))
+(-10 -7 (-15 -2237 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2250 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2250 ((-1083 |#1|) (-1083 |#1|))) (-15 * ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 * ((-1083 |#1|) |#1| (-1083 |#1|))) (-15 * ((-1083 |#1|) (-1083 |#1|) |#1|)) (-15 -3609 ((-3 (-1083 |#1|) "failed") (-1083 |#1|) (-1083 |#1|))) (-15 -2263 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -3622 ((-3 (-1083 |#1|) "failed") (-1083 |#1|))) (-15 -4007 ((-1083 |#1|) |#1| (-531))) (-15 -2690 ((-1083 (-531)) (-531))) (-15 -2221 ((-1083 (-531)) (-531))) (-15 -4150 ((-1083 |#1|) |#1|)) (-15 -3378 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2654 ((-1083 |#1|) (-1083 |#1|))) (-15 -2194 ((-1083 |#1|) (-1 |#1| (-531)) (-1083 |#1|))) (-15 -2265 ((-1083 |#1|) |#1|)) (-15 -4115 ((-1083 |#1|) (-1083 |#1|) |#1|)) (-15 -3990 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2971 ((-1083 |#1|) (-1083 |#1|))) (-15 -3853 ((-1083 |#1|) (-1083 |#1|))) (-15 -3599 ((-1083 |#1|) (-1083 (-1083 |#1|)))) (-15 -1656 ((-1083 |#1|) (-1083 |#1|))) (-15 -3128 ((-1083 |#1|) (-1083 |#1|))) (-15 -1352 ((-1083 |#1|) (-1083 |#1|))) (-15 -2942 ((-1083 |#1|) (-1083 |#1|) (-531) (-531))) (-15 -3714 ((-1083 |#1|) (-531) (-531) (-1083 |#1|))) (-15 -3721 ((-1083 |#1|) (-531) (-531) (-1083 |#1|))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ((-1083 |#1|) |#1| (-1083 |#1|))) (-15 -3870 ((-1083 |#1|) |#1| (-1 (-1083 |#1|)))) (-15 -2380 ((-1083 |#1|) (-1083 (-1083 |#1|)))) (-15 -3269 ((-1083 |#1|) (-388 (-531)) (-1083 |#1|)))) |%noBranch|) (IF (|has| |#1| (-344)) (PROGN (-15 -1645 ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -1774 ((-1083 |#1|) (-1 |#1| (-531)) |#1| (-1 (-1083 |#1|)))) (-15 -3158 ((-1083 |#1|) |#1| (-1083 |#1|)))) |%noBranch|))
+((-2367 (((-1083 |#1|) (-1083 |#1|)) 57)) (-2218 (((-1083 |#1|) (-1083 |#1|)) 39)) (-2343 (((-1083 |#1|) (-1083 |#1|)) 53)) (-2198 (((-1083 |#1|) (-1083 |#1|)) 35)) (-2391 (((-1083 |#1|) (-1083 |#1|)) 60)) (-2241 (((-1083 |#1|) (-1083 |#1|)) 42)) (-2076 (((-1083 |#1|) (-1083 |#1|)) 31)) (-2798 (((-1083 |#1|) (-1083 |#1|)) 27)) (-2403 (((-1083 |#1|) (-1083 |#1|)) 61)) (-2253 (((-1083 |#1|) (-1083 |#1|)) 43)) (-2379 (((-1083 |#1|) (-1083 |#1|)) 58)) (-2229 (((-1083 |#1|) (-1083 |#1|)) 40)) (-2356 (((-1083 |#1|) (-1083 |#1|)) 55)) (-2210 (((-1083 |#1|) (-1083 |#1|)) 37)) (-2442 (((-1083 |#1|) (-1083 |#1|)) 65)) (-2292 (((-1083 |#1|) (-1083 |#1|)) 47)) (-2416 (((-1083 |#1|) (-1083 |#1|)) 63)) (-2266 (((-1083 |#1|) (-1083 |#1|)) 45)) (-2468 (((-1083 |#1|) (-1083 |#1|)) 68)) (-2318 (((-1083 |#1|) (-1083 |#1|)) 50)) (-2753 (((-1083 |#1|) (-1083 |#1|)) 69)) (-2331 (((-1083 |#1|) (-1083 |#1|)) 51)) (-2456 (((-1083 |#1|) (-1083 |#1|)) 67)) (-2305 (((-1083 |#1|) (-1083 |#1|)) 49)) (-2429 (((-1083 |#1|) (-1083 |#1|)) 66)) (-2279 (((-1083 |#1|) (-1083 |#1|)) 48)) (** (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 33)))
+(((-1088 |#1|) (-10 -7 (-15 -2798 ((-1083 |#1|) (-1083 |#1|))) (-15 -2076 ((-1083 |#1|) (-1083 |#1|))) (-15 ** ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2198 ((-1083 |#1|) (-1083 |#1|))) (-15 -2210 ((-1083 |#1|) (-1083 |#1|))) (-15 -2218 ((-1083 |#1|) (-1083 |#1|))) (-15 -2229 ((-1083 |#1|) (-1083 |#1|))) (-15 -2241 ((-1083 |#1|) (-1083 |#1|))) (-15 -2253 ((-1083 |#1|) (-1083 |#1|))) (-15 -2266 ((-1083 |#1|) (-1083 |#1|))) (-15 -2279 ((-1083 |#1|) (-1083 |#1|))) (-15 -2292 ((-1083 |#1|) (-1083 |#1|))) (-15 -2305 ((-1083 |#1|) (-1083 |#1|))) (-15 -2318 ((-1083 |#1|) (-1083 |#1|))) (-15 -2331 ((-1083 |#1|) (-1083 |#1|))) (-15 -2343 ((-1083 |#1|) (-1083 |#1|))) (-15 -2356 ((-1083 |#1|) (-1083 |#1|))) (-15 -2367 ((-1083 |#1|) (-1083 |#1|))) (-15 -2379 ((-1083 |#1|) (-1083 |#1|))) (-15 -2391 ((-1083 |#1|) (-1083 |#1|))) (-15 -2403 ((-1083 |#1|) (-1083 |#1|))) (-15 -2416 ((-1083 |#1|) (-1083 |#1|))) (-15 -2429 ((-1083 |#1|) (-1083 |#1|))) (-15 -2442 ((-1083 |#1|) (-1083 |#1|))) (-15 -2456 ((-1083 |#1|) (-1083 |#1|))) (-15 -2468 ((-1083 |#1|) (-1083 |#1|))) (-15 -2753 ((-1083 |#1|) (-1083 |#1|)))) (-37 (-388 (-531)))) (T -1088))
+((-2753 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2279 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1088 *3)))))
+(-10 -7 (-15 -2798 ((-1083 |#1|) (-1083 |#1|))) (-15 -2076 ((-1083 |#1|) (-1083 |#1|))) (-15 ** ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -2198 ((-1083 |#1|) (-1083 |#1|))) (-15 -2210 ((-1083 |#1|) (-1083 |#1|))) (-15 -2218 ((-1083 |#1|) (-1083 |#1|))) (-15 -2229 ((-1083 |#1|) (-1083 |#1|))) (-15 -2241 ((-1083 |#1|) (-1083 |#1|))) (-15 -2253 ((-1083 |#1|) (-1083 |#1|))) (-15 -2266 ((-1083 |#1|) (-1083 |#1|))) (-15 -2279 ((-1083 |#1|) (-1083 |#1|))) (-15 -2292 ((-1083 |#1|) (-1083 |#1|))) (-15 -2305 ((-1083 |#1|) (-1083 |#1|))) (-15 -2318 ((-1083 |#1|) (-1083 |#1|))) (-15 -2331 ((-1083 |#1|) (-1083 |#1|))) (-15 -2343 ((-1083 |#1|) (-1083 |#1|))) (-15 -2356 ((-1083 |#1|) (-1083 |#1|))) (-15 -2367 ((-1083 |#1|) (-1083 |#1|))) (-15 -2379 ((-1083 |#1|) (-1083 |#1|))) (-15 -2391 ((-1083 |#1|) (-1083 |#1|))) (-15 -2403 ((-1083 |#1|) (-1083 |#1|))) (-15 -2416 ((-1083 |#1|) (-1083 |#1|))) (-15 -2429 ((-1083 |#1|) (-1083 |#1|))) (-15 -2442 ((-1083 |#1|) (-1083 |#1|))) (-15 -2456 ((-1083 |#1|) (-1083 |#1|))) (-15 -2468 ((-1083 |#1|) (-1083 |#1|))) (-15 -2753 ((-1083 |#1|) (-1083 |#1|))))
+((-2367 (((-1083 |#1|) (-1083 |#1|)) 100)) (-2218 (((-1083 |#1|) (-1083 |#1|)) 64)) (-2252 (((-2 (|:| -2343 (-1083 |#1|)) (|:| -2356 (-1083 |#1|))) (-1083 |#1|)) 96)) (-2343 (((-1083 |#1|) (-1083 |#1|)) 97)) (-4220 (((-2 (|:| -2198 (-1083 |#1|)) (|:| -2210 (-1083 |#1|))) (-1083 |#1|)) 53)) (-2198 (((-1083 |#1|) (-1083 |#1|)) 54)) (-2391 (((-1083 |#1|) (-1083 |#1|)) 102)) (-2241 (((-1083 |#1|) (-1083 |#1|)) 71)) (-2076 (((-1083 |#1|) (-1083 |#1|)) 39)) (-2798 (((-1083 |#1|) (-1083 |#1|)) 36)) (-2403 (((-1083 |#1|) (-1083 |#1|)) 103)) (-2253 (((-1083 |#1|) (-1083 |#1|)) 72)) (-2379 (((-1083 |#1|) (-1083 |#1|)) 101)) (-2229 (((-1083 |#1|) (-1083 |#1|)) 67)) (-2356 (((-1083 |#1|) (-1083 |#1|)) 98)) (-2210 (((-1083 |#1|) (-1083 |#1|)) 55)) (-2442 (((-1083 |#1|) (-1083 |#1|)) 111)) (-2292 (((-1083 |#1|) (-1083 |#1|)) 86)) (-2416 (((-1083 |#1|) (-1083 |#1|)) 105)) (-2266 (((-1083 |#1|) (-1083 |#1|)) 82)) (-2468 (((-1083 |#1|) (-1083 |#1|)) 115)) (-2318 (((-1083 |#1|) (-1083 |#1|)) 90)) (-2753 (((-1083 |#1|) (-1083 |#1|)) 117)) (-2331 (((-1083 |#1|) (-1083 |#1|)) 92)) (-2456 (((-1083 |#1|) (-1083 |#1|)) 113)) (-2305 (((-1083 |#1|) (-1083 |#1|)) 88)) (-2429 (((-1083 |#1|) (-1083 |#1|)) 107)) (-2279 (((-1083 |#1|) (-1083 |#1|)) 84)) (** (((-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) 40)))
+(((-1089 |#1|) (-10 -7 (-15 -2798 ((-1083 |#1|) (-1083 |#1|))) (-15 -2076 ((-1083 |#1|) (-1083 |#1|))) (-15 ** ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -4220 ((-2 (|:| -2198 (-1083 |#1|)) (|:| -2210 (-1083 |#1|))) (-1083 |#1|))) (-15 -2198 ((-1083 |#1|) (-1083 |#1|))) (-15 -2210 ((-1083 |#1|) (-1083 |#1|))) (-15 -2218 ((-1083 |#1|) (-1083 |#1|))) (-15 -2229 ((-1083 |#1|) (-1083 |#1|))) (-15 -2241 ((-1083 |#1|) (-1083 |#1|))) (-15 -2253 ((-1083 |#1|) (-1083 |#1|))) (-15 -2266 ((-1083 |#1|) (-1083 |#1|))) (-15 -2279 ((-1083 |#1|) (-1083 |#1|))) (-15 -2292 ((-1083 |#1|) (-1083 |#1|))) (-15 -2305 ((-1083 |#1|) (-1083 |#1|))) (-15 -2318 ((-1083 |#1|) (-1083 |#1|))) (-15 -2331 ((-1083 |#1|) (-1083 |#1|))) (-15 -2252 ((-2 (|:| -2343 (-1083 |#1|)) (|:| -2356 (-1083 |#1|))) (-1083 |#1|))) (-15 -2343 ((-1083 |#1|) (-1083 |#1|))) (-15 -2356 ((-1083 |#1|) (-1083 |#1|))) (-15 -2367 ((-1083 |#1|) (-1083 |#1|))) (-15 -2379 ((-1083 |#1|) (-1083 |#1|))) (-15 -2391 ((-1083 |#1|) (-1083 |#1|))) (-15 -2403 ((-1083 |#1|) (-1083 |#1|))) (-15 -2416 ((-1083 |#1|) (-1083 |#1|))) (-15 -2429 ((-1083 |#1|) (-1083 |#1|))) (-15 -2442 ((-1083 |#1|) (-1083 |#1|))) (-15 -2456 ((-1083 |#1|) (-1083 |#1|))) (-15 -2468 ((-1083 |#1|) (-1083 |#1|))) (-15 -2753 ((-1083 |#1|) (-1083 |#1|)))) (-37 (-388 (-531)))) (T -1089))
+((-2753 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2468 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2456 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2442 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2429 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2416 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2403 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2391 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2367 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2356 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2343 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2252 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-2 (|:| -2343 (-1083 *4)) (|:| -2356 (-1083 *4)))) (-5 *1 (-1089 *4)) (-5 *3 (-1083 *4)))) (-2331 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2318 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2305 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2292 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2279 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2266 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2253 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2241 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2229 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2218 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2210 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2198 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-4220 (*1 *2 *3) (-12 (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-2 (|:| -2198 (-1083 *4)) (|:| -2210 (-1083 *4)))) (-5 *1 (-1089 *4)) (-5 *3 (-1083 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2076 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))) (-2798 (*1 *2 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1089 *3)))))
+(-10 -7 (-15 -2798 ((-1083 |#1|) (-1083 |#1|))) (-15 -2076 ((-1083 |#1|) (-1083 |#1|))) (-15 ** ((-1083 |#1|) (-1083 |#1|) (-1083 |#1|))) (-15 -4220 ((-2 (|:| -2198 (-1083 |#1|)) (|:| -2210 (-1083 |#1|))) (-1083 |#1|))) (-15 -2198 ((-1083 |#1|) (-1083 |#1|))) (-15 -2210 ((-1083 |#1|) (-1083 |#1|))) (-15 -2218 ((-1083 |#1|) (-1083 |#1|))) (-15 -2229 ((-1083 |#1|) (-1083 |#1|))) (-15 -2241 ((-1083 |#1|) (-1083 |#1|))) (-15 -2253 ((-1083 |#1|) (-1083 |#1|))) (-15 -2266 ((-1083 |#1|) (-1083 |#1|))) (-15 -2279 ((-1083 |#1|) (-1083 |#1|))) (-15 -2292 ((-1083 |#1|) (-1083 |#1|))) (-15 -2305 ((-1083 |#1|) (-1083 |#1|))) (-15 -2318 ((-1083 |#1|) (-1083 |#1|))) (-15 -2331 ((-1083 |#1|) (-1083 |#1|))) (-15 -2252 ((-2 (|:| -2343 (-1083 |#1|)) (|:| -2356 (-1083 |#1|))) (-1083 |#1|))) (-15 -2343 ((-1083 |#1|) (-1083 |#1|))) (-15 -2356 ((-1083 |#1|) (-1083 |#1|))) (-15 -2367 ((-1083 |#1|) (-1083 |#1|))) (-15 -2379 ((-1083 |#1|) (-1083 |#1|))) (-15 -2391 ((-1083 |#1|) (-1083 |#1|))) (-15 -2403 ((-1083 |#1|) (-1083 |#1|))) (-15 -2416 ((-1083 |#1|) (-1083 |#1|))) (-15 -2429 ((-1083 |#1|) (-1083 |#1|))) (-15 -2442 ((-1083 |#1|) (-1083 |#1|))) (-15 -2456 ((-1083 |#1|) (-1083 |#1|))) (-15 -2468 ((-1083 |#1|) (-1083 |#1|))) (-15 -2753 ((-1083 |#1|) (-1083 |#1|))))
+((-3998 (((-901 |#2|) |#2| |#2|) 35)) (-2226 ((|#2| |#2| |#1|) 19 (|has| |#1| (-289)))))
+(((-1090 |#1| |#2|) (-10 -7 (-15 -3998 ((-901 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -2226 (|#2| |#2| |#1|)) |%noBranch|)) (-523) (-1160 |#1|)) (T -1090))
+((-2226 (*1 *2 *2 *3) (-12 (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-1090 *3 *2)) (-4 *2 (-1160 *3)))) (-3998 (*1 *2 *3 *3) (-12 (-4 *4 (-523)) (-5 *2 (-901 *3)) (-5 *1 (-1090 *4 *3)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -3998 ((-901 |#2|) |#2| |#2|)) (IF (|has| |#1| (-289)) (-15 -2226 (|#2| |#2| |#1|)) |%noBranch|))
+((-2247 (((-110) $ $) NIL)) (-2122 (($ $ (-598 (-721))) 67)) (-1841 (($) 26)) (-1225 (($ $) 42)) (-3245 (((-598 $) $) 51)) (-3068 (((-110) $) 16)) (-1516 (((-598 (-886 |#2|)) $) 74)) (-3849 (($ $) 68)) (-1603 (((-721) $) 37)) (-3010 (($) 25)) (-3061 (($ $ (-598 (-721)) (-886 |#2|)) 60) (($ $ (-598 (-721)) (-721)) 61) (($ $ (-721) (-886 |#2|)) 63)) (-3508 (($ $ $) 48) (($ (-598 $)) 50)) (-1618 (((-721) $) 75)) (-2672 (((-110) $) 15)) (-1521 (((-1085) $) NIL)) (-2759 (((-110) $) 18)) (-2529 (((-1049) $) NIL)) (-2656 (((-161) $) 73)) (-1843 (((-886 |#2|) $) 69)) (-1260 (((-721) $) 70)) (-3003 (((-110) $) 72)) (-3314 (($ $ (-598 (-721)) (-161)) 66)) (-3629 (($ $) 43)) (-2265 (((-806) $) 86)) (-2997 (($ $ (-598 (-721)) (-110)) 65)) (-3495 (((-598 $) $) 11)) (-1296 (($ $ (-721)) 36)) (-1923 (($ $) 32)) (-4117 (($ $ $ (-886 |#2|) (-721)) 56)) (-4027 (($ $ (-886 |#2|)) 55)) (-3567 (($ $ (-598 (-721)) (-886 |#2|)) 54) (($ $ (-598 (-721)) (-721)) 58) (((-721) $ (-886 |#2|)) 59)) (-2148 (((-110) $ $) 80)))
+(((-1091 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -2672 ((-110) $)) (-15 -3068 ((-110) $)) (-15 -2759 ((-110) $)) (-15 -3010 ($)) (-15 -1841 ($)) (-15 -1923 ($ $)) (-15 -1296 ($ $ (-721))) (-15 -3495 ((-598 $) $)) (-15 -1603 ((-721) $)) (-15 -1225 ($ $)) (-15 -3629 ($ $)) (-15 -3508 ($ $ $)) (-15 -3508 ($ (-598 $))) (-15 -3245 ((-598 $) $)) (-15 -3567 ($ $ (-598 (-721)) (-886 |#2|))) (-15 -4027 ($ $ (-886 |#2|))) (-15 -4117 ($ $ $ (-886 |#2|) (-721))) (-15 -3061 ($ $ (-598 (-721)) (-886 |#2|))) (-15 -3567 ($ $ (-598 (-721)) (-721))) (-15 -3061 ($ $ (-598 (-721)) (-721))) (-15 -3567 ((-721) $ (-886 |#2|))) (-15 -3061 ($ $ (-721) (-886 |#2|))) (-15 -2997 ($ $ (-598 (-721)) (-110))) (-15 -3314 ($ $ (-598 (-721)) (-161))) (-15 -2122 ($ $ (-598 (-721)))) (-15 -1843 ((-886 |#2|) $)) (-15 -1260 ((-721) $)) (-15 -3003 ((-110) $)) (-15 -2656 ((-161) $)) (-15 -1618 ((-721) $)) (-15 -3849 ($ $)) (-15 -1516 ((-598 (-886 |#2|)) $)))) (-864) (-986)) (T -1091))
+((-2672 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3068 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-2759 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3010 (*1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-1841 (*1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-1923 (*1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-1296 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3495 (*1 *2 *1) (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1603 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1225 (*1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-3629 (*1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-3508 (*1 *1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-3508 (*1 *1 *2) (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3567 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-4027 (*1 *1 *1 *2) (-12 (-5 *2 (-886 *4)) (-4 *4 (-986)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)))) (-4117 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-886 *5)) (-5 *3 (-721)) (-4 *5 (-986)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-3567 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-721)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)) (-4 *5 (-986)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-721)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)) (-4 *5 (-986)))) (-3567 (*1 *2 *1 *3) (-12 (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *2 (-721)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-3061 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))) (-2997 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-110)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)) (-4 *5 (-986)))) (-3314 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-598 (-721))) (-5 *3 (-161)) (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)) (-4 *5 (-986)))) (-2122 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1843 (*1 *2 *1) (-12 (-5 *2 (-886 *4)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1260 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-2656 (*1 *2 *1) (-12 (-5 *2 (-161)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-1618 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))) (-3849 (*1 *1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))) (-1516 (*1 *2 *1) (-12 (-5 *2 (-598 (-886 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864)) (-4 *4 (-986)))))
+(-13 (-1030) (-10 -8 (-15 -2672 ((-110) $)) (-15 -3068 ((-110) $)) (-15 -2759 ((-110) $)) (-15 -3010 ($)) (-15 -1841 ($)) (-15 -1923 ($ $)) (-15 -1296 ($ $ (-721))) (-15 -3495 ((-598 $) $)) (-15 -1603 ((-721) $)) (-15 -1225 ($ $)) (-15 -3629 ($ $)) (-15 -3508 ($ $ $)) (-15 -3508 ($ (-598 $))) (-15 -3245 ((-598 $) $)) (-15 -3567 ($ $ (-598 (-721)) (-886 |#2|))) (-15 -4027 ($ $ (-886 |#2|))) (-15 -4117 ($ $ $ (-886 |#2|) (-721))) (-15 -3061 ($ $ (-598 (-721)) (-886 |#2|))) (-15 -3567 ($ $ (-598 (-721)) (-721))) (-15 -3061 ($ $ (-598 (-721)) (-721))) (-15 -3567 ((-721) $ (-886 |#2|))) (-15 -3061 ($ $ (-721) (-886 |#2|))) (-15 -2997 ($ $ (-598 (-721)) (-110))) (-15 -3314 ($ $ (-598 (-721)) (-161))) (-15 -2122 ($ $ (-598 (-721)))) (-15 -1843 ((-886 |#2|) $)) (-15 -1260 ((-721) $)) (-15 -3003 ((-110) $)) (-15 -2656 ((-161) $)) (-15 -1618 ((-721) $)) (-15 -3849 ($ $)) (-15 -1516 ((-598 (-886 |#2|)) $))))
+((-2247 (((-110) $ $) NIL)) (-1493 ((|#2| $) 11)) (-1484 ((|#1| $) 10)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2274 (($ |#1| |#2|) 9)) (-2265 (((-806) $) 16)) (-2148 (((-110) $ $) NIL)))
+(((-1092 |#1| |#2|) (-13 (-1030) (-10 -8 (-15 -2274 ($ |#1| |#2|)) (-15 -1484 (|#1| $)) (-15 -1493 (|#2| $)))) (-1030) (-1030)) (T -1092))
+((-2274 (*1 *1 *2 *3) (-12 (-5 *1 (-1092 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-1484 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1030)))) (-1493 (*1 *2 *1) (-12 (-4 *2 (-1030)) (-5 *1 (-1092 *3 *2)) (-4 *3 (-1030)))))
+(-13 (-1030) (-10 -8 (-15 -2274 ($ |#1| |#2|)) (-15 -1484 (|#1| $)) (-15 -1493 (|#2| $))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-1100 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 11)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-3258 (($ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2921 (((-110) $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2796 (($ $ (-531)) NIL) (($ $ (-531) (-531)) 66)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) NIL)) (-2594 (((-1100 |#1| |#2| |#3|) $) 36)) (-1891 (((-3 (-1100 |#1| |#2| |#3|) "failed") $) 29)) (-2373 (((-1100 |#1| |#2| |#3|) $) 30)) (-2367 (($ $) 107 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 83 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) 103 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 79 (|has| |#1| (-37 (-388 (-531)))))) (-3459 (((-531) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) 111 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 87 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1100 |#1| |#2| |#3|) "failed") $) 31) (((-3 (-1102) "failed") $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-531) "failed") $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))))) (-2523 (((-1100 |#1| |#2| |#3|) $) 131) (((-1102) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (((-388 (-531)) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344)))) (((-531) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))))) (-2581 (($ $) 34) (($ (-531) $) 35)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-1100 |#1| |#2| |#3|)) (-639 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-1100 |#1| |#2| |#3|))) (|:| |vec| (-1184 (-1100 |#1| |#2| |#3|)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-594 (-531))) (|has| |#1| (-344)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-594 (-531))) (|has| |#1| (-344))))) (-3622 (((-3 $ "failed") $) 48)) (-4163 (((-388 (-895 |#1|)) $ (-531)) 65 (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) 67 (|has| |#1| (-523)))) (-1381 (($) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-1599 (((-110) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3201 (((-110) $) 25)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-829 (-531))) (|has| |#1| (-344)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-829 (-360))) (|has| |#1| (-344))))) (-3617 (((-531) $) NIL) (((-531) $ (-531)) 24)) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL (|has| |#1| (-344)))) (-1840 (((-1100 |#1| |#2| |#3|) $) 38 (|has| |#1| (-344)))) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2342 (((-3 $ "failed") $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-1078)) (|has| |#1| (-344))))) (-2985 (((-110) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3688 (($ $ (-864)) NIL)) (-3192 (($ (-1 |#1| (-531)) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-531)) 18) (($ $ (-1014) (-531)) NIL) (($ $ (-598 (-1014)) (-598 (-531))) NIL)) (-4103 (($ $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-1241 (($ $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2076 (($ $) 72 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2385 (($ (-531) (-1100 |#1| |#2| |#3|)) 33)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 70 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 71 (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-1078)) (|has| |#1| (-344))) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2322 (($ $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2943 (((-1100 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-531)) 145)) (-3609 (((-3 $ "failed") $ $) 49 (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) 73 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-531))))) (($ $ (-1102) (-1100 |#1| |#2| |#3|)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-492 (-1102) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 (-1100 |#1| |#2| |#3|))) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-492 (-1102) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-276 (-1100 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1100 |#1| |#2| |#3|))) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-1100 |#1| |#2| |#3|)) (-598 (-1100 |#1| |#2| |#3|))) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-291 (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) NIL) (($ $ $) 54 (|has| (-531) (-1042))) (($ $ (-1100 |#1| |#2| |#3|)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-268 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) (-721)) NIL (|has| |#1| (-344))) (($ $ (-1180 |#2|)) 51) (($ $ (-721)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 50 (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1853 (((-1100 |#1| |#2| |#3|) $) 41 (|has| |#1| (-344)))) (-2012 (((-531) $) 37)) (-2403 (($ $) 113 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 89 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 109 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 85 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 105 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 81 (|has| |#1| (-37 (-388 (-531)))))) (-3318 (((-507) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-573 (-507))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-962)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-962)) (|has| |#1| (-344)))) (((-835 (-360)) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-573 (-835 (-360)))) (|has| |#1| (-344)))) (((-835 (-531)) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-573 (-835 (-531)))) (|has| |#1| (-344))))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) 149) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1100 |#1| |#2| |#3|)) 27) (($ (-1180 |#2|)) 23) (($ (-1102)) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (($ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523)))) (($ (-388 (-531))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-531))))))) (-3188 ((|#1| $ (-531)) 68)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 12)) (-3831 (((-1100 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-2442 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 95 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2416 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 91 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 99 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 101 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 97 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 93 (|has| |#1| (-37 (-388 (-531)))))) (-1620 (($ $) NIL (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3035 (($) 20 T CONST)) (-3050 (($) 16 T CONST)) (-4020 (($ $ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) (-721)) NIL (|has| |#1| (-344))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2207 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2184 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2174 (((-110) $ $) NIL (-1435 (-12 (|has| (-1100 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1100 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 44 (|has| |#1| (-344))) (($ (-1100 |#1| |#2| |#3|) (-1100 |#1| |#2| |#3|)) 45 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 21)) (** (($ $ (-864)) NIL) (($ $ (-721)) 53) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) 74 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 128 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 32) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1100 |#1| |#2| |#3|)) 43 (|has| |#1| (-344))) (($ (-1100 |#1| |#2| |#3|) $) 42 (|has| |#1| (-344))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1093 |#1| |#2| |#3|) (-13 (-1146 |#1| (-1100 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1093))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))))
+(-13 (-1146 |#1| (-1100 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|)))
+((-3539 ((|#2| |#2| (-1023 |#2|)) 26) ((|#2| |#2| (-1102)) 28)))
+(((-1094 |#1| |#2|) (-10 -7 (-15 -3539 (|#2| |#2| (-1102))) (-15 -3539 (|#2| |#2| (-1023 |#2|)))) (-13 (-523) (-797) (-977 (-531)) (-594 (-531))) (-13 (-411 |#1|) (-151) (-27) (-1124))) (T -1094))
+((-3539 (*1 *2 *2 *3) (-12 (-5 *3 (-1023 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1124))) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1094 *4 *2)))) (-3539 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1124))))))
+(-10 -7 (-15 -3539 (|#2| |#2| (-1102))) (-15 -3539 (|#2| |#2| (-1023 |#2|))))
+((-3539 (((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1023 (-388 (-895 |#1|)))) 31) (((-388 (-895 |#1|)) (-895 |#1|) (-1023 (-895 |#1|))) 44) (((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1102)) 33) (((-388 (-895 |#1|)) (-895 |#1|) (-1102)) 36)))
+(((-1095 |#1|) (-10 -7 (-15 -3539 ((-388 (-895 |#1|)) (-895 |#1|) (-1102))) (-15 -3539 ((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1102))) (-15 -3539 ((-388 (-895 |#1|)) (-895 |#1|) (-1023 (-895 |#1|)))) (-15 -3539 ((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1023 (-388 (-895 |#1|)))))) (-13 (-523) (-797) (-977 (-531)))) (T -1095))
+((-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5))) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-3 *3 (-297 *5))) (-5 *1 (-1095 *5)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1023 (-895 *5))) (-5 *3 (-895 *5)) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-388 *3)) (-5 *1 (-1095 *5)))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-3 (-388 (-895 *5)) (-297 *5))) (-5 *1 (-1095 *5)) (-5 *3 (-388 (-895 *5))))) (-3539 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-388 (-895 *5))) (-5 *1 (-1095 *5)) (-5 *3 (-895 *5)))))
+(-10 -7 (-15 -3539 ((-388 (-895 |#1|)) (-895 |#1|) (-1102))) (-15 -3539 ((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1102))) (-15 -3539 ((-388 (-895 |#1|)) (-895 |#1|) (-1023 (-895 |#1|)))) (-15 -3539 ((-3 (-388 (-895 |#1|)) (-297 |#1|)) (-388 (-895 |#1|)) (-1023 (-388 (-895 |#1|))))))
+((-3261 (((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)) 13)))
+(((-1096 |#1| |#2|) (-10 -7 (-15 -3261 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|)))) (-986) (-986)) (T -1096))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-5 *2 (-1098 *6)) (-5 *1 (-1096 *5 *6)))))
+(-10 -7 (-15 -3261 ((-1098 |#2|) (-1 |#2| |#1|) (-1098 |#1|))))
+((-2956 (((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|))) 51)) (-2552 (((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|))) 52)))
+(((-1097 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2552 ((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|)))) (-15 -2956 ((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|))))) (-743) (-797) (-432) (-892 |#3| |#1| |#2|)) (T -1097))
+((-2956 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-432)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 (-388 *7)))) (-5 *1 (-1097 *4 *5 *6 *7)) (-5 *3 (-1098 (-388 *7))))) (-2552 (*1 *2 *3) (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-432)) (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 (-388 *7)))) (-5 *1 (-1097 *4 *5 *6 *7)) (-5 *3 (-1098 (-388 *7))))))
+(-10 -7 (-15 -2552 ((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|)))) (-15 -2956 ((-399 (-1098 (-388 |#4|))) (-1098 (-388 |#4|)))))
+((-2247 (((-110) $ $) 137)) (-3019 (((-110) $) 28)) (-3191 (((-1184 |#1|) $ (-721)) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-1310 (($ (-1098 |#1|)) NIL)) (-2516 (((-1098 $) $ (-1014)) 58) (((-1098 |#1|) $) 47)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) 132 (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3720 (($ $ $) 126 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) 71 (|has| |#1| (-852)))) (-3240 (($ $) NIL (|has| |#1| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 91 (|has| |#1| (-852)))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-3767 (($ $ (-721)) 40)) (-3441 (($ $ (-721)) 41)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-432)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#1| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-1014) "failed") $) NIL)) (-2523 ((|#1| $) NIL) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-1014) $) NIL)) (-3115 (($ $ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $ $) 128 (|has| |#1| (-162)))) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) 56)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) NIL) (((-639 |#1|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-1376 (($ $ $) 104)) (-1570 (($ $ $) NIL (|has| |#1| (-523)))) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2226 (($ $) 133 (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-721) $) 45)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-1362 (((-806) $ (-806)) 117)) (-3617 (((-721) $ $) NIL (|has| |#1| (-523)))) (-3481 (((-110) $) 30)) (-3517 (((-721) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#1| (-1078)))) (-2682 (($ (-1098 |#1|) (-1014)) 49) (($ (-1098 $) (-1014)) 65)) (-3688 (($ $ (-721)) 32)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) 63) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) NIL) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 121)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3294 (((-1098 |#1|) $) NIL)) (-3471 (((-3 (-1014) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) 52)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) NIL (|has| |#1| (-432)))) (-1521 (((-1085) $) NIL)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) 39)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) 31)) (-2448 ((|#1| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 79 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-432))) (($ $ $) 135 (|has| |#1| (-432)))) (-1816 (($ $ (-721) |#1| $) 99)) (-3799 (((-399 (-1098 $)) (-1098 $)) 77 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 76 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 84 (|has| |#1| (-852)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ |#1|) 131 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 100 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#1|) NIL) (($ $ (-598 (-1014)) (-598 |#1|)) NIL) (($ $ (-1014) $) NIL) (($ $ (-598 (-1014)) (-598 $)) NIL)) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ |#1|) 119) (($ $ $) 120) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) NIL (|has| |#1| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#1| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) 35)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 138 (|has| |#1| (-344)))) (-3176 (($ $ (-1014)) NIL (|has| |#1| (-162))) ((|#1| $) 124 (|has| |#1| (-162)))) (-3352 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL) (($ $ (-1 |#1| |#1|) $) NIL)) (-2012 (((-721) $) 54) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) 130 (|has| |#1| (-432))) (($ $ (-1014)) NIL (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#1| (-852))))) (-2960 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#1| (-523)))) (-2265 (((-806) $) 118) (($ (-531)) NIL) (($ |#1|) 53) (($ (-1014)) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) 26 (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 15 T CONST)) (-3050 (($) 16 T CONST)) (-4020 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) NIL) (($ $ (-1 |#1| |#1|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) 96)) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 139 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 66)) (** (($ $ (-864)) 14) (($ $ (-721)) 12)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 25) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 102) (($ $ |#1|) NIL)))
+(((-1098 |#1|) (-13 (-1160 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-806))) (-15 -1816 ($ $ (-721) |#1| $)))) (-986)) (T -1098))
+((-1362 (*1 *2 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-1098 *3)) (-4 *3 (-986)))) (-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1098 *3)) (-4 *3 (-986)))))
+(-13 (-1160 |#1|) (-10 -8 (-15 -1362 ((-806) $ (-806))) (-15 -1816 ($ $ (-721) |#1| $))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 11)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) NIL) (($ $ (-388 (-531)) (-388 (-531))) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1093 |#1| |#2| |#3|) "failed") $) 33) (((-3 (-1100 |#1| |#2| |#3|) "failed") $) 36)) (-2523 (((-1093 |#1| |#2| |#3|) $) NIL) (((-1100 |#1| |#2| |#3|) $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1318 (((-388 (-531)) $) 55)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2397 (($ (-388 (-531)) (-1093 |#1| |#2| |#3|)) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) NIL) (((-388 (-531)) $ (-388 (-531))) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL) (($ $ (-388 (-531))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) 20) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3671 (((-1093 |#1| |#2| |#3|) $) 41)) (-1633 (((-3 (-1093 |#1| |#2| |#3|) "failed") $) NIL)) (-2385 (((-1093 |#1| |#2| |#3|) $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 39 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 40 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) NIL) (($ $ $) NIL (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $ (-1180 |#2|)) 38)) (-2012 (((-388 (-531)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) 58) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1093 |#1| |#2| |#3|)) 30) (($ (-1100 |#1| |#2| |#3|)) 31) (($ (-1180 |#2|)) 26) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 12)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 22 T CONST)) (-3050 (($) 16 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 24)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1099 |#1| |#2| |#3|) (-13 (-1167 |#1| (-1093 |#1| |#2| |#3|)) (-977 (-1100 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1099))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))))
+(-13 (-1167 |#1| (-1093 |#1| |#2| |#3|)) (-977 (-1100 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 125)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 116)) (-3361 (((-1157 |#2| |#1|) $ (-721)) 63)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-721)) 79) (($ $ (-721) (-721)) 76)) (-4034 (((-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|))) $) 102)) (-2367 (($ $) 169 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 145 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) 165 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|)))) 115) (($ (-1083 |#1|)) 110)) (-2391 (($ $) 173 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 149 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) 23)) (-2034 (($ $) 26)) (-3383 (((-895 |#1|) $ (-721)) 75) (((-895 |#1|) $ (-721) (-721)) 77)) (-3201 (((-110) $) 120)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $) 122) (((-721) $ (-721)) 124)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL)) (-3192 (($ (-1 |#1| (-531)) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) 13) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1788 (($ $) 129 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-1846 (($ $ (-721)) 15)) (-3609 (((-3 $ "failed") $ $) 24 (|has| |#1| (-523)))) (-2798 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-721)))))) (-1785 ((|#1| $ (-721)) 119) (($ $ $) 128 (|has| (-721) (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) 27 (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $ (-1180 |#2|)) 29)) (-2012 (((-721) $) NIL)) (-2403 (($ $) 175 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 151 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 171 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 147 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 167 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) 201) (($ (-531)) NIL) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 126 (|has| |#1| (-162))) (($ (-1157 |#2| |#1|)) 51) (($ (-1180 |#2|)) 32)) (-2708 (((-1083 |#1|) $) 98)) (-3188 ((|#1| $ (-721)) 118)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 54)) (-2442 (($ $) 181 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 157 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 177 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 153 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 185 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 161 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-721)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-721)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 187 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 163 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 183 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 159 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 179 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 155 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 17 T CONST)) (-3050 (($) 19 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) 194)) (-2237 (($ $ $) 31)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ |#1|) 198 (|has| |#1| (-344))) (($ $ $) 134 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 137 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 132) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1100 |#1| |#2| |#3|) (-13 (-1175 |#1|) (-10 -8 (-15 -2265 ($ (-1157 |#2| |#1|))) (-15 -3361 ((-1157 |#2| |#1|) $ (-721))) (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1100))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1157 *4 *3)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-1100 *3 *4 *5)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1157 *5 *4)) (-5 *1 (-1100 *4 *5 *6)) (-4 *4 (-986)) (-14 *5 (-1102)) (-14 *6 *4))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))))
+(-13 (-1175 |#1|) (-10 -8 (-15 -2265 ($ (-1157 |#2| |#1|))) (-15 -3361 ((-1157 |#2| |#1|) $ (-721))) (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|)))
+((-2265 (((-806) $) 27) (($ (-1102)) 29)) (-1435 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 40)) (-1425 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 33) (($ $) 34)) (-3100 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 35)) (-3085 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 37)) (-3069 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 36)) (-3054 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 38)) (-3861 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 41)) (-12 (($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $))) 39)))
+(((-1101) (-13 (-572 (-806)) (-10 -8 (-15 -2265 ($ (-1102))) (-15 -3100 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3069 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3085 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3054 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1435 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3861 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1425 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1425 ($ $))))) (T -1101))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1101)))) (-3100 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-3069 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-3085 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-3054 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-1435 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-3861 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-1425 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101)))) (-5 *1 (-1101)))) (-1425 (*1 *1 *1) (-5 *1 (-1101))))
+(-13 (-572 (-806)) (-10 -8 (-15 -2265 ($ (-1102))) (-15 -3100 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3069 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3085 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3054 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1435 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -3861 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)) (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1425 ($ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360))) (|:| CF (-297 (-159 (-360)))) (|:| |switch| $)))) (-15 -1425 ($ $))))
+((-2247 (((-110) $ $) NIL)) (-3526 (($ $ (-598 (-806))) 59)) (-1440 (($ $ (-598 (-806))) 57)) (-3149 (((-1085) $) 84)) (-2441 (((-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))) $) 87)) (-3463 (((-110) $) 22)) (-3322 (($ $ (-598 (-598 (-806)))) 56) (($ $ (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806))))) 82)) (-4082 (($) 124 T CONST)) (-2927 (((-1189)) 106)) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 66) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 73)) (-3010 (($) 95) (($ $) 101)) (-3955 (($ $) 83)) (-4103 (($ $ $) NIL)) (-1241 (($ $ $) NIL)) (-2907 (((-598 $) $) 107)) (-1521 (((-1085) $) 90)) (-2529 (((-1049) $) NIL)) (-1785 (($ $ (-598 (-806))) 58)) (-3318 (((-507) $) 46) (((-1102) $) 47) (((-835 (-531)) $) 77) (((-835 (-360)) $) 75)) (-2265 (((-806) $) 53) (($ (-1085)) 48)) (-2564 (($ $ (-598 (-806))) 60)) (-4231 (((-1085) $) 33) (((-1085) $ (-110)) 34) (((-1189) (-772) $) 35) (((-1189) (-772) $ (-110)) 36)) (-2207 (((-110) $ $) NIL)) (-2184 (((-110) $ $) NIL)) (-2148 (((-110) $ $) 49)) (-2195 (((-110) $ $) NIL)) (-2174 (((-110) $ $) 50)))
+(((-1102) (-13 (-797) (-573 (-507)) (-778) (-573 (-1102)) (-573 (-835 (-531))) (-573 (-835 (-360))) (-829 (-531)) (-829 (-360)) (-10 -8 (-15 -3010 ($)) (-15 -3010 ($ $)) (-15 -2927 ((-1189))) (-15 -2265 ($ (-1085))) (-15 -3955 ($ $)) (-15 -3463 ((-110) $)) (-15 -2441 ((-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))) $)) (-15 -3322 ($ $ (-598 (-598 (-806))))) (-15 -3322 ($ $ (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))))) (-15 -1440 ($ $ (-598 (-806)))) (-15 -3526 ($ $ (-598 (-806)))) (-15 -2564 ($ $ (-598 (-806)))) (-15 -1785 ($ $ (-598 (-806)))) (-15 -3149 ((-1085) $)) (-15 -2907 ((-598 $) $)) (-15 -4082 ($) -2651)))) (T -1102))
+((-3010 (*1 *1) (-5 *1 (-1102))) (-3010 (*1 *1 *1) (-5 *1 (-1102))) (-2927 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1102)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1102)))) (-3955 (*1 *1 *1) (-5 *1 (-1102))) (-3463 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1102)))) (-2441 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806))))) (-5 *1 (-1102)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 (-806)))) (-5 *1 (-1102)))) (-3322 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806))))) (-5 *1 (-1102)))) (-1440 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) (-3526 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) (-2564 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))) (-3149 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1102)))) (-2907 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1102)))) (-4082 (*1 *1) (-5 *1 (-1102))))
+(-13 (-797) (-573 (-507)) (-778) (-573 (-1102)) (-573 (-835 (-531))) (-573 (-835 (-360))) (-829 (-531)) (-829 (-360)) (-10 -8 (-15 -3010 ($)) (-15 -3010 ($ $)) (-15 -2927 ((-1189))) (-15 -2265 ($ (-1085))) (-15 -3955 ($ $)) (-15 -3463 ((-110) $)) (-15 -2441 ((-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))) $)) (-15 -3322 ($ $ (-598 (-598 (-806))))) (-15 -3322 ($ $ (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806))) (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806))) (|:| |args| (-598 (-806)))))) (-15 -1440 ($ $ (-598 (-806)))) (-15 -3526 ($ $ (-598 (-806)))) (-15 -2564 ($ $ (-598 (-806)))) (-15 -1785 ($ $ (-598 (-806)))) (-15 -3149 ((-1085) $)) (-15 -2907 ((-598 $) $)) (-15 -4082 ($) -2651)))
+((-4072 (((-1184 |#1|) |#1| (-864)) 16) (((-1184 |#1|) (-598 |#1|)) 20)))
+(((-1103 |#1|) (-10 -7 (-15 -4072 ((-1184 |#1|) (-598 |#1|))) (-15 -4072 ((-1184 |#1|) |#1| (-864)))) (-986)) (T -1103))
+((-4072 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-5 *2 (-1184 *3)) (-5 *1 (-1103 *3)) (-4 *3 (-986)))) (-4072 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-986)) (-5 *2 (-1184 *4)) (-5 *1 (-1103 *4)))))
+(-10 -7 (-15 -4072 ((-1184 |#1|) (-598 |#1|))) (-15 -4072 ((-1184 |#1|) |#1| (-864))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| |#1| (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#1| (-977 (-388 (-531))))) (((-3 |#1| "failed") $) NIL)) (-2523 (((-531) $) NIL (|has| |#1| (-977 (-531)))) (((-388 (-531)) $) NIL (|has| |#1| (-977 (-388 (-531))))) ((|#1| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2226 (($ $) NIL (|has| |#1| (-432)))) (-2490 (($ $ |#1| (-913) $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-913)) NIL)) (-3005 (((-913) $) NIL)) (-2736 (($ (-1 (-913) (-913)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#1| $) NIL)) (-1816 (($ $ (-913) |#1| $) NIL (-12 (|has| (-913) (-128)) (|has| |#1| (-523))))) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523))) (((-3 $ "failed") $ |#1|) NIL (|has| |#1| (-523)))) (-2012 (((-913) $) NIL)) (-1767 ((|#1| $) NIL (|has| |#1| (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) NIL) (($ (-388 (-531))) NIL (-1435 (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-977 (-388 (-531))))))) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ (-913)) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#1| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3035 (($) 9 T CONST)) (-3050 (($) 14 T CONST)) (-2148 (((-110) $ $) 16)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 19)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 20) (($ $ |#1|) NIL) (($ |#1| $) 13) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1104 |#1|) (-13 (-307 |#1| (-913)) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| (-913) (-128)) (-15 -1816 ($ $ (-913) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) (-986)) (T -1104))
+((-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-913)) (-4 *2 (-128)) (-5 *1 (-1104 *3)) (-4 *3 (-523)) (-4 *3 (-986)))))
+(-13 (-307 |#1| (-913)) (-10 -8 (IF (|has| |#1| (-523)) (IF (|has| (-913) (-128)) (-15 -1816 ($ $ (-913) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|)))
+((-4052 (((-1106) (-1102) $) 25)) (-1738 (($) 29)) (-2852 (((-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-1102) $) 22)) (-2607 (((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")) $) 41) (((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) 42) (((-1189) (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) 43)) (-1844 (((-1189) (-1102)) 58)) (-3042 (((-1189) (-1102) $) 55) (((-1189) (-1102)) 56) (((-1189)) 57)) (-2502 (((-1189) (-1102)) 37)) (-2986 (((-1102)) 36)) (-3781 (($) 34)) (-2347 (((-418) (-1102) (-418) (-1102) $) 45) (((-418) (-598 (-1102)) (-418) (-1102) $) 49) (((-418) (-1102) (-418)) 46) (((-418) (-1102) (-418) (-1102)) 50)) (-1535 (((-1102)) 35)) (-2265 (((-806) $) 28)) (-2278 (((-1189)) 30) (((-1189) (-1102)) 33)) (-3618 (((-598 (-1102)) (-1102) $) 24)) (-2296 (((-1189) (-1102) (-598 (-1102)) $) 38) (((-1189) (-1102) (-598 (-1102))) 39) (((-1189) (-598 (-1102))) 40)))
+(((-1105) (-13 (-572 (-806)) (-10 -8 (-15 -1738 ($)) (-15 -2278 ((-1189))) (-15 -2278 ((-1189) (-1102))) (-15 -2347 ((-418) (-1102) (-418) (-1102) $)) (-15 -2347 ((-418) (-598 (-1102)) (-418) (-1102) $)) (-15 -2347 ((-418) (-1102) (-418))) (-15 -2347 ((-418) (-1102) (-418) (-1102))) (-15 -2502 ((-1189) (-1102))) (-15 -1535 ((-1102))) (-15 -2986 ((-1102))) (-15 -2296 ((-1189) (-1102) (-598 (-1102)) $)) (-15 -2296 ((-1189) (-1102) (-598 (-1102)))) (-15 -2296 ((-1189) (-598 (-1102)))) (-15 -2607 ((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")) $)) (-15 -2607 ((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")))) (-15 -2607 ((-1189) (-3 (|:| |fst| (-415)) (|:| -2989 "void")))) (-15 -3042 ((-1189) (-1102) $)) (-15 -3042 ((-1189) (-1102))) (-15 -3042 ((-1189))) (-15 -1844 ((-1189) (-1102))) (-15 -3781 ($)) (-15 -2852 ((-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-1102) $)) (-15 -3618 ((-598 (-1102)) (-1102) $)) (-15 -4052 ((-1106) (-1102) $))))) (T -1105))
+((-1738 (*1 *1) (-5 *1 (-1105))) (-2278 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2278 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2347 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) (-2347 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-418)) (-5 *3 (-598 (-1102))) (-5 *4 (-1102)) (-5 *1 (-1105)))) (-2347 (*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) (-2347 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105)))) (-2502 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-1535 (*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1105)))) (-2986 (*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1105)))) (-2296 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2296 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2296 (*1 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2607 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1102)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2607 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-2607 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-3042 (*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-3042 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-3042 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1105)))) (-1844 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))) (-3781 (*1 *1) (-5 *1 (-1105))) (-2852 (*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *1 (-1105)))) (-3618 (*1 *2 *3 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1105)) (-5 *3 (-1102)))) (-4052 (*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-1106)) (-5 *1 (-1105)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -1738 ($)) (-15 -2278 ((-1189))) (-15 -2278 ((-1189) (-1102))) (-15 -2347 ((-418) (-1102) (-418) (-1102) $)) (-15 -2347 ((-418) (-598 (-1102)) (-418) (-1102) $)) (-15 -2347 ((-418) (-1102) (-418))) (-15 -2347 ((-418) (-1102) (-418) (-1102))) (-15 -2502 ((-1189) (-1102))) (-15 -1535 ((-1102))) (-15 -2986 ((-1102))) (-15 -2296 ((-1189) (-1102) (-598 (-1102)) $)) (-15 -2296 ((-1189) (-1102) (-598 (-1102)))) (-15 -2296 ((-1189) (-598 (-1102)))) (-15 -2607 ((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")) $)) (-15 -2607 ((-1189) (-1102) (-3 (|:| |fst| (-415)) (|:| -2989 "void")))) (-15 -2607 ((-1189) (-3 (|:| |fst| (-415)) (|:| -2989 "void")))) (-15 -3042 ((-1189) (-1102) $)) (-15 -3042 ((-1189) (-1102))) (-15 -3042 ((-1189))) (-15 -1844 ((-1189) (-1102))) (-15 -3781 ($)) (-15 -2852 ((-3 (|:| |fst| (-415)) (|:| -2989 "void")) (-1102) $)) (-15 -3618 ((-598 (-1102)) (-1102) $)) (-15 -4052 ((-1106) (-1102) $))))
+((-1838 (((-598 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) $) 59)) (-2276 (((-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))) (-415) $) 43)) (-3152 (($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418))))) 17)) (-1844 (((-1189) $) 67)) (-1780 (((-598 (-1102)) $) 22)) (-3483 (((-1034) $) 55)) (-2057 (((-418) (-1102) $) 27)) (-1215 (((-598 (-1102)) $) 30)) (-3781 (($) 19)) (-2347 (((-418) (-598 (-1102)) (-418) $) 25) (((-418) (-1102) (-418) $) 24)) (-2265 (((-806) $) 9) (((-1112 (-1102) (-418)) $) 13)))
+(((-1106) (-13 (-572 (-806)) (-10 -8 (-15 -2265 ((-1112 (-1102) (-418)) $)) (-15 -3781 ($)) (-15 -2347 ((-418) (-598 (-1102)) (-418) $)) (-15 -2347 ((-418) (-1102) (-418) $)) (-15 -2057 ((-418) (-1102) $)) (-15 -1780 ((-598 (-1102)) $)) (-15 -2276 ((-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))) (-415) $)) (-15 -1215 ((-598 (-1102)) $)) (-15 -1838 ((-598 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) $)) (-15 -3483 ((-1034) $)) (-15 -1844 ((-1189) $)) (-15 -3152 ($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418))))))))) (T -1106))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-1112 (-1102) (-418))) (-5 *1 (-1106)))) (-3781 (*1 *1) (-5 *1 (-1106))) (-2347 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-598 (-1102))) (-5 *1 (-1106)))) (-2347 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1106)))) (-2057 (*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-418)) (-5 *1 (-1106)))) (-1780 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1106)))) (-2276 (*1 *2 *3 *1) (-12 (-5 *3 (-415)) (-5 *2 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) (-5 *1 (-1106)))) (-1215 (*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1106)))) (-1838 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))))) (-5 *1 (-1106)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-1106)))) (-1844 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1106)))) (-3152 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418))))) (-5 *1 (-1106)))))
+(-13 (-572 (-806)) (-10 -8 (-15 -2265 ((-1112 (-1102) (-418)) $)) (-15 -3781 ($)) (-15 -2347 ((-418) (-598 (-1102)) (-418) $)) (-15 -2347 ((-418) (-1102) (-418) $)) (-15 -2057 ((-418) (-1102) $)) (-15 -1780 ((-598 (-1102)) $)) (-15 -2276 ((-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))) (-415) $)) (-15 -1215 ((-598 (-1102)) $)) (-15 -1838 ((-598 (-598 (-3 (|:| -3955 (-1102)) (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))) $)) (-15 -3483 ((-1034) $)) (-15 -1844 ((-1189) $)) (-15 -3152 ($ (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418))))))))
+((-2247 (((-110) $ $) NIL)) (-1405 (((-110) $) 42)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-1715 (((-3 (-531) (-208) (-1102) (-1085) $) $) 50)) (-3846 (((-598 $) $) 55)) (-3318 (((-1034) $) 24) (($ (-1034)) 25)) (-2920 (((-110) $) 52)) (-2265 (((-806) $) NIL) (($ (-531)) 26) (((-531) $) 28) (($ (-208)) 29) (((-208) $) 31) (($ (-1102)) 32) (((-1102) $) 34) (($ (-1085)) 35) (((-1085) $) 37)) (-3022 (((-110) $ (|[\|\|]| (-531))) 11) (((-110) $ (|[\|\|]| (-208))) 15) (((-110) $ (|[\|\|]| (-1102))) 23) (((-110) $ (|[\|\|]| (-1085))) 19)) (-1553 (($ (-1102) (-598 $)) 39) (($ $ (-598 $)) 40)) (-2520 (((-531) $) 27) (((-208) $) 30) (((-1102) $) 33) (((-1085) $) 36)) (-2148 (((-110) $ $) 7)))
+(((-1107) (-13 (-1179) (-1030) (-10 -8 (-15 -3318 ((-1034) $)) (-15 -3318 ($ (-1034))) (-15 -2265 ($ (-531))) (-15 -2265 ((-531) $)) (-15 -2520 ((-531) $)) (-15 -2265 ($ (-208))) (-15 -2265 ((-208) $)) (-15 -2520 ((-208) $)) (-15 -2265 ($ (-1102))) (-15 -2265 ((-1102) $)) (-15 -2520 ((-1102) $)) (-15 -2265 ($ (-1085))) (-15 -2265 ((-1085) $)) (-15 -2520 ((-1085) $)) (-15 -1553 ($ (-1102) (-598 $))) (-15 -1553 ($ $ (-598 $))) (-15 -1405 ((-110) $)) (-15 -1715 ((-3 (-531) (-208) (-1102) (-1085) $) $)) (-15 -3846 ((-598 $) $)) (-15 -2920 ((-110) $)) (-15 -3022 ((-110) $ (|[\|\|]| (-531)))) (-15 -3022 ((-110) $ (|[\|\|]| (-208)))) (-15 -3022 ((-110) $ (|[\|\|]| (-1102)))) (-15 -3022 ((-110) $ (|[\|\|]| (-1085))))))) (T -1107))
+((-3318 (*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-1107)))) (-3318 (*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-1107)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1107)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1107)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) (-2520 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1107)))) (-1553 (*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-1107))) (-5 *1 (-1107)))) (-1553 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1107)))) (-1405 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1107)))) (-1715 (*1 *2 *1) (-12 (-5 *2 (-3 (-531) (-208) (-1102) (-1085) (-1107))) (-5 *1 (-1107)))) (-3846 (*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1107)))) (-2920 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1107)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-110)) (-5 *1 (-1107)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1107)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-110)) (-5 *1 (-1107)))) (-3022 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-110)) (-5 *1 (-1107)))))
+(-13 (-1179) (-1030) (-10 -8 (-15 -3318 ((-1034) $)) (-15 -3318 ($ (-1034))) (-15 -2265 ($ (-531))) (-15 -2265 ((-531) $)) (-15 -2520 ((-531) $)) (-15 -2265 ($ (-208))) (-15 -2265 ((-208) $)) (-15 -2520 ((-208) $)) (-15 -2265 ($ (-1102))) (-15 -2265 ((-1102) $)) (-15 -2520 ((-1102) $)) (-15 -2265 ($ (-1085))) (-15 -2265 ((-1085) $)) (-15 -2520 ((-1085) $)) (-15 -1553 ($ (-1102) (-598 $))) (-15 -1553 ($ $ (-598 $))) (-15 -1405 ((-110) $)) (-15 -1715 ((-3 (-531) (-208) (-1102) (-1085) $) $)) (-15 -3846 ((-598 $) $)) (-15 -2920 ((-110) $)) (-15 -3022 ((-110) $ (|[\|\|]| (-531)))) (-15 -3022 ((-110) $ (|[\|\|]| (-208)))) (-15 -3022 ((-110) $ (|[\|\|]| (-1102)))) (-15 -3022 ((-110) $ (|[\|\|]| (-1085))))))
+((-4088 (((-598 (-598 (-895 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102))) 57)) (-1871 (((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|)))) 69) (((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|))) 65) (((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102)) 70) (((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102)) 64) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|))))) 93) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|)))) 92) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102))) 94) (((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))) (-598 (-1102))) 91)))
+(((-1108 |#1|) (-10 -7 (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))))) (-15 -4088 ((-598 (-598 (-895 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102))))) (-523)) (T -1108))
+((-4088 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-895 *5)))) (-5 *1 (-1108 *5)))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *4))))) (-5 *1 (-1108 *4)) (-5 *3 (-276 (-388 (-895 *4)))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *4))))) (-5 *1 (-1108 *4)) (-5 *3 (-388 (-895 *4))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *5))))) (-5 *1 (-1108 *5)) (-5 *3 (-276 (-388 (-895 *5)))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-1102)) (-4 *5 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *5))))) (-5 *1 (-1108 *5)) (-5 *3 (-388 (-895 *5))))) (-1871 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-1108 *4)) (-5 *3 (-598 (-276 (-388 (-895 *4))))))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-598 (-388 (-895 *4)))) (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-1108 *4)))) (-1871 (*1 *2 *3 *4) (-12 (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-1108 *5)) (-5 *3 (-598 (-276 (-388 (-895 *5))))))) (-1871 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102))) (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-1108 *5)))))
+(-10 -7 (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))) (-598 (-1102)))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-388 (-895 |#1|))))) (-15 -1871 ((-598 (-598 (-276 (-388 (-895 |#1|))))) (-598 (-276 (-388 (-895 |#1|)))))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)) (-1102))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))) (-1102))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-388 (-895 |#1|)))) (-15 -1871 ((-598 (-276 (-388 (-895 |#1|)))) (-276 (-388 (-895 |#1|))))) (-15 -4088 ((-598 (-598 (-895 |#1|))) (-598 (-388 (-895 |#1|))) (-598 (-1102)))))
+((-3811 (((-1085)) 7)) (-1836 (((-1085)) 9)) (-2891 (((-1189) (-1085)) 11)) (-2417 (((-1085)) 8)))
+(((-1109) (-10 -7 (-15 -3811 ((-1085))) (-15 -2417 ((-1085))) (-15 -1836 ((-1085))) (-15 -2891 ((-1189) (-1085))))) (T -1109))
+((-2891 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1109)))) (-1836 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109)))) (-2417 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109)))) (-3811 (*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109)))))
+(-10 -7 (-15 -3811 ((-1085))) (-15 -2417 ((-1085))) (-15 -1836 ((-1085))) (-15 -2891 ((-1189) (-1085))))
+((-2665 (((-598 (-598 |#1|)) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|)))) 38)) (-2372 (((-598 (-598 (-598 |#1|))) (-598 (-598 |#1|))) 24)) (-2047 (((-1111 (-598 |#1|)) (-598 |#1|)) 34)) (-1460 (((-598 (-598 |#1|)) (-598 |#1|)) 30)) (-3876 (((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 (-598 (-598 |#1|)))) 37)) (-1474 (((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 |#1|) (-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|)))) 36)) (-3903 (((-598 (-598 |#1|)) (-598 (-598 |#1|))) 28)) (-2147 (((-598 |#1|) (-598 |#1|)) 31)) (-2662 (((-598 (-598 (-598 |#1|))) (-598 |#1|) (-598 (-598 (-598 |#1|)))) 18)) (-1333 (((-598 (-598 (-598 |#1|))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 (-598 |#1|)))) 16)) (-2481 (((-2 (|:| |fs| (-110)) (|:| |sd| (-598 |#1|)) (|:| |td| (-598 (-598 |#1|)))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 |#1|))) 14)) (-2511 (((-598 (-598 |#1|)) (-598 (-598 (-598 |#1|)))) 39)) (-2484 (((-598 (-598 |#1|)) (-1111 (-598 |#1|))) 41)))
+(((-1110 |#1|) (-10 -7 (-15 -2481 ((-2 (|:| |fs| (-110)) (|:| |sd| (-598 |#1|)) (|:| |td| (-598 (-598 |#1|)))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 |#1|)))) (-15 -1333 ((-598 (-598 (-598 |#1|))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 (-598 |#1|))))) (-15 -2662 ((-598 (-598 (-598 |#1|))) (-598 |#1|) (-598 (-598 (-598 |#1|))))) (-15 -2665 ((-598 (-598 |#1|)) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))))) (-15 -2511 ((-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))))) (-15 -2484 ((-598 (-598 |#1|)) (-1111 (-598 |#1|)))) (-15 -2372 ((-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)))) (-15 -2047 ((-1111 (-598 |#1|)) (-598 |#1|))) (-15 -3903 ((-598 (-598 |#1|)) (-598 (-598 |#1|)))) (-15 -1460 ((-598 (-598 |#1|)) (-598 |#1|))) (-15 -2147 ((-598 |#1|) (-598 |#1|))) (-15 -1474 ((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 |#1|) (-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))))) (-15 -3876 ((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 (-598 (-598 |#1|)))))) (-797)) (T -1110))
+((-3876 (*1 *2 *3) (-12 (-4 *4 (-797)) (-5 *2 (-2 (|:| |f1| (-598 *4)) (|:| |f2| (-598 (-598 (-598 *4)))) (|:| |f3| (-598 (-598 *4))) (|:| |f4| (-598 (-598 (-598 *4)))))) (-5 *1 (-1110 *4)) (-5 *3 (-598 (-598 (-598 *4)))))) (-1474 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-797)) (-5 *3 (-598 *6)) (-5 *5 (-598 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-598 *5)) (|:| |f3| *5) (|:| |f4| (-598 *5)))) (-5 *1 (-1110 *6)) (-5 *4 (-598 *5)))) (-2147 (*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-1110 *3)))) (-1460 (*1 *2 *3) (-12 (-4 *4 (-797)) (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4)) (-5 *3 (-598 *4)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-797)) (-5 *1 (-1110 *3)))) (-2047 (*1 *2 *3) (-12 (-4 *4 (-797)) (-5 *2 (-1111 (-598 *4))) (-5 *1 (-1110 *4)) (-5 *3 (-598 *4)))) (-2372 (*1 *2 *3) (-12 (-4 *4 (-797)) (-5 *2 (-598 (-598 (-598 *4)))) (-5 *1 (-1110 *4)) (-5 *3 (-598 (-598 *4))))) (-2484 (*1 *2 *3) (-12 (-5 *3 (-1111 (-598 *4))) (-4 *4 (-797)) (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4)))) (-2511 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-598 *4)))) (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4)) (-4 *4 (-797)))) (-2665 (*1 *2 *2 *3) (-12 (-5 *3 (-598 (-598 (-598 *4)))) (-5 *2 (-598 (-598 *4))) (-4 *4 (-797)) (-5 *1 (-1110 *4)))) (-2662 (*1 *2 *3 *2) (-12 (-5 *2 (-598 (-598 (-598 *4)))) (-5 *3 (-598 *4)) (-4 *4 (-797)) (-5 *1 (-1110 *4)))) (-1333 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-598 (-598 (-598 *5)))) (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-598 *5)) (-4 *5 (-797)) (-5 *1 (-1110 *5)))) (-2481 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-797)) (-5 *4 (-598 *6)) (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-598 *4)))) (-5 *1 (-1110 *6)) (-5 *5 (-598 *4)))))
+(-10 -7 (-15 -2481 ((-2 (|:| |fs| (-110)) (|:| |sd| (-598 |#1|)) (|:| |td| (-598 (-598 |#1|)))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 |#1|)))) (-15 -1333 ((-598 (-598 (-598 |#1|))) (-1 (-110) |#1| |#1|) (-598 |#1|) (-598 (-598 (-598 |#1|))))) (-15 -2662 ((-598 (-598 (-598 |#1|))) (-598 |#1|) (-598 (-598 (-598 |#1|))))) (-15 -2665 ((-598 (-598 |#1|)) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))))) (-15 -2511 ((-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))))) (-15 -2484 ((-598 (-598 |#1|)) (-1111 (-598 |#1|)))) (-15 -2372 ((-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)))) (-15 -2047 ((-1111 (-598 |#1|)) (-598 |#1|))) (-15 -3903 ((-598 (-598 |#1|)) (-598 (-598 |#1|)))) (-15 -1460 ((-598 (-598 |#1|)) (-598 |#1|))) (-15 -2147 ((-598 |#1|) (-598 |#1|))) (-15 -1474 ((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 |#1|) (-598 (-598 (-598 |#1|))) (-598 (-598 |#1|)) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))) (-598 (-598 (-598 |#1|))))) (-15 -3876 ((-2 (|:| |f1| (-598 |#1|)) (|:| |f2| (-598 (-598 (-598 |#1|)))) (|:| |f3| (-598 (-598 |#1|))) (|:| |f4| (-598 (-598 (-598 |#1|))))) (-598 (-598 (-598 |#1|))))))
+((-3330 (($ (-598 (-598 |#1|))) 10)) (-3924 (((-598 (-598 |#1|)) $) 11)) (-2265 (((-806) $) 26)))
+(((-1111 |#1|) (-10 -8 (-15 -3330 ($ (-598 (-598 |#1|)))) (-15 -3924 ((-598 (-598 |#1|)) $)) (-15 -2265 ((-806) $))) (-1030)) (T -1111))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1111 *3)) (-4 *3 (-1030)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 *3))) (-5 *1 (-1111 *3)) (-4 *3 (-1030)))) (-3330 (*1 *1 *2) (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-1111 *3)))))
+(-10 -8 (-15 -3330 ($ (-598 (-598 |#1|)))) (-15 -3924 ((-598 (-598 |#1|)) $)) (-15 -2265 ((-806) $)))
+((-2247 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2995 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-3137 (((-1189) $ |#1| |#1|) NIL (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#2| $ |#1| |#2|) NIL)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) NIL)) (-4082 (($) NIL T CONST)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) NIL)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) NIL)) (-3804 ((|#1| $) NIL (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-598 |#2|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-2327 ((|#1| $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL) (($ (-1 |#2| |#2|) $) NIL) (($ (-1 |#2| |#2| |#2|) $ $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3345 (((-598 |#1|) $) NIL)) (-1727 (((-110) |#1| $) NIL)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-3765 (((-598 |#1|) $) NIL)) (-3059 (((-110) |#1| $) NIL)) (-2529 (((-1049) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-3046 ((|#2| $) NIL (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL)) (-3742 (($ $ |#2|) NIL (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#2| $ |#1|) NIL) ((|#2| $ |#1| |#2|) NIL)) (-2543 (($) NIL) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) NIL (-12 (|has| $ (-6 -4273)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (((-721) |#2| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030)))) (((-721) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2265 (((-806) $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806))) (|has| |#2| (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) NIL)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) NIL (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) NIL (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) NIL (-1435 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| |#2| (-1030))))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1112 |#1| |#2|) (-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273))) (-1030) (-1030)) (T -1112))
+NIL
+(-13 (-1115 |#1| |#2|) (-10 -7 (-6 -4273)))
+((-4161 ((|#1| (-598 |#1|)) 32)) (-3275 ((|#1| |#1| (-531)) 18)) (-3465 (((-1098 |#1|) |#1| (-864)) 15)))
+(((-1113 |#1|) (-10 -7 (-15 -4161 (|#1| (-598 |#1|))) (-15 -3465 ((-1098 |#1|) |#1| (-864))) (-15 -3275 (|#1| |#1| (-531)))) (-344)) (T -1113))
+((-3275 (*1 *2 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-1113 *2)) (-4 *2 (-344)))) (-3465 (*1 *2 *3 *4) (-12 (-5 *4 (-864)) (-5 *2 (-1098 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-344)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-1113 *2)) (-4 *2 (-344)))))
+(-10 -7 (-15 -4161 (|#1| (-598 |#1|))) (-15 -3465 ((-1098 |#1|) |#1| (-864))) (-15 -3275 (|#1| |#1| (-531))))
+((-2995 (($) 10) (($ (-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)))) 14)) (-2717 (($ (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 61) (($ (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) NIL) (((-3 |#3| "failed") |#2| $) NIL)) (-2227 (((-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) 39) (((-598 |#3|) $) 41)) (-2680 (($ (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) 53) (($ (-1 |#3| |#3|) $) 33)) (-3261 (($ (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) 51) (($ (-1 |#3| |#3|) $) NIL) (($ (-1 |#3| |#3| |#3|) $ $) 38)) (-3540 (((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 54)) (-3944 (($ (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 16)) (-3765 (((-598 |#2|) $) 19)) (-3059 (((-110) |#2| $) 59)) (-4190 (((-3 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) "failed") (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) 58)) (-4192 (((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) 63)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 67)) (-3163 (((-598 |#3|) $) 43)) (-1785 ((|#3| $ |#2|) 30) ((|#3| $ |#2| |#3|) 31)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) NIL) (((-721) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) $) NIL) (((-721) |#3| $) NIL) (((-721) (-1 (-110) |#3|) $) 68)) (-2265 (((-806) $) 27)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) $) NIL) (((-110) (-1 (-110) |#3|) $) 65)) (-2148 (((-110) $ $) 49)))
+(((-1114 |#1| |#2| |#3|) (-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2995 (|#1| (-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))))) (-15 -2995 (|#1|)) (-15 -3261 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2680 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#3|) |#1|)) (-15 -2227 ((-598 |#3|) |#1|)) (-15 -2539 ((-721) |#3| |#1|)) (-15 -1785 (|#3| |#1| |#2| |#3|)) (-15 -1785 (|#3| |#1| |#2|)) (-15 -3163 ((-598 |#3|) |#1|)) (-15 -3059 ((-110) |#2| |#1|)) (-15 -3765 ((-598 |#2|) |#1|)) (-15 -2717 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2717 (|#1| (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2717 (|#1| (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -4190 ((-3 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) "failed") (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -3540 ((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -3944 (|#1| (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -4192 ((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -2539 ((-721) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -2227 ((-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2539 ((-721) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2294 ((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2060 ((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2680 (|#1| (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -3261 (|#1| (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|))) (-1115 |#2| |#3|) (-1030) (-1030)) (T -1114))
+NIL
+(-10 -8 (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -3261 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -2995 (|#1| (-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))))) (-15 -2995 (|#1|)) (-15 -3261 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2680 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2060 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2294 ((-110) (-1 (-110) |#3|) |#1|)) (-15 -2539 ((-721) (-1 (-110) |#3|) |#1|)) (-15 -2227 ((-598 |#3|) |#1|)) (-15 -2539 ((-721) |#3| |#1|)) (-15 -1785 (|#3| |#1| |#2| |#3|)) (-15 -1785 (|#3| |#1| |#2|)) (-15 -3163 ((-598 |#3|) |#1|)) (-15 -3059 ((-110) |#2| |#1|)) (-15 -3765 ((-598 |#2|) |#1|)) (-15 -2717 ((-3 |#3| "failed") |#2| |#1|)) (-15 -2717 (|#1| (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2717 (|#1| (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -4190 ((-3 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) "failed") (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -3540 ((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -3944 (|#1| (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -4192 ((-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -2539 ((-721) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) |#1|)) (-15 -2227 ((-598 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2539 ((-721) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2294 ((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2060 ((-110) (-1 (-110) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -2680 (|#1| (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)) (-15 -3261 (|#1| (-1 (-2 (|:| -3033 |#2|) (|:| -1798 |#3|)) (-2 (|:| -3033 |#2|) (|:| -1798 |#3|))) |#1|)))
+((-2247 (((-110) $ $) 19 (-1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2995 (($) 72) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 71)) (-3137 (((-1189) $ |#1| |#1|) 99 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#2| $ |#1| |#2|) 73)) (-2245 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 45 (|has| $ (-6 -4273)))) (-2177 (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 55 (|has| $ (-6 -4273)))) (-2714 (((-3 |#2| "failed") |#1| $) 61)) (-4082 (($) 7 T CONST)) (-3086 (($ $) 58 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273))))) (-2717 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 47 (|has| $ (-6 -4273))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 46 (|has| $ (-6 -4273))) (((-3 |#2| "failed") |#1| $) 62)) (-2283 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 57 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 54 (|has| $ (-6 -4273)))) (-1760 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 56 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 53 (|has| $ (-6 -4273))) (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 52 (|has| $ (-6 -4273)))) (-2693 ((|#2| $ |#1| |#2|) 87 (|has| $ (-6 -4274)))) (-2627 ((|#2| $ |#1|) 88)) (-2227 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 30 (|has| $ (-6 -4273))) (((-598 |#2|) $) 79 (|has| $ (-6 -4273)))) (-3280 (((-110) $ (-721)) 9)) (-3804 ((|#1| $) 96 (|has| |#1| (-797)))) (-2445 (((-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 29 (|has| $ (-6 -4273))) (((-598 |#2|) $) 80 (|has| $ (-6 -4273)))) (-1883 (((-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 27 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-110) |#2| $) 82 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273))))) (-2327 ((|#1| $) 95 (|has| |#1| (-797)))) (-2680 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 34 (|has| $ (-6 -4274))) (($ (-1 |#2| |#2|) $) 75 (|has| $ (-6 -4274)))) (-3261 (($ (-1 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 35) (($ (-1 |#2| |#2|) $) 74) (($ (-1 |#2| |#2| |#2|) $ $) 70)) (-3332 (((-110) $ (-721)) 10)) (-1521 (((-1085) $) 22 (-1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3345 (((-598 |#1|) $) 63)) (-1727 (((-110) |#1| $) 64)) (-3540 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 39)) (-3944 (($ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 40)) (-3765 (((-598 |#1|) $) 93)) (-3059 (((-110) |#1| $) 92)) (-2529 (((-1049) $) 21 (-1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-3046 ((|#2| $) 97 (|has| |#1| (-797)))) (-4190 (((-3 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) "failed") (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 51)) (-3742 (($ $ |#2|) 98 (|has| $ (-6 -4274)))) (-4192 (((-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 41)) (-2294 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 32 (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) 77 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))))) 26 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-276 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 25 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) 24 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 23 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)))) (($ $ (-598 |#2|) (-598 |#2|)) 86 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ |#2| |#2|) 85 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-276 |#2|)) 84 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030)))) (($ $ (-598 (-276 |#2|))) 83 (-12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#2| $) 94 (-12 (|has| $ (-6 -4273)) (|has| |#2| (-1030))))) (-3163 (((-598 |#2|) $) 91)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#2| $ |#1|) 90) ((|#2| $ |#1| |#2|) 89)) (-2543 (($) 49) (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 48)) (-2539 (((-721) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 31 (|has| $ (-6 -4273))) (((-721) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) $) 28 (-12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| $ (-6 -4273)))) (((-721) |#2| $) 81 (-12 (|has| |#2| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#2|) $) 78 (|has| $ (-6 -4273)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 59 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))))) (-2274 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 50)) (-2265 (((-806) $) 18 (-1435 (|has| |#2| (-572 (-806))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))))) (-2524 (($ (-598 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) 42)) (-2060 (((-110) (-1 (-110) (-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) $) 33 (|has| $ (-6 -4273))) (((-110) (-1 (-110) |#2|) $) 76 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (-1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-1115 |#1| |#2|) (-133) (-1030) (-1030)) (T -1115))
+((-2454 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1115 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))) (-2995 (*1 *1) (-12 (-4 *1 (-1115 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-598 (-2 (|:| -3033 *3) (|:| -1798 *4)))) (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *1 (-1115 *3 *4)))) (-3261 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1115 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))))
+(-13 (-569 |t#1| |t#2|) (-564 |t#1| |t#2|) (-10 -8 (-15 -2454 (|t#2| $ |t#1| |t#2|)) (-15 -2995 ($)) (-15 -2995 ($ (-598 (-2 (|:| -3033 |t#1|) (|:| -1798 |t#2|))))) (-15 -3261 ($ (-1 |t#2| |t#2| |t#2|) $ $))))
+(((-33) . T) ((-104 #0=(-2 (|:| -3033 |#1|) (|:| -1798 |#2|))) . T) ((-99) -1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-572 (-806)) -1435 (|has| |#2| (-1030)) (|has| |#2| (-572 (-806))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-572 (-806)))) ((-144 #0#) . T) ((-573 (-507)) |has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-573 (-507))) ((-212 #0#) . T) ((-218 #0#) . T) ((-268 |#1| |#2|) . T) ((-270 |#1| |#2|) . T) ((-291 #0#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-291 |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-468 #0#) . T) ((-468 |#2|) . T) ((-564 |#1| |#2|) . T) ((-492 #0# #0#) -12 (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-291 (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)))) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-492 |#2| |#2|) -12 (|has| |#2| (-291 |#2|)) (|has| |#2| (-1030))) ((-569 |#1| |#2|) . T) ((-1030) -1435 (|has| |#2| (-1030)) (|has| (-2 (|:| -3033 |#1|) (|:| -1798 |#2|)) (-1030))) ((-1138) . T))
+((-3110 (((-110)) 24)) (-1938 (((-1189) (-1085)) 26)) (-2742 (((-110)) 36)) (-2050 (((-1189)) 34)) (-3156 (((-1189) (-1085) (-1085)) 25)) (-3808 (((-110)) 37)) (-3944 (((-1189) |#1| |#2|) 44)) (-3884 (((-1189)) 20)) (-3638 (((-3 |#2| "failed") |#1|) 42)) (-1999 (((-1189)) 35)))
+(((-1116 |#1| |#2|) (-10 -7 (-15 -3884 ((-1189))) (-15 -3156 ((-1189) (-1085) (-1085))) (-15 -1938 ((-1189) (-1085))) (-15 -2050 ((-1189))) (-15 -1999 ((-1189))) (-15 -3110 ((-110))) (-15 -2742 ((-110))) (-15 -3808 ((-110))) (-15 -3638 ((-3 |#2| "failed") |#1|)) (-15 -3944 ((-1189) |#1| |#2|))) (-1030) (-1030)) (T -1116))
+((-3944 (*1 *2 *3 *4) (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-3638 (*1 *2 *3) (|partial| -12 (-4 *2 (-1030)) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1030)))) (-3808 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-2742 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-3110 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-1999 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-2050 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))) (-1938 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1116 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)))) (-3156 (*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1116 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030)))) (-3884 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030)))))
+(-10 -7 (-15 -3884 ((-1189))) (-15 -3156 ((-1189) (-1085) (-1085))) (-15 -1938 ((-1189) (-1085))) (-15 -2050 ((-1189))) (-15 -1999 ((-1189))) (-15 -3110 ((-110))) (-15 -2742 ((-110))) (-15 -3808 ((-110))) (-15 -3638 ((-3 |#2| "failed") |#1|)) (-15 -3944 ((-1189) |#1| |#2|)))
+((-3024 (((-1085) (-1085)) 18)) (-2447 (((-51) (-1085)) 21)))
+(((-1117) (-10 -7 (-15 -2447 ((-51) (-1085))) (-15 -3024 ((-1085) (-1085))))) (T -1117))
+((-3024 (*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1117)))) (-2447 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-1117)))))
+(-10 -7 (-15 -2447 ((-51) (-1085))) (-15 -3024 ((-1085) (-1085))))
+((-2265 (((-1119) |#1|) 11)))
+(((-1118 |#1|) (-10 -7 (-15 -2265 ((-1119) |#1|))) (-1030)) (T -1118))
+((-2265 (*1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *1 (-1118 *3)) (-4 *3 (-1030)))))
+(-10 -7 (-15 -2265 ((-1119) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3356 (((-598 (-1085)) $) 34)) (-3813 (((-598 (-1085)) $ (-598 (-1085))) 37)) (-2617 (((-598 (-1085)) $ (-598 (-1085))) 36)) (-3619 (((-598 (-1085)) $ (-598 (-1085))) 38)) (-1340 (((-598 (-1085)) $) 33)) (-3010 (($) 22)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3692 (((-598 (-1085)) $) 35)) (-2286 (((-1189) $ (-531)) 29) (((-1189) $) 30)) (-3318 (($ (-806) (-531)) 26) (($ (-806) (-531) (-806)) NIL)) (-2265 (((-806) $) 40) (($ (-806)) 24)) (-2148 (((-110) $ $) NIL)))
+(((-1119) (-13 (-1030) (-10 -8 (-15 -2265 ($ (-806))) (-15 -3318 ($ (-806) (-531))) (-15 -3318 ($ (-806) (-531) (-806))) (-15 -2286 ((-1189) $ (-531))) (-15 -2286 ((-1189) $)) (-15 -3692 ((-598 (-1085)) $)) (-15 -3356 ((-598 (-1085)) $)) (-15 -3010 ($)) (-15 -1340 ((-598 (-1085)) $)) (-15 -3619 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -3813 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -2617 ((-598 (-1085)) $ (-598 (-1085))))))) (T -1119))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-1119)))) (-3318 (*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-1119)))) (-3318 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-1119)))) (-2286 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1119)))) (-2286 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1119)))) (-3692 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-3010 (*1 *1) (-5 *1 (-1119))) (-1340 (*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-3619 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-3813 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))) (-2617 (*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))))
+(-13 (-1030) (-10 -8 (-15 -2265 ($ (-806))) (-15 -3318 ($ (-806) (-531))) (-15 -3318 ($ (-806) (-531) (-806))) (-15 -2286 ((-1189) $ (-531))) (-15 -2286 ((-1189) $)) (-15 -3692 ((-598 (-1085)) $)) (-15 -3356 ((-598 (-1085)) $)) (-15 -3010 ($)) (-15 -1340 ((-598 (-1085)) $)) (-15 -3619 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -3813 ((-598 (-1085)) $ (-598 (-1085)))) (-15 -2617 ((-598 (-1085)) $ (-598 (-1085))))))
+((-2247 (((-110) $ $) NIL)) (-3957 (((-1085) $ (-1085)) 17) (((-1085) $) 16)) (-2618 (((-1085) $ (-1085)) 15)) (-1743 (($ $ (-1085)) NIL)) (-3113 (((-3 (-1085) "failed") $) 11)) (-2554 (((-1085) $) 8)) (-1616 (((-3 (-1085) "failed") $) 12)) (-3641 (((-1085) $) 9)) (-1833 (($ (-369)) NIL) (($ (-369) (-1085)) NIL)) (-3955 (((-369) $) NIL)) (-1521 (((-1085) $) NIL)) (-3454 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2843 (((-110) $) 18)) (-2265 (((-806) $) NIL)) (-4074 (($ $) NIL)) (-2148 (((-110) $ $) NIL)))
+(((-1120) (-13 (-345 (-369) (-1085)) (-10 -8 (-15 -3957 ((-1085) $ (-1085))) (-15 -3957 ((-1085) $)) (-15 -2554 ((-1085) $)) (-15 -3113 ((-3 (-1085) "failed") $)) (-15 -1616 ((-3 (-1085) "failed") $)) (-15 -2843 ((-110) $))))) (T -1120))
+((-3957 (*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-3957 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-2554 (*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-3113 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-1616 (*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-1120)))) (-2843 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1120)))))
+(-13 (-345 (-369) (-1085)) (-10 -8 (-15 -3957 ((-1085) $ (-1085))) (-15 -3957 ((-1085) $)) (-15 -2554 ((-1085) $)) (-15 -3113 ((-3 (-1085) "failed") $)) (-15 -1616 ((-3 (-1085) "failed") $)) (-15 -2843 ((-110) $))))
+((-3459 (((-3 (-531) "failed") |#1|) 19)) (-1933 (((-3 (-531) "failed") |#1|) 14)) (-2427 (((-531) (-1085)) 28)))
+(((-1121 |#1|) (-10 -7 (-15 -3459 ((-3 (-531) "failed") |#1|)) (-15 -1933 ((-3 (-531) "failed") |#1|)) (-15 -2427 ((-531) (-1085)))) (-986)) (T -1121))
+((-2427 (*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-531)) (-5 *1 (-1121 *4)) (-4 *4 (-986)))) (-1933 (*1 *2 *3) (|partial| -12 (-5 *2 (-531)) (-5 *1 (-1121 *3)) (-4 *3 (-986)))) (-3459 (*1 *2 *3) (|partial| -12 (-5 *2 (-531)) (-5 *1 (-1121 *3)) (-4 *3 (-986)))))
+(-10 -7 (-15 -3459 ((-3 (-531) "failed") |#1|)) (-15 -1933 ((-3 (-531) "failed") |#1|)) (-15 -2427 ((-531) (-1085))))
+((-1449 (((-1062 (-208))) 9)))
+(((-1122) (-10 -7 (-15 -1449 ((-1062 (-208)))))) (T -1122))
+((-1449 (*1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1122)))))
+(-10 -7 (-15 -1449 ((-1062 (-208)))))
+((-1880 (($) 11)) (-2442 (($ $) 35)) (-2416 (($ $) 33)) (-2266 (($ $) 25)) (-2468 (($ $) 17)) (-2753 (($ $) 15)) (-2456 (($ $) 19)) (-2305 (($ $) 30)) (-2429 (($ $) 34)) (-2279 (($ $) 29)))
+(((-1123 |#1|) (-10 -8 (-15 -1880 (|#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2279 (|#1| |#1|))) (-1124)) (T -1123))
+NIL
+(-10 -8 (-15 -1880 (|#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)))
+((-2367 (($ $) 26)) (-2218 (($ $) 11)) (-2343 (($ $) 27)) (-2198 (($ $) 10)) (-2391 (($ $) 28)) (-2241 (($ $) 9)) (-1880 (($) 16)) (-2076 (($ $) 19)) (-2798 (($ $) 18)) (-2403 (($ $) 29)) (-2253 (($ $) 8)) (-2379 (($ $) 30)) (-2229 (($ $) 7)) (-2356 (($ $) 31)) (-2210 (($ $) 6)) (-2442 (($ $) 20)) (-2292 (($ $) 32)) (-2416 (($ $) 21)) (-2266 (($ $) 33)) (-2468 (($ $) 22)) (-2318 (($ $) 34)) (-2753 (($ $) 23)) (-2331 (($ $) 35)) (-2456 (($ $) 24)) (-2305 (($ $) 36)) (-2429 (($ $) 25)) (-2279 (($ $) 37)) (** (($ $ $) 17)))
(((-1124) (-133)) (T -1124))
-((-2244 (*1 *1 *1) (-4 *1 (-1124))) (-2219 (*1 *1 *1) (-4 *1 (-1124))) (-2269 (*1 *1 *1) (-4 *1 (-1124))) (-2281 (*1 *1 *1) (-4 *1 (-1124))) (-2254 (*1 *1 *1) (-4 *1 (-1124))) (-2231 (*1 *1 *1) (-4 *1 (-1124))))
-(-13 (-10 -8 (-15 -2231 ($ $)) (-15 -2254 ($ $)) (-15 -2281 ($ $)) (-15 -2269 ($ $)) (-15 -2219 ($ $)) (-15 -2244 ($ $))))
-((-4069 ((|#2| |#2|) 88)) (-2597 (((-110) |#2|) 26)) (-2637 ((|#2| |#2|) 30)) (-2649 ((|#2| |#2|) 32)) (-3580 ((|#2| |#2| (-1099)) 83) ((|#2| |#2|) 84)) (-2359 (((-159 |#2|) |#2|) 28)) (-1992 ((|#2| |#2| (-1099)) 85) ((|#2| |#2|) 86)))
-(((-1125 |#1| |#2|) (-10 -7 (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| (-1099))) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1099))) (-15 -4069 (|#2| |#2|)) (-15 -2637 (|#2| |#2|)) (-15 -2649 (|#2| |#2|)) (-15 -2597 ((-110) |#2|)) (-15 -2359 ((-159 |#2|) |#2|))) (-13 (-432) (-795) (-975 (-530)) (-593 (-530))) (-13 (-27) (-1121) (-411 |#1|))) (T -1125))
-((-2359 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-159 *3)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2597 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *2 (-110)) (-5 *1 (-1125 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *4))))) (-2649 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-2637 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-1992 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-1992 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))) (-3580 (*1 *2 *2 *3) (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))) (-3580 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530)))) (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
-(-10 -7 (-15 -3580 (|#2| |#2|)) (-15 -3580 (|#2| |#2| (-1099))) (-15 -1992 (|#2| |#2|)) (-15 -1992 (|#2| |#2| (-1099))) (-15 -4069 (|#2| |#2|)) (-15 -2637 (|#2| |#2|)) (-15 -2649 (|#2| |#2|)) (-15 -2597 ((-110) |#2|)) (-15 -2359 ((-159 |#2|) |#2|)))
-((-3817 ((|#4| |#4| |#1|) 27)) (-3596 ((|#4| |#4| |#1|) 28)))
-(((-1126 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3817 (|#4| |#4| |#1|)) (-15 -3596 (|#4| |#4| |#1|))) (-522) (-354 |#1|) (-354 |#1|) (-635 |#1| |#2| |#3|)) (T -1126))
-((-3596 (*1 *2 *2 *3) (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))) (-3817 (*1 *2 *2 *3) (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(-10 -7 (-15 -3817 (|#4| |#4| |#1|)) (-15 -3596 (|#4| |#4| |#1|)))
-((-1949 ((|#2| |#2|) 133)) (-3945 ((|#2| |#2|) 130)) (-3511 ((|#2| |#2|) 121)) (-1482 ((|#2| |#2|) 118)) (-3916 ((|#2| |#2|) 126)) (-1299 ((|#2| |#2|) 114)) (-2193 ((|#2| |#2|) 43)) (-2433 ((|#2| |#2|) 94)) (-2251 ((|#2| |#2|) 74)) (-1884 ((|#2| |#2|) 128)) (-1405 ((|#2| |#2|) 116)) (-3257 ((|#2| |#2|) 138)) (-2710 ((|#2| |#2|) 136)) (-2302 ((|#2| |#2|) 137)) (-4067 ((|#2| |#2|) 135)) (-3969 ((|#2| |#2|) 148)) (-2968 ((|#2| |#2|) 30 (-12 (|has| |#2| (-572 (-833 |#1|))) (|has| |#2| (-827 |#1|)) (|has| |#1| (-572 (-833 |#1|))) (|has| |#1| (-827 |#1|))))) (-3826 ((|#2| |#2|) 75)) (-2684 ((|#2| |#2|) 139)) (-2246 ((|#2| |#2|) 140)) (-2855 ((|#2| |#2|) 127)) (-1218 ((|#2| |#2|) 115)) (-1453 ((|#2| |#2|) 134)) (-2475 ((|#2| |#2|) 132)) (-2981 ((|#2| |#2|) 122)) (-2600 ((|#2| |#2|) 120)) (-3167 ((|#2| |#2|) 124)) (-1226 ((|#2| |#2|) 112)))
-(((-1127 |#1| |#2|) (-10 -7 (-15 -2246 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -2433 (|#2| |#2|)) (-15 -2193 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -2684 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1218 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -1405 (|#2| |#2|)) (-15 -1884 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3511 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -2600 (|#2| |#2|)) (-15 -2475 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (IF (|has| |#1| (-827 |#1|)) (IF (|has| |#1| (-572 (-833 |#1|))) (IF (|has| |#2| (-572 (-833 |#1|))) (IF (|has| |#2| (-827 |#1|)) (-15 -2968 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-795) (-432)) (-13 (-411 |#1|) (-1121))) (T -1127))
-((-2968 (*1 *2 *2) (-12 (-4 *3 (-572 (-833 *3))) (-4 *3 (-827 *3)) (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-572 (-833 *3))) (-4 *2 (-827 *3)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3257 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2302 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2710 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2475 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2600 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3945 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1482 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1949 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3511 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1299 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1884 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1405 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2855 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1218 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1453 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2981 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3167 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-1226 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2684 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3826 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2193 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2433 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-3969 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2251 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))) (-2246 (*1 *2 *2) (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2)) (-4 *2 (-13 (-411 *3) (-1121))))))
-(-10 -7 (-15 -2246 (|#2| |#2|)) (-15 -2251 (|#2| |#2|)) (-15 -3969 (|#2| |#2|)) (-15 -2433 (|#2| |#2|)) (-15 -2193 (|#2| |#2|)) (-15 -3826 (|#2| |#2|)) (-15 -2684 (|#2| |#2|)) (-15 -1226 (|#2| |#2|)) (-15 -3167 (|#2| |#2|)) (-15 -2981 (|#2| |#2|)) (-15 -1453 (|#2| |#2|)) (-15 -1218 (|#2| |#2|)) (-15 -2855 (|#2| |#2|)) (-15 -1405 (|#2| |#2|)) (-15 -1884 (|#2| |#2|)) (-15 -1299 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3511 (|#2| |#2|)) (-15 -1949 (|#2| |#2|)) (-15 -1482 (|#2| |#2|)) (-15 -3945 (|#2| |#2|)) (-15 -2600 (|#2| |#2|)) (-15 -2475 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -2710 (|#2| |#2|)) (-15 -2302 (|#2| |#2|)) (-15 -3257 (|#2| |#2|)) (IF (|has| |#1| (-827 |#1|)) (IF (|has| |#1| (-572 (-833 |#1|))) (IF (|has| |#2| (-572 (-833 |#1|))) (IF (|has| |#2| (-827 |#1|)) (-15 -2968 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
-((-1212 (((-110) |#5| $) 60) (((-110) $) 102)) (-1785 ((|#5| |#5| $) 75)) (-2283 (($ (-1 (-110) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-3362 (((-597 |#5|) (-597 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 73)) (-3139 (((-3 $ "failed") (-597 |#5|)) 126)) (-3057 (((-3 $ "failed") $) 112)) (-1622 ((|#5| |#5| $) 94)) (-3784 (((-110) |#5| $ (-1 (-110) |#5| |#5|)) 31)) (-3252 ((|#5| |#5| $) 98)) (-2134 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 69)) (-1919 (((-2 (|:| -2361 (-597 |#5|)) (|:| -2551 (-597 |#5|))) $) 55)) (-3397 (((-110) |#5| $) 58) (((-110) $) 103)) (-3122 ((|#4| $) 108)) (-2407 (((-3 |#5| "failed") $) 110)) (-1543 (((-597 |#5|) $) 49)) (-2559 (((-110) |#5| $) 67) (((-110) $) 107)) (-3482 ((|#5| |#5| $) 81)) (-1406 (((-110) $ $) 27)) (-1663 (((-110) |#5| $) 63) (((-110) $) 105)) (-2122 ((|#5| |#5| $) 78)) (-3048 (((-3 |#5| "failed") $) 109)) (-3168 (($ $ |#5|) 127)) (-1429 (((-719) $) 52)) (-2377 (($ (-597 |#5|)) 124)) (-1687 (($ $ |#4|) 122)) (-1442 (($ $ |#4|) 121)) (-1871 (($ $) 120)) (-2366 (((-804) $) NIL) (((-597 |#5|) $) 113)) (-2730 (((-719) $) 130)) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|)) 45)) (-3095 (((-110) $ (-1 (-110) |#5| (-597 |#5|))) 100)) (-2764 (((-597 |#4|) $) 115)) (-2856 (((-110) |#4| $) 118)) (-2248 (((-110) $ $) 19)))
-(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -2730 ((-719) |#1|)) (-15 -3168 (|#1| |#1| |#5|)) (-15 -2283 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2856 ((-110) |#4| |#1|)) (-15 -2764 ((-597 |#4|) |#1|)) (-15 -3057 ((-3 |#1| "failed") |#1|)) (-15 -2407 ((-3 |#5| "failed") |#1|)) (-15 -3048 ((-3 |#5| "failed") |#1|)) (-15 -3252 (|#5| |#5| |#1|)) (-15 -1871 (|#1| |#1|)) (-15 -1622 (|#5| |#5| |#1|)) (-15 -3482 (|#5| |#5| |#1|)) (-15 -2122 (|#5| |#5| |#1|)) (-15 -1785 (|#5| |#5| |#1|)) (-15 -3362 ((-597 |#5|) (-597 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2134 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2559 ((-110) |#1|)) (-15 -1663 ((-110) |#1|)) (-15 -1212 ((-110) |#1|)) (-15 -3095 ((-110) |#1| (-1 (-110) |#5| (-597 |#5|)))) (-15 -2559 ((-110) |#5| |#1|)) (-15 -1663 ((-110) |#5| |#1|)) (-15 -1212 ((-110) |#5| |#1|)) (-15 -3784 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -3397 ((-110) |#1|)) (-15 -3397 ((-110) |#5| |#1|)) (-15 -1919 ((-2 (|:| -2361 (-597 |#5|)) (|:| -2551 (-597 |#5|))) |#1|)) (-15 -1429 ((-719) |#1|)) (-15 -1543 ((-597 |#5|) |#1|)) (-15 -2988 ((-3 (-2 (|:| |bas| |#1|) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -2988 ((-3 (-2 (|:| |bas| |#1|) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1406 ((-110) |#1| |#1|)) (-15 -1687 (|#1| |#1| |#4|)) (-15 -1442 (|#1| |#1| |#4|)) (-15 -3122 (|#4| |#1|)) (-15 -3139 ((-3 |#1| "failed") (-597 |#5|))) (-15 -2366 ((-597 |#5|) |#1|)) (-15 -2377 (|#1| (-597 |#5|))) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2283 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|))) (-1129 |#2| |#3| |#4| |#5|) (-522) (-741) (-795) (-998 |#2| |#3| |#4|)) (T -1128))
-NIL
-(-10 -8 (-15 -2730 ((-719) |#1|)) (-15 -3168 (|#1| |#1| |#5|)) (-15 -2283 ((-3 |#5| "failed") |#1| |#4|)) (-15 -2856 ((-110) |#4| |#1|)) (-15 -2764 ((-597 |#4|) |#1|)) (-15 -3057 ((-3 |#1| "failed") |#1|)) (-15 -2407 ((-3 |#5| "failed") |#1|)) (-15 -3048 ((-3 |#5| "failed") |#1|)) (-15 -3252 (|#5| |#5| |#1|)) (-15 -1871 (|#1| |#1|)) (-15 -1622 (|#5| |#5| |#1|)) (-15 -3482 (|#5| |#5| |#1|)) (-15 -2122 (|#5| |#5| |#1|)) (-15 -1785 (|#5| |#5| |#1|)) (-15 -3362 ((-597 |#5|) (-597 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2134 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2559 ((-110) |#1|)) (-15 -1663 ((-110) |#1|)) (-15 -1212 ((-110) |#1|)) (-15 -3095 ((-110) |#1| (-1 (-110) |#5| (-597 |#5|)))) (-15 -2559 ((-110) |#5| |#1|)) (-15 -1663 ((-110) |#5| |#1|)) (-15 -1212 ((-110) |#5| |#1|)) (-15 -3784 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -3397 ((-110) |#1|)) (-15 -3397 ((-110) |#5| |#1|)) (-15 -1919 ((-2 (|:| -2361 (-597 |#5|)) (|:| -2551 (-597 |#5|))) |#1|)) (-15 -1429 ((-719) |#1|)) (-15 -1543 ((-597 |#5|) |#1|)) (-15 -2988 ((-3 (-2 (|:| |bas| |#1|) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -2988 ((-3 (-2 (|:| |bas| |#1|) (|:| -1598 (-597 |#5|))) "failed") (-597 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1406 ((-110) |#1| |#1|)) (-15 -1687 (|#1| |#1| |#4|)) (-15 -1442 (|#1| |#1| |#4|)) (-15 -3122 (|#4| |#1|)) (-15 -3139 ((-3 |#1| "failed") (-597 |#5|))) (-15 -2366 ((-597 |#5|) |#1|)) (-15 -2377 (|#1| (-597 |#5|))) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2283 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -2134 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2366 ((-804) |#1|)) (-15 -2248 ((-110) |#1| |#1|)))
-((-2352 (((-110) $ $) 7)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) 85)) (-1512 (((-597 $) (-597 |#4|)) 86)) (-2746 (((-597 |#3|) $) 33)) (-2925 (((-110) $) 26)) (-4024 (((-110) $) 17 (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) 101) (((-110) $) 97)) (-1785 ((|#4| |#4| $) 92)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) 27)) (-3186 (((-110) $ (-719)) 44)) (-2283 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) 79)) (-2350 (($) 45 T CONST)) (-3645 (((-110) $) 22 (|has| |#1| (-522)))) (-2276 (((-110) $ $) 24 (|has| |#1| (-522)))) (-3528 (((-110) $ $) 23 (|has| |#1| (-522)))) (-3660 (((-110) $) 25 (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-3588 (((-597 |#4|) (-597 |#4|) $) 18 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) 19 (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) 36)) (-2585 (($ (-597 |#4|)) 35)) (-3057 (((-3 $ "failed") $) 82)) (-1622 ((|#4| |#4| $) 89)) (-3077 (($ $) 68 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#4| $) 67 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-3252 ((|#4| |#4| $) 87)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) 105)) (-3779 (((-597 |#4|) $) 52 (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) 104) (((-110) $) 103)) (-3122 ((|#3| $) 34)) (-4027 (((-110) $ (-719)) 43)) (-2395 (((-597 |#4|) $) 53 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) 47)) (-2400 (((-597 |#3|) $) 32)) (-3533 (((-110) |#3| $) 31)) (-2763 (((-110) $ (-719)) 42)) (-1424 (((-1082) $) 9)) (-2407 (((-3 |#4| "failed") $) 83)) (-1543 (((-597 |#4|) $) 107)) (-2559 (((-110) |#4| $) 99) (((-110) $) 95)) (-3482 ((|#4| |#4| $) 90)) (-1406 (((-110) $ $) 110)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) 100) (((-110) $) 96)) (-2122 ((|#4| |#4| $) 91)) (-2624 (((-1046) $) 10)) (-3048 (((-3 |#4| "failed") $) 84)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-1372 (((-3 $ "failed") $ |#4|) 78)) (-3168 (($ $ |#4|) 77)) (-1533 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) 38)) (-3250 (((-110) $) 41)) (-3958 (($) 40)) (-1429 (((-719) $) 106)) (-2632 (((-719) |#4| $) 54 (-12 (|has| |#4| (-1027)) (|has| $ (-6 -4269)))) (((-719) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4269)))) (-2579 (($ $) 39)) (-3260 (((-506) $) 69 (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) 60)) (-1687 (($ $ |#3|) 28)) (-1442 (($ $ |#3|) 30)) (-1871 (($ $) 88)) (-2553 (($ $ |#3|) 29)) (-2366 (((-804) $) 11) (((-597 |#4|) $) 37)) (-2730 (((-719) $) 76 (|has| |#3| (-349)))) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) 98)) (-3889 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) 81)) (-2856 (((-110) |#3| $) 80)) (-2248 (((-110) $ $) 6)) (-2267 (((-719) $) 46 (|has| $ (-6 -4269)))))
-(((-1129 |#1| |#2| |#3| |#4|) (-133) (-522) (-741) (-795) (-998 |t#1| |t#2| |t#3|)) (T -1129))
-((-1406 (*1 *2 *1 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2988 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1598 (-597 *8)))) (-5 *3 (-597 *8)) (-4 *1 (-1129 *5 *6 *7 *8)))) (-2988 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1598 (-597 *9)))) (-5 *3 (-597 *9)) (-4 *1 (-1129 *6 *7 *8 *9)))) (-1543 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *6)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-719)))) (-1919 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-2 (|:| -2361 (-597 *6)) (|:| -2551 (-597 *6)))))) (-3397 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-3784 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1129 *5 *6 *7 *3)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110)))) (-1212 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-1663 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-2559 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-3095 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-110) *7 (-597 *7))) (-4 *1 (-1129 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)))) (-1212 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-1663 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2559 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))) (-2134 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2)) (-4 *1 (-1129 *5 *6 *7 *2)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *2 (-998 *5 *6 *7)))) (-3362 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1129 *5 *6 *7 *8)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)))) (-1785 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2122 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-3482 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-1622 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-1871 (*1 *1 *1) (-12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))) (-3252 (*1 *2 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-1512 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1)) (-4 *1 (-1129 *4 *5 *6 *7)))) (-2978 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-597 (-2 (|:| -2361 *1) (|:| -2551 (-597 *7))))) (-5 *3 (-597 *7)) (-4 *1 (-1129 *4 *5 *6 *7)))) (-3048 (*1 *2 *1) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2407 (*1 *2 *1) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-3057 (*1 *1 *1) (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))) (-2764 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))) (-2856 (*1 *2 *3 *1) (-12 (-4 *1 (-1129 *4 *5 *3 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))) (-2283 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1129 *4 *5 *3 *2)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *3 (-795)) (-4 *2 (-998 *4 *5 *3)))) (-1372 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))) (-2730 (*1 *2 *1) (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *5 (-349)) (-5 *2 (-719)))))
-(-13 (-916 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4269) (-6 -4270) (-15 -1406 ((-110) $ $)) (-15 -2988 ((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |t#4|))) "failed") (-597 |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -2988 ((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |t#4|))) "failed") (-597 |t#4|) (-1 (-110) |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1543 ((-597 |t#4|) $)) (-15 -1429 ((-719) $)) (-15 -1919 ((-2 (|:| -2361 (-597 |t#4|)) (|:| -2551 (-597 |t#4|))) $)) (-15 -3397 ((-110) |t#4| $)) (-15 -3397 ((-110) $)) (-15 -3784 ((-110) |t#4| $ (-1 (-110) |t#4| |t#4|))) (-15 -1212 ((-110) |t#4| $)) (-15 -1663 ((-110) |t#4| $)) (-15 -2559 ((-110) |t#4| $)) (-15 -3095 ((-110) $ (-1 (-110) |t#4| (-597 |t#4|)))) (-15 -1212 ((-110) $)) (-15 -1663 ((-110) $)) (-15 -2559 ((-110) $)) (-15 -2134 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3362 ((-597 |t#4|) (-597 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1785 (|t#4| |t#4| $)) (-15 -2122 (|t#4| |t#4| $)) (-15 -3482 (|t#4| |t#4| $)) (-15 -1622 (|t#4| |t#4| $)) (-15 -1871 ($ $)) (-15 -3252 (|t#4| |t#4| $)) (-15 -1512 ((-597 $) (-597 |t#4|))) (-15 -2978 ((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |t#4|)))) (-597 |t#4|))) (-15 -3048 ((-3 |t#4| "failed") $)) (-15 -2407 ((-3 |t#4| "failed") $)) (-15 -3057 ((-3 $ "failed") $)) (-15 -2764 ((-597 |t#3|) $)) (-15 -2856 ((-110) |t#3| $)) (-15 -2283 ((-3 |t#4| "failed") $ |t#3|)) (-15 -1372 ((-3 $ "failed") $ |t#4|)) (-15 -3168 ($ $ |t#4|)) (IF (|has| |t#3| (-349)) (-15 -2730 ((-719) $)) |%noBranch|)))
-(((-33) . T) ((-99) . T) ((-571 (-597 |#4|)) . T) ((-571 (-804)) . T) ((-144 |#4|) . T) ((-572 (-506)) |has| |#4| (-572 (-506))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-468 |#4|) . T) ((-491 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))) ((-916 |#1| |#2| |#3| |#4|) . T) ((-1027) . T) ((-1135) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1099)) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-1761 (((-893 |#1|) $ (-719)) 17) (((-893 |#1|) $ (-719) (-719)) NIL)) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $ (-1099)) NIL) (((-719) $ (-1099) (-719)) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3668 (((-110) $) NIL)) (-2725 (($ $ (-597 (-1099)) (-597 (-502 (-1099)))) NIL) (($ $ (-1099) (-502 (-1099))) NIL) (($ |#1| (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-1545 (($ $ (-1099)) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099) |#1|) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-1368 (($ (-1 $) (-1099) |#1|) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3168 (($ $ (-719)) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (($ $ (-1099) $) NIL) (($ $ (-597 (-1099)) (-597 $)) NIL) (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL)) (-3289 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-1429 (((-502 (-1099)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-522))) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-1099)) NIL) (($ (-893 |#1|)) NIL)) (-4085 ((|#1| $ (-502 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (((-893 |#1|) $ (-719)) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) NIL T CONST)) (-3093 (($) NIL T CONST)) (-3340 (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
-(((-1130 |#1|) (-13 (-689 |#1| (-1099)) (-10 -8 (-15 -4085 ((-893 |#1|) $ (-719))) (-15 -2366 ($ (-1099))) (-15 -2366 ($ (-893 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ (-1099) |#1|)) (-15 -1368 ($ (-1 $) (-1099) |#1|))) |%noBranch|))) (-984)) (T -1130))
-((-4085 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-893 *4)) (-5 *1 (-1130 *4)) (-4 *4 (-984)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-984)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-5 *1 (-1130 *3)))) (-1545 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))) (-1368 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1130 *4))) (-5 *3 (-1099)) (-5 *1 (-1130 *4)) (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
-(-13 (-689 |#1| (-1099)) (-10 -8 (-15 -4085 ((-893 |#1|) $ (-719))) (-15 -2366 ($ (-1099))) (-15 -2366 ($ (-893 |#1|))) (IF (|has| |#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $ (-1099) |#1|)) (-15 -1368 ($ (-1 $) (-1099) |#1|))) |%noBranch|)))
-((-2487 (($ |#1| (-597 (-597 (-884 (-208)))) (-110)) 19)) (-2848 (((-110) $ (-110)) 18)) (-4249 (((-110) $) 17)) (-2909 (((-597 (-597 (-884 (-208)))) $) 13)) (-4139 ((|#1| $) 8)) (-1732 (((-110) $) 15)))
-(((-1131 |#1|) (-10 -8 (-15 -4139 (|#1| $)) (-15 -2909 ((-597 (-597 (-884 (-208)))) $)) (-15 -1732 ((-110) $)) (-15 -4249 ((-110) $)) (-15 -2848 ((-110) $ (-110))) (-15 -2487 ($ |#1| (-597 (-597 (-884 (-208)))) (-110)))) (-914)) (T -1131))
-((-2487 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-110)) (-5 *1 (-1131 *2)) (-4 *2 (-914)))) (-2848 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-4249 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-2909 (*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-1131 *3)) (-4 *3 (-914)))) (-4139 (*1 *2 *1) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
-(-10 -8 (-15 -4139 (|#1| $)) (-15 -2909 ((-597 (-597 (-884 (-208)))) $)) (-15 -1732 ((-110) $)) (-15 -4249 ((-110) $)) (-15 -2848 ((-110) $ (-110))) (-15 -2487 ($ |#1| (-597 (-597 (-884 (-208)))) (-110))))
-((-3930 (((-884 (-208)) (-884 (-208))) 25)) (-2422 (((-884 (-208)) (-208) (-208) (-208) (-208)) 10)) (-1962 (((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208)))) 37)) (-3334 (((-208) (-884 (-208)) (-884 (-208))) 21)) (-3691 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 22)) (-3550 (((-597 (-597 (-208))) (-530)) 31)) (-2351 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 20)) (-2339 (((-884 (-208)) (-884 (-208)) (-884 (-208))) 19)) (* (((-884 (-208)) (-208) (-884 (-208))) 18)))
-(((-1132) (-10 -7 (-15 -2422 ((-884 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-884 (-208)) (-208) (-884 (-208)))) (-15 -2339 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -2351 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3334 ((-208) (-884 (-208)) (-884 (-208)))) (-15 -3691 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3930 ((-884 (-208)) (-884 (-208)))) (-15 -3550 ((-597 (-597 (-208))) (-530))) (-15 -1962 ((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208))))))) (T -1132))
-((-1962 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-597 (-597 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 (-884 *4))) (-5 *1 (-1132)) (-5 *3 (-884 *4)))) (-3550 (*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-1132)))) (-3930 (*1 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-3691 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-3334 (*1 *2 *3 *3) (-12 (-5 *3 (-884 (-208))) (-5 *2 (-208)) (-5 *1 (-1132)))) (-2351 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (-2339 (*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-884 (-208))) (-5 *3 (-208)) (-5 *1 (-1132)))) (-2422 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)) (-5 *3 (-208)))))
-(-10 -7 (-15 -2422 ((-884 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-884 (-208)) (-208) (-884 (-208)))) (-15 -2339 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -2351 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3334 ((-208) (-884 (-208)) (-884 (-208)))) (-15 -3691 ((-884 (-208)) (-884 (-208)) (-884 (-208)))) (-15 -3930 ((-884 (-208)) (-884 (-208)))) (-15 -3550 ((-597 (-597 (-208))) (-530))) (-15 -1962 ((-597 (-884 (-208))) (-884 (-208)) (-884 (-208)) (-884 (-208)) (-208) (-597 (-597 (-208))))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2283 ((|#1| $ (-719)) 13)) (-4109 (((-719) $) 12)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2366 (((-899 |#1|) $) 10) (($ (-899 |#1|)) 9) (((-804) $) 23 (|has| |#1| (-571 (-804))))) (-2248 (((-110) $ $) 16 (|has| |#1| (-1027)))))
-(((-1133 |#1|) (-13 (-571 (-899 |#1|)) (-10 -8 (-15 -2366 ($ (-899 |#1|))) (-15 -2283 (|#1| $ (-719))) (-15 -4109 ((-719) $)) (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|))) (-1135)) (T -1133))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-899 *3)) (-4 *3 (-1135)) (-5 *1 (-1133 *3)))) (-2283 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-1133 *2)) (-4 *2 (-1135)))) (-4109 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1133 *3)) (-4 *3 (-1135)))))
-(-13 (-571 (-899 |#1|)) (-10 -8 (-15 -2366 ($ (-899 |#1|))) (-15 -2283 (|#1| $ (-719))) (-15 -4109 ((-719) $)) (IF (|has| |#1| (-571 (-804))) (-6 (-571 (-804))) |%noBranch|) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|)))
-((-1220 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530)) 80)) (-2344 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|))) 74)) (-1780 (((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|))) 59)))
-(((-1134 |#1|) (-10 -7 (-15 -2344 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1780 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1220 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530)))) (-330)) (T -1134))
-((-1220 (*1 *2 *3 *4) (-12 (-5 *4 (-530)) (-4 *5 (-330)) (-5 *2 (-399 (-1095 (-1095 *5)))) (-5 *1 (-1134 *5)) (-5 *3 (-1095 (-1095 *5))))) (-1780 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))) (-2344 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4)))) (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
-(-10 -7 (-15 -2344 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1780 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)))) (-15 -1220 ((-399 (-1095 (-1095 |#1|))) (-1095 (-1095 |#1|)) (-530))))
-NIL
-(((-1135) (-133)) (T -1135))
-NIL
-(-13 (-10 -7 (-6 -4100)))
-((-2189 (((-110)) 15)) (-3646 (((-1186) (-597 |#1|) (-597 |#1|)) 19) (((-1186) (-597 |#1|)) 20)) (-4027 (((-110) |#1| |#1|) 32 (|has| |#1| (-795)))) (-2763 (((-110) |#1| |#1| (-1 (-110) |#1| |#1|)) 27) (((-3 (-110) "failed") |#1| |#1|) 25)) (-1349 ((|#1| (-597 |#1|)) 33 (|has| |#1| (-795))) ((|#1| (-597 |#1|) (-1 (-110) |#1| |#1|)) 28)) (-3202 (((-2 (|:| -2594 (-597 |#1|)) (|:| -3884 (-597 |#1|)))) 17)))
-(((-1136 |#1|) (-10 -7 (-15 -3646 ((-1186) (-597 |#1|))) (-15 -3646 ((-1186) (-597 |#1|) (-597 |#1|))) (-15 -3202 ((-2 (|:| -2594 (-597 |#1|)) (|:| -3884 (-597 |#1|))))) (-15 -2763 ((-3 (-110) "failed") |#1| |#1|)) (-15 -2763 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -1349 (|#1| (-597 |#1|) (-1 (-110) |#1| |#1|))) (-15 -2189 ((-110))) (IF (|has| |#1| (-795)) (PROGN (-15 -1349 (|#1| (-597 |#1|))) (-15 -4027 ((-110) |#1| |#1|))) |%noBranch|)) (-1027)) (T -1136))
-((-4027 (*1 *2 *3 *3) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))) (-1349 (*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-795)) (-5 *1 (-1136 *2)))) (-2189 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-1349 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1136 *2)) (-4 *2 (-1027)))) (-2763 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1027)) (-5 *2 (-110)) (-5 *1 (-1136 *3)))) (-2763 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-3202 (*1 *2) (-12 (-5 *2 (-2 (|:| -2594 (-597 *3)) (|:| -3884 (-597 *3)))) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))) (-3646 (*1 *2 *3 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186)) (-5 *1 (-1136 *4)))) (-3646 (*1 *2 *3) (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186)) (-5 *1 (-1136 *4)))))
-(-10 -7 (-15 -3646 ((-1186) (-597 |#1|))) (-15 -3646 ((-1186) (-597 |#1|) (-597 |#1|))) (-15 -3202 ((-2 (|:| -2594 (-597 |#1|)) (|:| -3884 (-597 |#1|))))) (-15 -2763 ((-3 (-110) "failed") |#1| |#1|)) (-15 -2763 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -1349 (|#1| (-597 |#1|) (-1 (-110) |#1| |#1|))) (-15 -2189 ((-110))) (IF (|has| |#1| (-795)) (PROGN (-15 -1349 (|#1| (-597 |#1|))) (-15 -4027 ((-110) |#1| |#1|))) |%noBranch|))
-((-2576 (((-1186) (-597 (-1099)) (-597 (-1099))) 13) (((-1186) (-597 (-1099))) 11)) (-1864 (((-1186)) 14)) (-2196 (((-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099))))) 18)))
-(((-1137) (-10 -7 (-15 -2576 ((-1186) (-597 (-1099)))) (-15 -2576 ((-1186) (-597 (-1099)) (-597 (-1099)))) (-15 -2196 ((-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099)))))) (-15 -1864 ((-1186))))) (T -1137))
-((-1864 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1137)))) (-2196 (*1 *2) (-12 (-5 *2 (-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099))))) (-5 *1 (-1137)))) (-2576 (*1 *2 *3 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))) (-2576 (*1 *2 *3) (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))))
-(-10 -7 (-15 -2576 ((-1186) (-597 (-1099)))) (-15 -2576 ((-1186) (-597 (-1099)) (-597 (-1099)))) (-15 -2196 ((-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099)))))) (-15 -1864 ((-1186))))
-((-3544 (($ $) 17)) (-3295 (((-110) $) 24)))
-(((-1138 |#1|) (-10 -8 (-15 -3544 (|#1| |#1|)) (-15 -3295 ((-110) |#1|))) (-1139)) (T -1138))
-NIL
-(-10 -8 (-15 -3544 (|#1| |#1|)) (-15 -3295 ((-110) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 49)) (-3272 (((-399 $) $) 50)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-3295 (((-110) $) 51)) (-2731 (((-110) $) 30)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 48)) (-3551 (((-3 $ "failed") $ $) 40)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41)) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24)))
-(((-1139) (-133)) (T -1139))
-((-3295 (*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-110)))) (-3272 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139)))) (-3544 (*1 *1 *1) (-4 *1 (-1139))) (-2611 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139)))))
-(-13 (-432) (-10 -8 (-15 -3295 ((-110) $)) (-15 -3272 ((-399 $) $)) (-15 -3544 ($ $)) (-15 -2611 ((-399 $) $))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-571 (-804)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-522) . T) ((-599 $) . T) ((-666 $) . T) ((-675) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3217 (((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|)) 23)))
-(((-1140 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3217 ((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|)))) (-984) (-984) (-1099) (-1099) |#1| |#2|) (T -1140))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5 *7 *9)) (-4 *5 (-984)) (-4 *6 (-984)) (-14 *7 (-1099)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1145 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1099)))))
-(-10 -7 (-15 -3217 ((-1145 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1145 |#1| |#3| |#5|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-530)) 96) (($ $ (-530) (-530)) 95)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 103)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 160 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 171)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 155 (|has| |#1| (-344)))) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-2874 (((-388 (-893 |#1|)) $ (-530)) 169 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 168 (|has| |#1| (-522)))) (-3571 (($ $ $) 154 (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-344)))) (-3295 (((-110) $) 162 (|has| |#1| (-344)))) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-530) $) 98) (((-530) $ (-530)) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 99)) (-4219 (($ (-1 |#1| (-530)) $) 170)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-344)))) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-530)) 59) (($ $ (-1012) (-530)) 74) (($ $ (-597 (-1012)) (-597 (-530))) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 163 (|has| |#1| (-344)))) (-1545 (($ $) 167 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 166 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2611 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-344)))) (-3168 (($ $ (-530)) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-344)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-530)))))) (-2356 (((-719) $) 152 (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) 102) (($ $ $) 79 (|has| (-530) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-1429 (((-530) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522)))) (-4085 ((|#1| $ (-530)) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| (-530) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-1141 |#1|) (-133) (-984)) (T -1141))
-((-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3)))) (-4 *3 (-984)) (-4 *1 (-1141 *3)))) (-4219 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1141 *3)) (-4 *3 (-984)))) (-2874 (*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522)) (-5 *2 (-388 (-893 *4))))) (-2874 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522)) (-5 *2 (-388 (-893 *4))))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1545 (*1 *1 *1 *2) (-1461 (-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2746 ((-597 *2) *3))) (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
-(-13 (-1159 |t#1| (-530)) (-10 -8 (-15 -2460 ($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |t#1|))))) (-15 -4219 ($ (-1 |t#1| (-530)) $)) (IF (|has| |t#1| (-522)) (PROGN (-15 -2874 ((-388 (-893 |t#1|)) $ (-530))) (-15 -2874 ((-388 (-893 |t#1|)) $ (-530) (-530)))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (IF (|has| |t#1| (-15 -1545 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2746 ((-597 (-1099)) |t#1|))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-530)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-530) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-530) (-1039)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T))
-((-1813 (((-110) $) 12)) (-3139 (((-3 |#3| "failed") $) 17) (((-3 (-1099) "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL)) (-2585 ((|#3| $) 14) (((-1099) $) NIL) (((-388 (-530)) $) NIL) (((-530) $) NIL)))
-(((-1142 |#1| |#2| |#3|) (-10 -8 (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -1813 ((-110) |#1|))) (-1143 |#2| |#3|) (-984) (-1172 |#2|)) (T -1142))
-NIL
-(-10 -8 (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2585 ((-1099) |#1|)) (-15 -3139 ((-3 (-1099) "failed") |#1|)) (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -1813 ((-110) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1612 ((|#2| $) 228 (-3380 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-530)) 96) (($ $ (-530) (-530)) 95)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 103)) (-3045 ((|#2| $) 264)) (-3666 (((-3 |#2| "failed") $) 260)) (-2805 ((|#2| $) 261)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-4002 (((-399 (-1095 $)) (-1095 $)) 237 (-3380 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-3544 (($ $) 160 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 234 (-3380 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1426 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-1867 (((-530) $) 246 (-3380 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 171)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#2| "failed") $) 267) (((-3 (-530) "failed") $) 256 (-3380 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) 254 (-3380 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-1099) "failed") $) 239 (-3380 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-2585 ((|#2| $) 266) (((-530) $) 257 (-3380 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-388 (-530)) $) 255 (-3380 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-1099) $) 240 (-3380 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-3239 (($ $) 263) (($ (-530) $) 262)) (-3590 (($ $ $) 155 (|has| |#1| (-344)))) (-2562 (($ $) 58)) (-2329 (((-637 |#2|) (-637 $)) 218 (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) 217 (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 216 (-3380 (|has| |#2| (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) 215 (-3380 (|has| |#2| (-593 (-530))) (|has| |#1| (-344))))) (-2707 (((-3 $ "failed") $) 32)) (-2874 (((-388 (-893 |#1|)) $ (-530)) 169 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 168 (|has| |#1| (-522)))) (-1364 (($) 230 (-3380 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3571 (($ $ $) 154 (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-344)))) (-3295 (((-110) $) 162 (|has| |#1| (-344)))) (-2514 (((-110) $) 244 (-3380 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 222 (-3380 (|has| |#2| (-827 (-360))) (|has| |#1| (-344)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 221 (-3380 (|has| |#2| (-827 (-530))) (|has| |#1| (-344))))) (-2031 (((-530) $) 98) (((-530) $ (-530)) 97)) (-2731 (((-110) $) 30)) (-4127 (($ $) 226 (|has| |#1| (-344)))) (-1918 ((|#2| $) 224 (|has| |#1| (-344)))) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-2972 (((-3 $ "failed") $) 258 (-3380 (|has| |#2| (-1075)) (|has| |#1| (-344))))) (-2166 (((-110) $) 245 (-3380 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3081 (($ $ (-862)) 99)) (-4219 (($ (-1 |#1| (-530)) $) 170)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-344)))) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-530)) 59) (($ $ (-1012) (-530)) 74) (($ $ (-597 (-1012)) (-597 (-530))) 73)) (-2508 (($ $ $) 248 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-1817 (($ $ $) 249 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-3217 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-344)))) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-2817 (($ (-530) |#2|) 265)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 163 (|has| |#1| (-344)))) (-1545 (($ $) 167 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 166 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-3657 (($) 259 (-3380 (|has| |#2| (-1075)) (|has| |#1| (-344))) CONST)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-1979 (($ $) 229 (-3380 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-3175 ((|#2| $) 232 (-3380 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3845 (((-399 (-1095 $)) (-1095 $)) 235 (-3380 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1473 (((-399 (-1095 $)) (-1095 $)) 236 (-3380 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-2611 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-344)))) (-3168 (($ $ (-530)) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-344)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) |#2|) 209 (-3380 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 |#2|)) 208 (-3380 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-276 |#2|))) 207 (-3380 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) 206 (-3380 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) 205 (-3380 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-597 |#2|) (-597 |#2|)) 204 (-3380 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-2356 (((-719) $) 152 (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) 102) (($ $ $) 79 (|has| (-530) (-1039))) (($ $ |#2|) 203 (-3380 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-344)))) (-3289 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) 213 (|has| |#1| (-344))) (($ $ (-719)) 82 (-1461 (-3380 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 80 (-1461 (-3380 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) 87 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099) (-719)) 86 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-597 (-1099))) 85 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099)) 84 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))))) (-1269 (($ $) 227 (|has| |#1| (-344)))) (-1928 ((|#2| $) 225 (|has| |#1| (-344)))) (-1429 (((-530) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-3260 (((-208) $) 243 (-3380 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-360) $) 242 (-3380 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-506) $) 241 (-3380 (|has| |#2| (-572 (-506))) (|has| |#1| (-344)))) (((-833 (-360)) $) 220 (-3380 (|has| |#2| (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) 219 (-3380 (|has| |#2| (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 233 (-3380 (-3380 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#1| (-344))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ |#2|) 268) (($ (-1099)) 238 (-3380 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344)))) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522)))) (-4085 ((|#1| $ (-530)) 57)) (-3251 (((-3 $ "failed") $) 46 (-1461 (-3380 (-1461 (|has| |#2| (-138)) (-3380 (|has| $ (-138)) (|has| |#2| (-850)))) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2748 ((|#2| $) 231 (-3380 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3934 (($ $) 247 (-3380 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) 211 (|has| |#1| (-344))) (($ $ (-719)) 83 (-1461 (-3380 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 81 (-1461 (-3380 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) 91 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099) (-719)) 90 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-597 (-1099))) 89 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))))) (($ $ (-1099)) 88 (-1461 (-3380 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))))) (-2306 (((-110) $ $) 251 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2284 (((-110) $ $) 252 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 250 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2272 (((-110) $ $) 253 (-3380 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344))) (($ |#2| |#2|) 223 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-344))) (($ |#2| $) 201 (|has| |#1| (-344))) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-1143 |#1| |#2|) (-133) (-984) (-1172 |t#1|)) (T -1143))
-((-1429 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)) (-5 *2 (-530)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1143 *3 *2)) (-4 *2 (-1172 *3)))) (-2817 (*1 *1 *2 *3) (-12 (-5 *2 (-530)) (-4 *4 (-984)) (-4 *1 (-1143 *4 *3)) (-4 *3 (-1172 *4)))) (-3045 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))) (-3239 (*1 *1 *1) (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1172 *2)))) (-3239 (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3)))) (-2805 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))) (-3666 (*1 *2 *1) (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
-(-13 (-1141 |t#1|) (-975 |t#2|) (-10 -8 (-15 -2817 ($ (-530) |t#2|)) (-15 -1429 ((-530) $)) (-15 -3045 (|t#2| $)) (-15 -3239 ($ $)) (-15 -3239 ($ (-530) $)) (-15 -2366 ($ |t#2|)) (-15 -2805 (|t#2| $)) (-15 -3666 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-344)) (-6 (-932 |t#2|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-530)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 |#2|) |has| |#1| (-344)) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 |#2| |#2|) |has| |#1| (-344)) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-140) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-140))) (|has| |#1| (-140))) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-572 (-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-572 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-572 (-506)) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| |#1| (-344)) (|has| |#2| (-572 (-833 (-530))))) ((-214 |#2|) |has| |#1| (-344)) ((-216) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-530) |#1|)))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 |#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) ((-268 $ $) |has| (-530) (-1039)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-344) |has| |#1| (-344)) ((-319 |#2|) |has| |#1| (-344)) ((-358 |#2|) |has| |#1| (-344)) ((-381 |#2|) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-491 (-1099) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-491 (-1099) |#2|))) ((-491 |#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 |#2|) |has| |#1| (-344)) ((-599 $) . T) ((-593 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-593 (-530)))) ((-593 |#2|) |has| |#1| (-344)) ((-666 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 |#2|) |has| |#1| (-344)) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-739) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-740) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-742) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-743) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-768) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-793) -12 (|has| |#1| (-344)) (|has| |#2| (-768))) ((-795) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-795))) (-12 (|has| |#1| (-344)) (|has| |#2| (-768)))) ((-841 (-1099)) -1461 (-12 (|has| |#1| (-344)) (|has| |#2| (-841 (-1099)))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))) ((-827 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-360)))) ((-827 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-827 (-530)))) ((-825 |#2|) |has| |#1| (-344)) ((-850) -12 (|has| |#1| (-344)) (|has| |#2| (-850))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-932 |#2|) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-960) -12 (|has| |#1| (-344)) (|has| |#2| (-960))) ((-975 (-388 (-530))) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-530)))) ((-975 (-530)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-530)))) ((-975 (-1099)) -12 (|has| |#1| (-344)) (|has| |#2| (-975 (-1099)))) ((-975 |#2|) . T) ((-990 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 |#2|) |has| |#1| (-344)) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) -12 (|has| |#1| (-344)) (|has| |#2| (-1075))) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1135) |has| |#1| (-344)) ((-1139) |has| |#1| (-344)) ((-1141 |#1|) . T) ((-1159 |#1| #0#) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 70)) (-1612 ((|#2| $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 88)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-530)) 97) (($ $ (-530) (-530)) 99)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) 47)) (-3045 ((|#2| $) 11)) (-3666 (((-3 |#2| "failed") $) 30)) (-2805 ((|#2| $) 31)) (-2386 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-1867 (((-530) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) 57)) (-2409 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 172 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) 144) (((-3 (-530) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-1099) "failed") $) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-2585 ((|#2| $) 143) (((-530) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| |#2| (-975 (-530))) (|has| |#1| (-344)))) (((-1099) $) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344))))) (-3239 (($ $) 61) (($ (-530) $) 24)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 |#2|) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| |#2| (-593 (-530))) (|has| |#1| (-344))))) (-2707 (((-3 $ "failed") $) 77)) (-2874 (((-388 (-893 |#1|)) $ (-530)) 112 (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) 114 (|has| |#1| (-522)))) (-1364 (($) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-2514 (((-110) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3555 (((-110) $) 64)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| |#2| (-827 (-360))) (|has| |#1| (-344)))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| |#2| (-827 (-530))) (|has| |#1| (-344))))) (-2031 (((-530) $) 93) (((-530) $ (-530)) 95)) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL (|has| |#1| (-344)))) (-1918 ((|#2| $) 151 (|has| |#1| (-344)))) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2972 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1075)) (|has| |#1| (-344))))) (-2166 (((-110) $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3081 (($ $ (-862)) 136)) (-4219 (($ (-1 |#1| (-530)) $) 132)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-530)) 19) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-2508 (($ $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-1817 (($ $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-3217 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-344)))) (-2168 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2817 (($ (-530) |#2|) 10)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 145 (|has| |#1| (-344)))) (-1545 (($ $) 214 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 219 (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-3657 (($) NIL (-12 (|has| |#2| (-1075)) (|has| |#1| (-344))) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1979 (($ $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-3175 ((|#2| $) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| |#2| (-850)) (|has| |#1| (-344))))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-530)) 126)) (-3551 (((-3 $ "failed") $ $) 116 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) |#2|) NIL (-12 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 |#2|)) NIL (-12 (|has| |#2| (-491 (-1099) |#2|)) (|has| |#1| (-344)))) (($ $ (-597 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-597 |#2|) (-597 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) 91) (($ $ $) 79 (|has| (-530) (-1039))) (($ $ |#2|) NIL (-12 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1461 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 137 (-1461 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) 140 (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-1269 (($ $) NIL (|has| |#1| (-344)))) (-1928 ((|#2| $) 152 (|has| |#1| (-344)))) (-1429 (((-530) $) 12)) (-2421 (($ $) 198 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 174 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 170 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 166 (|has| |#1| (-37 (-388 (-530)))))) (-3260 (((-208) $) NIL (-12 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| |#2| (-960)) (|has| |#1| (-344)))) (((-506) $) NIL (-12 (|has| |#2| (-572 (-506))) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| |#2| (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| |#2| (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850)) (|has| |#1| (-344))))) (-4050 (($ $) 124)) (-2366 (((-804) $) 245) (($ (-530)) 23) (($ |#1|) 21 (|has| |#1| (-162))) (($ |#2|) 20) (($ (-1099)) NIL (-12 (|has| |#2| (-975 (-1099))) (|has| |#1| (-344)))) (($ (-388 (-530))) 155 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-530)) 74)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850)) (|has| |#1| (-344))) (-12 (|has| |#2| (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3300 (((-719)) 142)) (-3705 ((|#1| $) 90)) (-2748 ((|#2| $) NIL (-12 (|has| |#2| (-515)) (|has| |#1| (-344))))) (-2459 (($ $) 204 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 180 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 200 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 176 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 208 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 184 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 210 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 206 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 182 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 202 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 178 (|has| |#1| (-37 (-388 (-530)))))) (-3934 (($ $) NIL (-12 (|has| |#2| (-768)) (|has| |#1| (-344))))) (-3080 (($) 13 T CONST)) (-3093 (($) 17 T CONST)) (-3340 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1461 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1461 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#2| (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2306 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2284 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2248 (((-110) $ $) 63)) (-2297 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2272 (((-110) $ $) NIL (-12 (|has| |#2| (-795)) (|has| |#1| (-344))))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 149 (|has| |#1| (-344))) (($ |#2| |#2|) 150 (|has| |#1| (-344)))) (-2351 (($ $) 213) (($ $ $) 68)) (-2339 (($ $ $) 66)) (** (($ $ (-862)) NIL) (($ $ (-719)) 73) (($ $ (-530)) 146 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 158 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-344))) (($ |#2| $) 147 (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1144 |#1| |#2|) (-1143 |#1| |#2|) (-984) (-1172 |#1|)) (T -1144))
-NIL
-(-1143 |#1| |#2|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1612 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 10)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-3446 (($ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1276 (((-110) $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1951 (($ $ (-530)) NIL) (($ $ (-530) (-530)) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|))) $) NIL)) (-3045 (((-1173 |#1| |#2| |#3|) $) NIL)) (-3666 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) NIL)) (-2805 (((-1173 |#1| |#2| |#3|) $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1867 (((-530) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-2460 (($ (-1080 (-2 (|:| |k| (-530)) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1173 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1099) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-3 (-388 (-530)) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-3 (-530) "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-2585 (((-1173 |#1| |#2| |#3|) $) NIL) (((-1099) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (((-388 (-530)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344)))) (((-530) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))))) (-3239 (($ $) NIL) (($ (-530) $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-1173 |#1| |#2| |#3|)) (-637 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-1173 |#1| |#2| |#3|))) (|:| |vec| (-1181 (-1173 |#1| |#2| |#3|)))) (-637 $) (-1181 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344)))) (((-637 (-530)) (-637 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-593 (-530))) (|has| |#1| (-344))))) (-2707 (((-3 $ "failed") $) NIL)) (-2874 (((-388 (-893 |#1|)) $ (-530)) NIL (|has| |#1| (-522))) (((-388 (-893 |#1|)) $ (-530) (-530)) NIL (|has| |#1| (-522)))) (-1364 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-2514 (((-110) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2890 (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-827 (-530))) (|has| |#1| (-344)))) (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-827 (-360))) (|has| |#1| (-344))))) (-2031 (((-530) $) NIL) (((-530) $ (-530)) NIL)) (-2731 (((-110) $) NIL)) (-4127 (($ $) NIL (|has| |#1| (-344)))) (-1918 (((-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2972 (((-3 $ "failed") $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))))) (-2166 (((-110) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3081 (($ $ (-862)) NIL)) (-4219 (($ (-1 |#1| (-530)) $) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-530)) 17) (($ $ (-1012) (-530)) NIL) (($ $ (-597 (-1012)) (-597 (-530))) NIL)) (-2508 (($ $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-1817 (($ $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2817 (($ (-530) (-1173 |#1| |#2| |#3|)) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 25 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 26 (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-1075)) (|has| |#1| (-344))) CONST)) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-1979 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-3175 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-530)) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-530))))) (($ $ (-1099) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-491 (-1099) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1099)) (-597 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-491 (-1099) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-276 (-1173 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-597 (-1173 |#1| |#2| |#3|)) (-597 (-1173 |#1| |#2| |#3|))) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-291 (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-530)) NIL) (($ $ $) NIL (|has| (-530) (-1039))) (($ $ (-1173 |#1| |#2| |#3|)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-268 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-1177 |#2|)) 24) (($ $ (-719)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) 23 (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-1269 (($ $) NIL (|has| |#1| (-344)))) (-1928 (((-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-1429 (((-530) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3260 (((-506) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-506))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-960)) (|has| |#1| (-344)))) (((-833 (-360)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-833 (-360)))) (|has| |#1| (-344)))) (((-833 (-530)) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-572 (-833 (-530)))) (|has| |#1| (-344))))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1173 |#1| |#2| |#3|)) NIL) (($ (-1177 |#2|)) 22) (($ (-1099)) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-1099))) (|has| |#1| (-344)))) (($ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522)))) (($ (-388 (-530))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-975 (-530))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-530))))))) (-4085 ((|#1| $ (-530)) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 11)) (-2748 (((-1173 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-515)) (|has| |#1| (-344))))) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-850)) (|has| |#1| (-344))) (|has| |#1| (-522))))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-530)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-530)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3934 (($ $) NIL (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))))) (-3080 (($) 19 T CONST)) (-3093 (($) 15 T CONST)) (-3340 (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) (-719)) NIL (|has| |#1| (-344))) (($ $ (-719)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-530) |#1|))))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099) (-719)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-597 (-1099))) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099)))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-841 (-1099))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-530) |#1|))) (|has| |#1| (-841 (-1099))))))) (-2306 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2284 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2272 (((-110) $ $) NIL (-1461 (-12 (|has| (-1173 |#1| |#2| |#3|) (-768)) (|has| |#1| (-344))) (-12 (|has| (-1173 |#1| |#2| |#3|) (-795)) (|has| |#1| (-344)))))) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344))) (($ (-1173 |#1| |#2| |#3|) (-1173 |#1| |#2| |#3|)) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 20)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1173 |#1| |#2| |#3|)) NIL (|has| |#1| (-344))) (($ (-1173 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344))) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1145 |#1| |#2| |#3|) (-13 (-1143 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1145))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1143 |#1| (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-4163 (((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110)) 12)) (-1550 (((-399 |#1|) |#1|) 22)) (-2611 (((-399 |#1|) |#1|) 21)))
-(((-1146 |#1|) (-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1|)) (-15 -4163 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110)))) (-1157 (-530))) (T -1146))
-((-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530))))))) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))) (-1550 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))) (-2611 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
-(-10 -7 (-15 -2611 ((-399 |#1|) |#1|)) (-15 -1550 ((-399 |#1|) |#1|)) (-15 -4163 ((-2 (|:| |contp| (-530)) (|:| -3721 (-597 (-2 (|:| |irr| |#1|) (|:| -2075 (-530)))))) |#1| (-110))))
-((-3217 (((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 23 (|has| |#1| (-793))) (((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|)) 17)))
-(((-1147 |#1| |#2|) (-10 -7 (-15 -3217 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (IF (|has| |#1| (-793)) (-15 -3217 ((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) |%noBranch|)) (-1135) (-1135)) (T -1147))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-793)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1080 *6)) (-5 *1 (-1147 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1148 *6)) (-5 *1 (-1147 *5 *6)))))
-(-10 -7 (-15 -3217 ((-1148 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) (IF (|has| |#1| (-793)) (-15 -3217 ((-1080 |#2|) (-1 |#2| |#1|) (-1148 |#1|))) |%noBranch|))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2525 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3217 (((-1080 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-793)))) (-2594 ((|#1| $) 14)) (-2059 ((|#1| $) 10)) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-2070 (((-530) $) 18)) (-3884 ((|#1| $) 17)) (-2081 ((|#1| $) 11)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-2629 (((-110) $) 16)) (-2246 (((-1080 |#1|) $) 38 (|has| |#1| (-793))) (((-1080 |#1|) (-597 $)) 37 (|has| |#1| (-793)))) (-3260 (($ |#1|) 25)) (-2366 (($ (-1022 |#1|)) 24) (((-804) $) 34 (|has| |#1| (-1027)))) (-3848 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-2022 (($ $ (-530)) 13)) (-2248 (((-110) $ $) 27 (|has| |#1| (-1027)))))
-(((-1148 |#1|) (-13 (-1021 |#1|) (-10 -8 (-15 -3848 ($ |#1|)) (-15 -2525 ($ |#1|)) (-15 -2366 ($ (-1022 |#1|))) (-15 -2629 ((-110) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-1080 |#1|))) |%noBranch|))) (-1135)) (T -1148))
-((-3848 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))) (-2525 (*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1022 *3)) (-4 *3 (-1135)) (-5 *1 (-1148 *3)))) (-2629 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1148 *3)) (-4 *3 (-1135)))))
-(-13 (-1021 |#1|) (-10 -8 (-15 -3848 ($ |#1|)) (-15 -2525 ($ |#1|)) (-15 -2366 ($ (-1022 |#1|))) (-15 -2629 ((-110) $)) (IF (|has| |#1| (-1027)) (-6 (-1027)) |%noBranch|) (IF (|has| |#1| (-793)) (-6 (-1023 |#1| (-1080 |#1|))) |%noBranch|)))
-((-3217 (((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|)) 15)))
-(((-1149 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 ((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|)))) (-1099) (-984) (-1099) (-984)) (T -1149))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1154 *5 *6)) (-14 *5 (-1099)) (-4 *6 (-984)) (-4 *8 (-984)) (-5 *2 (-1154 *7 *8)) (-5 *1 (-1149 *5 *6 *7 *8)) (-14 *7 (-1099)))))
-(-10 -7 (-15 -3217 ((-1154 |#3| |#4|) (-1 |#4| |#2|) (-1154 |#1| |#2|))))
-((-1912 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-3912 ((|#1| |#3|) 13)) (-2765 ((|#3| |#3|) 19)))
-(((-1150 |#1| |#2| |#3|) (-10 -7 (-15 -3912 (|#1| |#3|)) (-15 -2765 (|#3| |#3|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-522) (-932 |#1|) (-1157 |#2|)) (T -1150))
-((-1912 (*1 *2 *3) (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3)) (-4 *3 (-1157 *5)))) (-2765 (*1 *2 *2) (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-1150 *3 *4 *2)) (-4 *2 (-1157 *4)))) (-3912 (*1 *2 *3) (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-1150 *2 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -3912 (|#1| |#3|)) (-15 -2765 (|#3| |#3|)) (-15 -1912 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
-((-3243 (((-3 |#2| "failed") |#2| (-719) |#1|) 29)) (-1593 (((-3 |#2| "failed") |#2| (-719)) 30)) (-3659 (((-3 (-2 (|:| -3628 |#2|) (|:| -3638 |#2|)) "failed") |#2|) 43)) (-3276 (((-597 |#2|) |#2|) 45)) (-1857 (((-3 |#2| "failed") |#2| |#2|) 40)))
-(((-1151 |#1| |#2|) (-10 -7 (-15 -1593 ((-3 |#2| "failed") |#2| (-719))) (-15 -3243 ((-3 |#2| "failed") |#2| (-719) |#1|)) (-15 -1857 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3659 ((-3 (-2 (|:| -3628 |#2|) (|:| -3638 |#2|)) "failed") |#2|)) (-15 -3276 ((-597 |#2|) |#2|))) (-13 (-522) (-140)) (-1157 |#1|)) (T -1151))
-((-3276 (*1 *2 *3) (-12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-597 *3)) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))) (-3659 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-2 (|:| -3628 *3) (|:| -3638 *3))) (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))) (-1857 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1151 *3 *2)) (-4 *2 (-1157 *3)))) (-3243 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))) (-1593 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
-(-10 -7 (-15 -1593 ((-3 |#2| "failed") |#2| (-719))) (-15 -3243 ((-3 |#2| "failed") |#2| (-719) |#1|)) (-15 -1857 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3659 ((-3 (-2 (|:| -3628 |#2|) (|:| -3638 |#2|)) "failed") |#2|)) (-15 -3276 ((-597 |#2|) |#2|)))
-((-3031 (((-3 (-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) "failed") |#2| |#2|) 32)))
-(((-1152 |#1| |#2|) (-10 -7 (-15 -3031 ((-3 (-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) "failed") |#2| |#2|))) (-522) (-1157 |#1|)) (T -1152))
-((-3031 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-1152 *4 *3)) (-4 *3 (-1157 *4)))))
-(-10 -7 (-15 -3031 ((-3 (-2 (|:| -1324 |#2|) (|:| -3304 |#2|)) "failed") |#2| |#2|)))
-((-1400 ((|#2| |#2| |#2|) 19)) (-3996 ((|#2| |#2| |#2|) 30)) (-3606 ((|#2| |#2| |#2| (-719) (-719)) 36)))
-(((-1153 |#1| |#2|) (-10 -7 (-15 -1400 (|#2| |#2| |#2|)) (-15 -3996 (|#2| |#2| |#2|)) (-15 -3606 (|#2| |#2| |#2| (-719) (-719)))) (-984) (-1157 |#1|)) (T -1153))
-((-3606 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-1157 *4)))) (-3996 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))) (-1400 (*1 *2 *2 *2) (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
-(-10 -7 (-15 -1400 (|#2| |#2| |#2|)) (-15 -3996 (|#2| |#2| |#2|)) (-15 -3606 (|#2| |#2| |#2| (-719) (-719))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1825 (((-1181 |#2|) $ (-719)) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-1370 (($ (-1095 |#2|)) NIL)) (-2577 (((-1095 $) $ (-1012)) NIL) (((-1095 |#2|) $) NIL)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#2| (-522)))) (-3446 (($ $) NIL (|has| |#2| (-522)))) (-1276 (((-110) $) NIL (|has| |#2| (-522)))) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3950 (($ $ $) NIL (|has| |#2| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-3544 (($ $) NIL (|has| |#2| (-432)))) (-3272 (((-399 $) $) NIL (|has| |#2| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1426 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3269 (($ $ (-719)) NIL)) (-3778 (($ $ (-719)) NIL)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-432)))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-530)) "failed") $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) NIL (|has| |#2| (-975 (-530)))) (((-3 (-1012) "failed") $) NIL)) (-2585 ((|#2| $) NIL) (((-388 (-530)) $) NIL (|has| |#2| (-975 (-388 (-530))))) (((-530) $) NIL (|has| |#2| (-975 (-530)))) (((-1012) $) NIL)) (-3388 (($ $ $ (-1012)) NIL (|has| |#2| (-162))) ((|#2| $ $) NIL (|has| |#2| (-162)))) (-3590 (($ $ $) NIL (|has| |#2| (-344)))) (-2562 (($ $) NIL)) (-2329 (((-637 (-530)) (-637 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) NIL (|has| |#2| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#2|)) (|:| |vec| (-1181 |#2|))) (-637 $) (-1181 $)) NIL) (((-637 |#2|) (-637 $)) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3571 (($ $ $) NIL (|has| |#2| (-344)))) (-1350 (($ $ $) NIL)) (-1903 (($ $ $) NIL (|has| |#2| (-522)))) (-2504 (((-2 (|:| -2065 |#2|) (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#2| (-344)))) (-1239 (($ $) NIL (|has| |#2| (-432))) (($ $ (-1012)) NIL (|has| |#2| (-432)))) (-2548 (((-597 $) $) NIL)) (-3295 (((-110) $) NIL (|has| |#2| (-850)))) (-2410 (($ $ |#2| (-719) $) NIL)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) NIL (-12 (|has| (-1012) (-827 (-360))) (|has| |#2| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) NIL (-12 (|has| (-1012) (-827 (-530))) (|has| |#2| (-827 (-530)))))) (-2031 (((-719) $ $) NIL (|has| |#2| (-522)))) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2972 (((-3 $ "failed") $) NIL (|has| |#2| (-1075)))) (-2735 (($ (-1095 |#2|) (-1012)) NIL) (($ (-1095 $) (-1012)) NIL)) (-3081 (($ $ (-719)) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-2725 (($ |#2| (-719)) 17) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) NIL) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-2508 (($ $ $) NIL (|has| |#2| (-795)))) (-1817 (($ $ $) NIL (|has| |#2| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2609 (((-1095 |#2|) $) NIL)) (-2040 (((-3 (-1012) "failed") $) NIL)) (-2521 (($ $) NIL)) (-2533 ((|#2| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1424 (((-1082) $) NIL)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) NIL)) (-1862 (((-3 (-597 $) "failed") $) NIL)) (-1534 (((-3 (-597 $) "failed") $) NIL)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) NIL)) (-1545 (($ $) NIL (|has| |#2| (-37 (-388 (-530)))))) (-3657 (($) NIL (|has| |#2| (-1075)) CONST)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 ((|#2| $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#2| (-432)))) (-2204 (($ (-597 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1641 (($ $ (-719) |#2| $) NIL)) (-3845 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) NIL (|has| |#2| (-850)))) (-2611 (((-399 $) $) NIL (|has| |#2| (-850)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#2| (-344)))) (-3551 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-522))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#2| (-344)))) (-4098 (($ $ (-597 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#2|) NIL) (($ $ (-597 (-1012)) (-597 |#2|)) NIL) (($ $ (-1012) $) NIL) (($ $ (-597 (-1012)) (-597 $)) NIL)) (-2356 (((-719) $) NIL (|has| |#2| (-344)))) (-1902 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#2| (-522))) ((|#2| (-388 $) |#2|) NIL (|has| |#2| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#2| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) NIL)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#2| (-344)))) (-3060 (($ $ (-1012)) NIL (|has| |#2| (-162))) ((|#2| $) NIL (|has| |#2| (-162)))) (-3289 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-1429 (((-719) $) NIL) (((-719) $ (-1012)) NIL) (((-597 (-719)) $ (-597 (-1012))) NIL)) (-3260 (((-833 (-360)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#2| (-572 (-833 (-360)))))) (((-833 (-530)) $) NIL (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#2| (-572 (-833 (-530)))))) (((-506) $) NIL (-12 (|has| (-1012) (-572 (-506))) (|has| |#2| (-572 (-506)))))) (-3829 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-1012)) NIL (|has| |#2| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-850))))) (-1331 (((-3 $ "failed") $ $) NIL (|has| |#2| (-522))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#2| (-522)))) (-2366 (((-804) $) 13) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-1012)) NIL) (($ (-1177 |#1|)) 19) (($ (-388 (-530))) NIL (-1461 (|has| |#2| (-37 (-388 (-530)))) (|has| |#2| (-975 (-388 (-530)))))) (($ $) NIL (|has| |#2| (-522)))) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-719)) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3251 (((-3 $ "failed") $) NIL (-1461 (-12 (|has| $ (-138)) (|has| |#2| (-850))) (|has| |#2| (-138))))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| |#2| (-162)))) (-3944 (((-110) $ $) NIL (|has| |#2| (-522)))) (-3080 (($) NIL T CONST)) (-3093 (($) 14 T CONST)) (-3340 (($ $ (-1012)) NIL) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) NIL) (($ $ (-1099)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1099) (-719)) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) NIL (|has| |#2| (-841 (-1099)))) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2306 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2248 (((-110) $ $) NIL)) (-2297 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#2| (-795)))) (-2364 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-388 (-530))) NIL (|has| |#2| (-37 (-388 (-530))))) (($ (-388 (-530)) $) NIL (|has| |#2| (-37 (-388 (-530))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
-(((-1154 |#1| |#2|) (-13 (-1157 |#2|) (-10 -8 (-15 -2366 ($ (-1177 |#1|))) (-15 -1641 ($ $ (-719) |#2| $)))) (-1099) (-984)) (T -1154))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *3)) (-14 *3 (-1099)) (-5 *1 (-1154 *3 *4)) (-4 *4 (-984)))) (-1641 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1154 *4 *3)) (-14 *4 (-1099)) (-4 *3 (-984)))))
-(-13 (-1157 |#2|) (-10 -8 (-15 -2366 ($ (-1177 |#1|))) (-15 -1641 ($ $ (-719) |#2| $))))
-((-3217 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
-(((-1155 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|))) (-984) (-1157 |#1|) (-984) (-1157 |#3|)) (T -1155))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1157 *5)))))
-(-10 -7 (-15 -3217 (|#4| (-1 |#3| |#1|) |#2|)))
-((-1825 (((-1181 |#2|) $ (-719)) 114)) (-2746 (((-597 (-1012)) $) 15)) (-1370 (($ (-1095 |#2|)) 67)) (-3471 (((-719) $) NIL) (((-719) $ (-597 (-1012))) 18)) (-4002 (((-399 (-1095 $)) (-1095 $)) 185)) (-3544 (($ $) 175)) (-3272 (((-399 $) $) 173)) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 82)) (-3269 (($ $ (-719)) 71)) (-3778 (($ $ (-719)) 73)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3139 (((-3 |#2| "failed") $) 117) (((-3 (-388 (-530)) "failed") $) NIL) (((-3 (-530) "failed") $) NIL) (((-3 (-1012) "failed") $) NIL)) (-2585 ((|#2| $) 115) (((-388 (-530)) $) NIL) (((-530) $) NIL) (((-1012) $) NIL)) (-1903 (($ $ $) 151)) (-2504 (((-2 (|:| -2065 |#2|) (|:| -1324 $) (|:| -3304 $)) $ $) 153)) (-2031 (((-719) $ $) 170)) (-2972 (((-3 $ "failed") $) 123)) (-2725 (($ |#2| (-719)) NIL) (($ $ (-1012) (-719)) 47) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-2944 (((-719) $) NIL) (((-719) $ (-1012)) 42) (((-597 (-719)) $ (-597 (-1012))) 43)) (-2609 (((-1095 |#2|) $) 59)) (-2040 (((-3 (-1012) "failed") $) 40)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) 70)) (-1545 (($ $) 197)) (-3657 (($) 119)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 182)) (-3845 (((-399 (-1095 $)) (-1095 $)) 88)) (-1473 (((-399 (-1095 $)) (-1095 $)) 86)) (-2611 (((-399 $) $) 107)) (-4098 (($ $ (-597 (-276 $))) 39) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-597 $) (-597 $)) NIL) (($ $ (-1012) |#2|) 31) (($ $ (-597 (-1012)) (-597 |#2|)) 28) (($ $ (-1012) $) 25) (($ $ (-597 (-1012)) (-597 $)) 23)) (-2356 (((-719) $) 188)) (-1902 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) 147) ((|#2| (-388 $) |#2|) 187) (((-388 $) $ (-388 $)) 169)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 191)) (-3289 (($ $ (-1012)) 140) (($ $ (-597 (-1012))) NIL) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL) (($ $ (-719)) NIL) (($ $) 138) (($ $ (-1099)) NIL) (($ $ (-597 (-1099))) NIL) (($ $ (-1099) (-719)) NIL) (($ $ (-597 (-1099)) (-597 (-719))) NIL) (($ $ (-1 |#2| |#2|) (-719)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-1429 (((-719) $) NIL) (((-719) $ (-1012)) 16) (((-597 (-719)) $ (-597 (-1012))) 20)) (-3829 ((|#2| $) NIL) (($ $ (-1012)) 125)) (-1331 (((-3 $ "failed") $ $) 161) (((-3 (-388 $) "failed") (-388 $) $) 157)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#2|) NIL) (($ (-1012)) 51) (($ (-388 (-530))) NIL) (($ $) NIL)))
-(((-1156 |#1| |#2|) (-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -1902 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -2356 ((-719) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1902 (|#2| (-388 |#1|) |#2|)) (-15 -2026 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2504 ((-2 (|:| -2065 |#2|) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -1331 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -1331 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2031 ((-719) |#1| |#1|)) (-15 -1902 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3778 (|#1| |#1| (-719))) (-15 -3269 (|#1| |#1| (-719))) (-15 -2970 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| (-719))) (-15 -1370 (|#1| (-1095 |#2|))) (-15 -2609 ((-1095 |#2|) |#1|)) (-15 -1825 ((-1181 |#2|) |#1| (-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| |#1|)) (-15 -1902 (|#2| |#1| |#2|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -4002 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -3829 (|#1| |#1| (-1012))) (-15 -2746 ((-597 (-1012)) |#1|)) (-15 -3471 ((-719) |#1| (-597 (-1012)))) (-15 -3471 ((-719) |#1|)) (-15 -2725 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -2725 (|#1| |#1| (-1012) (-719))) (-15 -2944 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -2944 ((-719) |#1| (-1012))) (-15 -2040 ((-3 (-1012) "failed") |#1|)) (-15 -1429 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -1429 ((-719) |#1| (-1012))) (-15 -2585 ((-1012) |#1|)) (-15 -3139 ((-3 (-1012) "failed") |#1|)) (-15 -2366 (|#1| (-1012))) (-15 -4098 (|#1| |#1| (-597 (-1012)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-1012) |#1|)) (-15 -4098 (|#1| |#1| (-597 (-1012)) (-597 |#2|))) (-15 -4098 (|#1| |#1| (-1012) |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1429 ((-719) |#1|)) (-15 -2725 (|#1| |#2| (-719))) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -2944 ((-719) |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3289 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1012) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1012)))) (-15 -3289 (|#1| |#1| (-1012))) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|))) (-1157 |#2|) (-984)) (T -1156))
-NIL
-(-10 -8 (-15 -2366 (|#1| |#1|)) (-15 -2569 ((-1095 |#1|) (-1095 |#1|) (-1095 |#1|))) (-15 -3272 ((-399 |#1|) |#1|)) (-15 -3544 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -3657 (|#1|)) (-15 -2972 ((-3 |#1| "failed") |#1|)) (-15 -1902 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -2356 ((-719) |#1|)) (-15 -3763 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1545 (|#1| |#1|)) (-15 -1902 (|#2| (-388 |#1|) |#2|)) (-15 -2026 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -2504 ((-2 (|:| -2065 |#2|) (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| |#1|)) (-15 -1903 (|#1| |#1| |#1|)) (-15 -1331 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -1331 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2031 ((-719) |#1| |#1|)) (-15 -1902 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3778 (|#1| |#1| (-719))) (-15 -3269 (|#1| |#1| (-719))) (-15 -2970 ((-2 (|:| -1324 |#1|) (|:| -3304 |#1|)) |#1| (-719))) (-15 -1370 (|#1| (-1095 |#2|))) (-15 -2609 ((-1095 |#2|) |#1|)) (-15 -1825 ((-1181 |#2|) |#1| (-719))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3289 (|#1| |#1| (-1 |#2| |#2|) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1099) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1099)))) (-15 -3289 (|#1| |#1| (-1099))) (-15 -3289 (|#1| |#1|)) (-15 -3289 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| |#1|)) (-15 -1902 (|#2| |#1| |#2|)) (-15 -2611 ((-399 |#1|) |#1|)) (-15 -4002 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1473 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -3845 ((-399 (-1095 |#1|)) (-1095 |#1|))) (-15 -1708 ((-3 (-597 (-1095 |#1|)) "failed") (-597 (-1095 |#1|)) (-1095 |#1|))) (-15 -3829 (|#1| |#1| (-1012))) (-15 -2746 ((-597 (-1012)) |#1|)) (-15 -3471 ((-719) |#1| (-597 (-1012)))) (-15 -3471 ((-719) |#1|)) (-15 -2725 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -2725 (|#1| |#1| (-1012) (-719))) (-15 -2944 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -2944 ((-719) |#1| (-1012))) (-15 -2040 ((-3 (-1012) "failed") |#1|)) (-15 -1429 ((-597 (-719)) |#1| (-597 (-1012)))) (-15 -1429 ((-719) |#1| (-1012))) (-15 -2585 ((-1012) |#1|)) (-15 -3139 ((-3 (-1012) "failed") |#1|)) (-15 -2366 (|#1| (-1012))) (-15 -4098 (|#1| |#1| (-597 (-1012)) (-597 |#1|))) (-15 -4098 (|#1| |#1| (-1012) |#1|)) (-15 -4098 (|#1| |#1| (-597 (-1012)) (-597 |#2|))) (-15 -4098 (|#1| |#1| (-1012) |#2|)) (-15 -4098 (|#1| |#1| (-597 |#1|) (-597 |#1|))) (-15 -4098 (|#1| |#1| |#1| |#1|)) (-15 -4098 (|#1| |#1| (-276 |#1|))) (-15 -4098 (|#1| |#1| (-597 (-276 |#1|)))) (-15 -1429 ((-719) |#1|)) (-15 -2725 (|#1| |#2| (-719))) (-15 -2585 ((-530) |#1|)) (-15 -3139 ((-3 (-530) "failed") |#1|)) (-15 -2585 ((-388 (-530)) |#1|)) (-15 -3139 ((-3 (-388 (-530)) "failed") |#1|)) (-15 -2366 (|#1| |#2|)) (-15 -3139 ((-3 |#2| "failed") |#1|)) (-15 -2585 (|#2| |#1|)) (-15 -2944 ((-719) |#1|)) (-15 -3829 (|#2| |#1|)) (-15 -3289 (|#1| |#1| (-597 (-1012)) (-597 (-719)))) (-15 -3289 (|#1| |#1| (-1012) (-719))) (-15 -3289 (|#1| |#1| (-597 (-1012)))) (-15 -3289 (|#1| |#1| (-1012))) (-15 -2366 (|#1| (-530))) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1825 (((-1181 |#1|) $ (-719)) 236)) (-2746 (((-597 (-1012)) $) 108)) (-1370 (($ (-1095 |#1|)) 234)) (-2577 (((-1095 $) $ (-1012)) 123) (((-1095 |#1|) $) 122)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 85 (|has| |#1| (-522)))) (-3446 (($ $) 86 (|has| |#1| (-522)))) (-1276 (((-110) $) 88 (|has| |#1| (-522)))) (-3471 (((-719) $) 110) (((-719) $ (-597 (-1012))) 109)) (-1889 (((-3 $ "failed") $ $) 19)) (-3950 (($ $ $) 221 (|has| |#1| (-522)))) (-4002 (((-399 (-1095 $)) (-1095 $)) 98 (|has| |#1| (-850)))) (-3544 (($ $) 96 (|has| |#1| (-432)))) (-3272 (((-399 $) $) 95 (|has| |#1| (-432)))) (-1708 (((-3 (-597 (-1095 $)) "failed") (-597 (-1095 $)) (-1095 $)) 101 (|has| |#1| (-850)))) (-1426 (((-110) $ $) 206 (|has| |#1| (-344)))) (-3269 (($ $ (-719)) 229)) (-3778 (($ $ (-719)) 228)) (-2026 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-432)))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-530)) "failed") $) 160 (|has| |#1| (-975 (-388 (-530))))) (((-3 (-530) "failed") $) 158 (|has| |#1| (-975 (-530)))) (((-3 (-1012) "failed") $) 134)) (-2585 ((|#1| $) 163) (((-388 (-530)) $) 159 (|has| |#1| (-975 (-388 (-530))))) (((-530) $) 157 (|has| |#1| (-975 (-530)))) (((-1012) $) 133)) (-3388 (($ $ $ (-1012)) 106 (|has| |#1| (-162))) ((|#1| $ $) 224 (|has| |#1| (-162)))) (-3590 (($ $ $) 210 (|has| |#1| (-344)))) (-2562 (($ $) 152)) (-2329 (((-637 (-530)) (-637 $)) 132 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 (-530))) (|:| |vec| (-1181 (-530)))) (-637 $) (-1181 $)) 131 (|has| |#1| (-593 (-530)))) (((-2 (|:| -2030 (-637 |#1|)) (|:| |vec| (-1181 |#1|))) (-637 $) (-1181 $)) 130) (((-637 |#1|) (-637 $)) 129)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 209 (|has| |#1| (-344)))) (-1350 (($ $ $) 227)) (-1903 (($ $ $) 218 (|has| |#1| (-522)))) (-2504 (((-2 (|:| -2065 |#1|) (|:| -1324 $) (|:| -3304 $)) $ $) 217 (|has| |#1| (-522)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 204 (|has| |#1| (-344)))) (-1239 (($ $) 174 (|has| |#1| (-432))) (($ $ (-1012)) 103 (|has| |#1| (-432)))) (-2548 (((-597 $) $) 107)) (-3295 (((-110) $) 94 (|has| |#1| (-850)))) (-2410 (($ $ |#1| (-719) $) 170)) (-2890 (((-830 (-360) $) $ (-833 (-360)) (-830 (-360) $)) 82 (-12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360))))) (((-830 (-530) $) $ (-833 (-530)) (-830 (-530) $)) 81 (-12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))))) (-2031 (((-719) $ $) 222 (|has| |#1| (-522)))) (-2731 (((-110) $) 30)) (-3579 (((-719) $) 167)) (-2972 (((-3 $ "failed") $) 202 (|has| |#1| (-1075)))) (-2735 (($ (-1095 |#1|) (-1012)) 115) (($ (-1095 $) (-1012)) 114)) (-3081 (($ $ (-719)) 233)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 213 (|has| |#1| (-344)))) (-2469 (((-597 $) $) 124)) (-3668 (((-110) $) 150)) (-2725 (($ |#1| (-719)) 151) (($ $ (-1012) (-719)) 117) (($ $ (-597 (-1012)) (-597 (-719))) 116)) (-1357 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $ (-1012)) 118) (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 231)) (-2944 (((-719) $) 168) (((-719) $ (-1012)) 120) (((-597 (-719)) $ (-597 (-1012))) 119)) (-2508 (($ $ $) 77 (|has| |#1| (-795)))) (-1817 (($ $ $) 76 (|has| |#1| (-795)))) (-3756 (($ (-1 (-719) (-719)) $) 169)) (-3217 (($ (-1 |#1| |#1|) $) 149)) (-2609 (((-1095 |#1|) $) 235)) (-2040 (((-3 (-1012) "failed") $) 121)) (-2521 (($ $) 147)) (-2533 ((|#1| $) 146)) (-2170 (($ (-597 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1424 (((-1082) $) 9)) (-2970 (((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719)) 230)) (-1862 (((-3 (-597 $) "failed") $) 112)) (-1534 (((-3 (-597 $) "failed") $) 113)) (-1487 (((-3 (-2 (|:| |var| (-1012)) (|:| -3194 (-719))) "failed") $) 111)) (-1545 (($ $) 214 (|has| |#1| (-37 (-388 (-530)))))) (-3657 (($) 201 (|has| |#1| (-1075)) CONST)) (-2624 (((-1046) $) 10)) (-2494 (((-110) $) 164)) (-2505 ((|#1| $) 165)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 93 (|has| |#1| (-432)))) (-2204 (($ (-597 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3845 (((-399 (-1095 $)) (-1095 $)) 100 (|has| |#1| (-850)))) (-1473 (((-399 (-1095 $)) (-1095 $)) 99 (|has| |#1| (-850)))) (-2611 (((-399 $) $) 97 (|has| |#1| (-850)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 211 (|has| |#1| (-344)))) (-3551 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-522))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 205 (|has| |#1| (-344)))) (-4098 (($ $ (-597 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-597 $) (-597 $)) 140) (($ $ (-1012) |#1|) 139) (($ $ (-597 (-1012)) (-597 |#1|)) 138) (($ $ (-1012) $) 137) (($ $ (-597 (-1012)) (-597 $)) 136)) (-2356 (((-719) $) 207 (|has| |#1| (-344)))) (-1902 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-388 $) (-388 $) (-388 $)) 223 (|has| |#1| (-522))) ((|#1| (-388 $) |#1|) 215 (|has| |#1| (-344))) (((-388 $) $ (-388 $)) 203 (|has| |#1| (-522)))) (-2783 (((-3 $ "failed") $ (-719)) 232)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 208 (|has| |#1| (-344)))) (-3060 (($ $ (-1012)) 105 (|has| |#1| (-162))) ((|#1| $) 225 (|has| |#1| (-162)))) (-3289 (($ $ (-1012)) 40) (($ $ (-597 (-1012))) 39) (($ $ (-1012) (-719)) 38) (($ $ (-597 (-1012)) (-597 (-719))) 37) (($ $ (-719)) 251) (($ $) 249) (($ $ (-1099)) 248 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 247 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 246 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 245 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-1429 (((-719) $) 148) (((-719) $ (-1012)) 128) (((-597 (-719)) $ (-597 (-1012))) 127)) (-3260 (((-833 (-360)) $) 80 (-12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360)))))) (((-833 (-530)) $) 79 (-12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530)))))) (((-506) $) 78 (-12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))))) (-3829 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ (-1012)) 104 (|has| |#1| (-432)))) (-2665 (((-3 (-1181 $) "failed") (-637 $)) 102 (-3380 (|has| $ (-138)) (|has| |#1| (-850))))) (-1331 (((-3 $ "failed") $ $) 220 (|has| |#1| (-522))) (((-3 (-388 $) "failed") (-388 $) $) 219 (|has| |#1| (-522)))) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 161) (($ (-1012)) 135) (($ (-388 (-530))) 70 (-1461 (|has| |#1| (-975 (-388 (-530)))) (|has| |#1| (-37 (-388 (-530)))))) (($ $) 83 (|has| |#1| (-522)))) (-3441 (((-597 |#1|) $) 166)) (-4085 ((|#1| $ (-719)) 153) (($ $ (-1012) (-719)) 126) (($ $ (-597 (-1012)) (-597 (-719))) 125)) (-3251 (((-3 $ "failed") $) 71 (-1461 (-3380 (|has| $ (-138)) (|has| |#1| (-850))) (|has| |#1| (-138))))) (-3300 (((-719)) 28)) (-2659 (($ $ $ (-719)) 171 (|has| |#1| (-162)))) (-3944 (((-110) $ $) 87 (|has| |#1| (-522)))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-1012)) 36) (($ $ (-597 (-1012))) 35) (($ $ (-1012) (-719)) 34) (($ $ (-597 (-1012)) (-597 (-719))) 33) (($ $ (-719)) 252) (($ $) 250) (($ $ (-1099)) 244 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099))) 243 (|has| |#1| (-841 (-1099)))) (($ $ (-1099) (-719)) 242 (|has| |#1| (-841 (-1099)))) (($ $ (-597 (-1099)) (-597 (-719))) 241 (|has| |#1| (-841 (-1099)))) (($ $ (-1 |#1| |#1|) (-719)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2306 (((-110) $ $) 74 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 73 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 6)) (-2297 (((-110) $ $) 75 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 72 (|has| |#1| (-795)))) (-2364 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 156 (|has| |#1| (-37 (-388 (-530))))) (($ (-388 (-530)) $) 155 (|has| |#1| (-37 (-388 (-530))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
-(((-1157 |#1|) (-133) (-984)) (T -1157))
-((-1825 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1157 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4)))) (-2609 (*1 *2 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-5 *2 (-1095 *3)))) (-1370 (*1 *1 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-984)) (-4 *1 (-1157 *3)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-2783 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-1357 (*1 *2 *1 *1) (-12 (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-1157 *3)))) (-2970 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-1157 *4)))) (-3269 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-3778 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-1350 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)))) (-3289 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))) (-3060 (*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))) (-3388 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))) (-1902 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)))) (-2031 (*1 *2 *1 *1) (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)) (-5 *2 (-719)))) (-3950 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-1331 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-1331 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)))) (-1903 (*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))) (-2504 (*1 *2 *1 *1) (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-5 *2 (-2 (|:| -2065 *3) (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-1157 *3)))) (-2026 (*1 *2 *1 *1) (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1157 *3)))) (-1902 (*1 *2 *3 *2) (-12 (-5 *3 (-388 *1)) (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))))
-(-13 (-890 |t#1| (-719) (-1012)) (-268 |t#1| |t#1|) (-268 $ $) (-216) (-214 |t#1|) (-10 -8 (-15 -1825 ((-1181 |t#1|) $ (-719))) (-15 -2609 ((-1095 |t#1|) $)) (-15 -1370 ($ (-1095 |t#1|))) (-15 -3081 ($ $ (-719))) (-15 -2783 ((-3 $ "failed") $ (-719))) (-15 -1357 ((-2 (|:| -1324 $) (|:| -3304 $)) $ $)) (-15 -2970 ((-2 (|:| -1324 $) (|:| -3304 $)) $ (-719))) (-15 -3269 ($ $ (-719))) (-15 -3778 ($ $ (-719))) (-15 -1350 ($ $ $)) (-15 -3289 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1075)) (-6 (-1075)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -3060 (|t#1| $)) (-15 -3388 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-522)) (PROGN (-6 (-268 (-388 $) (-388 $))) (-15 -1902 ((-388 $) (-388 $) (-388 $))) (-15 -2031 ((-719) $ $)) (-15 -3950 ($ $ $)) (-15 -1331 ((-3 $ "failed") $ $)) (-15 -1331 ((-3 (-388 $) "failed") (-388 $) $)) (-15 -1903 ($ $ $)) (-15 -2504 ((-2 (|:| -2065 |t#1|) (|:| -1324 $) (|:| -3304 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (-15 -2026 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-289)) (-6 -4265) (-15 -1902 (|t#1| (-388 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (-15 -1545 ($ $)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-719)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-572 (-506)) -12 (|has| (-1012) (-572 (-506))) (|has| |#1| (-572 (-506)))) ((-572 (-833 (-360))) -12 (|has| (-1012) (-572 (-833 (-360)))) (|has| |#1| (-572 (-833 (-360))))) ((-572 (-833 (-530))) -12 (|has| (-1012) (-572 (-833 (-530)))) (|has| |#1| (-572 (-833 (-530))))) ((-214 |#1|) . T) ((-216) . T) ((-268 (-388 $) (-388 $)) |has| |#1| (-522)) ((-268 |#1| |#1|) . T) ((-268 $ $) . T) ((-272) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 $) . T) ((-307 |#1| #0#) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1461 (|has| |#1| (-850)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-491 #2=(-1012) |#1|) . T) ((-491 #2# $) . T) ((-491 $ $) . T) ((-522) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-593 (-530)) |has| |#1| (-593 (-530))) ((-593 |#1|) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-675) . T) ((-795) |has| |#1| (-795)) ((-841 #2#) . T) ((-841 (-1099)) |has| |#1| (-841 (-1099))) ((-827 (-360)) -12 (|has| (-1012) (-827 (-360))) (|has| |#1| (-827 (-360)))) ((-827 (-530)) -12 (|has| (-1012) (-827 (-530))) (|has| |#1| (-827 (-530)))) ((-890 |#1| #0# #2#) . T) ((-850) |has| |#1| (-850)) ((-861) |has| |#1| (-344)) ((-975 (-388 (-530))) |has| |#1| (-975 (-388 (-530)))) ((-975 (-530)) |has| |#1| (-975 (-530))) ((-975 #2#) . T) ((-975 |#1|) . T) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-850)) (|has| |#1| (-522)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1075) |has| |#1| (-1075)) ((-1139) |has| |#1| (-850)))
-((-2746 (((-597 (-1012)) $) 28)) (-2562 (($ $) 25)) (-2725 (($ |#2| |#3|) NIL) (($ $ (-1012) |#3|) 22) (($ $ (-597 (-1012)) (-597 |#3|)) 21)) (-2521 (($ $) 14)) (-2533 ((|#2| $) 12)) (-1429 ((|#3| $) 10)))
-(((-1158 |#1| |#2| |#3|) (-10 -8 (-15 -2746 ((-597 (-1012)) |#1|)) (-15 -2725 (|#1| |#1| (-597 (-1012)) (-597 |#3|))) (-15 -2725 (|#1| |#1| (-1012) |#3|)) (-15 -2562 (|#1| |#1|)) (-15 -2725 (|#1| |#2| |#3|)) (-15 -1429 (|#3| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2533 (|#2| |#1|))) (-1159 |#2| |#3|) (-984) (-740)) (T -1158))
-NIL
-(-10 -8 (-15 -2746 ((-597 (-1012)) |#1|)) (-15 -2725 (|#1| |#1| (-597 (-1012)) (-597 |#3|))) (-15 -2725 (|#1| |#1| (-1012) |#3|)) (-15 -2562 (|#1| |#1|)) (-15 -2725 (|#1| |#2| |#3|)) (-15 -1429 (|#3| |#1|)) (-15 -2521 (|#1| |#1|)) (-15 -2533 (|#2| |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-3678 (((-1080 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-3555 (((-110) $) 71)) (-2031 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-2731 (((-110) $) 30)) (-3081 (($ $ (-862)) 99)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| |#2|) 59) (($ $ (-1012) |#2|) 74) (($ $ (-597 (-1012)) (-597 |#2|)) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-3168 (($ $ |#2|) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1902 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-1429 ((|#2| $) 62)) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45 (|has| |#1| (-162)))) (-4085 ((|#1| $ |#2|) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-4136 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-1159 |#1| |#2|) (-133) (-984) (-740)) (T -1159))
-((-3678 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1080 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1902 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-4007 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (-5 *2 (-1099)))) (-3705 (*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)))) (-2031 (*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-2031 (*1 *2 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-1951 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-1951 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4136 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2366 (*2 (-1099)))) (-4 *2 (-984)))) (-3168 (*1 *1 *1 *2) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))) (-4098 (*1 *2 *1 *3) (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1080 *3)))))
-(-13 (-913 |t#1| |t#2| (-1012)) (-10 -8 (-15 -3678 ((-1080 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1902 (|t#1| $ |t#2|)) (-15 -4007 ((-1099) $)) (-15 -3705 (|t#1| $)) (-15 -3081 ($ $ (-862))) (-15 -2031 (|t#2| $)) (-15 -2031 (|t#2| $ |t#2|)) (-15 -1951 ($ $ |t#2|)) (-15 -1951 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2366 (|t#1| (-1099)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4136 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -3168 ($ $ |t#2|)) (IF (|has| |t#2| (-1039)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-216)) (IF (|has| |t#1| (-841 (-1099))) (-6 (-841 (-1099))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4098 ((-1080 |t#1|) $ |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-268 $ $) |has| |#2| (-1039)) ((-272) |has| |#1| (-522)) ((-522) |has| |#1| (-522)) ((-599 #0#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| |#2| (-1012)) . T) ((-990 #0#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-3544 ((|#2| |#2|) 12)) (-3272 (((-399 |#2|) |#2|) 14)) (-2286 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530)))) 30)))
-(((-1160 |#1| |#2|) (-10 -7 (-15 -3272 ((-399 |#2|) |#2|)) (-15 -3544 (|#2| |#2|)) (-15 -2286 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530)))))) (-522) (-13 (-1157 |#1|) (-522) (-10 -8 (-15 -2204 ($ $ $))))) (T -1160))
-((-2286 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-530)))) (-4 *4 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2204 ($ $ $))))) (-4 *3 (-522)) (-5 *1 (-1160 *3 *4)))) (-3544 (*1 *2 *2) (-12 (-4 *3 (-522)) (-5 *1 (-1160 *3 *2)) (-4 *2 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2204 ($ $ $))))))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-1160 *4 *3)) (-4 *3 (-13 (-1157 *4) (-522) (-10 -8 (-15 -2204 ($ $ $))))))))
-(-10 -7 (-15 -3272 ((-399 |#2|) |#2|)) (-15 -3544 (|#2| |#2|)) (-15 -2286 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-530))))))
-((-3217 (((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|)) 24)))
-(((-1161 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3217 ((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|)))) (-984) (-984) (-1099) (-1099) |#1| |#2|) (T -1161))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5 *7 *9)) (-4 *5 (-984)) (-4 *6 (-984)) (-14 *7 (-1099)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1166 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1099)))))
-(-10 -7 (-15 -3217 ((-1166 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1166 |#1| |#3| |#5|))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) 96) (($ $ (-388 (-530)) (-388 (-530))) 95)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 103)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 160 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 169)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-3590 (($ $ $) 155 (|has| |#1| (-344)))) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 154 (|has| |#1| (-344)))) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-344)))) (-3295 (((-110) $) 162 (|has| |#1| (-344)))) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) 98) (((-388 (-530)) $ (-388 (-530))) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 99) (($ $ (-388 (-530))) 168)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-344)))) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-388 (-530))) 59) (($ $ (-1012) (-388 (-530))) 74) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1424 (((-1082) $) 9)) (-2483 (($ $) 163 (|has| |#1| (-344)))) (-1545 (($ $) 167 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 166 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2611 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-344)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) 152 (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) 102) (($ $ $) 79 (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-1429 (((-388 (-530)) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-1162 |#1|) (-133) (-984)) (T -1162))
-((-2460 (*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4)))) (-4 *4 (-984)) (-4 *1 (-1162 *4)))) (-3081 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-1162 *3)) (-4 *3 (-984)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-1162 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1545 (*1 *1 *1 *2) (-1461 (-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2746 ((-597 *2) *3))) (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
-(-13 (-1159 |t#1| (-388 (-530))) (-10 -8 (-15 -2460 ($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |t#1|))))) (-15 -3081 ($ $ (-388 (-530)))) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (IF (|has| |t#1| (-15 -1545 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2746 ((-597 (-1099)) |t#1|))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-530))) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-388 (-530)) (-1039)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T))
-((-1813 (((-110) $) 12)) (-3139 (((-3 |#3| "failed") $) 17)) (-2585 ((|#3| $) 14)))
-(((-1163 |#1| |#2| |#3|) (-10 -8 (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -1813 ((-110) |#1|))) (-1164 |#2| |#3|) (-984) (-1141 |#2|)) (T -1163))
-NIL
-(-10 -8 (-15 -2585 (|#3| |#1|)) (-15 -3139 ((-3 |#3| "failed") |#1|)) (-15 -1813 ((-110) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) 96) (($ $ (-388 (-530)) (-388 (-530))) 95)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 103)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 160 (|has| |#1| (-344)))) (-3272 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 169)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#2| "failed") $) 180)) (-2585 ((|#2| $) 179)) (-3590 (($ $ $) 155 (|has| |#1| (-344)))) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-2185 (((-388 (-530)) $) 177)) (-3571 (($ $ $) 154 (|has| |#1| (-344)))) (-2457 (($ (-388 (-530)) |#2|) 178)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 149 (|has| |#1| (-344)))) (-3295 (((-110) $) 162 (|has| |#1| (-344)))) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) 98) (((-388 (-530)) $ (-388 (-530))) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 99) (($ $ (-388 (-530))) 168)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 158 (|has| |#1| (-344)))) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-388 (-530))) 59) (($ $ (-1012) (-388 (-530))) 74) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-2170 (($ (-597 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-3393 ((|#2| $) 176)) (-1707 (((-3 |#2| "failed") $) 174)) (-2817 ((|#2| $) 175)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 163 (|has| |#1| (-344)))) (-1545 (($ $) 167 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 166 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 148 (|has| |#1| (-344)))) (-2204 (($ (-597 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2611 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 156 (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 150 (|has| |#1| (-344)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) 152 (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) 102) (($ $ $) 79 (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 153 (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-1429 (((-388 (-530)) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ |#2|) 181) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-1164 |#1| |#2|) (-133) (-984) (-1141 |t#1|)) (T -1164))
-((-1429 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3)) (-5 *2 (-388 (-530))))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *1 (-1164 *3 *2)) (-4 *2 (-1141 *3)))) (-2457 (*1 *1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-4 *4 (-984)) (-4 *1 (-1164 *4 *3)) (-4 *3 (-1141 *4)))) (-2185 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3)) (-5 *2 (-388 (-530))))) (-3393 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))) (-2817 (*1 *2 *1) (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))) (-1707 (*1 *2 *1) (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
-(-13 (-1162 |t#1|) (-975 |t#2|) (-10 -8 (-15 -2457 ($ (-388 (-530)) |t#2|)) (-15 -2185 ((-388 (-530)) $)) (-15 -3393 (|t#2| $)) (-15 -1429 ((-388 (-530)) $)) (-15 -2366 ($ |t#2|)) (-15 -2817 (|t#2| $)) (-15 -1707 ((-3 |t#2| "failed") $))))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-530))) . T) ((-25) . T) ((-37 #1=(-388 (-530))) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-388 (-530)) (-1039)) ((-272) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-599 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344))) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-861) |has| |#1| (-344)) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-975 |#2|) . T) ((-990 #1#) -1461 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-530))))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1139) |has| |#1| (-344)) ((-1159 |#1| #0#) . T) ((-1162 |#1|) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 96)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) 106) (($ $ (-388 (-530)) (-388 (-530))) 108)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) 51)) (-2386 (($ $) 180 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 156 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) 176 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 152 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) 61)) (-2409 (($ $) 184 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 160 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL)) (-2585 ((|#2| $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) 79)) (-2185 (((-388 (-530)) $) 13)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-2457 (($ (-388 (-530)) |#2|) 11)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) 68)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) 103) (((-388 (-530)) $ (-388 (-530))) 104)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 120) (($ $ (-388 (-530))) 118)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) 31) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 115)) (-2168 (($ $) 150 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3393 ((|#2| $) 12)) (-1707 (((-3 |#2| "failed") $) 41)) (-2817 ((|#2| $) 42)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) 93 (|has| |#1| (-344)))) (-1545 (($ $) 135 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 140 (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) 112)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) 148 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) 100) (($ $ $) 86 (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 127 (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-1429 (((-388 (-530)) $) 16)) (-2421 (($ $) 186 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 162 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 182 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 158 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 178 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 154 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 110)) (-2366 (((-804) $) NIL) (($ (-530)) 35) (($ |#1|) 27 (|has| |#1| (-162))) (($ |#2|) 32) (($ (-388 (-530))) 128 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) 99)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) 117)) (-3705 ((|#1| $) 98)) (-2459 (($ $) 192 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 168 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) 188 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 164 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 196 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 172 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 198 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 174 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 194 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 170 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 190 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 166 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 21 T CONST)) (-3093 (($) 17 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) 66)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 92 (|has| |#1| (-344)))) (-2351 (($ $) 131) (($ $ $) 72)) (-2339 (($ $ $) 70)) (** (($ $ (-862)) NIL) (($ $ (-719)) 76) (($ $ (-530)) 145 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 146 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1165 |#1| |#2|) (-1164 |#1| |#2|) (-984) (-1141 |#1|)) (T -1165))
-NIL
-(-1164 |#1| |#2|)
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 11)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) NIL (|has| |#1| (-522)))) (-1951 (($ $ (-388 (-530))) NIL) (($ $ (-388 (-530)) (-388 (-530))) NIL)) (-3678 (((-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|))) $) NIL)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-3544 (($ $) NIL (|has| |#1| (-344)))) (-3272 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1426 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-719) (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#1|)))) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1173 |#1| |#2| |#3|) "failed") $) 22)) (-2585 (((-1145 |#1| |#2| |#3|) $) NIL) (((-1173 |#1| |#2| |#3|) $) NIL)) (-3590 (($ $ $) NIL (|has| |#1| (-344)))) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2185 (((-388 (-530)) $) 57)) (-3571 (($ $ $) NIL (|has| |#1| (-344)))) (-2457 (($ (-388 (-530)) (-1145 |#1| |#2| |#3|)) NIL)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) NIL (|has| |#1| (-344)))) (-3295 (((-110) $) NIL (|has| |#1| (-344)))) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-388 (-530)) $) NIL) (((-388 (-530)) $ (-388 (-530))) NIL)) (-2731 (((-110) $) NIL)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) NIL) (($ $ (-388 (-530))) NIL)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-388 (-530))) 30) (($ $ (-1012) (-388 (-530))) NIL) (($ $ (-597 (-1012)) (-597 (-388 (-530)))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-2170 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3393 (((-1145 |#1| |#2| |#3|) $) 60)) (-1707 (((-3 (-1145 |#1| |#2| |#3|) "failed") $) NIL)) (-2817 (((-1145 |#1| |#2| |#3|) $) NIL)) (-1424 (((-1082) $) NIL)) (-2483 (($ $) NIL (|has| |#1| (-344)))) (-1545 (($ $) 39 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) NIL (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 40 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) NIL (|has| |#1| (-344)))) (-2204 (($ (-597 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2611 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2832 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) NIL (|has| |#1| (-344)))) (-3168 (($ $ (-388 (-530))) NIL)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-1286 (((-3 (-597 $) "failed") (-597 $) $) NIL (|has| |#1| (-344)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))))) (-2356 (((-719) $) NIL (|has| |#1| (-344)))) (-1902 ((|#1| $ (-388 (-530))) NIL) (($ $ $) NIL (|has| (-388 (-530)) (-1039)))) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) NIL (|has| |#1| (-344)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $ (-1177 |#2|)) 38)) (-1429 (((-388 (-530)) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) NIL)) (-2366 (((-804) $) 89) (($ (-530)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1145 |#1| |#2| |#3|)) 16) (($ (-1173 |#1| |#2| |#3|)) 17) (($ (-1177 |#2|)) 36) (($ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522)))) (-4085 ((|#1| $ (-388 (-530))) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 12)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-388 (-530))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-530))))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 32 T CONST)) (-3093 (($) 26 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-530)) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 34)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ (-530)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1166 |#1| |#2| |#3|) (-13 (-1164 |#1| (-1145 |#1| |#2| |#3|)) (-975 (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1166))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1164 |#1| (-1145 |#1| |#2| |#3|)) (-975 (-1173 |#1| |#2| |#3|)) (-10 -8 (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 34)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL)) (-3446 (($ $) NIL)) (-1276 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 (-530) "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-530)))) (((-3 (-388 (-530)) "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))) (((-3 (-1166 |#2| |#3| |#4|) "failed") $) 20)) (-2585 (((-530) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-530)))) (((-388 (-530)) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))) (((-1166 |#2| |#3| |#4|) $) NIL)) (-2562 (($ $) 35)) (-2707 (((-3 $ "failed") $) 25)) (-1239 (($ $) NIL (|has| (-1166 |#2| |#3| |#4|) (-432)))) (-2410 (($ $ (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|) $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) 11)) (-3668 (((-110) $) NIL)) (-2725 (($ (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) 23)) (-2944 (((-300 |#2| |#3| |#4|) $) NIL)) (-3756 (($ (-1 (-300 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) $) NIL)) (-3217 (($ (-1 (-1166 |#2| |#3| |#4|) (-1166 |#2| |#3| |#4|)) $) NIL)) (-2595 (((-3 (-788 |#2|) "failed") $) 75)) (-2521 (($ $) NIL)) (-2533 (((-1166 |#2| |#3| |#4|) $) 18)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2494 (((-110) $) NIL)) (-2505 (((-1166 |#2| |#3| |#4|) $) NIL)) (-3551 (((-3 $ "failed") $ (-1166 |#2| |#3| |#4|)) NIL (|has| (-1166 |#2| |#3| |#4|) (-522))) (((-3 $ "failed") $ $) NIL)) (-3942 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $) 58)) (-1429 (((-300 |#2| |#3| |#4|) $) 14)) (-3829 (((-1166 |#2| |#3| |#4|) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-432)))) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ (-1166 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-388 (-530))) NIL (-1461 (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530)))) (|has| (-1166 |#2| |#3| |#4|) (-975 (-388 (-530))))))) (-3441 (((-597 (-1166 |#2| |#3| |#4|)) $) NIL)) (-4085 (((-1166 |#2| |#3| |#4|) $ (-300 |#2| |#3| |#4|)) NIL)) (-3251 (((-3 $ "failed") $) NIL (|has| (-1166 |#2| |#3| |#4|) (-138)))) (-3300 (((-719)) NIL)) (-2659 (($ $ $ (-719)) NIL (|has| (-1166 |#2| |#3| |#4|) (-162)))) (-3944 (((-110) $ $) NIL)) (-3080 (($) 63 T CONST)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ (-1166 |#2| |#3| |#4|)) NIL (|has| (-1166 |#2| |#3| |#4|) (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ (-1166 |#2| |#3| |#4|)) NIL) (($ (-1166 |#2| |#3| |#4|) $) NIL) (($ (-388 (-530)) $) NIL (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| (-1166 |#2| |#3| |#4|) (-37 (-388 (-530)))))))
-(((-1167 |#1| |#2| |#3| |#4|) (-13 (-307 (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-522) (-10 -8 (-15 -2595 ((-3 (-788 |#2|) "failed") $)) (-15 -3942 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $)))) (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)) (-13 (-27) (-1121) (-411 |#1|)) (-1099) |#2|) (T -1167))
-((-2595 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-788 *4)) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))) (-3942 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 *4 *5 *6)) (|:| |%expon| (-300 *4 *5 *6)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4)))))) (|:| |%type| (-1082)))) (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099)) (-14 *6 *4))))
-(-13 (-307 (-1166 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-522) (-10 -8 (-15 -2595 ((-3 (-788 |#2|) "failed") $)) (-15 -3942 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1166 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| |#2|)))))) (|:| |%type| (-1082))) "failed") $))))
-((-3417 ((|#2| $) 29)) (-3254 ((|#2| $) 18)) (-2133 (($ $) 36)) (-1776 (($ $ (-530)) 64)) (-3186 (((-110) $ (-719)) 33)) (-1615 ((|#2| $ |#2|) 61)) (-3312 ((|#2| $ |#2|) 59)) (-2552 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-4091 (($ $ (-597 $)) 60)) (-3245 ((|#2| $) 17)) (-3057 (($ $) NIL) (($ $ (-719)) 42)) (-2011 (((-597 $) $) 26)) (-1646 (((-110) $ $) 50)) (-4027 (((-110) $ (-719)) 32)) (-2763 (((-110) $ (-719)) 31)) (-3615 (((-110) $) 28)) (-2407 ((|#2| $) 24) (($ $ (-719)) 46)) (-1902 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-4246 (((-110) $) 22)) (-3697 (($ $) 39)) (-3301 (($ $) 65)) (-2754 (((-719) $) 41)) (-2004 (($ $) 40)) (-3483 (($ $ $) 58) (($ |#2| $) NIL)) (-2557 (((-597 $) $) 27)) (-2248 (((-110) $ $) 48)) (-2267 (((-719) $) 35)))
-(((-1168 |#1| |#2|) (-10 -8 (-15 -1776 (|#1| |#1| (-530))) (-15 -2552 (|#2| |#1| "last" |#2|)) (-15 -3312 (|#2| |#1| |#2|)) (-15 -2552 (|#1| |#1| "rest" |#1|)) (-15 -2552 (|#2| |#1| "first" |#2|)) (-15 -3301 (|#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -2754 ((-719) |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3245 (|#2| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "last")) (-15 -2407 (|#2| |#1|)) (-15 -3057 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| "rest")) (-15 -3057 (|#1| |#1|)) (-15 -1902 (|#2| |#1| "first")) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#1|)) (-15 -1615 (|#2| |#1| |#2|)) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -4091 (|#1| |#1| (-597 |#1|))) (-15 -1646 ((-110) |#1| |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3417 (|#2| |#1|)) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719)))) (-1169 |#2|) (-1135)) (T -1168))
-NIL
-(-10 -8 (-15 -1776 (|#1| |#1| (-530))) (-15 -2552 (|#2| |#1| "last" |#2|)) (-15 -3312 (|#2| |#1| |#2|)) (-15 -2552 (|#1| |#1| "rest" |#1|)) (-15 -2552 (|#2| |#1| "first" |#2|)) (-15 -3301 (|#1| |#1|)) (-15 -3697 (|#1| |#1|)) (-15 -2754 ((-719) |#1|)) (-15 -2004 (|#1| |#1|)) (-15 -3254 (|#2| |#1|)) (-15 -3245 (|#2| |#1|)) (-15 -2133 (|#1| |#1|)) (-15 -2407 (|#1| |#1| (-719))) (-15 -1902 (|#2| |#1| "last")) (-15 -2407 (|#2| |#1|)) (-15 -3057 (|#1| |#1| (-719))) (-15 -1902 (|#1| |#1| "rest")) (-15 -3057 (|#1| |#1|)) (-15 -1902 (|#2| |#1| "first")) (-15 -3483 (|#1| |#2| |#1|)) (-15 -3483 (|#1| |#1| |#1|)) (-15 -1615 (|#2| |#1| |#2|)) (-15 -2552 (|#2| |#1| "value" |#2|)) (-15 -4091 (|#1| |#1| (-597 |#1|))) (-15 -1646 ((-110) |#1| |#1|)) (-15 -4246 ((-110) |#1|)) (-15 -1902 (|#2| |#1| "value")) (-15 -3417 (|#2| |#1|)) (-15 -3615 ((-110) |#1|)) (-15 -2011 ((-597 |#1|) |#1|)) (-15 -2557 ((-597 |#1|) |#1|)) (-15 -2248 ((-110) |#1| |#1|)) (-15 -2267 ((-719) |#1|)) (-15 -3186 ((-110) |#1| (-719))) (-15 -4027 ((-110) |#1| (-719))) (-15 -2763 ((-110) |#1| (-719))))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-3417 ((|#1| $) 48)) (-3254 ((|#1| $) 65)) (-2133 (($ $) 67)) (-1776 (($ $ (-530)) 52 (|has| $ (-6 -4270)))) (-3186 (((-110) $ (-719)) 8)) (-1615 ((|#1| $ |#1|) 39 (|has| $ (-6 -4270)))) (-1886 (($ $ $) 56 (|has| $ (-6 -4270)))) (-3312 ((|#1| $ |#1|) 54 (|has| $ (-6 -4270)))) (-1647 ((|#1| $ |#1|) 58 (|has| $ (-6 -4270)))) (-2552 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4270))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4270))) (($ $ "rest" $) 55 (|has| $ (-6 -4270))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4270)))) (-4091 (($ $ (-597 $)) 41 (|has| $ (-6 -4270)))) (-3245 ((|#1| $) 66)) (-2350 (($) 7 T CONST)) (-3057 (($ $) 73) (($ $ (-719)) 71)) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-2011 (((-597 $) $) 50)) (-1646 (((-110) $ $) 42 (|has| |#1| (-1027)))) (-4027 (((-110) $ (-719)) 9)) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35)) (-2763 (((-110) $ (-719)) 10)) (-3390 (((-597 |#1|) $) 45)) (-3615 (((-110) $) 49)) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-2407 ((|#1| $) 70) (($ $ (-719)) 68)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 76) (($ $ (-719)) 74)) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2539 (((-530) $ $) 44)) (-4246 (((-110) $) 46)) (-3697 (($ $) 62)) (-3301 (($ $) 59 (|has| $ (-6 -4270)))) (-2754 (((-719) $) 63)) (-2004 (($ $) 64)) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2579 (($ $) 13)) (-1328 (($ $ $) 61 (|has| $ (-6 -4270))) (($ $ |#1|) 60 (|has| $ (-6 -4270)))) (-3483 (($ $ $) 78) (($ |#1| $) 77)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-2557 (((-597 $) $) 51)) (-4153 (((-110) $ $) 43 (|has| |#1| (-1027)))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-1169 |#1|) (-133) (-1135)) (T -1169))
-((-3483 (*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3483 (*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3048 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-3057 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1902 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-3057 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-2407 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1902 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2407 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-2133 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3245 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3254 (*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2004 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2754 (*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))) (-3697 (*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1328 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1328 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-3301 (*1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1647 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1886 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2552 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))) (-3312 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-2552 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))) (-1776 (*1 *1 *1 *2) (-12 (-5 *2 (-530)) (|has| *1 (-6 -4270)) (-4 *1 (-1169 *3)) (-4 *3 (-1135)))))
-(-13 (-949 |t#1|) (-10 -8 (-15 -3483 ($ $ $)) (-15 -3483 ($ |t#1| $)) (-15 -3048 (|t#1| $)) (-15 -1902 (|t#1| $ "first")) (-15 -3048 ($ $ (-719))) (-15 -3057 ($ $)) (-15 -1902 ($ $ "rest")) (-15 -3057 ($ $ (-719))) (-15 -2407 (|t#1| $)) (-15 -1902 (|t#1| $ "last")) (-15 -2407 ($ $ (-719))) (-15 -2133 ($ $)) (-15 -3245 (|t#1| $)) (-15 -3254 (|t#1| $)) (-15 -2004 ($ $)) (-15 -2754 ((-719) $)) (-15 -3697 ($ $)) (IF (|has| $ (-6 -4270)) (PROGN (-15 -1328 ($ $ $)) (-15 -1328 ($ $ |t#1|)) (-15 -3301 ($ $)) (-15 -1647 (|t#1| $ |t#1|)) (-15 -2552 (|t#1| $ "first" |t#1|)) (-15 -1886 ($ $ $)) (-15 -2552 ($ $ "rest" $)) (-15 -3312 (|t#1| $ |t#1|)) (-15 -2552 (|t#1| $ "last" |t#1|)) (-15 -1776 ($ $ (-530)))) |%noBranch|)))
-(((-33) . T) ((-99) |has| |#1| (-1027)) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-571 (-804)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-468 |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-949 |#1|) . T) ((-1027) |has| |#1| (-1027)) ((-1135) . T))
-((-3217 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
-(((-1170 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3217 (|#4| (-1 |#2| |#1|) |#3|))) (-984) (-984) (-1172 |#1|) (-1172 |#2|)) (T -1170))
-((-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984)) (-4 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5)))))
-(-10 -7 (-15 -3217 (|#4| (-1 |#2| |#1|) |#3|)))
-((-1813 (((-110) $) 15)) (-2386 (($ $) 92)) (-2244 (($ $) 68)) (-2360 (($ $) 88)) (-2219 (($ $) 64)) (-2409 (($ $) 96)) (-2269 (($ $) 72)) (-2168 (($ $) 62)) (-2853 (($ $) 60)) (-2421 (($ $) 98)) (-2281 (($ $) 74)) (-2398 (($ $) 94)) (-2254 (($ $) 70)) (-2373 (($ $) 90)) (-2231 (($ $) 66)) (-2366 (((-804) $) 48) (($ (-530)) NIL) (($ (-388 (-530))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2459 (($ $) 104)) (-2314 (($ $) 80)) (-2434 (($ $) 100)) (-2293 (($ $) 76)) (-2485 (($ $) 108)) (-2334 (($ $) 84)) (-3632 (($ $) 110)) (-2347 (($ $) 86)) (-2472 (($ $) 106)) (-2324 (($ $) 82)) (-2446 (($ $) 102)) (-2304 (($ $) 78)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-388 (-530))) 58)))
-(((-1171 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -2244 (|#1| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2168 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -1813 ((-110) |#1|)) (-15 -2366 ((-804) |#1|))) (-1172 |#2|) (-984)) (T -1171))
-NIL
-(-10 -8 (-15 ** (|#1| |#1| (-388 (-530)))) (-15 -2244 (|#1| |#1|)) (-15 -2219 (|#1| |#1|)) (-15 -2269 (|#1| |#1|)) (-15 -2281 (|#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -2231 (|#1| |#1|)) (-15 -2304 (|#1| |#1|)) (-15 -2324 (|#1| |#1|)) (-15 -2347 (|#1| |#1|)) (-15 -2334 (|#1| |#1|)) (-15 -2293 (|#1| |#1|)) (-15 -2314 (|#1| |#1|)) (-15 -2373 (|#1| |#1|)) (-15 -2398 (|#1| |#1|)) (-15 -2421 (|#1| |#1|)) (-15 -2409 (|#1| |#1|)) (-15 -2360 (|#1| |#1|)) (-15 -2386 (|#1| |#1|)) (-15 -2446 (|#1| |#1|)) (-15 -2472 (|#1| |#1|)) (-15 -3632 (|#1| |#1|)) (-15 -2485 (|#1| |#1|)) (-15 -2434 (|#1| |#1|)) (-15 -2459 (|#1| |#1|)) (-15 -2168 (|#1| |#1|)) (-15 -2853 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2366 (|#1| |#2|)) (-15 -2366 (|#1| |#1|)) (-15 -2366 (|#1| (-388 (-530)))) (-15 -2366 (|#1| (-530))) (-15 ** (|#1| |#1| (-719))) (-15 ** (|#1| |#1| (-862))) (-15 -1813 ((-110) |#1|)) (-15 -2366 ((-804) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2746 (((-597 (-1012)) $) 72)) (-4007 (((-1099) $) 101)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 49 (|has| |#1| (-522)))) (-3446 (($ $) 50 (|has| |#1| (-522)))) (-1276 (((-110) $) 52 (|has| |#1| (-522)))) (-1951 (($ $ (-719)) 96) (($ $ (-719) (-719)) 95)) (-3678 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 103)) (-2386 (($ $) 133 (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) 116 (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) 19)) (-2625 (($ $) 115 (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) 132 (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) 117 (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 153) (($ (-1080 |#1|)) 151)) (-2409 (($ $) 131 (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) 118 (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) 17 T CONST)) (-2562 (($ $) 58)) (-2707 (((-3 $ "failed") $) 32)) (-3745 (($ $) 150)) (-1761 (((-893 |#1|) $ (-719)) 148) (((-893 |#1|) $ (-719) (-719)) 147)) (-3555 (((-110) $) 71)) (-1948 (($) 143 (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $) 98) (((-719) $ (-719)) 97)) (-2731 (((-110) $) 30)) (-3741 (($ $ (-530)) 114 (|has| |#1| (-37 (-388 (-530)))))) (-3081 (($ $ (-862)) 99)) (-4219 (($ (-1 |#1| (-530)) $) 149)) (-3668 (((-110) $) 60)) (-2725 (($ |#1| (-719)) 59) (($ $ (-1012) (-719)) 74) (($ $ (-597 (-1012)) (-597 (-719))) 73)) (-3217 (($ (-1 |#1| |#1|) $) 61)) (-2168 (($ $) 140 (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) 63)) (-2533 ((|#1| $) 64)) (-1424 (((-1082) $) 9)) (-1545 (($ $) 145 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 144 (-1461 (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-900)) (|has| |#1| (-1121)) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-37 (-388 (-530)))))))) (-2624 (((-1046) $) 10)) (-3168 (($ $ (-719)) 93)) (-3551 (((-3 $ "failed") $ $) 48 (|has| |#1| (-522)))) (-2853 (($ $) 141 (|has| |#1| (-37 (-388 (-530)))))) (-4098 (((-1080 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1902 ((|#1| $ (-719)) 102) (($ $ $) 79 (|has| (-719) (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) 87 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099) (-719)) 86 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-597 (-1099))) 85 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099)) 84 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) 82 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-1429 (((-719) $) 62)) (-2421 (($ $) 130 (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) 119 (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) 129 (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) 120 (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) 128 (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) 121 (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 70)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ (-388 (-530))) 55 (|has| |#1| (-37 (-388 (-530))))) (($ $) 47 (|has| |#1| (-522))) (($ |#1|) 45 (|has| |#1| (-162)))) (-3441 (((-1080 |#1|) $) 152)) (-4085 ((|#1| $ (-719)) 57)) (-3251 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-3300 (((-719)) 28)) (-3705 ((|#1| $) 100)) (-2459 (($ $) 139 (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) 127 (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) 51 (|has| |#1| (-522)))) (-2434 (($ $) 138 (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) 126 (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) 137 (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) 125 (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-719)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) 136 (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) 124 (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) 135 (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) 123 (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) 134 (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) 122 (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) 91 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099) (-719)) 90 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-597 (-1099))) 89 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-1099)) 88 (-12 (|has| |#1| (-841 (-1099))) (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (($ $ (-719)) 83 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ |#1|) 146 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 113 (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-530)) $) 54 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) 53 (|has| |#1| (-37 (-388 (-530)))))))
-(((-1172 |#1|) (-133) (-984)) (T -1172))
-((-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 (-2 (|:| |k| (-719)) (|:| |c| *3)))) (-4 *3 (-984)) (-4 *1 (-1172 *3)))) (-3441 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-5 *2 (-1080 *3)))) (-2460 (*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-4 *1 (-1172 *3)))) (-3745 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)))) (-4219 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1172 *3)) (-4 *3 (-984)))) (-1761 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-893 *4)))) (-1761 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984)) (-5 *2 (-893 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-344)))) (-1545 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530)))))) (-1545 (*1 *1 *1 *2) (-1461 (-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121)) (-4 *3 (-37 (-388 (-530)))))) (-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-12 (|has| *3 (-15 -2746 ((-597 *2) *3))) (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530)))))))))
-(-13 (-1159 |t#1| (-719)) (-10 -8 (-15 -2460 ($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |t#1|))))) (-15 -3441 ((-1080 |t#1|) $)) (-15 -2460 ($ (-1080 |t#1|))) (-15 -3745 ($ $)) (-15 -4219 ($ (-1 |t#1| (-530)) $)) (-15 -1761 ((-893 |t#1|) $ (-719))) (-15 -1761 ((-893 |t#1|) $ (-719) (-719))) (IF (|has| |t#1| (-344)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-530)))) (PROGN (-15 -1545 ($ $)) (IF (|has| |t#1| (-15 -1545 (|t#1| |t#1| (-1099)))) (IF (|has| |t#1| (-15 -2746 ((-597 (-1099)) |t#1|))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-900)) (IF (|has| |t#1| (-29 (-530))) (-15 -1545 ($ $ (-1099))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-941)) (-6 (-1121))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-719)) . T) ((-25) . T) ((-37 #1=(-388 (-530))) |has| |#1| (-37 (-388 (-530)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-522)) ((-34) |has| |#1| (-37 (-388 (-530)))) ((-93) |has| |#1| (-37 (-388 (-530)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-530)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-719) |#1|))) ((-266) |has| |#1| (-37 (-388 (-530)))) ((-268 $ $) |has| (-719) (-1039)) ((-272) |has| |#1| (-522)) ((-471) |has| |#1| (-37 (-388 (-530)))) ((-522) |has| |#1| (-522)) ((-599 #1#) |has| |#1| (-37 (-388 (-530)))) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #1#) |has| |#1| (-37 (-388 (-530)))) ((-666 |#1|) |has| |#1| (-162)) ((-666 $) |has| |#1| (-522)) ((-675) . T) ((-841 (-1099)) -12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099)))) ((-913 |#1| #0# (-1012)) . T) ((-941) |has| |#1| (-37 (-388 (-530)))) ((-990 #1#) |has| |#1| (-37 (-388 (-530)))) ((-990 |#1|) . T) ((-990 $) -1461 (|has| |#1| (-522)) (|has| |#1| (-162))) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1121) |has| |#1| (-37 (-388 (-530)))) ((-1124) |has| |#1| (-37 (-388 (-530)))) ((-1159 |#1| #0#) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-2746 (((-597 (-1012)) $) NIL)) (-4007 (((-1099) $) 87)) (-1971 (((-1154 |#2| |#1|) $ (-719)) 73)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) NIL (|has| |#1| (-522)))) (-3446 (($ $) NIL (|has| |#1| (-522)))) (-1276 (((-110) $) 137 (|has| |#1| (-522)))) (-1951 (($ $ (-719)) 122) (($ $ (-719) (-719)) 124)) (-3678 (((-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|))) $) 42)) (-2386 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2244 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-1889 (((-3 $ "failed") $ $) NIL)) (-2625 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2360 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2219 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2460 (($ (-1080 (-2 (|:| |k| (-719)) (|:| |c| |#1|)))) 53) (($ (-1080 |#1|)) NIL)) (-2409 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2269 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2350 (($) NIL T CONST)) (-1494 (($ $) 128)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-3745 (($ $) 135)) (-1761 (((-893 |#1|) $ (-719)) 63) (((-893 |#1|) $ (-719) (-719)) 65)) (-3555 (((-110) $) NIL)) (-1948 (($) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2031 (((-719) $) NIL) (((-719) $ (-719)) NIL)) (-2731 (((-110) $) NIL)) (-1273 (($ $) 112)) (-3741 (($ $ (-530)) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2427 (($ (-530) (-530) $) 130)) (-3081 (($ $ (-862)) 134)) (-4219 (($ (-1 |#1| (-530)) $) 106)) (-3668 (((-110) $) NIL)) (-2725 (($ |#1| (-719)) 15) (($ $ (-1012) (-719)) NIL) (($ $ (-597 (-1012)) (-597 (-719))) NIL)) (-3217 (($ (-1 |#1| |#1|) $) 94)) (-2168 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2521 (($ $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-4078 (($ $) 110)) (-2677 (($ $) 108)) (-3635 (($ (-530) (-530) $) 132)) (-1545 (($ $) 145 (|has| |#1| (-37 (-388 (-530))))) (($ $ (-1099)) 151 (-1461 (-12 (|has| |#1| (-15 -1545 (|#1| |#1| (-1099)))) (|has| |#1| (-15 -2746 ((-597 (-1099)) |#1|))) (|has| |#1| (-37 (-388 (-530))))) (-12 (|has| |#1| (-29 (-530))) (|has| |#1| (-37 (-388 (-530)))) (|has| |#1| (-900)) (|has| |#1| (-1121))))) (($ $ (-1177 |#2|)) 146 (|has| |#1| (-37 (-388 (-530)))))) (-2624 (((-1046) $) NIL)) (-4090 (($ $ (-530) (-530)) 116)) (-3168 (($ $ (-719)) 118)) (-3551 (((-3 $ "failed") $ $) NIL (|has| |#1| (-522)))) (-2853 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2795 (($ $) 114)) (-4098 (((-1080 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-719)))))) (-1902 ((|#1| $ (-719)) 91) (($ $ $) 126 (|has| (-719) (-1039)))) (-3289 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) 103 (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $ (-1177 |#2|)) 99)) (-1429 (((-719) $) NIL)) (-2421 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2281 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2398 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2254 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2373 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2231 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4050 (($ $) 120)) (-2366 (((-804) $) NIL) (($ (-530)) 24) (($ (-388 (-530))) 143 (|has| |#1| (-37 (-388 (-530))))) (($ $) NIL (|has| |#1| (-522))) (($ |#1|) 23 (|has| |#1| (-162))) (($ (-1154 |#2| |#1|)) 80) (($ (-1177 |#2|)) 20)) (-3441 (((-1080 |#1|) $) NIL)) (-4085 ((|#1| $ (-719)) 90)) (-3251 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-3300 (((-719)) NIL)) (-3705 ((|#1| $) 88)) (-2459 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2314 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3944 (((-110) $ $) NIL (|has| |#1| (-522)))) (-2434 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2293 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2485 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2334 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-4136 ((|#1| $ (-719)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-719)))) (|has| |#1| (-15 -2366 (|#1| (-1099))))))) (-3632 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2347 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2472 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2324 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2446 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-2304 (($ $) NIL (|has| |#1| (-37 (-388 (-530)))))) (-3080 (($) 17 T CONST)) (-3093 (($) 13 T CONST)) (-3340 (($ $ (-597 (-1099)) (-597 (-719))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099) (-719)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-597 (-1099))) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-1099)) NIL (-12 (|has| |#1| (-15 * (|#1| (-719) |#1|))) (|has| |#1| (-841 (-1099))))) (($ $ (-719)) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-719) |#1|))))) (-2248 (((-110) $ $) NIL)) (-2364 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) 102)) (-2339 (($ $ $) 18)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL) (($ $ |#1|) 140 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-388 (-530)) $) NIL (|has| |#1| (-37 (-388 (-530))))) (($ $ (-388 (-530))) NIL (|has| |#1| (-37 (-388 (-530)))))))
-(((-1173 |#1| |#2| |#3|) (-13 (-1172 |#1|) (-10 -8 (-15 -2366 ($ (-1154 |#2| |#1|))) (-15 -1971 ((-1154 |#2| |#1|) $ (-719))) (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (-15 -2677 ($ $)) (-15 -4078 ($ $)) (-15 -1273 ($ $)) (-15 -2795 ($ $)) (-15 -4090 ($ $ (-530) (-530))) (-15 -1494 ($ $)) (-15 -2427 ($ (-530) (-530) $)) (-15 -3635 ($ (-530) (-530) $)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|))) (-984) (-1099) |#1|) (T -1173))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-1154 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5)))) (-1971 (*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1173 *4 *5 *6)) (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))) (-2366 (*1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-3289 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *5 *3))) (-2677 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-4078 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-1273 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-2795 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-4090 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-1494 (*1 *1 *1) (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099)) (-14 *4 *2))) (-2427 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-3635 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099)) (-14 *5 *3))) (-1545 (*1 *1 *1 *2) (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(-13 (-1172 |#1|) (-10 -8 (-15 -2366 ($ (-1154 |#2| |#1|))) (-15 -1971 ((-1154 |#2| |#1|) $ (-719))) (-15 -2366 ($ (-1177 |#2|))) (-15 -3289 ($ $ (-1177 |#2|))) (-15 -2677 ($ $)) (-15 -4078 ($ $)) (-15 -1273 ($ $)) (-15 -2795 ($ $)) (-15 -4090 ($ $ (-530) (-530))) (-15 -1494 ($ $)) (-15 -2427 ($ (-530) (-530) $)) (-15 -3635 ($ (-530) (-530) $)) (IF (|has| |#1| (-37 (-388 (-530)))) (-15 -1545 ($ $ (-1177 |#2|))) |%noBranch|)))
-((-1859 (((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|))) 24)) (-2201 (((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-1893 (((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|)) 13)) (-1333 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-2949 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3986 ((|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|)) 54)) (-3560 (((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|)))) 61)) (-3349 ((|#2| |#2| |#2|) 43)))
-(((-1174 |#1| |#2|) (-10 -7 (-15 -1893 ((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|))) (-15 -2201 ((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1859 ((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|)))) (-15 -3349 (|#2| |#2| |#2|)) (-15 -2949 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1333 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3986 (|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|))) (-15 -3560 ((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|)))))) (-37 (-388 (-530))) (-1172 |#1|)) (T -1174))
-((-3560 (*1 *2 *3 *4) (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 (-1 *6 (-597 *6)))) (-4 *5 (-37 (-388 (-530)))) (-4 *6 (-1172 *5)) (-5 *2 (-597 *6)) (-5 *1 (-1174 *5 *6)))) (-3986 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-597 *2))) (-5 *4 (-597 *5)) (-4 *5 (-37 (-388 (-530)))) (-4 *2 (-1172 *5)) (-5 *1 (-1174 *5 *2)))) (-1333 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-37 (-388 (-530)))))) (-2949 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2)) (-4 *4 (-37 (-388 (-530)))))) (-3349 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1174 *3 *2)) (-4 *2 (-1172 *3)))) (-1859 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-597 *5))) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-597 (-1080 *4)))) (-5 *1 (-1174 *4 *5)))) (-2201 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))) (-1893 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4)) (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))))
-(-10 -7 (-15 -1893 ((-1 (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2|))) (-15 -2201 ((-1 (-1080 |#1|) (-1080 |#1|) (-1080 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -1859 ((-1 (-1080 |#1|) (-597 (-1080 |#1|))) (-1 |#2| (-597 |#2|)))) (-15 -3349 (|#2| |#2| |#2|)) (-15 -2949 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -1333 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3986 (|#2| (-1 |#2| (-597 |#2|)) (-597 |#1|))) (-15 -3560 ((-597 |#2|) (-597 |#1|) (-597 (-1 |#2| (-597 |#2|))))))
-((-3810 ((|#2| |#4| (-719)) 30)) (-4235 ((|#4| |#2|) 25)) (-2804 ((|#4| (-388 |#2|)) 52 (|has| |#1| (-522)))) (-3347 (((-1 |#4| (-597 |#4|)) |#3|) 46)))
-(((-1175 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4235 (|#4| |#2|)) (-15 -3810 (|#2| |#4| (-719))) (-15 -3347 ((-1 |#4| (-597 |#4|)) |#3|)) (IF (|has| |#1| (-522)) (-15 -2804 (|#4| (-388 |#2|))) |%noBranch|)) (-984) (-1157 |#1|) (-607 |#2|) (-1172 |#1|)) (T -1175))
-((-2804 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-522)) (-4 *4 (-984)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *5 *6 *2)) (-4 *6 (-607 *5)))) (-3347 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-597 *6))) (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-1172 *4)))) (-3810 (*1 *2 *3 *4) (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-607 *2)) (-4 *3 (-1172 *5)))) (-4235 (*1 *2 *3) (-12 (-4 *4 (-984)) (-4 *3 (-1157 *4)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-607 *3)))))
-(-10 -7 (-15 -4235 (|#4| |#2|)) (-15 -3810 (|#2| |#4| (-719))) (-15 -3347 ((-1 |#4| (-597 |#4|)) |#3|)) (IF (|has| |#1| (-522)) (-15 -2804 (|#4| (-388 |#2|))) |%noBranch|))
-NIL
-(((-1176) (-133)) (T -1176))
-NIL
-(-13 (-10 -7 (-6 -4100)))
-((-2352 (((-110) $ $) NIL)) (-4007 (((-1099)) 12)) (-1424 (((-1082) $) 17)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 11) (((-1099) $) 8)) (-2248 (((-110) $ $) 14)))
-(((-1177 |#1|) (-13 (-1027) (-571 (-1099)) (-10 -8 (-15 -2366 ((-1099) $)) (-15 -4007 ((-1099))))) (-1099)) (T -1177))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2))) (-4007 (*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2))))
-(-13 (-1027) (-571 (-1099)) (-10 -8 (-15 -2366 ((-1099) $)) (-15 -4007 ((-1099)))))
-((-1511 (($ (-719)) 18)) (-4176 (((-637 |#2|) $ $) 40)) (-2337 ((|#2| $) 48)) (-4109 ((|#2| $) 47)) (-3334 ((|#2| $ $) 35)) (-3691 (($ $ $) 44)) (-2351 (($ $) 22) (($ $ $) 28)) (-2339 (($ $ $) 15)) (* (($ (-530) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
-(((-1178 |#1| |#2|) (-10 -8 (-15 -2337 (|#2| |#1|)) (-15 -4109 (|#2| |#1|)) (-15 -3691 (|#1| |#1| |#1|)) (-15 -4176 ((-637 |#2|) |#1| |#1|)) (-15 -3334 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1511 (|#1| (-719))) (-15 -2339 (|#1| |#1| |#1|))) (-1179 |#2|) (-1135)) (T -1178))
-NIL
-(-10 -8 (-15 -2337 (|#2| |#1|)) (-15 -4109 (|#2| |#1|)) (-15 -3691 (|#1| |#1| |#1|)) (-15 -4176 ((-637 |#2|) |#1| |#1|)) (-15 -3334 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-530) |#1|)) (-15 -2351 (|#1| |#1| |#1|)) (-15 -2351 (|#1| |#1|)) (-15 -1511 (|#1| (-719))) (-15 -2339 (|#1| |#1| |#1|)))
-((-2352 (((-110) $ $) 19 (|has| |#1| (-1027)))) (-1511 (($ (-719)) 112 (|has| |#1| (-23)))) (-2097 (((-1186) $ (-530) (-530)) 40 (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4270))) (($ $) 88 (-12 (|has| |#1| (-795)) (|has| $ (-6 -4270))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) 8)) (-2552 ((|#1| $ (-530) |#1|) 52 (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) 58 (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4269)))) (-2350 (($) 7 T CONST)) (-1337 (($ $) 90 (|has| $ (-6 -4270)))) (-4106 (($ $) 100)) (-3077 (($ $) 78 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-2383 (($ |#1| $) 77 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) 53 (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) 51)) (-2027 (((-530) (-1 (-110) |#1|) $) 97) (((-530) |#1| $) 96 (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) 95 (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) 30 (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) 105 (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) 69)) (-4027 (((-110) $ (-719)) 9)) (-4010 (((-530) $) 43 (|has| (-530) (-795)))) (-2508 (($ $ $) 87 (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-1549 (((-530) $) 44 (|has| (-530) (-795)))) (-1817 (($ $ $) 86 (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-2337 ((|#1| $) 102 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-2763 (((-110) $ (-719)) 10)) (-4109 ((|#1| $) 103 (-12 (|has| |#1| (-984)) (|has| |#1| (-941))))) (-1424 (((-1082) $) 22 (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) 60) (($ $ $ (-530)) 59)) (-3567 (((-597 (-530)) $) 46)) (-1927 (((-110) (-530) $) 47)) (-2624 (((-1046) $) 21 (|has| |#1| (-1027)))) (-3048 ((|#1| $) 42 (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-1522 (($ $ |#1|) 41 (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) 14)) (-4064 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) 48)) (-3250 (((-110) $) 11)) (-3958 (($) 12)) (-1902 ((|#1| $ (-530) |#1|) 50) ((|#1| $ (-530)) 49) (($ $ (-1148 (-530))) 63)) (-3334 ((|#1| $ $) 106 (|has| |#1| (-984)))) (-1843 (($ $ (-530)) 62) (($ $ (-1148 (-530))) 61)) (-3691 (($ $ $) 104 (|has| |#1| (-984)))) (-2632 (((-719) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4269))) (((-719) |#1| $) 28 (-12 (|has| |#1| (-1027)) (|has| $ (-6 -4269))))) (-3121 (($ $ $ (-530)) 91 (|has| $ (-6 -4270)))) (-2579 (($ $) 13)) (-3260 (((-506) $) 79 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 70)) (-3483 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-597 $)) 65)) (-2366 (((-804) $) 18 (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) 84 (|has| |#1| (-795)))) (-2284 (((-110) $ $) 83 (|has| |#1| (-795)))) (-2248 (((-110) $ $) 20 (|has| |#1| (-1027)))) (-2297 (((-110) $ $) 85 (|has| |#1| (-795)))) (-2272 (((-110) $ $) 82 (|has| |#1| (-795)))) (-2351 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2339 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-530) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-675))) (($ $ |#1|) 107 (|has| |#1| (-675)))) (-2267 (((-719) $) 6 (|has| $ (-6 -4269)))))
-(((-1179 |#1|) (-133) (-1135)) (T -1179))
-((-2339 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-25)))) (-1511 (*1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1135)))) (-2351 (*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21)))) (-2351 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675)))) (-3334 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (-4176 (*1 *2 *1 *1) (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-984)) (-5 *2 (-637 *3)))) (-3691 (*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941)) (-4 *2 (-984)))) (-2337 (*1 *2 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941)) (-4 *2 (-984)))))
-(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2339 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -1511 ($ (-719))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2351 ($ $)) (-15 -2351 ($ $ $)) (-15 * ($ (-530) $))) |%noBranch|) (IF (|has| |t#1| (-675)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-984)) (PROGN (-15 -3334 (|t#1| $ $)) (-15 -4176 ((-637 |t#1|) $ $)) (-15 -3691 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-941)) (IF (|has| |t#1| (-984)) (PROGN (-15 -4109 (|t#1| $)) (-15 -2337 (|t#1| $))) |%noBranch|) |%noBranch|)))
-(((-33) . T) ((-99) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-571 (-804)) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795)) (|has| |#1| (-571 (-804)))) ((-144 |#1|) . T) ((-572 (-506)) |has| |#1| (-572 (-506))) ((-268 #0=(-530) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-563 #0# |#1|) . T) ((-491 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))) ((-602 |#1|) . T) ((-19 |#1|) . T) ((-795) |has| |#1| (-795)) ((-1027) -1461 (|has| |#1| (-1027)) (|has| |#1| (-795))) ((-1135) . T))
-((-2753 (((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 13)) (-2134 ((|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|) 15)) (-3217 (((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|)) 28) (((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|)) 18)))
-(((-1180 |#1| |#2|) (-10 -7 (-15 -2753 ((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3217 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))) (-15 -3217 ((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|)))) (-1135) (-1135)) (T -1180))
-((-3217 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1181 *6)) (-5 *1 (-1180 *5 *6)))) (-3217 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1181 *6)) (-5 *1 (-1180 *5 *6)))) (-2134 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1135)) (-4 *2 (-1135)) (-5 *1 (-1180 *5 *2)))) (-2753 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1135)) (-4 *5 (-1135)) (-5 *2 (-1181 *5)) (-5 *1 (-1180 *6 *5)))))
-(-10 -7 (-15 -2753 ((-1181 |#2|) (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -2134 (|#2| (-1 |#2| |#1| |#2|) (-1181 |#1|) |#2|)) (-15 -3217 ((-1181 |#2|) (-1 |#2| |#1|) (-1181 |#1|))) (-15 -3217 ((-3 (-1181 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1181 |#1|))))
-((-2352 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-1511 (($ (-719)) NIL (|has| |#1| (-23)))) (-3279 (($ (-597 |#1|)) 9)) (-2097 (((-1186) $ (-530) (-530)) NIL (|has| $ (-6 -4270)))) (-2741 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-795)))) (-1627 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4270))) (($ $) NIL (-12 (|has| $ (-6 -4270)) (|has| |#1| (-795))))) (-1307 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-795)))) (-3186 (((-110) $ (-719)) NIL)) (-2552 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270))) ((|#1| $ (-1148 (-530)) |#1|) NIL (|has| $ (-6 -4270)))) (-2283 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2350 (($) NIL T CONST)) (-1337 (($ $) NIL (|has| $ (-6 -4270)))) (-4106 (($ $) NIL)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2383 (($ |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2134 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4269))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4269)))) (-3592 ((|#1| $ (-530) |#1|) NIL (|has| $ (-6 -4270)))) (-3532 ((|#1| $ (-530)) NIL)) (-2027 (((-530) (-1 (-110) |#1|) $) NIL) (((-530) |#1| $) NIL (|has| |#1| (-1027))) (((-530) |#1| $ (-530)) NIL (|has| |#1| (-1027)))) (-3779 (((-597 |#1|) $) 15 (|has| $ (-6 -4269)))) (-4176 (((-637 |#1|) $ $) NIL (|has| |#1| (-984)))) (-3538 (($ (-719) |#1|) NIL)) (-4027 (((-110) $ (-719)) NIL)) (-4010 (((-530) $) NIL (|has| (-530) (-795)))) (-2508 (($ $ $) NIL (|has| |#1| (-795)))) (-3683 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-795)))) (-2395 (((-597 |#1|) $) NIL (|has| $ (-6 -4269)))) (-4197 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-1549 (((-530) $) NIL (|has| (-530) (-795)))) (-1817 (($ $ $) NIL (|has| |#1| (-795)))) (-3583 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-2337 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-2763 (((-110) $ (-719)) NIL)) (-4109 ((|#1| $) NIL (-12 (|has| |#1| (-941)) (|has| |#1| (-984))))) (-1424 (((-1082) $) NIL (|has| |#1| (-1027)))) (-4028 (($ |#1| $ (-530)) NIL) (($ $ $ (-530)) NIL)) (-3567 (((-597 (-530)) $) NIL)) (-1927 (((-110) (-530) $) NIL)) (-2624 (((-1046) $) NIL (|has| |#1| (-1027)))) (-3048 ((|#1| $) NIL (|has| (-530) (-795)))) (-1437 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-1522 (($ $ |#1|) NIL (|has| $ (-6 -4270)))) (-1533 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027)))) (($ $ (-597 |#1|) (-597 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1027))))) (-2391 (((-110) $ $) NIL)) (-4064 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-2261 (((-597 |#1|) $) NIL)) (-3250 (((-110) $) NIL)) (-3958 (($) NIL)) (-1902 ((|#1| $ (-530) |#1|) NIL) ((|#1| $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3334 ((|#1| $ $) NIL (|has| |#1| (-984)))) (-1843 (($ $ (-530)) NIL) (($ $ (-1148 (-530))) NIL)) (-3691 (($ $ $) NIL (|has| |#1| (-984)))) (-2632 (((-719) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269))) (((-719) |#1| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#1| (-1027))))) (-3121 (($ $ $ (-530)) NIL (|has| $ (-6 -4270)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) 19 (|has| |#1| (-572 (-506))))) (-2377 (($ (-597 |#1|)) 8)) (-3483 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-597 $)) NIL)) (-2366 (((-804) $) NIL (|has| |#1| (-571 (-804))))) (-3889 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4269)))) (-2306 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2284 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2248 (((-110) $ $) NIL (|has| |#1| (-1027)))) (-2297 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2272 (((-110) $ $) NIL (|has| |#1| (-795)))) (-2351 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2339 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-530) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-675))) (($ $ |#1|) NIL (|has| |#1| (-675)))) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1181 |#1|) (-13 (-1179 |#1|) (-10 -8 (-15 -3279 ($ (-597 |#1|))))) (-1135)) (T -1181))
-((-3279 (*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1181 *3)))))
-(-13 (-1179 |#1|) (-10 -8 (-15 -3279 ($ (-597 |#1|)))))
-((-2352 (((-110) $ $) NIL)) (-2645 (((-1082) $ (-1082)) 90) (((-1082) $ (-1082) (-1082)) 88) (((-1082) $ (-1082) (-597 (-1082))) 87)) (-2203 (($) 59)) (-3196 (((-1186) $ (-448) (-862)) 45)) (-1854 (((-1186) $ (-862) (-1082)) 73) (((-1186) $ (-862) (-815)) 74)) (-2223 (((-1186) $ (-862) (-360) (-360)) 48)) (-1283 (((-1186) $ (-1082)) 69)) (-1345 (((-1186) $ (-862) (-1082)) 78)) (-1573 (((-1186) $ (-862) (-360) (-360)) 49)) (-4231 (((-1186) $ (-862) (-862)) 46)) (-2621 (((-1186) $) 70)) (-2686 (((-1186) $ (-862) (-1082)) 77)) (-3157 (((-1186) $ (-448) (-862)) 31)) (-2214 (((-1186) $ (-862) (-1082)) 76)) (-4238 (((-597 (-245)) $) 23) (($ $ (-597 (-245))) 24)) (-3794 (((-1186) $ (-719) (-719)) 43)) (-2720 (($ $) 60) (($ (-448) (-597 (-245))) 61)) (-1424 (((-1082) $) NIL)) (-3078 (((-530) $) 38)) (-2624 (((-1046) $) NIL)) (-2928 (((-1181 (-3 (-448) "undefined")) $) 37)) (-1421 (((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530)) (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530)) (|:| |axesColor| (-815)) (|:| -1854 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $) 36)) (-4165 (((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530)) 68)) (-3180 (((-597 (-884 (-208))) $) NIL)) (-1755 (((-448) $ (-862)) 33)) (-1768 (((-1186) $ (-719) (-719) (-862) (-862)) 40)) (-3008 (((-1186) $ (-1082)) 79)) (-4173 (((-1186) $ (-862) (-1082)) 75)) (-2366 (((-804) $) 85)) (-2361 (((-1186) $) 80)) (-3285 (((-1186) $ (-862) (-1082)) 71) (((-1186) $ (-862) (-815)) 72)) (-2248 (((-110) $ $) NIL)))
-(((-1182) (-13 (-1027) (-10 -8 (-15 -3180 ((-597 (-884 (-208))) $)) (-15 -2203 ($)) (-15 -2720 ($ $)) (-15 -4238 ((-597 (-245)) $)) (-15 -4238 ($ $ (-597 (-245)))) (-15 -2720 ($ (-448) (-597 (-245)))) (-15 -4165 ((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530))) (-15 -1421 ((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530)) (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530)) (|:| |axesColor| (-815)) (|:| -1854 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $)) (-15 -2928 ((-1181 (-3 (-448) "undefined")) $)) (-15 -1283 ((-1186) $ (-1082))) (-15 -3157 ((-1186) $ (-448) (-862))) (-15 -1755 ((-448) $ (-862))) (-15 -3285 ((-1186) $ (-862) (-1082))) (-15 -3285 ((-1186) $ (-862) (-815))) (-15 -1854 ((-1186) $ (-862) (-1082))) (-15 -1854 ((-1186) $ (-862) (-815))) (-15 -2214 ((-1186) $ (-862) (-1082))) (-15 -2686 ((-1186) $ (-862) (-1082))) (-15 -4173 ((-1186) $ (-862) (-1082))) (-15 -3008 ((-1186) $ (-1082))) (-15 -2361 ((-1186) $)) (-15 -1768 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -1573 ((-1186) $ (-862) (-360) (-360))) (-15 -2223 ((-1186) $ (-862) (-360) (-360))) (-15 -1345 ((-1186) $ (-862) (-1082))) (-15 -3794 ((-1186) $ (-719) (-719))) (-15 -3196 ((-1186) $ (-448) (-862))) (-15 -4231 ((-1186) $ (-862) (-862))) (-15 -2645 ((-1082) $ (-1082))) (-15 -2645 ((-1082) $ (-1082) (-1082))) (-15 -2645 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2621 ((-1186) $)) (-15 -3078 ((-530) $)) (-15 -2366 ((-804) $))))) (T -1182))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1182)))) (-3180 (*1 *2 *1) (-12 (-5 *2 (-597 (-884 (-208)))) (-5 *1 (-1182)))) (-2203 (*1 *1) (-5 *1 (-1182))) (-2720 (*1 *1 *1) (-5 *1 (-1182))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182)))) (-4238 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182)))) (-2720 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-597 (-245))) (-5 *1 (-1182)))) (-4165 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-862)) (-5 *4 (-208)) (-5 *5 (-530)) (-5 *6 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530)) (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530)) (|:| |axesColor| (-815)) (|:| -1854 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530))))) (-5 *1 (-1182)))) (-2928 (*1 *2 *1) (-12 (-5 *2 (-1181 (-3 (-448) "undefined"))) (-5 *1 (-1182)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3157 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1755 (*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-5 *2 (-448)) (-5 *1 (-1182)))) (-3285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3285 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1854 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2214 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2686 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-4173 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3008 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1768 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1573 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2223 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-1345 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3196 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))) (-2645 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2645 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2645 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1182)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1182)))))
-(-13 (-1027) (-10 -8 (-15 -3180 ((-597 (-884 (-208))) $)) (-15 -2203 ($)) (-15 -2720 ($ $)) (-15 -4238 ((-597 (-245)) $)) (-15 -4238 ($ $ (-597 (-245)))) (-15 -2720 ($ (-448) (-597 (-245)))) (-15 -4165 ((-1186) $ (-862) (-208) (-208) (-208) (-208) (-530) (-530) (-530) (-530) (-815) (-530) (-815) (-530))) (-15 -1421 ((-1181 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530)) (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530)) (|:| |axesColor| (-815)) (|:| -1854 (-530)) (|:| |unitsColor| (-815)) (|:| |showing| (-530)))) $)) (-15 -2928 ((-1181 (-3 (-448) "undefined")) $)) (-15 -1283 ((-1186) $ (-1082))) (-15 -3157 ((-1186) $ (-448) (-862))) (-15 -1755 ((-448) $ (-862))) (-15 -3285 ((-1186) $ (-862) (-1082))) (-15 -3285 ((-1186) $ (-862) (-815))) (-15 -1854 ((-1186) $ (-862) (-1082))) (-15 -1854 ((-1186) $ (-862) (-815))) (-15 -2214 ((-1186) $ (-862) (-1082))) (-15 -2686 ((-1186) $ (-862) (-1082))) (-15 -4173 ((-1186) $ (-862) (-1082))) (-15 -3008 ((-1186) $ (-1082))) (-15 -2361 ((-1186) $)) (-15 -1768 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -1573 ((-1186) $ (-862) (-360) (-360))) (-15 -2223 ((-1186) $ (-862) (-360) (-360))) (-15 -1345 ((-1186) $ (-862) (-1082))) (-15 -3794 ((-1186) $ (-719) (-719))) (-15 -3196 ((-1186) $ (-448) (-862))) (-15 -4231 ((-1186) $ (-862) (-862))) (-15 -2645 ((-1082) $ (-1082))) (-15 -2645 ((-1082) $ (-1082) (-1082))) (-15 -2645 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2621 ((-1186) $)) (-15 -3078 ((-530) $)) (-15 -2366 ((-804) $))))
-((-2352 (((-110) $ $) NIL)) (-2898 (((-1186) $ (-360)) 140) (((-1186) $ (-360) (-360) (-360)) 141)) (-2645 (((-1082) $ (-1082)) 148) (((-1082) $ (-1082) (-1082)) 146) (((-1082) $ (-1082) (-597 (-1082))) 145)) (-3955 (($) 50)) (-1375 (((-1186) $ (-360) (-360) (-360) (-360) (-360)) 116) (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $) 114) (((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 115) (((-1186) $ (-530) (-530) (-360) (-360) (-360)) 117) (((-1186) $ (-360) (-360)) 118) (((-1186) $ (-360) (-360) (-360)) 125)) (-3830 (((-360)) 97) (((-360) (-360)) 98)) (-2088 (((-360)) 92) (((-360) (-360)) 94)) (-3598 (((-360)) 95) (((-360) (-360)) 96)) (-3565 (((-360)) 101) (((-360) (-360)) 102)) (-2162 (((-360)) 99) (((-360) (-360)) 100)) (-2223 (((-1186) $ (-360) (-360)) 142)) (-1283 (((-1186) $ (-1082)) 126)) (-3082 (((-1059 (-208)) $) 51) (($ $ (-1059 (-208))) 52)) (-1503 (((-1186) $ (-1082)) 154)) (-2442 (((-1186) $ (-1082)) 155)) (-1381 (((-1186) $ (-360) (-360)) 124) (((-1186) $ (-530) (-530)) 139)) (-4231 (((-1186) $ (-862) (-862)) 132)) (-2621 (((-1186) $) 112)) (-4011 (((-1186) $ (-1082)) 153)) (-1915 (((-1186) $ (-1082)) 109)) (-4238 (((-597 (-245)) $) 53) (($ $ (-597 (-245))) 54)) (-3794 (((-1186) $ (-719) (-719)) 131)) (-3405 (((-1186) $ (-719) (-884 (-208))) 160)) (-1373 (($ $) 56) (($ (-1059 (-208)) (-1082)) 57) (($ (-1059 (-208)) (-597 (-245))) 58)) (-4184 (((-1186) $ (-360) (-360) (-360)) 106)) (-1424 (((-1082) $) NIL)) (-3078 (((-530) $) 103)) (-1462 (((-1186) $ (-360)) 143)) (-2657 (((-1186) $ (-360)) 158)) (-2624 (((-1046) $) NIL)) (-4190 (((-1186) $ (-360)) 157)) (-3298 (((-1186) $ (-1082)) 111)) (-1768 (((-1186) $ (-719) (-719) (-862) (-862)) 130)) (-1662 (((-1186) $ (-1082)) 108)) (-3008 (((-1186) $ (-1082)) 110)) (-2979 (((-1186) $ (-148) (-148)) 129)) (-2366 (((-804) $) 137)) (-2361 (((-1186) $) 113)) (-2742 (((-1186) $ (-1082)) 156)) (-3285 (((-1186) $ (-1082)) 107)) (-2248 (((-110) $ $) NIL)))
-(((-1183) (-13 (-1027) (-10 -8 (-15 -2088 ((-360))) (-15 -2088 ((-360) (-360))) (-15 -3598 ((-360))) (-15 -3598 ((-360) (-360))) (-15 -3830 ((-360))) (-15 -3830 ((-360) (-360))) (-15 -2162 ((-360))) (-15 -2162 ((-360) (-360))) (-15 -3565 ((-360))) (-15 -3565 ((-360) (-360))) (-15 -3955 ($)) (-15 -1373 ($ $)) (-15 -1373 ($ (-1059 (-208)) (-1082))) (-15 -1373 ($ (-1059 (-208)) (-597 (-245)))) (-15 -3082 ((-1059 (-208)) $)) (-15 -3082 ($ $ (-1059 (-208)))) (-15 -3405 ((-1186) $ (-719) (-884 (-208)))) (-15 -4238 ((-597 (-245)) $)) (-15 -4238 ($ $ (-597 (-245)))) (-15 -3794 ((-1186) $ (-719) (-719))) (-15 -4231 ((-1186) $ (-862) (-862))) (-15 -1283 ((-1186) $ (-1082))) (-15 -1768 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -1375 ((-1186) $ (-360) (-360) (-360) (-360) (-360))) (-15 -1375 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -1375 ((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1375 ((-1186) $ (-530) (-530) (-360) (-360) (-360))) (-15 -1375 ((-1186) $ (-360) (-360))) (-15 -1375 ((-1186) $ (-360) (-360) (-360))) (-15 -3008 ((-1186) $ (-1082))) (-15 -3285 ((-1186) $ (-1082))) (-15 -1662 ((-1186) $ (-1082))) (-15 -1915 ((-1186) $ (-1082))) (-15 -3298 ((-1186) $ (-1082))) (-15 -1381 ((-1186) $ (-360) (-360))) (-15 -1381 ((-1186) $ (-530) (-530))) (-15 -2898 ((-1186) $ (-360))) (-15 -2898 ((-1186) $ (-360) (-360) (-360))) (-15 -2223 ((-1186) $ (-360) (-360))) (-15 -4011 ((-1186) $ (-1082))) (-15 -4190 ((-1186) $ (-360))) (-15 -2657 ((-1186) $ (-360))) (-15 -1503 ((-1186) $ (-1082))) (-15 -2442 ((-1186) $ (-1082))) (-15 -2742 ((-1186) $ (-1082))) (-15 -4184 ((-1186) $ (-360) (-360) (-360))) (-15 -1462 ((-1186) $ (-360))) (-15 -2621 ((-1186) $)) (-15 -2979 ((-1186) $ (-148) (-148))) (-15 -2645 ((-1082) $ (-1082))) (-15 -2645 ((-1082) $ (-1082) (-1082))) (-15 -2645 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2361 ((-1186) $)) (-15 -3078 ((-530) $))))) (T -1183))
-((-2088 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-2088 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3598 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3598 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3830 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3830 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-2162 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-2162 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3565 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3565 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))) (-3955 (*1 *1) (-5 *1 (-1183))) (-1373 (*1 *1 *1) (-5 *1 (-1183))) (-1373 (*1 *1 *2 *3) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1082)) (-5 *1 (-1183)))) (-1373 (*1 *1 *2 *3) (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-597 (-245))) (-5 *1 (-1183)))) (-3082 (*1 *2 *1) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))) (-3082 (*1 *1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))) (-3405 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-719)) (-5 *4 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4238 (*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183)))) (-4238 (*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183)))) (-3794 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4231 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1283 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1768 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-530)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1375 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3008 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3285 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1662 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1915 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3298 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1381 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2898 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2898 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2223 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4011 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4190 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2657 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1503 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2442 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2742 (*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-4184 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-1462 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2621 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2979 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-148)) (-5 *2 (-1186)) (-5 *1 (-1183)))) (-2645 (*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2645 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2645 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1183)))) (-2361 (*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))) (-3078 (*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1183)))))
-(-13 (-1027) (-10 -8 (-15 -2088 ((-360))) (-15 -2088 ((-360) (-360))) (-15 -3598 ((-360))) (-15 -3598 ((-360) (-360))) (-15 -3830 ((-360))) (-15 -3830 ((-360) (-360))) (-15 -2162 ((-360))) (-15 -2162 ((-360) (-360))) (-15 -3565 ((-360))) (-15 -3565 ((-360) (-360))) (-15 -3955 ($)) (-15 -1373 ($ $)) (-15 -1373 ($ (-1059 (-208)) (-1082))) (-15 -1373 ($ (-1059 (-208)) (-597 (-245)))) (-15 -3082 ((-1059 (-208)) $)) (-15 -3082 ($ $ (-1059 (-208)))) (-15 -3405 ((-1186) $ (-719) (-884 (-208)))) (-15 -4238 ((-597 (-245)) $)) (-15 -4238 ($ $ (-597 (-245)))) (-15 -3794 ((-1186) $ (-719) (-719))) (-15 -4231 ((-1186) $ (-862) (-862))) (-15 -1283 ((-1186) $ (-1082))) (-15 -1768 ((-1186) $ (-719) (-719) (-862) (-862))) (-15 -1375 ((-1186) $ (-360) (-360) (-360) (-360) (-360))) (-15 -1375 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -1375 ((-1186) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -1375 ((-1186) $ (-530) (-530) (-360) (-360) (-360))) (-15 -1375 ((-1186) $ (-360) (-360))) (-15 -1375 ((-1186) $ (-360) (-360) (-360))) (-15 -3008 ((-1186) $ (-1082))) (-15 -3285 ((-1186) $ (-1082))) (-15 -1662 ((-1186) $ (-1082))) (-15 -1915 ((-1186) $ (-1082))) (-15 -3298 ((-1186) $ (-1082))) (-15 -1381 ((-1186) $ (-360) (-360))) (-15 -1381 ((-1186) $ (-530) (-530))) (-15 -2898 ((-1186) $ (-360))) (-15 -2898 ((-1186) $ (-360) (-360) (-360))) (-15 -2223 ((-1186) $ (-360) (-360))) (-15 -4011 ((-1186) $ (-1082))) (-15 -4190 ((-1186) $ (-360))) (-15 -2657 ((-1186) $ (-360))) (-15 -1503 ((-1186) $ (-1082))) (-15 -2442 ((-1186) $ (-1082))) (-15 -2742 ((-1186) $ (-1082))) (-15 -4184 ((-1186) $ (-360) (-360) (-360))) (-15 -1462 ((-1186) $ (-360))) (-15 -2621 ((-1186) $)) (-15 -2979 ((-1186) $ (-148) (-148))) (-15 -2645 ((-1082) $ (-1082))) (-15 -2645 ((-1082) $ (-1082) (-1082))) (-15 -2645 ((-1082) $ (-1082) (-597 (-1082)))) (-15 -2361 ((-1186) $)) (-15 -3078 ((-530) $))))
-((-1700 (((-597 (-1082)) (-597 (-1082))) 94) (((-597 (-1082))) 90)) (-3546 (((-597 (-1082))) 88)) (-2618 (((-597 (-862)) (-597 (-862))) 63) (((-597 (-862))) 60)) (-1555 (((-597 (-719)) (-597 (-719))) 57) (((-597 (-719))) 53)) (-1982 (((-1186)) 65)) (-2355 (((-862) (-862)) 81) (((-862)) 80)) (-2379 (((-862) (-862)) 79) (((-862)) 78)) (-3283 (((-815) (-815)) 75) (((-815)) 74)) (-2226 (((-208)) 85) (((-208) (-360)) 87)) (-2749 (((-862)) 82) (((-862) (-862)) 83)) (-3072 (((-862) (-862)) 77) (((-862)) 76)) (-3223 (((-815) (-815)) 69) (((-815)) 67)) (-3029 (((-815) (-815)) 71) (((-815)) 70)) (-1630 (((-815) (-815)) 73) (((-815)) 72)))
-(((-1184) (-10 -7 (-15 -3223 ((-815))) (-15 -3223 ((-815) (-815))) (-15 -3029 ((-815))) (-15 -3029 ((-815) (-815))) (-15 -1630 ((-815))) (-15 -1630 ((-815) (-815))) (-15 -3283 ((-815))) (-15 -3283 ((-815) (-815))) (-15 -3072 ((-862))) (-15 -3072 ((-862) (-862))) (-15 -1555 ((-597 (-719)))) (-15 -1555 ((-597 (-719)) (-597 (-719)))) (-15 -2618 ((-597 (-862)))) (-15 -2618 ((-597 (-862)) (-597 (-862)))) (-15 -1982 ((-1186))) (-15 -1700 ((-597 (-1082)))) (-15 -1700 ((-597 (-1082)) (-597 (-1082)))) (-15 -3546 ((-597 (-1082)))) (-15 -2379 ((-862))) (-15 -2355 ((-862))) (-15 -2379 ((-862) (-862))) (-15 -2355 ((-862) (-862))) (-15 -2749 ((-862) (-862))) (-15 -2749 ((-862))) (-15 -2226 ((-208) (-360))) (-15 -2226 ((-208))))) (T -1184))
-((-2226 (*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1184)))) (-2226 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1184)))) (-2749 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2749 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2355 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2379 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2355 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-2379 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-3546 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-1700 (*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-1700 (*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))) (-1982 (*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))) (-2618 (*1 *2 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))) (-2618 (*1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))) (-1555 (*1 *2 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))) (-1555 (*1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))) (-3072 (*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-3072 (*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))) (-3283 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3283 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-1630 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-1630 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3029 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3029 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3223 (*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))) (-3223 (*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
-(-10 -7 (-15 -3223 ((-815))) (-15 -3223 ((-815) (-815))) (-15 -3029 ((-815))) (-15 -3029 ((-815) (-815))) (-15 -1630 ((-815))) (-15 -1630 ((-815) (-815))) (-15 -3283 ((-815))) (-15 -3283 ((-815) (-815))) (-15 -3072 ((-862))) (-15 -3072 ((-862) (-862))) (-15 -1555 ((-597 (-719)))) (-15 -1555 ((-597 (-719)) (-597 (-719)))) (-15 -2618 ((-597 (-862)))) (-15 -2618 ((-597 (-862)) (-597 (-862)))) (-15 -1982 ((-1186))) (-15 -1700 ((-597 (-1082)))) (-15 -1700 ((-597 (-1082)) (-597 (-1082)))) (-15 -3546 ((-597 (-1082)))) (-15 -2379 ((-862))) (-15 -2355 ((-862))) (-15 -2379 ((-862) (-862))) (-15 -2355 ((-862) (-862))) (-15 -2749 ((-862) (-862))) (-15 -2749 ((-862))) (-15 -2226 ((-208) (-360))) (-15 -2226 ((-208))))
-((-1827 (((-448) (-597 (-597 (-884 (-208)))) (-597 (-245))) 21) (((-448) (-597 (-597 (-884 (-208))))) 20) (((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245))) 19)) (-3947 (((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245))) 27) (((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245))) 26)) (-2366 (((-1182) (-448)) 38)))
-(((-1185) (-10 -7 (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))))) (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -3947 ((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -3947 ((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -2366 ((-1182) (-448))))) (T -1185))
-((-2366 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-3947 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-3947 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-1185)))) (-1827 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185)))) (-1827 (*1 *2 *3) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-448)) (-5 *1 (-1185)))) (-1827 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815)) (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185)))))
-(-10 -7 (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))))) (-15 -1827 ((-448) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -3947 ((-1182) (-597 (-597 (-884 (-208)))) (-815) (-815) (-862) (-597 (-245)))) (-15 -3947 ((-1182) (-597 (-597 (-884 (-208)))) (-597 (-245)))) (-15 -2366 ((-1182) (-448))))
-((-3020 (($) 7)) (-2366 (((-804) $) 10)))
-(((-1186) (-10 -8 (-15 -3020 ($)) (-15 -2366 ((-804) $)))) (T -1186))
-((-2366 (*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1186)))) (-3020 (*1 *1) (-5 *1 (-1186))))
-(-10 -8 (-15 -3020 ($)) (-15 -2366 ((-804) $)))
-((-2364 (($ $ |#2|) 10)))
-(((-1187 |#1| |#2|) (-10 -8 (-15 -2364 (|#1| |#1| |#2|))) (-1188 |#2|) (-344)) (T -1187))
-NIL
-(-10 -8 (-15 -2364 (|#1| |#1| |#2|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2488 (((-130)) 28)) (-2366 (((-804) $) 11)) (-3080 (($) 18 T CONST)) (-2248 (((-110) $ $) 6)) (-2364 (($ $ |#1|) 29)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
-(((-1188 |#1|) (-133) (-344)) (T -1188))
-((-2364 (*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-344)))) (-2488 (*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
-(-13 (-666 |t#1|) (-10 -8 (-15 -2364 ($ $ |t#1|)) (-15 -2488 ((-130)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-666 |#1|) . T) ((-990 |#1|) . T) ((-1027) . T))
-((-3293 (((-597 (-1130 |#1|)) (-1099) (-1130 |#1|)) 74)) (-2936 (((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|))) 53)) (-1929 (((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|))) 64)) (-3172 (((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719)) 55)) (-1527 (((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099)) 29)) (-1592 (((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719)) 54)))
-(((-1189 |#1|) (-10 -7 (-15 -3172 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -1592 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -2936 ((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|)))) (-15 -1527 ((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099))) (-15 -3293 ((-597 (-1130 |#1|)) (-1099) (-1130 |#1|))) (-15 -1929 ((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|))))) (-344)) (T -1189))
-((-1929 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-719)) (-4 *6 (-344)) (-5 *4 (-1130 *6)) (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1189 *6)) (-5 *5 (-1080 *4)))) (-3293 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-597 (-1130 *5))) (-5 *1 (-1189 *5)) (-5 *4 (-1130 *5)))) (-1527 (*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1 (-1095 (-893 *4)) (-893 *4))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))) (-2936 (*1 *2 *3 *4) (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-1080 (-1080 (-893 *5)))) (-5 *1 (-1189 *5)) (-5 *4 (-1080 (-893 *5))))) (-1592 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))) (-3172 (*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4)))) (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
-(-10 -7 (-15 -3172 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -1592 ((-1 (-1080 (-893 |#1|)) (-1080 (-893 |#1|))) (-719))) (-15 -2936 ((-1080 (-1080 (-893 |#1|))) (-1099) (-1080 (-893 |#1|)))) (-15 -1527 ((-1 (-1095 (-893 |#1|)) (-893 |#1|)) (-1099))) (-15 -3293 ((-597 (-1130 |#1|)) (-1099) (-1130 |#1|))) (-15 -1929 ((-1 (-1080 (-1130 |#1|)) (-1080 (-1130 |#1|))) (-719) (-1130 |#1|) (-1080 (-1130 |#1|)))))
-((-2596 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|) 75)) (-3696 (((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|)))) 74)))
-(((-1190 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|))) (-330) (-1157 |#1|) (-1157 |#2|) (-390 |#2| |#3|)) (T -1190))
-((-2596 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3)) (-5 *2 (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-637 *3)))) (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))) (-3696 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4)) (-5 *2 (-2 (|:| -3220 (-637 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-637 *4)))) (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5)))))
-(-10 -7 (-15 -3696 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))))) (-15 -2596 ((-2 (|:| -3220 (-637 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-637 |#2|))) |#2|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 43)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) NIL)) (-2731 (((-110) $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2366 (((-804) $) 64) (($ (-530)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-162)))) (-3300 (((-719)) NIL)) (-1329 (((-1186) (-719)) 16)) (-3080 (($) 27 T CONST)) (-3093 (($) 67 T CONST)) (-2248 (((-110) $ $) 69)) (-2364 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2351 (($ $) 71) (($ $ $) NIL)) (-2339 (($ $ $) 47)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
-(((-1191 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2366 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2366 ($ |#4|)) (-15 -1329 ((-1186) (-719))))) (-984) (-795) (-741) (-890 |#1| |#3| |#2|) (-597 |#2|) (-597 (-719)) (-719)) (T -1191))
-((-2366 (*1 *2 *1) (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-1191 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-597 *4)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-2364 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-795)) (-4 *4 (-741)) (-14 *6 (-597 *3)) (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-890 *2 *4 *3)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-2366 (*1 *1 *2) (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-597 *4)) (-5 *1 (-1191 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-890 *3 *5 *4)) (-14 *7 (-597 (-719))) (-14 *8 (-719)))) (-1329 (*1 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-4 *5 (-795)) (-4 *6 (-741)) (-14 *8 (-597 *5)) (-5 *2 (-1186)) (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-890 *4 *6 *5)) (-14 *9 (-597 *3)) (-14 *10 *3))))
-(-13 (-984) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2366 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2364 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2366 ($ |#4|)) (-15 -1329 ((-1186) (-719)))))
-((-2352 (((-110) $ $) NIL)) (-2978 (((-597 (-2 (|:| -2361 $) (|:| -2551 (-597 |#4|)))) (-597 |#4|)) NIL)) (-1512 (((-597 $) (-597 |#4|)) 88)) (-2746 (((-597 |#3|) $) NIL)) (-2925 (((-110) $) NIL)) (-4024 (((-110) $) NIL (|has| |#1| (-522)))) (-1212 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1785 ((|#4| |#4| $) NIL)) (-1307 (((-2 (|:| |under| $) (|:| -3175 $) (|:| |upper| $)) $ |#3|) NIL)) (-3186 (((-110) $ (-719)) NIL)) (-2283 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269))) (((-3 |#4| "failed") $ |#3|) NIL)) (-2350 (($) NIL T CONST)) (-3645 (((-110) $) NIL (|has| |#1| (-522)))) (-2276 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3528 (((-110) $ $) NIL (|has| |#1| (-522)))) (-3660 (((-110) $) NIL (|has| |#1| (-522)))) (-3362 (((-597 |#4|) (-597 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 28)) (-3588 (((-597 |#4|) (-597 |#4|) $) 25 (|has| |#1| (-522)))) (-2167 (((-597 |#4|) (-597 |#4|) $) NIL (|has| |#1| (-522)))) (-3139 (((-3 $ "failed") (-597 |#4|)) NIL)) (-2585 (($ (-597 |#4|)) NIL)) (-3057 (((-3 $ "failed") $) 70)) (-1622 ((|#4| |#4| $) 75)) (-3077 (($ $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-2383 (($ |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-3304 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-3784 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-3252 ((|#4| |#4| $) NIL)) (-2134 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4269))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4269))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1919 (((-2 (|:| -2361 (-597 |#4|)) (|:| -2551 (-597 |#4|))) $) NIL)) (-3779 (((-597 |#4|) $) NIL (|has| $ (-6 -4269)))) (-3397 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3122 ((|#3| $) 76)) (-4027 (((-110) $ (-719)) NIL)) (-2395 (((-597 |#4|) $) 29 (|has| $ (-6 -4269)))) (-4197 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027))))) (-3908 (((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-597 |#4|)) 35)) (-3583 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4270)))) (-3217 (($ (-1 |#4| |#4|) $) NIL)) (-2400 (((-597 |#3|) $) NIL)) (-3533 (((-110) |#3| $) NIL)) (-2763 (((-110) $ (-719)) NIL)) (-1424 (((-1082) $) NIL)) (-2407 (((-3 |#4| "failed") $) NIL)) (-1543 (((-597 |#4|) $) 50)) (-2559 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3482 ((|#4| |#4| $) 74)) (-1406 (((-110) $ $) 85)) (-1964 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-522)))) (-1663 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-2122 ((|#4| |#4| $) NIL)) (-2624 (((-1046) $) NIL)) (-3048 (((-3 |#4| "failed") $) 69)) (-1437 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-1372 (((-3 $ "failed") $ |#4|) NIL)) (-3168 (($ $ |#4|) NIL)) (-1533 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-4098 (($ $ (-597 |#4|) (-597 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027)))) (($ $ (-597 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1027))))) (-2391 (((-110) $ $) NIL)) (-3250 (((-110) $) 67)) (-3958 (($) 42)) (-1429 (((-719) $) NIL)) (-2632 (((-719) |#4| $) NIL (-12 (|has| $ (-6 -4269)) (|has| |#4| (-1027)))) (((-719) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2579 (($ $) NIL)) (-3260 (((-506) $) NIL (|has| |#4| (-572 (-506))))) (-2377 (($ (-597 |#4|)) NIL)) (-1687 (($ $ |#3|) NIL)) (-1442 (($ $ |#3|) NIL)) (-1871 (($ $) NIL)) (-2553 (($ $ |#3|) NIL)) (-2366 (((-804) $) NIL) (((-597 |#4|) $) 57)) (-2730 (((-719) $) NIL (|has| |#3| (-349)))) (-2237 (((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-597 |#4|)) 41)) (-3315 (((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-597 $) (-597 |#4|)) 66)) (-2988 (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1598 (-597 |#4|))) "failed") (-597 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-3095 (((-110) $ (-1 (-110) |#4| (-597 |#4|))) NIL)) (-3889 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4269)))) (-2764 (((-597 |#3|) $) NIL)) (-2856 (((-110) |#3| $) NIL)) (-2248 (((-110) $ $) NIL)) (-2267 (((-719) $) NIL (|has| $ (-6 -4269)))))
-(((-1192 |#1| |#2| |#3| |#4|) (-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3908 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3908 ((-3 $ "failed") (-597 |#4|))) (-15 -2237 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2237 ((-3 $ "failed") (-597 |#4|))) (-15 -3315 ((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3315 ((-597 $) (-597 |#4|))))) (-522) (-741) (-795) (-998 |#1| |#2| |#3|)) (T -1192))
-((-3908 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-3908 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-2237 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))) (-2237 (*1 *1 *2) (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1192 *3 *4 *5 *6)))) (-3315 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-597 *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-597 (-1192 *6 *7 *8 *9))) (-5 *1 (-1192 *6 *7 *8 *9)))) (-3315 (*1 *2 *3) (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-1192 *4 *5 *6 *7))) (-5 *1 (-1192 *4 *5 *6 *7)))))
-(-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3908 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3908 ((-3 $ "failed") (-597 |#4|))) (-15 -2237 ((-3 $ "failed") (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2237 ((-3 $ "failed") (-597 |#4|))) (-15 -3315 ((-597 $) (-597 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3315 ((-597 $) (-597 |#4|)))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-1889 (((-3 $ "failed") $ $) 19)) (-2350 (($) 17 T CONST)) (-2707 (((-3 $ "failed") $) 32)) (-2731 (((-110) $) 30)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#1|) 36)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
-(((-1193 |#1|) (-133) (-984)) (T -1193))
-((-2366 (*1 *1 *2) (-12 (-4 *1 (-1193 *2)) (-4 *2 (-984)))))
-(-13 (-984) (-109 |t#1| |t#1|) (-10 -8 (-15 -2366 ($ |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 |#1|) |has| |#1| (-162)) ((-675) . T) ((-990 |#1|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T))
-((-2352 (((-110) $ $) 60)) (-1813 (((-110) $) NIL)) (-3702 (((-597 |#1|) $) 45)) (-1911 (($ $ (-719)) 39)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1605 (($ $ (-719)) 18 (|has| |#2| (-162))) (($ $ $) 19 (|has| |#2| (-162)))) (-2350 (($) NIL T CONST)) (-3575 (($ $ $) 63) (($ $ (-767 |#1|)) 49) (($ $ |#1|) 53)) (-3139 (((-3 (-767 |#1|) "failed") $) NIL)) (-2585 (((-767 |#1|) $) NIL)) (-2562 (($ $) 32)) (-2707 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) NIL)) (-4212 (($ $) NIL)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-767 |#1|) |#2|) 31)) (-2627 (($ $) 33)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 12)) (-3278 (((-767 |#1|) $) NIL)) (-2008 (((-767 |#1|) $) 34)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2448 (($ $ $) 62) (($ $ (-767 |#1|)) 51) (($ $ |#1|) 55)) (-3477 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2521 (((-767 |#1|) $) 28)) (-2533 ((|#2| $) 30)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1429 (((-719) $) 36)) (-1613 (((-110) $) 40)) (-2708 ((|#2| $) NIL)) (-2366 (((-804) $) NIL) (($ (-767 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-530)) NIL)) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-767 |#1|)) NIL)) (-2065 ((|#2| $ $) 65) ((|#2| $ (-767 |#1|)) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) 13 T CONST)) (-3093 (($) 15 T CONST)) (-1537 (((-597 (-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2248 (((-110) $ $) 38)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 22)) (** (($ $ (-719)) NIL) (($ $ (-862)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-767 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
-(((-1194 |#1| |#2|) (-13 (-363 |#2| (-767 |#1|)) (-1200 |#1| |#2|)) (-795) (-984)) (T -1194))
-NIL
-(-13 (-363 |#2| (-767 |#1|)) (-1200 |#1| |#2|))
-((-2168 ((|#3| |#3| (-719)) 23)) (-2853 ((|#3| |#3| (-719)) 27)) (-2072 ((|#3| |#3| |#3| (-719)) 28)))
-(((-1195 |#1| |#2| |#3|) (-10 -7 (-15 -2853 (|#3| |#3| (-719))) (-15 -2168 (|#3| |#3| (-719))) (-15 -2072 (|#3| |#3| |#3| (-719)))) (-13 (-984) (-666 (-388 (-530)))) (-795) (-1200 |#2| |#1|)) (T -1195))
-((-2072 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-2168 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))) (-2853 (*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530))))) (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
-(-10 -7 (-15 -2853 (|#3| |#3| (-719))) (-15 -2168 (|#3| |#3| (-719))) (-15 -2072 (|#3| |#3| |#3| (-719))))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3702 (((-597 |#1|) $) 38)) (-1889 (((-3 $ "failed") $ $) 19)) (-1605 (($ $ $) 41 (|has| |#2| (-162))) (($ $ (-719)) 40 (|has| |#2| (-162)))) (-2350 (($) 17 T CONST)) (-3575 (($ $ |#1|) 52) (($ $ (-767 |#1|)) 51) (($ $ $) 50)) (-3139 (((-3 (-767 |#1|) "failed") $) 62)) (-2585 (((-767 |#1|) $) 61)) (-2707 (((-3 $ "failed") $) 32)) (-2985 (((-110) $) 43)) (-4212 (($ $) 42)) (-2731 (((-110) $) 30)) (-3668 (((-110) $) 48)) (-3940 (($ (-767 |#1|) |#2|) 49)) (-2627 (($ $) 47)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 58)) (-3278 (((-767 |#1|) $) 59)) (-3217 (($ (-1 |#2| |#2|) $) 39)) (-2448 (($ $ |#1|) 55) (($ $ (-767 |#1|)) 54) (($ $ $) 53)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1613 (((-110) $) 45)) (-2708 ((|#2| $) 44)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#2|) 66) (($ (-767 |#1|)) 63) (($ |#1|) 46)) (-2065 ((|#2| $ (-767 |#1|)) 57) ((|#2| $ $) 56)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
-(((-1196 |#1| |#2|) (-133) (-795) (-984)) (T -1196))
-((* (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3278 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3)))) (-4097 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-2 (|:| |k| (-767 *3)) (|:| |c| *4))))) (-2065 (*1 *2 *1 *3) (-12 (-5 *3 (-767 *4)) (-4 *1 (-1196 *4 *2)) (-4 *4 (-795)) (-4 *2 (-984)))) (-2065 (*1 *2 *1 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (-2448 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-2448 (*1 *1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-2448 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3575 (*1 *1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3575 (*1 *1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3575 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-3940 (*1 *1 *2 *3) (-12 (-5 *2 (-767 *4)) (-4 *4 (-795)) (-4 *1 (-1196 *4 *3)) (-4 *3 (-984)))) (-3668 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-2627 (*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-2366 (*1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-1613 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984)))) (-2985 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-110)))) (-4212 (*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))) (-1605 (*1 *1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)) (-4 *3 (-162)))) (-1605 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-4 *4 (-162)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3702 (*1 *2 *1) (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-597 *3)))))
-(-13 (-984) (-1193 |t#2|) (-975 (-767 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -3278 ((-767 |t#1|) $)) (-15 -4097 ((-2 (|:| |k| (-767 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2065 (|t#2| $ (-767 |t#1|))) (-15 -2065 (|t#2| $ $)) (-15 -2448 ($ $ |t#1|)) (-15 -2448 ($ $ (-767 |t#1|))) (-15 -2448 ($ $ $)) (-15 -3575 ($ $ |t#1|)) (-15 -3575 ($ $ (-767 |t#1|))) (-15 -3575 ($ $ $)) (-15 -3940 ($ (-767 |t#1|) |t#2|)) (-15 -3668 ((-110) $)) (-15 -2627 ($ $)) (-15 -2366 ($ |t#1|)) (-15 -1613 ((-110) $)) (-15 -2708 (|t#2| $)) (-15 -2985 ((-110) $)) (-15 -4212 ($ $)) (IF (|has| |t#2| (-162)) (PROGN (-15 -1605 ($ $ $)) (-15 -1605 ($ $ (-719)))) |%noBranch|) (-15 -3217 ($ (-1 |t#2| |t#2|) $)) (-15 -3702 ((-597 |t#1|) $)) (IF (|has| |t#2| (-6 -4262)) (-6 -4262) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#2|) . T) ((-599 $) . T) ((-666 |#2|) |has| |#2| (-162)) ((-675) . T) ((-975 (-767 |#1|)) . T) ((-990 |#2|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1193 |#2|) . T))
-((-2536 (((-110) $) 15)) (-2856 (((-110) $) 14)) (-3962 (($ $) 19) (($ $ (-719)) 20)))
-(((-1197 |#1| |#2|) (-10 -8 (-15 -3962 (|#1| |#1| (-719))) (-15 -3962 (|#1| |#1|)) (-15 -2536 ((-110) |#1|)) (-15 -2856 ((-110) |#1|))) (-1198 |#2|) (-344)) (T -1197))
-NIL
-(-10 -8 (-15 -3962 (|#1| |#1| (-719))) (-15 -3962 (|#1| |#1|)) (-15 -2536 ((-110) |#1|)) (-15 -2856 ((-110) |#1|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-2141 (((-2 (|:| -2291 $) (|:| -4256 $) (|:| |associate| $)) $) 39)) (-3446 (($ $) 38)) (-1276 (((-110) $) 36)) (-2536 (((-110) $) 91)) (-2766 (((-719)) 87)) (-1889 (((-3 $ "failed") $ $) 19)) (-3544 (($ $) 70)) (-3272 (((-399 $) $) 69)) (-1426 (((-110) $ $) 57)) (-2350 (($) 17 T CONST)) (-3139 (((-3 |#1| "failed") $) 98)) (-2585 ((|#1| $) 97)) (-3590 (($ $ $) 53)) (-2707 (((-3 $ "failed") $) 32)) (-3571 (($ $ $) 54)) (-3856 (((-2 (|:| -2065 (-597 $)) (|:| -1974 $)) (-597 $)) 49)) (-3948 (($ $ (-719)) 84 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 83 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3295 (((-110) $) 68)) (-2031 (((-781 (-862)) $) 81 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2731 (((-110) $) 30)) (-3212 (((-3 (-597 $) "failed") (-597 $) $) 50)) (-2170 (($ $ $) 44) (($ (-597 $)) 43)) (-1424 (((-1082) $) 9)) (-2483 (($ $) 67)) (-1655 (((-110) $) 90)) (-2624 (((-1046) $) 10)) (-2569 (((-1095 $) (-1095 $) (-1095 $)) 42)) (-2204 (($ $ $) 46) (($ (-597 $)) 45)) (-2611 (((-399 $) $) 71)) (-1415 (((-781 (-862))) 88)) (-2832 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1974 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3551 (((-3 $ "failed") $ $) 40)) (-1286 (((-3 (-597 $) "failed") (-597 $) $) 48)) (-2356 (((-719) $) 56)) (-3763 (((-2 (|:| -1324 $) (|:| -3304 $)) $ $) 55)) (-1823 (((-3 (-719) "failed") $ $) 82 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2488 (((-130)) 96)) (-1429 (((-781 (-862)) $) 89)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ $) 41) (($ (-388 (-530))) 63) (($ |#1|) 99)) (-3251 (((-3 $ "failed") $) 80 (-1461 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3300 (((-719)) 28)) (-3944 (((-110) $ $) 37)) (-2856 (((-110) $) 92)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-3962 (($ $) 86 (|has| |#1| (-349))) (($ $ (-719)) 85 (|has| |#1| (-349)))) (-2248 (((-110) $ $) 6)) (-2364 (($ $ $) 62) (($ $ |#1|) 95)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31) (($ $ (-530)) 66)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ $ (-388 (-530))) 65) (($ (-388 (-530)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
-(((-1198 |#1|) (-133) (-344)) (T -1198))
-((-2856 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-1655 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))) (-1415 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))) (-2766 (*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-719)))) (-3962 (*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-344)) (-4 *2 (-349)))) (-3962 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-4 *3 (-349)))))
-(-13 (-344) (-975 |t#1|) (-1188 |t#1|) (-10 -8 (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-383)) |%noBranch|) (-15 -2856 ((-110) $)) (-15 -2536 ((-110) $)) (-15 -1655 ((-110) $)) (-15 -1429 ((-781 (-862)) $)) (-15 -1415 ((-781 (-862)))) (-15 -2766 ((-719))) (IF (|has| |t#1| (-349)) (PROGN (-6 (-383)) (-15 -3962 ($ $)) (-15 -3962 ($ $ (-719)))) |%noBranch|)))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-530))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1461 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-571 (-804)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) -1461 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-432) . T) ((-522) . T) ((-599 #0#) . T) ((-599 |#1|) . T) ((-599 $) . T) ((-666 #0#) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-675) . T) ((-861) . T) ((-975 |#1|) . T) ((-990 #0#) . T) ((-990 |#1|) . T) ((-990 $) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1139) . T) ((-1188 |#1|) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3702 (((-597 |#1|) $) 86)) (-1911 (($ $ (-719)) 89)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1605 (($ $ $) NIL (|has| |#2| (-162))) (($ $ (-719)) NIL (|has| |#2| (-162)))) (-2350 (($) NIL T CONST)) (-3575 (($ $ |#1|) NIL) (($ $ (-767 |#1|)) NIL) (($ $ $) NIL)) (-3139 (((-3 (-767 |#1|) "failed") $) NIL) (((-3 (-834 |#1|) "failed") $) NIL)) (-2585 (((-767 |#1|) $) NIL) (((-834 |#1|) $) NIL)) (-2562 (($ $) 88)) (-2707 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) 77)) (-4212 (($ $) 81)) (-2801 (($ $ $ (-719)) 90)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-767 |#1|) |#2|) NIL) (($ (-834 |#1|) |#2|) 26)) (-2627 (($ $) 103)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3278 (((-767 |#1|) $) NIL)) (-2008 (((-767 |#1|) $) NIL)) (-3217 (($ (-1 |#2| |#2|) $) NIL)) (-2448 (($ $ |#1|) NIL) (($ $ (-767 |#1|)) NIL) (($ $ $) NIL)) (-2168 (($ $ (-719)) 97 (|has| |#2| (-666 (-388 (-530)))))) (-3477 (((-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2521 (((-834 |#1|) $) 70)) (-2533 ((|#2| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2853 (($ $ (-719)) 94 (|has| |#2| (-666 (-388 (-530)))))) (-1429 (((-719) $) 87)) (-1613 (((-110) $) 71)) (-2708 ((|#2| $) 75)) (-2366 (((-804) $) 57) (($ (-530)) NIL) (($ |#2|) 51) (($ (-767 |#1|)) NIL) (($ |#1|) 59) (($ (-834 |#1|)) NIL) (($ (-615 |#1| |#2|)) 43) (((-1194 |#1| |#2|) $) 64) (((-1203 |#1| |#2|) $) 69)) (-3441 (((-597 |#2|) $) NIL)) (-4085 ((|#2| $ (-834 |#1|)) NIL)) (-2065 ((|#2| $ (-767 |#1|)) NIL) ((|#2| $ $) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) 21 T CONST)) (-3093 (($) 25 T CONST)) (-1537 (((-597 (-2 (|:| |k| (-834 |#1|)) (|:| |c| |#2|))) $) NIL)) (-1352 (((-3 (-615 |#1| |#2|) "failed") $) 102)) (-2248 (((-110) $ $) 65)) (-2351 (($ $) 96) (($ $ $) 95)) (-2339 (($ $ $) 20)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-834 |#1|)) NIL)))
-(((-1199 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-363 |#2| (-834 |#1|)) (-10 -8 (-15 -2366 ($ (-615 |#1| |#2|))) (-15 -2366 ((-1194 |#1| |#2|) $)) (-15 -2366 ((-1203 |#1| |#2|) $)) (-15 -1352 ((-3 (-615 |#1| |#2|) "failed") $)) (-15 -2801 ($ $ $ (-719))) (IF (|has| |#2| (-666 (-388 (-530)))) (PROGN (-15 -2853 ($ $ (-719))) (-15 -2168 ($ $ (-719)))) |%noBranch|))) (-795) (-162)) (T -1199))
-((-2366 (*1 *1 *2) (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)) (-5 *1 (-1199 *3 *4)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2366 (*1 *2 *1) (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-1352 (*1 *2 *1) (|partial| -12 (-5 *2 (-615 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2801 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162)))) (-2853 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))) (-2168 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))))
-(-13 (-1200 |#1| |#2|) (-363 |#2| (-834 |#1|)) (-10 -8 (-15 -2366 ($ (-615 |#1| |#2|))) (-15 -2366 ((-1194 |#1| |#2|) $)) (-15 -2366 ((-1203 |#1| |#2|) $)) (-15 -1352 ((-3 (-615 |#1| |#2|) "failed") $)) (-15 -2801 ($ $ $ (-719))) (IF (|has| |#2| (-666 (-388 (-530)))) (PROGN (-15 -2853 ($ $ (-719))) (-15 -2168 ($ $ (-719)))) |%noBranch|)))
-((-2352 (((-110) $ $) 7)) (-1813 (((-110) $) 16)) (-3702 (((-597 |#1|) $) 38)) (-1911 (($ $ (-719)) 71)) (-1889 (((-3 $ "failed") $ $) 19)) (-1605 (($ $ $) 41 (|has| |#2| (-162))) (($ $ (-719)) 40 (|has| |#2| (-162)))) (-2350 (($) 17 T CONST)) (-3575 (($ $ |#1|) 52) (($ $ (-767 |#1|)) 51) (($ $ $) 50)) (-3139 (((-3 (-767 |#1|) "failed") $) 62)) (-2585 (((-767 |#1|) $) 61)) (-2707 (((-3 $ "failed") $) 32)) (-2985 (((-110) $) 43)) (-4212 (($ $) 42)) (-2731 (((-110) $) 30)) (-3668 (((-110) $) 48)) (-3940 (($ (-767 |#1|) |#2|) 49)) (-2627 (($ $) 47)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) 58)) (-3278 (((-767 |#1|) $) 59)) (-2008 (((-767 |#1|) $) 73)) (-3217 (($ (-1 |#2| |#2|) $) 39)) (-2448 (($ $ |#1|) 55) (($ $ (-767 |#1|)) 54) (($ $ $) 53)) (-1424 (((-1082) $) 9)) (-2624 (((-1046) $) 10)) (-1429 (((-719) $) 72)) (-1613 (((-110) $) 45)) (-2708 ((|#2| $) 44)) (-2366 (((-804) $) 11) (($ (-530)) 27) (($ |#2|) 66) (($ (-767 |#1|)) 63) (($ |#1|) 46)) (-2065 ((|#2| $ (-767 |#1|)) 57) ((|#2| $ $) 56)) (-3300 (((-719)) 28)) (-3080 (($) 18 T CONST)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 6)) (-2351 (($ $) 22) (($ $ $) 21)) (-2339 (($ $ $) 14)) (** (($ $ (-862)) 25) (($ $ (-719)) 31)) (* (($ (-862) $) 13) (($ (-719) $) 15) (($ (-530) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
-(((-1200 |#1| |#2|) (-133) (-795) (-984)) (T -1200))
-((-2008 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-767 *3)))) (-1429 (*1 *2 *1) (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *2 (-719)))) (-1911 (*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
-(-13 (-1196 |t#1| |t#2|) (-10 -8 (-15 -2008 ((-767 |t#1|) $)) (-15 -1429 ((-719) $)) (-15 -1911 ($ $ (-719)))))
-(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-571 (-804)) . T) ((-599 |#2|) . T) ((-599 $) . T) ((-666 |#2|) |has| |#2| (-162)) ((-675) . T) ((-975 (-767 |#1|)) . T) ((-990 |#2|) . T) ((-984) . T) ((-991) . T) ((-1039) . T) ((-1027) . T) ((-1193 |#2|) . T) ((-1196 |#1| |#2|) . T))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-3702 (((-597 (-1099)) $) NIL)) (-3655 (($ (-1194 (-1099) |#1|)) NIL)) (-1911 (($ $ (-719)) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1605 (($ $ $) NIL (|has| |#1| (-162))) (($ $ (-719)) NIL (|has| |#1| (-162)))) (-2350 (($) NIL T CONST)) (-3575 (($ $ (-1099)) NIL) (($ $ (-767 (-1099))) NIL) (($ $ $) NIL)) (-3139 (((-3 (-767 (-1099)) "failed") $) NIL)) (-2585 (((-767 (-1099)) $) NIL)) (-2707 (((-3 $ "failed") $) NIL)) (-2985 (((-110) $) NIL)) (-4212 (($ $) NIL)) (-2731 (((-110) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-767 (-1099)) |#1|) NIL)) (-2627 (($ $) NIL)) (-4097 (((-2 (|:| |k| (-767 (-1099))) (|:| |c| |#1|)) $) NIL)) (-3278 (((-767 (-1099)) $) NIL)) (-2008 (((-767 (-1099)) $) NIL)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-2448 (($ $ (-1099)) NIL) (($ $ (-767 (-1099))) NIL) (($ $ $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2246 (((-1194 (-1099) |#1|) $) NIL)) (-1429 (((-719) $) NIL)) (-1613 (((-110) $) NIL)) (-2708 ((|#1| $) NIL)) (-2366 (((-804) $) NIL) (($ (-530)) NIL) (($ |#1|) NIL) (($ (-767 (-1099))) NIL) (($ (-1099)) NIL)) (-2065 ((|#1| $ (-767 (-1099))) NIL) ((|#1| $ $) NIL)) (-3300 (((-719)) NIL)) (-3080 (($) NIL T CONST)) (-3808 (((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $) NIL)) (-3093 (($) NIL T CONST)) (-2248 (((-110) $ $) NIL)) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) NIL)) (** (($ $ (-862)) NIL) (($ $ (-719)) NIL)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1099) $) NIL)))
-(((-1201 |#1|) (-13 (-1200 (-1099) |#1|) (-10 -8 (-15 -2246 ((-1194 (-1099) |#1|) $)) (-15 -3655 ($ (-1194 (-1099) |#1|))) (-15 -3808 ((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $)))) (-984)) (T -1201))
-((-2246 (*1 *2 *1) (-12 (-5 *2 (-1194 (-1099) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-984)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-1194 (-1099) *3)) (-4 *3 (-984)) (-5 *1 (-1201 *3)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| (-1099)) (|:| |c| (-1201 *3))))) (-5 *1 (-1201 *3)) (-4 *3 (-984)))))
-(-13 (-1200 (-1099) |#1|) (-10 -8 (-15 -2246 ((-1194 (-1099) |#1|) $)) (-15 -3655 ($ (-1194 (-1099) |#1|))) (-15 -3808 ((-597 (-2 (|:| |k| (-1099)) (|:| |c| $))) $))))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) NIL)) (-1889 (((-3 $ "failed") $ $) NIL)) (-2350 (($) NIL T CONST)) (-3139 (((-3 |#2| "failed") $) NIL)) (-2585 ((|#2| $) NIL)) (-2562 (($ $) NIL)) (-2707 (((-3 $ "failed") $) 36)) (-2985 (((-110) $) 30)) (-4212 (($ $) 32)) (-2731 (((-110) $) NIL)) (-3579 (((-719) $) NIL)) (-2469 (((-597 $) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ |#2| |#1|) NIL)) (-3278 ((|#2| $) 19)) (-2008 ((|#2| $) 16)) (-3217 (($ (-1 |#1| |#1|) $) NIL)) (-3477 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2521 ((|#2| $) NIL)) (-2533 ((|#1| $) NIL)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-1613 (((-110) $) 27)) (-2708 ((|#1| $) 28)) (-2366 (((-804) $) 55) (($ (-530)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-3441 (((-597 |#1|) $) NIL)) (-4085 ((|#1| $ |#2|) NIL)) (-2065 ((|#1| $ |#2|) 24)) (-3300 (((-719)) 14)) (-3080 (($) 25 T CONST)) (-3093 (($) 11 T CONST)) (-1537 (((-597 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2248 (((-110) $ $) 26)) (-2364 (($ $ |#1|) 57 (|has| |#1| (-344)))) (-2351 (($ $) NIL) (($ $ $) NIL)) (-2339 (($ $ $) 44)) (** (($ $ (-862)) NIL) (($ $ (-719)) 46)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2267 (((-719) $) 15)))
-(((-1202 |#1| |#2|) (-13 (-984) (-1193 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2267 ((-719) $)) (-15 -2366 ($ |#2|)) (-15 -2008 (|#2| $)) (-15 -3278 (|#2| $)) (-15 -2562 ($ $)) (-15 -2065 (|#1| $ |#2|)) (-15 -1613 ((-110) $)) (-15 -2708 (|#1| $)) (-15 -2985 ((-110) $)) (-15 -4212 ($ $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2364 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|))) (-984) (-791)) (T -1202))
-((* (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-2562 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-3217 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-791)))) (-2366 (*1 *1 *2) (-12 (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)) (-4 *2 (-791)))) (-2267 (*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-2008 (*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))) (-3278 (*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))) (-2065 (*1 *2 *1 *3) (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-2708 (*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))) (-2985 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984)) (-4 *4 (-791)))) (-4212 (*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))) (-2364 (*1 *1 *1 *2) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-791)))))
-(-13 (-984) (-1193 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2267 ((-719) $)) (-15 -2366 ($ |#2|)) (-15 -2008 (|#2| $)) (-15 -3278 (|#2| $)) (-15 -2562 ($ $)) (-15 -2065 (|#1| $ |#2|)) (-15 -1613 ((-110) $)) (-15 -2708 (|#1| $)) (-15 -2985 ((-110) $)) (-15 -4212 ($ $)) (-15 -3217 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2364 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4262)) (-6 -4262) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4267)) (-6 -4267) |%noBranch|)))
-((-2352 (((-110) $ $) 26)) (-1813 (((-110) $) NIL)) (-3702 (((-597 |#1|) $) 120)) (-3655 (($ (-1194 |#1| |#2|)) 44)) (-1911 (($ $ (-719)) 32)) (-1889 (((-3 $ "failed") $ $) NIL)) (-1605 (($ $ $) 48 (|has| |#2| (-162))) (($ $ (-719)) 46 (|has| |#2| (-162)))) (-2350 (($) NIL T CONST)) (-3575 (($ $ |#1|) 102) (($ $ (-767 |#1|)) 103) (($ $ $) 25)) (-3139 (((-3 (-767 |#1|) "failed") $) NIL)) (-2585 (((-767 |#1|) $) NIL)) (-2707 (((-3 $ "failed") $) 110)) (-2985 (((-110) $) 105)) (-4212 (($ $) 106)) (-2731 (((-110) $) NIL)) (-3668 (((-110) $) NIL)) (-3940 (($ (-767 |#1|) |#2|) 19)) (-2627 (($ $) NIL)) (-4097 (((-2 (|:| |k| (-767 |#1|)) (|:| |c| |#2|)) $) NIL)) (-3278 (((-767 |#1|) $) 111)) (-2008 (((-767 |#1|) $) 114)) (-3217 (($ (-1 |#2| |#2|) $) 119)) (-2448 (($ $ |#1|) 100) (($ $ (-767 |#1|)) 101) (($ $ $) 56)) (-1424 (((-1082) $) NIL)) (-2624 (((-1046) $) NIL)) (-2246 (((-1194 |#1| |#2|) $) 84)) (-1429 (((-719) $) 117)) (-1613 (((-110) $) 70)) (-2708 ((|#2| $) 28)) (-2366 (((-804) $) 63) (($ (-530)) 77) (($ |#2|) 74) (($ (-767 |#1|)) 17) (($ |#1|) 73)) (-2065 ((|#2| $ (-767 |#1|)) 104) ((|#2| $ $) 27)) (-3300 (((-719)) 108)) (-3080 (($) 14 T CONST)) (-3808 (((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3093 (($) 29 T CONST)) (-2248 (((-110) $ $) 13)) (-2351 (($ $) 88) (($ $ $) 91)) (-2339 (($ $ $) 55)) (** (($ $ (-862)) NIL) (($ $ (-719)) 49)) (* (($ (-862) $) NIL) (($ (-719) $) 47) (($ (-530) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
-(((-1203 |#1| |#2|) (-13 (-1200 |#1| |#2|) (-10 -8 (-15 -2246 ((-1194 |#1| |#2|) $)) (-15 -3655 ($ (-1194 |#1| |#2|))) (-15 -3808 ((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-795) (-984)) (T -1203))
-((-2246 (*1 *2 *1) (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)) (-5 *1 (-1203 *3 *4)))) (-3808 (*1 *2 *1) (-12 (-5 *2 (-597 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4))))) (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
-(-13 (-1200 |#1| |#2|) (-10 -8 (-15 -2246 ((-1194 |#1| |#2|) $)) (-15 -3655 ($ (-1194 |#1| |#2|))) (-15 -3808 ((-597 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
-((-4126 (((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530)) 15) (((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|))) 11)))
-(((-1204 |#1|) (-10 -7 (-15 -4126 ((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|)))) (-15 -4126 ((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530)))) (-1135)) (T -1204))
-((-4126 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-597 (-1080 *5)) (-597 (-1080 *5)))) (-5 *4 (-530)) (-5 *2 (-597 (-1080 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1135)))) (-4126 (*1 *2 *3) (-12 (-5 *3 (-1 (-1080 *4) (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1204 *4)) (-4 *4 (-1135)))))
-(-10 -7 (-15 -4126 ((-1080 |#1|) (-1 (-1080 |#1|) (-1080 |#1|)))) (-15 -4126 ((-597 (-1080 |#1|)) (-1 (-597 (-1080 |#1|)) (-597 (-1080 |#1|))) (-530))))
-((-3205 (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|))) 148) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110)) 147) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110)) 146) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110)) 145) (((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-981 |#1| |#2|)) 130)) (-2149 (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|))) 72) (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110)) 71) (((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110)) 70)) (-3272 (((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|)) 61)) (-3009 (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|))) 115) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110)) 114) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110)) 113) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110)) 112) (((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|)) 107)) (-1500 (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|))) 120) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110)) 119) (((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110)) 118) (((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|)) 117)) (-3260 (((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) 98) (((-1095 (-962 (-388 |#1|))) (-1095 |#1|)) 89) (((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|))) 96) (((-893 (-962 (-388 |#1|))) (-893 |#1|)) 94) (((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|))) 33)))
-(((-1205 |#1| |#2| |#3|) (-10 -7 (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110))) (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110))) (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-981 |#1| |#2|))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -3272 ((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|))) (-15 -3260 ((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|)))) (-15 -3260 ((-893 (-962 (-388 |#1|))) (-893 |#1|))) (-15 -3260 ((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|)))) (-15 -3260 ((-1095 (-962 (-388 |#1|))) (-1095 |#1|))) (-15 -3260 ((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))))) (-13 (-793) (-289) (-140) (-960)) (-597 (-1099)) (-597 (-1099))) (T -1205))
-((-3260 (*1 *2 *3) (-12 (-5 *3 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6)))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-728 *4 (-806 *6)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-1095 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-1095 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-728 *4 (-806 *6))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099))) (-5 *2 (-893 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-893 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3260 (*1 *2 *3) (-12 (-5 *3 (-728 *4 (-806 *5))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-728 *4 (-806 *6))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3272 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-1500 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-1500 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-1500 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3009 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3009 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3009 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3009 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-3205 (*1 *2 *3) (-12 (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-597 (-893 *4))) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-3205 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3205 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3205 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5)))))) (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5))) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-3205 (*1 *2 *3) (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4)))))) (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))) (-2149 (*1 *2 *3) (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *4 *5))) (-5 *1 (-1205 *4 *5 *6)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))) (-2149 (*1 *2 *3 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))) (-2149 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960))) (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7)) (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099))))))
-(-10 -7 (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110) (-110))) (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)) (-110))) (-15 -2149 ((-597 (-981 |#1| |#2|)) (-597 (-893 |#1|)))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-981 |#1| |#2|))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)) (-110))) (-15 -3205 ((-597 (-2 (|:| -1258 (-1095 |#1|)) (|:| -2328 (-597 (-893 |#1|))))) (-597 (-893 |#1|)))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -3009 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-981 |#1| |#2|))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110) (-110))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)) (-110))) (-15 -1500 ((-597 (-597 (-962 (-388 |#1|)))) (-597 (-893 |#1|)))) (-15 -3272 ((-597 (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|)))) (-981 |#1| |#2|))) (-15 -3260 ((-728 |#1| (-806 |#3|)) (-728 |#1| (-806 |#2|)))) (-15 -3260 ((-893 (-962 (-388 |#1|))) (-893 |#1|))) (-15 -3260 ((-893 (-962 (-388 |#1|))) (-728 |#1| (-806 |#3|)))) (-15 -3260 ((-1095 (-962 (-388 |#1|))) (-1095 |#1|))) (-15 -3260 ((-597 (-728 |#1| (-806 |#3|))) (-1070 |#1| (-502 (-806 |#3|)) (-806 |#3|) (-728 |#1| (-806 |#3|))))))
-((-2445 (((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|) 21)) (-3061 (((-110) (-1181 |#1|)) 12)) (-2103 (((-3 (-1181 (-530)) "failed") (-1181 |#1|)) 16)))
-(((-1206 |#1|) (-10 -7 (-15 -3061 ((-110) (-1181 |#1|))) (-15 -2103 ((-3 (-1181 (-530)) "failed") (-1181 |#1|))) (-15 -2445 ((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|))) (-593 (-530))) (T -1206))
-((-2445 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-1181 (-388 (-530)))) (-5 *1 (-1206 *4)))) (-2103 (*1 *2 *3) (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-1181 (-530))) (-5 *1 (-1206 *4)))) (-3061 (*1 *2 *3) (-12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-110)) (-5 *1 (-1206 *4)))))
-(-10 -7 (-15 -3061 ((-110) (-1181 |#1|))) (-15 -2103 ((-3 (-1181 (-530)) "failed") (-1181 |#1|))) (-15 -2445 ((-3 (-1181 (-388 (-530))) "failed") (-1181 |#1|) |#1|)))
-((-2352 (((-110) $ $) NIL)) (-1813 (((-110) $) 11)) (-1889 (((-3 $ "failed") $ $) NIL)) (-3023 (((-719)) 8)) (-2350 (($) NIL T CONST)) (-2707 (((-3 $ "failed") $) 43)) (-1364 (($) 36)) (-2731 (((-110) $) NIL)) (-2972 (((-3 $ "failed") $) 29)) (-1905 (((-862) $) 15)) (-1424 (((-1082) $) NIL)) (-3657 (($) 25 T CONST)) (-1986 (($ (-862)) 37)) (-2624 (((-1046) $) NIL)) (-3260 (((-530) $) 13)) (-2366 (((-804) $) 22) (($ (-530)) 19)) (-3300 (((-719)) 9)) (-3080 (($) 23 T CONST)) (-3093 (($) 24 T CONST)) (-2248 (((-110) $ $) 27)) (-2351 (($ $) 38) (($ $ $) 35)) (-2339 (($ $ $) 26)) (** (($ $ (-862)) NIL) (($ $ (-719)) 40)) (* (($ (-862) $) NIL) (($ (-719) $) NIL) (($ (-530) $) 32) (($ $ $) 31)))
-(((-1207 |#1|) (-13 (-162) (-349) (-572 (-530)) (-1075)) (-862)) (T -1207))
-NIL
-(-13 (-162) (-349) (-572 (-530)) (-1075))
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-NIL
-((-3 3138561 3138566 3138571 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3138546 3138551 3138556 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3138531 3138536 3138541 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3138516 3138521 3138526 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1207 3137692 3138391 3138468 "ZMOD" 3138473 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1206 3136802 3136966 3137175 "ZLINDEP" 3137524 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1205 3126206 3127951 3129903 "ZDSOLVE" 3134951 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1204 3125452 3125593 3125782 "YSTREAM" 3126052 NIL YSTREAM (NIL T) -7 NIL NIL) (-1203 3123267 3124757 3124960 "XRPOLY" 3125295 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1202 3119775 3121058 3121640 "XPR" 3122731 NIL XPR (NIL T T) -8 NIL NIL) (-1201 3117535 3119110 3119313 "XPOLY" 3119606 NIL XPOLY (NIL T) -8 NIL NIL) (-1200 3115393 3116727 3116781 "XPOLYC" 3117066 NIL XPOLYC (NIL T T) -9 NIL 3117179) (-1199 3111811 3113910 3114298 "XPBWPOLY" 3115051 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1198 3107804 3110052 3110094 "XF" 3110715 NIL XF (NIL T) -9 NIL 3111114) (-1197 3107425 3107513 3107682 "XF-" 3107687 NIL XF- (NIL T T) -8 NIL NIL) (-1196 3102849 3104104 3104158 "XFALG" 3106306 NIL XFALG (NIL T T) -9 NIL 3107093) (-1195 3101986 3102090 3102294 "XEXPPKG" 3102741 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1194 3100131 3101837 3101932 "XDPOLY" 3101937 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1193 3099054 3099620 3099662 "XALG" 3099724 NIL XALG (NIL T) -9 NIL 3099843) (-1192 3092530 3097038 3097531 "WUTSET" 3098646 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1191 3090388 3091149 3091500 "WP" 3092312 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1190 3089274 3089472 3089767 "WFFINTBS" 3090185 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1189 3087178 3087605 3088067 "WEIER" 3088846 NIL WEIER (NIL T) -7 NIL NIL) (-1188 3086327 3086751 3086793 "VSPACE" 3086929 NIL VSPACE (NIL T) -9 NIL 3087003) (-1187 3086165 3086192 3086283 "VSPACE-" 3086288 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1186 3085911 3085954 3086025 "VOID" 3086116 T VOID (NIL) -8 NIL NIL) (-1185 3084047 3084406 3084812 "VIEW" 3085527 T VIEW (NIL) -7 NIL NIL) (-1184 3080472 3081110 3081847 "VIEWDEF" 3083332 T VIEWDEF (NIL) -7 NIL NIL) (-1183 3069810 3072020 3074193 "VIEW3D" 3078321 T VIEW3D (NIL) -8 NIL NIL) (-1182 3062092 3063721 3065300 "VIEW2D" 3068253 T VIEW2D (NIL) -8 NIL NIL) (-1181 3057501 3061862 3061954 "VECTOR" 3062035 NIL VECTOR (NIL T) -8 NIL NIL) (-1180 3056078 3056337 3056655 "VECTOR2" 3057231 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1179 3049618 3053870 3053913 "VECTCAT" 3054901 NIL VECTCAT (NIL T) -9 NIL 3055485) (-1178 3048632 3048886 3049276 "VECTCAT-" 3049281 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1177 3048113 3048283 3048403 "VARIABLE" 3048547 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1176 3048046 3048051 3048081 "UTYPE" 3048086 T UTYPE (NIL) -9 NIL NIL) (-1175 3046881 3047035 3047296 "UTSODETL" 3047872 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1174 3044321 3044781 3045305 "UTSODE" 3046422 NIL UTSODE (NIL T T) -7 NIL NIL) (-1173 3036211 3041961 3042449 "UTS" 3043890 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1172 3027602 3032921 3032963 "UTSCAT" 3034064 NIL UTSCAT (NIL T) -9 NIL 3034821) (-1171 3024957 3025673 3026661 "UTSCAT-" 3026666 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1170 3024588 3024631 3024762 "UTS2" 3024908 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1169 3018864 3021429 3021472 "URAGG" 3023542 NIL URAGG (NIL T) -9 NIL 3024264) (-1168 3015803 3016666 3017789 "URAGG-" 3017794 NIL URAGG- (NIL T T) -8 NIL NIL) (-1167 3011535 3014420 3014891 "UPXSSING" 3015467 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1166 3003511 3010656 3010936 "UPXS" 3011312 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1165 2996625 3003416 3003487 "UPXSCONS" 3003492 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1164 2986999 2993744 2993805 "UPXSCCA" 2994454 NIL UPXSCCA (NIL T T) -9 NIL 2994695) (-1163 2986638 2986723 2986896 "UPXSCCA-" 2986901 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1162 2976934 2983452 2983494 "UPXSCAT" 2984137 NIL UPXSCAT (NIL T) -9 NIL 2984745) (-1161 2976368 2976447 2976624 "UPXS2" 2976849 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1160 2975022 2975275 2975626 "UPSQFREE" 2976111 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1159 2968959 2971968 2972022 "UPSCAT" 2973171 NIL UPSCAT (NIL T T) -9 NIL 2973945) (-1158 2968164 2968371 2968697 "UPSCAT-" 2968702 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1157 2954296 2962287 2962329 "UPOLYC" 2964407 NIL UPOLYC (NIL T) -9 NIL 2965628) (-1156 2945626 2948051 2951197 "UPOLYC-" 2951202 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1155 2945257 2945300 2945431 "UPOLYC2" 2945577 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1154 2936722 2944826 2944963 "UP" 2945167 NIL UP (NIL NIL T) -8 NIL NIL) (-1153 2936065 2936172 2936335 "UPMP" 2936611 NIL UPMP (NIL T T) -7 NIL NIL) (-1152 2935618 2935699 2935838 "UPDIVP" 2935978 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1151 2934186 2934435 2934751 "UPDECOMP" 2935367 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1150 2933421 2933533 2933718 "UPCDEN" 2934070 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1149 2932944 2933013 2933160 "UP2" 2933346 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1148 2931461 2932148 2932425 "UNISEG" 2932702 NIL UNISEG (NIL T) -8 NIL NIL) (-1147 2930676 2930803 2931008 "UNISEG2" 2931304 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1146 2929736 2929916 2930142 "UNIFACT" 2930492 NIL UNIFACT (NIL T) -7 NIL NIL) (-1145 2913717 2928917 2929167 "ULS" 2929543 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1144 2901767 2913622 2913693 "ULSCONS" 2913698 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1143 2884602 2896530 2896591 "ULSCCAT" 2897303 NIL ULSCCAT (NIL T T) -9 NIL 2897599) (-1142 2883653 2883898 2884285 "ULSCCAT-" 2884290 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1141 2873728 2880160 2880202 "ULSCAT" 2881058 NIL ULSCAT (NIL T) -9 NIL 2881788) (-1140 2873162 2873241 2873418 "ULS2" 2873643 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1139 2871604 2872527 2872557 "UFD" 2872769 T UFD (NIL) -9 NIL 2872883) (-1138 2871398 2871444 2871539 "UFD-" 2871544 NIL UFD- (NIL T) -8 NIL NIL) (-1137 2870480 2870663 2870879 "UDVO" 2871204 T UDVO (NIL) -7 NIL NIL) (-1136 2868296 2868705 2869176 "UDPO" 2870044 NIL UDPO (NIL T) -7 NIL NIL) (-1135 2868229 2868234 2868264 "TYPE" 2868269 T TYPE (NIL) -9 NIL NIL) (-1134 2867200 2867402 2867642 "TWOFACT" 2868023 NIL TWOFACT (NIL T) -7 NIL NIL) (-1133 2866138 2866475 2866738 "TUPLE" 2866972 NIL TUPLE (NIL T) -8 NIL NIL) (-1132 2863829 2864348 2864887 "TUBETOOL" 2865621 T TUBETOOL (NIL) -7 NIL NIL) (-1131 2862678 2862883 2863124 "TUBE" 2863622 NIL TUBE (NIL T) -8 NIL NIL) (-1130 2857448 2861656 2861938 "TS" 2862430 NIL TS (NIL T) -8 NIL NIL) (-1129 2846152 2850244 2850340 "TSETCAT" 2855574 NIL TSETCAT (NIL T T T T) -9 NIL 2857105) (-1128 2840887 2842485 2844375 "TSETCAT-" 2844380 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1127 2835150 2835996 2836938 "TRMANIP" 2840023 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1126 2834591 2834654 2834817 "TRIMAT" 2835082 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1125 2832397 2832634 2832997 "TRIGMNIP" 2834340 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1124 2831917 2832030 2832060 "TRIGCAT" 2832273 T TRIGCAT (NIL) -9 NIL NIL) (-1123 2831586 2831665 2831806 "TRIGCAT-" 2831811 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1122 2828485 2830446 2830726 "TREE" 2831341 NIL TREE (NIL T) -8 NIL NIL) (-1121 2827759 2828287 2828317 "TRANFUN" 2828352 T TRANFUN (NIL) -9 NIL 2828418) (-1120 2827038 2827229 2827509 "TRANFUN-" 2827514 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1119 2826842 2826874 2826935 "TOPSP" 2826999 T TOPSP (NIL) -7 NIL NIL) (-1118 2826194 2826309 2826462 "TOOLSIGN" 2826723 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1117 2824855 2825371 2825610 "TEXTFILE" 2825977 T TEXTFILE (NIL) -8 NIL NIL) (-1116 2822720 2823234 2823672 "TEX" 2824439 T TEX (NIL) -8 NIL NIL) (-1115 2822501 2822532 2822604 "TEX1" 2822683 NIL TEX1 (NIL T) -7 NIL NIL) (-1114 2822149 2822212 2822302 "TEMUTL" 2822433 T TEMUTL (NIL) -7 NIL NIL) (-1113 2820303 2820583 2820908 "TBCMPPK" 2821872 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1112 2812192 2818464 2818520 "TBAGG" 2818920 NIL TBAGG (NIL T T) -9 NIL 2819131) (-1111 2807262 2808750 2810504 "TBAGG-" 2810509 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1110 2806646 2806753 2806898 "TANEXP" 2807151 NIL TANEXP (NIL T) -7 NIL NIL) (-1109 2800147 2806503 2806596 "TABLE" 2806601 NIL TABLE (NIL T T) -8 NIL NIL) (-1108 2799559 2799658 2799796 "TABLEAU" 2800044 NIL TABLEAU (NIL T) -8 NIL NIL) (-1107 2794167 2795387 2796635 "TABLBUMP" 2798345 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1106 2793595 2793695 2793823 "SYSTEM" 2794061 T SYSTEM (NIL) -7 NIL NIL) (-1105 2790058 2790753 2791536 "SYSSOLP" 2792846 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1104 2786349 2787057 2787791 "SYNTAX" 2789346 T SYNTAX (NIL) -8 NIL NIL) (-1103 2783483 2784091 2784729 "SYMTAB" 2785733 T SYMTAB (NIL) -8 NIL NIL) (-1102 2778732 2779634 2780617 "SYMS" 2782522 T SYMS (NIL) -8 NIL NIL) (-1101 2776011 2778192 2778421 "SYMPOLY" 2778537 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1100 2775531 2775606 2775728 "SYMFUNC" 2775923 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1099 2771508 2772768 2773590 "SYMBOL" 2774731 T SYMBOL (NIL) -8 NIL NIL) (-1098 2765047 2766736 2768456 "SWITCH" 2769810 T SWITCH (NIL) -8 NIL NIL) (-1097 2758323 2763874 2764176 "SUTS" 2764802 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1096 2750298 2757444 2757724 "SUPXS" 2758100 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1095 2741835 2749919 2750044 "SUP" 2750207 NIL SUP (NIL T) -8 NIL NIL) (-1094 2740994 2741121 2741338 "SUPFRACF" 2741703 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1093 2740619 2740678 2740789 "SUP2" 2740929 NIL SUP2 (NIL T T) -7 NIL NIL) (-1092 2739037 2739311 2739673 "SUMRF" 2740318 NIL SUMRF (NIL T) -7 NIL NIL) (-1091 2738354 2738420 2738618 "SUMFS" 2738958 NIL SUMFS (NIL T T) -7 NIL NIL) (-1090 2722375 2737535 2737785 "SULS" 2738161 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1089 2721697 2721900 2722040 "SUCH" 2722283 NIL SUCH (NIL T T) -8 NIL NIL) (-1088 2715624 2716636 2717594 "SUBSPACE" 2720785 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1087 2715054 2715144 2715308 "SUBRESP" 2715512 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1086 2708423 2709719 2711030 "STTF" 2713790 NIL STTF (NIL T) -7 NIL NIL) (-1085 2702596 2703716 2704863 "STTFNC" 2707323 NIL STTFNC (NIL T) -7 NIL NIL) (-1084 2693947 2695814 2697607 "STTAYLOR" 2700837 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1083 2687191 2693811 2693894 "STRTBL" 2693899 NIL STRTBL (NIL T) -8 NIL NIL) (-1082 2682582 2687146 2687177 "STRING" 2687182 T STRING (NIL) -8 NIL NIL) (-1081 2677471 2681956 2681986 "STRICAT" 2682045 T STRICAT (NIL) -9 NIL 2682107) (-1080 2670185 2674994 2675614 "STREAM" 2676886 NIL STREAM (NIL T) -8 NIL NIL) (-1079 2669695 2669772 2669916 "STREAM3" 2670102 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1078 2668677 2668860 2669095 "STREAM2" 2669508 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1077 2668365 2668417 2668510 "STREAM1" 2668619 NIL STREAM1 (NIL T) -7 NIL NIL) (-1076 2667381 2667562 2667793 "STINPROD" 2668181 NIL STINPROD (NIL T) -7 NIL NIL) (-1075 2666960 2667144 2667174 "STEP" 2667254 T STEP (NIL) -9 NIL 2667332) (-1074 2660503 2666859 2666936 "STBL" 2666941 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1073 2655679 2659726 2659769 "STAGG" 2659922 NIL STAGG (NIL T) -9 NIL 2660011) (-1072 2653381 2653983 2654855 "STAGG-" 2654860 NIL STAGG- (NIL T T) -8 NIL NIL) (-1071 2651576 2653151 2653243 "STACK" 2653324 NIL STACK (NIL T) -8 NIL NIL) (-1070 2644307 2649723 2650178 "SREGSET" 2651206 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1069 2636747 2638115 2639627 "SRDCMPK" 2642913 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1068 2629715 2634188 2634218 "SRAGG" 2635521 T SRAGG (NIL) -9 NIL 2636129) (-1067 2628732 2628987 2629366 "SRAGG-" 2629371 NIL SRAGG- (NIL T) -8 NIL NIL) (-1066 2623227 2627651 2628078 "SQMATRIX" 2628351 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1065 2616979 2619947 2620673 "SPLTREE" 2622573 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1064 2612969 2613635 2614281 "SPLNODE" 2616405 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1063 2612016 2612249 2612279 "SPFCAT" 2612723 T SPFCAT (NIL) -9 NIL NIL) (-1062 2610753 2610963 2611227 "SPECOUT" 2611774 T SPECOUT (NIL) -7 NIL NIL) (-1061 2610514 2610554 2610623 "SPADPRSR" 2610706 T SPADPRSR (NIL) -7 NIL NIL) (-1060 2602537 2604284 2604326 "SPACEC" 2608649 NIL SPACEC (NIL T) -9 NIL 2610465) (-1059 2600709 2602470 2602518 "SPACE3" 2602523 NIL SPACE3 (NIL T) -8 NIL NIL) (-1058 2599461 2599632 2599923 "SORTPAK" 2600514 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1057 2597517 2597820 2598238 "SOLVETRA" 2599125 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1056 2596528 2596750 2597024 "SOLVESER" 2597290 NIL SOLVESER (NIL T) -7 NIL NIL) (-1055 2591748 2592629 2593631 "SOLVERAD" 2595580 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1054 2587563 2588172 2588901 "SOLVEFOR" 2591115 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1053 2581862 2586914 2587010 "SNTSCAT" 2587015 NIL SNTSCAT (NIL T T T T) -9 NIL 2587085) (-1052 2576012 2580193 2580583 "SMTS" 2581552 NIL SMTS (NIL T T T) -8 NIL NIL) (-1051 2570468 2575901 2575977 "SMP" 2575982 NIL SMP (NIL T T) -8 NIL NIL) (-1050 2568627 2568928 2569326 "SMITH" 2570165 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1049 2561638 2565788 2565890 "SMATCAT" 2567230 NIL SMATCAT (NIL NIL T T T) -9 NIL 2567779) (-1048 2558579 2559402 2560579 "SMATCAT-" 2560584 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1047 2556293 2557816 2557859 "SKAGG" 2558120 NIL SKAGG (NIL T) -9 NIL 2558255) (-1046 2552397 2555397 2555675 "SINT" 2556037 T SINT (NIL) -8 NIL NIL) (-1045 2552169 2552207 2552273 "SIMPAN" 2552353 T SIMPAN (NIL) -7 NIL NIL) (-1044 2551685 2551871 2551970 "SIG" 2552092 T SIG (NIL) -8 NIL NIL) (-1043 2550523 2550744 2551019 "SIGNRF" 2551444 NIL SIGNRF (NIL T) -7 NIL NIL) (-1042 2549332 2549483 2549773 "SIGNEF" 2550352 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1041 2547022 2547476 2547982 "SHP" 2548873 NIL SHP (NIL T NIL) -7 NIL NIL) (-1040 2540961 2546923 2546999 "SHDP" 2547004 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1039 2540561 2540727 2540757 "SGROUP" 2540850 T SGROUP (NIL) -9 NIL 2540912) (-1038 2540419 2540445 2540518 "SGROUP-" 2540523 NIL SGROUP- (NIL T) -8 NIL NIL) (-1037 2537255 2537952 2538675 "SGCF" 2539718 T SGCF (NIL) -7 NIL NIL) (-1036 2531652 2536704 2536800 "SFRTCAT" 2536805 NIL SFRTCAT (NIL T T T T) -9 NIL 2536844) (-1035 2525094 2526109 2527244 "SFRGCD" 2530635 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1034 2518241 2519312 2520497 "SFQCMPK" 2524027 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1033 2517863 2517952 2518062 "SFORT" 2518182 NIL SFORT (NIL T T) -8 NIL NIL) (-1032 2517008 2517703 2517824 "SEXOF" 2517829 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1031 2516142 2516889 2516957 "SEX" 2516962 T SEX (NIL) -8 NIL NIL) (-1030 2510919 2511608 2511703 "SEXCAT" 2515474 NIL SEXCAT (NIL T T T T T) -9 NIL 2516093) (-1029 2508099 2510853 2510901 "SET" 2510906 NIL SET (NIL T) -8 NIL NIL) (-1028 2506350 2506812 2507117 "SETMN" 2507840 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1027 2505958 2506084 2506114 "SETCAT" 2506231 T SETCAT (NIL) -9 NIL 2506315) (-1026 2505738 2505790 2505889 "SETCAT-" 2505894 NIL SETCAT- (NIL T) -8 NIL NIL) (-1025 2502126 2504200 2504243 "SETAGG" 2505113 NIL SETAGG (NIL T) -9 NIL 2505453) (-1024 2501584 2501700 2501937 "SETAGG-" 2501942 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1023 2500788 2501081 2501142 "SEGXCAT" 2501428 NIL SEGXCAT (NIL T T) -9 NIL 2501548) (-1022 2499844 2500454 2500636 "SEG" 2500641 NIL SEG (NIL T) -8 NIL NIL) (-1021 2498751 2498964 2499007 "SEGCAT" 2499589 NIL SEGCAT (NIL T) -9 NIL 2499827) (-1020 2497800 2498130 2498330 "SEGBIND" 2498586 NIL SEGBIND (NIL T) -8 NIL NIL) (-1019 2497421 2497480 2497593 "SEGBIND2" 2497735 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1018 2496640 2496766 2496970 "SEG2" 2497265 NIL SEG2 (NIL T T) -7 NIL NIL) (-1017 2496077 2496575 2496622 "SDVAR" 2496627 NIL SDVAR (NIL T) -8 NIL NIL) (-1016 2488375 2495850 2495978 "SDPOL" 2495983 NIL SDPOL (NIL T) -8 NIL NIL) (-1015 2486968 2487234 2487553 "SCPKG" 2488090 NIL SCPKG (NIL T) -7 NIL NIL) (-1014 2486104 2486284 2486484 "SCOPE" 2486790 T SCOPE (NIL) -8 NIL NIL) (-1013 2485325 2485458 2485637 "SCACHE" 2485959 NIL SCACHE (NIL T) -7 NIL NIL) (-1012 2484764 2485085 2485170 "SAOS" 2485262 T SAOS (NIL) -8 NIL NIL) (-1011 2484329 2484364 2484537 "SAERFFC" 2484723 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1010 2478308 2484226 2484306 "SAE" 2484311 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1009 2477901 2477936 2478095 "SAEFACT" 2478267 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1008 2476222 2476536 2476937 "RURPK" 2477567 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1007 2474862 2475141 2475452 "RULESET" 2476056 NIL RULESET (NIL T T T) -8 NIL NIL) (-1006 2472060 2472563 2473026 "RULE" 2474544 NIL RULE (NIL T T T) -8 NIL NIL) (-1005 2471699 2471854 2471937 "RULECOLD" 2472012 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1004 2466562 2467356 2468275 "RSETGCD" 2470898 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1003 2455848 2460900 2460996 "RSETCAT" 2465088 NIL RSETCAT (NIL T T T T) -9 NIL 2466185) (-1002 2453776 2454315 2455138 "RSETCAT-" 2455143 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1001 2446177 2447552 2449071 "RSDCMPK" 2452375 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1000 2444183 2444624 2444698 "RRCC" 2445784 NIL RRCC (NIL T T) -9 NIL 2446128) (-999 2443536 2443710 2443987 "RRCC-" 2443992 NIL RRCC- (NIL T T T) -8 NIL NIL) (-998 2417949 2427528 2427592 "RPOLCAT" 2438094 NIL RPOLCAT (NIL T T T) -9 NIL 2441252) (-997 2409453 2411791 2414909 "RPOLCAT-" 2414914 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-996 2400519 2407683 2408163 "ROUTINE" 2408993 T ROUTINE (NIL) -8 NIL NIL) (-995 2397270 2400075 2400222 "ROMAN" 2400392 T ROMAN (NIL) -8 NIL NIL) (-994 2395554 2396139 2396397 "ROIRC" 2397075 NIL ROIRC (NIL T T) -8 NIL NIL) (-993 2392024 2394263 2394291 "RNS" 2394587 T RNS (NIL) -9 NIL 2394857) (-992 2390538 2390921 2391452 "RNS-" 2391525 NIL RNS- (NIL T) -8 NIL NIL) (-991 2389990 2390372 2390400 "RNG" 2390405 T RNG (NIL) -9 NIL 2390426) (-990 2389388 2389750 2389790 "RMODULE" 2389850 NIL RMODULE (NIL T) -9 NIL 2389892) (-989 2388240 2388334 2388664 "RMCAT2" 2389289 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-988 2384954 2387423 2387744 "RMATRIX" 2387975 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-987 2377951 2380185 2380297 "RMATCAT" 2383606 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2384588) (-986 2377330 2377477 2377780 "RMATCAT-" 2377785 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-985 2376900 2376975 2377101 "RINTERP" 2377249 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-984 2375995 2376515 2376543 "RING" 2376653 T RING (NIL) -9 NIL 2376747) (-983 2375790 2375834 2375928 "RING-" 2375933 NIL RING- (NIL T) -8 NIL NIL) (-982 2374638 2374875 2375131 "RIDIST" 2375554 T RIDIST (NIL) -7 NIL NIL) (-981 2365958 2374110 2374314 "RGCHAIN" 2374486 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-980 2362963 2363577 2364245 "RF" 2365322 NIL RF (NIL T) -7 NIL NIL) (-979 2362612 2362675 2362776 "RFFACTOR" 2362894 NIL RFFACTOR (NIL T) -7 NIL NIL) (-978 2362340 2362375 2362470 "RFFACT" 2362571 NIL RFFACT (NIL T) -7 NIL NIL) (-977 2360470 2360834 2361214 "RFDIST" 2361980 T RFDIST (NIL) -7 NIL NIL) (-976 2359928 2360020 2360180 "RETSOL" 2360372 NIL RETSOL (NIL T T) -7 NIL NIL) (-975 2359521 2359601 2359642 "RETRACT" 2359832 NIL RETRACT (NIL T) -9 NIL NIL) (-974 2359373 2359398 2359482 "RETRACT-" 2359487 NIL RETRACT- (NIL T T) -8 NIL NIL) (-973 2352231 2359030 2359155 "RESULT" 2359268 T RESULT (NIL) -8 NIL NIL) (-972 2350862 2351505 2351702 "RESRING" 2352134 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-971 2350502 2350551 2350647 "RESLATC" 2350799 NIL RESLATC (NIL T) -7 NIL NIL) (-970 2350211 2350245 2350350 "REPSQ" 2350461 NIL REPSQ (NIL T) -7 NIL NIL) (-969 2347642 2348222 2348822 "REP" 2349631 T REP (NIL) -7 NIL NIL) (-968 2347343 2347377 2347486 "REPDB" 2347601 NIL REPDB (NIL T) -7 NIL NIL) (-967 2341288 2342667 2343887 "REP2" 2346155 NIL REP2 (NIL T) -7 NIL NIL) (-966 2337694 2338375 2339180 "REP1" 2340515 NIL REP1 (NIL T) -7 NIL NIL) (-965 2330438 2335853 2336306 "REGSET" 2337324 NIL REGSET (NIL T T T T) -8 NIL NIL) (-964 2329259 2329594 2329842 "REF" 2330223 NIL REF (NIL T) -8 NIL NIL) (-963 2328640 2328743 2328908 "REDORDER" 2329143 NIL REDORDER (NIL T T) -7 NIL NIL) (-962 2324674 2327874 2328095 "RECLOS" 2328471 NIL RECLOS (NIL T) -8 NIL NIL) (-961 2323731 2323912 2324125 "REALSOLV" 2324481 T REALSOLV (NIL) -7 NIL NIL) (-960 2323579 2323620 2323648 "REAL" 2323653 T REAL (NIL) -9 NIL 2323688) (-959 2320070 2320872 2321754 "REAL0Q" 2322744 NIL REAL0Q (NIL T) -7 NIL NIL) (-958 2315681 2316669 2317728 "REAL0" 2319051 NIL REAL0 (NIL T) -7 NIL NIL) (-957 2315089 2315161 2315366 "RDIV" 2315603 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-956 2314162 2314336 2314547 "RDIST" 2314911 NIL RDIST (NIL T) -7 NIL NIL) (-955 2312766 2313053 2313422 "RDETRS" 2313870 NIL RDETRS (NIL T T) -7 NIL NIL) (-954 2310587 2311041 2311576 "RDETR" 2312308 NIL RDETR (NIL T T) -7 NIL NIL) (-953 2309203 2309481 2309882 "RDEEFS" 2310303 NIL RDEEFS (NIL T T) -7 NIL NIL) (-952 2307703 2308009 2308438 "RDEEF" 2308891 NIL RDEEF (NIL T T) -7 NIL NIL) (-951 2302053 2304920 2304948 "RCFIELD" 2306225 T RCFIELD (NIL) -9 NIL 2306955) (-950 2300122 2300626 2301319 "RCFIELD-" 2301392 NIL RCFIELD- (NIL T) -8 NIL NIL) (-949 2296454 2298239 2298280 "RCAGG" 2299351 NIL RCAGG (NIL T) -9 NIL 2299816) (-948 2296085 2296179 2296339 "RCAGG-" 2296344 NIL RCAGG- (NIL T T) -8 NIL NIL) (-947 2295429 2295541 2295703 "RATRET" 2295969 NIL RATRET (NIL T) -7 NIL NIL) (-946 2294986 2295053 2295172 "RATFACT" 2295357 NIL RATFACT (NIL T) -7 NIL NIL) (-945 2294301 2294421 2294571 "RANDSRC" 2294856 T RANDSRC (NIL) -7 NIL NIL) (-944 2294038 2294082 2294153 "RADUTIL" 2294250 T RADUTIL (NIL) -7 NIL NIL) (-943 2287110 2292781 2293098 "RADIX" 2293753 NIL RADIX (NIL NIL) -8 NIL NIL) (-942 2278771 2286954 2287082 "RADFF" 2287087 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-941 2278423 2278498 2278526 "RADCAT" 2278683 T RADCAT (NIL) -9 NIL NIL) (-940 2278208 2278256 2278353 "RADCAT-" 2278358 NIL RADCAT- (NIL T) -8 NIL NIL) (-939 2276359 2277983 2278072 "QUEUE" 2278152 NIL QUEUE (NIL T) -8 NIL NIL) (-938 2272941 2276296 2276341 "QUAT" 2276346 NIL QUAT (NIL T) -8 NIL NIL) (-937 2272579 2272622 2272749 "QUATCT2" 2272892 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-936 2266458 2269753 2269793 "QUATCAT" 2270572 NIL QUATCAT (NIL T) -9 NIL 2271337) (-935 2262602 2263639 2265026 "QUATCAT-" 2265120 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-934 2260123 2261687 2261728 "QUAGG" 2262103 NIL QUAGG (NIL T) -9 NIL 2262278) (-933 2259048 2259521 2259693 "QFORM" 2259995 NIL QFORM (NIL NIL T) -8 NIL NIL) (-932 2250407 2255603 2255643 "QFCAT" 2256301 NIL QFCAT (NIL T) -9 NIL 2257294) (-931 2245979 2247180 2248771 "QFCAT-" 2248865 NIL QFCAT- (NIL T T) -8 NIL NIL) (-930 2245617 2245660 2245787 "QFCAT2" 2245930 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-929 2245077 2245187 2245317 "QEQUAT" 2245507 T QEQUAT (NIL) -8 NIL NIL) (-928 2238244 2239315 2240498 "QCMPACK" 2244010 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-927 2235820 2236241 2236669 "QALGSET" 2237899 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-926 2235065 2235239 2235471 "QALGSET2" 2235640 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-925 2233756 2233979 2234296 "PWFFINTB" 2234838 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-924 2231944 2232112 2232465 "PUSHVAR" 2233570 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-923 2227862 2228916 2228957 "PTRANFN" 2230841 NIL PTRANFN (NIL T) -9 NIL NIL) (-922 2226274 2226565 2226886 "PTPACK" 2227573 NIL PTPACK (NIL T) -7 NIL NIL) (-921 2225910 2225967 2226074 "PTFUNC2" 2226211 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-920 2220387 2224728 2224768 "PTCAT" 2225136 NIL PTCAT (NIL T) -9 NIL 2225298) (-919 2220045 2220080 2220204 "PSQFR" 2220346 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-918 2218640 2218938 2219272 "PSEUDLIN" 2219743 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-917 2205447 2207812 2210135 "PSETPK" 2216400 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-916 2198534 2201248 2201342 "PSETCAT" 2204323 NIL PSETCAT (NIL T T T T) -9 NIL 2205137) (-915 2196372 2197006 2197825 "PSETCAT-" 2197830 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-914 2195721 2195886 2195914 "PSCURVE" 2196182 T PSCURVE (NIL) -9 NIL 2196349) (-913 2192217 2193699 2193763 "PSCAT" 2194599 NIL PSCAT (NIL T T T) -9 NIL 2194839) (-912 2191281 2191497 2191896 "PSCAT-" 2191901 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-911 2189933 2190566 2190780 "PRTITION" 2191087 T PRTITION (NIL) -8 NIL NIL) (-910 2179031 2181237 2183425 "PRS" 2187795 NIL PRS (NIL T T) -7 NIL NIL) (-909 2176890 2178382 2178422 "PRQAGG" 2178605 NIL PRQAGG (NIL T) -9 NIL 2178707) (-908 2176461 2176563 2176591 "PROPLOG" 2176776 T PROPLOG (NIL) -9 NIL NIL) (-907 2173584 2174149 2174676 "PROPFRML" 2175966 NIL PROPFRML (NIL T) -8 NIL NIL) (-906 2173044 2173154 2173284 "PROPERTY" 2173474 T PROPERTY (NIL) -8 NIL NIL) (-905 2167129 2171210 2172030 "PRODUCT" 2172270 NIL PRODUCT (NIL T T) -8 NIL NIL) (-904 2164449 2166589 2166822 "PR" 2166940 NIL PR (NIL T T) -8 NIL NIL) (-903 2164245 2164277 2164336 "PRINT" 2164410 T PRINT (NIL) -7 NIL NIL) (-902 2163585 2163702 2163854 "PRIMES" 2164125 NIL PRIMES (NIL T) -7 NIL NIL) (-901 2161650 2162051 2162517 "PRIMELT" 2163164 NIL PRIMELT (NIL T) -7 NIL NIL) (-900 2161379 2161428 2161456 "PRIMCAT" 2161580 T PRIMCAT (NIL) -9 NIL NIL) (-899 2157540 2161317 2161362 "PRIMARR" 2161367 NIL PRIMARR (NIL T) -8 NIL NIL) (-898 2156547 2156725 2156953 "PRIMARR2" 2157358 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-897 2156190 2156246 2156357 "PREASSOC" 2156485 NIL PREASSOC (NIL T T) -7 NIL NIL) (-896 2155665 2155798 2155826 "PPCURVE" 2156031 T PPCURVE (NIL) -9 NIL 2156167) (-895 2155287 2155460 2155543 "PORTNUM" 2155602 T PORTNUM (NIL) -8 NIL NIL) (-894 2152646 2153045 2153637 "POLYROOT" 2154868 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-893 2146598 2152252 2152411 "POLY" 2152519 NIL POLY (NIL T) -8 NIL NIL) (-892 2145983 2146041 2146274 "POLYLIFT" 2146534 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-891 2142268 2142717 2143345 "POLYCATQ" 2145528 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-890 2129355 2134706 2134770 "POLYCAT" 2138255 NIL POLYCAT (NIL T T T) -9 NIL 2140182) (-889 2122806 2124667 2127050 "POLYCAT-" 2127055 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-888 2122395 2122463 2122582 "POLY2UP" 2122732 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-887 2122031 2122088 2122195 "POLY2" 2122332 NIL POLY2 (NIL T T) -7 NIL NIL) (-886 2120716 2120955 2121231 "POLUTIL" 2121805 NIL POLUTIL (NIL T T) -7 NIL NIL) (-885 2119078 2119355 2119685 "POLTOPOL" 2120438 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-884 2114601 2119015 2119060 "POINT" 2119065 NIL POINT (NIL T) -8 NIL NIL) (-883 2112788 2113145 2113520 "PNTHEORY" 2114246 T PNTHEORY (NIL) -7 NIL NIL) (-882 2111216 2111513 2111922 "PMTOOLS" 2112486 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-881 2110809 2110887 2111004 "PMSYM" 2111132 NIL PMSYM (NIL T) -7 NIL NIL) (-880 2110319 2110388 2110562 "PMQFCAT" 2110734 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-879 2109674 2109784 2109940 "PMPRED" 2110196 NIL PMPRED (NIL T) -7 NIL NIL) (-878 2109070 2109156 2109317 "PMPREDFS" 2109575 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-877 2107716 2107924 2108308 "PMPLCAT" 2108832 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-876 2107248 2107327 2107479 "PMLSAGG" 2107631 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-875 2106725 2106801 2106981 "PMKERNEL" 2107166 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-874 2106342 2106417 2106530 "PMINS" 2106644 NIL PMINS (NIL T) -7 NIL NIL) (-873 2105772 2105841 2106056 "PMFS" 2106267 NIL PMFS (NIL T T T) -7 NIL NIL) (-872 2105003 2105121 2105325 "PMDOWN" 2105649 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-871 2104166 2104325 2104507 "PMASS" 2104841 T PMASS (NIL) -7 NIL NIL) (-870 2103440 2103551 2103714 "PMASSFS" 2104052 NIL PMASSFS (NIL T T) -7 NIL NIL) (-869 2103095 2103163 2103257 "PLOTTOOL" 2103366 T PLOTTOOL (NIL) -7 NIL NIL) (-868 2097717 2098906 2100054 "PLOT" 2101967 T PLOT (NIL) -8 NIL NIL) (-867 2093531 2094565 2095486 "PLOT3D" 2096816 T PLOT3D (NIL) -8 NIL NIL) (-866 2092443 2092620 2092855 "PLOT1" 2093335 NIL PLOT1 (NIL T) -7 NIL NIL) (-865 2067837 2072509 2077360 "PLEQN" 2087709 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-864 2067155 2067277 2067457 "PINTERP" 2067702 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-863 2066848 2066895 2066998 "PINTERPA" 2067102 NIL PINTERPA (NIL T T) -7 NIL NIL) (-862 2066133 2066654 2066741 "PI" 2066781 T PI (NIL) -8 NIL NIL) (-861 2064569 2065510 2065538 "PID" 2065720 T PID (NIL) -9 NIL 2065854) (-860 2064294 2064331 2064419 "PICOERCE" 2064526 NIL PICOERCE (NIL T) -7 NIL NIL) (-859 2063614 2063753 2063929 "PGROEB" 2064150 NIL PGROEB (NIL T) -7 NIL NIL) (-858 2059201 2060015 2060920 "PGE" 2062729 T PGE (NIL) -7 NIL NIL) (-857 2057325 2057571 2057937 "PGCD" 2058918 NIL PGCD (NIL T T T T) -7 NIL NIL) (-856 2056663 2056766 2056927 "PFRPAC" 2057209 NIL PFRPAC (NIL T) -7 NIL NIL) (-855 2053343 2055211 2055564 "PFR" 2056342 NIL PFR (NIL T) -8 NIL NIL) (-854 2051732 2051976 2052301 "PFOTOOLS" 2053090 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-853 2050265 2050504 2050855 "PFOQ" 2051489 NIL PFOQ (NIL T T T) -7 NIL NIL) (-852 2048742 2048954 2049316 "PFO" 2050049 NIL PFO (NIL T T T T T) -7 NIL NIL) (-851 2045330 2048631 2048700 "PF" 2048705 NIL PF (NIL NIL) -8 NIL NIL) (-850 2042803 2044040 2044068 "PFECAT" 2044653 T PFECAT (NIL) -9 NIL 2045037) (-849 2042248 2042402 2042616 "PFECAT-" 2042621 NIL PFECAT- (NIL T) -8 NIL NIL) (-848 2040852 2041103 2041404 "PFBRU" 2041997 NIL PFBRU (NIL T T) -7 NIL NIL) (-847 2038719 2039070 2039502 "PFBR" 2040503 NIL PFBR (NIL T T T T) -7 NIL NIL) (-846 2034635 2036095 2036771 "PERM" 2038076 NIL PERM (NIL T) -8 NIL NIL) (-845 2029901 2030842 2031712 "PERMGRP" 2033798 NIL PERMGRP (NIL T) -8 NIL NIL) (-844 2028034 2028965 2029006 "PERMCAT" 2029452 NIL PERMCAT (NIL T) -9 NIL 2029757) (-843 2027689 2027730 2027853 "PERMAN" 2027987 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-842 2025129 2027258 2027389 "PENDTREE" 2027591 NIL PENDTREE (NIL T) -8 NIL NIL) (-841 2023246 2023980 2024021 "PDRING" 2024678 NIL PDRING (NIL T) -9 NIL 2024963) (-840 2022349 2022567 2022929 "PDRING-" 2022934 NIL PDRING- (NIL T T) -8 NIL NIL) (-839 2019490 2020241 2020932 "PDEPROB" 2021678 T PDEPROB (NIL) -8 NIL NIL) (-838 2017061 2017557 2018106 "PDEPACK" 2018961 T PDEPACK (NIL) -7 NIL NIL) (-837 2015973 2016163 2016414 "PDECOMP" 2016860 NIL PDECOMP (NIL T T) -7 NIL NIL) (-836 2013585 2014400 2014428 "PDECAT" 2015213 T PDECAT (NIL) -9 NIL 2015924) (-835 2013338 2013371 2013460 "PCOMP" 2013546 NIL PCOMP (NIL T T) -7 NIL NIL) (-834 2011545 2012141 2012437 "PBWLB" 2013068 NIL PBWLB (NIL T) -8 NIL NIL) (-833 2004053 2005622 2006958 "PATTERN" 2010230 NIL PATTERN (NIL T) -8 NIL NIL) (-832 2003685 2003742 2003851 "PATTERN2" 2003990 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-831 2001442 2001830 2002287 "PATTERN1" 2003274 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-830 1998837 1999391 1999872 "PATRES" 2001007 NIL PATRES (NIL T T) -8 NIL NIL) (-829 1998401 1998468 1998600 "PATRES2" 1998764 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-828 1996298 1996698 1997103 "PATMATCH" 1998070 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-827 1995835 1996018 1996059 "PATMAB" 1996166 NIL PATMAB (NIL T) -9 NIL 1996249) (-826 1994380 1994689 1994947 "PATLRES" 1995640 NIL PATLRES (NIL T T T) -8 NIL NIL) (-825 1993926 1994049 1994090 "PATAB" 1994095 NIL PATAB (NIL T) -9 NIL 1994267) (-824 1991407 1991939 1992512 "PARTPERM" 1993373 T PARTPERM (NIL) -7 NIL NIL) (-823 1991028 1991091 1991193 "PARSURF" 1991338 NIL PARSURF (NIL T) -8 NIL NIL) (-822 1990660 1990717 1990826 "PARSU2" 1990965 NIL PARSU2 (NIL T T) -7 NIL NIL) (-821 1990424 1990464 1990531 "PARSER" 1990613 T PARSER (NIL) -7 NIL NIL) (-820 1990045 1990108 1990210 "PARSCURV" 1990355 NIL PARSCURV (NIL T) -8 NIL NIL) (-819 1989677 1989734 1989843 "PARSC2" 1989982 NIL PARSC2 (NIL T T) -7 NIL NIL) (-818 1989316 1989374 1989471 "PARPCURV" 1989613 NIL PARPCURV (NIL T) -8 NIL NIL) (-817 1988948 1989005 1989114 "PARPC2" 1989253 NIL PARPC2 (NIL T T) -7 NIL NIL) (-816 1988468 1988554 1988673 "PAN2EXPR" 1988849 T PAN2EXPR (NIL) -7 NIL NIL) (-815 1987274 1987589 1987817 "PALETTE" 1988260 T PALETTE (NIL) -8 NIL NIL) (-814 1985742 1986279 1986639 "PAIR" 1986960 NIL PAIR (NIL T T) -8 NIL NIL) (-813 1979657 1985001 1985195 "PADICRC" 1985597 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-812 1972930 1979003 1979187 "PADICRAT" 1979505 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-811 1971280 1972867 1972912 "PADIC" 1972917 NIL PADIC (NIL NIL) -8 NIL NIL) (-810 1968529 1970059 1970099 "PADICCT" 1970680 NIL PADICCT (NIL NIL) -9 NIL 1970962) (-809 1967486 1967686 1967954 "PADEPAC" 1968316 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-808 1966698 1966831 1967037 "PADE" 1967348 NIL PADE (NIL T T T) -7 NIL NIL) (-807 1964755 1965541 1965856 "OWP" 1966466 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-806 1963864 1964360 1964532 "OVAR" 1964623 NIL OVAR (NIL NIL) -8 NIL NIL) (-805 1963128 1963249 1963410 "OUT" 1963723 T OUT (NIL) -7 NIL NIL) (-804 1952182 1954353 1956523 "OUTFORM" 1960978 T OUTFORM (NIL) -8 NIL NIL) (-803 1951590 1951911 1952000 "OSI" 1952113 T OSI (NIL) -8 NIL NIL) (-802 1951147 1951459 1951487 "OSGROUP" 1951492 T OSGROUP (NIL) -9 NIL 1951514) (-801 1949892 1950119 1950404 "ORTHPOL" 1950894 NIL ORTHPOL (NIL T) -7 NIL NIL) (-800 1947309 1949553 1949691 "OREUP" 1949835 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-799 1944751 1947002 1947128 "ORESUP" 1947251 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-798 1942286 1942786 1943346 "OREPCTO" 1944240 NIL OREPCTO (NIL T T) -7 NIL NIL) (-797 1936240 1938402 1938442 "OREPCAT" 1940763 NIL OREPCAT (NIL T) -9 NIL 1941866) (-796 1933388 1934170 1935227 "OREPCAT-" 1935232 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-795 1932566 1932838 1932866 "ORDSET" 1933175 T ORDSET (NIL) -9 NIL 1933339) (-794 1932085 1932207 1932400 "ORDSET-" 1932405 NIL ORDSET- (NIL T) -8 NIL NIL) (-793 1930743 1931500 1931528 "ORDRING" 1931730 T ORDRING (NIL) -9 NIL 1931854) (-792 1930388 1930482 1930626 "ORDRING-" 1930631 NIL ORDRING- (NIL T) -8 NIL NIL) (-791 1929795 1930232 1930260 "ORDMON" 1930265 T ORDMON (NIL) -9 NIL 1930286) (-790 1928957 1929104 1929299 "ORDFUNS" 1929644 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-789 1928469 1928828 1928856 "ORDFIN" 1928861 T ORDFIN (NIL) -9 NIL 1928882) (-788 1925067 1927055 1927464 "ORDCOMP" 1928093 NIL ORDCOMP (NIL T) -8 NIL NIL) (-787 1924333 1924460 1924646 "ORDCOMP2" 1924927 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-786 1920840 1921723 1922560 "OPTPROB" 1923516 T OPTPROB (NIL) -8 NIL NIL) (-785 1917682 1918311 1919005 "OPTPACK" 1920166 T OPTPACK (NIL) -7 NIL NIL) (-784 1915408 1916144 1916172 "OPTCAT" 1916987 T OPTCAT (NIL) -9 NIL 1917633) (-783 1915176 1915215 1915281 "OPQUERY" 1915362 T OPQUERY (NIL) -7 NIL NIL) (-782 1912358 1913503 1914003 "OP" 1914708 NIL OP (NIL T) -8 NIL NIL) (-781 1909209 1911155 1911524 "ONECOMP" 1912022 NIL ONECOMP (NIL T) -8 NIL NIL) (-780 1908514 1908629 1908803 "ONECOMP2" 1909081 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-779 1907933 1908039 1908169 "OMSERVER" 1908404 T OMSERVER (NIL) -7 NIL NIL) (-778 1904822 1907374 1907414 "OMSAGG" 1907475 NIL OMSAGG (NIL T) -9 NIL 1907539) (-777 1903445 1903708 1903990 "OMPKG" 1904560 T OMPKG (NIL) -7 NIL NIL) (-776 1902875 1902978 1903006 "OM" 1903305 T OM (NIL) -9 NIL NIL) (-775 1901460 1902427 1902595 "OMLO" 1902756 NIL OMLO (NIL T T) -8 NIL NIL) (-774 1900390 1900537 1900763 "OMEXPR" 1901286 NIL OMEXPR (NIL T) -7 NIL NIL) (-773 1899708 1899936 1900072 "OMERR" 1900274 T OMERR (NIL) -8 NIL NIL) (-772 1898886 1899129 1899289 "OMERRK" 1899568 T OMERRK (NIL) -8 NIL NIL) (-771 1898364 1898563 1898671 "OMENC" 1898798 T OMENC (NIL) -8 NIL NIL) (-770 1892259 1893444 1894615 "OMDEV" 1897213 T OMDEV (NIL) -8 NIL NIL) (-769 1891328 1891499 1891693 "OMCONN" 1892085 T OMCONN (NIL) -8 NIL NIL) (-768 1889988 1890930 1890958 "OINTDOM" 1890963 T OINTDOM (NIL) -9 NIL 1890984) (-767 1885796 1886980 1887695 "OFMONOID" 1889305 NIL OFMONOID (NIL T) -8 NIL NIL) (-766 1885234 1885733 1885778 "ODVAR" 1885783 NIL ODVAR (NIL T) -8 NIL NIL) (-765 1882444 1884731 1884916 "ODR" 1885109 NIL ODR (NIL T T NIL) -8 NIL NIL) (-764 1874796 1882223 1882347 "ODPOL" 1882352 NIL ODPOL (NIL T) -8 NIL NIL) (-763 1868705 1874668 1874773 "ODP" 1874778 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-762 1867471 1867686 1867961 "ODETOOLS" 1868479 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-761 1864440 1865096 1865812 "ODESYS" 1866804 NIL ODESYS (NIL T T) -7 NIL NIL) (-760 1859344 1860252 1861275 "ODERTRIC" 1863515 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-759 1858770 1858852 1859046 "ODERED" 1859256 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-758 1855672 1856220 1856895 "ODERAT" 1858193 NIL ODERAT (NIL T T) -7 NIL NIL) (-757 1852640 1853104 1853700 "ODEPRRIC" 1855201 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-756 1850509 1851078 1851587 "ODEPROB" 1852151 T ODEPROB (NIL) -8 NIL NIL) (-755 1847041 1847524 1848170 "ODEPRIM" 1849988 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-754 1846294 1846396 1846654 "ODEPAL" 1846933 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-753 1842496 1843277 1844131 "ODEPACK" 1845460 T ODEPACK (NIL) -7 NIL NIL) (-752 1841533 1841640 1841868 "ODEINT" 1842385 NIL ODEINT (NIL T T) -7 NIL NIL) (-751 1835634 1837059 1838506 "ODEIFTBL" 1840106 T ODEIFTBL (NIL) -8 NIL NIL) (-750 1830978 1831764 1832722 "ODEEF" 1834793 NIL ODEEF (NIL T T) -7 NIL NIL) (-749 1830315 1830404 1830633 "ODECONST" 1830883 NIL ODECONST (NIL T T T) -7 NIL NIL) (-748 1828473 1829106 1829134 "ODECAT" 1829737 T ODECAT (NIL) -9 NIL 1830266) (-747 1825391 1828185 1828304 "OCT" 1828386 NIL OCT (NIL T) -8 NIL NIL) (-746 1825029 1825072 1825199 "OCTCT2" 1825342 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-745 1819907 1822301 1822341 "OC" 1823437 NIL OC (NIL T) -9 NIL 1824294) (-744 1817134 1817882 1818872 "OC-" 1818966 NIL OC- (NIL T T) -8 NIL NIL) (-743 1816513 1816955 1816983 "OCAMON" 1816988 T OCAMON (NIL) -9 NIL 1817009) (-742 1816071 1816386 1816414 "OASGP" 1816419 T OASGP (NIL) -9 NIL 1816439) (-741 1815359 1815822 1815850 "OAMONS" 1815890 T OAMONS (NIL) -9 NIL 1815933) (-740 1814800 1815207 1815235 "OAMON" 1815240 T OAMON (NIL) -9 NIL 1815260) (-739 1814105 1814597 1814625 "OAGROUP" 1814630 T OAGROUP (NIL) -9 NIL 1814650) (-738 1813795 1813845 1813933 "NUMTUBE" 1814049 NIL NUMTUBE (NIL T) -7 NIL NIL) (-737 1807368 1808886 1810422 "NUMQUAD" 1812279 T NUMQUAD (NIL) -7 NIL NIL) (-736 1803124 1804112 1805137 "NUMODE" 1806363 T NUMODE (NIL) -7 NIL NIL) (-735 1800528 1801374 1801402 "NUMINT" 1802319 T NUMINT (NIL) -9 NIL 1803075) (-734 1799476 1799673 1799891 "NUMFMT" 1800330 T NUMFMT (NIL) -7 NIL NIL) (-733 1785855 1788792 1791322 "NUMERIC" 1796985 NIL NUMERIC (NIL T) -7 NIL NIL) (-732 1780254 1785306 1785400 "NTSCAT" 1785405 NIL NTSCAT (NIL T T T T) -9 NIL 1785444) (-731 1779448 1779613 1779806 "NTPOLFN" 1780093 NIL NTPOLFN (NIL T) -7 NIL NIL) (-730 1767310 1776290 1777100 "NSUP" 1778670 NIL NSUP (NIL T) -8 NIL NIL) (-729 1766946 1767003 1767110 "NSUP2" 1767247 NIL NSUP2 (NIL T T) -7 NIL NIL) (-728 1756954 1766725 1766855 "NSMP" 1766860 NIL NSMP (NIL T T) -8 NIL NIL) (-727 1755386 1755687 1756044 "NREP" 1756642 NIL NREP (NIL T) -7 NIL NIL) (-726 1753977 1754229 1754587 "NPCOEF" 1755129 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-725 1753043 1753158 1753374 "NORMRETR" 1753858 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-724 1751090 1751380 1751788 "NORMPK" 1752751 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-723 1750775 1750803 1750927 "NORMMA" 1751056 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-722 1750602 1750732 1750761 "NONE" 1750766 T NONE (NIL) -8 NIL NIL) (-721 1750391 1750420 1750489 "NONE1" 1750566 NIL NONE1 (NIL T) -7 NIL NIL) (-720 1749876 1749938 1750123 "NODE1" 1750323 NIL NODE1 (NIL T T) -7 NIL NIL) (-719 1748216 1749039 1749294 "NNI" 1749641 T NNI (NIL) -8 NIL NIL) (-718 1746636 1746949 1747313 "NLINSOL" 1747884 NIL NLINSOL (NIL T) -7 NIL NIL) (-717 1742803 1743771 1744693 "NIPROB" 1745734 T NIPROB (NIL) -8 NIL NIL) (-716 1741560 1741794 1742096 "NFINTBAS" 1742565 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-715 1740268 1740499 1740780 "NCODIV" 1741328 NIL NCODIV (NIL T T) -7 NIL NIL) (-714 1740030 1740067 1740142 "NCNTFRAC" 1740225 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-713 1738210 1738574 1738994 "NCEP" 1739655 NIL NCEP (NIL T) -7 NIL NIL) (-712 1737122 1737861 1737889 "NASRING" 1737999 T NASRING (NIL) -9 NIL 1738073) (-711 1736917 1736961 1737055 "NASRING-" 1737060 NIL NASRING- (NIL T) -8 NIL NIL) (-710 1736071 1736570 1736598 "NARNG" 1736715 T NARNG (NIL) -9 NIL 1736806) (-709 1735763 1735830 1735964 "NARNG-" 1735969 NIL NARNG- (NIL T) -8 NIL NIL) (-708 1734642 1734849 1735084 "NAGSP" 1735548 T NAGSP (NIL) -7 NIL NIL) (-707 1726066 1727712 1729347 "NAGS" 1733027 T NAGS (NIL) -7 NIL NIL) (-706 1724630 1724934 1725261 "NAGF07" 1725759 T NAGF07 (NIL) -7 NIL NIL) (-705 1719212 1720492 1721788 "NAGF04" 1723354 T NAGF04 (NIL) -7 NIL NIL) (-704 1712244 1713842 1715459 "NAGF02" 1717615 T NAGF02 (NIL) -7 NIL NIL) (-703 1707508 1708598 1709705 "NAGF01" 1711157 T NAGF01 (NIL) -7 NIL NIL) (-702 1701168 1702726 1704303 "NAGE04" 1705951 T NAGE04 (NIL) -7 NIL NIL) (-701 1692409 1694512 1696624 "NAGE02" 1699076 T NAGE02 (NIL) -7 NIL NIL) (-700 1688402 1689339 1690293 "NAGE01" 1691475 T NAGE01 (NIL) -7 NIL NIL) (-699 1686209 1686740 1687295 "NAGD03" 1687867 T NAGD03 (NIL) -7 NIL NIL) (-698 1677995 1679914 1681859 "NAGD02" 1684284 T NAGD02 (NIL) -7 NIL NIL) (-697 1671854 1673267 1674695 "NAGD01" 1676587 T NAGD01 (NIL) -7 NIL NIL) (-696 1668111 1668921 1669746 "NAGC06" 1671049 T NAGC06 (NIL) -7 NIL NIL) (-695 1666588 1666917 1667270 "NAGC05" 1667778 T NAGC05 (NIL) -7 NIL NIL) (-694 1665972 1666089 1666231 "NAGC02" 1666466 T NAGC02 (NIL) -7 NIL NIL) (-693 1665034 1665591 1665631 "NAALG" 1665710 NIL NAALG (NIL T) -9 NIL 1665771) (-692 1664869 1664898 1664988 "NAALG-" 1664993 NIL NAALG- (NIL T T) -8 NIL NIL) (-691 1658819 1659927 1661114 "MULTSQFR" 1663765 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-690 1658138 1658213 1658397 "MULTFACT" 1658731 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-689 1651378 1655243 1655295 "MTSCAT" 1656355 NIL MTSCAT (NIL T T) -9 NIL 1656869) (-688 1651090 1651144 1651236 "MTHING" 1651318 NIL MTHING (NIL T) -7 NIL NIL) (-687 1650882 1650915 1650975 "MSYSCMD" 1651050 T MSYSCMD (NIL) -7 NIL NIL) (-686 1646994 1649637 1649957 "MSET" 1650595 NIL MSET (NIL T) -8 NIL NIL) (-685 1644090 1646556 1646597 "MSETAGG" 1646602 NIL MSETAGG (NIL T) -9 NIL 1646636) (-684 1639992 1641488 1642229 "MRING" 1643393 NIL MRING (NIL T T) -8 NIL NIL) (-683 1639562 1639629 1639758 "MRF2" 1639919 NIL MRF2 (NIL T T T) -7 NIL NIL) (-682 1639180 1639215 1639359 "MRATFAC" 1639521 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-681 1636792 1637087 1637518 "MPRFF" 1638885 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-680 1630858 1636647 1636743 "MPOLY" 1636748 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-679 1630348 1630383 1630591 "MPCPF" 1630817 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-678 1629864 1629907 1630090 "MPC3" 1630299 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-677 1629065 1629146 1629365 "MPC2" 1629779 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-676 1627366 1627703 1628093 "MONOTOOL" 1628725 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-675 1626618 1626909 1626937 "MONOID" 1627156 T MONOID (NIL) -9 NIL 1627303) (-674 1626164 1626283 1626464 "MONOID-" 1626469 NIL MONOID- (NIL T) -8 NIL NIL) (-673 1617230 1623131 1623190 "MONOGEN" 1623864 NIL MONOGEN (NIL T T) -9 NIL 1624320) (-672 1614448 1615183 1616183 "MONOGEN-" 1616302 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-671 1613308 1613728 1613756 "MONADWU" 1614148 T MONADWU (NIL) -9 NIL 1614386) (-670 1612680 1612839 1613087 "MONADWU-" 1613092 NIL MONADWU- (NIL T) -8 NIL NIL) (-669 1612066 1612284 1612312 "MONAD" 1612519 T MONAD (NIL) -9 NIL 1612631) (-668 1611751 1611829 1611961 "MONAD-" 1611966 NIL MONAD- (NIL T) -8 NIL NIL) (-667 1610067 1610664 1610943 "MOEBIUS" 1611504 NIL MOEBIUS (NIL T) -8 NIL NIL) (-666 1609461 1609839 1609879 "MODULE" 1609884 NIL MODULE (NIL T) -9 NIL 1609910) (-665 1609029 1609125 1609315 "MODULE-" 1609320 NIL MODULE- (NIL T T) -8 NIL NIL) (-664 1606746 1607395 1607721 "MODRING" 1608854 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-663 1603748 1604867 1605384 "MODOP" 1606278 NIL MODOP (NIL T T) -8 NIL NIL) (-662 1601935 1602387 1602728 "MODMONOM" 1603547 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-661 1591660 1600139 1600561 "MODMON" 1601563 NIL MODMON (NIL T T) -8 NIL NIL) (-660 1588851 1590504 1590780 "MODFIELD" 1591535 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-659 1587855 1588132 1588322 "MMLFORM" 1588681 T MMLFORM (NIL) -8 NIL NIL) (-658 1587381 1587424 1587603 "MMAP" 1587806 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-657 1585662 1586395 1586435 "MLO" 1586852 NIL MLO (NIL T) -9 NIL 1587093) (-656 1583029 1583544 1584146 "MLIFT" 1585143 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-655 1582420 1582504 1582658 "MKUCFUNC" 1582940 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-654 1582019 1582089 1582212 "MKRECORD" 1582343 NIL MKRECORD (NIL T T) -7 NIL NIL) (-653 1581067 1581228 1581456 "MKFUNC" 1581830 NIL MKFUNC (NIL T) -7 NIL NIL) (-652 1580455 1580559 1580715 "MKFLCFN" 1580950 NIL MKFLCFN (NIL T) -7 NIL NIL) (-651 1579881 1580248 1580337 "MKCHSET" 1580399 NIL MKCHSET (NIL T) -8 NIL NIL) (-650 1579158 1579260 1579445 "MKBCFUNC" 1579774 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-649 1575888 1578712 1578848 "MINT" 1579042 T MINT (NIL) -8 NIL NIL) (-648 1574700 1574943 1575220 "MHROWRED" 1575643 NIL MHROWRED (NIL T) -7 NIL NIL) (-647 1570036 1573145 1573569 "MFLOAT" 1574296 T MFLOAT (NIL) -8 NIL NIL) (-646 1569393 1569469 1569640 "MFINFACT" 1569948 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-645 1565708 1566556 1567440 "MESH" 1568529 T MESH (NIL) -7 NIL NIL) (-644 1564098 1564410 1564763 "MDDFACT" 1565395 NIL MDDFACT (NIL T) -7 NIL NIL) (-643 1560941 1563258 1563299 "MDAGG" 1563554 NIL MDAGG (NIL T) -9 NIL 1563697) (-642 1550726 1560234 1560441 "MCMPLX" 1560754 T MCMPLX (NIL) -8 NIL NIL) (-641 1549867 1550013 1550213 "MCDEN" 1550575 NIL MCDEN (NIL T T) -7 NIL NIL) (-640 1547757 1548027 1548407 "MCALCFN" 1549597 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-639 1546668 1546841 1547082 "MAYBE" 1547555 NIL MAYBE (NIL T) -8 NIL NIL) (-638 1544290 1544813 1545374 "MATSTOR" 1546139 NIL MATSTOR (NIL T) -7 NIL NIL) (-637 1540299 1543665 1543912 "MATRIX" 1544075 NIL MATRIX (NIL T) -8 NIL NIL) (-636 1536068 1536772 1537508 "MATLIN" 1539656 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-635 1526266 1529404 1529480 "MATCAT" 1534318 NIL MATCAT (NIL T T T) -9 NIL 1535735) (-634 1522631 1523644 1524999 "MATCAT-" 1525004 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-633 1521233 1521386 1521717 "MATCAT2" 1522466 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-632 1519345 1519669 1520053 "MAPPKG3" 1520908 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-631 1518326 1518499 1518721 "MAPPKG2" 1519169 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-630 1516825 1517109 1517436 "MAPPKG1" 1518032 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-629 1516436 1516494 1516617 "MAPHACK3" 1516761 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-628 1516028 1516089 1516203 "MAPHACK2" 1516368 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-627 1515466 1515569 1515711 "MAPHACK1" 1515919 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-626 1513574 1514168 1514471 "MAGMA" 1515195 NIL MAGMA (NIL T) -8 NIL NIL) (-625 1510049 1511818 1512278 "M3D" 1513147 NIL M3D (NIL T) -8 NIL NIL) (-624 1504205 1508420 1508461 "LZSTAGG" 1509243 NIL LZSTAGG (NIL T) -9 NIL 1509538) (-623 1500178 1501336 1502793 "LZSTAGG-" 1502798 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-622 1497294 1498071 1498557 "LWORD" 1499724 NIL LWORD (NIL T) -8 NIL NIL) (-621 1490500 1497065 1497199 "LSQM" 1497204 NIL LSQM (NIL NIL T) -8 NIL NIL) (-620 1489724 1489863 1490091 "LSPP" 1490355 NIL LSPP (NIL T T T T) -7 NIL NIL) (-619 1487536 1487837 1488293 "LSMP" 1489413 NIL LSMP (NIL T T T T) -7 NIL NIL) (-618 1484315 1484989 1485719 "LSMP1" 1486838 NIL LSMP1 (NIL T) -7 NIL NIL) (-617 1478242 1483484 1483525 "LSAGG" 1483587 NIL LSAGG (NIL T) -9 NIL 1483665) (-616 1474937 1475861 1477074 "LSAGG-" 1477079 NIL LSAGG- (NIL T T) -8 NIL NIL) (-615 1472563 1474081 1474330 "LPOLY" 1474732 NIL LPOLY (NIL T T) -8 NIL NIL) (-614 1472145 1472230 1472353 "LPEFRAC" 1472472 NIL LPEFRAC (NIL T) -7 NIL NIL) (-613 1470492 1471239 1471492 "LO" 1471977 NIL LO (NIL T T T) -8 NIL NIL) (-612 1470146 1470258 1470286 "LOGIC" 1470397 T LOGIC (NIL) -9 NIL 1470477) (-611 1470008 1470031 1470102 "LOGIC-" 1470107 NIL LOGIC- (NIL T) -8 NIL NIL) (-610 1469201 1469341 1469534 "LODOOPS" 1469864 NIL LODOOPS (NIL T T) -7 NIL NIL) (-609 1466665 1469118 1469183 "LODO" 1469188 NIL LODO (NIL T NIL) -8 NIL NIL) (-608 1465211 1465446 1465797 "LODOF" 1466412 NIL LODOF (NIL T T) -7 NIL NIL) (-607 1461675 1464067 1464107 "LODOCAT" 1464539 NIL LODOCAT (NIL T) -9 NIL 1464750) (-606 1461409 1461467 1461593 "LODOCAT-" 1461598 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-605 1458769 1461250 1461368 "LODO2" 1461373 NIL LODO2 (NIL T T) -8 NIL NIL) (-604 1456244 1458706 1458751 "LODO1" 1458756 NIL LODO1 (NIL T) -8 NIL NIL) (-603 1455107 1455272 1455583 "LODEEF" 1456067 NIL LODEEF (NIL T T T) -7 NIL NIL) (-602 1450394 1453238 1453279 "LNAGG" 1454226 NIL LNAGG (NIL T) -9 NIL 1454670) (-601 1449541 1449755 1450097 "LNAGG-" 1450102 NIL LNAGG- (NIL T T) -8 NIL NIL) (-600 1445706 1446468 1447106 "LMOPS" 1448957 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-599 1445104 1445466 1445506 "LMODULE" 1445566 NIL LMODULE (NIL T) -9 NIL 1445608) (-598 1442350 1444749 1444872 "LMDICT" 1445014 NIL LMDICT (NIL T) -8 NIL NIL) (-597 1435577 1441296 1441594 "LIST" 1442085 NIL LIST (NIL T) -8 NIL NIL) (-596 1435102 1435176 1435315 "LIST3" 1435497 NIL LIST3 (NIL T T T) -7 NIL NIL) (-595 1434109 1434287 1434515 "LIST2" 1434920 NIL LIST2 (NIL T T) -7 NIL NIL) (-594 1432243 1432555 1432954 "LIST2MAP" 1433756 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-593 1431000 1431636 1431676 "LINEXP" 1431929 NIL LINEXP (NIL T) -9 NIL 1432077) (-592 1429647 1429907 1430204 "LINDEP" 1430752 NIL LINDEP (NIL T T) -7 NIL NIL) (-591 1426414 1427133 1427910 "LIMITRF" 1428902 NIL LIMITRF (NIL T) -7 NIL NIL) (-590 1424694 1424989 1425404 "LIMITPS" 1426109 NIL LIMITPS (NIL T T) -7 NIL NIL) (-589 1419149 1424205 1424433 "LIE" 1424515 NIL LIE (NIL T T) -8 NIL NIL) (-588 1418200 1418643 1418683 "LIECAT" 1418823 NIL LIECAT (NIL T) -9 NIL 1418974) (-587 1418041 1418068 1418156 "LIECAT-" 1418161 NIL LIECAT- (NIL T T) -8 NIL NIL) (-586 1410653 1417490 1417655 "LIB" 1417896 T LIB (NIL) -8 NIL NIL) (-585 1406290 1407171 1408106 "LGROBP" 1409770 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-584 1404156 1404430 1404792 "LF" 1406011 NIL LF (NIL T T) -7 NIL NIL) (-583 1402996 1403688 1403716 "LFCAT" 1403923 T LFCAT (NIL) -9 NIL 1404062) (-582 1399908 1400534 1401220 "LEXTRIPK" 1402362 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-581 1396679 1397478 1397981 "LEXP" 1399488 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-580 1395077 1395390 1395791 "LEADCDET" 1396361 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-579 1394270 1394344 1394572 "LAZM3PK" 1394998 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-578 1389233 1392349 1392886 "LAUPOL" 1393783 NIL LAUPOL (NIL T T) -8 NIL NIL) (-577 1388800 1388844 1389011 "LAPLACE" 1389183 NIL LAPLACE (NIL T T) -7 NIL NIL) (-576 1386774 1387901 1388152 "LA" 1388633 NIL LA (NIL T T T) -8 NIL NIL) (-575 1385881 1386431 1386471 "LALG" 1386532 NIL LALG (NIL T) -9 NIL 1386590) (-574 1385596 1385655 1385790 "LALG-" 1385795 NIL LALG- (NIL T T) -8 NIL NIL) (-573 1384506 1384693 1384990 "KOVACIC" 1385396 NIL KOVACIC (NIL T T) -7 NIL NIL) (-572 1384341 1384365 1384406 "KONVERT" 1384468 NIL KONVERT (NIL T) -9 NIL NIL) (-571 1384176 1384200 1384241 "KOERCE" 1384303 NIL KOERCE (NIL T) -9 NIL NIL) (-570 1381910 1382670 1383063 "KERNEL" 1383815 NIL KERNEL (NIL T) -8 NIL NIL) (-569 1381412 1381493 1381623 "KERNEL2" 1381824 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-568 1375264 1379952 1380006 "KDAGG" 1380383 NIL KDAGG (NIL T T) -9 NIL 1380589) (-567 1374793 1374917 1375122 "KDAGG-" 1375127 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-566 1367968 1374454 1374609 "KAFILE" 1374671 NIL KAFILE (NIL T) -8 NIL NIL) (-565 1362423 1367479 1367707 "JORDAN" 1367789 NIL JORDAN (NIL T T) -8 NIL NIL) (-564 1362152 1362211 1362298 "JAVACODE" 1362356 T JAVACODE (NIL) -8 NIL NIL) (-563 1358452 1360358 1360412 "IXAGG" 1361341 NIL IXAGG (NIL T T) -9 NIL 1361800) (-562 1357371 1357677 1358096 "IXAGG-" 1358101 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-561 1352956 1357293 1357352 "IVECTOR" 1357357 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-560 1351722 1351959 1352225 "ITUPLE" 1352723 NIL ITUPLE (NIL T) -8 NIL NIL) (-559 1350158 1350335 1350641 "ITRIGMNP" 1351544 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-558 1348903 1349107 1349390 "ITFUN3" 1349934 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-557 1348535 1348592 1348701 "ITFUN2" 1348840 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-556 1346383 1347408 1347705 "ITAYLOR" 1348270 NIL ITAYLOR (NIL T) -8 NIL NIL) (-555 1335417 1340569 1341728 "ISUPS" 1345256 NIL ISUPS (NIL T) -8 NIL NIL) (-554 1334521 1334661 1334897 "ISUMP" 1335264 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-553 1329785 1334322 1334401 "ISTRING" 1334474 NIL ISTRING (NIL NIL) -8 NIL NIL) (-552 1328998 1329079 1329294 "IRURPK" 1329699 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-551 1327934 1328135 1328375 "IRSN" 1328778 T IRSN (NIL) -7 NIL NIL) (-550 1325969 1326324 1326759 "IRRF2F" 1327572 NIL IRRF2F (NIL T) -7 NIL NIL) (-549 1325716 1325754 1325830 "IRREDFFX" 1325925 NIL IRREDFFX (NIL T) -7 NIL NIL) (-548 1324331 1324590 1324889 "IROOT" 1325449 NIL IROOT (NIL T) -7 NIL NIL) (-547 1320969 1322020 1322710 "IR" 1323673 NIL IR (NIL T) -8 NIL NIL) (-546 1318582 1319077 1319643 "IR2" 1320447 NIL IR2 (NIL T T) -7 NIL NIL) (-545 1317658 1317771 1317991 "IR2F" 1318465 NIL IR2F (NIL T T) -7 NIL NIL) (-544 1317449 1317483 1317543 "IPRNTPK" 1317618 T IPRNTPK (NIL) -7 NIL NIL) (-543 1314068 1317338 1317407 "IPF" 1317412 NIL IPF (NIL NIL) -8 NIL NIL) (-542 1312431 1313993 1314050 "IPADIC" 1314055 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-541 1311930 1311988 1312177 "INVLAPLA" 1312367 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-540 1301579 1303932 1306318 "INTTR" 1309594 NIL INTTR (NIL T T) -7 NIL NIL) (-539 1297927 1298668 1299531 "INTTOOLS" 1300765 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-538 1297513 1297604 1297721 "INTSLPE" 1297830 T INTSLPE (NIL) -7 NIL NIL) (-537 1295508 1297436 1297495 "INTRVL" 1297500 NIL INTRVL (NIL T) -8 NIL NIL) (-536 1293115 1293627 1294201 "INTRF" 1294993 NIL INTRF (NIL T) -7 NIL NIL) (-535 1292530 1292627 1292768 "INTRET" 1293013 NIL INTRET (NIL T) -7 NIL NIL) (-534 1290532 1290921 1291390 "INTRAT" 1292138 NIL INTRAT (NIL T T) -7 NIL NIL) (-533 1287765 1288348 1288973 "INTPM" 1290017 NIL INTPM (NIL T T) -7 NIL NIL) (-532 1284474 1285073 1285817 "INTPAF" 1287151 NIL INTPAF (NIL T T T) -7 NIL NIL) (-531 1279717 1280663 1281698 "INTPACK" 1283459 T INTPACK (NIL) -7 NIL NIL) (-530 1276617 1279446 1279573 "INT" 1279610 T INT (NIL) -8 NIL NIL) (-529 1275869 1276021 1276229 "INTHERTR" 1276459 NIL INTHERTR (NIL T T) -7 NIL NIL) (-528 1275308 1275388 1275576 "INTHERAL" 1275783 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-527 1273154 1273597 1274054 "INTHEORY" 1274871 T INTHEORY (NIL) -7 NIL NIL) (-526 1264476 1266097 1267875 "INTG0" 1271506 NIL INTG0 (NIL T T T) -7 NIL NIL) (-525 1245049 1249839 1254649 "INTFTBL" 1259686 T INTFTBL (NIL) -8 NIL NIL) (-524 1244298 1244436 1244609 "INTFACT" 1244908 NIL INTFACT (NIL T) -7 NIL NIL) (-523 1241689 1242135 1242698 "INTEF" 1243852 NIL INTEF (NIL T T) -7 NIL NIL) (-522 1240195 1240900 1240928 "INTDOM" 1241229 T INTDOM (NIL) -9 NIL 1241436) (-521 1239564 1239738 1239980 "INTDOM-" 1239985 NIL INTDOM- (NIL T) -8 NIL NIL) (-520 1236103 1237989 1238043 "INTCAT" 1238842 NIL INTCAT (NIL T) -9 NIL 1239161) (-519 1235576 1235678 1235806 "INTBIT" 1235995 T INTBIT (NIL) -7 NIL NIL) (-518 1234251 1234405 1234718 "INTALG" 1235421 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-517 1233708 1233798 1233968 "INTAF" 1234155 NIL INTAF (NIL T T) -7 NIL NIL) (-516 1227162 1233518 1233658 "INTABL" 1233663 NIL INTABL (NIL T T T) -8 NIL NIL) (-515 1222159 1224842 1224870 "INS" 1225838 T INS (NIL) -9 NIL 1226519) (-514 1219399 1220170 1221144 "INS-" 1221217 NIL INS- (NIL T) -8 NIL NIL) (-513 1218178 1218405 1218702 "INPSIGN" 1219152 NIL INPSIGN (NIL T T) -7 NIL NIL) (-512 1217296 1217413 1217610 "INPRODPF" 1218058 NIL INPRODPF (NIL T T) -7 NIL NIL) (-511 1216190 1216307 1216544 "INPRODFF" 1217176 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-510 1215190 1215342 1215602 "INNMFACT" 1216026 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-509 1214387 1214484 1214672 "INMODGCD" 1215089 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-508 1212896 1213140 1213464 "INFSP" 1214132 NIL INFSP (NIL T T T) -7 NIL NIL) (-507 1212080 1212197 1212380 "INFPROD0" 1212776 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-506 1209091 1210249 1210740 "INFORM" 1211597 T INFORM (NIL) -8 NIL NIL) (-505 1208701 1208761 1208859 "INFORM1" 1209026 NIL INFORM1 (NIL T) -7 NIL NIL) (-504 1208224 1208313 1208427 "INFINITY" 1208607 T INFINITY (NIL) -7 NIL NIL) (-503 1206841 1207090 1207411 "INEP" 1207972 NIL INEP (NIL T T T) -7 NIL NIL) (-502 1206117 1206738 1206803 "INDE" 1206808 NIL INDE (NIL T) -8 NIL NIL) (-501 1205681 1205749 1205866 "INCRMAPS" 1206044 NIL INCRMAPS (NIL T) -7 NIL NIL) (-500 1200992 1201917 1202861 "INBFF" 1204769 NIL INBFF (NIL T) -7 NIL NIL) (-499 1197487 1200837 1200940 "IMATRIX" 1200945 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-498 1196199 1196322 1196637 "IMATQF" 1197343 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-497 1194419 1194646 1194983 "IMATLIN" 1195955 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-496 1189045 1194343 1194401 "ILIST" 1194406 NIL ILIST (NIL T NIL) -8 NIL NIL) (-495 1186998 1188905 1189018 "IIARRAY2" 1189023 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-494 1182431 1186909 1186973 "IFF" 1186978 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-493 1177474 1181723 1181911 "IFARRAY" 1182288 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-492 1176681 1177378 1177451 "IFAMON" 1177456 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-491 1176265 1176330 1176384 "IEVALAB" 1176591 NIL IEVALAB (NIL T T) -9 NIL NIL) (-490 1175940 1176008 1176168 "IEVALAB-" 1176173 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-489 1175598 1175854 1175917 "IDPO" 1175922 NIL IDPO (NIL T T) -8 NIL NIL) (-488 1174875 1175487 1175562 "IDPOAMS" 1175567 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-487 1174209 1174764 1174839 "IDPOAM" 1174844 NIL IDPOAM (NIL T T) -8 NIL NIL) (-486 1173295 1173545 1173598 "IDPC" 1174011 NIL IDPC (NIL T T) -9 NIL 1174160) (-485 1172791 1173187 1173260 "IDPAM" 1173265 NIL IDPAM (NIL T T) -8 NIL NIL) (-484 1172194 1172683 1172756 "IDPAG" 1172761 NIL IDPAG (NIL T T) -8 NIL NIL) (-483 1168449 1169297 1170192 "IDECOMP" 1171351 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-482 1161322 1162372 1163419 "IDEAL" 1167485 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-481 1160486 1160598 1160797 "ICDEN" 1161206 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-480 1159585 1159966 1160113 "ICARD" 1160359 T ICARD (NIL) -8 NIL NIL) (-479 1157657 1157970 1158373 "IBPTOOLS" 1159262 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-478 1153291 1157277 1157390 "IBITS" 1157576 NIL IBITS (NIL NIL) -8 NIL NIL) (-477 1150014 1150590 1151285 "IBATOOL" 1152708 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-476 1147794 1148255 1148788 "IBACHIN" 1149549 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-475 1145671 1147640 1147743 "IARRAY2" 1147748 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-474 1141824 1145597 1145654 "IARRAY1" 1145659 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-473 1135827 1140242 1140720 "IAN" 1141366 T IAN (NIL) -8 NIL NIL) (-472 1135338 1135395 1135568 "IALGFACT" 1135764 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-471 1134866 1134979 1135007 "HYPCAT" 1135214 T HYPCAT (NIL) -9 NIL NIL) (-470 1134404 1134521 1134707 "HYPCAT-" 1134712 NIL HYPCAT- (NIL T) -8 NIL NIL) (-469 1134026 1134199 1134282 "HOSTNAME" 1134341 T HOSTNAME (NIL) -8 NIL NIL) (-468 1130706 1132037 1132078 "HOAGG" 1133059 NIL HOAGG (NIL T) -9 NIL 1133738) (-467 1129300 1129699 1130225 "HOAGG-" 1130230 NIL HOAGG- (NIL T T) -8 NIL NIL) (-466 1123195 1128741 1128907 "HEXADEC" 1129154 T HEXADEC (NIL) -8 NIL NIL) (-465 1121943 1122165 1122428 "HEUGCD" 1122972 NIL HEUGCD (NIL T) -7 NIL NIL) (-464 1121046 1121780 1121910 "HELLFDIV" 1121915 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-463 1119274 1120823 1120911 "HEAP" 1120990 NIL HEAP (NIL T) -8 NIL NIL) (-462 1118613 1118853 1118981 "HEADAST" 1119166 T HEADAST (NIL) -8 NIL NIL) (-461 1112566 1118528 1118590 "HDP" 1118595 NIL HDP (NIL NIL T) -8 NIL NIL) (-460 1106324 1112203 1112354 "HDMP" 1112467 NIL HDMP (NIL NIL T) -8 NIL NIL) (-459 1105649 1105788 1105952 "HB" 1106180 T HB (NIL) -7 NIL NIL) (-458 1099146 1105495 1105599 "HASHTBL" 1105604 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-457 1096964 1098774 1098953 "HACKPI" 1098987 T HACKPI (NIL) -8 NIL NIL) (-456 1092660 1096818 1096930 "GTSET" 1096935 NIL GTSET (NIL T T T T) -8 NIL NIL) (-455 1086186 1092538 1092636 "GSTBL" 1092641 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-454 1078504 1085222 1085486 "GSERIES" 1085977 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-453 1077672 1078063 1078091 "GROUP" 1078294 T GROUP (NIL) -9 NIL 1078428) (-452 1077038 1077197 1077448 "GROUP-" 1077453 NIL GROUP- (NIL T) -8 NIL NIL) (-451 1075407 1075726 1076113 "GROEBSOL" 1076715 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-450 1074348 1074610 1074661 "GRMOD" 1075190 NIL GRMOD (NIL T T) -9 NIL 1075358) (-449 1074116 1074152 1074280 "GRMOD-" 1074285 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-448 1069441 1070470 1071470 "GRIMAGE" 1073136 T GRIMAGE (NIL) -8 NIL NIL) (-447 1067908 1068168 1068492 "GRDEF" 1069137 T GRDEF (NIL) -7 NIL NIL) (-446 1067352 1067468 1067609 "GRAY" 1067787 T GRAY (NIL) -7 NIL NIL) (-445 1066586 1066966 1067017 "GRALG" 1067170 NIL GRALG (NIL T T) -9 NIL 1067262) (-444 1066247 1066320 1066483 "GRALG-" 1066488 NIL GRALG- (NIL T T T) -8 NIL NIL) (-443 1063055 1065836 1066012 "GPOLSET" 1066154 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-442 1062411 1062468 1062725 "GOSPER" 1062992 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-441 1058170 1058849 1059375 "GMODPOL" 1062110 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-440 1057175 1057359 1057597 "GHENSEL" 1057982 NIL GHENSEL (NIL T T) -7 NIL NIL) (-439 1051241 1052084 1053110 "GENUPS" 1056259 NIL GENUPS (NIL T T) -7 NIL NIL) (-438 1050938 1050989 1051078 "GENUFACT" 1051184 NIL GENUFACT (NIL T) -7 NIL NIL) (-437 1050350 1050427 1050592 "GENPGCD" 1050856 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-436 1049824 1049859 1050072 "GENMFACT" 1050309 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-435 1048392 1048647 1048954 "GENEEZ" 1049567 NIL GENEEZ (NIL T T) -7 NIL NIL) (-434 1042312 1048005 1048166 "GDMP" 1048315 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-433 1031689 1036083 1037189 "GCNAALG" 1041295 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-432 1030155 1030983 1031011 "GCDDOM" 1031266 T GCDDOM (NIL) -9 NIL 1031423) (-431 1029625 1029752 1029967 "GCDDOM-" 1029972 NIL GCDDOM- (NIL T) -8 NIL NIL) (-430 1028297 1028482 1028786 "GB" 1029404 NIL GB (NIL T T T T) -7 NIL NIL) (-429 1016917 1019243 1021635 "GBINTERN" 1025988 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-428 1014754 1015046 1015467 "GBF" 1016592 NIL GBF (NIL T T T T) -7 NIL NIL) (-427 1013535 1013700 1013967 "GBEUCLID" 1014570 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-426 1012884 1013009 1013158 "GAUSSFAC" 1013406 T GAUSSFAC (NIL) -7 NIL NIL) (-425 1011261 1011563 1011876 "GALUTIL" 1012603 NIL GALUTIL (NIL T) -7 NIL NIL) (-424 1009578 1009852 1010175 "GALPOLYU" 1010988 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-423 1006967 1007257 1007662 "GALFACTU" 1009275 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-422 998773 1000272 1001880 "GALFACT" 1005399 NIL GALFACT (NIL T) -7 NIL NIL) (-421 996161 996819 996847 "FVFUN" 998003 T FVFUN (NIL) -9 NIL 998723) (-420 995427 995609 995637 "FVC" 995928 T FVC (NIL) -9 NIL 996111) (-419 995069 995224 995305 "FUNCTION" 995379 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-418 992739 993290 993779 "FT" 994600 T FT (NIL) -8 NIL NIL) (-417 991557 992040 992243 "FTEM" 992556 T FTEM (NIL) -8 NIL NIL) (-416 989822 990110 990512 "FSUPFACT" 991249 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-415 988219 988508 988840 "FST" 989510 T FST (NIL) -8 NIL NIL) (-414 987394 987500 987694 "FSRED" 988101 NIL FSRED (NIL T T) -7 NIL NIL) (-413 986073 986328 986682 "FSPRMELT" 987109 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-412 983158 983596 984095 "FSPECF" 985636 NIL FSPECF (NIL T T) -7 NIL NIL) (-411 965687 974089 974129 "FS" 977967 NIL FS (NIL T) -9 NIL 980249) (-410 954337 957327 961383 "FS-" 961680 NIL FS- (NIL T T) -8 NIL NIL) (-409 953853 953907 954083 "FSINT" 954278 NIL FSINT (NIL T T) -7 NIL NIL) (-408 952180 952846 953149 "FSERIES" 953632 NIL FSERIES (NIL T T) -8 NIL NIL) (-407 951198 951314 951544 "FSCINT" 952060 NIL FSCINT (NIL T T) -7 NIL NIL) (-406 947433 950143 950184 "FSAGG" 950554 NIL FSAGG (NIL T) -9 NIL 950813) (-405 945195 945796 946592 "FSAGG-" 946687 NIL FSAGG- (NIL T T) -8 NIL NIL) (-404 944237 944380 944607 "FSAGG2" 945048 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-403 941896 942175 942728 "FS2UPS" 943955 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-402 941482 941525 941678 "FS2" 941847 NIL FS2 (NIL T T T T) -7 NIL NIL) (-401 940342 940513 940821 "FS2EXPXP" 941307 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-400 939768 939883 940035 "FRUTIL" 940222 NIL FRUTIL (NIL T) -7 NIL NIL) (-399 931234 935267 936623 "FR" 938444 NIL FR (NIL T) -8 NIL NIL) (-398 926311 928954 928994 "FRNAALG" 930390 NIL FRNAALG (NIL T) -9 NIL 930997) (-397 921989 923060 924335 "FRNAALG-" 925085 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-396 921627 921670 921797 "FRNAAF2" 921940 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-395 920038 920484 920778 "FRMOD" 921440 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-394 917825 918429 918745 "FRIDEAL" 919829 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-393 917024 917111 917398 "FRIDEAL2" 917732 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-392 916282 916690 916731 "FRETRCT" 916736 NIL FRETRCT (NIL T) -9 NIL 916907) (-391 915394 915625 915976 "FRETRCT-" 915981 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-390 912648 913824 913883 "FRAMALG" 914765 NIL FRAMALG (NIL T T) -9 NIL 915057) (-389 910782 911237 911867 "FRAMALG-" 912090 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-388 904749 910257 910533 "FRAC" 910538 NIL FRAC (NIL T) -8 NIL NIL) (-387 904385 904442 904549 "FRAC2" 904686 NIL FRAC2 (NIL T T) -7 NIL NIL) (-386 904021 904078 904185 "FR2" 904322 NIL FR2 (NIL T T) -7 NIL NIL) (-385 898760 901608 901636 "FPS" 902755 T FPS (NIL) -9 NIL 903311) (-384 898209 898318 898482 "FPS-" 898628 NIL FPS- (NIL T) -8 NIL NIL) (-383 895720 897355 897383 "FPC" 897608 T FPC (NIL) -9 NIL 897750) (-382 895513 895553 895650 "FPC-" 895655 NIL FPC- (NIL T) -8 NIL NIL) (-381 894392 895002 895043 "FPATMAB" 895048 NIL FPATMAB (NIL T) -9 NIL 895200) (-380 892092 892568 892994 "FPARFRAC" 894029 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-379 887485 887984 888666 "FORTRAN" 891524 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-378 885201 885701 886240 "FORT" 886966 T FORT (NIL) -7 NIL NIL) (-377 882877 883439 883467 "FORTFN" 884527 T FORTFN (NIL) -9 NIL 885151) (-376 882641 882691 882719 "FORTCAT" 882778 T FORTCAT (NIL) -9 NIL 882840) (-375 880701 881184 881583 "FORMULA" 882262 T FORMULA (NIL) -8 NIL NIL) (-374 880489 880519 880588 "FORMULA1" 880665 NIL FORMULA1 (NIL T) -7 NIL NIL) (-373 880012 880064 880237 "FORDER" 880431 NIL FORDER (NIL T T T T) -7 NIL NIL) (-372 879108 879272 879465 "FOP" 879839 T FOP (NIL) -7 NIL NIL) (-371 877716 878388 878562 "FNLA" 878990 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-370 876385 876774 876802 "FNCAT" 877374 T FNCAT (NIL) -9 NIL 877667) (-369 875951 876344 876372 "FNAME" 876377 T FNAME (NIL) -8 NIL NIL) (-368 874655 875584 875612 "FMTC" 875617 T FMTC (NIL) -9 NIL 875652) (-367 871019 872180 872808 "FMONOID" 874060 NIL FMONOID (NIL T) -8 NIL NIL) (-366 870239 870762 870910 "FM" 870915 NIL FM (NIL T T) -8 NIL NIL) (-365 867663 868309 868337 "FMFUN" 869481 T FMFUN (NIL) -9 NIL 870189) (-364 866932 867113 867141 "FMC" 867431 T FMC (NIL) -9 NIL 867613) (-363 864162 864996 865049 "FMCAT" 866231 NIL FMCAT (NIL T T) -9 NIL 866725) (-362 863057 863930 864029 "FM1" 864107 NIL FM1 (NIL T T) -8 NIL NIL) (-361 860831 861247 861741 "FLOATRP" 862608 NIL FLOATRP (NIL T) -7 NIL NIL) (-360 854382 858487 859117 "FLOAT" 860221 T FLOAT (NIL) -8 NIL NIL) (-359 851820 852320 852898 "FLOATCP" 853849 NIL FLOATCP (NIL T) -7 NIL NIL) (-358 850653 851457 851497 "FLINEXP" 851502 NIL FLINEXP (NIL T) -9 NIL 851595) (-357 849808 850043 850370 "FLINEXP-" 850375 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-356 848884 849028 849252 "FLASORT" 849660 NIL FLASORT (NIL T T) -7 NIL NIL) (-355 846103 846945 846997 "FLALG" 848224 NIL FLALG (NIL T T) -9 NIL 848691) (-354 839888 843590 843631 "FLAGG" 844893 NIL FLAGG (NIL T) -9 NIL 845545) (-353 838614 838953 839443 "FLAGG-" 839448 NIL FLAGG- (NIL T T) -8 NIL NIL) (-352 837656 837799 838026 "FLAGG2" 838467 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-351 834673 835647 835706 "FINRALG" 836834 NIL FINRALG (NIL T T) -9 NIL 837342) (-350 833833 834062 834401 "FINRALG-" 834406 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-349 833240 833453 833481 "FINITE" 833677 T FINITE (NIL) -9 NIL 833784) (-348 825700 827861 827901 "FINAALG" 831568 NIL FINAALG (NIL T) -9 NIL 833021) (-347 821041 822082 823226 "FINAALG-" 824605 NIL FINAALG- (NIL T T) -8 NIL NIL) (-346 820436 820796 820899 "FILE" 820971 NIL FILE (NIL T) -8 NIL NIL) (-345 819121 819433 819487 "FILECAT" 820171 NIL FILECAT (NIL T T) -9 NIL 820387) (-344 817046 818540 818568 "FIELD" 818608 T FIELD (NIL) -9 NIL 818688) (-343 815666 816051 816562 "FIELD-" 816567 NIL FIELD- (NIL T) -8 NIL NIL) (-342 813546 814303 814649 "FGROUP" 815353 NIL FGROUP (NIL T) -8 NIL NIL) (-341 812636 812800 813020 "FGLMICPK" 813378 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-340 808503 812561 812618 "FFX" 812623 NIL FFX (NIL T NIL) -8 NIL NIL) (-339 808104 808165 808300 "FFSLPE" 808436 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-338 804097 804876 805672 "FFPOLY" 807340 NIL FFPOLY (NIL T) -7 NIL NIL) (-337 803601 803637 803846 "FFPOLY2" 804055 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-336 799487 803520 803583 "FFP" 803588 NIL FFP (NIL T NIL) -8 NIL NIL) (-335 794920 799398 799462 "FF" 799467 NIL FF (NIL NIL NIL) -8 NIL NIL) (-334 790081 794263 794453 "FFNBX" 794774 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-333 785055 789216 789474 "FFNBP" 789935 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-332 779723 784339 784550 "FFNB" 784888 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-331 778555 778753 779068 "FFINTBAS" 779520 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-330 774844 777019 777047 "FFIELDC" 777667 T FFIELDC (NIL) -9 NIL 778043) (-329 773507 773877 774374 "FFIELDC-" 774379 NIL FFIELDC- (NIL T) -8 NIL NIL) (-328 773077 773122 773246 "FFHOM" 773449 NIL FFHOM (NIL T T T) -7 NIL NIL) (-327 770775 771259 771776 "FFF" 772592 NIL FFF (NIL T) -7 NIL NIL) (-326 766428 770517 770618 "FFCGX" 770718 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-325 762095 766160 766267 "FFCGP" 766371 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-324 757313 761822 761930 "FFCG" 762031 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-323 739387 748418 748504 "FFCAT" 753669 NIL FFCAT (NIL T T T) -9 NIL 755120) (-322 734585 735632 736946 "FFCAT-" 738176 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-321 733996 734039 734274 "FFCAT2" 734536 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-320 723242 726986 728203 "FEXPR" 732851 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-319 722242 722677 722718 "FEVALAB" 722802 NIL FEVALAB (NIL T) -9 NIL 723063) (-318 721401 721611 721949 "FEVALAB-" 721954 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-317 719994 720784 720987 "FDIV" 721300 NIL FDIV (NIL T T T T) -8 NIL NIL) (-316 717061 717776 717891 "FDIVCAT" 719459 NIL FDIVCAT (NIL T T T T) -9 NIL 719896) (-315 716823 716850 717020 "FDIVCAT-" 717025 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-314 716043 716130 716407 "FDIV2" 716730 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-313 714729 714988 715277 "FCPAK1" 715774 T FCPAK1 (NIL) -7 NIL NIL) (-312 713857 714229 714370 "FCOMP" 714620 NIL FCOMP (NIL T) -8 NIL NIL) (-311 697492 700906 704467 "FC" 710316 T FC (NIL) -8 NIL NIL) (-310 690153 694134 694174 "FAXF" 695976 NIL FAXF (NIL T) -9 NIL 696667) (-309 687432 688087 688912 "FAXF-" 689377 NIL FAXF- (NIL T T) -8 NIL NIL) (-308 682532 686808 686984 "FARRAY" 687289 NIL FARRAY (NIL T) -8 NIL NIL) (-307 677967 679994 680046 "FAMR" 681058 NIL FAMR (NIL T T) -9 NIL 681518) (-306 676858 677160 677594 "FAMR-" 677599 NIL FAMR- (NIL T T T) -8 NIL NIL) (-305 676054 676780 676833 "FAMONOID" 676838 NIL FAMONOID (NIL T) -8 NIL NIL) (-304 673887 674571 674624 "FAMONC" 675565 NIL FAMONC (NIL T T) -9 NIL 675950) (-303 672579 673641 673778 "FAGROUP" 673783 NIL FAGROUP (NIL T) -8 NIL NIL) (-302 670382 670701 671103 "FACUTIL" 672260 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-301 669481 669666 669888 "FACTFUNC" 670192 NIL FACTFUNC (NIL T) -7 NIL NIL) (-300 661886 668732 668944 "EXPUPXS" 669337 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-299 659369 659909 660495 "EXPRTUBE" 661320 T EXPRTUBE (NIL) -7 NIL NIL) (-298 655563 656155 656892 "EXPRODE" 658708 NIL EXPRODE (NIL T T) -7 NIL NIL) (-297 640999 654222 654648 "EXPR" 655169 NIL EXPR (NIL T) -8 NIL NIL) (-296 635427 636014 636826 "EXPR2UPS" 640297 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-295 635063 635120 635227 "EXPR2" 635364 NIL EXPR2 (NIL T T) -7 NIL NIL) (-294 626482 634200 634495 "EXPEXPAN" 634901 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-293 626309 626439 626468 "EXIT" 626473 T EXIT (NIL) -8 NIL NIL) (-292 625936 625998 626111 "EVALCYC" 626241 NIL EVALCYC (NIL T) -7 NIL NIL) (-291 625477 625595 625636 "EVALAB" 625806 NIL EVALAB (NIL T) -9 NIL 625910) (-290 624958 625080 625301 "EVALAB-" 625306 NIL EVALAB- (NIL T T) -8 NIL NIL) (-289 622465 623733 623761 "EUCDOM" 624316 T EUCDOM (NIL) -9 NIL 624666) (-288 620870 621312 621902 "EUCDOM-" 621907 NIL EUCDOM- (NIL T) -8 NIL NIL) (-287 608448 611196 613936 "ESTOOLS" 618150 T ESTOOLS (NIL) -7 NIL NIL) (-286 608084 608141 608248 "ESTOOLS2" 608385 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-285 607835 607877 607957 "ESTOOLS1" 608036 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-284 601773 603497 603525 "ES" 606289 T ES (NIL) -9 NIL 607695) (-283 596720 598007 599824 "ES-" 599988 NIL ES- (NIL T) -8 NIL NIL) (-282 593095 593855 594635 "ESCONT" 595960 T ESCONT (NIL) -7 NIL NIL) (-281 592840 592872 592954 "ESCONT1" 593057 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-280 592515 592565 592665 "ES2" 592784 NIL ES2 (NIL T T) -7 NIL NIL) (-279 592145 592203 592312 "ES1" 592451 NIL ES1 (NIL T T) -7 NIL NIL) (-278 591361 591490 591666 "ERROR" 591989 T ERROR (NIL) -7 NIL NIL) (-277 584864 591220 591311 "EQTBL" 591316 NIL EQTBL (NIL T T) -8 NIL NIL) (-276 577427 580182 581629 "EQ" 583450 NIL -3805 (NIL T) -8 NIL NIL) (-275 577059 577116 577225 "EQ2" 577364 NIL EQ2 (NIL T T) -7 NIL NIL) (-274 572351 573397 574490 "EP" 575998 NIL EP (NIL T) -7 NIL NIL) (-273 570933 571234 571551 "ENV" 572054 T ENV (NIL) -8 NIL NIL) (-272 570137 570657 570685 "ENTIRER" 570690 T ENTIRER (NIL) -9 NIL 570735) (-271 566639 568092 568462 "EMR" 569936 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-270 565783 565968 566022 "ELTAGG" 566402 NIL ELTAGG (NIL T T) -9 NIL 566613) (-269 565502 565564 565705 "ELTAGG-" 565710 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-268 565291 565320 565374 "ELTAB" 565458 NIL ELTAB (NIL T T) -9 NIL NIL) (-267 564417 564563 564762 "ELFUTS" 565142 NIL ELFUTS (NIL T T) -7 NIL NIL) (-266 564159 564215 564243 "ELEMFUN" 564348 T ELEMFUN (NIL) -9 NIL NIL) (-265 564029 564050 564118 "ELEMFUN-" 564123 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-264 558921 562130 562171 "ELAGG" 563111 NIL ELAGG (NIL T) -9 NIL 563574) (-263 557206 557640 558303 "ELAGG-" 558308 NIL ELAGG- (NIL T T) -8 NIL NIL) (-262 555863 556143 556438 "ELABEXPR" 556931 T ELABEXPR (NIL) -8 NIL NIL) (-261 548729 550530 551357 "EFUPXS" 555139 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-260 542179 543980 544790 "EFULS" 548005 NIL EFULS (NIL T T T) -8 NIL NIL) (-259 539610 539968 540446 "EFSTRUC" 541811 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-258 528682 530247 531807 "EF" 538125 NIL EF (NIL T T) -7 NIL NIL) (-257 527783 528167 528316 "EAB" 528553 T EAB (NIL) -8 NIL NIL) (-256 526996 527742 527770 "E04UCFA" 527775 T E04UCFA (NIL) -8 NIL NIL) (-255 526209 526955 526983 "E04NAFA" 526988 T E04NAFA (NIL) -8 NIL NIL) (-254 525422 526168 526196 "E04MBFA" 526201 T E04MBFA (NIL) -8 NIL NIL) (-253 524635 525381 525409 "E04JAFA" 525414 T E04JAFA (NIL) -8 NIL NIL) (-252 523850 524594 524622 "E04GCFA" 524627 T E04GCFA (NIL) -8 NIL NIL) (-251 523065 523809 523837 "E04FDFA" 523842 T E04FDFA (NIL) -8 NIL NIL) (-250 522278 523024 523052 "E04DGFA" 523057 T E04DGFA (NIL) -8 NIL NIL) (-249 516463 517808 519170 "E04AGNT" 520936 T E04AGNT (NIL) -7 NIL NIL) (-248 515190 515670 515710 "DVARCAT" 516185 NIL DVARCAT (NIL T) -9 NIL 516383) (-247 514394 514606 514920 "DVARCAT-" 514925 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-246 507302 514196 514323 "DSMP" 514328 NIL DSMP (NIL T T T) -8 NIL NIL) (-245 502112 503247 504315 "DROPT" 506254 T DROPT (NIL) -8 NIL NIL) (-244 501777 501836 501934 "DROPT1" 502047 NIL DROPT1 (NIL T) -7 NIL NIL) (-243 496892 498018 499155 "DROPT0" 500660 T DROPT0 (NIL) -7 NIL NIL) (-242 495237 495562 495948 "DRAWPT" 496526 T DRAWPT (NIL) -7 NIL NIL) (-241 489824 490747 491826 "DRAW" 494211 NIL DRAW (NIL T) -7 NIL NIL) (-240 489457 489510 489628 "DRAWHACK" 489765 NIL DRAWHACK (NIL T) -7 NIL NIL) (-239 488188 488457 488748 "DRAWCX" 489186 T DRAWCX (NIL) -7 NIL NIL) (-238 487706 487774 487924 "DRAWCURV" 488114 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-237 478177 480136 482251 "DRAWCFUN" 485611 T DRAWCFUN (NIL) -7 NIL NIL) (-236 474991 476873 476914 "DQAGG" 477543 NIL DQAGG (NIL T) -9 NIL 477816) (-235 463544 470236 470318 "DPOLCAT" 472156 NIL DPOLCAT (NIL T T T T) -9 NIL 472700) (-234 458384 459730 461687 "DPOLCAT-" 461692 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-233 451588 458246 458343 "DPMO" 458348 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-232 444695 451369 451535 "DPMM" 451540 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-231 444115 444318 444432 "DOMAIN" 444601 T DOMAIN (NIL) -8 NIL NIL) (-230 437873 443752 443903 "DMP" 444016 NIL DMP (NIL NIL T) -8 NIL NIL) (-229 437473 437529 437673 "DLP" 437811 NIL DLP (NIL T) -7 NIL NIL) (-228 431117 436574 436801 "DLIST" 437278 NIL DLIST (NIL T) -8 NIL NIL) (-227 427964 429973 430014 "DLAGG" 430564 NIL DLAGG (NIL T) -9 NIL 430793) (-226 426819 427449 427477 "DIVRING" 427569 T DIVRING (NIL) -9 NIL 427652) (-225 426056 426246 426546 "DIVRING-" 426551 NIL DIVRING- (NIL T) -8 NIL NIL) (-224 424158 424515 424921 "DISPLAY" 425670 T DISPLAY (NIL) -7 NIL NIL) (-223 418133 424072 424135 "DIRPROD" 424140 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-222 416981 417184 417449 "DIRPROD2" 417926 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-221 406586 412505 412558 "DIRPCAT" 412966 NIL DIRPCAT (NIL NIL T) -9 NIL 413805) (-220 403912 404554 405435 "DIRPCAT-" 405772 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-219 403199 403359 403545 "DIOSP" 403746 T DIOSP (NIL) -7 NIL NIL) (-218 399902 402112 402153 "DIOPS" 402587 NIL DIOPS (NIL T) -9 NIL 402816) (-217 399451 399565 399756 "DIOPS-" 399761 NIL DIOPS- (NIL T T) -8 NIL NIL) (-216 398367 398961 398989 "DIFRING" 399176 T DIFRING (NIL) -9 NIL 399285) (-215 398013 398090 398242 "DIFRING-" 398247 NIL DIFRING- (NIL T) -8 NIL NIL) (-214 395847 397085 397125 "DIFEXT" 397484 NIL DIFEXT (NIL T) -9 NIL 397777) (-213 394133 394561 395226 "DIFEXT-" 395231 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-212 391456 393666 393707 "DIAGG" 393712 NIL DIAGG (NIL T) -9 NIL 393732) (-211 390840 390997 391249 "DIAGG-" 391254 NIL DIAGG- (NIL T T) -8 NIL NIL) (-210 386305 389799 390076 "DHMATRIX" 390609 NIL DHMATRIX (NIL T) -8 NIL NIL) (-209 381917 382826 383836 "DFSFUN" 385315 T DFSFUN (NIL) -7 NIL NIL) (-208 376768 380631 380996 "DFLOAT" 381572 T DFLOAT (NIL) -8 NIL NIL) (-207 375001 375282 375677 "DFINTTLS" 376476 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-206 372080 373036 373434 "DERHAM" 374668 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-205 369929 371855 371944 "DEQUEUE" 372024 NIL DEQUEUE (NIL T) -8 NIL NIL) (-204 369147 369280 369475 "DEGRED" 369791 NIL DEGRED (NIL T T) -7 NIL NIL) (-203 365547 366292 367144 "DEFINTRF" 368375 NIL DEFINTRF (NIL T) -7 NIL NIL) (-202 363078 363547 364145 "DEFINTEF" 365066 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-201 356973 362519 362685 "DECIMAL" 362932 T DECIMAL (NIL) -8 NIL NIL) (-200 354485 354943 355449 "DDFACT" 356517 NIL DDFACT (NIL T T) -7 NIL NIL) (-199 354081 354124 354275 "DBLRESP" 354436 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-198 351791 352125 352494 "DBASE" 353839 NIL DBASE (NIL T) -8 NIL NIL) (-197 351060 351271 351417 "DATABUF" 351690 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-196 350195 351019 351047 "D03FAFA" 351052 T D03FAFA (NIL) -8 NIL NIL) (-195 349331 350154 350182 "D03EEFA" 350187 T D03EEFA (NIL) -8 NIL NIL) (-194 347281 347747 348236 "D03AGNT" 348862 T D03AGNT (NIL) -7 NIL NIL) (-193 346599 347240 347268 "D02EJFA" 347273 T D02EJFA (NIL) -8 NIL NIL) (-192 345917 346558 346586 "D02CJFA" 346591 T D02CJFA (NIL) -8 NIL NIL) (-191 345235 345876 345904 "D02BHFA" 345909 T D02BHFA (NIL) -8 NIL NIL) (-190 344553 345194 345222 "D02BBFA" 345227 T D02BBFA (NIL) -8 NIL NIL) (-189 337751 339339 340945 "D02AGNT" 342967 T D02AGNT (NIL) -7 NIL NIL) (-188 335520 336042 336588 "D01WGTS" 337225 T D01WGTS (NIL) -7 NIL NIL) (-187 334623 335479 335507 "D01TRNS" 335512 T D01TRNS (NIL) -8 NIL NIL) (-186 333726 334582 334610 "D01GBFA" 334615 T D01GBFA (NIL) -8 NIL NIL) (-185 332829 333685 333713 "D01FCFA" 333718 T D01FCFA (NIL) -8 NIL NIL) (-184 331932 332788 332816 "D01ASFA" 332821 T D01ASFA (NIL) -8 NIL NIL) (-183 331035 331891 331919 "D01AQFA" 331924 T D01AQFA (NIL) -8 NIL NIL) (-182 330138 330994 331022 "D01APFA" 331027 T D01APFA (NIL) -8 NIL NIL) (-181 329241 330097 330125 "D01ANFA" 330130 T D01ANFA (NIL) -8 NIL NIL) (-180 328344 329200 329228 "D01AMFA" 329233 T D01AMFA (NIL) -8 NIL NIL) (-179 327447 328303 328331 "D01ALFA" 328336 T D01ALFA (NIL) -8 NIL NIL) (-178 326550 327406 327434 "D01AKFA" 327439 T D01AKFA (NIL) -8 NIL NIL) (-177 325653 326509 326537 "D01AJFA" 326542 T D01AJFA (NIL) -8 NIL NIL) (-176 318957 320506 322065 "D01AGNT" 324114 T D01AGNT (NIL) -7 NIL NIL) (-175 318294 318422 318574 "CYCLOTOM" 318825 T CYCLOTOM (NIL) -7 NIL NIL) (-174 315029 315742 316469 "CYCLES" 317587 T CYCLES (NIL) -7 NIL NIL) (-173 314341 314475 314646 "CVMP" 314890 NIL CVMP (NIL T) -7 NIL NIL) (-172 312122 312380 312755 "CTRIGMNP" 314069 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-171 311633 311822 311921 "CTORCALL" 312043 T CTORCALL (NIL) -8 NIL NIL) (-170 311007 311106 311259 "CSTTOOLS" 311530 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-169 306806 307463 308221 "CRFP" 310319 NIL CRFP (NIL T T) -7 NIL NIL) (-168 305853 306038 306266 "CRAPACK" 306610 NIL CRAPACK (NIL T) -7 NIL NIL) (-167 305237 305338 305542 "CPMATCH" 305729 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-166 304962 304990 305096 "CPIMA" 305203 NIL CPIMA (NIL T T T) -7 NIL NIL) (-165 301326 301998 302716 "COORDSYS" 304297 NIL COORDSYS (NIL T) -7 NIL NIL) (-164 300710 300839 300989 "CONTOUR" 301196 T CONTOUR (NIL) -8 NIL NIL) (-163 296636 298713 299205 "CONTFRAC" 300250 NIL CONTFRAC (NIL T) -8 NIL NIL) (-162 295834 296354 296382 "COMRING" 296387 T COMRING (NIL) -9 NIL 296438) (-161 294915 295192 295376 "COMPPROP" 295670 T COMPPROP (NIL) -8 NIL NIL) (-160 294576 294611 294739 "COMPLPAT" 294874 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-159 284642 294385 294494 "COMPLEX" 294499 NIL COMPLEX (NIL T) -8 NIL NIL) (-158 284278 284335 284442 "COMPLEX2" 284579 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-157 283996 284031 284129 "COMPFACT" 284237 NIL COMPFACT (NIL T T) -7 NIL NIL) (-156 268416 278625 278665 "COMPCAT" 279667 NIL COMPCAT (NIL T) -9 NIL 281060) (-155 257931 260855 264482 "COMPCAT-" 264838 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-154 257662 257690 257792 "COMMUPC" 257897 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-153 257457 257490 257549 "COMMONOP" 257623 T COMMONOP (NIL) -7 NIL NIL) (-152 257040 257208 257295 "COMM" 257390 T COMM (NIL) -8 NIL NIL) (-151 256289 256483 256511 "COMBOPC" 256849 T COMBOPC (NIL) -9 NIL 257024) (-150 255185 255395 255637 "COMBINAT" 256079 NIL COMBINAT (NIL T) -7 NIL NIL) (-149 251383 251956 252596 "COMBF" 254607 NIL COMBF (NIL T T) -7 NIL NIL) (-148 250169 250499 250734 "COLOR" 251168 T COLOR (NIL) -8 NIL NIL) (-147 249809 249856 249981 "CMPLXRT" 250116 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-146 245311 246339 247419 "CLIP" 248749 T CLIP (NIL) -7 NIL NIL) (-145 243695 244419 244657 "CLIF" 245139 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-144 239918 241842 241883 "CLAGG" 242812 NIL CLAGG (NIL T) -9 NIL 243348) (-143 238340 238797 239380 "CLAGG-" 239385 NIL CLAGG- (NIL T T) -8 NIL NIL) (-142 237884 237969 238109 "CINTSLPE" 238249 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-141 235385 235856 236404 "CHVAR" 237412 NIL CHVAR (NIL T T T) -7 NIL NIL) (-140 234652 235172 235200 "CHARZ" 235205 T CHARZ (NIL) -9 NIL 235219) (-139 234406 234446 234524 "CHARPOL" 234606 NIL CHARPOL (NIL T) -7 NIL NIL) (-138 233557 234110 234138 "CHARNZ" 234185 T CHARNZ (NIL) -9 NIL 234240) (-137 231582 232247 232582 "CHAR" 233242 T CHAR (NIL) -8 NIL NIL) (-136 231308 231369 231397 "CFCAT" 231508 T CFCAT (NIL) -9 NIL NIL) (-135 230553 230664 230846 "CDEN" 231192 NIL CDEN (NIL T T T) -7 NIL NIL) (-134 226545 229706 229986 "CCLASS" 230293 T CCLASS (NIL) -8 NIL NIL) (-133 226464 226490 226525 "CATEGORY" 226530 T -10 (NIL) -8 NIL NIL) (-132 221516 222493 223246 "CARTEN" 225767 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-131 220624 220772 220993 "CARTEN2" 221363 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-130 218968 219776 220032 "CARD" 220388 T CARD (NIL) -8 NIL NIL) (-129 218341 218669 218697 "CACHSET" 218829 T CACHSET (NIL) -9 NIL 218906) (-128 217838 218134 218162 "CABMON" 218212 T CABMON (NIL) -9 NIL 218268) (-127 217006 217385 217528 "BYTE" 217715 T BYTE (NIL) -8 NIL NIL) (-126 212954 216953 216987 "BYTEARY" 216992 T BYTEARY (NIL) -8 NIL NIL) (-125 210511 212646 212753 "BTREE" 212880 NIL BTREE (NIL T) -8 NIL NIL) (-124 208009 210159 210281 "BTOURN" 210421 NIL BTOURN (NIL T) -8 NIL NIL) (-123 205428 207481 207522 "BTCAT" 207590 NIL BTCAT (NIL T) -9 NIL 207667) (-122 205095 205175 205324 "BTCAT-" 205329 NIL BTCAT- (NIL T T) -8 NIL NIL) (-121 200388 204239 204267 "BTAGG" 204489 T BTAGG (NIL) -9 NIL 204650) (-120 199878 200003 200209 "BTAGG-" 200214 NIL BTAGG- (NIL T) -8 NIL NIL) (-119 196922 199156 199371 "BSTREE" 199695 NIL BSTREE (NIL T) -8 NIL NIL) (-118 196060 196186 196370 "BRILL" 196778 NIL BRILL (NIL T) -7 NIL NIL) (-117 192762 194789 194830 "BRAGG" 195479 NIL BRAGG (NIL T) -9 NIL 195736) (-116 191291 191697 192252 "BRAGG-" 192257 NIL BRAGG- (NIL T T) -8 NIL NIL) (-115 184564 190637 190821 "BPADICRT" 191139 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-114 182914 184501 184546 "BPADIC" 184551 NIL BPADIC (NIL NIL) -8 NIL NIL) (-113 182614 182644 182757 "BOUNDZRO" 182878 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-112 178129 179220 180087 "BOP" 181767 T BOP (NIL) -8 NIL NIL) (-111 175750 176194 176714 "BOP1" 177642 NIL BOP1 (NIL T) -7 NIL NIL) (-110 174474 175160 175360 "BOOLEAN" 175570 T BOOLEAN (NIL) -8 NIL NIL) (-109 173841 174219 174271 "BMODULE" 174276 NIL BMODULE (NIL T T) -9 NIL 174340) (-108 169671 173639 173712 "BITS" 173788 T BITS (NIL) -8 NIL NIL) (-107 168768 169203 169355 "BINFILE" 169539 T BINFILE (NIL) -8 NIL NIL) (-106 168180 168302 168444 "BINDING" 168646 T BINDING (NIL) -8 NIL NIL) (-105 162079 167624 167789 "BINARY" 168035 T BINARY (NIL) -8 NIL NIL) (-104 159907 161335 161376 "BGAGG" 161636 NIL BGAGG (NIL T) -9 NIL 161773) (-103 159738 159770 159861 "BGAGG-" 159866 NIL BGAGG- (NIL T T) -8 NIL NIL) (-102 158836 159122 159327 "BFUNCT" 159553 T BFUNCT (NIL) -8 NIL NIL) (-101 157531 157709 157996 "BEZOUT" 158660 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-100 154048 156383 156713 "BBTREE" 157234 NIL BBTREE (NIL T) -8 NIL NIL) (-99 153786 153839 153865 "BASTYPE" 153982 T BASTYPE (NIL) -9 NIL NIL) (-98 153641 153670 153740 "BASTYPE-" 153745 NIL BASTYPE- (NIL T) -8 NIL NIL) (-97 153079 153155 153305 "BALFACT" 153552 NIL BALFACT (NIL T T) -7 NIL NIL) (-96 151966 152498 152683 "AUTOMOR" 152924 NIL AUTOMOR (NIL T) -8 NIL NIL) (-95 151692 151697 151723 "ATTREG" 151728 T ATTREG (NIL) -9 NIL NIL) (-94 149971 150389 150741 "ATTRBUT" 151358 T ATTRBUT (NIL) -8 NIL NIL) (-93 149507 149620 149646 "ATRIG" 149847 T ATRIG (NIL) -9 NIL NIL) (-92 149316 149357 149444 "ATRIG-" 149449 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 149042 149185 149211 "ASTCAT" 149216 T ASTCAT (NIL) -9 NIL 149246) (-90 148839 148882 148974 "ASTCAT-" 148979 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 147036 148615 148703 "ASTACK" 148782 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145541 145838 146203 "ASSOCEQ" 146718 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144573 145200 145324 "ASP9" 145448 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144337 144521 144560 "ASP8" 144565 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143206 143942 144084 "ASP80" 144226 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142105 142841 142973 "ASP7" 143105 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141059 141782 141900 "ASP78" 142018 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140028 140739 140856 "ASP77" 140973 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 138940 139666 139797 "ASP74" 139928 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137840 138575 138707 "ASP73" 138839 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136795 137517 137635 "ASP6" 137753 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135743 136472 136590 "ASP55" 136708 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134693 135417 135536 "ASP50" 135655 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133781 134394 134504 "ASP4" 134614 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132869 133482 133592 "ASP49" 133702 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131654 132408 132576 "ASP42" 132758 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130431 131187 131357 "ASP41" 131541 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129381 130108 130226 "ASP35" 130344 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129146 129329 129368 "ASP34" 129373 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128883 128950 129026 "ASP33" 129101 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127778 128518 128650 "ASP31" 128782 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127543 127726 127765 "ASP30" 127770 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127278 127347 127423 "ASP29" 127498 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127043 127226 127265 "ASP28" 127270 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126808 126991 127030 "ASP27" 127035 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125892 126506 126617 "ASP24" 126728 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124808 125533 125663 "ASP20" 125793 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123896 124509 124619 "ASP1" 124729 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122840 123570 123689 "ASP19" 123808 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122577 122644 122720 "ASP12" 122795 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121429 122176 122320 "ASP10" 122464 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119328 121273 121364 "ARRAY2" 121369 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115144 118976 119090 "ARRAY1" 119245 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114176 114349 114570 "ARRAY12" 114967 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108536 110407 110482 "ARR2CAT" 113112 NIL ARR2CAT (NIL T T T) -9 NIL 113870) (-54 105970 106714 107668 "ARR2CAT-" 107673 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104722 104874 105179 "APPRULE" 105806 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104375 104423 104541 "APPLYORE" 104668 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103349 103640 103835 "ANY" 104198 T ANY (NIL) -8 NIL NIL) (-50 102627 102750 102907 "ANY1" 103223 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100205 101077 101402 "ANTISYM" 102352 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99720 99909 100006 "ANON" 100126 T ANON (NIL) -8 NIL NIL) (-47 93862 98265 98716 "AN" 99287 T AN (NIL) -8 NIL NIL) (-46 90260 91614 91664 "AMR" 92403 NIL AMR (NIL T T) -9 NIL 93002) (-45 89373 89594 89956 "AMR-" 89961 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 73923 89290 89351 "ALIST" 89356 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70760 73517 73686 "ALGSC" 73841 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67316 67870 68477 "ALGPKG" 70200 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66593 66694 66878 "ALGMFACT" 67202 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62342 63023 63677 "ALGMANIP" 66117 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53753 61968 62118 "ALGFF" 62275 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 52949 53080 53259 "ALGFACT" 53611 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 51984 52550 52588 "ALGEBRA" 52648 NIL ALGEBRA (NIL T) -9 NIL 52706) (-36 51702 51761 51893 "ALGEBRA-" 51898 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 33963 49706 49758 "ALAGG" 49894 NIL ALAGG (NIL T T) -9 NIL 50055) (-34 33499 33612 33638 "AHYP" 33839 T AHYP (NIL) -9 NIL NIL) (-33 32430 32678 32704 "AGG" 33203 T AGG (NIL) -9 NIL 33482) (-32 31864 32026 32240 "AGG-" 32245 NIL AGG- (NIL T) -8 NIL NIL) (-31 29551 29969 30386 "AF" 31507 NIL AF (NIL T T) -7 NIL NIL) (-30 28820 29078 29234 "ACPLOT" 29413 T ACPLOT (NIL) -8 NIL NIL) (-29 18349 26233 26284 "ACFS" 26995 NIL ACFS (NIL T) -9 NIL 27234) (-28 16363 16853 17628 "ACFS-" 17633 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14587 14613 "ACF" 15492 T ACF (NIL) -9 NIL 15904) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
+((-1880 (*1 *1) (-4 *1 (-1124))))
+(-13 (-1127) (-93) (-471) (-34) (-266) (-10 -8 (-15 -1880 ($))))
+(((-34) . T) ((-93) . T) ((-266) . T) ((-471) . T) ((-1127) . T))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-3482 ((|#1| $) 17)) (-1594 (($ |#1| (-598 $)) 23) (($ (-598 |#1|)) 27) (($ |#1|) 25)) (-4058 (((-110) $ (-721)) 48)) (-2039 ((|#1| $ |#1|) 14 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) NIL (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 13 (|has| $ (-6 -4274)))) (-4082 (($) NIL T CONST)) (-2227 (((-598 |#1|) $) 52 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 43)) (-1478 (((-110) $ $) 33 (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) 41)) (-2445 (((-598 |#1|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 51 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2680 (($ (-1 |#1| |#1|) $) 24 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 22)) (-3332 (((-110) $ (-721)) 40)) (-2132 (((-598 |#1|) $) 37)) (-2672 (((-110) $) 36)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2294 (((-110) (-1 (-110) |#1|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 74)) (-1589 (((-110) $) 9)) (-3781 (($) 10)) (-1785 ((|#1| $ "value") NIL)) (-2357 (((-531) $ $) 32)) (-1946 (((-598 $) $) 59)) (-1691 (((-110) $ $) 77)) (-3518 (((-598 $) $) 72)) (-1294 (($ $) 73)) (-2930 (((-110) $) 56)) (-2539 (((-721) (-1 (-110) |#1|) $) 20 (|has| $ (-6 -4273))) (((-721) |#1| $) 16 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2480 (($ $) 58)) (-2265 (((-806) $) 61 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 12)) (-2910 (((-110) $ $) 29 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 49 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 28 (|has| |#1| (-1030)))) (-2167 (((-721) $) 39 (|has| $ (-6 -4273)))))
+(((-1125 |#1|) (-13 (-951 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -1594 ($ |#1| (-598 $))) (-15 -1594 ($ (-598 |#1|))) (-15 -1594 ($ |#1|)) (-15 -2930 ((-110) $)) (-15 -1294 ($ $)) (-15 -3518 ((-598 $) $)) (-15 -1691 ((-110) $ $)) (-15 -1946 ((-598 $) $)))) (-1030)) (T -1125))
+((-2930 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))) (-1594 (*1 *1 *2 *3) (-12 (-5 *3 (-598 (-1125 *2))) (-5 *1 (-1125 *2)) (-4 *2 (-1030)))) (-1594 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-1125 *3)))) (-1594 (*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1030)))) (-1294 (*1 *1 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1030)))) (-3518 (*1 *2 *1) (-12 (-5 *2 (-598 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))) (-1691 (*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))) (-1946 (*1 *2 *1) (-12 (-5 *2 (-598 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))))
+(-13 (-951 |#1|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -1594 ($ |#1| (-598 $))) (-15 -1594 ($ (-598 |#1|))) (-15 -1594 ($ |#1|)) (-15 -2930 ((-110) $)) (-15 -1294 ($ $)) (-15 -3518 ((-598 $) $)) (-15 -1691 ((-110) $ $)) (-15 -1946 ((-598 $) $))))
+((-2218 (($ $) 15)) (-2241 (($ $) 12)) (-2253 (($ $) 10)) (-2229 (($ $) 17)))
+(((-1126 |#1|) (-10 -8 (-15 -2229 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2218 (|#1| |#1|))) (-1127)) (T -1126))
+NIL
+(-10 -8 (-15 -2229 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2218 (|#1| |#1|)))
+((-2218 (($ $) 11)) (-2198 (($ $) 10)) (-2241 (($ $) 9)) (-2253 (($ $) 8)) (-2229 (($ $) 7)) (-2210 (($ $) 6)))
+(((-1127) (-133)) (T -1127))
+((-2218 (*1 *1 *1) (-4 *1 (-1127))) (-2198 (*1 *1 *1) (-4 *1 (-1127))) (-2241 (*1 *1 *1) (-4 *1 (-1127))) (-2253 (*1 *1 *1) (-4 *1 (-1127))) (-2229 (*1 *1 *1) (-4 *1 (-1127))) (-2210 (*1 *1 *1) (-4 *1 (-1127))))
+(-13 (-10 -8 (-15 -2210 ($ $)) (-15 -2229 ($ $)) (-15 -2253 ($ $)) (-15 -2241 ($ $)) (-15 -2198 ($ $)) (-15 -2218 ($ $))))
+((-1709 ((|#2| |#2|) 88)) (-4209 (((-110) |#2|) 26)) (-2577 ((|#2| |#2|) 30)) (-2590 ((|#2| |#2|) 32)) (-1824 ((|#2| |#2| (-1102)) 83) ((|#2| |#2|) 84)) (-1284 (((-159 |#2|) |#2|) 28)) (-1703 ((|#2| |#2| (-1102)) 85) ((|#2| |#2|) 86)))
+(((-1128 |#1| |#2|) (-10 -7 (-15 -1824 (|#2| |#2|)) (-15 -1824 (|#2| |#2| (-1102))) (-15 -1703 (|#2| |#2|)) (-15 -1703 (|#2| |#2| (-1102))) (-15 -1709 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4209 ((-110) |#2|)) (-15 -1284 ((-159 |#2|) |#2|))) (-13 (-432) (-797) (-977 (-531)) (-594 (-531))) (-13 (-27) (-1124) (-411 |#1|))) (T -1128))
+((-1284 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-159 *3)) (-5 *1 (-1128 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *2 (-110)) (-5 *1 (-1128 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *4))))) (-2590 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-2577 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-1709 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-1703 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-1703 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))) (-1824 (*1 *2 *2 *3) (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))) (-1824 (*1 *2 *2) (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531)))) (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))))
+(-10 -7 (-15 -1824 (|#2| |#2|)) (-15 -1824 (|#2| |#2| (-1102))) (-15 -1703 (|#2| |#2|)) (-15 -1703 (|#2| |#2| (-1102))) (-15 -1709 (|#2| |#2|)) (-15 -2577 (|#2| |#2|)) (-15 -2590 (|#2| |#2|)) (-15 -4209 ((-110) |#2|)) (-15 -1284 ((-159 |#2|) |#2|)))
+((-2824 ((|#4| |#4| |#1|) 27)) (-1804 ((|#4| |#4| |#1|) 28)))
+(((-1129 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2824 (|#4| |#4| |#1|)) (-15 -1804 (|#4| |#4| |#1|))) (-523) (-354 |#1|) (-354 |#1|) (-637 |#1| |#2| |#3|)) (T -1129))
+((-1804 (*1 *2 *2 *3) (-12 (-4 *3 (-523)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1129 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))) (-2824 (*1 *2 *2 *3) (-12 (-4 *3 (-523)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-5 *1 (-1129 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))))
+(-10 -7 (-15 -2824 (|#4| |#4| |#1|)) (-15 -1804 (|#4| |#4| |#1|)))
+((-1498 ((|#2| |#2|) 133)) (-2531 ((|#2| |#2|) 130)) (-2756 ((|#2| |#2|) 121)) (-2018 ((|#2| |#2|) 118)) (-3439 ((|#2| |#2|) 126)) (-3975 ((|#2| |#2|) 114)) (-3296 ((|#2| |#2|) 43)) (-1927 ((|#2| |#2|) 94)) (-4013 ((|#2| |#2|) 74)) (-2945 ((|#2| |#2|) 128)) (-3344 ((|#2| |#2|) 116)) (-1472 ((|#2| |#2|) 138)) (-1970 ((|#2| |#2|) 136)) (-1503 ((|#2| |#2|) 137)) (-2692 ((|#2| |#2|) 135)) (-2744 ((|#2| |#2|) 148)) (-2642 ((|#2| |#2|) 30 (-12 (|has| |#2| (-573 (-835 |#1|))) (|has| |#2| (-829 |#1|)) (|has| |#1| (-573 (-835 |#1|))) (|has| |#1| (-829 |#1|))))) (-1483 ((|#2| |#2|) 75)) (-3615 ((|#2| |#2|) 139)) (-2140 ((|#2| |#2|) 140)) (-1602 ((|#2| |#2|) 127)) (-1772 ((|#2| |#2|) 115)) (-4024 ((|#2| |#2|) 134)) (-2479 ((|#2| |#2|) 132)) (-1338 ((|#2| |#2|) 122)) (-2346 ((|#2| |#2|) 120)) (-3271 ((|#2| |#2|) 124)) (-4156 ((|#2| |#2|) 112)))
+(((-1130 |#1| |#2|) (-10 -7 (-15 -2140 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -3296 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -2756 (|#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (IF (|has| |#1| (-829 |#1|)) (IF (|has| |#1| (-573 (-835 |#1|))) (IF (|has| |#2| (-573 (-835 |#1|))) (IF (|has| |#2| (-829 |#1|)) (-15 -2642 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-13 (-797) (-432)) (-13 (-411 |#1|) (-1124))) (T -1130))
+((-2642 (*1 *2 *2) (-12 (-4 *3 (-573 (-835 *3))) (-4 *3 (-829 *3)) (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-573 (-835 *3))) (-4 *2 (-829 *3)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1472 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1503 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1970 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2692 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2479 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2346 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2531 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2018 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1498 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2756 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3439 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3975 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2945 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3344 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1602 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1772 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-4024 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1338 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3271 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-4156 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3615 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1483 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-3296 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-1927 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2744 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-4013 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))) (-2140 (*1 *2 *2) (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2)) (-4 *2 (-13 (-411 *3) (-1124))))))
+(-10 -7 (-15 -2140 (|#2| |#2|)) (-15 -4013 (|#2| |#2|)) (-15 -2744 (|#2| |#2|)) (-15 -1927 (|#2| |#2|)) (-15 -3296 (|#2| |#2|)) (-15 -1483 (|#2| |#2|)) (-15 -3615 (|#2| |#2|)) (-15 -4156 (|#2| |#2|)) (-15 -3271 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -4024 (|#2| |#2|)) (-15 -1772 (|#2| |#2|)) (-15 -1602 (|#2| |#2|)) (-15 -3344 (|#2| |#2|)) (-15 -2945 (|#2| |#2|)) (-15 -3975 (|#2| |#2|)) (-15 -3439 (|#2| |#2|)) (-15 -2756 (|#2| |#2|)) (-15 -1498 (|#2| |#2|)) (-15 -2018 (|#2| |#2|)) (-15 -2531 (|#2| |#2|)) (-15 -2346 (|#2| |#2|)) (-15 -2479 (|#2| |#2|)) (-15 -2692 (|#2| |#2|)) (-15 -1970 (|#2| |#2|)) (-15 -1503 (|#2| |#2|)) (-15 -1472 (|#2| |#2|)) (IF (|has| |#1| (-829 |#1|)) (IF (|has| |#1| (-573 (-835 |#1|))) (IF (|has| |#2| (-573 (-835 |#1|))) (IF (|has| |#2| (-829 |#1|)) (-15 -2642 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|))
+((-3823 (((-110) |#5| $) 60) (((-110) $) 102)) (-3911 ((|#5| |#5| $) 75)) (-2177 (($ (-1 (-110) |#5|) $) NIL) (((-3 |#5| "failed") $ |#4|) 119)) (-4221 (((-598 |#5|) (-598 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 73)) (-3154 (((-3 $ "failed") (-598 |#5|)) 126)) (-3062 (((-3 $ "failed") $) 112)) (-3785 ((|#5| |#5| $) 94)) (-2125 (((-110) |#5| $ (-1 (-110) |#5| |#5|)) 31)) (-2551 ((|#5| |#5| $) 98)) (-1760 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL) ((|#5| (-1 |#5| |#5| |#5|) $) NIL) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|)) 69)) (-4160 (((-2 (|:| -2259 (-598 |#5|)) (|:| -1833 (-598 |#5|))) $) 55)) (-1426 (((-110) |#5| $) 58) (((-110) $) 103)) (-4075 ((|#4| $) 108)) (-2309 (((-3 |#5| "failed") $) 110)) (-1979 (((-598 |#5|) $) 49)) (-2009 (((-110) |#5| $) 67) (((-110) $) 107)) (-1279 ((|#5| |#5| $) 81)) (-1744 (((-110) $ $) 27)) (-2421 (((-110) |#5| $) 63) (((-110) $) 105)) (-3044 ((|#5| |#5| $) 78)) (-3046 (((-3 |#5| "failed") $) 109)) (-1846 (($ $ |#5|) 127)) (-2012 (((-721) $) 52)) (-2274 (($ (-598 |#5|)) 124)) (-3382 (($ $ |#4|) 122)) (-2021 (($ $ |#4|) 121)) (-2862 (($ $) 120)) (-2265 (((-806) $) NIL) (((-598 |#5|) $) 113)) (-3873 (((-721) $) 130)) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5| |#5|)) 43) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|)) 45)) (-1363 (((-110) $ (-1 (-110) |#5| (-598 |#5|))) 100)) (-1646 (((-598 |#4|) $) 115)) (-1697 (((-110) |#4| $) 118)) (-2148 (((-110) $ $) 19)))
+(((-1131 |#1| |#2| |#3| |#4| |#5|) (-10 -8 (-15 -3873 ((-721) |#1|)) (-15 -1846 (|#1| |#1| |#5|)) (-15 -2177 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1697 ((-110) |#4| |#1|)) (-15 -1646 ((-598 |#4|) |#1|)) (-15 -3062 ((-3 |#1| "failed") |#1|)) (-15 -2309 ((-3 |#5| "failed") |#1|)) (-15 -3046 ((-3 |#5| "failed") |#1|)) (-15 -2551 (|#5| |#5| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -3785 (|#5| |#5| |#1|)) (-15 -1279 (|#5| |#5| |#1|)) (-15 -3044 (|#5| |#5| |#1|)) (-15 -3911 (|#5| |#5| |#1|)) (-15 -4221 ((-598 |#5|) (-598 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -1760 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2009 ((-110) |#1|)) (-15 -2421 ((-110) |#1|)) (-15 -3823 ((-110) |#1|)) (-15 -1363 ((-110) |#1| (-1 (-110) |#5| (-598 |#5|)))) (-15 -2009 ((-110) |#5| |#1|)) (-15 -2421 ((-110) |#5| |#1|)) (-15 -3823 ((-110) |#5| |#1|)) (-15 -2125 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -1426 ((-110) |#1|)) (-15 -1426 ((-110) |#5| |#1|)) (-15 -4160 ((-2 (|:| -2259 (-598 |#5|)) (|:| -1833 (-598 |#5|))) |#1|)) (-15 -2012 ((-721) |#1|)) (-15 -1979 ((-598 |#5|) |#1|)) (-15 -1507 ((-3 (-2 (|:| |bas| |#1|) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -1507 ((-3 (-2 (|:| |bas| |#1|) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1744 ((-110) |#1| |#1|)) (-15 -3382 (|#1| |#1| |#4|)) (-15 -2021 (|#1| |#1| |#4|)) (-15 -4075 (|#4| |#1|)) (-15 -3154 ((-3 |#1| "failed") (-598 |#5|))) (-15 -2265 ((-598 |#5|) |#1|)) (-15 -2274 (|#1| (-598 |#5|))) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2177 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|))) (-1132 |#2| |#3| |#4| |#5|) (-523) (-743) (-797) (-1000 |#2| |#3| |#4|)) (T -1131))
+NIL
+(-10 -8 (-15 -3873 ((-721) |#1|)) (-15 -1846 (|#1| |#1| |#5|)) (-15 -2177 ((-3 |#5| "failed") |#1| |#4|)) (-15 -1697 ((-110) |#4| |#1|)) (-15 -1646 ((-598 |#4|) |#1|)) (-15 -3062 ((-3 |#1| "failed") |#1|)) (-15 -2309 ((-3 |#5| "failed") |#1|)) (-15 -3046 ((-3 |#5| "failed") |#1|)) (-15 -2551 (|#5| |#5| |#1|)) (-15 -2862 (|#1| |#1|)) (-15 -3785 (|#5| |#5| |#1|)) (-15 -1279 (|#5| |#5| |#1|)) (-15 -3044 (|#5| |#5| |#1|)) (-15 -3911 (|#5| |#5| |#1|)) (-15 -4221 ((-598 |#5|) (-598 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -1760 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-110) |#5| |#5|))) (-15 -2009 ((-110) |#1|)) (-15 -2421 ((-110) |#1|)) (-15 -3823 ((-110) |#1|)) (-15 -1363 ((-110) |#1| (-1 (-110) |#5| (-598 |#5|)))) (-15 -2009 ((-110) |#5| |#1|)) (-15 -2421 ((-110) |#5| |#1|)) (-15 -3823 ((-110) |#5| |#1|)) (-15 -2125 ((-110) |#5| |#1| (-1 (-110) |#5| |#5|))) (-15 -1426 ((-110) |#1|)) (-15 -1426 ((-110) |#5| |#1|)) (-15 -4160 ((-2 (|:| -2259 (-598 |#5|)) (|:| -1833 (-598 |#5|))) |#1|)) (-15 -2012 ((-721) |#1|)) (-15 -1979 ((-598 |#5|) |#1|)) (-15 -1507 ((-3 (-2 (|:| |bas| |#1|) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5|) (-1 (-110) |#5| |#5|))) (-15 -1507 ((-3 (-2 (|:| |bas| |#1|) (|:| -1573 (-598 |#5|))) "failed") (-598 |#5|) (-1 (-110) |#5| |#5|))) (-15 -1744 ((-110) |#1| |#1|)) (-15 -3382 (|#1| |#1| |#4|)) (-15 -2021 (|#1| |#1| |#4|)) (-15 -4075 (|#4| |#1|)) (-15 -3154 ((-3 |#1| "failed") (-598 |#5|))) (-15 -2265 ((-598 |#5|) |#1|)) (-15 -2274 (|#1| (-598 |#5|))) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -2177 (|#1| (-1 (-110) |#5|) |#1|)) (-15 -1760 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -2265 ((-806) |#1|)) (-15 -2148 ((-110) |#1| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) 85)) (-2855 (((-598 $) (-598 |#4|)) 86)) (-2695 (((-598 |#3|) $) 33)) (-1625 (((-110) $) 26)) (-1983 (((-110) $) 17 (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) 101) (((-110) $) 97)) (-3911 ((|#4| |#4| $) 92)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) 27)) (-4058 (((-110) $ (-721)) 44)) (-2177 (($ (-1 (-110) |#4|) $) 65 (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) 79)) (-4082 (($) 45 T CONST)) (-3145 (((-110) $) 22 (|has| |#1| (-523)))) (-2405 (((-110) $ $) 24 (|has| |#1| (-523)))) (-1657 (((-110) $ $) 23 (|has| |#1| (-523)))) (-3178 (((-110) $) 25 (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 93)) (-2339 (((-598 |#4|) (-598 |#4|) $) 18 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) 19 (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) 36)) (-2523 (($ (-598 |#4|)) 35)) (-3062 (((-3 $ "failed") $) 82)) (-3785 ((|#4| |#4| $) 89)) (-3086 (($ $) 68 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#4| $) 67 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#4|) $) 64 (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 20 (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) 102)) (-2551 ((|#4| |#4| $) 87)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 66 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 63 (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) 62 (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 94)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) 105)) (-2227 (((-598 |#4|) $) 52 (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) 104) (((-110) $) 103)) (-4075 ((|#3| $) 34)) (-3280 (((-110) $ (-721)) 43)) (-2445 (((-598 |#4|) $) 53 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) 55 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#4| |#4|) $) 48 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) 47)) (-3951 (((-598 |#3|) $) 32)) (-4081 (((-110) |#3| $) 31)) (-3332 (((-110) $ (-721)) 42)) (-1521 (((-1085) $) 9)) (-2309 (((-3 |#4| "failed") $) 83)) (-1979 (((-598 |#4|) $) 107)) (-2009 (((-110) |#4| $) 99) (((-110) $) 95)) (-1279 ((|#4| |#4| $) 90)) (-1744 (((-110) $ $) 110)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 21 (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) 100) (((-110) $) 96)) (-3044 ((|#4| |#4| $) 91)) (-2529 (((-1049) $) 10)) (-3046 (((-3 |#4| "failed") $) 84)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) 61)) (-3032 (((-3 $ "failed") $ |#4|) 78)) (-1846 (($ $ |#4|) 77)) (-2294 (((-110) (-1 (-110) |#4|) $) 50 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) 59 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) 58 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) 57 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) 56 (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) 38)) (-1589 (((-110) $) 41)) (-3781 (($) 40)) (-2012 (((-721) $) 106)) (-2539 (((-721) |#4| $) 54 (-12 (|has| |#4| (-1030)) (|has| $ (-6 -4273)))) (((-721) (-1 (-110) |#4|) $) 51 (|has| $ (-6 -4273)))) (-2480 (($ $) 39)) (-3318 (((-507) $) 69 (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) 60)) (-3382 (($ $ |#3|) 28)) (-2021 (($ $ |#3|) 30)) (-2862 (($ $) 88)) (-3593 (($ $ |#3|) 29)) (-2265 (((-806) $) 11) (((-598 |#4|) $) 37)) (-3873 (((-721) $) 76 (|has| |#3| (-349)))) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 109) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) 108)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) 98)) (-2060 (((-110) (-1 (-110) |#4|) $) 49 (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) 81)) (-1697 (((-110) |#3| $) 80)) (-2148 (((-110) $ $) 6)) (-2167 (((-721) $) 46 (|has| $ (-6 -4273)))))
+(((-1132 |#1| |#2| |#3| |#4|) (-133) (-523) (-743) (-797) (-1000 |t#1| |t#2| |t#3|)) (T -1132))
+((-1744 (*1 *2 *1 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-1507 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1573 (-598 *8)))) (-5 *3 (-598 *8)) (-4 *1 (-1132 *5 *6 *7 *8)))) (-1507 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9)) (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743)) (-4 *8 (-797)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1573 (-598 *9)))) (-5 *3 (-598 *9)) (-4 *1 (-1132 *6 *7 *8 *9)))) (-1979 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *6)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-721)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-2 (|:| -2259 (-598 *6)) (|:| -1833 (-598 *6)))))) (-1426 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-1426 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-2125 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1132 *5 *6 *7 *3)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)))) (-3823 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2421 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-2009 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-1363 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-110) *7 (-598 *7))) (-4 *1 (-1132 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-2421 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-2009 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))) (-1760 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2)) (-4 *1 (-1132 *5 *6 *7 *2)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *2 (-1000 *5 *6 *7)))) (-4221 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-598 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1132 *5 *6 *7 *8)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)))) (-3911 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-3044 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-1279 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-3785 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-2862 (*1 *1 *1) (-12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-1000 *2 *3 *4)))) (-2551 (*1 *2 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1)) (-4 *1 (-1132 *4 *5 *6 *7)))) (-3663 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-598 (-2 (|:| -2259 *1) (|:| -1833 (-598 *7))))) (-5 *3 (-598 *7)) (-4 *1 (-1132 *4 *5 *6 *7)))) (-3046 (*1 *2 *1) (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-2309 (*1 *2 *1) (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-3062 (*1 *1 *1) (|partial| -12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-1000 *2 *3 *4)))) (-1646 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))) (-1697 (*1 *2 *3 *1) (-12 (-4 *1 (-1132 *4 *5 *3 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-110)))) (-2177 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1132 *4 *5 *3 *2)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *3 (-797)) (-4 *2 (-1000 *4 *5 *3)))) (-3032 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))) (-3873 (*1 *2 *1) (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *5 (-349)) (-5 *2 (-721)))))
+(-13 (-918 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4273) (-6 -4274) (-15 -1744 ((-110) $ $)) (-15 -1507 ((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |t#4|))) "failed") (-598 |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1507 ((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |t#4|))) "failed") (-598 |t#4|) (-1 (-110) |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -1979 ((-598 |t#4|) $)) (-15 -2012 ((-721) $)) (-15 -4160 ((-2 (|:| -2259 (-598 |t#4|)) (|:| -1833 (-598 |t#4|))) $)) (-15 -1426 ((-110) |t#4| $)) (-15 -1426 ((-110) $)) (-15 -2125 ((-110) |t#4| $ (-1 (-110) |t#4| |t#4|))) (-15 -3823 ((-110) |t#4| $)) (-15 -2421 ((-110) |t#4| $)) (-15 -2009 ((-110) |t#4| $)) (-15 -1363 ((-110) $ (-1 (-110) |t#4| (-598 |t#4|)))) (-15 -3823 ((-110) $)) (-15 -2421 ((-110) $)) (-15 -2009 ((-110) $)) (-15 -1760 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -4221 ((-598 |t#4|) (-598 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-110) |t#4| |t#4|))) (-15 -3911 (|t#4| |t#4| $)) (-15 -3044 (|t#4| |t#4| $)) (-15 -1279 (|t#4| |t#4| $)) (-15 -3785 (|t#4| |t#4| $)) (-15 -2862 ($ $)) (-15 -2551 (|t#4| |t#4| $)) (-15 -2855 ((-598 $) (-598 |t#4|))) (-15 -3663 ((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |t#4|)))) (-598 |t#4|))) (-15 -3046 ((-3 |t#4| "failed") $)) (-15 -2309 ((-3 |t#4| "failed") $)) (-15 -3062 ((-3 $ "failed") $)) (-15 -1646 ((-598 |t#3|) $)) (-15 -1697 ((-110) |t#3| $)) (-15 -2177 ((-3 |t#4| "failed") $ |t#3|)) (-15 -3032 ((-3 $ "failed") $ |t#4|)) (-15 -1846 ($ $ |t#4|)) (IF (|has| |t#3| (-349)) (-15 -3873 ((-721) $)) |%noBranch|)))
+(((-33) . T) ((-99) . T) ((-572 (-598 |#4|)) . T) ((-572 (-806)) . T) ((-144 |#4|) . T) ((-573 (-507)) |has| |#4| (-573 (-507))) ((-291 |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-468 |#4|) . T) ((-492 |#4| |#4|) -12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))) ((-918 |#1| |#2| |#3| |#4|) . T) ((-1030) . T) ((-1138) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1102)) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3383 (((-895 |#1|) $ (-721)) 17) (((-895 |#1|) $ (-721) (-721)) NIL)) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $ (-1102)) NIL) (((-721) $ (-1102) (-721)) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3380 (((-110) $) NIL)) (-2669 (($ $ (-598 (-1102)) (-598 (-503 (-1102)))) NIL) (($ $ (-1102) (-503 (-1102))) NIL) (($ |#1| (-503 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1788 (($ $ (-1102)) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102) |#1|) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-4003 (($ (-1 $) (-1102) |#1|) NIL (|has| |#1| (-37 (-388 (-531)))))) (-1846 (($ $ (-721)) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (($ $ (-1102) $) NIL) (($ $ (-598 (-1102)) (-598 $)) NIL) (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL)) (-3352 (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2012 (((-503 (-1102)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ $) NIL (|has| |#1| (-523))) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-1102)) NIL) (($ (-895 |#1|)) NIL)) (-3188 ((|#1| $ (-503 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (((-895 |#1|) $ (-721)) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) NIL T CONST)) (-3050 (($) NIL T CONST)) (-4020 (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) NIL) (($ $ |#1|) NIL)))
+(((-1133 |#1|) (-13 (-691 |#1| (-1102)) (-10 -8 (-15 -3188 ((-895 |#1|) $ (-721))) (-15 -2265 ($ (-1102))) (-15 -2265 ($ (-895 |#1|))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ (-1102) |#1|)) (-15 -4003 ($ (-1 $) (-1102) |#1|))) |%noBranch|))) (-986)) (T -1133))
+((-3188 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-895 *4)) (-5 *1 (-1133 *4)) (-4 *4 (-986)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1133 *3)) (-4 *3 (-986)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-5 *1 (-1133 *3)))) (-1788 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *1 (-1133 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)))) (-4003 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1133 *4))) (-5 *3 (-1102)) (-5 *1 (-1133 *4)) (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986)))))
+(-13 (-691 |#1| (-1102)) (-10 -8 (-15 -3188 ((-895 |#1|) $ (-721))) (-15 -2265 ($ (-1102))) (-15 -2265 ($ (-895 |#1|))) (IF (|has| |#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $ (-1102) |#1|)) (-15 -4003 ($ (-1 $) (-1102) |#1|))) |%noBranch|)))
+((-1952 (($ |#1| (-598 (-598 (-886 (-208)))) (-110)) 19)) (-4172 (((-110) $ (-110)) 18)) (-1910 (((-110) $) 17)) (-3766 (((-598 (-598 (-886 (-208)))) $) 13)) (-1226 ((|#1| $) 8)) (-1934 (((-110) $) 15)))
+(((-1134 |#1|) (-10 -8 (-15 -1226 (|#1| $)) (-15 -3766 ((-598 (-598 (-886 (-208)))) $)) (-15 -1934 ((-110) $)) (-15 -1910 ((-110) $)) (-15 -4172 ((-110) $ (-110))) (-15 -1952 ($ |#1| (-598 (-598 (-886 (-208)))) (-110)))) (-916)) (T -1134))
+((-1952 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-110)) (-5 *1 (-1134 *2)) (-4 *2 (-916)))) (-4172 (*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))) (-1910 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))) (-1934 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))) (-3766 (*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-1134 *3)) (-4 *3 (-916)))) (-1226 (*1 *2 *1) (-12 (-5 *1 (-1134 *2)) (-4 *2 (-916)))))
+(-10 -8 (-15 -1226 (|#1| $)) (-15 -3766 ((-598 (-598 (-886 (-208)))) $)) (-15 -1934 ((-110) $)) (-15 -1910 ((-110) $)) (-15 -4172 ((-110) $ (-110))) (-15 -1952 ($ |#1| (-598 (-598 (-886 (-208)))) (-110))))
+((-1685 (((-886 (-208)) (-886 (-208))) 25)) (-4042 (((-886 (-208)) (-208) (-208) (-208) (-208)) 10)) (-2706 (((-598 (-886 (-208))) (-886 (-208)) (-886 (-208)) (-886 (-208)) (-208) (-598 (-598 (-208)))) 37)) (-3225 (((-208) (-886 (-208)) (-886 (-208))) 21)) (-2261 (((-886 (-208)) (-886 (-208)) (-886 (-208))) 22)) (-2353 (((-598 (-598 (-208))) (-531)) 31)) (-2250 (((-886 (-208)) (-886 (-208)) (-886 (-208))) 20)) (-2237 (((-886 (-208)) (-886 (-208)) (-886 (-208))) 19)) (* (((-886 (-208)) (-208) (-886 (-208))) 18)))
+(((-1135) (-10 -7 (-15 -4042 ((-886 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-886 (-208)) (-208) (-886 (-208)))) (-15 -2237 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -2250 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -3225 ((-208) (-886 (-208)) (-886 (-208)))) (-15 -2261 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -1685 ((-886 (-208)) (-886 (-208)))) (-15 -2353 ((-598 (-598 (-208))) (-531))) (-15 -2706 ((-598 (-886 (-208))) (-886 (-208)) (-886 (-208)) (-886 (-208)) (-208) (-598 (-598 (-208))))))) (T -1135))
+((-2706 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-598 (-598 (-208)))) (-5 *4 (-208)) (-5 *2 (-598 (-886 *4))) (-5 *1 (-1135)) (-5 *3 (-886 *4)))) (-2353 (*1 *2 *3) (-12 (-5 *3 (-531)) (-5 *2 (-598 (-598 (-208)))) (-5 *1 (-1135)))) (-1685 (*1 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) (-2261 (*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) (-3225 (*1 *2 *3 *3) (-12 (-5 *3 (-886 (-208))) (-5 *2 (-208)) (-5 *1 (-1135)))) (-2250 (*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) (-2237 (*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-886 (-208))) (-5 *3 (-208)) (-5 *1 (-1135)))) (-4042 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)) (-5 *3 (-208)))))
+(-10 -7 (-15 -4042 ((-886 (-208)) (-208) (-208) (-208) (-208))) (-15 * ((-886 (-208)) (-208) (-886 (-208)))) (-15 -2237 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -2250 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -3225 ((-208) (-886 (-208)) (-886 (-208)))) (-15 -2261 ((-886 (-208)) (-886 (-208)) (-886 (-208)))) (-15 -1685 ((-886 (-208)) (-886 (-208)))) (-15 -2353 ((-598 (-598 (-208))) (-531))) (-15 -2706 ((-598 (-886 (-208))) (-886 (-208)) (-886 (-208)) (-886 (-208)) (-208) (-598 (-598 (-208))))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2177 ((|#1| $ (-721)) 13)) (-2428 (((-721) $) 12)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2265 (((-901 |#1|) $) 10) (($ (-901 |#1|)) 9) (((-806) $) 23 (|has| |#1| (-572 (-806))))) (-2148 (((-110) $ $) 16 (|has| |#1| (-1030)))))
+(((-1136 |#1|) (-13 (-572 (-901 |#1|)) (-10 -8 (-15 -2265 ($ (-901 |#1|))) (-15 -2177 (|#1| $ (-721))) (-15 -2428 ((-721) $)) (IF (|has| |#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|))) (-1138)) (T -1136))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-901 *3)) (-4 *3 (-1138)) (-5 *1 (-1136 *3)))) (-2177 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-1136 *2)) (-4 *2 (-1138)))) (-2428 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1136 *3)) (-4 *3 (-1138)))))
+(-13 (-572 (-901 |#1|)) (-10 -8 (-15 -2265 ($ (-901 |#1|))) (-15 -2177 (|#1| $ (-721))) (-15 -2428 ((-721) $)) (IF (|has| |#1| (-572 (-806))) (-6 (-572 (-806))) |%noBranch|) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|)))
+((-2754 (((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)) (-531)) 80)) (-4057 (((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|))) 74)) (-2913 (((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|))) 59)))
+(((-1137 |#1|) (-10 -7 (-15 -4057 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)))) (-15 -2913 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)))) (-15 -2754 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)) (-531)))) (-330)) (T -1137))
+((-2754 (*1 *2 *3 *4) (-12 (-5 *4 (-531)) (-4 *5 (-330)) (-5 *2 (-399 (-1098 (-1098 *5)))) (-5 *1 (-1137 *5)) (-5 *3 (-1098 (-1098 *5))))) (-2913 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1098 (-1098 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-1098 (-1098 *4))))) (-4057 (*1 *2 *3) (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1098 (-1098 *4)))) (-5 *1 (-1137 *4)) (-5 *3 (-1098 (-1098 *4))))))
+(-10 -7 (-15 -4057 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)))) (-15 -2913 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)))) (-15 -2754 ((-399 (-1098 (-1098 |#1|))) (-1098 (-1098 |#1|)) (-531))))
+NIL
+(((-1138) (-133)) (T -1138))
+NIL
+(-13 (-10 -7 (-6 -4120)))
+((-2133 (((-110)) 15)) (-1622 (((-1189) (-598 |#1|) (-598 |#1|)) 19) (((-1189) (-598 |#1|)) 20)) (-3280 (((-110) |#1| |#1|) 32 (|has| |#1| (-797)))) (-3332 (((-110) |#1| |#1| (-1 (-110) |#1| |#1|)) 27) (((-3 (-110) "failed") |#1| |#1|) 25)) (-2777 ((|#1| (-598 |#1|)) 33 (|has| |#1| (-797))) ((|#1| (-598 |#1|) (-1 (-110) |#1| |#1|)) 28)) (-1276 (((-2 (|:| -1915 (-598 |#1|)) (|:| -4189 (-598 |#1|)))) 17)))
+(((-1139 |#1|) (-10 -7 (-15 -1622 ((-1189) (-598 |#1|))) (-15 -1622 ((-1189) (-598 |#1|) (-598 |#1|))) (-15 -1276 ((-2 (|:| -1915 (-598 |#1|)) (|:| -4189 (-598 |#1|))))) (-15 -3332 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3332 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -2777 (|#1| (-598 |#1|) (-1 (-110) |#1| |#1|))) (-15 -2133 ((-110))) (IF (|has| |#1| (-797)) (PROGN (-15 -2777 (|#1| (-598 |#1|))) (-15 -3280 ((-110) |#1| |#1|))) |%noBranch|)) (-1030)) (T -1139))
+((-3280 (*1 *2 *3 *3) (-12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-797)) (-4 *3 (-1030)))) (-2777 (*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-797)) (-5 *1 (-1139 *2)))) (-2133 (*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-1030)))) (-2777 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1139 *2)) (-4 *2 (-1030)))) (-3332 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1030)) (-5 *2 (-110)) (-5 *1 (-1139 *3)))) (-3332 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-1030)))) (-1276 (*1 *2) (-12 (-5 *2 (-2 (|:| -1915 (-598 *3)) (|:| -4189 (-598 *3)))) (-5 *1 (-1139 *3)) (-4 *3 (-1030)))) (-1622 (*1 *2 *3 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-5 *2 (-1189)) (-5 *1 (-1139 *4)))) (-1622 (*1 *2 *3) (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-5 *2 (-1189)) (-5 *1 (-1139 *4)))))
+(-10 -7 (-15 -1622 ((-1189) (-598 |#1|))) (-15 -1622 ((-1189) (-598 |#1|) (-598 |#1|))) (-15 -1276 ((-2 (|:| -1915 (-598 |#1|)) (|:| -4189 (-598 |#1|))))) (-15 -3332 ((-3 (-110) "failed") |#1| |#1|)) (-15 -3332 ((-110) |#1| |#1| (-1 (-110) |#1| |#1|))) (-15 -2777 (|#1| (-598 |#1|) (-1 (-110) |#1| |#1|))) (-15 -2133 ((-110))) (IF (|has| |#1| (-797)) (PROGN (-15 -2777 (|#1| (-598 |#1|))) (-15 -3280 ((-110) |#1| |#1|))) |%noBranch|))
+((-4182 (((-1189) (-598 (-1102)) (-598 (-1102))) 13) (((-1189) (-598 (-1102))) 11)) (-3435 (((-1189)) 14)) (-3099 (((-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102))))) 18)))
+(((-1140) (-10 -7 (-15 -4182 ((-1189) (-598 (-1102)))) (-15 -4182 ((-1189) (-598 (-1102)) (-598 (-1102)))) (-15 -3099 ((-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102)))))) (-15 -3435 ((-1189))))) (T -1140))
+((-3435 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1140)))) (-3099 (*1 *2) (-12 (-5 *2 (-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102))))) (-5 *1 (-1140)))) (-4182 (*1 *2 *3 *3) (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1140)))) (-4182 (*1 *2 *3) (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1140)))))
+(-10 -7 (-15 -4182 ((-1189) (-598 (-1102)))) (-15 -4182 ((-1189) (-598 (-1102)) (-598 (-1102)))) (-15 -3099 ((-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102)))))) (-15 -3435 ((-1189))))
+((-3240 (($ $) 17)) (-2534 (((-110) $) 24)))
+(((-1141 |#1|) (-10 -8 (-15 -3240 (|#1| |#1|)) (-15 -2534 ((-110) |#1|))) (-1142)) (T -1141))
+NIL
+(-10 -8 (-15 -3240 (|#1| |#1|)) (-15 -2534 ((-110) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 49)) (-2956 (((-399 $) $) 50)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-2534 (((-110) $) 51)) (-3481 (((-110) $) 30)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 48)) (-3609 (((-3 $ "failed") $ $) 40)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41)) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24)))
+(((-1142) (-133)) (T -1142))
+((-2534 (*1 *2 *1) (-12 (-4 *1 (-1142)) (-5 *2 (-110)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1142)))) (-3240 (*1 *1 *1) (-4 *1 (-1142))) (-2552 (*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1142)))))
+(-13 (-432) (-10 -8 (-15 -2534 ((-110) $)) (-15 -2956 ((-399 $) $)) (-15 -3240 ($ $)) (-15 -2552 ((-399 $) $))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 $) . T) ((-99) . T) ((-109 $ $) . T) ((-128) . T) ((-572 (-806)) . T) ((-162) . T) ((-272) . T) ((-432) . T) ((-523) . T) ((-601 $) . T) ((-668 $) . T) ((-677) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3261 (((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|)) 23)))
+(((-1143 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3261 ((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|)))) (-986) (-986) (-1102) (-1102) |#1| |#2|) (T -1143))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5 *7 *9)) (-4 *5 (-986)) (-4 *6 (-986)) (-14 *7 (-1102)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1148 *6 *8 *10)) (-5 *1 (-1143 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1102)))))
+(-10 -7 (-15 -3261 ((-1148 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1148 |#1| |#3| |#5|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-531)) 96) (($ $ (-531) (-531)) 95)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 103)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 160 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 171)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 155 (|has| |#1| (-344)))) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-4163 (((-388 (-895 |#1|)) $ (-531)) 169 (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) 168 (|has| |#1| (-523)))) (-3630 (($ $ $) 154 (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-344)))) (-2534 (((-110) $) 162 (|has| |#1| (-344)))) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-531) $) 98) (((-531) $ (-531)) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 99)) (-3192 (($ (-1 |#1| (-531)) $) 170)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-344)))) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-531)) 59) (($ $ (-1014) (-531)) 74) (($ $ (-598 (-1014)) (-598 (-531))) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 163 (|has| |#1| (-344)))) (-1788 (($ $) 167 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 166 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2552 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-344)))) (-1846 (($ $ (-531)) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-344)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-531)))))) (-4100 (((-721) $) 152 (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) 102) (($ $ $) 79 (|has| (-531) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| (-531) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (-2012 (((-531) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523)))) (-3188 ((|#1| $ (-531)) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| (-531) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-1144 |#1|) (-133) (-986)) (T -1144))
+((-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3)))) (-4 *3 (-986)) (-4 *1 (-1144 *3)))) (-3192 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-531))) (-4 *1 (-1144 *3)) (-4 *3 (-986)))) (-4163 (*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-1144 *4)) (-4 *4 (-986)) (-4 *4 (-523)) (-5 *2 (-388 (-895 *4))))) (-4163 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-4 *1 (-1144 *4)) (-4 *4 (-986)) (-4 *4 (-523)) (-5 *2 (-388 (-895 *4))))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1144 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) (-1788 (*1 *1 *1 *2) (-1435 (-12 (-5 *2 (-1102)) (-4 *1 (-1144 *3)) (-4 *3 (-986)) (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) (-4 *3 (-37 (-388 (-531)))))) (-12 (-5 *2 (-1102)) (-4 *1 (-1144 *3)) (-4 *3 (-986)) (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531)))))))))
+(-13 (-1162 |t#1| (-531)) (-10 -8 (-15 -4067 ($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |t#1|))))) (-15 -3192 ($ (-1 |t#1| (-531)) $)) (IF (|has| |t#1| (-523)) (PROGN (-15 -4163 ((-388 (-895 |t#1|)) $ (-531))) (-15 -4163 ((-388 (-895 |t#1|)) $ (-531) (-531)))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (IF (|has| |t#1| (-15 -1788 (|t#1| |t#1| (-1102)))) (IF (|has| |t#1| (-15 -2695 ((-598 (-1102)) |t#1|))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1124)) (IF (|has| |t#1| (-902)) (IF (|has| |t#1| (-29 (-531))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-943)) (-6 (-1124))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-531)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-531) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 $ $) |has| (-531) (-1042)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-601 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| #0# (-1014)) . T) ((-863) |has| |#1| (-344)) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-992 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1142) |has| |#1| (-344)) ((-1162 |#1| #0#) . T))
+((-3019 (((-110) $) 12)) (-3154 (((-3 |#3| "failed") $) 17) (((-3 (-1102) "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL)) (-2523 ((|#3| $) 14) (((-1102) $) NIL) (((-388 (-531)) $) NIL) (((-531) $) NIL)))
+(((-1145 |#1| |#2| |#3|) (-10 -8 (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3019 ((-110) |#1|))) (-1146 |#2| |#3|) (-986) (-1175 |#2|)) (T -1145))
+NIL
+(-10 -8 (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2523 ((-1102) |#1|)) (-15 -3154 ((-3 (-1102) "failed") |#1|)) (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3019 ((-110) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-1317 ((|#2| $) 228 (-3427 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-531)) 96) (($ $ (-531) (-531)) 95)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 103)) (-2594 ((|#2| $) 264)) (-1891 (((-3 |#2| "failed") $) 260)) (-2373 ((|#2| $) 261)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-1383 (((-399 (-1098 $)) (-1098 $)) 237 (-3427 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-3240 (($ $) 160 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 234 (-3427 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2760 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-3459 (((-531) $) 246 (-3427 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 171)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#2| "failed") $) 267) (((-3 (-531) "failed") $) 256 (-3427 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-388 (-531)) "failed") $) 254 (-3427 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-1102) "failed") $) 239 (-3427 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344))))) (-2523 ((|#2| $) 266) (((-531) $) 257 (-3427 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-388 (-531)) $) 255 (-3427 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-1102) $) 240 (-3427 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344))))) (-2581 (($ $) 263) (($ (-531) $) 262)) (-3650 (($ $ $) 155 (|has| |#1| (-344)))) (-2500 (($ $) 58)) (-3073 (((-639 |#2|) (-639 $)) 218 (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) 217 (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 216 (-3427 (|has| |#2| (-594 (-531))) (|has| |#1| (-344)))) (((-639 (-531)) (-639 $)) 215 (-3427 (|has| |#2| (-594 (-531))) (|has| |#1| (-344))))) (-3622 (((-3 $ "failed") $) 32)) (-4163 (((-388 (-895 |#1|)) $ (-531)) 169 (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) 168 (|has| |#1| (-523)))) (-1381 (($) 230 (-3427 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-3630 (($ $ $) 154 (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-344)))) (-2534 (((-110) $) 162 (|has| |#1| (-344)))) (-1599 (((-110) $) 244 (-3427 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 222 (-3427 (|has| |#2| (-829 (-360))) (|has| |#1| (-344)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 221 (-3427 (|has| |#2| (-829 (-531))) (|has| |#1| (-344))))) (-3617 (((-531) $) 98) (((-531) $ (-531)) 97)) (-3481 (((-110) $) 30)) (-3027 (($ $) 226 (|has| |#1| (-344)))) (-1840 ((|#2| $) 224 (|has| |#1| (-344)))) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-2342 (((-3 $ "failed") $) 258 (-3427 (|has| |#2| (-1078)) (|has| |#1| (-344))))) (-2985 (((-110) $) 245 (-3427 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3688 (($ $ (-864)) 99)) (-3192 (($ (-1 |#1| (-531)) $) 170)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-344)))) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-531)) 59) (($ $ (-1014) (-531)) 74) (($ $ (-598 (-1014)) (-598 (-531))) 73)) (-4103 (($ $ $) 248 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-1241 (($ $ $) 249 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-3261 (($ (-1 |#1| |#1|) $) 61) (($ (-1 |#2| |#2|) $) 210 (|has| |#1| (-344)))) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-2385 (($ (-531) |#2|) 265)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 163 (|has| |#1| (-344)))) (-1788 (($ $) 167 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 166 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-3788 (($) 259 (-3427 (|has| |#2| (-1078)) (|has| |#1| (-344))) CONST)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2322 (($ $) 229 (-3427 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2943 ((|#2| $) 232 (-3427 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-3799 (((-399 (-1098 $)) (-1098 $)) 235 (-3427 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2894 (((-399 (-1098 $)) (-1098 $)) 236 (-3427 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2552 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-344)))) (-1846 (($ $ (-531)) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-344)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-531))))) (($ $ (-1102) |#2|) 209 (-3427 (|has| |#2| (-492 (-1102) |#2|)) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 |#2|)) 208 (-3427 (|has| |#2| (-492 (-1102) |#2|)) (|has| |#1| (-344)))) (($ $ (-598 (-276 |#2|))) 207 (-3427 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) 206 (-3427 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) 205 (-3427 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-598 |#2|) (-598 |#2|)) 204 (-3427 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-4100 (((-721) $) 152 (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) 102) (($ $ $) 79 (|has| (-531) (-1042))) (($ $ |#2|) 203 (-3427 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-344)))) (-3352 (($ $ (-1 |#2| |#2|)) 214 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-721)) 213 (|has| |#1| (-344))) (($ $ (-721)) 82 (-1435 (-3427 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 80 (-1435 (-3427 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) 87 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-1102) (-721)) 86 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-598 (-1102))) 85 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-1102)) 84 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))))) (-2842 (($ $) 227 (|has| |#1| (-344)))) (-1853 ((|#2| $) 225 (|has| |#1| (-344)))) (-2012 (((-531) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3318 (((-208) $) 243 (-3427 (|has| |#2| (-962)) (|has| |#1| (-344)))) (((-360) $) 242 (-3427 (|has| |#2| (-962)) (|has| |#1| (-344)))) (((-507) $) 241 (-3427 (|has| |#2| (-573 (-507))) (|has| |#1| (-344)))) (((-835 (-360)) $) 220 (-3427 (|has| |#2| (-573 (-835 (-360)))) (|has| |#1| (-344)))) (((-835 (-531)) $) 219 (-3427 (|has| |#2| (-573 (-835 (-531)))) (|has| |#1| (-344))))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 233 (-3427 (-3427 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#1| (-344))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ |#2|) 268) (($ (-1102)) 238 (-3427 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344)))) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523)))) (-3188 ((|#1| $ (-531)) 57)) (-2750 (((-3 $ "failed") $) 46 (-1435 (-3427 (-1435 (|has| |#2| (-138)) (-3427 (|has| $ (-138)) (|has| |#2| (-852)))) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-3831 ((|#2| $) 231 (-3427 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-1620 (($ $) 247 (-3427 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) 212 (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-721)) 211 (|has| |#1| (-344))) (($ $ (-721)) 83 (-1435 (-3427 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 81 (-1435 (-3427 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) 91 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-1102) (-721)) 90 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-598 (-1102))) 89 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))))) (($ $ (-1102)) 88 (-1435 (-3427 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))))) (-2207 (((-110) $ $) 251 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2184 (((-110) $ $) 252 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 250 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2174 (((-110) $ $) 253 (-3427 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344))) (($ |#2| |#2|) 223 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ $ |#2|) 202 (|has| |#1| (-344))) (($ |#2| $) 201 (|has| |#1| (-344))) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-1146 |#1| |#2|) (-133) (-986) (-1175 |t#1|)) (T -1146))
+((-2012 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1175 *3)) (-5 *2 (-531)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *1 (-1146 *3 *2)) (-4 *2 (-1175 *3)))) (-2385 (*1 *1 *2 *3) (-12 (-5 *2 (-531)) (-4 *4 (-986)) (-4 *1 (-1146 *4 *3)) (-4 *3 (-1175 *4)))) (-2594 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3)))) (-2581 (*1 *1 *1) (-12 (-4 *1 (-1146 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1175 *2)))) (-2581 (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-4 *1 (-1146 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1175 *3)))) (-2373 (*1 *2 *1) (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3)))) (-1891 (*1 *2 *1) (|partial| -12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3)))))
+(-13 (-1144 |t#1|) (-977 |t#2|) (-10 -8 (-15 -2385 ($ (-531) |t#2|)) (-15 -2012 ((-531) $)) (-15 -2594 (|t#2| $)) (-15 -2581 ($ $)) (-15 -2581 ($ (-531) $)) (-15 -2265 ($ |t#2|)) (-15 -2373 (|t#2| $)) (-15 -1891 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-344)) (-6 (-934 |t#2|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-531)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 |#2|) |has| |#1| (-344)) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-109 |#1| |#1|) . T) ((-109 |#2| |#2|) |has| |#1| (-344)) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-138))) (|has| |#1| (-138))) ((-140) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-140))) (|has| |#1| (-140))) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-573 (-208)) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) ((-573 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) ((-573 (-507)) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| |#1| (-344)) (|has| |#2| (-573 (-835 (-531))))) ((-214 |#2|) |has| |#1| (-344)) ((-216) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-216))) (|has| |#1| (-15 * (|#1| (-531) |#1|)))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 |#2| $) -12 (|has| |#1| (-344)) (|has| |#2| (-268 |#2| |#2|))) ((-268 $ $) |has| (-531) (-1042)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-344) |has| |#1| (-344)) ((-319 |#2|) |has| |#1| (-344)) ((-358 |#2|) |has| |#1| (-344)) ((-381 |#2|) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-492 (-1102) |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-492 (-1102) |#2|))) ((-492 |#2| |#2|) -12 (|has| |#1| (-344)) (|has| |#2| (-291 |#2|))) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-601 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-601 |#1|) . T) ((-601 |#2|) |has| |#1| (-344)) ((-601 $) . T) ((-594 (-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-594 (-531)))) ((-594 |#2|) |has| |#1| (-344)) ((-668 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-668 |#1|) |has| |#1| (-162)) ((-668 |#2|) |has| |#1| (-344)) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-677) . T) ((-741) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-742) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-744) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-745) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-770) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-795) -12 (|has| |#1| (-344)) (|has| |#2| (-770))) ((-797) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-797))) (-12 (|has| |#1| (-344)) (|has| |#2| (-770)))) ((-843 (-1102)) -1435 (-12 (|has| |#1| (-344)) (|has| |#2| (-843 (-1102)))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))) ((-829 (-360)) -12 (|has| |#1| (-344)) (|has| |#2| (-829 (-360)))) ((-829 (-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-829 (-531)))) ((-827 |#2|) |has| |#1| (-344)) ((-852) -12 (|has| |#1| (-344)) (|has| |#2| (-852))) ((-915 |#1| #0# (-1014)) . T) ((-863) |has| |#1| (-344)) ((-934 |#2|) |has| |#1| (-344)) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-962) -12 (|has| |#1| (-344)) (|has| |#2| (-962))) ((-977 (-388 (-531))) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-531)))) ((-977 (-531)) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-531)))) ((-977 (-1102)) -12 (|has| |#1| (-344)) (|has| |#2| (-977 (-1102)))) ((-977 |#2|) . T) ((-992 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-992 |#1|) . T) ((-992 |#2|) |has| |#1| (-344)) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) -12 (|has| |#1| (-344)) (|has| |#2| (-1078))) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1138) |has| |#1| (-344)) ((-1142) |has| |#1| (-344)) ((-1144 |#1|) . T) ((-1162 |#1| #0#) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 70)) (-1317 ((|#2| $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 88)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-531)) 97) (($ $ (-531) (-531)) 99)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) 47)) (-2594 ((|#2| $) 11)) (-1891 (((-3 |#2| "failed") $) 30)) (-2373 ((|#2| $) 31)) (-2367 (($ $) 192 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 168 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) 188 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 164 (|has| |#1| (-37 (-388 (-531)))))) (-3459 (((-531) $) NIL (-12 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) 57)) (-2391 (($ $) 196 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 172 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) 144) (((-3 (-531) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-1102) "failed") $) NIL (-12 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344))))) (-2523 ((|#2| $) 143) (((-531) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-388 (-531)) $) NIL (-12 (|has| |#2| (-977 (-531))) (|has| |#1| (-344)))) (((-1102) $) NIL (-12 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344))))) (-2581 (($ $) 61) (($ (-531) $) 24)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 |#2|) (-639 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#1| (-344)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| |#2| (-594 (-531))) (|has| |#1| (-344))))) (-3622 (((-3 $ "failed") $) 77)) (-4163 (((-388 (-895 |#1|)) $ (-531)) 112 (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) 114 (|has| |#1| (-523)))) (-1381 (($) NIL (-12 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-1599 (((-110) $) NIL (-12 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3201 (((-110) $) 64)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| |#2| (-829 (-360))) (|has| |#1| (-344)))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| |#2| (-829 (-531))) (|has| |#1| (-344))))) (-3617 (((-531) $) 93) (((-531) $ (-531)) 95)) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL (|has| |#1| (-344)))) (-1840 ((|#2| $) 151 (|has| |#1| (-344)))) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2342 (((-3 $ "failed") $) NIL (-12 (|has| |#2| (-1078)) (|has| |#1| (-344))))) (-2985 (((-110) $) NIL (-12 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3688 (($ $ (-864)) 136)) (-3192 (($ (-1 |#1| (-531)) $) 132)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-531)) 19) (($ $ (-1014) (-531)) NIL) (($ $ (-598 (-1014)) (-598 (-531))) NIL)) (-4103 (($ $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-1241 (($ $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-3261 (($ (-1 |#1| |#1|) $) 129) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-344)))) (-2076 (($ $) 162 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2385 (($ (-531) |#2|) 10)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 145 (|has| |#1| (-344)))) (-1788 (($ $) 214 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 219 (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124)))))) (-3788 (($) NIL (-12 (|has| |#2| (-1078)) (|has| |#1| (-344))) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2322 (($ $) NIL (-12 (|has| |#2| (-289)) (|has| |#1| (-344))))) (-2943 ((|#2| $) NIL (-12 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| |#2| (-852)) (|has| |#1| (-344))))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-531)) 126)) (-3609 (((-3 $ "failed") $ $) 116 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) 160 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 85 (|has| |#1| (-15 ** (|#1| |#1| (-531))))) (($ $ (-1102) |#2|) NIL (-12 (|has| |#2| (-492 (-1102) |#2|)) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 |#2|)) NIL (-12 (|has| |#2| (-492 (-1102) |#2|)) (|has| |#1| (-344)))) (($ $ (-598 (-276 |#2|))) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-276 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344)))) (($ $ (-598 |#2|) (-598 |#2|)) NIL (-12 (|has| |#2| (-291 |#2|)) (|has| |#1| (-344))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) 91) (($ $ $) 79 (|has| (-531) (-1042))) (($ $ |#2|) NIL (-12 (|has| |#2| (-268 |#2| |#2|)) (|has| |#1| (-344))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#1| (-344))) (($ $ (-721)) NIL (-1435 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 137 (-1435 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) 140 (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1853 ((|#2| $) 152 (|has| |#1| (-344)))) (-2012 (((-531) $) 12)) (-2403 (($ $) 198 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 174 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 194 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 170 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 190 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 166 (|has| |#1| (-37 (-388 (-531)))))) (-3318 (((-208) $) NIL (-12 (|has| |#2| (-962)) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| |#2| (-962)) (|has| |#1| (-344)))) (((-507) $) NIL (-12 (|has| |#2| (-573 (-507))) (|has| |#1| (-344)))) (((-835 (-360)) $) NIL (-12 (|has| |#2| (-573 (-835 (-360)))) (|has| |#1| (-344)))) (((-835 (-531)) $) NIL (-12 (|has| |#2| (-573 (-835 (-531)))) (|has| |#1| (-344))))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852)) (|has| |#1| (-344))))) (-3437 (($ $) 124)) (-2265 (((-806) $) 245) (($ (-531)) 23) (($ |#1|) 21 (|has| |#1| (-162))) (($ |#2|) 20) (($ (-1102)) NIL (-12 (|has| |#2| (-977 (-1102))) (|has| |#1| (-344)))) (($ (-388 (-531))) 155 (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-531)) 74)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852)) (|has| |#1| (-344))) (-12 (|has| |#2| (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-2284 (((-721)) 142)) (-3840 ((|#1| $) 90)) (-3831 ((|#2| $) NIL (-12 (|has| |#2| (-516)) (|has| |#1| (-344))))) (-2442 (($ $) 204 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 180 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 200 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 176 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 208 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 184 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) 122 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 210 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 186 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 206 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 182 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 202 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 178 (|has| |#1| (-37 (-388 (-531)))))) (-1620 (($ $) NIL (-12 (|has| |#2| (-770)) (|has| |#1| (-344))))) (-3035 (($) 13 T CONST)) (-3050 (($) 17 T CONST)) (-4020 (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-344))) (($ $ (-1 |#2| |#2|) (-721)) NIL (|has| |#1| (-344))) (($ $ (-721)) NIL (-1435 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) NIL (-1435 (-12 (|has| |#2| (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#2| (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2207 (((-110) $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2184 (((-110) $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2148 (((-110) $ $) 63)) (-2195 (((-110) $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2174 (((-110) $ $) NIL (-12 (|has| |#2| (-797)) (|has| |#1| (-344))))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 149 (|has| |#1| (-344))) (($ |#2| |#2|) 150 (|has| |#1| (-344)))) (-2250 (($ $) 213) (($ $ $) 68)) (-2237 (($ $ $) 66)) (** (($ $ (-864)) NIL) (($ $ (-721)) 73) (($ $ (-531)) 146 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 158 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 69) (($ $ |#1|) NIL) (($ |#1| $) 139) (($ $ |#2|) 148 (|has| |#1| (-344))) (($ |#2| $) 147 (|has| |#1| (-344))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1147 |#1| |#2|) (-1146 |#1| |#2|) (-986) (-1175 |#1|)) (T -1147))
+NIL
+(-1146 |#1| |#2|)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-1317 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 10)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-3258 (($ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2921 (((-110) $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2796 (($ $ (-531)) NIL) (($ $ (-531) (-531)) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|))) $) NIL)) (-2594 (((-1176 |#1| |#2| |#3|) $) NIL)) (-1891 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) NIL)) (-2373 (((-1176 |#1| |#2| |#3|) $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3459 (((-531) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-4067 (($ (-1083 (-2 (|:| |k| (-531)) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1176 |#1| |#2| |#3|) "failed") $) NIL) (((-3 (-1102) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (((-3 (-388 (-531)) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344)))) (((-3 (-531) "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))))) (-2523 (((-1176 |#1| |#2| |#3|) $) NIL) (((-1102) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (((-388 (-531)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344)))) (((-531) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))))) (-2581 (($ $) NIL) (($ (-531) $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-1176 |#1| |#2| |#3|)) (-639 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-1176 |#1| |#2| |#3|))) (|:| |vec| (-1184 (-1176 |#1| |#2| |#3|)))) (-639 $) (-1184 $)) NIL (|has| |#1| (-344))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-594 (-531))) (|has| |#1| (-344)))) (((-639 (-531)) (-639 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-594 (-531))) (|has| |#1| (-344))))) (-3622 (((-3 $ "failed") $) NIL)) (-4163 (((-388 (-895 |#1|)) $ (-531)) NIL (|has| |#1| (-523))) (((-388 (-895 |#1|)) $ (-531) (-531)) NIL (|has| |#1| (-523)))) (-1381 (($) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-1599 (((-110) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2792 (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-829 (-531))) (|has| |#1| (-344)))) (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-829 (-360))) (|has| |#1| (-344))))) (-3617 (((-531) $) NIL) (((-531) $ (-531)) NIL)) (-3481 (((-110) $) NIL)) (-3027 (($ $) NIL (|has| |#1| (-344)))) (-1840 (((-1176 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2342 (((-3 $ "failed") $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1078)) (|has| |#1| (-344))))) (-2985 (((-110) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3688 (($ $ (-864)) NIL)) (-3192 (($ (-1 |#1| (-531)) $) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-531)) 17) (($ $ (-1014) (-531)) NIL) (($ $ (-598 (-1014)) (-598 (-531))) NIL)) (-4103 (($ $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-1241 (($ $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-344)))) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2385 (($ (-531) (-1176 |#1| |#2| |#3|)) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 25 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 26 (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-1078)) (|has| |#1| (-344))) CONST)) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2322 (($ $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-289)) (|has| |#1| (-344))))) (-2943 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-531)) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-531))))) (($ $ (-1102) (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-492 (-1102) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-1102)) (-598 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-492 (-1102) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-276 (-1176 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-276 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344)))) (($ $ (-598 (-1176 |#1| |#2| |#3|)) (-598 (-1176 |#1| |#2| |#3|))) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-291 (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-531)) NIL) (($ $ $) NIL (|has| (-531) (-1042))) (($ $ (-1176 |#1| |#2| |#3|)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-268 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) (|has| |#1| (-344))))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) (-721)) NIL (|has| |#1| (-344))) (($ $ (-1180 |#2|)) 24) (($ $ (-721)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) 23 (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2842 (($ $) NIL (|has| |#1| (-344)))) (-1853 (((-1176 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344)))) (-2012 (((-531) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3318 (((-507) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-573 (-507))) (|has| |#1| (-344)))) (((-360) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-962)) (|has| |#1| (-344)))) (((-208) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-962)) (|has| |#1| (-344)))) (((-835 (-360)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-573 (-835 (-360)))) (|has| |#1| (-344)))) (((-835 (-531)) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-573 (-835 (-531)))) (|has| |#1| (-344))))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1176 |#1| |#2| |#3|)) NIL) (($ (-1180 |#2|)) 22) (($ (-1102)) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-1102))) (|has| |#1| (-344)))) (($ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523)))) (($ (-388 (-531))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-977 (-531))) (|has| |#1| (-344))) (|has| |#1| (-37 (-388 (-531))))))) (-3188 ((|#1| $ (-531)) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-138)) (|has| |#1| (-344))) (|has| |#1| (-138))))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 11)) (-3831 (((-1176 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-516)) (|has| |#1| (-344))))) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-852)) (|has| |#1| (-344))) (|has| |#1| (-523))))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-531)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-531)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-1620 (($ $) NIL (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))))) (-3035 (($) 19 T CONST)) (-3050 (($) 15 T CONST)) (-4020 (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|))) NIL (|has| |#1| (-344))) (($ $ (-1 (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) (-721)) NIL (|has| |#1| (-344))) (($ $ (-721)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-216)) (|has| |#1| (-344))) (|has| |#1| (-15 * (|#1| (-531) |#1|))))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102) (-721)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-598 (-1102))) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102)))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-843 (-1102))) (|has| |#1| (-344))) (-12 (|has| |#1| (-15 * (|#1| (-531) |#1|))) (|has| |#1| (-843 (-1102))))))) (-2207 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2184 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2174 (((-110) $ $) NIL (-1435 (-12 (|has| (-1176 |#1| |#2| |#3|) (-770)) (|has| |#1| (-344))) (-12 (|has| (-1176 |#1| |#2| |#3|) (-797)) (|has| |#1| (-344)))))) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344))) (($ (-1176 |#1| |#2| |#3|) (-1176 |#1| |#2| |#3|)) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 20)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ (-1176 |#1| |#2| |#3|)) NIL (|has| |#1| (-344))) (($ (-1176 |#1| |#2| |#3|) $) NIL (|has| |#1| (-344))) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1148 |#1| |#2| |#3|) (-13 (-1146 |#1| (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1148))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))))
+(-13 (-1146 |#1| (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|)))
+((-3452 (((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110)) 12)) (-4184 (((-399 |#1|) |#1|) 22)) (-2552 (((-399 |#1|) |#1|) 21)))
+(((-1149 |#1|) (-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1|)) (-15 -3452 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110)))) (-1160 (-531))) (T -1149))
+((-3452 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-5 *2 (-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531))))))) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531))))) (-4184 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531))))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531))))))
+(-10 -7 (-15 -2552 ((-399 |#1|) |#1|)) (-15 -4184 ((-399 |#1|) |#1|)) (-15 -3452 ((-2 (|:| |contp| (-531)) (|:| -2721 (-598 (-2 (|:| |irr| |#1|) (|:| -2460 (-531)))))) |#1| (-110))))
+((-3261 (((-1083 |#2|) (-1 |#2| |#1|) (-1151 |#1|)) 23 (|has| |#1| (-795))) (((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|)) 17)))
+(((-1150 |#1| |#2|) (-10 -7 (-15 -3261 ((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|))) (IF (|has| |#1| (-795)) (-15 -3261 ((-1083 |#2|) (-1 |#2| |#1|) (-1151 |#1|))) |%noBranch|)) (-1138) (-1138)) (T -1150))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-795)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1083 *6)) (-5 *1 (-1150 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1151 *6)) (-5 *1 (-1150 *5 *6)))))
+(-10 -7 (-15 -3261 ((-1151 |#2|) (-1 |#2| |#1|) (-1151 |#1|))) (IF (|has| |#1| (-795)) (-15 -3261 ((-1083 |#2|) (-1 |#2| |#1|) (-1151 |#1|))) |%noBranch|))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-1347 (($ |#1| |#1|) 9) (($ |#1|) 8)) (-3261 (((-1083 |#1|) (-1 |#1| |#1|) $) 41 (|has| |#1| (-795)))) (-1915 ((|#1| $) 14)) (-1963 ((|#1| $) 10)) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-1973 (((-531) $) 18)) (-4189 ((|#1| $) 17)) (-1984 ((|#1| $) 11)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-2154 (((-110) $) 16)) (-2140 (((-1083 |#1|) $) 38 (|has| |#1| (-795))) (((-1083 |#1|) (-598 $)) 37 (|has| |#1| (-795)))) (-3318 (($ |#1|) 25)) (-2265 (($ (-1025 |#1|)) 24) (((-806) $) 34 (|has| |#1| (-1030)))) (-3941 (($ |#1| |#1|) 20) (($ |#1|) 19)) (-1929 (($ $ (-531)) 13)) (-2148 (((-110) $ $) 27 (|has| |#1| (-1030)))))
+(((-1151 |#1|) (-13 (-1024 |#1|) (-10 -8 (-15 -3941 ($ |#1|)) (-15 -1347 ($ |#1|)) (-15 -2265 ($ (-1025 |#1|))) (-15 -2154 ((-110) $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-1026 |#1| (-1083 |#1|))) |%noBranch|))) (-1138)) (T -1151))
+((-3941 (*1 *1 *2) (-12 (-5 *1 (-1151 *2)) (-4 *2 (-1138)))) (-1347 (*1 *1 *2) (-12 (-5 *1 (-1151 *2)) (-4 *2 (-1138)))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1025 *3)) (-4 *3 (-1138)) (-5 *1 (-1151 *3)))) (-2154 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1151 *3)) (-4 *3 (-1138)))))
+(-13 (-1024 |#1|) (-10 -8 (-15 -3941 ($ |#1|)) (-15 -1347 ($ |#1|)) (-15 -2265 ($ (-1025 |#1|))) (-15 -2154 ((-110) $)) (IF (|has| |#1| (-1030)) (-6 (-1030)) |%noBranch|) (IF (|has| |#1| (-795)) (-6 (-1026 |#1| (-1083 |#1|))) |%noBranch|)))
+((-3261 (((-1157 |#3| |#4|) (-1 |#4| |#2|) (-1157 |#1| |#2|)) 15)))
+(((-1152 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 ((-1157 |#3| |#4|) (-1 |#4| |#2|) (-1157 |#1| |#2|)))) (-1102) (-986) (-1102) (-986)) (T -1152))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1157 *5 *6)) (-14 *5 (-1102)) (-4 *6 (-986)) (-4 *8 (-986)) (-5 *2 (-1157 *7 *8)) (-5 *1 (-1152 *5 *6 *7 *8)) (-14 *7 (-1102)))))
+(-10 -7 (-15 -3261 ((-1157 |#3| |#4|) (-1 |#4| |#2|) (-1157 |#1| |#2|))))
+((-1682 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21)) (-2807 ((|#1| |#3|) 13)) (-1349 ((|#3| |#3|) 19)))
+(((-1153 |#1| |#2| |#3|) (-10 -7 (-15 -2807 (|#1| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-523) (-934 |#1|) (-1160 |#2|)) (T -1153))
+((-1682 (*1 *2 *3) (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1153 *4 *5 *3)) (-4 *3 (-1160 *5)))) (-1349 (*1 *2 *2) (-12 (-4 *3 (-523)) (-4 *4 (-934 *3)) (-5 *1 (-1153 *3 *4 *2)) (-4 *2 (-1160 *4)))) (-2807 (*1 *2 *3) (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-1153 *2 *4 *3)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -2807 (|#1| |#3|)) (-15 -1349 (|#3| |#3|)) (-15 -1682 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|)))
+((-3590 (((-3 |#2| "failed") |#2| (-721) |#1|) 29)) (-1476 (((-3 |#2| "failed") |#2| (-721)) 30)) (-3236 (((-3 (-2 (|:| -3144 |#2|) (|:| -3157 |#2|)) "failed") |#2|) 43)) (-2686 (((-598 |#2|) |#2|) 45)) (-2438 (((-3 |#2| "failed") |#2| |#2|) 40)))
+(((-1154 |#1| |#2|) (-10 -7 (-15 -1476 ((-3 |#2| "failed") |#2| (-721))) (-15 -3590 ((-3 |#2| "failed") |#2| (-721) |#1|)) (-15 -2438 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3236 ((-3 (-2 (|:| -3144 |#2|) (|:| -3157 |#2|)) "failed") |#2|)) (-15 -2686 ((-598 |#2|) |#2|))) (-13 (-523) (-140)) (-1160 |#1|)) (T -1154))
+((-2686 (*1 *2 *3) (-12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-598 *3)) (-5 *1 (-1154 *4 *3)) (-4 *3 (-1160 *4)))) (-3236 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-2 (|:| -3144 *3) (|:| -3157 *3))) (-5 *1 (-1154 *4 *3)) (-4 *3 (-1160 *4)))) (-2438 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1154 *3 *2)) (-4 *2 (-1160 *3)))) (-3590 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-721)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1160 *4)))) (-1476 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-721)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-1154 *4 *2)) (-4 *2 (-1160 *4)))))
+(-10 -7 (-15 -1476 ((-3 |#2| "failed") |#2| (-721))) (-15 -3590 ((-3 |#2| "failed") |#2| (-721) |#1|)) (-15 -2438 ((-3 |#2| "failed") |#2| |#2|)) (-15 -3236 ((-3 (-2 (|:| -3144 |#2|) (|:| -3157 |#2|)) "failed") |#2|)) (-15 -2686 ((-598 |#2|) |#2|)))
+((-1678 (((-3 (-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) "failed") |#2| |#2|) 32)))
+(((-1155 |#1| |#2|) (-10 -7 (-15 -1678 ((-3 (-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) "failed") |#2| |#2|))) (-523) (-1160 |#1|)) (T -1155))
+((-1678 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-1155 *4 *3)) (-4 *3 (-1160 *4)))))
+(-10 -7 (-15 -1678 ((-3 (-2 (|:| -2937 |#2|) (|:| -4124 |#2|)) "failed") |#2| |#2|)))
+((-1274 ((|#2| |#2| |#2|) 19)) (-1731 ((|#2| |#2| |#2|) 30)) (-1634 ((|#2| |#2| |#2| (-721) (-721)) 36)))
+(((-1156 |#1| |#2|) (-10 -7 (-15 -1274 (|#2| |#2| |#2|)) (-15 -1731 (|#2| |#2| |#2|)) (-15 -1634 (|#2| |#2| |#2| (-721) (-721)))) (-986) (-1160 |#1|)) (T -1156))
+((-1634 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-5 *1 (-1156 *4 *2)) (-4 *2 (-1160 *4)))) (-1731 (*1 *2 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1160 *3)))) (-1274 (*1 *2 *2 *2) (-12 (-4 *3 (-986)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1160 *3)))))
+(-10 -7 (-15 -1274 (|#2| |#2| |#2|)) (-15 -1731 (|#2| |#2| |#2|)) (-15 -1634 (|#2| |#2| |#2| (-721) (-721))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3191 (((-1184 |#2|) $ (-721)) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-1310 (($ (-1098 |#2|)) NIL)) (-2516 (((-1098 $) $ (-1014)) NIL) (((-1098 |#2|) $) NIL)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#2| (-523)))) (-3258 (($ $) NIL (|has| |#2| (-523)))) (-2921 (((-110) $) NIL (|has| |#2| (-523)))) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3720 (($ $ $) NIL (|has| |#2| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-3240 (($ $) NIL (|has| |#2| (-432)))) (-2956 (((-399 $) $) NIL (|has| |#2| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2760 (((-110) $ $) NIL (|has| |#2| (-344)))) (-3767 (($ $ (-721)) NIL)) (-3441 (($ $ (-721)) NIL)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-432)))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL) (((-3 (-388 (-531)) "failed") $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) NIL (|has| |#2| (-977 (-531)))) (((-3 (-1014) "failed") $) NIL)) (-2523 ((|#2| $) NIL) (((-388 (-531)) $) NIL (|has| |#2| (-977 (-388 (-531))))) (((-531) $) NIL (|has| |#2| (-977 (-531)))) (((-1014) $) NIL)) (-3115 (($ $ $ (-1014)) NIL (|has| |#2| (-162))) ((|#2| $ $) NIL (|has| |#2| (-162)))) (-3650 (($ $ $) NIL (|has| |#2| (-344)))) (-2500 (($ $) NIL)) (-3073 (((-639 (-531)) (-639 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) NIL (|has| |#2| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#2|)) (|:| |vec| (-1184 |#2|))) (-639 $) (-1184 $)) NIL) (((-639 |#2|) (-639 $)) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-3630 (($ $ $) NIL (|has| |#2| (-344)))) (-1376 (($ $ $) NIL)) (-1570 (($ $ $) NIL (|has| |#2| (-523)))) (-1647 (((-2 (|:| -2005 |#2|) (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#2| (-344)))) (-2226 (($ $) NIL (|has| |#2| (-432))) (($ $ (-1014)) NIL (|has| |#2| (-432)))) (-2488 (((-598 $) $) NIL)) (-2534 (((-110) $) NIL (|has| |#2| (-852)))) (-2490 (($ $ |#2| (-721) $) NIL)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) NIL (-12 (|has| (-1014) (-829 (-360))) (|has| |#2| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) NIL (-12 (|has| (-1014) (-829 (-531))) (|has| |#2| (-829 (-531)))))) (-3617 (((-721) $ $) NIL (|has| |#2| (-523)))) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-2342 (((-3 $ "failed") $) NIL (|has| |#2| (-1078)))) (-2682 (($ (-1098 |#2|) (-1014)) NIL) (($ (-1098 $) (-1014)) NIL)) (-3688 (($ $ (-721)) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#2| (-344)))) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-2669 (($ |#2| (-721)) 17) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) NIL) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-4103 (($ $ $) NIL (|has| |#2| (-797)))) (-1241 (($ $ $) NIL (|has| |#2| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-3294 (((-1098 |#2|) $) NIL)) (-3471 (((-3 (-1014) "failed") $) NIL)) (-2462 (($ $) NIL)) (-2475 ((|#2| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1521 (((-1085) $) NIL)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) NIL)) (-3443 (((-3 (-598 $) "failed") $) NIL)) (-2077 (((-3 (-598 $) "failed") $) NIL)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) NIL)) (-1788 (($ $) NIL (|has| |#2| (-37 (-388 (-531)))))) (-3788 (($) NIL (|has| |#2| (-1078)) CONST)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 ((|#2| $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#2| (-432)))) (-2109 (($ (-598 $)) NIL (|has| |#2| (-432))) (($ $ $) NIL (|has| |#2| (-432)))) (-1816 (($ $ (-721) |#2| $) NIL)) (-3799 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) NIL (|has| |#2| (-852)))) (-2552 (((-399 $) $) NIL (|has| |#2| (-852)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#2| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#2| (-344)))) (-3609 (((-3 $ "failed") $ |#2|) NIL (|has| |#2| (-523))) (((-3 $ "failed") $ $) NIL (|has| |#2| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#2| (-344)))) (-4115 (($ $ (-598 (-276 $))) NIL) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#2|) NIL) (($ $ (-598 (-1014)) (-598 |#2|)) NIL) (($ $ (-1014) $) NIL) (($ $ (-598 (-1014)) (-598 $)) NIL)) (-4100 (((-721) $) NIL (|has| |#2| (-344)))) (-1785 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) NIL (|has| |#2| (-523))) ((|#2| (-388 $) |#2|) NIL (|has| |#2| (-344))) (((-388 $) $ (-388 $)) NIL (|has| |#2| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) NIL)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#2| (-344)))) (-3176 (($ $ (-1014)) NIL (|has| |#2| (-162))) ((|#2| $) NIL (|has| |#2| (-162)))) (-3352 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) NIL) (($ $ (-1 |#2| |#2|) $) NIL)) (-2012 (((-721) $) NIL) (((-721) $ (-1014)) NIL) (((-598 (-721)) $ (-598 (-1014))) NIL)) (-3318 (((-835 (-360)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#2| (-573 (-835 (-360)))))) (((-835 (-531)) $) NIL (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#2| (-573 (-835 (-531)))))) (((-507) $) NIL (-12 (|has| (-1014) (-573 (-507))) (|has| |#2| (-573 (-507)))))) (-1767 ((|#2| $) NIL (|has| |#2| (-432))) (($ $ (-1014)) NIL (|has| |#2| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) NIL (-12 (|has| $ (-138)) (|has| |#2| (-852))))) (-2960 (((-3 $ "failed") $ $) NIL (|has| |#2| (-523))) (((-3 (-388 $) "failed") (-388 $) $) NIL (|has| |#2| (-523)))) (-2265 (((-806) $) 13) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-1014)) NIL) (($ (-1180 |#1|)) 19) (($ (-388 (-531))) NIL (-1435 (|has| |#2| (-37 (-388 (-531)))) (|has| |#2| (-977 (-388 (-531)))))) (($ $) NIL (|has| |#2| (-523)))) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-721)) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-2750 (((-3 $ "failed") $) NIL (-1435 (-12 (|has| $ (-138)) (|has| |#2| (-852))) (|has| |#2| (-138))))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| |#2| (-162)))) (-2587 (((-110) $ $) NIL (|has| |#2| (-523)))) (-3035 (($) NIL T CONST)) (-3050 (($) 14 T CONST)) (-4020 (($ $ (-1014)) NIL) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) NIL) (($ $ (-1102)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1102) (-721)) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) NIL (|has| |#2| (-843 (-1102)))) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) NIL)) (-2207 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2148 (((-110) $ $) NIL)) (-2195 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#2| (-797)))) (-2263 (($ $ |#2|) NIL (|has| |#2| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-388 (-531))) NIL (|has| |#2| (-37 (-388 (-531))))) (($ (-388 (-531)) $) NIL (|has| |#2| (-37 (-388 (-531))))) (($ |#2| $) NIL) (($ $ |#2|) NIL)))
+(((-1157 |#1| |#2|) (-13 (-1160 |#2|) (-10 -8 (-15 -2265 ($ (-1180 |#1|))) (-15 -1816 ($ $ (-721) |#2| $)))) (-1102) (-986)) (T -1157))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *3)) (-14 *3 (-1102)) (-5 *1 (-1157 *3 *4)) (-4 *4 (-986)))) (-1816 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1157 *4 *3)) (-14 *4 (-1102)) (-4 *3 (-986)))))
+(-13 (-1160 |#2|) (-10 -8 (-15 -2265 ($ (-1180 |#1|))) (-15 -1816 ($ $ (-721) |#2| $))))
+((-3261 ((|#4| (-1 |#3| |#1|) |#2|) 22)))
+(((-1158 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|))) (-986) (-1160 |#1|) (-986) (-1160 |#3|)) (T -1158))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-4 *2 (-1160 *6)) (-5 *1 (-1158 *5 *4 *6 *2)) (-4 *4 (-1160 *5)))))
+(-10 -7 (-15 -3261 (|#4| (-1 |#3| |#1|) |#2|)))
+((-3191 (((-1184 |#2|) $ (-721)) 114)) (-2695 (((-598 (-1014)) $) 15)) (-1310 (($ (-1098 |#2|)) 67)) (-4109 (((-721) $) NIL) (((-721) $ (-598 (-1014))) 18)) (-1383 (((-399 (-1098 $)) (-1098 $)) 185)) (-3240 (($ $) 175)) (-2956 (((-399 $) $) 173)) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 82)) (-3767 (($ $ (-721)) 71)) (-3441 (($ $ (-721)) 73)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 130)) (-3154 (((-3 |#2| "failed") $) 117) (((-3 (-388 (-531)) "failed") $) NIL) (((-3 (-531) "failed") $) NIL) (((-3 (-1014) "failed") $) NIL)) (-2523 ((|#2| $) 115) (((-388 (-531)) $) NIL) (((-531) $) NIL) (((-1014) $) NIL)) (-1570 (($ $ $) 151)) (-1647 (((-2 (|:| -2005 |#2|) (|:| -2937 $) (|:| -4124 $)) $ $) 153)) (-3617 (((-721) $ $) 170)) (-2342 (((-3 $ "failed") $) 123)) (-2669 (($ |#2| (-721)) NIL) (($ $ (-1014) (-721)) 47) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-3005 (((-721) $) NIL) (((-721) $ (-1014)) 42) (((-598 (-721)) $ (-598 (-1014))) 43)) (-3294 (((-1098 |#2|) $) 59)) (-3471 (((-3 (-1014) "failed") $) 40)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) 70)) (-1788 (($ $) 197)) (-3788 (($) 119)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 182)) (-3799 (((-399 (-1098 $)) (-1098 $)) 88)) (-2894 (((-399 (-1098 $)) (-1098 $)) 86)) (-2552 (((-399 $) $) 107)) (-4115 (($ $ (-598 (-276 $))) 39) (($ $ (-276 $)) NIL) (($ $ $ $) NIL) (($ $ (-598 $) (-598 $)) NIL) (($ $ (-1014) |#2|) 31) (($ $ (-598 (-1014)) (-598 |#2|)) 28) (($ $ (-1014) $) 25) (($ $ (-598 (-1014)) (-598 $)) 23)) (-4100 (((-721) $) 188)) (-1785 ((|#2| $ |#2|) NIL) (($ $ $) NIL) (((-388 $) (-388 $) (-388 $)) 147) ((|#2| (-388 $) |#2|) 187) (((-388 $) $ (-388 $)) 169)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 191)) (-3352 (($ $ (-1014)) 140) (($ $ (-598 (-1014))) NIL) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL) (($ $ (-721)) NIL) (($ $) 138) (($ $ (-1102)) NIL) (($ $ (-598 (-1102))) NIL) (($ $ (-1102) (-721)) NIL) (($ $ (-598 (-1102)) (-598 (-721))) NIL) (($ $ (-1 |#2| |#2|) (-721)) NIL) (($ $ (-1 |#2| |#2|)) 137) (($ $ (-1 |#2| |#2|) $) 134)) (-2012 (((-721) $) NIL) (((-721) $ (-1014)) 16) (((-598 (-721)) $ (-598 (-1014))) 20)) (-1767 ((|#2| $) NIL) (($ $ (-1014)) 125)) (-2960 (((-3 $ "failed") $ $) 161) (((-3 (-388 $) "failed") (-388 $) $) 157)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#2|) NIL) (($ (-1014)) 51) (($ (-388 (-531))) NIL) (($ $) NIL)))
+(((-1159 |#1| |#2|) (-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -1785 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -4100 ((-721) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1785 (|#2| (-388 |#1|) |#2|)) (-15 -3245 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1647 ((-2 (|:| -2005 |#2|) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1570 (|#1| |#1| |#1|)) (-15 -2960 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -2960 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3617 ((-721) |#1| |#1|)) (-15 -1785 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1| (-721))) (-15 -3767 (|#1| |#1| (-721))) (-15 -4017 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| (-721))) (-15 -1310 (|#1| (-1098 |#2|))) (-15 -3294 ((-1098 |#2|) |#1|)) (-15 -3191 ((-1184 |#2|) |#1| (-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| |#1|)) (-15 -1785 (|#2| |#1| |#2|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -1383 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1767 (|#1| |#1| (-1014))) (-15 -2695 ((-598 (-1014)) |#1|)) (-15 -4109 ((-721) |#1| (-598 (-1014)))) (-15 -4109 ((-721) |#1|)) (-15 -2669 (|#1| |#1| (-598 (-1014)) (-598 (-721)))) (-15 -2669 (|#1| |#1| (-1014) (-721))) (-15 -3005 ((-598 (-721)) |#1| (-598 (-1014)))) (-15 -3005 ((-721) |#1| (-1014))) (-15 -3471 ((-3 (-1014) "failed") |#1|)) (-15 -2012 ((-598 (-721)) |#1| (-598 (-1014)))) (-15 -2012 ((-721) |#1| (-1014))) (-15 -2523 ((-1014) |#1|)) (-15 -3154 ((-3 (-1014) "failed") |#1|)) (-15 -2265 (|#1| (-1014))) (-15 -4115 (|#1| |#1| (-598 (-1014)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-1014) |#1|)) (-15 -4115 (|#1| |#1| (-598 (-1014)) (-598 |#2|))) (-15 -4115 (|#1| |#1| (-1014) |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2012 ((-721) |#1|)) (-15 -2669 (|#1| |#2| (-721))) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3005 ((-721) |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3352 (|#1| |#1| (-598 (-1014)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1014) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1014)))) (-15 -3352 (|#1| |#1| (-1014))) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|))) (-1160 |#2|) (-986)) (T -1159))
+NIL
+(-10 -8 (-15 -2265 (|#1| |#1|)) (-15 -2993 ((-1098 |#1|) (-1098 |#1|) (-1098 |#1|))) (-15 -2956 ((-399 |#1|) |#1|)) (-15 -3240 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -3788 (|#1|)) (-15 -2342 ((-3 |#1| "failed") |#1|)) (-15 -1785 ((-388 |#1|) |#1| (-388 |#1|))) (-15 -4100 ((-721) |#1|)) (-15 -2100 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1788 (|#1| |#1|)) (-15 -1785 (|#2| (-388 |#1|) |#2|)) (-15 -3245 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -1647 ((-2 (|:| -2005 |#2|) (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| |#1|)) (-15 -1570 (|#1| |#1| |#1|)) (-15 -2960 ((-3 (-388 |#1|) "failed") (-388 |#1|) |#1|)) (-15 -2960 ((-3 |#1| "failed") |#1| |#1|)) (-15 -3617 ((-721) |#1| |#1|)) (-15 -1785 ((-388 |#1|) (-388 |#1|) (-388 |#1|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -3441 (|#1| |#1| (-721))) (-15 -3767 (|#1| |#1| (-721))) (-15 -4017 ((-2 (|:| -2937 |#1|) (|:| -4124 |#1|)) |#1| (-721))) (-15 -1310 (|#1| (-1098 |#2|))) (-15 -3294 ((-1098 |#2|) |#1|)) (-15 -3191 ((-1184 |#2|) |#1| (-721))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3352 (|#1| |#1| (-1 |#2| |#2|) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1102) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1102)))) (-15 -3352 (|#1| |#1| (-1102))) (-15 -3352 (|#1| |#1|)) (-15 -3352 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| |#1|)) (-15 -1785 (|#2| |#1| |#2|)) (-15 -2552 ((-399 |#1|) |#1|)) (-15 -1383 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -2894 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -3799 ((-399 (-1098 |#1|)) (-1098 |#1|))) (-15 -4197 ((-3 (-598 (-1098 |#1|)) "failed") (-598 (-1098 |#1|)) (-1098 |#1|))) (-15 -1767 (|#1| |#1| (-1014))) (-15 -2695 ((-598 (-1014)) |#1|)) (-15 -4109 ((-721) |#1| (-598 (-1014)))) (-15 -4109 ((-721) |#1|)) (-15 -2669 (|#1| |#1| (-598 (-1014)) (-598 (-721)))) (-15 -2669 (|#1| |#1| (-1014) (-721))) (-15 -3005 ((-598 (-721)) |#1| (-598 (-1014)))) (-15 -3005 ((-721) |#1| (-1014))) (-15 -3471 ((-3 (-1014) "failed") |#1|)) (-15 -2012 ((-598 (-721)) |#1| (-598 (-1014)))) (-15 -2012 ((-721) |#1| (-1014))) (-15 -2523 ((-1014) |#1|)) (-15 -3154 ((-3 (-1014) "failed") |#1|)) (-15 -2265 (|#1| (-1014))) (-15 -4115 (|#1| |#1| (-598 (-1014)) (-598 |#1|))) (-15 -4115 (|#1| |#1| (-1014) |#1|)) (-15 -4115 (|#1| |#1| (-598 (-1014)) (-598 |#2|))) (-15 -4115 (|#1| |#1| (-1014) |#2|)) (-15 -4115 (|#1| |#1| (-598 |#1|) (-598 |#1|))) (-15 -4115 (|#1| |#1| |#1| |#1|)) (-15 -4115 (|#1| |#1| (-276 |#1|))) (-15 -4115 (|#1| |#1| (-598 (-276 |#1|)))) (-15 -2012 ((-721) |#1|)) (-15 -2669 (|#1| |#2| (-721))) (-15 -2523 ((-531) |#1|)) (-15 -3154 ((-3 (-531) "failed") |#1|)) (-15 -2523 ((-388 (-531)) |#1|)) (-15 -3154 ((-3 (-388 (-531)) "failed") |#1|)) (-15 -2265 (|#1| |#2|)) (-15 -3154 ((-3 |#2| "failed") |#1|)) (-15 -2523 (|#2| |#1|)) (-15 -3005 ((-721) |#1|)) (-15 -1767 (|#2| |#1|)) (-15 -3352 (|#1| |#1| (-598 (-1014)) (-598 (-721)))) (-15 -3352 (|#1| |#1| (-1014) (-721))) (-15 -3352 (|#1| |#1| (-598 (-1014)))) (-15 -3352 (|#1| |#1| (-1014))) (-15 -2265 (|#1| (-531))) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3191 (((-1184 |#1|) $ (-721)) 236)) (-2695 (((-598 (-1014)) $) 108)) (-1310 (($ (-1098 |#1|)) 234)) (-2516 (((-1098 $) $ (-1014)) 123) (((-1098 |#1|) $) 122)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 85 (|has| |#1| (-523)))) (-3258 (($ $) 86 (|has| |#1| (-523)))) (-2921 (((-110) $) 88 (|has| |#1| (-523)))) (-4109 (((-721) $) 110) (((-721) $ (-598 (-1014))) 109)) (-2128 (((-3 $ "failed") $ $) 19)) (-3720 (($ $ $) 221 (|has| |#1| (-523)))) (-1383 (((-399 (-1098 $)) (-1098 $)) 98 (|has| |#1| (-852)))) (-3240 (($ $) 96 (|has| |#1| (-432)))) (-2956 (((-399 $) $) 95 (|has| |#1| (-432)))) (-4197 (((-3 (-598 (-1098 $)) "failed") (-598 (-1098 $)) (-1098 $)) 101 (|has| |#1| (-852)))) (-2760 (((-110) $ $) 206 (|has| |#1| (-344)))) (-3767 (($ $ (-721)) 229)) (-3441 (($ $ (-721)) 228)) (-3245 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 216 (|has| |#1| (-432)))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 162) (((-3 (-388 (-531)) "failed") $) 160 (|has| |#1| (-977 (-388 (-531))))) (((-3 (-531) "failed") $) 158 (|has| |#1| (-977 (-531)))) (((-3 (-1014) "failed") $) 134)) (-2523 ((|#1| $) 163) (((-388 (-531)) $) 159 (|has| |#1| (-977 (-388 (-531))))) (((-531) $) 157 (|has| |#1| (-977 (-531)))) (((-1014) $) 133)) (-3115 (($ $ $ (-1014)) 106 (|has| |#1| (-162))) ((|#1| $ $) 224 (|has| |#1| (-162)))) (-3650 (($ $ $) 210 (|has| |#1| (-344)))) (-2500 (($ $) 152)) (-3073 (((-639 (-531)) (-639 $)) 132 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 (-531))) (|:| |vec| (-1184 (-531)))) (-639 $) (-1184 $)) 131 (|has| |#1| (-594 (-531)))) (((-2 (|:| -1751 (-639 |#1|)) (|:| |vec| (-1184 |#1|))) (-639 $) (-1184 $)) 130) (((-639 |#1|) (-639 $)) 129)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 209 (|has| |#1| (-344)))) (-1376 (($ $ $) 227)) (-1570 (($ $ $) 218 (|has| |#1| (-523)))) (-1647 (((-2 (|:| -2005 |#1|) (|:| -2937 $) (|:| -4124 $)) $ $) 217 (|has| |#1| (-523)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 204 (|has| |#1| (-344)))) (-2226 (($ $) 174 (|has| |#1| (-432))) (($ $ (-1014)) 103 (|has| |#1| (-432)))) (-2488 (((-598 $) $) 107)) (-2534 (((-110) $) 94 (|has| |#1| (-852)))) (-2490 (($ $ |#1| (-721) $) 170)) (-2792 (((-832 (-360) $) $ (-835 (-360)) (-832 (-360) $)) 82 (-12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360))))) (((-832 (-531) $) $ (-835 (-531)) (-832 (-531) $)) 81 (-12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))))) (-3617 (((-721) $ $) 222 (|has| |#1| (-523)))) (-3481 (((-110) $) 30)) (-3517 (((-721) $) 167)) (-2342 (((-3 $ "failed") $) 202 (|has| |#1| (-1078)))) (-2682 (($ (-1098 |#1|) (-1014)) 115) (($ (-1098 $) (-1014)) 114)) (-3688 (($ $ (-721)) 233)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 213 (|has| |#1| (-344)))) (-1230 (((-598 $) $) 124)) (-3380 (((-110) $) 150)) (-2669 (($ |#1| (-721)) 151) (($ $ (-1014) (-721)) 117) (($ $ (-598 (-1014)) (-598 (-721))) 116)) (-2382 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $ (-1014)) 118) (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 231)) (-3005 (((-721) $) 168) (((-721) $ (-1014)) 120) (((-598 (-721)) $ (-598 (-1014))) 119)) (-4103 (($ $ $) 77 (|has| |#1| (-797)))) (-1241 (($ $ $) 76 (|has| |#1| (-797)))) (-2736 (($ (-1 (-721) (-721)) $) 169)) (-3261 (($ (-1 |#1| |#1|) $) 149)) (-3294 (((-1098 |#1|) $) 235)) (-3471 (((-3 (-1014) "failed") $) 121)) (-2462 (($ $) 147)) (-2475 ((|#1| $) 146)) (-2078 (($ (-598 $)) 92 (|has| |#1| (-432))) (($ $ $) 91 (|has| |#1| (-432)))) (-1521 (((-1085) $) 9)) (-4017 (((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721)) 230)) (-3443 (((-3 (-598 $) "failed") $) 112)) (-2077 (((-3 (-598 $) "failed") $) 113)) (-3448 (((-3 (-2 (|:| |var| (-1014)) (|:| -1790 (-721))) "failed") $) 111)) (-1788 (($ $) 214 (|has| |#1| (-37 (-388 (-531)))))) (-3788 (($) 201 (|has| |#1| (-1078)) CONST)) (-2529 (((-1049) $) 10)) (-2435 (((-110) $) 164)) (-2448 ((|#1| $) 165)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 93 (|has| |#1| (-432)))) (-2109 (($ (-598 $)) 90 (|has| |#1| (-432))) (($ $ $) 89 (|has| |#1| (-432)))) (-3799 (((-399 (-1098 $)) (-1098 $)) 100 (|has| |#1| (-852)))) (-2894 (((-399 (-1098 $)) (-1098 $)) 99 (|has| |#1| (-852)))) (-2552 (((-399 $) $) 97 (|has| |#1| (-852)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 212 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 211 (|has| |#1| (-344)))) (-3609 (((-3 $ "failed") $ |#1|) 172 (|has| |#1| (-523))) (((-3 $ "failed") $ $) 84 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 205 (|has| |#1| (-344)))) (-4115 (($ $ (-598 (-276 $))) 143) (($ $ (-276 $)) 142) (($ $ $ $) 141) (($ $ (-598 $) (-598 $)) 140) (($ $ (-1014) |#1|) 139) (($ $ (-598 (-1014)) (-598 |#1|)) 138) (($ $ (-1014) $) 137) (($ $ (-598 (-1014)) (-598 $)) 136)) (-4100 (((-721) $) 207 (|has| |#1| (-344)))) (-1785 ((|#1| $ |#1|) 254) (($ $ $) 253) (((-388 $) (-388 $) (-388 $)) 223 (|has| |#1| (-523))) ((|#1| (-388 $) |#1|) 215 (|has| |#1| (-344))) (((-388 $) $ (-388 $)) 203 (|has| |#1| (-523)))) (-2605 (((-3 $ "failed") $ (-721)) 232)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 208 (|has| |#1| (-344)))) (-3176 (($ $ (-1014)) 105 (|has| |#1| (-162))) ((|#1| $) 225 (|has| |#1| (-162)))) (-3352 (($ $ (-1014)) 40) (($ $ (-598 (-1014))) 39) (($ $ (-1014) (-721)) 38) (($ $ (-598 (-1014)) (-598 (-721))) 37) (($ $ (-721)) 251) (($ $) 249) (($ $ (-1102)) 248 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 247 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 246 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 245 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 238) (($ $ (-1 |#1| |#1|)) 237) (($ $ (-1 |#1| |#1|) $) 226)) (-2012 (((-721) $) 148) (((-721) $ (-1014)) 128) (((-598 (-721)) $ (-598 (-1014))) 127)) (-3318 (((-835 (-360)) $) 80 (-12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360)))))) (((-835 (-531)) $) 79 (-12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531)))))) (((-507) $) 78 (-12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))))) (-1767 ((|#1| $) 173 (|has| |#1| (-432))) (($ $ (-1014)) 104 (|has| |#1| (-432)))) (-1737 (((-3 (-1184 $) "failed") (-639 $)) 102 (-3427 (|has| $ (-138)) (|has| |#1| (-852))))) (-2960 (((-3 $ "failed") $ $) 220 (|has| |#1| (-523))) (((-3 (-388 $) "failed") (-388 $) $) 219 (|has| |#1| (-523)))) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 161) (($ (-1014)) 135) (($ (-388 (-531))) 70 (-1435 (|has| |#1| (-977 (-388 (-531)))) (|has| |#1| (-37 (-388 (-531)))))) (($ $) 83 (|has| |#1| (-523)))) (-2708 (((-598 |#1|) $) 166)) (-3188 ((|#1| $ (-721)) 153) (($ $ (-1014) (-721)) 126) (($ $ (-598 (-1014)) (-598 (-721))) 125)) (-2750 (((-3 $ "failed") $) 71 (-1435 (-3427 (|has| $ (-138)) (|has| |#1| (-852))) (|has| |#1| (-138))))) (-2284 (((-721)) 28)) (-2911 (($ $ $ (-721)) 171 (|has| |#1| (-162)))) (-2587 (((-110) $ $) 87 (|has| |#1| (-523)))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-1014)) 36) (($ $ (-598 (-1014))) 35) (($ $ (-1014) (-721)) 34) (($ $ (-598 (-1014)) (-598 (-721))) 33) (($ $ (-721)) 252) (($ $) 250) (($ $ (-1102)) 244 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102))) 243 (|has| |#1| (-843 (-1102)))) (($ $ (-1102) (-721)) 242 (|has| |#1| (-843 (-1102)))) (($ $ (-598 (-1102)) (-598 (-721))) 241 (|has| |#1| (-843 (-1102)))) (($ $ (-1 |#1| |#1|) (-721)) 240) (($ $ (-1 |#1| |#1|)) 239)) (-2207 (((-110) $ $) 74 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 73 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 6)) (-2195 (((-110) $ $) 75 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 72 (|has| |#1| (-797)))) (-2263 (($ $ |#1|) 154 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 156 (|has| |#1| (-37 (-388 (-531))))) (($ (-388 (-531)) $) 155 (|has| |#1| (-37 (-388 (-531))))) (($ |#1| $) 145) (($ $ |#1|) 144)))
+(((-1160 |#1|) (-133) (-986)) (T -1160))
+((-3191 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-1160 *4)) (-4 *4 (-986)) (-5 *2 (-1184 *4)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-5 *2 (-1098 *3)))) (-1310 (*1 *1 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-986)) (-4 *1 (-1160 *3)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-2605 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-2382 (*1 *2 *1 *1) (-12 (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1160 *3)))) (-4017 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1160 *4)))) (-3767 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-3441 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-1376 (*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)))) (-3352 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))) (-3176 (*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-162)))) (-3115 (*1 *2 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-162)))) (-1785 (*1 *2 *2 *2) (-12 (-5 *2 (-388 *1)) (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-4 *3 (-523)))) (-3617 (*1 *2 *1 *1) (-12 (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-4 *3 (-523)) (-5 *2 (-721)))) (-3720 (*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) (-2960 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) (-2960 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-4 *3 (-523)))) (-1570 (*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))) (-1647 (*1 *2 *1 *1) (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-5 *2 (-2 (|:| -2005 *3) (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1160 *3)))) (-3245 (*1 *2 *1 *1) (-12 (-4 *3 (-432)) (-4 *3 (-986)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1160 *3)))) (-1785 (*1 *2 *3 *2) (-12 (-5 *3 (-388 *1)) (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))))
+(-13 (-892 |t#1| (-721) (-1014)) (-268 |t#1| |t#1|) (-268 $ $) (-216) (-214 |t#1|) (-10 -8 (-15 -3191 ((-1184 |t#1|) $ (-721))) (-15 -3294 ((-1098 |t#1|) $)) (-15 -1310 ($ (-1098 |t#1|))) (-15 -3688 ($ $ (-721))) (-15 -2605 ((-3 $ "failed") $ (-721))) (-15 -2382 ((-2 (|:| -2937 $) (|:| -4124 $)) $ $)) (-15 -4017 ((-2 (|:| -2937 $) (|:| -4124 $)) $ (-721))) (-15 -3767 ($ $ (-721))) (-15 -3441 ($ $ (-721))) (-15 -1376 ($ $ $)) (-15 -3352 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1078)) (-6 (-1078)) |%noBranch|) (IF (|has| |t#1| (-162)) (PROGN (-15 -3176 (|t#1| $)) (-15 -3115 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-523)) (PROGN (-6 (-268 (-388 $) (-388 $))) (-15 -1785 ((-388 $) (-388 $) (-388 $))) (-15 -3617 ((-721) $ $)) (-15 -3720 ($ $ $)) (-15 -2960 ((-3 $ "failed") $ $)) (-15 -2960 ((-3 (-388 $) "failed") (-388 $) $)) (-15 -1570 ($ $ $)) (-15 -1647 ((-2 (|:| -2005 |t#1|) (|:| -2937 $) (|:| -4124 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-432)) (-15 -3245 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-344)) (PROGN (-6 (-289)) (-6 -4269) (-15 -1785 (|t#1| (-388 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-531)))) (-15 -1788 ($ $)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-721)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-573 (-507)) -12 (|has| (-1014) (-573 (-507))) (|has| |#1| (-573 (-507)))) ((-573 (-835 (-360))) -12 (|has| (-1014) (-573 (-835 (-360)))) (|has| |#1| (-573 (-835 (-360))))) ((-573 (-835 (-531))) -12 (|has| (-1014) (-573 (-835 (-531)))) (|has| |#1| (-573 (-835 (-531))))) ((-214 |#1|) . T) ((-216) . T) ((-268 (-388 $) (-388 $)) |has| |#1| (-523)) ((-268 |#1| |#1|) . T) ((-268 $ $) . T) ((-272) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-291 $) . T) ((-307 |#1| #0#) . T) ((-358 |#1|) . T) ((-392 |#1|) . T) ((-432) -1435 (|has| |#1| (-852)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-492 #2=(-1014) |#1|) . T) ((-492 #2# $) . T) ((-492 $ $) . T) ((-523) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-601 #1#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-594 (-531)) |has| |#1| (-594 (-531))) ((-594 |#1|) . T) ((-668 #1#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344))) ((-677) . T) ((-797) |has| |#1| (-797)) ((-843 #2#) . T) ((-843 (-1102)) |has| |#1| (-843 (-1102))) ((-829 (-360)) -12 (|has| (-1014) (-829 (-360))) (|has| |#1| (-829 (-360)))) ((-829 (-531)) -12 (|has| (-1014) (-829 (-531))) (|has| |#1| (-829 (-531)))) ((-892 |#1| #0# #2#) . T) ((-852) |has| |#1| (-852)) ((-863) |has| |#1| (-344)) ((-977 (-388 (-531))) |has| |#1| (-977 (-388 (-531)))) ((-977 (-531)) |has| |#1| (-977 (-531))) ((-977 #2#) . T) ((-977 |#1|) . T) ((-992 #1#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-852)) (|has| |#1| (-523)) (|has| |#1| (-432)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1078) |has| |#1| (-1078)) ((-1142) |has| |#1| (-852)))
+((-2695 (((-598 (-1014)) $) 28)) (-2500 (($ $) 25)) (-2669 (($ |#2| |#3|) NIL) (($ $ (-1014) |#3|) 22) (($ $ (-598 (-1014)) (-598 |#3|)) 21)) (-2462 (($ $) 14)) (-2475 ((|#2| $) 12)) (-2012 ((|#3| $) 10)))
+(((-1161 |#1| |#2| |#3|) (-10 -8 (-15 -2695 ((-598 (-1014)) |#1|)) (-15 -2669 (|#1| |#1| (-598 (-1014)) (-598 |#3|))) (-15 -2669 (|#1| |#1| (-1014) |#3|)) (-15 -2500 (|#1| |#1|)) (-15 -2669 (|#1| |#2| |#3|)) (-15 -2012 (|#3| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2475 (|#2| |#1|))) (-1162 |#2| |#3|) (-986) (-742)) (T -1161))
+NIL
+(-10 -8 (-15 -2695 ((-598 (-1014)) |#1|)) (-15 -2669 (|#1| |#1| (-598 (-1014)) (-598 |#3|))) (-15 -2669 (|#1| |#1| (-1014) |#3|)) (-15 -2500 (|#1| |#1|)) (-15 -2669 (|#1| |#2| |#3|)) (-15 -2012 (|#3| |#1|)) (-15 -2462 (|#1| |#1|)) (-15 -2475 (|#2| |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ |#2|) 96) (($ $ |#2| |#2|) 95)) (-4034 (((-1083 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 103)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-3201 (((-110) $) 71)) (-3617 ((|#2| $) 98) ((|#2| $ |#2|) 97)) (-3481 (((-110) $) 30)) (-3688 (($ $ (-864)) 99)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| |#2|) 59) (($ $ (-1014) |#2|) 74) (($ $ (-598 (-1014)) (-598 |#2|)) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-1846 (($ $ |#2|) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| |#2|))))) (-1785 ((|#1| $ |#2|) 102) (($ $ $) 79 (|has| |#2| (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2012 ((|#2| $) 62)) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45 (|has| |#1| (-162)))) (-3188 ((|#1| $ |#2|) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-4148 ((|#1| $ |#2|) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| |#2| |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| |#2| |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-1162 |#1| |#2|) (-133) (-986) (-742)) (T -1162))
+((-4034 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-1083 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-1785 (*1 *2 *1 *3) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (-5 *2 (-1102)))) (-3840 (*1 *2 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)))) (-3617 (*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-3617 (*1 *2 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-2796 (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-2796 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-4148 (*1 *2 *1 *3) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2265 (*2 (-1102)))) (-4 *2 (-986)))) (-1846 (*1 *1 *1 *2) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))) (-4115 (*1 *2 *1 *3) (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1083 *3)))))
+(-13 (-915 |t#1| |t#2| (-1014)) (-10 -8 (-15 -4034 ((-1083 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -1785 (|t#1| $ |t#2|)) (-15 -3524 ((-1102) $)) (-15 -3840 (|t#1| $)) (-15 -3688 ($ $ (-864))) (-15 -3617 (|t#2| $)) (-15 -3617 (|t#2| $ |t#2|)) (-15 -2796 ($ $ |t#2|)) (-15 -2796 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -2265 (|t#1| (-1102)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4148 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -1846 ($ $ |t#2|)) (IF (|has| |t#2| (-1042)) (-6 (-268 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-216)) (IF (|has| |t#1| (-843 (-1102))) (-6 (-843 (-1102))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4115 ((-1083 |t#1|) $ |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| |#2|) . T) ((-25) . T) ((-37 #0=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-99) . T) ((-109 #0# #0#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-268 $ $) |has| |#2| (-1042)) ((-272) |has| |#1| (-523)) ((-523) |has| |#1| (-523)) ((-601 #0#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| |#2| |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| |#2| (-1014)) . T) ((-992 #0#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-3240 ((|#2| |#2|) 12)) (-2956 (((-399 |#2|) |#2|) 14)) (-2973 (((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531)))) 30)))
+(((-1163 |#1| |#2|) (-10 -7 (-15 -2956 ((-399 |#2|) |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -2973 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531)))))) (-523) (-13 (-1160 |#1|) (-523) (-10 -8 (-15 -2109 ($ $ $))))) (T -1163))
+((-2973 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-531)))) (-4 *4 (-13 (-1160 *3) (-523) (-10 -8 (-15 -2109 ($ $ $))))) (-4 *3 (-523)) (-5 *1 (-1163 *3 *4)))) (-3240 (*1 *2 *2) (-12 (-4 *3 (-523)) (-5 *1 (-1163 *3 *2)) (-4 *2 (-13 (-1160 *3) (-523) (-10 -8 (-15 -2109 ($ $ $))))))) (-2956 (*1 *2 *3) (-12 (-4 *4 (-523)) (-5 *2 (-399 *3)) (-5 *1 (-1163 *4 *3)) (-4 *3 (-13 (-1160 *4) (-523) (-10 -8 (-15 -2109 ($ $ $))))))))
+(-10 -7 (-15 -2956 ((-399 |#2|) |#2|)) (-15 -3240 (|#2| |#2|)) (-15 -2973 ((-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531))) (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-531))))))
+((-3261 (((-1169 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1169 |#1| |#3| |#5|)) 24)))
+(((-1164 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3261 ((-1169 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1169 |#1| |#3| |#5|)))) (-986) (-986) (-1102) (-1102) |#1| |#2|) (T -1164))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5 *7 *9)) (-4 *5 (-986)) (-4 *6 (-986)) (-14 *7 (-1102)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1169 *6 *8 *10)) (-5 *1 (-1164 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1102)))))
+(-10 -7 (-15 -3261 ((-1169 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1169 |#1| |#3| |#5|))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) 96) (($ $ (-388 (-531)) (-388 (-531))) 95)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) 103)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 160 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) 169)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-3650 (($ $ $) 155 (|has| |#1| (-344)))) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 154 (|has| |#1| (-344)))) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-344)))) (-2534 (((-110) $) 162 (|has| |#1| (-344)))) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) 98) (((-388 (-531)) $ (-388 (-531))) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 99) (($ $ (-388 (-531))) 168)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-344)))) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-388 (-531))) 59) (($ $ (-1014) (-388 (-531))) 74) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-1521 (((-1085) $) 9)) (-2422 (($ $) 163 (|has| |#1| (-344)))) (-1788 (($ $) 167 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 166 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2552 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-344)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) 152 (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) 102) (($ $ $) 79 (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2012 (((-388 (-531)) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-1165 |#1|) (-133) (-986)) (T -1165))
+((-4067 (*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| *4)))) (-4 *4 (-986)) (-4 *1 (-1165 *4)))) (-3688 (*1 *1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-4 *1 (-1165 *3)) (-4 *3 (-986)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1165 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) (-1788 (*1 *1 *1 *2) (-1435 (-12 (-5 *2 (-1102)) (-4 *1 (-1165 *3)) (-4 *3 (-986)) (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) (-4 *3 (-37 (-388 (-531)))))) (-12 (-5 *2 (-1102)) (-4 *1 (-1165 *3)) (-4 *3 (-986)) (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531)))))))))
+(-13 (-1162 |t#1| (-388 (-531))) (-10 -8 (-15 -4067 ($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |t#1|))))) (-15 -3688 ($ $ (-388 (-531)))) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (IF (|has| |t#1| (-15 -1788 (|t#1| |t#1| (-1102)))) (IF (|has| |t#1| (-15 -2695 ((-598 (-1102)) |t#1|))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1124)) (IF (|has| |t#1| (-902)) (IF (|has| |t#1| (-29 (-531))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-943)) (-6 (-1124))) |%noBranch|) (IF (|has| |t#1| (-344)) (-6 (-344)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-531))) . T) ((-25) . T) ((-37 #1=(-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 $ $) |has| (-388 (-531)) (-1042)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-601 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| #0# (-1014)) . T) ((-863) |has| |#1| (-344)) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-992 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1142) |has| |#1| (-344)) ((-1162 |#1| #0#) . T))
+((-3019 (((-110) $) 12)) (-3154 (((-3 |#3| "failed") $) 17)) (-2523 ((|#3| $) 14)))
+(((-1166 |#1| |#2| |#3|) (-10 -8 (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3019 ((-110) |#1|))) (-1167 |#2| |#3|) (-986) (-1144 |#2|)) (T -1166))
+NIL
+(-10 -8 (-15 -2523 (|#3| |#1|)) (-15 -3154 ((-3 |#3| "failed") |#1|)) (-15 -3019 ((-110) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) 96) (($ $ (-388 (-531)) (-388 (-531))) 95)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) 103)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 160 (|has| |#1| (-344)))) (-2956 (((-399 $) $) 161 (|has| |#1| (-344)))) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) 151 (|has| |#1| (-344)))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) 169)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#2| "failed") $) 180)) (-2523 ((|#2| $) 179)) (-3650 (($ $ $) 155 (|has| |#1| (-344)))) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-1318 (((-388 (-531)) $) 177)) (-3630 (($ $ $) 154 (|has| |#1| (-344)))) (-2397 (($ (-388 (-531)) |#2|) 178)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 149 (|has| |#1| (-344)))) (-2534 (((-110) $) 162 (|has| |#1| (-344)))) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) 98) (((-388 (-531)) $ (-388 (-531))) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 99) (($ $ (-388 (-531))) 168)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 158 (|has| |#1| (-344)))) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-388 (-531))) 59) (($ $ (-1014) (-388 (-531))) 74) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-2078 (($ (-598 $)) 147 (|has| |#1| (-344))) (($ $ $) 146 (|has| |#1| (-344)))) (-3671 ((|#2| $) 176)) (-1633 (((-3 |#2| "failed") $) 174)) (-2385 ((|#2| $) 175)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 163 (|has| |#1| (-344)))) (-1788 (($ $) 167 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 166 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 148 (|has| |#1| (-344)))) (-2109 (($ (-598 $)) 145 (|has| |#1| (-344))) (($ $ $) 144 (|has| |#1| (-344)))) (-2552 (((-399 $) $) 159 (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 157 (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 156 (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 150 (|has| |#1| (-344)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) 152 (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) 102) (($ $ $) 79 (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 153 (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2012 (((-388 (-531)) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 45 (|has| |#1| (-162))) (($ |#2|) 181) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344))) (($ $ $) 165 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 164 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-1167 |#1| |#2|) (-133) (-986) (-1144 |t#1|)) (T -1167))
+((-2012 (*1 *2 *1) (-12 (-4 *1 (-1167 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1144 *3)) (-5 *2 (-388 (-531))))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *1 (-1167 *3 *2)) (-4 *2 (-1144 *3)))) (-2397 (*1 *1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-4 *4 (-986)) (-4 *1 (-1167 *4 *3)) (-4 *3 (-1144 *4)))) (-1318 (*1 *2 *1) (-12 (-4 *1 (-1167 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1144 *3)) (-5 *2 (-388 (-531))))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3)))) (-2385 (*1 *2 *1) (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3)))) (-1633 (*1 *2 *1) (|partial| -12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3)))))
+(-13 (-1165 |t#1|) (-977 |t#2|) (-10 -8 (-15 -2397 ($ (-388 (-531)) |t#2|)) (-15 -1318 ((-388 (-531)) $)) (-15 -3671 (|t#2| $)) (-15 -2012 ((-388 (-531)) $)) (-15 -2265 ($ |t#2|)) (-15 -2385 (|t#2| $)) (-15 -1633 ((-3 |t#2| "failed") $))))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-388 (-531))) . T) ((-25) . T) ((-37 #1=(-388 (-531))) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) ((-226) |has| |#1| (-344)) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 $ $) |has| (-388 (-531)) (-1042)) ((-272) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-289) |has| |#1| (-344)) ((-344) |has| |#1| (-344)) ((-432) |has| |#1| (-344)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-523) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-601 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344))) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| #0# (-1014)) . T) ((-863) |has| |#1| (-344)) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-977 |#2|) . T) ((-992 #1#) -1435 (|has| |#1| (-344)) (|has| |#1| (-37 (-388 (-531))))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-344)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1142) |has| |#1| (-344)) ((-1162 |#1| #0#) . T) ((-1165 |#1|) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 96)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) 106) (($ $ (-388 (-531)) (-388 (-531))) 108)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) 51)) (-2367 (($ $) 180 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 156 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) 176 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 152 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) 61)) (-2391 (($ $) 184 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 160 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL)) (-2523 ((|#2| $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) 79)) (-1318 (((-388 (-531)) $) 13)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2397 (($ (-388 (-531)) |#2|) 11)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) 68)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) 103) (((-388 (-531)) $ (-388 (-531))) 104)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 120) (($ $ (-388 (-531))) 118)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) 31) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 115)) (-2076 (($ $) 150 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3671 ((|#2| $) 12)) (-1633 (((-3 |#2| "failed") $) 41)) (-2385 ((|#2| $) 42)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) 93 (|has| |#1| (-344)))) (-1788 (($ $) 135 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 140 (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) 112)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) 148 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 90 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) 100) (($ $ $) 86 (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) 127 (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 124 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2012 (((-388 (-531)) $) 16)) (-2403 (($ $) 186 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 162 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 182 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 158 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 178 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 154 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 110)) (-2265 (((-806) $) NIL) (($ (-531)) 35) (($ |#1|) 27 (|has| |#1| (-162))) (($ |#2|) 32) (($ (-388 (-531))) 128 (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) 99)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) 117)) (-3840 ((|#1| $) 98)) (-2442 (($ $) 192 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 168 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) 188 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 164 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 196 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 172 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 198 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 174 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 194 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 170 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 190 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 166 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 21 T CONST)) (-3050 (($) 17 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) 66)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) 92 (|has| |#1| (-344)))) (-2250 (($ $) 131) (($ $ $) 72)) (-2237 (($ $ $) 70)) (** (($ $ (-864)) NIL) (($ $ (-721)) 76) (($ $ (-531)) 145 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 146 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 74) (($ $ |#1|) NIL) (($ |#1| $) 126) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1168 |#1| |#2|) (-1167 |#1| |#2|) (-986) (-1144 |#1|)) (T -1168))
+NIL
+(-1167 |#1| |#2|)
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 11)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) NIL (|has| |#1| (-523)))) (-2796 (($ $ (-388 (-531))) NIL) (($ $ (-388 (-531)) (-388 (-531))) NIL)) (-4034 (((-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|))) $) NIL)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-3240 (($ $) NIL (|has| |#1| (-344)))) (-2956 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2760 (((-110) $ $) NIL (|has| |#1| (-344)))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-721) (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#1|)))) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-1148 |#1| |#2| |#3|) "failed") $) 19) (((-3 (-1176 |#1| |#2| |#3|) "failed") $) 22)) (-2523 (((-1148 |#1| |#2| |#3|) $) NIL) (((-1176 |#1| |#2| |#3|) $) NIL)) (-3650 (($ $ $) NIL (|has| |#1| (-344)))) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-1318 (((-388 (-531)) $) 57)) (-3630 (($ $ $) NIL (|has| |#1| (-344)))) (-2397 (($ (-388 (-531)) (-1148 |#1| |#2| |#3|)) NIL)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) NIL (|has| |#1| (-344)))) (-2534 (((-110) $) NIL (|has| |#1| (-344)))) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-388 (-531)) $) NIL) (((-388 (-531)) $ (-388 (-531))) NIL)) (-3481 (((-110) $) NIL)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) NIL) (($ $ (-388 (-531))) NIL)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-388 (-531))) 30) (($ $ (-1014) (-388 (-531))) NIL) (($ $ (-598 (-1014)) (-598 (-388 (-531)))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-2078 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-3671 (((-1148 |#1| |#2| |#3|) $) 60)) (-1633 (((-3 (-1148 |#1| |#2| |#3|) "failed") $) NIL)) (-2385 (((-1148 |#1| |#2| |#3|) $) NIL)) (-1521 (((-1085) $) NIL)) (-2422 (($ $) NIL (|has| |#1| (-344)))) (-1788 (($ $) 39 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) NIL (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 40 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) NIL (|has| |#1| (-344)))) (-2109 (($ (-598 $)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2552 (((-399 $) $) NIL (|has| |#1| (-344)))) (-2857 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) NIL (|has| |#1| (-344))) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) NIL (|has| |#1| (-344)))) (-1846 (($ $ (-388 (-531))) NIL)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-1995 (((-3 (-598 $) "failed") (-598 $) $) NIL (|has| |#1| (-344)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))))) (-4100 (((-721) $) NIL (|has| |#1| (-344)))) (-1785 ((|#1| $ (-388 (-531))) NIL) (($ $ $) NIL (|has| (-388 (-531)) (-1042)))) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) NIL (|has| |#1| (-344)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) 37 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $ (-1180 |#2|)) 38)) (-2012 (((-388 (-531)) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) NIL)) (-2265 (((-806) $) 89) (($ (-531)) NIL) (($ |#1|) NIL (|has| |#1| (-162))) (($ (-1148 |#1| |#2| |#3|)) 16) (($ (-1176 |#1| |#2| |#3|)) 17) (($ (-1180 |#2|)) 36) (($ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523)))) (-3188 ((|#1| $ (-388 (-531))) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 12)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-388 (-531))) 62 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-388 (-531))))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 32 T CONST)) (-3050 (($) 26 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-388 (-531)) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 34)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ (-531)) NIL (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1169 |#1| |#2| |#3|) (-13 (-1167 |#1| (-1148 |#1| |#2| |#3|)) (-977 (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1169))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))))
+(-13 (-1167 |#1| (-1148 |#1| |#2| |#3|)) (-977 (-1176 |#1| |#2| |#3|)) (-10 -8 (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 34)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL)) (-3258 (($ $) NIL)) (-2921 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 (-531) "failed") $) NIL (|has| (-1169 |#2| |#3| |#4|) (-977 (-531)))) (((-3 (-388 (-531)) "failed") $) NIL (|has| (-1169 |#2| |#3| |#4|) (-977 (-388 (-531))))) (((-3 (-1169 |#2| |#3| |#4|) "failed") $) 20)) (-2523 (((-531) $) NIL (|has| (-1169 |#2| |#3| |#4|) (-977 (-531)))) (((-388 (-531)) $) NIL (|has| (-1169 |#2| |#3| |#4|) (-977 (-388 (-531))))) (((-1169 |#2| |#3| |#4|) $) NIL)) (-2500 (($ $) 35)) (-3622 (((-3 $ "failed") $) 25)) (-2226 (($ $) NIL (|has| (-1169 |#2| |#3| |#4|) (-432)))) (-2490 (($ $ (-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|) $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) 11)) (-3380 (((-110) $) NIL)) (-2669 (($ (-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) 23)) (-3005 (((-300 |#2| |#3| |#4|) $) NIL)) (-2736 (($ (-1 (-300 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) $) NIL)) (-3261 (($ (-1 (-1169 |#2| |#3| |#4|) (-1169 |#2| |#3| |#4|)) $) NIL)) (-1872 (((-3 (-790 |#2|) "failed") $) 75)) (-2462 (($ $) NIL)) (-2475 (((-1169 |#2| |#3| |#4|) $) 18)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2435 (((-110) $) NIL)) (-2448 (((-1169 |#2| |#3| |#4|) $) NIL)) (-3609 (((-3 $ "failed") $ (-1169 |#2| |#3| |#4|)) NIL (|has| (-1169 |#2| |#3| |#4|) (-523))) (((-3 $ "failed") $ $) NIL)) (-4069 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1169 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#2|)))))) (|:| |%type| (-1085))) "failed") $) 58)) (-2012 (((-300 |#2| |#3| |#4|) $) 14)) (-1767 (((-1169 |#2| |#3| |#4|) $) NIL (|has| (-1169 |#2| |#3| |#4|) (-432)))) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ (-1169 |#2| |#3| |#4|)) NIL) (($ $) NIL) (($ (-388 (-531))) NIL (-1435 (|has| (-1169 |#2| |#3| |#4|) (-37 (-388 (-531)))) (|has| (-1169 |#2| |#3| |#4|) (-977 (-388 (-531))))))) (-2708 (((-598 (-1169 |#2| |#3| |#4|)) $) NIL)) (-3188 (((-1169 |#2| |#3| |#4|) $ (-300 |#2| |#3| |#4|)) NIL)) (-2750 (((-3 $ "failed") $) NIL (|has| (-1169 |#2| |#3| |#4|) (-138)))) (-2284 (((-721)) NIL)) (-2911 (($ $ $ (-721)) NIL (|has| (-1169 |#2| |#3| |#4|) (-162)))) (-2587 (((-110) $ $) NIL)) (-3035 (($) 63 T CONST)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ (-1169 |#2| |#3| |#4|)) NIL (|has| (-1169 |#2| |#3| |#4|) (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ (-1169 |#2| |#3| |#4|)) NIL) (($ (-1169 |#2| |#3| |#4|) $) NIL) (($ (-388 (-531)) $) NIL (|has| (-1169 |#2| |#3| |#4|) (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| (-1169 |#2| |#3| |#4|) (-37 (-388 (-531)))))))
+(((-1170 |#1| |#2| |#3| |#4|) (-13 (-307 (-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-523) (-10 -8 (-15 -1872 ((-3 (-790 |#2|) "failed") $)) (-15 -4069 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1169 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#2|)))))) (|:| |%type| (-1085))) "failed") $)))) (-13 (-797) (-977 (-531)) (-594 (-531)) (-432)) (-13 (-27) (-1124) (-411 |#1|)) (-1102) |#2|) (T -1170))
+((-1872 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) (-5 *2 (-790 *4)) (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) (-14 *6 *4))) (-4069 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1169 *4 *5 *6)) (|:| |%expon| (-300 *4 *5 *6)) (|:| |%expTerms| (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| *4)))))) (|:| |%type| (-1085)))) (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102)) (-14 *6 *4))))
+(-13 (-307 (-1169 |#2| |#3| |#4|) (-300 |#2| |#3| |#4|)) (-523) (-10 -8 (-15 -1872 ((-3 (-790 |#2|) "failed") $)) (-15 -4069 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1169 |#2| |#3| |#4|)) (|:| |%expon| (-300 |#2| |#3| |#4|)) (|:| |%expTerms| (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| |#2|)))))) (|:| |%type| (-1085))) "failed") $))))
+((-3482 ((|#2| $) 29)) (-3308 ((|#2| $) 18)) (-2072 (($ $) 36)) (-2300 (($ $ (-531)) 64)) (-4058 (((-110) $ (-721)) 33)) (-2039 ((|#2| $ |#2|) 61)) (-2136 ((|#2| $ |#2|) 59)) (-2454 ((|#2| $ "value" |#2|) NIL) ((|#2| $ "first" |#2|) 52) (($ $ "rest" $) 56) ((|#2| $ "last" |#2|) 54)) (-2713 (($ $ (-598 $)) 60)) (-3297 ((|#2| $) 17)) (-3062 (($ $) NIL) (($ $ (-721)) 42)) (-1555 (((-598 $) $) 26)) (-1478 (((-110) $ $) 50)) (-3280 (((-110) $ (-721)) 32)) (-3332 (((-110) $ (-721)) 31)) (-2672 (((-110) $) 28)) (-2309 ((|#2| $) 24) (($ $ (-721)) 46)) (-1785 ((|#2| $ "value") NIL) ((|#2| $ "first") 10) (($ $ "rest") 16) ((|#2| $ "last") 13)) (-2930 (((-110) $) 22)) (-1958 (($ $) 39)) (-2980 (($ $) 65)) (-3124 (((-721) $) 41)) (-2874 (($ $) 40)) (-3536 (($ $ $) 58) (($ |#2| $) NIL)) (-3495 (((-598 $) $) 27)) (-2148 (((-110) $ $) 48)) (-2167 (((-721) $) 35)))
+(((-1171 |#1| |#2|) (-10 -8 (-15 -2300 (|#1| |#1| (-531))) (-15 -2454 (|#2| |#1| "last" |#2|)) (-15 -2136 (|#2| |#1| |#2|)) (-15 -2454 (|#1| |#1| "rest" |#1|)) (-15 -2454 (|#2| |#1| "first" |#2|)) (-15 -2980 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -3124 ((-721) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -3308 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "last")) (-15 -2309 (|#2| |#1|)) (-15 -3062 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| "rest")) (-15 -3062 (|#1| |#1|)) (-15 -1785 (|#2| |#1| "first")) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -2039 (|#2| |#1| |#2|)) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -2713 (|#1| |#1| (-598 |#1|))) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -3482 (|#2| |#1|)) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721)))) (-1172 |#2|) (-1138)) (T -1171))
+NIL
+(-10 -8 (-15 -2300 (|#1| |#1| (-531))) (-15 -2454 (|#2| |#1| "last" |#2|)) (-15 -2136 (|#2| |#1| |#2|)) (-15 -2454 (|#1| |#1| "rest" |#1|)) (-15 -2454 (|#2| |#1| "first" |#2|)) (-15 -2980 (|#1| |#1|)) (-15 -1958 (|#1| |#1|)) (-15 -3124 ((-721) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -3308 (|#2| |#1|)) (-15 -3297 (|#2| |#1|)) (-15 -2072 (|#1| |#1|)) (-15 -2309 (|#1| |#1| (-721))) (-15 -1785 (|#2| |#1| "last")) (-15 -2309 (|#2| |#1|)) (-15 -3062 (|#1| |#1| (-721))) (-15 -1785 (|#1| |#1| "rest")) (-15 -3062 (|#1| |#1|)) (-15 -1785 (|#2| |#1| "first")) (-15 -3536 (|#1| |#2| |#1|)) (-15 -3536 (|#1| |#1| |#1|)) (-15 -2039 (|#2| |#1| |#2|)) (-15 -2454 (|#2| |#1| "value" |#2|)) (-15 -2713 (|#1| |#1| (-598 |#1|))) (-15 -1478 ((-110) |#1| |#1|)) (-15 -2930 ((-110) |#1|)) (-15 -1785 (|#2| |#1| "value")) (-15 -3482 (|#2| |#1|)) (-15 -2672 ((-110) |#1|)) (-15 -1555 ((-598 |#1|) |#1|)) (-15 -3495 ((-598 |#1|) |#1|)) (-15 -2148 ((-110) |#1| |#1|)) (-15 -2167 ((-721) |#1|)) (-15 -4058 ((-110) |#1| (-721))) (-15 -3280 ((-110) |#1| (-721))) (-15 -3332 ((-110) |#1| (-721))))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-3482 ((|#1| $) 48)) (-3308 ((|#1| $) 65)) (-2072 (($ $) 67)) (-2300 (($ $ (-531)) 52 (|has| $ (-6 -4274)))) (-4058 (((-110) $ (-721)) 8)) (-2039 ((|#1| $ |#1|) 39 (|has| $ (-6 -4274)))) (-1998 (($ $ $) 56 (|has| $ (-6 -4274)))) (-2136 ((|#1| $ |#1|) 54 (|has| $ (-6 -4274)))) (-3112 ((|#1| $ |#1|) 58 (|has| $ (-6 -4274)))) (-2454 ((|#1| $ "value" |#1|) 40 (|has| $ (-6 -4274))) ((|#1| $ "first" |#1|) 57 (|has| $ (-6 -4274))) (($ $ "rest" $) 55 (|has| $ (-6 -4274))) ((|#1| $ "last" |#1|) 53 (|has| $ (-6 -4274)))) (-2713 (($ $ (-598 $)) 41 (|has| $ (-6 -4274)))) (-3297 ((|#1| $) 66)) (-4082 (($) 7 T CONST)) (-3062 (($ $) 73) (($ $ (-721)) 71)) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-1555 (((-598 $) $) 50)) (-1478 (((-110) $ $) 42 (|has| |#1| (-1030)))) (-3280 (((-110) $ (-721)) 9)) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35)) (-3332 (((-110) $ (-721)) 10)) (-2132 (((-598 |#1|) $) 45)) (-2672 (((-110) $) 49)) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-2309 ((|#1| $) 70) (($ $ (-721)) 68)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 76) (($ $ (-721)) 74)) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ "value") 47) ((|#1| $ "first") 75) (($ $ "rest") 72) ((|#1| $ "last") 69)) (-2357 (((-531) $ $) 44)) (-2930 (((-110) $) 46)) (-1958 (($ $) 62)) (-2980 (($ $) 59 (|has| $ (-6 -4274)))) (-3124 (((-721) $) 63)) (-2874 (($ $) 64)) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2480 (($ $) 13)) (-1818 (($ $ $) 61 (|has| $ (-6 -4274))) (($ $ |#1|) 60 (|has| $ (-6 -4274)))) (-3536 (($ $ $) 78) (($ |#1| $) 77)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-3495 (((-598 $) $) 51)) (-2910 (((-110) $ $) 43 (|has| |#1| (-1030)))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-1172 |#1|) (-133) (-1138)) (T -1172))
+((-3536 (*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3536 (*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3046 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-3062 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1785 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-3062 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-2309 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1785 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2309 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-2072 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2874 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3124 (*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))) (-1958 (*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1818 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1818 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2980 (*1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-3112 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-1998 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2454 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))) (-2136 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2454 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))) (-2300 (*1 *1 *1 *2) (-12 (-5 *2 (-531)) (|has| *1 (-6 -4274)) (-4 *1 (-1172 *3)) (-4 *3 (-1138)))))
+(-13 (-951 |t#1|) (-10 -8 (-15 -3536 ($ $ $)) (-15 -3536 ($ |t#1| $)) (-15 -3046 (|t#1| $)) (-15 -1785 (|t#1| $ "first")) (-15 -3046 ($ $ (-721))) (-15 -3062 ($ $)) (-15 -1785 ($ $ "rest")) (-15 -3062 ($ $ (-721))) (-15 -2309 (|t#1| $)) (-15 -1785 (|t#1| $ "last")) (-15 -2309 ($ $ (-721))) (-15 -2072 ($ $)) (-15 -3297 (|t#1| $)) (-15 -3308 (|t#1| $)) (-15 -2874 ($ $)) (-15 -3124 ((-721) $)) (-15 -1958 ($ $)) (IF (|has| $ (-6 -4274)) (PROGN (-15 -1818 ($ $ $)) (-15 -1818 ($ $ |t#1|)) (-15 -2980 ($ $)) (-15 -3112 (|t#1| $ |t#1|)) (-15 -2454 (|t#1| $ "first" |t#1|)) (-15 -1998 ($ $ $)) (-15 -2454 ($ $ "rest" $)) (-15 -2136 (|t#1| $ |t#1|)) (-15 -2454 (|t#1| $ "last" |t#1|)) (-15 -2300 ($ $ (-531)))) |%noBranch|)))
+(((-33) . T) ((-99) |has| |#1| (-1030)) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-572 (-806)))) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-468 |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-951 |#1|) . T) ((-1030) |has| |#1| (-1030)) ((-1138) . T))
+((-3261 ((|#4| (-1 |#2| |#1|) |#3|) 17)))
+(((-1173 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3261 (|#4| (-1 |#2| |#1|) |#3|))) (-986) (-986) (-1175 |#1|) (-1175 |#2|)) (T -1173))
+((-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-986)) (-4 *6 (-986)) (-4 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6 *4 *2)) (-4 *4 (-1175 *5)))))
+(-10 -7 (-15 -3261 (|#4| (-1 |#2| |#1|) |#3|)))
+((-3019 (((-110) $) 15)) (-2367 (($ $) 92)) (-2218 (($ $) 68)) (-2343 (($ $) 88)) (-2198 (($ $) 64)) (-2391 (($ $) 96)) (-2241 (($ $) 72)) (-2076 (($ $) 62)) (-2798 (($ $) 60)) (-2403 (($ $) 98)) (-2253 (($ $) 74)) (-2379 (($ $) 94)) (-2229 (($ $) 70)) (-2356 (($ $) 90)) (-2210 (($ $) 66)) (-2265 (((-806) $) 48) (($ (-531)) NIL) (($ (-388 (-531))) NIL) (($ $) NIL) (($ |#2|) NIL)) (-2442 (($ $) 104)) (-2292 (($ $) 80)) (-2416 (($ $) 100)) (-2266 (($ $) 76)) (-2468 (($ $) 108)) (-2318 (($ $) 84)) (-2753 (($ $) 110)) (-2331 (($ $) 86)) (-2456 (($ $) 106)) (-2305 (($ $) 82)) (-2429 (($ $) 102)) (-2279 (($ $) 78)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ |#2|) 52) (($ $ $) 55) (($ $ (-388 (-531))) 58)))
+(((-1174 |#1| |#2|) (-10 -8 (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2218 (|#1| |#1|)) (-15 -2198 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2229 (|#1| |#1|)) (-15 -2210 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2331 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))) (-15 -3019 ((-110) |#1|)) (-15 -2265 ((-806) |#1|))) (-1175 |#2|) (-986)) (T -1174))
+NIL
+(-10 -8 (-15 ** (|#1| |#1| (-388 (-531)))) (-15 -2218 (|#1| |#1|)) (-15 -2198 (|#1| |#1|)) (-15 -2241 (|#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -2229 (|#1| |#1|)) (-15 -2210 (|#1| |#1|)) (-15 -2279 (|#1| |#1|)) (-15 -2305 (|#1| |#1|)) (-15 -2331 (|#1| |#1|)) (-15 -2318 (|#1| |#1|)) (-15 -2266 (|#1| |#1|)) (-15 -2292 (|#1| |#1|)) (-15 -2356 (|#1| |#1|)) (-15 -2379 (|#1| |#1|)) (-15 -2403 (|#1| |#1|)) (-15 -2391 (|#1| |#1|)) (-15 -2343 (|#1| |#1|)) (-15 -2367 (|#1| |#1|)) (-15 -2429 (|#1| |#1|)) (-15 -2456 (|#1| |#1|)) (-15 -2753 (|#1| |#1|)) (-15 -2468 (|#1| |#1|)) (-15 -2416 (|#1| |#1|)) (-15 -2442 (|#1| |#1|)) (-15 -2076 (|#1| |#1|)) (-15 -2798 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -2265 (|#1| |#2|)) (-15 -2265 (|#1| |#1|)) (-15 -2265 (|#1| (-388 (-531)))) (-15 -2265 (|#1| (-531))) (-15 ** (|#1| |#1| (-721))) (-15 ** (|#1| |#1| (-864))) (-15 -3019 ((-110) |#1|)) (-15 -2265 ((-806) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2695 (((-598 (-1014)) $) 72)) (-3524 (((-1102) $) 101)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 49 (|has| |#1| (-523)))) (-3258 (($ $) 50 (|has| |#1| (-523)))) (-2921 (((-110) $) 52 (|has| |#1| (-523)))) (-2796 (($ $ (-721)) 96) (($ $ (-721) (-721)) 95)) (-4034 (((-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|))) $) 103)) (-2367 (($ $) 133 (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) 116 (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) 19)) (-2563 (($ $) 115 (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) 132 (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) 117 (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|)))) 153) (($ (-1083 |#1|)) 151)) (-2391 (($ $) 131 (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) 118 (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) 17 T CONST)) (-2500 (($ $) 58)) (-3622 (((-3 $ "failed") $) 32)) (-2034 (($ $) 150)) (-3383 (((-895 |#1|) $ (-721)) 148) (((-895 |#1|) $ (-721) (-721)) 147)) (-3201 (((-110) $) 71)) (-1880 (($) 143 (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $) 98) (((-721) $ (-721)) 97)) (-3481 (((-110) $) 30)) (-2249 (($ $ (-531)) 114 (|has| |#1| (-37 (-388 (-531)))))) (-3688 (($ $ (-864)) 99)) (-3192 (($ (-1 |#1| (-531)) $) 149)) (-3380 (((-110) $) 60)) (-2669 (($ |#1| (-721)) 59) (($ $ (-1014) (-721)) 74) (($ $ (-598 (-1014)) (-598 (-721))) 73)) (-3261 (($ (-1 |#1| |#1|) $) 61)) (-2076 (($ $) 140 (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) 63)) (-2475 ((|#1| $) 64)) (-1521 (((-1085) $) 9)) (-1788 (($ $) 145 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 144 (-1435 (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-902)) (|has| |#1| (-1124)) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-37 (-388 (-531)))))))) (-2529 (((-1049) $) 10)) (-1846 (($ $ (-721)) 93)) (-3609 (((-3 $ "failed") $ $) 48 (|has| |#1| (-523)))) (-2798 (($ $) 141 (|has| |#1| (-37 (-388 (-531)))))) (-4115 (((-1083 |#1|) $ |#1|) 92 (|has| |#1| (-15 ** (|#1| |#1| (-721)))))) (-1785 ((|#1| $ (-721)) 102) (($ $ $) 79 (|has| (-721) (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) 87 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-1102) (-721)) 86 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-598 (-1102))) 85 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-1102)) 84 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-721)) 82 (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) 80 (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (-2012 (((-721) $) 62)) (-2403 (($ $) 130 (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) 119 (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) 129 (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) 120 (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) 128 (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) 121 (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 70)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ (-388 (-531))) 55 (|has| |#1| (-37 (-388 (-531))))) (($ $) 47 (|has| |#1| (-523))) (($ |#1|) 45 (|has| |#1| (-162)))) (-2708 (((-1083 |#1|) $) 152)) (-3188 ((|#1| $ (-721)) 57)) (-2750 (((-3 $ "failed") $) 46 (|has| |#1| (-138)))) (-2284 (((-721)) 28)) (-3840 ((|#1| $) 100)) (-2442 (($ $) 139 (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) 127 (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) 51 (|has| |#1| (-523)))) (-2416 (($ $) 138 (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) 126 (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) 137 (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) 125 (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-721)) 94 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-721)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) 136 (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) 124 (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) 135 (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) 123 (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) 134 (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) 122 (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) 91 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-1102) (-721)) 90 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-598 (-1102))) 89 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-1102)) 88 (-12 (|has| |#1| (-843 (-1102))) (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (($ $ (-721)) 83 (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) 81 (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 56 (|has| |#1| (-344)))) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ |#1|) 146 (|has| |#1| (-344))) (($ $ $) 142 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 113 (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 66) (($ |#1| $) 65) (($ (-388 (-531)) $) 54 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) 53 (|has| |#1| (-37 (-388 (-531)))))))
+(((-1175 |#1|) (-133) (-986)) (T -1175))
+((-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 (-2 (|:| |k| (-721)) (|:| |c| *3)))) (-4 *3 (-986)) (-4 *1 (-1175 *3)))) (-2708 (*1 *2 *1) (-12 (-4 *1 (-1175 *3)) (-4 *3 (-986)) (-5 *2 (-1083 *3)))) (-4067 (*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-4 *1 (-1175 *3)))) (-2034 (*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)))) (-3192 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-531))) (-4 *1 (-1175 *3)) (-4 *3 (-986)))) (-3383 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-1175 *4)) (-4 *4 (-986)) (-5 *2 (-895 *4)))) (-3383 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-4 *1 (-1175 *4)) (-4 *4 (-986)) (-5 *2 (-895 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)) (-4 *2 (-344)))) (-1788 (*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531)))))) (-1788 (*1 *1 *1 *2) (-1435 (-12 (-5 *2 (-1102)) (-4 *1 (-1175 *3)) (-4 *3 (-986)) (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124)) (-4 *3 (-37 (-388 (-531)))))) (-12 (-5 *2 (-1102)) (-4 *1 (-1175 *3)) (-4 *3 (-986)) (-12 (|has| *3 (-15 -2695 ((-598 *2) *3))) (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531)))))))))
+(-13 (-1162 |t#1| (-721)) (-10 -8 (-15 -4067 ($ (-1083 (-2 (|:| |k| (-721)) (|:| |c| |t#1|))))) (-15 -2708 ((-1083 |t#1|) $)) (-15 -4067 ($ (-1083 |t#1|))) (-15 -2034 ($ $)) (-15 -3192 ($ (-1 |t#1| (-531)) $)) (-15 -3383 ((-895 |t#1|) $ (-721))) (-15 -3383 ((-895 |t#1|) $ (-721) (-721))) (IF (|has| |t#1| (-344)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-37 (-388 (-531)))) (PROGN (-15 -1788 ($ $)) (IF (|has| |t#1| (-15 -1788 (|t#1| |t#1| (-1102)))) (IF (|has| |t#1| (-15 -2695 ((-598 (-1102)) |t#1|))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1124)) (IF (|has| |t#1| (-902)) (IF (|has| |t#1| (-29 (-531))) (-15 -1788 ($ $ (-1102))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-943)) (-6 (-1124))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-46 |#1| #0=(-721)) . T) ((-25) . T) ((-37 #1=(-388 (-531))) |has| |#1| (-37 (-388 (-531)))) ((-37 |#1|) |has| |#1| (-162)) ((-37 $) |has| |#1| (-523)) ((-34) |has| |#1| (-37 (-388 (-531)))) ((-93) |has| |#1| (-37 (-388 (-531)))) ((-99) . T) ((-109 #1# #1#) |has| |#1| (-37 (-388 (-531)))) ((-109 |#1| |#1|) . T) ((-109 $ $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-128) . T) ((-138) |has| |#1| (-138)) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-216) |has| |#1| (-15 * (|#1| (-721) |#1|))) ((-266) |has| |#1| (-37 (-388 (-531)))) ((-268 $ $) |has| (-721) (-1042)) ((-272) |has| |#1| (-523)) ((-471) |has| |#1| (-37 (-388 (-531)))) ((-523) |has| |#1| (-523)) ((-601 #1#) |has| |#1| (-37 (-388 (-531)))) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #1#) |has| |#1| (-37 (-388 (-531)))) ((-668 |#1|) |has| |#1| (-162)) ((-668 $) |has| |#1| (-523)) ((-677) . T) ((-843 (-1102)) -12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102)))) ((-915 |#1| #0# (-1014)) . T) ((-943) |has| |#1| (-37 (-388 (-531)))) ((-992 #1#) |has| |#1| (-37 (-388 (-531)))) ((-992 |#1|) . T) ((-992 $) -1435 (|has| |#1| (-523)) (|has| |#1| (-162))) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1124) |has| |#1| (-37 (-388 (-531)))) ((-1127) |has| |#1| (-37 (-388 (-531)))) ((-1162 |#1| #0#) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2695 (((-598 (-1014)) $) NIL)) (-3524 (((-1102) $) 87)) (-3361 (((-1157 |#2| |#1|) $ (-721)) 73)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) NIL (|has| |#1| (-523)))) (-3258 (($ $) NIL (|has| |#1| (-523)))) (-2921 (((-110) $) 137 (|has| |#1| (-523)))) (-2796 (($ $ (-721)) 122) (($ $ (-721) (-721)) 124)) (-4034 (((-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|))) $) 42)) (-2367 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2218 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2128 (((-3 $ "failed") $ $) NIL)) (-2563 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2343 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2198 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4067 (($ (-1083 (-2 (|:| |k| (-721)) (|:| |c| |#1|)))) 53) (($ (-1083 |#1|)) NIL)) (-2391 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2241 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4082 (($) NIL T CONST)) (-3853 (($ $) 128)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2034 (($ $) 135)) (-3383 (((-895 |#1|) $ (-721)) 63) (((-895 |#1|) $ (-721) (-721)) 65)) (-3201 (((-110) $) NIL)) (-1880 (($) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3617 (((-721) $) NIL) (((-721) $ (-721)) NIL)) (-3481 (((-110) $) NIL)) (-3128 (($ $) 112)) (-2249 (($ $ (-531)) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3714 (($ (-531) (-531) $) 130)) (-3688 (($ $ (-864)) 134)) (-3192 (($ (-1 |#1| (-531)) $) 106)) (-3380 (((-110) $) NIL)) (-2669 (($ |#1| (-721)) 15) (($ $ (-1014) (-721)) NIL) (($ $ (-598 (-1014)) (-598 (-721))) NIL)) (-3261 (($ (-1 |#1| |#1|) $) 94)) (-2076 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2462 (($ $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-1656 (($ $) 110)) (-2971 (($ $) 108)) (-3721 (($ (-531) (-531) $) 132)) (-1788 (($ $) 145 (|has| |#1| (-37 (-388 (-531))))) (($ $ (-1102)) 151 (-1435 (-12 (|has| |#1| (-15 -1788 (|#1| |#1| (-1102)))) (|has| |#1| (-15 -2695 ((-598 (-1102)) |#1|))) (|has| |#1| (-37 (-388 (-531))))) (-12 (|has| |#1| (-29 (-531))) (|has| |#1| (-37 (-388 (-531)))) (|has| |#1| (-902)) (|has| |#1| (-1124))))) (($ $ (-1180 |#2|)) 146 (|has| |#1| (-37 (-388 (-531)))))) (-2529 (((-1049) $) NIL)) (-2942 (($ $ (-531) (-531)) 116)) (-1846 (($ $ (-721)) 118)) (-3609 (((-3 $ "failed") $ $) NIL (|has| |#1| (-523)))) (-2798 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-1352 (($ $) 114)) (-4115 (((-1083 |#1|) $ |#1|) 96 (|has| |#1| (-15 ** (|#1| |#1| (-721)))))) (-1785 ((|#1| $ (-721)) 91) (($ $ $) 126 (|has| (-721) (-1042)))) (-3352 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) 103 (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) 98 (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $ (-1180 |#2|)) 99)) (-2012 (((-721) $) NIL)) (-2403 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2253 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2379 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2229 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2356 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2210 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3437 (($ $) 120)) (-2265 (((-806) $) NIL) (($ (-531)) 24) (($ (-388 (-531))) 143 (|has| |#1| (-37 (-388 (-531))))) (($ $) NIL (|has| |#1| (-523))) (($ |#1|) 23 (|has| |#1| (-162))) (($ (-1157 |#2| |#1|)) 80) (($ (-1180 |#2|)) 20)) (-2708 (((-1083 |#1|) $) NIL)) (-3188 ((|#1| $ (-721)) 90)) (-2750 (((-3 $ "failed") $) NIL (|has| |#1| (-138)))) (-2284 (((-721)) NIL)) (-3840 ((|#1| $) 88)) (-2442 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2292 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2587 (((-110) $ $) NIL (|has| |#1| (-523)))) (-2416 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2266 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2468 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2318 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-4148 ((|#1| $ (-721)) 86 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-721)))) (|has| |#1| (-15 -2265 (|#1| (-1102))))))) (-2753 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2331 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2456 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2305 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2429 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-2279 (($ $) NIL (|has| |#1| (-37 (-388 (-531)))))) (-3035 (($) 17 T CONST)) (-3050 (($) 13 T CONST)) (-4020 (($ $ (-598 (-1102)) (-598 (-721))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102) (-721)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-598 (-1102))) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-1102)) NIL (-12 (|has| |#1| (-15 * (|#1| (-721) |#1|))) (|has| |#1| (-843 (-1102))))) (($ $ (-721)) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|)))) (($ $) NIL (|has| |#1| (-15 * (|#1| (-721) |#1|))))) (-2148 (((-110) $ $) NIL)) (-2263 (($ $ |#1|) NIL (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) 102)) (-2237 (($ $ $) 18)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL) (($ $ |#1|) 140 (|has| |#1| (-344))) (($ $ $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ $ |#1|) NIL) (($ |#1| $) 101) (($ (-388 (-531)) $) NIL (|has| |#1| (-37 (-388 (-531))))) (($ $ (-388 (-531))) NIL (|has| |#1| (-37 (-388 (-531)))))))
+(((-1176 |#1| |#2| |#3|) (-13 (-1175 |#1|) (-10 -8 (-15 -2265 ($ (-1157 |#2| |#1|))) (-15 -3361 ((-1157 |#2| |#1|) $ (-721))) (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (-15 -2971 ($ $)) (-15 -1656 ($ $)) (-15 -3128 ($ $)) (-15 -1352 ($ $)) (-15 -2942 ($ $ (-531) (-531))) (-15 -3853 ($ $)) (-15 -3714 ($ (-531) (-531) $)) (-15 -3721 ($ (-531) (-531) $)) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|))) (-986) (-1102) |#1|) (T -1176))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-1157 *4 *3)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-1176 *3 *4 *5)))) (-3361 (*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1157 *5 *4)) (-5 *1 (-1176 *4 *5 *6)) (-4 *4 (-986)) (-14 *5 (-1102)) (-14 *6 *4))) (-2265 (*1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-3352 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *5 *3))) (-2971 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-1656 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-3128 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-1352 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-2942 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3))) (-3853 (*1 *1 *1) (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102)) (-14 *4 *2))) (-3714 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3))) (-3721 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102)) (-14 *5 *3))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))))
+(-13 (-1175 |#1|) (-10 -8 (-15 -2265 ($ (-1157 |#2| |#1|))) (-15 -3361 ((-1157 |#2| |#1|) $ (-721))) (-15 -2265 ($ (-1180 |#2|))) (-15 -3352 ($ $ (-1180 |#2|))) (-15 -2971 ($ $)) (-15 -1656 ($ $)) (-15 -3128 ($ $)) (-15 -1352 ($ $)) (-15 -2942 ($ $ (-531) (-531))) (-15 -3853 ($ $)) (-15 -3714 ($ (-531) (-531) $)) (-15 -3721 ($ (-531) (-531) $)) (IF (|has| |#1| (-37 (-388 (-531)))) (-15 -1788 ($ $ (-1180 |#2|))) |%noBranch|)))
+((-3189 (((-1 (-1083 |#1|) (-598 (-1083 |#1|))) (-1 |#2| (-598 |#2|))) 24)) (-2301 (((-1 (-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2| |#2|)) 16)) (-3917 (((-1 (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2|)) 13)) (-3920 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48)) (-4140 ((|#2| (-1 |#2| |#2|) |#1|) 46)) (-3014 ((|#2| (-1 |#2| (-598 |#2|)) (-598 |#1|)) 54)) (-3168 (((-598 |#2|) (-598 |#1|) (-598 (-1 |#2| (-598 |#2|)))) 61)) (-3632 ((|#2| |#2| |#2|) 43)))
+(((-1177 |#1| |#2|) (-10 -7 (-15 -3917 ((-1 (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2|))) (-15 -2301 ((-1 (-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3189 ((-1 (-1083 |#1|) (-598 (-1083 |#1|))) (-1 |#2| (-598 |#2|)))) (-15 -3632 (|#2| |#2| |#2|)) (-15 -4140 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3920 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3014 (|#2| (-1 |#2| (-598 |#2|)) (-598 |#1|))) (-15 -3168 ((-598 |#2|) (-598 |#1|) (-598 (-1 |#2| (-598 |#2|)))))) (-37 (-388 (-531))) (-1175 |#1|)) (T -1177))
+((-3168 (*1 *2 *3 *4) (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 (-1 *6 (-598 *6)))) (-4 *5 (-37 (-388 (-531)))) (-4 *6 (-1175 *5)) (-5 *2 (-598 *6)) (-5 *1 (-1177 *5 *6)))) (-3014 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-598 *2))) (-5 *4 (-598 *5)) (-4 *5 (-37 (-388 (-531)))) (-4 *2 (-1175 *5)) (-5 *1 (-1177 *5 *2)))) (-3920 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1175 *4)) (-5 *1 (-1177 *4 *2)) (-4 *4 (-37 (-388 (-531)))))) (-4140 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1175 *4)) (-5 *1 (-1177 *4 *2)) (-4 *4 (-37 (-388 (-531)))))) (-3632 (*1 *2 *2 *2) (-12 (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1177 *3 *2)) (-4 *2 (-1175 *3)))) (-3189 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-598 *5))) (-4 *5 (-1175 *4)) (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-1 (-1083 *4) (-598 (-1083 *4)))) (-5 *1 (-1177 *4 *5)))) (-2301 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1175 *4)) (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-1 (-1083 *4) (-1083 *4) (-1083 *4))) (-5 *1 (-1177 *4 *5)))) (-3917 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1175 *4)) (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-1 (-1083 *4) (-1083 *4))) (-5 *1 (-1177 *4 *5)))))
+(-10 -7 (-15 -3917 ((-1 (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2|))) (-15 -2301 ((-1 (-1083 |#1|) (-1083 |#1|) (-1083 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -3189 ((-1 (-1083 |#1|) (-598 (-1083 |#1|))) (-1 |#2| (-598 |#2|)))) (-15 -3632 (|#2| |#2| |#2|)) (-15 -4140 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -3920 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -3014 (|#2| (-1 |#2| (-598 |#2|)) (-598 |#1|))) (-15 -3168 ((-598 |#2|) (-598 |#1|) (-598 (-1 |#2| (-598 |#2|))))))
+((-1286 ((|#2| |#4| (-721)) 30)) (-3729 ((|#4| |#2|) 25)) (-3559 ((|#4| (-388 |#2|)) 52 (|has| |#1| (-523)))) (-3639 (((-1 |#4| (-598 |#4|)) |#3|) 46)))
+(((-1178 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3729 (|#4| |#2|)) (-15 -1286 (|#2| |#4| (-721))) (-15 -3639 ((-1 |#4| (-598 |#4|)) |#3|)) (IF (|has| |#1| (-523)) (-15 -3559 (|#4| (-388 |#2|))) |%noBranch|)) (-986) (-1160 |#1|) (-609 |#2|) (-1175 |#1|)) (T -1178))
+((-3559 (*1 *2 *3) (-12 (-5 *3 (-388 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-523)) (-4 *4 (-986)) (-4 *2 (-1175 *4)) (-5 *1 (-1178 *4 *5 *6 *2)) (-4 *6 (-609 *5)))) (-3639 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *5 (-1160 *4)) (-5 *2 (-1 *6 (-598 *6))) (-5 *1 (-1178 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-1175 *4)))) (-1286 (*1 *2 *3 *4) (-12 (-5 *4 (-721)) (-4 *5 (-986)) (-4 *2 (-1160 *5)) (-5 *1 (-1178 *5 *2 *6 *3)) (-4 *6 (-609 *2)) (-4 *3 (-1175 *5)))) (-3729 (*1 *2 *3) (-12 (-4 *4 (-986)) (-4 *3 (-1160 *4)) (-4 *2 (-1175 *4)) (-5 *1 (-1178 *4 *3 *5 *2)) (-4 *5 (-609 *3)))))
+(-10 -7 (-15 -3729 (|#4| |#2|)) (-15 -1286 (|#2| |#4| (-721))) (-15 -3639 ((-1 |#4| (-598 |#4|)) |#3|)) (IF (|has| |#1| (-523)) (-15 -3559 (|#4| (-388 |#2|))) |%noBranch|))
+NIL
+(((-1179) (-133)) (T -1179))
+NIL
+(-13 (-10 -7 (-6 -4120)))
+((-2247 (((-110) $ $) NIL)) (-3524 (((-1102)) 12)) (-1521 (((-1085) $) 17)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 11) (((-1102) $) 8)) (-2148 (((-110) $ $) 14)))
+(((-1180 |#1|) (-13 (-1030) (-572 (-1102)) (-10 -8 (-15 -2265 ((-1102) $)) (-15 -3524 ((-1102))))) (-1102)) (T -1180))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1180 *3)) (-14 *3 *2))) (-3524 (*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1180 *3)) (-14 *3 *2))))
+(-13 (-1030) (-572 (-1102)) (-10 -8 (-15 -2265 ((-1102) $)) (-15 -3524 ((-1102)))))
+((-4222 (($ (-721)) 18)) (-4212 (((-639 |#2|) $ $) 40)) (-1408 ((|#2| $) 48)) (-2428 ((|#2| $) 47)) (-3225 ((|#2| $ $) 35)) (-2261 (($ $ $) 44)) (-2250 (($ $) 22) (($ $ $) 28)) (-2237 (($ $ $) 15)) (* (($ (-531) $) 25) (($ |#2| $) 31) (($ $ |#2|) 30)))
+(((-1181 |#1| |#2|) (-10 -8 (-15 -1408 (|#2| |#1|)) (-15 -2428 (|#2| |#1|)) (-15 -2261 (|#1| |#1| |#1|)) (-15 -4212 ((-639 |#2|) |#1| |#1|)) (-15 -3225 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -4222 (|#1| (-721))) (-15 -2237 (|#1| |#1| |#1|))) (-1182 |#2|) (-1138)) (T -1181))
+NIL
+(-10 -8 (-15 -1408 (|#2| |#1|)) (-15 -2428 (|#2| |#1|)) (-15 -2261 (|#1| |#1| |#1|)) (-15 -4212 ((-639 |#2|) |#1| |#1|)) (-15 -3225 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-531) |#1|)) (-15 -2250 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1|)) (-15 -4222 (|#1| (-721))) (-15 -2237 (|#1| |#1| |#1|)))
+((-2247 (((-110) $ $) 19 (|has| |#1| (-1030)))) (-4222 (($ (-721)) 112 (|has| |#1| (-23)))) (-3137 (((-1189) $ (-531) (-531)) 40 (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) 98) (((-110) $) 92 (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) 89 (|has| $ (-6 -4274))) (($ $) 88 (-12 (|has| |#1| (-797)) (|has| $ (-6 -4274))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) 99) (($ $) 93 (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) 8)) (-2454 ((|#1| $ (-531) |#1|) 52 (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) 58 (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) 75 (|has| $ (-6 -4273)))) (-4082 (($) 7 T CONST)) (-4106 (($ $) 90 (|has| $ (-6 -4274)))) (-1828 (($ $) 100)) (-3086 (($ $) 78 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2283 (($ |#1| $) 77 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) (($ (-1 (-110) |#1|) $) 74 (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 76 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 73 (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) 72 (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) 53 (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) 51)) (-1976 (((-531) (-1 (-110) |#1|) $) 97) (((-531) |#1| $) 96 (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) 95 (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) 30 (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) 105 (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) 69)) (-3280 (((-110) $ (-721)) 9)) (-3804 (((-531) $) 43 (|has| (-531) (-797)))) (-4103 (($ $ $) 87 (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) 101) (($ $ $) 94 (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) 27 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2327 (((-531) $) 44 (|has| (-531) (-797)))) (-1241 (($ $ $) 86 (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) 35) (($ (-1 |#1| |#1| |#1|) $ $) 64)) (-1408 ((|#1| $) 102 (-12 (|has| |#1| (-986)) (|has| |#1| (-943))))) (-3332 (((-110) $ (-721)) 10)) (-2428 ((|#1| $) 103 (-12 (|has| |#1| (-986)) (|has| |#1| (-943))))) (-1521 (((-1085) $) 22 (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) 60) (($ $ $ (-531)) 59)) (-3765 (((-598 (-531)) $) 46)) (-3059 (((-110) (-531) $) 47)) (-2529 (((-1049) $) 21 (|has| |#1| (-1030)))) (-3046 ((|#1| $) 42 (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) 71)) (-3742 (($ $ |#1|) 41 (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) 32 (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) 26 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) 25 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) 23 (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) 14)) (-1545 (((-110) |#1| $) 45 (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) 48)) (-1589 (((-110) $) 11)) (-3781 (($) 12)) (-1785 ((|#1| $ (-531) |#1|) 50) ((|#1| $ (-531)) 49) (($ $ (-1151 (-531))) 63)) (-3225 ((|#1| $ $) 106 (|has| |#1| (-986)))) (-1723 (($ $ (-531)) 62) (($ $ (-1151 (-531))) 61)) (-2261 (($ $ $) 104 (|has| |#1| (-986)))) (-2539 (((-721) (-1 (-110) |#1|) $) 31 (|has| $ (-6 -4273))) (((-721) |#1| $) 28 (-12 (|has| |#1| (-1030)) (|has| $ (-6 -4273))))) (-2162 (($ $ $ (-531)) 91 (|has| $ (-6 -4274)))) (-2480 (($ $) 13)) (-3318 (((-507) $) 79 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 70)) (-3536 (($ $ |#1|) 68) (($ |#1| $) 67) (($ $ $) 66) (($ (-598 $)) 65)) (-2265 (((-806) $) 18 (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) 33 (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) 84 (|has| |#1| (-797)))) (-2184 (((-110) $ $) 83 (|has| |#1| (-797)))) (-2148 (((-110) $ $) 20 (|has| |#1| (-1030)))) (-2195 (((-110) $ $) 85 (|has| |#1| (-797)))) (-2174 (((-110) $ $) 82 (|has| |#1| (-797)))) (-2250 (($ $) 111 (|has| |#1| (-21))) (($ $ $) 110 (|has| |#1| (-21)))) (-2237 (($ $ $) 113 (|has| |#1| (-25)))) (* (($ (-531) $) 109 (|has| |#1| (-21))) (($ |#1| $) 108 (|has| |#1| (-677))) (($ $ |#1|) 107 (|has| |#1| (-677)))) (-2167 (((-721) $) 6 (|has| $ (-6 -4273)))))
+(((-1182 |#1|) (-133) (-1138)) (T -1182))
+((-2237 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-25)))) (-4222 (*1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1182 *3)) (-4 *3 (-23)) (-4 *3 (-1138)))) (-2250 (*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-21)))) (-2250 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-4 *1 (-1182 *3)) (-4 *3 (-1138)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-677)))) (-3225 (*1 *2 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))) (-4212 (*1 *2 *1 *1) (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1138)) (-4 *3 (-986)) (-5 *2 (-639 *3)))) (-2261 (*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))) (-2428 (*1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-943)) (-4 *2 (-986)))) (-1408 (*1 *2 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-943)) (-4 *2 (-986)))))
+(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -2237 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4222 ($ (-721))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -2250 ($ $)) (-15 -2250 ($ $ $)) (-15 * ($ (-531) $))) |%noBranch|) (IF (|has| |t#1| (-677)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-986)) (PROGN (-15 -3225 (|t#1| $ $)) (-15 -4212 ((-639 |t#1|) $ $)) (-15 -2261 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-943)) (IF (|has| |t#1| (-986)) (PROGN (-15 -2428 (|t#1| $)) (-15 -1408 (|t#1| $))) |%noBranch|) |%noBranch|)))
+(((-33) . T) ((-99) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-572 (-806)) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797)) (|has| |#1| (-572 (-806)))) ((-144 |#1|) . T) ((-573 (-507)) |has| |#1| (-573 (-507))) ((-268 #0=(-531) |#1|) . T) ((-270 #0# |#1|) . T) ((-291 |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-354 |#1|) . T) ((-468 |#1|) . T) ((-564 #0# |#1|) . T) ((-492 |#1| |#1|) -12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))) ((-604 |#1|) . T) ((-19 |#1|) . T) ((-797) |has| |#1| (-797)) ((-1030) -1435 (|has| |#1| (-1030)) (|has| |#1| (-797))) ((-1138) . T))
+((-3203 (((-1184 |#2|) (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|) 13)) (-1760 ((|#2| (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|) 15)) (-3261 (((-3 (-1184 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1184 |#1|)) 28) (((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|)) 18)))
+(((-1183 |#1| |#2|) (-10 -7 (-15 -3203 ((-1184 |#2|) (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|)) (-15 -3261 ((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|))) (-15 -3261 ((-3 (-1184 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1184 |#1|)))) (-1138) (-1138)) (T -1183))
+((-3261 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1184 *6)) (-5 *1 (-1183 *5 *6)))) (-3261 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1184 *6)) (-5 *1 (-1183 *5 *6)))) (-1760 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1184 *5)) (-4 *5 (-1138)) (-4 *2 (-1138)) (-5 *1 (-1183 *5 *2)))) (-3203 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1184 *6)) (-4 *6 (-1138)) (-4 *5 (-1138)) (-5 *2 (-1184 *5)) (-5 *1 (-1183 *6 *5)))))
+(-10 -7 (-15 -3203 ((-1184 |#2|) (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|)) (-15 -1760 (|#2| (-1 |#2| |#1| |#2|) (-1184 |#1|) |#2|)) (-15 -3261 ((-1184 |#2|) (-1 |#2| |#1|) (-1184 |#1|))) (-15 -3261 ((-3 (-1184 |#2|) "failed") (-1 (-3 |#2| "failed") |#1|) (-1184 |#1|))))
+((-2247 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-4222 (($ (-721)) NIL (|has| |#1| (-23)))) (-3340 (($ (-598 |#1|)) 9)) (-3137 (((-1189) $ (-531) (-531)) NIL (|has| $ (-6 -4274)))) (-3202 (((-110) (-1 (-110) |#1| |#1|) $) NIL) (((-110) $) NIL (|has| |#1| (-797)))) (-2375 (($ (-1 (-110) |#1| |#1|) $) NIL (|has| $ (-6 -4274))) (($ $) NIL (-12 (|has| $ (-6 -4274)) (|has| |#1| (-797))))) (-1332 (($ (-1 (-110) |#1| |#1|) $) NIL) (($ $) NIL (|has| |#1| (-797)))) (-4058 (((-110) $ (-721)) NIL)) (-2454 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274))) ((|#1| $ (-1151 (-531)) |#1|) NIL (|has| $ (-6 -4274)))) (-2177 (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4082 (($) NIL T CONST)) (-4106 (($ $) NIL (|has| $ (-6 -4274)))) (-1828 (($ $) NIL)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2283 (($ |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) (($ (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-1760 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030)))) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4273))) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4273)))) (-2693 ((|#1| $ (-531) |#1|) NIL (|has| $ (-6 -4274)))) (-2627 ((|#1| $ (-531)) NIL)) (-1976 (((-531) (-1 (-110) |#1|) $) NIL) (((-531) |#1| $) NIL (|has| |#1| (-1030))) (((-531) |#1| $ (-531)) NIL (|has| |#1| (-1030)))) (-2227 (((-598 |#1|) $) 15 (|has| $ (-6 -4273)))) (-4212 (((-639 |#1|) $ $) NIL (|has| |#1| (-986)))) (-3010 (($ (-721) |#1|) NIL)) (-3280 (((-110) $ (-721)) NIL)) (-3804 (((-531) $) NIL (|has| (-531) (-797)))) (-4103 (($ $ $) NIL (|has| |#1| (-797)))) (-3508 (($ (-1 (-110) |#1| |#1|) $ $) NIL) (($ $ $) NIL (|has| |#1| (-797)))) (-2445 (((-598 |#1|) $) NIL (|has| $ (-6 -4273)))) (-1883 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2327 (((-531) $) NIL (|has| (-531) (-797)))) (-1241 (($ $ $) NIL (|has| |#1| (-797)))) (-2680 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#1| |#1|) $) NIL) (($ (-1 |#1| |#1| |#1|) $ $) NIL)) (-1408 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-3332 (((-110) $ (-721)) NIL)) (-2428 ((|#1| $) NIL (-12 (|has| |#1| (-943)) (|has| |#1| (-986))))) (-1521 (((-1085) $) NIL (|has| |#1| (-1030)))) (-4059 (($ |#1| $ (-531)) NIL) (($ $ $ (-531)) NIL)) (-3765 (((-598 (-531)) $) NIL)) (-3059 (((-110) (-531) $) NIL)) (-2529 (((-1049) $) NIL (|has| |#1| (-1030)))) (-3046 ((|#1| $) NIL (|has| (-531) (-797)))) (-4190 (((-3 |#1| "failed") (-1 (-110) |#1|) $) NIL)) (-3742 (($ $ |#1|) NIL (|has| $ (-6 -4274)))) (-2294 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 (-276 |#1|))) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-276 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030)))) (($ $ (-598 |#1|) (-598 |#1|)) NIL (-12 (|has| |#1| (-291 |#1|)) (|has| |#1| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1545 (((-110) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-3163 (((-598 |#1|) $) NIL)) (-1589 (((-110) $) NIL)) (-3781 (($) NIL)) (-1785 ((|#1| $ (-531) |#1|) NIL) ((|#1| $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-3225 ((|#1| $ $) NIL (|has| |#1| (-986)))) (-1723 (($ $ (-531)) NIL) (($ $ (-1151 (-531))) NIL)) (-2261 (($ $ $) NIL (|has| |#1| (-986)))) (-2539 (((-721) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273))) (((-721) |#1| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#1| (-1030))))) (-2162 (($ $ $ (-531)) NIL (|has| $ (-6 -4274)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) 19 (|has| |#1| (-573 (-507))))) (-2274 (($ (-598 |#1|)) 8)) (-3536 (($ $ |#1|) NIL) (($ |#1| $) NIL) (($ $ $) NIL) (($ (-598 $)) NIL)) (-2265 (((-806) $) NIL (|has| |#1| (-572 (-806))))) (-2060 (((-110) (-1 (-110) |#1|) $) NIL (|has| $ (-6 -4273)))) (-2207 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2184 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2148 (((-110) $ $) NIL (|has| |#1| (-1030)))) (-2195 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2174 (((-110) $ $) NIL (|has| |#1| (-797)))) (-2250 (($ $) NIL (|has| |#1| (-21))) (($ $ $) NIL (|has| |#1| (-21)))) (-2237 (($ $ $) NIL (|has| |#1| (-25)))) (* (($ (-531) $) NIL (|has| |#1| (-21))) (($ |#1| $) NIL (|has| |#1| (-677))) (($ $ |#1|) NIL (|has| |#1| (-677)))) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1184 |#1|) (-13 (-1182 |#1|) (-10 -8 (-15 -3340 ($ (-598 |#1|))))) (-1138)) (T -1184))
+((-3340 (*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1184 *3)))))
+(-13 (-1182 |#1|) (-10 -8 (-15 -3340 ($ (-598 |#1|)))))
+((-2247 (((-110) $ $) NIL)) (-1370 (((-1085) $ (-1085)) 90) (((-1085) $ (-1085) (-1085)) 88) (((-1085) $ (-1085) (-598 (-1085))) 87)) (-3821 (($) 59)) (-3246 (((-1189) $ (-448) (-864)) 45)) (-1247 (((-1189) $ (-864) (-1085)) 73) (((-1189) $ (-864) (-817)) 74)) (-2161 (((-1189) $ (-864) (-360) (-360)) 48)) (-1285 (((-1189) $ (-1085)) 69)) (-1335 (((-1189) $ (-864) (-1085)) 78)) (-3030 (((-1189) $ (-864) (-360) (-360)) 49)) (-1600 (((-1189) $ (-864) (-864)) 46)) (-2562 (((-1189) $) 70)) (-2745 (((-1189) $ (-864) (-1085)) 77)) (-2165 (((-1189) $ (-448) (-864)) 31)) (-1943 (((-1189) $ (-864) (-1085)) 76)) (-4242 (((-598 (-245)) $) 23) (($ $ (-598 (-245))) 24)) (-3467 (((-1189) $ (-721) (-721)) 43)) (-2378 (($ $) 60) (($ (-448) (-598 (-245))) 61)) (-1521 (((-1085) $) NIL)) (-3033 (((-531) $) 38)) (-2529 (((-1049) $) NIL)) (-3083 (((-1184 (-3 (-448) "undefined")) $) 37)) (-1549 (((-1184 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) (|:| |axesColor| (-817)) (|:| -1247 (-531)) (|:| |unitsColor| (-817)) (|:| |showing| (-531)))) $) 36)) (-3660 (((-1189) $ (-864) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-817) (-531) (-817) (-531)) 68)) (-3067 (((-598 (-886 (-208))) $) NIL)) (-2639 (((-448) $ (-864)) 33)) (-3711 (((-1189) $ (-721) (-721) (-864) (-864)) 40)) (-1717 (((-1189) $ (-1085)) 79)) (-3398 (((-1189) $ (-864) (-1085)) 75)) (-2265 (((-806) $) 85)) (-2259 (((-1189) $) 80)) (-1935 (((-1189) $ (-864) (-1085)) 71) (((-1189) $ (-864) (-817)) 72)) (-2148 (((-110) $ $) NIL)))
+(((-1185) (-13 (-1030) (-10 -8 (-15 -3067 ((-598 (-886 (-208))) $)) (-15 -3821 ($)) (-15 -2378 ($ $)) (-15 -4242 ((-598 (-245)) $)) (-15 -4242 ($ $ (-598 (-245)))) (-15 -2378 ($ (-448) (-598 (-245)))) (-15 -3660 ((-1189) $ (-864) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-817) (-531) (-817) (-531))) (-15 -1549 ((-1184 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) (|:| |axesColor| (-817)) (|:| -1247 (-531)) (|:| |unitsColor| (-817)) (|:| |showing| (-531)))) $)) (-15 -3083 ((-1184 (-3 (-448) "undefined")) $)) (-15 -1285 ((-1189) $ (-1085))) (-15 -2165 ((-1189) $ (-448) (-864))) (-15 -2639 ((-448) $ (-864))) (-15 -1935 ((-1189) $ (-864) (-1085))) (-15 -1935 ((-1189) $ (-864) (-817))) (-15 -1247 ((-1189) $ (-864) (-1085))) (-15 -1247 ((-1189) $ (-864) (-817))) (-15 -1943 ((-1189) $ (-864) (-1085))) (-15 -2745 ((-1189) $ (-864) (-1085))) (-15 -3398 ((-1189) $ (-864) (-1085))) (-15 -1717 ((-1189) $ (-1085))) (-15 -2259 ((-1189) $)) (-15 -3711 ((-1189) $ (-721) (-721) (-864) (-864))) (-15 -3030 ((-1189) $ (-864) (-360) (-360))) (-15 -2161 ((-1189) $ (-864) (-360) (-360))) (-15 -1335 ((-1189) $ (-864) (-1085))) (-15 -3467 ((-1189) $ (-721) (-721))) (-15 -3246 ((-1189) $ (-448) (-864))) (-15 -1600 ((-1189) $ (-864) (-864))) (-15 -1370 ((-1085) $ (-1085))) (-15 -1370 ((-1085) $ (-1085) (-1085))) (-15 -1370 ((-1085) $ (-1085) (-598 (-1085)))) (-15 -2562 ((-1189) $)) (-15 -3033 ((-531) $)) (-15 -2265 ((-806) $))))) (T -1185))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1185)))) (-3067 (*1 *2 *1) (-12 (-5 *2 (-598 (-886 (-208)))) (-5 *1 (-1185)))) (-3821 (*1 *1) (-5 *1 (-1185))) (-2378 (*1 *1 *1) (-5 *1 (-1185))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1185)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1185)))) (-2378 (*1 *1 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-598 (-245))) (-5 *1 (-1185)))) (-3660 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-864)) (-5 *4 (-208)) (-5 *5 (-531)) (-5 *6 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1549 (*1 *2 *1) (-12 (-5 *2 (-1184 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) (|:| |axesColor| (-817)) (|:| -1247 (-531)) (|:| |unitsColor| (-817)) (|:| |showing| (-531))))) (-5 *1 (-1185)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1184 (-3 (-448) "undefined"))) (-5 *1 (-1185)))) (-1285 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2165 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2639 (*1 *2 *1 *3) (-12 (-5 *3 (-864)) (-5 *2 (-448)) (-5 *1 (-1185)))) (-1935 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1935 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1247 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1943 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2745 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3398 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1717 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3711 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-721)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3030 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-864)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-2161 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-864)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1335 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3246 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-448)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1600 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))) (-1370 (*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1185)))) (-1370 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1185)))) (-1370 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-1185)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1185)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1185)))))
+(-13 (-1030) (-10 -8 (-15 -3067 ((-598 (-886 (-208))) $)) (-15 -3821 ($)) (-15 -2378 ($ $)) (-15 -4242 ((-598 (-245)) $)) (-15 -4242 ($ $ (-598 (-245)))) (-15 -2378 ($ (-448) (-598 (-245)))) (-15 -3660 ((-1189) $ (-864) (-208) (-208) (-208) (-208) (-531) (-531) (-531) (-531) (-817) (-531) (-817) (-531))) (-15 -1549 ((-1184 (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531)) (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531)) (|:| |axesColor| (-817)) (|:| -1247 (-531)) (|:| |unitsColor| (-817)) (|:| |showing| (-531)))) $)) (-15 -3083 ((-1184 (-3 (-448) "undefined")) $)) (-15 -1285 ((-1189) $ (-1085))) (-15 -2165 ((-1189) $ (-448) (-864))) (-15 -2639 ((-448) $ (-864))) (-15 -1935 ((-1189) $ (-864) (-1085))) (-15 -1935 ((-1189) $ (-864) (-817))) (-15 -1247 ((-1189) $ (-864) (-1085))) (-15 -1247 ((-1189) $ (-864) (-817))) (-15 -1943 ((-1189) $ (-864) (-1085))) (-15 -2745 ((-1189) $ (-864) (-1085))) (-15 -3398 ((-1189) $ (-864) (-1085))) (-15 -1717 ((-1189) $ (-1085))) (-15 -2259 ((-1189) $)) (-15 -3711 ((-1189) $ (-721) (-721) (-864) (-864))) (-15 -3030 ((-1189) $ (-864) (-360) (-360))) (-15 -2161 ((-1189) $ (-864) (-360) (-360))) (-15 -1335 ((-1189) $ (-864) (-1085))) (-15 -3467 ((-1189) $ (-721) (-721))) (-15 -3246 ((-1189) $ (-448) (-864))) (-15 -1600 ((-1189) $ (-864) (-864))) (-15 -1370 ((-1085) $ (-1085))) (-15 -1370 ((-1085) $ (-1085) (-1085))) (-15 -1370 ((-1085) $ (-1085) (-598 (-1085)))) (-15 -2562 ((-1189) $)) (-15 -3033 ((-531) $)) (-15 -2265 ((-806) $))))
+((-2247 (((-110) $ $) NIL)) (-3026 (((-1189) $ (-360)) 140) (((-1189) $ (-360) (-360) (-360)) 141)) (-1370 (((-1085) $ (-1085)) 148) (((-1085) $ (-1085) (-1085)) 146) (((-1085) $ (-1085) (-598 (-1085))) 145)) (-3825 (($) 50)) (-2010 (((-1189) $ (-360) (-360) (-360) (-360) (-360)) 116) (((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $) 114) (((-1189) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) 115) (((-1189) $ (-531) (-531) (-360) (-360) (-360)) 117) (((-1189) $ (-360) (-360)) 118) (((-1189) $ (-360) (-360) (-360)) 125)) (-1550 (((-360)) 97) (((-360) (-360)) 98)) (-3854 (((-360)) 92) (((-360) (-360)) 94)) (-1736 (((-360)) 95) (((-360) (-360)) 96)) (-3995 (((-360)) 101) (((-360) (-360)) 102)) (-1989 (((-360)) 99) (((-360) (-360)) 100)) (-2161 (((-1189) $ (-360) (-360)) 142)) (-1285 (((-1189) $ (-1085)) 126)) (-1841 (((-1062 (-208)) $) 51) (($ $ (-1062 (-208))) 52)) (-3040 (((-1189) $ (-1085)) 154)) (-3860 (((-1189) $ (-1085)) 155)) (-1269 (((-1189) $ (-360) (-360)) 124) (((-1189) $ (-531) (-531)) 139)) (-1600 (((-1189) $ (-864) (-864)) 132)) (-2562 (((-1189) $) 112)) (-3418 (((-1189) $ (-1085)) 153)) (-3791 (((-1189) $ (-1085)) 109)) (-4242 (((-598 (-245)) $) 53) (($ $ (-598 (-245))) 54)) (-3467 (((-1189) $ (-721) (-721)) 131)) (-3235 (((-1189) $ (-721) (-886 (-208))) 160)) (-3621 (($ $) 56) (($ (-1062 (-208)) (-1085)) 57) (($ (-1062 (-208)) (-598 (-245))) 58)) (-2827 (((-1189) $ (-360) (-360) (-360)) 106)) (-1521 (((-1085) $) NIL)) (-3033 (((-531) $) 103)) (-1306 (((-1189) $ (-360)) 143)) (-3532 (((-1189) $ (-360)) 158)) (-2529 (((-1049) $) NIL)) (-3089 (((-1189) $ (-360)) 157)) (-2518 (((-1189) $ (-1085)) 111)) (-3711 (((-1189) $ (-721) (-721) (-864) (-864)) 130)) (-4014 (((-1189) $ (-1085)) 108)) (-1717 (((-1189) $ (-1085)) 110)) (-3272 (((-1189) $ (-148) (-148)) 129)) (-2265 (((-806) $) 137)) (-2259 (((-1189) $) 113)) (-1369 (((-1189) $ (-1085)) 156)) (-1935 (((-1189) $ (-1085)) 107)) (-2148 (((-110) $ $) NIL)))
+(((-1186) (-13 (-1030) (-10 -8 (-15 -3854 ((-360))) (-15 -3854 ((-360) (-360))) (-15 -1736 ((-360))) (-15 -1736 ((-360) (-360))) (-15 -1550 ((-360))) (-15 -1550 ((-360) (-360))) (-15 -1989 ((-360))) (-15 -1989 ((-360) (-360))) (-15 -3995 ((-360))) (-15 -3995 ((-360) (-360))) (-15 -3825 ($)) (-15 -3621 ($ $)) (-15 -3621 ($ (-1062 (-208)) (-1085))) (-15 -3621 ($ (-1062 (-208)) (-598 (-245)))) (-15 -1841 ((-1062 (-208)) $)) (-15 -1841 ($ $ (-1062 (-208)))) (-15 -3235 ((-1189) $ (-721) (-886 (-208)))) (-15 -4242 ((-598 (-245)) $)) (-15 -4242 ($ $ (-598 (-245)))) (-15 -3467 ((-1189) $ (-721) (-721))) (-15 -1600 ((-1189) $ (-864) (-864))) (-15 -1285 ((-1189) $ (-1085))) (-15 -3711 ((-1189) $ (-721) (-721) (-864) (-864))) (-15 -2010 ((-1189) $ (-360) (-360) (-360) (-360) (-360))) (-15 -2010 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -2010 ((-1189) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -2010 ((-1189) $ (-531) (-531) (-360) (-360) (-360))) (-15 -2010 ((-1189) $ (-360) (-360))) (-15 -2010 ((-1189) $ (-360) (-360) (-360))) (-15 -1717 ((-1189) $ (-1085))) (-15 -1935 ((-1189) $ (-1085))) (-15 -4014 ((-1189) $ (-1085))) (-15 -3791 ((-1189) $ (-1085))) (-15 -2518 ((-1189) $ (-1085))) (-15 -1269 ((-1189) $ (-360) (-360))) (-15 -1269 ((-1189) $ (-531) (-531))) (-15 -3026 ((-1189) $ (-360))) (-15 -3026 ((-1189) $ (-360) (-360) (-360))) (-15 -2161 ((-1189) $ (-360) (-360))) (-15 -3418 ((-1189) $ (-1085))) (-15 -3089 ((-1189) $ (-360))) (-15 -3532 ((-1189) $ (-360))) (-15 -3040 ((-1189) $ (-1085))) (-15 -3860 ((-1189) $ (-1085))) (-15 -1369 ((-1189) $ (-1085))) (-15 -2827 ((-1189) $ (-360) (-360) (-360))) (-15 -1306 ((-1189) $ (-360))) (-15 -2562 ((-1189) $)) (-15 -3272 ((-1189) $ (-148) (-148))) (-15 -1370 ((-1085) $ (-1085))) (-15 -1370 ((-1085) $ (-1085) (-1085))) (-15 -1370 ((-1085) $ (-1085) (-598 (-1085)))) (-15 -2259 ((-1189) $)) (-15 -3033 ((-531) $))))) (T -1186))
+((-3854 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-3854 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1736 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1736 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1550 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1550 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1989 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-1989 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-3995 (*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-3995 (*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))) (-3825 (*1 *1) (-5 *1 (-1186))) (-3621 (*1 *1 *1) (-5 *1 (-1186))) (-3621 (*1 *1 *2 *3) (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-1085)) (-5 *1 (-1186)))) (-3621 (*1 *1 *2 *3) (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-598 (-245))) (-5 *1 (-1186)))) (-1841 (*1 *2 *1) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1186)))) (-1841 (*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1186)))) (-3235 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-721)) (-5 *4 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-4242 (*1 *2 *1) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1186)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1186)))) (-3467 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1600 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1285 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3711 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-721)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208)))) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-531)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2010 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1717 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1935 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-4014 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3791 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2518 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1269 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1269 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3026 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3026 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2161 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3418 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3089 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3532 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3040 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3860 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1369 (*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2827 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1306 (*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-2562 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3272 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-148)) (-5 *2 (-1189)) (-5 *1 (-1186)))) (-1370 (*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1186)))) (-1370 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1186)))) (-1370 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-1186)))) (-2259 (*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))) (-3033 (*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1186)))))
+(-13 (-1030) (-10 -8 (-15 -3854 ((-360))) (-15 -3854 ((-360) (-360))) (-15 -1736 ((-360))) (-15 -1736 ((-360) (-360))) (-15 -1550 ((-360))) (-15 -1550 ((-360) (-360))) (-15 -1989 ((-360))) (-15 -1989 ((-360) (-360))) (-15 -3995 ((-360))) (-15 -3995 ((-360) (-360))) (-15 -3825 ($)) (-15 -3621 ($ $)) (-15 -3621 ($ (-1062 (-208)) (-1085))) (-15 -3621 ($ (-1062 (-208)) (-598 (-245)))) (-15 -1841 ((-1062 (-208)) $)) (-15 -1841 ($ $ (-1062 (-208)))) (-15 -3235 ((-1189) $ (-721) (-886 (-208)))) (-15 -4242 ((-598 (-245)) $)) (-15 -4242 ($ $ (-598 (-245)))) (-15 -3467 ((-1189) $ (-721) (-721))) (-15 -1600 ((-1189) $ (-864) (-864))) (-15 -1285 ((-1189) $ (-1085))) (-15 -3711 ((-1189) $ (-721) (-721) (-864) (-864))) (-15 -2010 ((-1189) $ (-360) (-360) (-360) (-360) (-360))) (-15 -2010 ((-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))) $)) (-15 -2010 ((-1189) $ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208)) (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208)) (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))) (-15 -2010 ((-1189) $ (-531) (-531) (-360) (-360) (-360))) (-15 -2010 ((-1189) $ (-360) (-360))) (-15 -2010 ((-1189) $ (-360) (-360) (-360))) (-15 -1717 ((-1189) $ (-1085))) (-15 -1935 ((-1189) $ (-1085))) (-15 -4014 ((-1189) $ (-1085))) (-15 -3791 ((-1189) $ (-1085))) (-15 -2518 ((-1189) $ (-1085))) (-15 -1269 ((-1189) $ (-360) (-360))) (-15 -1269 ((-1189) $ (-531) (-531))) (-15 -3026 ((-1189) $ (-360))) (-15 -3026 ((-1189) $ (-360) (-360) (-360))) (-15 -2161 ((-1189) $ (-360) (-360))) (-15 -3418 ((-1189) $ (-1085))) (-15 -3089 ((-1189) $ (-360))) (-15 -3532 ((-1189) $ (-360))) (-15 -3040 ((-1189) $ (-1085))) (-15 -3860 ((-1189) $ (-1085))) (-15 -1369 ((-1189) $ (-1085))) (-15 -2827 ((-1189) $ (-360) (-360) (-360))) (-15 -1306 ((-1189) $ (-360))) (-15 -2562 ((-1189) $)) (-15 -3272 ((-1189) $ (-148) (-148))) (-15 -1370 ((-1085) $ (-1085))) (-15 -1370 ((-1085) $ (-1085) (-1085))) (-15 -1370 ((-1085) $ (-1085) (-598 (-1085)))) (-15 -2259 ((-1189) $)) (-15 -3033 ((-531) $))))
+((-3886 (((-598 (-1085)) (-598 (-1085))) 94) (((-598 (-1085))) 90)) (-1512 (((-598 (-1085))) 88)) (-2411 (((-598 (-864)) (-598 (-864))) 63) (((-598 (-864))) 60)) (-3832 (((-598 (-721)) (-598 (-721))) 57) (((-598 (-721))) 53)) (-2906 (((-1189)) 65)) (-2811 (((-864) (-864)) 81) (((-864)) 80)) (-2443 (((-864) (-864)) 79) (((-864)) 78)) (-2099 (((-817) (-817)) 75) (((-817)) 74)) (-1255 (((-208)) 85) (((-208) (-360)) 87)) (-2244 (((-864)) 82) (((-864) (-864)) 83)) (-3503 (((-864) (-864)) 77) (((-864)) 76)) (-2831 (((-817) (-817)) 69) (((-817)) 67)) (-1454 (((-817) (-817)) 71) (((-817)) 70)) (-4012 (((-817) (-817)) 73) (((-817)) 72)))
+(((-1187) (-10 -7 (-15 -2831 ((-817))) (-15 -2831 ((-817) (-817))) (-15 -1454 ((-817))) (-15 -1454 ((-817) (-817))) (-15 -4012 ((-817))) (-15 -4012 ((-817) (-817))) (-15 -2099 ((-817))) (-15 -2099 ((-817) (-817))) (-15 -3503 ((-864))) (-15 -3503 ((-864) (-864))) (-15 -3832 ((-598 (-721)))) (-15 -3832 ((-598 (-721)) (-598 (-721)))) (-15 -2411 ((-598 (-864)))) (-15 -2411 ((-598 (-864)) (-598 (-864)))) (-15 -2906 ((-1189))) (-15 -3886 ((-598 (-1085)))) (-15 -3886 ((-598 (-1085)) (-598 (-1085)))) (-15 -1512 ((-598 (-1085)))) (-15 -2443 ((-864))) (-15 -2811 ((-864))) (-15 -2443 ((-864) (-864))) (-15 -2811 ((-864) (-864))) (-15 -2244 ((-864) (-864))) (-15 -2244 ((-864))) (-15 -1255 ((-208) (-360))) (-15 -1255 ((-208))))) (T -1187))
+((-1255 (*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1187)))) (-1255 (*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1187)))) (-2244 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2244 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2811 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2443 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2811 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2443 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-1512 (*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))) (-3886 (*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))) (-3886 (*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))) (-2906 (*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1187)))) (-2411 (*1 *2 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1187)))) (-2411 (*1 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1187)))) (-3832 (*1 *2 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1187)))) (-3832 (*1 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1187)))) (-3503 (*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-3503 (*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))) (-2099 (*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-2099 (*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-4012 (*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-4012 (*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-1454 (*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-1454 (*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-2831 (*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))) (-2831 (*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))))
+(-10 -7 (-15 -2831 ((-817))) (-15 -2831 ((-817) (-817))) (-15 -1454 ((-817))) (-15 -1454 ((-817) (-817))) (-15 -4012 ((-817))) (-15 -4012 ((-817) (-817))) (-15 -2099 ((-817))) (-15 -2099 ((-817) (-817))) (-15 -3503 ((-864))) (-15 -3503 ((-864) (-864))) (-15 -3832 ((-598 (-721)))) (-15 -3832 ((-598 (-721)) (-598 (-721)))) (-15 -2411 ((-598 (-864)))) (-15 -2411 ((-598 (-864)) (-598 (-864)))) (-15 -2906 ((-1189))) (-15 -3886 ((-598 (-1085)))) (-15 -3886 ((-598 (-1085)) (-598 (-1085)))) (-15 -1512 ((-598 (-1085)))) (-15 -2443 ((-864))) (-15 -2811 ((-864))) (-15 -2443 ((-864) (-864))) (-15 -2811 ((-864) (-864))) (-15 -2244 ((-864) (-864))) (-15 -2244 ((-864))) (-15 -1255 ((-208) (-360))) (-15 -1255 ((-208))))
+((-2499 (((-448) (-598 (-598 (-886 (-208)))) (-598 (-245))) 21) (((-448) (-598 (-598 (-886 (-208))))) 20) (((-448) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245))) 19)) (-3985 (((-1185) (-598 (-598 (-886 (-208)))) (-598 (-245))) 27) (((-1185) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245))) 26)) (-2265 (((-1185) (-448)) 38)))
+(((-1188) (-10 -7 (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245)))) (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))))) (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))) (-598 (-245)))) (-15 -3985 ((-1185) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245)))) (-15 -3985 ((-1185) (-598 (-598 (-886 (-208)))) (-598 (-245)))) (-15 -2265 ((-1185) (-448))))) (T -1188))
+((-2265 (*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1185)) (-5 *1 (-1188)))) (-3985 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-1188)))) (-3985 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-817)) (-5 *5 (-864)) (-5 *6 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-1188)))) (-2499 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-598 (-245))) (-5 *2 (-448)) (-5 *1 (-1188)))) (-2499 (*1 *2 *3) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-448)) (-5 *1 (-1188)))) (-2499 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-817)) (-5 *5 (-864)) (-5 *6 (-598 (-245))) (-5 *2 (-448)) (-5 *1 (-1188)))))
+(-10 -7 (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245)))) (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))))) (-15 -2499 ((-448) (-598 (-598 (-886 (-208)))) (-598 (-245)))) (-15 -3985 ((-1185) (-598 (-598 (-886 (-208)))) (-817) (-817) (-864) (-598 (-245)))) (-15 -3985 ((-1185) (-598 (-598 (-886 (-208)))) (-598 (-245)))) (-15 -2265 ((-1185) (-448))))
+((-2989 (($) 7)) (-2265 (((-806) $) 10)))
+(((-1189) (-10 -8 (-15 -2989 ($)) (-15 -2265 ((-806) $)))) (T -1189))
+((-2265 (*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1189)))) (-2989 (*1 *1) (-5 *1 (-1189))))
+(-10 -8 (-15 -2989 ($)) (-15 -2265 ((-806) $)))
+((-2263 (($ $ |#2|) 10)))
+(((-1190 |#1| |#2|) (-10 -8 (-15 -2263 (|#1| |#1| |#2|))) (-1191 |#2|) (-344)) (T -1190))
+NIL
+(-10 -8 (-15 -2263 (|#1| |#1| |#2|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2190 (((-130)) 28)) (-2265 (((-806) $) 11)) (-3035 (($) 18 T CONST)) (-2148 (((-110) $ $) 6)) (-2263 (($ $ |#1|) 29)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ |#1| $) 23) (($ $ |#1|) 26)))
+(((-1191 |#1|) (-133) (-344)) (T -1191))
+((-2263 (*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-344)))) (-2190 (*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
+(-13 (-668 |t#1|) (-10 -8 (-15 -2263 ($ $ |t#1|)) (-15 -2190 ((-130)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-668 |#1|) . T) ((-992 |#1|) . T) ((-1030) . T))
+((-4211 (((-598 (-1133 |#1|)) (-1102) (-1133 |#1|)) 74)) (-3043 (((-1083 (-1083 (-895 |#1|))) (-1102) (-1083 (-895 |#1|))) 53)) (-2615 (((-1 (-1083 (-1133 |#1|)) (-1083 (-1133 |#1|))) (-721) (-1133 |#1|) (-1083 (-1133 |#1|))) 64)) (-3527 (((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721)) 55)) (-3934 (((-1 (-1098 (-895 |#1|)) (-895 |#1|)) (-1102)) 29)) (-1763 (((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721)) 54)))
+(((-1192 |#1|) (-10 -7 (-15 -3527 ((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721))) (-15 -1763 ((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721))) (-15 -3043 ((-1083 (-1083 (-895 |#1|))) (-1102) (-1083 (-895 |#1|)))) (-15 -3934 ((-1 (-1098 (-895 |#1|)) (-895 |#1|)) (-1102))) (-15 -4211 ((-598 (-1133 |#1|)) (-1102) (-1133 |#1|))) (-15 -2615 ((-1 (-1083 (-1133 |#1|)) (-1083 (-1133 |#1|))) (-721) (-1133 |#1|) (-1083 (-1133 |#1|))))) (-344)) (T -1192))
+((-2615 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-721)) (-4 *6 (-344)) (-5 *4 (-1133 *6)) (-5 *2 (-1 (-1083 *4) (-1083 *4))) (-5 *1 (-1192 *6)) (-5 *5 (-1083 *4)))) (-4211 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-4 *5 (-344)) (-5 *2 (-598 (-1133 *5))) (-5 *1 (-1192 *5)) (-5 *4 (-1133 *5)))) (-3934 (*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1 (-1098 (-895 *4)) (-895 *4))) (-5 *1 (-1192 *4)) (-4 *4 (-344)))) (-3043 (*1 *2 *3 *4) (-12 (-5 *3 (-1102)) (-4 *5 (-344)) (-5 *2 (-1083 (-1083 (-895 *5)))) (-5 *1 (-1192 *5)) (-5 *4 (-1083 (-895 *5))))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-1083 (-895 *4)) (-1083 (-895 *4)))) (-5 *1 (-1192 *4)) (-4 *4 (-344)))) (-3527 (*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-1083 (-895 *4)) (-1083 (-895 *4)))) (-5 *1 (-1192 *4)) (-4 *4 (-344)))))
+(-10 -7 (-15 -3527 ((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721))) (-15 -1763 ((-1 (-1083 (-895 |#1|)) (-1083 (-895 |#1|))) (-721))) (-15 -3043 ((-1083 (-1083 (-895 |#1|))) (-1102) (-1083 (-895 |#1|)))) (-15 -3934 ((-1 (-1098 (-895 |#1|)) (-895 |#1|)) (-1102))) (-15 -4211 ((-598 (-1133 |#1|)) (-1102) (-1133 |#1|))) (-15 -2615 ((-1 (-1083 (-1133 |#1|)) (-1083 (-1133 |#1|))) (-721) (-1133 |#1|) (-1083 (-1133 |#1|)))))
+((-2720 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|) 75)) (-2670 (((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|)))) 74)))
+(((-1193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|))) (-330) (-1160 |#1|) (-1160 |#2|) (-390 |#2| |#3|)) (T -1193))
+((-2720 (*1 *2 *3) (-12 (-4 *4 (-330)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 *3)) (-5 *2 (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-639 *3)))) (-5 *1 (-1193 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))) (-2670 (*1 *2) (-12 (-4 *3 (-330)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 *4)) (-5 *2 (-2 (|:| -3523 (-639 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-639 *4)))) (-5 *1 (-1193 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5)))))
+(-10 -7 (-15 -2670 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))))) (-15 -2720 ((-2 (|:| -3523 (-639 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-639 |#2|))) |#2|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 43)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) NIL)) (-3481 (((-110) $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2265 (((-806) $) 64) (($ (-531)) NIL) ((|#4| $) 54) (($ |#4|) 49) (($ |#1|) NIL (|has| |#1| (-162)))) (-2284 (((-721)) NIL)) (-3575 (((-1189) (-721)) 16)) (-3035 (($) 27 T CONST)) (-3050 (($) 67 T CONST)) (-2148 (((-110) $ $) 69)) (-2263 (((-3 $ "failed") $ $) NIL (|has| |#1| (-344)))) (-2250 (($ $) 71) (($ $ $) NIL)) (-2237 (($ $ $) 47)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 73) (($ |#1| $) NIL (|has| |#1| (-162))) (($ $ |#1|) NIL (|has| |#1| (-162)))))
+(((-1194 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-986) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2265 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2263 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2265 ($ |#4|)) (-15 -3575 ((-1189) (-721))))) (-986) (-797) (-743) (-892 |#1| |#3| |#2|) (-598 |#2|) (-598 (-721)) (-721)) (T -1194))
+((-2265 (*1 *2 *1) (-12 (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-1194 *3 *4 *5 *2 *6 *7 *8)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-14 *6 (-598 *4)) (-14 *7 (-598 (-721))) (-14 *8 (-721)))) (-2263 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-344)) (-4 *2 (-986)) (-4 *3 (-797)) (-4 *4 (-743)) (-14 *6 (-598 *3)) (-5 *1 (-1194 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-892 *2 *4 *3)) (-14 *7 (-598 (-721))) (-14 *8 (-721)))) (-2265 (*1 *1 *2) (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-14 *6 (-598 *4)) (-5 *1 (-1194 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-892 *3 *5 *4)) (-14 *7 (-598 (-721))) (-14 *8 (-721)))) (-3575 (*1 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-4 *5 (-797)) (-4 *6 (-743)) (-14 *8 (-598 *5)) (-5 *2 (-1189)) (-5 *1 (-1194 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-892 *4 *6 *5)) (-14 *9 (-598 *3)) (-14 *10 *3))))
+(-13 (-986) (-10 -8 (IF (|has| |#1| (-162)) (-6 (-37 |#1|)) |%noBranch|) (-15 -2265 (|#4| $)) (IF (|has| |#1| (-344)) (-15 -2263 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -2265 ($ |#4|)) (-15 -3575 ((-1189) (-721)))))
+((-2247 (((-110) $ $) NIL)) (-3663 (((-598 (-2 (|:| -2259 $) (|:| -1833 (-598 |#4|)))) (-598 |#4|)) NIL)) (-2855 (((-598 $) (-598 |#4|)) 88)) (-2695 (((-598 |#3|) $) NIL)) (-1625 (((-110) $) NIL)) (-1983 (((-110) $) NIL (|has| |#1| (-523)))) (-3823 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3911 ((|#4| |#4| $) NIL)) (-1332 (((-2 (|:| |under| $) (|:| -2943 $) (|:| |upper| $)) $ |#3|) NIL)) (-4058 (((-110) $ (-721)) NIL)) (-2177 (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273))) (((-3 |#4| "failed") $ |#3|) NIL)) (-4082 (($) NIL T CONST)) (-3145 (((-110) $) NIL (|has| |#1| (-523)))) (-2405 (((-110) $ $) NIL (|has| |#1| (-523)))) (-1657 (((-110) $ $) NIL (|has| |#1| (-523)))) (-3178 (((-110) $) NIL (|has| |#1| (-523)))) (-4221 (((-598 |#4|) (-598 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) 28)) (-2339 (((-598 |#4|) (-598 |#4|) $) 25 (|has| |#1| (-523)))) (-3360 (((-598 |#4|) (-598 |#4|) $) NIL (|has| |#1| (-523)))) (-3154 (((-3 $ "failed") (-598 |#4|)) NIL)) (-2523 (($ (-598 |#4|)) NIL)) (-3062 (((-3 $ "failed") $) 70)) (-3785 ((|#4| |#4| $) 75)) (-3086 (($ $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-2283 (($ |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (($ (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4124 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2125 (((-110) |#4| $ (-1 (-110) |#4| |#4|)) NIL)) (-2551 ((|#4| |#4| $) NIL)) (-1760 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4273))) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4273))) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-4160 (((-2 (|:| -2259 (-598 |#4|)) (|:| -1833 (-598 |#4|))) $) NIL)) (-2227 (((-598 |#4|) $) NIL (|has| $ (-6 -4273)))) (-1426 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-4075 ((|#3| $) 76)) (-3280 (((-110) $ (-721)) NIL)) (-2445 (((-598 |#4|) $) 29 (|has| $ (-6 -4273)))) (-1883 (((-110) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030))))) (-1345 (((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 32) (((-3 $ "failed") (-598 |#4|)) 35)) (-2680 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4274)))) (-3261 (($ (-1 |#4| |#4|) $) NIL)) (-3951 (((-598 |#3|) $) NIL)) (-4081 (((-110) |#3| $) NIL)) (-3332 (((-110) $ (-721)) NIL)) (-1521 (((-1085) $) NIL)) (-2309 (((-3 |#4| "failed") $) NIL)) (-1979 (((-598 |#4|) $) 50)) (-2009 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-1279 ((|#4| |#4| $) 74)) (-1744 (((-110) $ $) 85)) (-3065 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-523)))) (-2421 (((-110) |#4| $) NIL) (((-110) $) NIL)) (-3044 ((|#4| |#4| $) NIL)) (-2529 (((-1049) $) NIL)) (-3046 (((-3 |#4| "failed") $) 69)) (-4190 (((-3 |#4| "failed") (-1 (-110) |#4|) $) NIL)) (-3032 (((-3 $ "failed") $ |#4|) NIL)) (-1846 (($ $ |#4|) NIL)) (-2294 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-4115 (($ $ (-598 |#4|) (-598 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-276 |#4|)) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030)))) (($ $ (-598 (-276 |#4|))) NIL (-12 (|has| |#4| (-291 |#4|)) (|has| |#4| (-1030))))) (-2019 (((-110) $ $) NIL)) (-1589 (((-110) $) 67)) (-3781 (($) 42)) (-2012 (((-721) $) NIL)) (-2539 (((-721) |#4| $) NIL (-12 (|has| $ (-6 -4273)) (|has| |#4| (-1030)))) (((-721) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-2480 (($ $) NIL)) (-3318 (((-507) $) NIL (|has| |#4| (-573 (-507))))) (-2274 (($ (-598 |#4|)) NIL)) (-3382 (($ $ |#3|) NIL)) (-2021 (($ $ |#3|) NIL)) (-2862 (($ $) NIL)) (-3593 (($ $ |#3|) NIL)) (-2265 (((-806) $) NIL) (((-598 |#4|) $) 57)) (-3873 (((-721) $) NIL (|has| |#3| (-349)))) (-2667 (((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 40) (((-3 $ "failed") (-598 |#4|)) 41)) (-2308 (((-598 $) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|)) 65) (((-598 $) (-598 |#4|)) 66)) (-1507 (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4| |#4|)) 24) (((-3 (-2 (|:| |bas| $) (|:| -1573 (-598 |#4|))) "failed") (-598 |#4|) (-1 (-110) |#4|) (-1 (-110) |#4| |#4|)) NIL)) (-1363 (((-110) $ (-1 (-110) |#4| (-598 |#4|))) NIL)) (-2060 (((-110) (-1 (-110) |#4|) $) NIL (|has| $ (-6 -4273)))) (-1646 (((-598 |#3|) $) NIL)) (-1697 (((-110) |#3| $) NIL)) (-2148 (((-110) $ $) NIL)) (-2167 (((-721) $) NIL (|has| $ (-6 -4273)))))
+(((-1195 |#1| |#2| |#3| |#4|) (-13 (-1132 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1345 ((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1345 ((-3 $ "failed") (-598 |#4|))) (-15 -2667 ((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2667 ((-3 $ "failed") (-598 |#4|))) (-15 -2308 ((-598 $) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2308 ((-598 $) (-598 |#4|))))) (-523) (-743) (-797) (-1000 |#1| |#2| |#3|)) (T -1195))
+((-1345 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1195 *5 *6 *7 *8)))) (-1345 (*1 *1 *2) (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-1195 *3 *4 *5 *6)))) (-2667 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1195 *5 *6 *7 *8)))) (-2667 (*1 *1 *2) (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-1195 *3 *4 *5 *6)))) (-2308 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-598 *9)) (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743)) (-4 *8 (-797)) (-5 *2 (-598 (-1195 *6 *7 *8 *9))) (-5 *1 (-1195 *6 *7 *8 *9)))) (-2308 (*1 *2 *3) (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-1195 *4 *5 *6 *7))) (-5 *1 (-1195 *4 *5 *6 *7)))))
+(-13 (-1132 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1345 ((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -1345 ((-3 $ "failed") (-598 |#4|))) (-15 -2667 ((-3 $ "failed") (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2667 ((-3 $ "failed") (-598 |#4|))) (-15 -2308 ((-598 $) (-598 |#4|) (-1 (-110) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -2308 ((-598 $) (-598 |#4|)))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-2128 (((-3 $ "failed") $ $) 19)) (-4082 (($) 17 T CONST)) (-3622 (((-3 $ "failed") $) 32)) (-3481 (((-110) $) 30)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#1|) 36)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ |#1|) 38) (($ |#1| $) 37)))
+(((-1196 |#1|) (-133) (-986)) (T -1196))
+((-2265 (*1 *1 *2) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-986)))))
+(-13 (-986) (-109 |t#1| |t#1|) (-10 -8 (-15 -2265 ($ |t#1|)) (IF (|has| |t#1| (-162)) (-6 (-37 |t#1|)) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#1|) |has| |#1| (-162)) ((-99) . T) ((-109 |#1| |#1|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 |#1|) |has| |#1| (-162)) ((-677) . T) ((-992 |#1|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T))
+((-2247 (((-110) $ $) 60)) (-3019 (((-110) $) NIL)) (-3798 (((-598 |#1|) $) 45)) (-2879 (($ $ (-721)) 39)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3855 (($ $ (-721)) 18 (|has| |#2| (-162))) (($ $ $) 19 (|has| |#2| (-162)))) (-4082 (($) NIL T CONST)) (-2489 (($ $ $) 63) (($ $ (-769 |#1|)) 49) (($ $ |#1|) 53)) (-3154 (((-3 (-769 |#1|) "failed") $) NIL)) (-2523 (((-769 |#1|) $) NIL)) (-2500 (($ $) 32)) (-3622 (((-3 $ "failed") $) NIL)) (-2513 (((-110) $) NIL)) (-1904 (($ $) NIL)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-769 |#1|) |#2|) 31)) (-4104 (($ $) 33)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) 12)) (-2703 (((-769 |#1|) $) NIL)) (-1488 (((-769 |#1|) $) 34)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2931 (($ $ $) 62) (($ $ (-769 |#1|)) 51) (($ $ |#1|) 55)) (-3226 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2462 (((-769 |#1|) $) 28)) (-2475 ((|#2| $) 30)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2012 (((-721) $) 36)) (-3012 (((-110) $) 40)) (-2651 ((|#2| $) NIL)) (-2265 (((-806) $) NIL) (($ (-769 |#1|)) 24) (($ |#1|) 25) (($ |#2|) NIL) (($ (-531)) NIL)) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-769 |#1|)) NIL)) (-2005 ((|#2| $ $) 65) ((|#2| $ (-769 |#1|)) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) 13 T CONST)) (-3050 (($) 15 T CONST)) (-2400 (((-598 (-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2148 (((-110) $ $) 38)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 22)) (** (($ $ (-721)) NIL) (($ $ (-864)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ |#2| $) 21) (($ $ |#2|) 61) (($ |#2| (-769 |#1|)) NIL) (($ |#1| $) 27) (($ $ $) NIL)))
+(((-1197 |#1| |#2|) (-13 (-363 |#2| (-769 |#1|)) (-1203 |#1| |#2|)) (-797) (-986)) (T -1197))
+NIL
+(-13 (-363 |#2| (-769 |#1|)) (-1203 |#1| |#2|))
+((-2076 ((|#3| |#3| (-721)) 23)) (-2798 ((|#3| |#3| (-721)) 27)) (-1451 ((|#3| |#3| |#3| (-721)) 28)))
+(((-1198 |#1| |#2| |#3|) (-10 -7 (-15 -2798 (|#3| |#3| (-721))) (-15 -2076 (|#3| |#3| (-721))) (-15 -1451 (|#3| |#3| |#3| (-721)))) (-13 (-986) (-668 (-388 (-531)))) (-797) (-1203 |#2| |#1|)) (T -1198))
+((-1451 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-2076 (*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))) (-2798 (*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531))))) (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))))
+(-10 -7 (-15 -2798 (|#3| |#3| (-721))) (-15 -2076 (|#3| |#3| (-721))) (-15 -1451 (|#3| |#3| |#3| (-721))))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3798 (((-598 |#1|) $) 38)) (-2128 (((-3 $ "failed") $ $) 19)) (-3855 (($ $ $) 41 (|has| |#2| (-162))) (($ $ (-721)) 40 (|has| |#2| (-162)))) (-4082 (($) 17 T CONST)) (-2489 (($ $ |#1|) 52) (($ $ (-769 |#1|)) 51) (($ $ $) 50)) (-3154 (((-3 (-769 |#1|) "failed") $) 62)) (-2523 (((-769 |#1|) $) 61)) (-3622 (((-3 $ "failed") $) 32)) (-2513 (((-110) $) 43)) (-1904 (($ $) 42)) (-3481 (((-110) $) 30)) (-3380 (((-110) $) 48)) (-4007 (($ (-769 |#1|) |#2|) 49)) (-4104 (($ $) 47)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) 58)) (-2703 (((-769 |#1|) $) 59)) (-3261 (($ (-1 |#2| |#2|) $) 39)) (-2931 (($ $ |#1|) 55) (($ $ (-769 |#1|)) 54) (($ $ $) 53)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-3012 (((-110) $) 45)) (-2651 ((|#2| $) 44)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#2|) 66) (($ (-769 |#1|)) 63) (($ |#1|) 46)) (-2005 ((|#2| $ (-769 |#1|)) 57) ((|#2| $ $) 56)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
+(((-1199 |#1| |#2|) (-133) (-797) (-986)) (T -1199))
+((* (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2703 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-769 *3)))) (-3039 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-2 (|:| |k| (-769 *3)) (|:| |c| *4))))) (-2005 (*1 *2 *1 *3) (-12 (-5 *3 (-769 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-797)) (-4 *2 (-986)))) (-2005 (*1 *2 *1 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) (-2931 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2931 (*1 *1 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2489 (*1 *1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2489 (*1 *1 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))) (-2489 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-4007 (*1 *1 *2 *3) (-12 (-5 *2 (-769 *4)) (-4 *4 (-797)) (-4 *1 (-1199 *4 *3)) (-4 *3 (-986)))) (-3380 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-110)))) (-4104 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-2265 (*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-110)))) (-2651 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986)))) (-2513 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-110)))) (-1904 (*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))) (-3855 (*1 *1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)) (-4 *3 (-162)))) (-3855 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-4 *4 (-162)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))) (-3798 (*1 *2 *1) (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-598 *3)))))
+(-13 (-986) (-1196 |t#2|) (-977 (-769 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -2703 ((-769 |t#1|) $)) (-15 -3039 ((-2 (|:| |k| (-769 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -2005 (|t#2| $ (-769 |t#1|))) (-15 -2005 (|t#2| $ $)) (-15 -2931 ($ $ |t#1|)) (-15 -2931 ($ $ (-769 |t#1|))) (-15 -2931 ($ $ $)) (-15 -2489 ($ $ |t#1|)) (-15 -2489 ($ $ (-769 |t#1|))) (-15 -2489 ($ $ $)) (-15 -4007 ($ (-769 |t#1|) |t#2|)) (-15 -3380 ((-110) $)) (-15 -4104 ($ $)) (-15 -2265 ($ |t#1|)) (-15 -3012 ((-110) $)) (-15 -2651 (|t#2| $)) (-15 -2513 ((-110) $)) (-15 -1904 ($ $)) (IF (|has| |t#2| (-162)) (PROGN (-15 -3855 ($ $ $)) (-15 -3855 ($ $ (-721)))) |%noBranch|) (-15 -3261 ($ (-1 |t#2| |t#2|) $)) (-15 -3798 ((-598 |t#1|) $)) (IF (|has| |t#2| (-6 -4266)) (-6 -4266) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#2|) . T) ((-601 $) . T) ((-668 |#2|) |has| |#2| (-162)) ((-677) . T) ((-977 (-769 |#1|)) . T) ((-992 |#2|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1196 |#2|) . T))
+((-2330 (((-110) $) 15)) (-1697 (((-110) $) 14)) (-2730 (($ $) 19) (($ $ (-721)) 20)))
+(((-1200 |#1| |#2|) (-10 -8 (-15 -2730 (|#1| |#1| (-721))) (-15 -2730 (|#1| |#1|)) (-15 -2330 ((-110) |#1|)) (-15 -1697 ((-110) |#1|))) (-1201 |#2|) (-344)) (T -1200))
+NIL
+(-10 -8 (-15 -2730 (|#1| |#1| (-721))) (-15 -2730 (|#1| |#1|)) (-15 -2330 ((-110) |#1|)) (-15 -1697 ((-110) |#1|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3543 (((-2 (|:| -3887 $) (|:| -4260 $) (|:| |associate| $)) $) 39)) (-3258 (($ $) 38)) (-2921 (((-110) $) 36)) (-2330 (((-110) $) 91)) (-2675 (((-721)) 87)) (-2128 (((-3 $ "failed") $ $) 19)) (-3240 (($ $) 70)) (-2956 (((-399 $) $) 69)) (-2760 (((-110) $ $) 57)) (-4082 (($) 17 T CONST)) (-3154 (((-3 |#1| "failed") $) 98)) (-2523 ((|#1| $) 97)) (-3650 (($ $ $) 53)) (-3622 (((-3 $ "failed") $) 32)) (-3630 (($ $ $) 54)) (-2434 (((-2 (|:| -2005 (-598 $)) (|:| -1861 $)) (-598 $)) 49)) (-3493 (($ $ (-721)) 84 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349)))) (($ $) 83 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2534 (((-110) $) 68)) (-3617 (((-783 (-864)) $) 81 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-3481 (((-110) $) 30)) (-3038 (((-3 (-598 $) "failed") (-598 $) $) 50)) (-2078 (($ $ $) 44) (($ (-598 $)) 43)) (-1521 (((-1085) $) 9)) (-2422 (($ $) 67)) (-3693 (((-110) $) 90)) (-2529 (((-1049) $) 10)) (-2993 (((-1098 $) (-1098 $) (-1098 $)) 42)) (-2109 (($ $ $) 46) (($ (-598 $)) 45)) (-2552 (((-399 $) $) 71)) (-3717 (((-783 (-864))) 88)) (-2857 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -1861 $)) $ $) 52) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 51)) (-3609 (((-3 $ "failed") $ $) 40)) (-1995 (((-3 (-598 $) "failed") (-598 $) $) 48)) (-4100 (((-721) $) 56)) (-2100 (((-2 (|:| -2937 $) (|:| -4124 $)) $ $) 55)) (-2350 (((-3 (-721) "failed") $ $) 82 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2190 (((-130)) 96)) (-2012 (((-783 (-864)) $) 89)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ $) 41) (($ (-388 (-531))) 63) (($ |#1|) 99)) (-2750 (((-3 $ "failed") $) 80 (-1435 (|has| |#1| (-138)) (|has| |#1| (-349))))) (-2284 (((-721)) 28)) (-2587 (((-110) $ $) 37)) (-1697 (((-110) $) 92)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2730 (($ $) 86 (|has| |#1| (-349))) (($ $ (-721)) 85 (|has| |#1| (-349)))) (-2148 (((-110) $ $) 6)) (-2263 (($ $ $) 62) (($ $ |#1|) 95)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31) (($ $ (-531)) 66)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ $ (-388 (-531))) 65) (($ (-388 (-531)) $) 64) (($ $ |#1|) 94) (($ |#1| $) 93)))
+(((-1201 |#1|) (-133) (-344)) (T -1201))
+((-1697 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-2330 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-3693 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-783 (-864))))) (-3717 (*1 *2) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-783 (-864))))) (-2675 (*1 *2) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-721)))) (-2730 (*1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-344)) (-4 *2 (-349)))) (-2730 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-4 *3 (-349)))))
+(-13 (-344) (-977 |t#1|) (-1191 |t#1|) (-10 -8 (IF (|has| |t#1| (-140)) (-6 (-140)) |%noBranch|) (IF (|has| |t#1| (-138)) (-6 (-383)) |%noBranch|) (-15 -1697 ((-110) $)) (-15 -2330 ((-110) $)) (-15 -3693 ((-110) $)) (-15 -2012 ((-783 (-864)) $)) (-15 -3717 ((-783 (-864)))) (-15 -2675 ((-721))) (IF (|has| |t#1| (-349)) (PROGN (-6 (-383)) (-15 -2730 ($ $)) (-15 -2730 ($ $ (-721)))) |%noBranch|)))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 #0=(-388 (-531))) . T) ((-37 $) . T) ((-99) . T) ((-109 #0# #0#) . T) ((-109 |#1| |#1|) . T) ((-109 $ $) . T) ((-128) . T) ((-138) -1435 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-140) |has| |#1| (-140)) ((-572 (-806)) . T) ((-162) . T) ((-226) . T) ((-272) . T) ((-289) . T) ((-344) . T) ((-383) -1435 (|has| |#1| (-349)) (|has| |#1| (-138))) ((-432) . T) ((-523) . T) ((-601 #0#) . T) ((-601 |#1|) . T) ((-601 $) . T) ((-668 #0#) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-677) . T) ((-863) . T) ((-977 |#1|) . T) ((-992 #0#) . T) ((-992 |#1|) . T) ((-992 $) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1142) . T) ((-1191 |#1|) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3798 (((-598 |#1|) $) 86)) (-2879 (($ $ (-721)) 89)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3855 (($ $ $) NIL (|has| |#2| (-162))) (($ $ (-721)) NIL (|has| |#2| (-162)))) (-4082 (($) NIL T CONST)) (-2489 (($ $ |#1|) NIL) (($ $ (-769 |#1|)) NIL) (($ $ $) NIL)) (-3154 (((-3 (-769 |#1|) "failed") $) NIL) (((-3 (-836 |#1|) "failed") $) NIL)) (-2523 (((-769 |#1|) $) NIL) (((-836 |#1|) $) NIL)) (-2500 (($ $) 88)) (-3622 (((-3 $ "failed") $) NIL)) (-2513 (((-110) $) 77)) (-1904 (($ $) 81)) (-3488 (($ $ $ (-721)) 90)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-769 |#1|) |#2|) NIL) (($ (-836 |#1|) |#2|) 26)) (-4104 (($ $) 103)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2703 (((-769 |#1|) $) NIL)) (-1488 (((-769 |#1|) $) NIL)) (-3261 (($ (-1 |#2| |#2|) $) NIL)) (-2931 (($ $ |#1|) NIL) (($ $ (-769 |#1|)) NIL) (($ $ $) NIL)) (-2076 (($ $ (-721)) 97 (|has| |#2| (-668 (-388 (-531)))))) (-3226 (((-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2462 (((-836 |#1|) $) 70)) (-2475 ((|#2| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2798 (($ $ (-721)) 94 (|has| |#2| (-668 (-388 (-531)))))) (-2012 (((-721) $) 87)) (-3012 (((-110) $) 71)) (-2651 ((|#2| $) 75)) (-2265 (((-806) $) 57) (($ (-531)) NIL) (($ |#2|) 51) (($ (-769 |#1|)) NIL) (($ |#1|) 59) (($ (-836 |#1|)) NIL) (($ (-617 |#1| |#2|)) 43) (((-1197 |#1| |#2|) $) 64) (((-1206 |#1| |#2|) $) 69)) (-2708 (((-598 |#2|) $) NIL)) (-3188 ((|#2| $ (-836 |#1|)) NIL)) (-2005 ((|#2| $ (-769 |#1|)) NIL) ((|#2| $ $) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) 21 T CONST)) (-3050 (($) 25 T CONST)) (-2400 (((-598 (-2 (|:| |k| (-836 |#1|)) (|:| |c| |#2|))) $) NIL)) (-2802 (((-3 (-617 |#1| |#2|) "failed") $) 102)) (-2148 (((-110) $ $) 65)) (-2250 (($ $) 96) (($ $ $) 95)) (-2237 (($ $ $) 20)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 44) (($ |#2| $) 19) (($ $ |#2|) NIL) (($ |#1| $) NIL) (($ |#2| (-836 |#1|)) NIL)))
+(((-1202 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-363 |#2| (-836 |#1|)) (-10 -8 (-15 -2265 ($ (-617 |#1| |#2|))) (-15 -2265 ((-1197 |#1| |#2|) $)) (-15 -2265 ((-1206 |#1| |#2|) $)) (-15 -2802 ((-3 (-617 |#1| |#2|) "failed") $)) (-15 -3488 ($ $ $ (-721))) (IF (|has| |#2| (-668 (-388 (-531)))) (PROGN (-15 -2798 ($ $ (-721))) (-15 -2076 ($ $ (-721)))) |%noBranch|))) (-797) (-162)) (T -1202))
+((-2265 (*1 *1 *2) (-12 (-5 *2 (-617 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)) (-5 *1 (-1202 *3 *4)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2265 (*1 *2 *1) (-12 (-5 *2 (-1206 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2802 (*1 *2 *1) (|partial| -12 (-5 *2 (-617 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-3488 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162)))) (-2798 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-668 (-388 (-531)))) (-4 *3 (-797)) (-4 *4 (-162)))) (-2076 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) (-4 *4 (-668 (-388 (-531)))) (-4 *3 (-797)) (-4 *4 (-162)))))
+(-13 (-1203 |#1| |#2|) (-363 |#2| (-836 |#1|)) (-10 -8 (-15 -2265 ($ (-617 |#1| |#2|))) (-15 -2265 ((-1197 |#1| |#2|) $)) (-15 -2265 ((-1206 |#1| |#2|) $)) (-15 -2802 ((-3 (-617 |#1| |#2|) "failed") $)) (-15 -3488 ($ $ $ (-721))) (IF (|has| |#2| (-668 (-388 (-531)))) (PROGN (-15 -2798 ($ $ (-721))) (-15 -2076 ($ $ (-721)))) |%noBranch|)))
+((-2247 (((-110) $ $) 7)) (-3019 (((-110) $) 16)) (-3798 (((-598 |#1|) $) 38)) (-2879 (($ $ (-721)) 71)) (-2128 (((-3 $ "failed") $ $) 19)) (-3855 (($ $ $) 41 (|has| |#2| (-162))) (($ $ (-721)) 40 (|has| |#2| (-162)))) (-4082 (($) 17 T CONST)) (-2489 (($ $ |#1|) 52) (($ $ (-769 |#1|)) 51) (($ $ $) 50)) (-3154 (((-3 (-769 |#1|) "failed") $) 62)) (-2523 (((-769 |#1|) $) 61)) (-3622 (((-3 $ "failed") $) 32)) (-2513 (((-110) $) 43)) (-1904 (($ $) 42)) (-3481 (((-110) $) 30)) (-3380 (((-110) $) 48)) (-4007 (($ (-769 |#1|) |#2|) 49)) (-4104 (($ $) 47)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) 58)) (-2703 (((-769 |#1|) $) 59)) (-1488 (((-769 |#1|) $) 73)) (-3261 (($ (-1 |#2| |#2|) $) 39)) (-2931 (($ $ |#1|) 55) (($ $ (-769 |#1|)) 54) (($ $ $) 53)) (-1521 (((-1085) $) 9)) (-2529 (((-1049) $) 10)) (-2012 (((-721) $) 72)) (-3012 (((-110) $) 45)) (-2651 ((|#2| $) 44)) (-2265 (((-806) $) 11) (($ (-531)) 27) (($ |#2|) 66) (($ (-769 |#1|)) 63) (($ |#1|) 46)) (-2005 ((|#2| $ (-769 |#1|)) 57) ((|#2| $ $) 56)) (-2284 (((-721)) 28)) (-3035 (($) 18 T CONST)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 6)) (-2250 (($ $) 22) (($ $ $) 21)) (-2237 (($ $ $) 14)) (** (($ $ (-864)) 25) (($ $ (-721)) 31)) (* (($ (-864) $) 13) (($ (-721) $) 15) (($ (-531) $) 20) (($ $ $) 24) (($ |#2| $) 65) (($ $ |#2|) 64) (($ |#1| $) 60)))
+(((-1203 |#1| |#2|) (-133) (-797) (-986)) (T -1203))
+((-1488 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-769 *3)))) (-2012 (*1 *2 *1) (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *2 (-721)))) (-2879 (*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))))
+(-13 (-1199 |t#1| |t#2|) (-10 -8 (-15 -1488 ((-769 |t#1|) $)) (-15 -2012 ((-721) $)) (-15 -2879 ($ $ (-721)))))
+(((-21) . T) ((-23) . T) ((-25) . T) ((-37 |#2|) |has| |#2| (-162)) ((-99) . T) ((-109 |#2| |#2|) . T) ((-128) . T) ((-572 (-806)) . T) ((-601 |#2|) . T) ((-601 $) . T) ((-668 |#2|) |has| |#2| (-162)) ((-677) . T) ((-977 (-769 |#1|)) . T) ((-992 |#2|) . T) ((-986) . T) ((-993) . T) ((-1042) . T) ((-1030) . T) ((-1196 |#2|) . T) ((-1199 |#1| |#2|) . T))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-3798 (((-598 (-1102)) $) NIL)) (-1229 (($ (-1197 (-1102) |#1|)) NIL)) (-2879 (($ $ (-721)) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3855 (($ $ $) NIL (|has| |#1| (-162))) (($ $ (-721)) NIL (|has| |#1| (-162)))) (-4082 (($) NIL T CONST)) (-2489 (($ $ (-1102)) NIL) (($ $ (-769 (-1102))) NIL) (($ $ $) NIL)) (-3154 (((-3 (-769 (-1102)) "failed") $) NIL)) (-2523 (((-769 (-1102)) $) NIL)) (-3622 (((-3 $ "failed") $) NIL)) (-2513 (((-110) $) NIL)) (-1904 (($ $) NIL)) (-3481 (((-110) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-769 (-1102)) |#1|) NIL)) (-4104 (($ $) NIL)) (-3039 (((-2 (|:| |k| (-769 (-1102))) (|:| |c| |#1|)) $) NIL)) (-2703 (((-769 (-1102)) $) NIL)) (-1488 (((-769 (-1102)) $) NIL)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-2931 (($ $ (-1102)) NIL) (($ $ (-769 (-1102))) NIL) (($ $ $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2140 (((-1197 (-1102) |#1|) $) NIL)) (-2012 (((-721) $) NIL)) (-3012 (((-110) $) NIL)) (-2651 ((|#1| $) NIL)) (-2265 (((-806) $) NIL) (($ (-531)) NIL) (($ |#1|) NIL) (($ (-769 (-1102))) NIL) (($ (-1102)) NIL)) (-2005 ((|#1| $ (-769 (-1102))) NIL) ((|#1| $ $) NIL)) (-2284 (((-721)) NIL)) (-3035 (($) NIL T CONST)) (-3754 (((-598 (-2 (|:| |k| (-1102)) (|:| |c| $))) $) NIL)) (-3050 (($) NIL T CONST)) (-2148 (((-110) $ $) NIL)) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) NIL)) (** (($ $ (-864)) NIL) (($ $ (-721)) NIL)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) NIL) (($ |#1| $) NIL) (($ $ |#1|) NIL) (($ (-1102) $) NIL)))
+(((-1204 |#1|) (-13 (-1203 (-1102) |#1|) (-10 -8 (-15 -2140 ((-1197 (-1102) |#1|) $)) (-15 -1229 ($ (-1197 (-1102) |#1|))) (-15 -3754 ((-598 (-2 (|:| |k| (-1102)) (|:| |c| $))) $)))) (-986)) (T -1204))
+((-2140 (*1 *2 *1) (-12 (-5 *2 (-1197 (-1102) *3)) (-5 *1 (-1204 *3)) (-4 *3 (-986)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-1197 (-1102) *3)) (-4 *3 (-986)) (-5 *1 (-1204 *3)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |k| (-1102)) (|:| |c| (-1204 *3))))) (-5 *1 (-1204 *3)) (-4 *3 (-986)))))
+(-13 (-1203 (-1102) |#1|) (-10 -8 (-15 -2140 ((-1197 (-1102) |#1|) $)) (-15 -1229 ($ (-1197 (-1102) |#1|))) (-15 -3754 ((-598 (-2 (|:| |k| (-1102)) (|:| |c| $))) $))))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) NIL)) (-2128 (((-3 $ "failed") $ $) NIL)) (-4082 (($) NIL T CONST)) (-3154 (((-3 |#2| "failed") $) NIL)) (-2523 ((|#2| $) NIL)) (-2500 (($ $) NIL)) (-3622 (((-3 $ "failed") $) 36)) (-2513 (((-110) $) 30)) (-1904 (($ $) 32)) (-3481 (((-110) $) NIL)) (-3517 (((-721) $) NIL)) (-1230 (((-598 $) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ |#2| |#1|) NIL)) (-2703 ((|#2| $) 19)) (-1488 ((|#2| $) 16)) (-3261 (($ (-1 |#1| |#1|) $) NIL)) (-3226 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL)) (-2462 ((|#2| $) NIL)) (-2475 ((|#1| $) NIL)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-3012 (((-110) $) 27)) (-2651 ((|#1| $) 28)) (-2265 (((-806) $) 55) (($ (-531)) 40) (($ |#1|) 35) (($ |#2|) NIL)) (-2708 (((-598 |#1|) $) NIL)) (-3188 ((|#1| $ |#2|) NIL)) (-2005 ((|#1| $ |#2|) 24)) (-2284 (((-721)) 14)) (-3035 (($) 25 T CONST)) (-3050 (($) 11 T CONST)) (-2400 (((-598 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL)) (-2148 (((-110) $ $) 26)) (-2263 (($ $ |#1|) 57 (|has| |#1| (-344)))) (-2250 (($ $) NIL) (($ $ $) NIL)) (-2237 (($ $ $) 44)) (** (($ $ (-864)) NIL) (($ $ (-721)) 46)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) NIL) (($ $ $) 45) (($ |#1| $) 41) (($ $ |#1|) NIL) (($ |#1| |#2|) NIL)) (-2167 (((-721) $) 15)))
+(((-1205 |#1| |#2|) (-13 (-986) (-1196 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2167 ((-721) $)) (-15 -2265 ($ |#2|)) (-15 -1488 (|#2| $)) (-15 -2703 (|#2| $)) (-15 -2500 ($ $)) (-15 -2005 (|#1| $ |#2|)) (-15 -3012 ((-110) $)) (-15 -2651 (|#1| $)) (-15 -2513 ((-110) $)) (-15 -1904 ($ $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2263 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4270)) (-6 -4270) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|))) (-986) (-793)) (T -1205))
+((* (*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))) (-2500 (*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))) (-3261 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-1205 *3 *4)) (-4 *4 (-793)))) (-2265 (*1 *1 *2) (-12 (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)) (-4 *2 (-793)))) (-2167 (*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) (-4 *4 (-793)))) (-1488 (*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)))) (-2703 (*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)))) (-2005 (*1 *2 *1 *3) (-12 (-4 *2 (-986)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-793)))) (-3012 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) (-4 *4 (-793)))) (-2651 (*1 *2 *1) (-12 (-4 *2 (-986)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-793)))) (-2513 (*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986)) (-4 *4 (-793)))) (-1904 (*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))) (-2263 (*1 *1 *1 *2) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-344)) (-4 *2 (-986)) (-4 *3 (-793)))))
+(-13 (-986) (-1196 |#1|) (-363 |#1| |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -2167 ((-721) $)) (-15 -2265 ($ |#2|)) (-15 -1488 (|#2| $)) (-15 -2703 (|#2| $)) (-15 -2500 ($ $)) (-15 -2005 (|#1| $ |#2|)) (-15 -3012 ((-110) $)) (-15 -2651 (|#1| $)) (-15 -2513 ((-110) $)) (-15 -1904 ($ $)) (-15 -3261 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-344)) (-15 -2263 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4266)) (-6 -4266) |%noBranch|) (IF (|has| |#1| (-6 -4270)) (-6 -4270) |%noBranch|) (IF (|has| |#1| (-6 -4271)) (-6 -4271) |%noBranch|)))
+((-2247 (((-110) $ $) 26)) (-3019 (((-110) $) NIL)) (-3798 (((-598 |#1|) $) 120)) (-1229 (($ (-1197 |#1| |#2|)) 44)) (-2879 (($ $ (-721)) 32)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3855 (($ $ $) 48 (|has| |#2| (-162))) (($ $ (-721)) 46 (|has| |#2| (-162)))) (-4082 (($) NIL T CONST)) (-2489 (($ $ |#1|) 102) (($ $ (-769 |#1|)) 103) (($ $ $) 25)) (-3154 (((-3 (-769 |#1|) "failed") $) NIL)) (-2523 (((-769 |#1|) $) NIL)) (-3622 (((-3 $ "failed") $) 110)) (-2513 (((-110) $) 105)) (-1904 (($ $) 106)) (-3481 (((-110) $) NIL)) (-3380 (((-110) $) NIL)) (-4007 (($ (-769 |#1|) |#2|) 19)) (-4104 (($ $) NIL)) (-3039 (((-2 (|:| |k| (-769 |#1|)) (|:| |c| |#2|)) $) NIL)) (-2703 (((-769 |#1|) $) 111)) (-1488 (((-769 |#1|) $) 114)) (-3261 (($ (-1 |#2| |#2|) $) 119)) (-2931 (($ $ |#1|) 100) (($ $ (-769 |#1|)) 101) (($ $ $) 56)) (-1521 (((-1085) $) NIL)) (-2529 (((-1049) $) NIL)) (-2140 (((-1197 |#1| |#2|) $) 84)) (-2012 (((-721) $) 117)) (-3012 (((-110) $) 70)) (-2651 ((|#2| $) 28)) (-2265 (((-806) $) 63) (($ (-531)) 77) (($ |#2|) 74) (($ (-769 |#1|)) 17) (($ |#1|) 73)) (-2005 ((|#2| $ (-769 |#1|)) 104) ((|#2| $ $) 27)) (-2284 (((-721)) 108)) (-3035 (($) 14 T CONST)) (-3754 (((-598 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 53)) (-3050 (($) 29 T CONST)) (-2148 (((-110) $ $) 13)) (-2250 (($ $) 88) (($ $ $) 91)) (-2237 (($ $ $) 55)) (** (($ $ (-864)) NIL) (($ $ (-721)) 49)) (* (($ (-864) $) NIL) (($ (-721) $) 47) (($ (-531) $) 94) (($ $ $) 21) (($ |#2| $) 18) (($ $ |#2|) 20) (($ |#1| $) 82)))
+(((-1206 |#1| |#2|) (-13 (-1203 |#1| |#2|) (-10 -8 (-15 -2140 ((-1197 |#1| |#2|) $)) (-15 -1229 ($ (-1197 |#1| |#2|))) (-15 -3754 ((-598 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-797) (-986)) (T -1206))
+((-2140 (*1 *2 *1) (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))) (-1229 (*1 *1 *2) (-12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)) (-5 *1 (-1206 *3 *4)))) (-3754 (*1 *2 *1) (-12 (-5 *2 (-598 (-2 (|:| |k| *3) (|:| |c| (-1206 *3 *4))))) (-5 *1 (-1206 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))))
+(-13 (-1203 |#1| |#2|) (-10 -8 (-15 -2140 ((-1197 |#1| |#2|) $)) (-15 -1229 ($ (-1197 |#1| |#2|))) (-15 -3754 ((-598 (-2 (|:| |k| |#1|) (|:| |c| $))) $))))
+((-4139 (((-598 (-1083 |#1|)) (-1 (-598 (-1083 |#1|)) (-598 (-1083 |#1|))) (-531)) 15) (((-1083 |#1|) (-1 (-1083 |#1|) (-1083 |#1|))) 11)))
+(((-1207 |#1|) (-10 -7 (-15 -4139 ((-1083 |#1|) (-1 (-1083 |#1|) (-1083 |#1|)))) (-15 -4139 ((-598 (-1083 |#1|)) (-1 (-598 (-1083 |#1|)) (-598 (-1083 |#1|))) (-531)))) (-1138)) (T -1207))
+((-4139 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-598 (-1083 *5)) (-598 (-1083 *5)))) (-5 *4 (-531)) (-5 *2 (-598 (-1083 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1138)))) (-4139 (*1 *2 *3) (-12 (-5 *3 (-1 (-1083 *4) (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1207 *4)) (-4 *4 (-1138)))))
+(-10 -7 (-15 -4139 ((-1083 |#1|) (-1 (-1083 |#1|) (-1083 |#1|)))) (-15 -4139 ((-598 (-1083 |#1|)) (-1 (-598 (-1083 |#1|)) (-598 (-1083 |#1|))) (-531))))
+((-3255 (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|))) 148) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110)) 147) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110)) 146) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110) (-110)) 145) (((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-983 |#1| |#2|)) 130)) (-2606 (((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|))) 72) (((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110)) 71) (((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110) (-110)) 70)) (-2956 (((-598 (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))) (-983 |#1| |#2|)) 61)) (-1489 (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|))) 115) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110)) 114) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110)) 113) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110) (-110)) 112) (((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|)) 107)) (-1438 (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|))) 120) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110)) 119) (((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110)) 118) (((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|)) 117)) (-3318 (((-598 (-730 |#1| (-808 |#3|))) (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))) 98) (((-1098 (-964 (-388 |#1|))) (-1098 |#1|)) 89) (((-895 (-964 (-388 |#1|))) (-730 |#1| (-808 |#3|))) 96) (((-895 (-964 (-388 |#1|))) (-895 |#1|)) 94) (((-730 |#1| (-808 |#3|)) (-730 |#1| (-808 |#2|))) 33)))
+(((-1208 |#1| |#2| |#3|) (-10 -7 (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110) (-110))) (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110))) (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-983 |#1| |#2|))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)))) (-15 -2956 ((-598 (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))) (-983 |#1| |#2|))) (-15 -3318 ((-730 |#1| (-808 |#3|)) (-730 |#1| (-808 |#2|)))) (-15 -3318 ((-895 (-964 (-388 |#1|))) (-895 |#1|))) (-15 -3318 ((-895 (-964 (-388 |#1|))) (-730 |#1| (-808 |#3|)))) (-15 -3318 ((-1098 (-964 (-388 |#1|))) (-1098 |#1|))) (-15 -3318 ((-598 (-730 |#1| (-808 |#3|))) (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))))) (-13 (-795) (-289) (-140) (-962)) (-598 (-1102)) (-598 (-1102))) (T -1208))
+((-3318 (*1 *2 *3) (-12 (-5 *3 (-1073 *4 (-503 (-808 *6)) (-808 *6) (-730 *4 (-808 *6)))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-730 *4 (-808 *6)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-1098 *4)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-1098 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-730 *4 (-808 *6))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *6 (-598 (-1102))) (-5 *2 (-895 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-895 *4)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-895 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-3318 (*1 *2 *3) (-12 (-5 *3 (-730 *4 (-808 *5))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-730 *4 (-808 *6))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-2956 (*1 *2 *3) (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-1073 *4 (-503 (-808 *6)) (-808 *6) (-730 *4 (-808 *6))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-1438 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1438 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1438 (*1 *2 *3) (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-1489 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1489 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1489 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-1489 (*1 *2 *3) (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-3255 (*1 *2 *3) (-12 (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-598 (-895 *4))) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-3255 (*1 *2 *3 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-3255 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-3255 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5)))))) (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5))) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-3255 (*1 *2 *3) (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4)))))) (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))) (-2606 (*1 *2 *3) (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-983 *4 *5))) (-5 *1 (-1208 *4 *5 *6)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))) (-2606 (*1 *2 *3 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))) (-2606 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962))) (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-1208 *5 *6 *7)) (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102))))))
+(-10 -7 (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110) (-110))) (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)) (-110))) (-15 -2606 ((-598 (-983 |#1| |#2|)) (-598 (-895 |#1|)))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-983 |#1| |#2|))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)) (-110))) (-15 -3255 ((-598 (-2 (|:| -3694 (-1098 |#1|)) (|:| -3348 (-598 (-895 |#1|))))) (-598 (-895 |#1|)))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110))) (-15 -1489 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-983 |#1| |#2|))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110) (-110))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)) (-110))) (-15 -1438 ((-598 (-598 (-964 (-388 |#1|)))) (-598 (-895 |#1|)))) (-15 -2956 ((-598 (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|)))) (-983 |#1| |#2|))) (-15 -3318 ((-730 |#1| (-808 |#3|)) (-730 |#1| (-808 |#2|)))) (-15 -3318 ((-895 (-964 (-388 |#1|))) (-895 |#1|))) (-15 -3318 ((-895 (-964 (-388 |#1|))) (-730 |#1| (-808 |#3|)))) (-15 -3318 ((-1098 (-964 (-388 |#1|))) (-1098 |#1|))) (-15 -3318 ((-598 (-730 |#1| (-808 |#3|))) (-1073 |#1| (-503 (-808 |#3|)) (-808 |#3|) (-730 |#1| (-808 |#3|))))))
+((-2463 (((-3 (-1184 (-388 (-531))) "failed") (-1184 |#1|) |#1|) 21)) (-3867 (((-110) (-1184 |#1|)) 12)) (-3827 (((-3 (-1184 (-531)) "failed") (-1184 |#1|)) 16)))
+(((-1209 |#1|) (-10 -7 (-15 -3867 ((-110) (-1184 |#1|))) (-15 -3827 ((-3 (-1184 (-531)) "failed") (-1184 |#1|))) (-15 -2463 ((-3 (-1184 (-388 (-531))) "failed") (-1184 |#1|) |#1|))) (-594 (-531))) (T -1209))
+((-2463 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) (-5 *2 (-1184 (-388 (-531)))) (-5 *1 (-1209 *4)))) (-3827 (*1 *2 *3) (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) (-5 *2 (-1184 (-531))) (-5 *1 (-1209 *4)))) (-3867 (*1 *2 *3) (-12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) (-5 *2 (-110)) (-5 *1 (-1209 *4)))))
+(-10 -7 (-15 -3867 ((-110) (-1184 |#1|))) (-15 -3827 ((-3 (-1184 (-531)) "failed") (-1184 |#1|))) (-15 -2463 ((-3 (-1184 (-388 (-531))) "failed") (-1184 |#1|) |#1|)))
+((-2247 (((-110) $ $) NIL)) (-3019 (((-110) $) 11)) (-2128 (((-3 $ "failed") $ $) NIL)) (-3006 (((-721)) 8)) (-4082 (($) NIL T CONST)) (-3622 (((-3 $ "failed") $) 43)) (-1381 (($) 36)) (-3481 (((-110) $) NIL)) (-2342 (((-3 $ "failed") $) 29)) (-2211 (((-864) $) 15)) (-1521 (((-1085) $) NIL)) (-3788 (($) 25 T CONST)) (-1889 (($ (-864)) 37)) (-2529 (((-1049) $) NIL)) (-3318 (((-531) $) 13)) (-2265 (((-806) $) 22) (($ (-531)) 19)) (-2284 (((-721)) 9)) (-3035 (($) 23 T CONST)) (-3050 (($) 24 T CONST)) (-2148 (((-110) $ $) 27)) (-2250 (($ $) 38) (($ $ $) 35)) (-2237 (($ $ $) 26)) (** (($ $ (-864)) NIL) (($ $ (-721)) 40)) (* (($ (-864) $) NIL) (($ (-721) $) NIL) (($ (-531) $) 32) (($ $ $) 31)))
+(((-1210 |#1|) (-13 (-162) (-349) (-573 (-531)) (-1078)) (-864)) (T -1210))
+NIL
+(-13 (-162) (-349) (-573 (-531)) (-1078))
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+NIL
+((-3 3139901 3139906 3139911 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-2 3139886 3139891 3139896 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1 3139871 3139876 3139881 NIL NIL NIL NIL (NIL) -8 NIL NIL) (0 3139856 3139861 3139866 NIL NIL NIL NIL (NIL) -8 NIL NIL) (-1210 3139032 3139731 3139808 "ZMOD" 3139813 NIL ZMOD (NIL NIL) -8 NIL NIL) (-1209 3138142 3138306 3138515 "ZLINDEP" 3138864 NIL ZLINDEP (NIL T) -7 NIL NIL) (-1208 3127546 3129291 3131243 "ZDSOLVE" 3136291 NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL) (-1207 3126792 3126933 3127122 "YSTREAM" 3127392 NIL YSTREAM (NIL T) -7 NIL NIL) (-1206 3124607 3126097 3126300 "XRPOLY" 3126635 NIL XRPOLY (NIL T T) -8 NIL NIL) (-1205 3121115 3122398 3122980 "XPR" 3124071 NIL XPR (NIL T T) -8 NIL NIL) (-1204 3118875 3120450 3120653 "XPOLY" 3120946 NIL XPOLY (NIL T) -8 NIL NIL) (-1203 3116733 3118067 3118121 "XPOLYC" 3118406 NIL XPOLYC (NIL T T) -9 NIL 3118519) (-1202 3113151 3115250 3115638 "XPBWPOLY" 3116391 NIL XPBWPOLY (NIL T T) -8 NIL NIL) (-1201 3109144 3111392 3111434 "XF" 3112055 NIL XF (NIL T) -9 NIL 3112454) (-1200 3108765 3108853 3109022 "XF-" 3109027 NIL XF- (NIL T T) -8 NIL NIL) (-1199 3104189 3105444 3105498 "XFALG" 3107646 NIL XFALG (NIL T T) -9 NIL 3108433) (-1198 3103326 3103430 3103634 "XEXPPKG" 3104081 NIL XEXPPKG (NIL T T T) -7 NIL NIL) (-1197 3101471 3103177 3103272 "XDPOLY" 3103277 NIL XDPOLY (NIL T T) -8 NIL NIL) (-1196 3100394 3100960 3101002 "XALG" 3101064 NIL XALG (NIL T) -9 NIL 3101183) (-1195 3093863 3098371 3098865 "WUTSET" 3099986 NIL WUTSET (NIL T T T T) -8 NIL NIL) (-1194 3091721 3092482 3092833 "WP" 3093645 NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL) (-1193 3090607 3090805 3091100 "WFFINTBS" 3091518 NIL WFFINTBS (NIL T T T T) -7 NIL NIL) (-1192 3088511 3088938 3089400 "WEIER" 3090179 NIL WEIER (NIL T) -7 NIL NIL) (-1191 3087660 3088084 3088126 "VSPACE" 3088262 NIL VSPACE (NIL T) -9 NIL 3088336) (-1190 3087498 3087525 3087616 "VSPACE-" 3087621 NIL VSPACE- (NIL T T) -8 NIL NIL) (-1189 3087244 3087287 3087358 "VOID" 3087449 T VOID (NIL) -8 NIL NIL) (-1188 3085380 3085739 3086145 "VIEW" 3086860 T VIEW (NIL) -7 NIL NIL) (-1187 3081805 3082443 3083180 "VIEWDEF" 3084665 T VIEWDEF (NIL) -7 NIL NIL) (-1186 3071143 3073353 3075526 "VIEW3D" 3079654 T VIEW3D (NIL) -8 NIL NIL) (-1185 3063425 3065054 3066633 "VIEW2D" 3069586 T VIEW2D (NIL) -8 NIL NIL) (-1184 3058834 3063195 3063287 "VECTOR" 3063368 NIL VECTOR (NIL T) -8 NIL NIL) (-1183 3057411 3057670 3057988 "VECTOR2" 3058564 NIL VECTOR2 (NIL T T) -7 NIL NIL) (-1182 3050951 3055203 3055246 "VECTCAT" 3056234 NIL VECTCAT (NIL T) -9 NIL 3056818) (-1181 3049965 3050219 3050609 "VECTCAT-" 3050614 NIL VECTCAT- (NIL T T) -8 NIL NIL) (-1180 3049446 3049616 3049736 "VARIABLE" 3049880 NIL VARIABLE (NIL NIL) -8 NIL NIL) (-1179 3049379 3049384 3049414 "UTYPE" 3049419 T UTYPE (NIL) -9 NIL NIL) (-1178 3048214 3048368 3048629 "UTSODETL" 3049205 NIL UTSODETL (NIL T T T T) -7 NIL NIL) (-1177 3045654 3046114 3046638 "UTSODE" 3047755 NIL UTSODE (NIL T T) -7 NIL NIL) (-1176 3037544 3043294 3043782 "UTS" 3045223 NIL UTS (NIL T NIL NIL) -8 NIL NIL) (-1175 3028935 3034254 3034296 "UTSCAT" 3035397 NIL UTSCAT (NIL T) -9 NIL 3036154) (-1174 3026290 3027006 3027994 "UTSCAT-" 3027999 NIL UTSCAT- (NIL T T) -8 NIL NIL) (-1173 3025921 3025964 3026095 "UTS2" 3026241 NIL UTS2 (NIL T T T T) -7 NIL NIL) (-1172 3020197 3022762 3022805 "URAGG" 3024875 NIL URAGG (NIL T) -9 NIL 3025597) (-1171 3017136 3017999 3019122 "URAGG-" 3019127 NIL URAGG- (NIL T T) -8 NIL NIL) (-1170 3012868 3015753 3016224 "UPXSSING" 3016800 NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL) (-1169 3004844 3011989 3012269 "UPXS" 3012645 NIL UPXS (NIL T NIL NIL) -8 NIL NIL) (-1168 2997958 3004749 3004820 "UPXSCONS" 3004825 NIL UPXSCONS (NIL T T) -8 NIL NIL) (-1167 2988332 2995077 2995138 "UPXSCCA" 2995787 NIL UPXSCCA (NIL T T) -9 NIL 2996028) (-1166 2987971 2988056 2988229 "UPXSCCA-" 2988234 NIL UPXSCCA- (NIL T T T) -8 NIL NIL) (-1165 2978267 2984785 2984827 "UPXSCAT" 2985470 NIL UPXSCAT (NIL T) -9 NIL 2986078) (-1164 2977701 2977780 2977957 "UPXS2" 2978182 NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1163 2976355 2976608 2976959 "UPSQFREE" 2977444 NIL UPSQFREE (NIL T T) -7 NIL NIL) (-1162 2970292 2973301 2973355 "UPSCAT" 2974504 NIL UPSCAT (NIL T T) -9 NIL 2975278) (-1161 2969497 2969704 2970030 "UPSCAT-" 2970035 NIL UPSCAT- (NIL T T T) -8 NIL NIL) (-1160 2955629 2963620 2963662 "UPOLYC" 2965740 NIL UPOLYC (NIL T) -9 NIL 2966961) (-1159 2946959 2949384 2952530 "UPOLYC-" 2952535 NIL UPOLYC- (NIL T T) -8 NIL NIL) (-1158 2946590 2946633 2946764 "UPOLYC2" 2946910 NIL UPOLYC2 (NIL T T T T) -7 NIL NIL) (-1157 2938055 2946159 2946296 "UP" 2946500 NIL UP (NIL NIL T) -8 NIL NIL) (-1156 2937398 2937505 2937668 "UPMP" 2937944 NIL UPMP (NIL T T) -7 NIL NIL) (-1155 2936951 2937032 2937171 "UPDIVP" 2937311 NIL UPDIVP (NIL T T) -7 NIL NIL) (-1154 2935519 2935768 2936084 "UPDECOMP" 2936700 NIL UPDECOMP (NIL T T) -7 NIL NIL) (-1153 2934754 2934866 2935051 "UPCDEN" 2935403 NIL UPCDEN (NIL T T T) -7 NIL NIL) (-1152 2934277 2934346 2934493 "UP2" 2934679 NIL UP2 (NIL NIL T NIL T) -7 NIL NIL) (-1151 2932794 2933481 2933758 "UNISEG" 2934035 NIL UNISEG (NIL T) -8 NIL NIL) (-1150 2932009 2932136 2932341 "UNISEG2" 2932637 NIL UNISEG2 (NIL T T) -7 NIL NIL) (-1149 2931069 2931249 2931475 "UNIFACT" 2931825 NIL UNIFACT (NIL T) -7 NIL NIL) (-1148 2915050 2930250 2930500 "ULS" 2930876 NIL ULS (NIL T NIL NIL) -8 NIL NIL) (-1147 2903100 2914955 2915026 "ULSCONS" 2915031 NIL ULSCONS (NIL T T) -8 NIL NIL) (-1146 2885935 2897863 2897924 "ULSCCAT" 2898636 NIL ULSCCAT (NIL T T) -9 NIL 2898932) (-1145 2884986 2885231 2885618 "ULSCCAT-" 2885623 NIL ULSCCAT- (NIL T T T) -8 NIL NIL) (-1144 2875061 2881493 2881535 "ULSCAT" 2882391 NIL ULSCAT (NIL T) -9 NIL 2883121) (-1143 2874495 2874574 2874751 "ULS2" 2874976 NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL) (-1142 2872937 2873860 2873890 "UFD" 2874102 T UFD (NIL) -9 NIL 2874216) (-1141 2872731 2872777 2872872 "UFD-" 2872877 NIL UFD- (NIL T) -8 NIL NIL) (-1140 2871813 2871996 2872212 "UDVO" 2872537 T UDVO (NIL) -7 NIL NIL) (-1139 2869629 2870038 2870509 "UDPO" 2871377 NIL UDPO (NIL T) -7 NIL NIL) (-1138 2869562 2869567 2869597 "TYPE" 2869602 T TYPE (NIL) -9 NIL NIL) (-1137 2868533 2868735 2868975 "TWOFACT" 2869356 NIL TWOFACT (NIL T) -7 NIL NIL) (-1136 2867471 2867808 2868071 "TUPLE" 2868305 NIL TUPLE (NIL T) -8 NIL NIL) (-1135 2865162 2865681 2866220 "TUBETOOL" 2866954 T TUBETOOL (NIL) -7 NIL NIL) (-1134 2864011 2864216 2864457 "TUBE" 2864955 NIL TUBE (NIL T) -8 NIL NIL) (-1133 2858781 2862989 2863271 "TS" 2863763 NIL TS (NIL T) -8 NIL NIL) (-1132 2847449 2851541 2851638 "TSETCAT" 2856907 NIL TSETCAT (NIL T T T T) -9 NIL 2858438) (-1131 2842183 2843781 2845672 "TSETCAT-" 2845677 NIL TSETCAT- (NIL T T T T T) -8 NIL NIL) (-1130 2836446 2837292 2838234 "TRMANIP" 2841319 NIL TRMANIP (NIL T T) -7 NIL NIL) (-1129 2835887 2835950 2836113 "TRIMAT" 2836378 NIL TRIMAT (NIL T T T T) -7 NIL NIL) (-1128 2833693 2833930 2834293 "TRIGMNIP" 2835636 NIL TRIGMNIP (NIL T T) -7 NIL NIL) (-1127 2833213 2833326 2833356 "TRIGCAT" 2833569 T TRIGCAT (NIL) -9 NIL NIL) (-1126 2832882 2832961 2833102 "TRIGCAT-" 2833107 NIL TRIGCAT- (NIL T) -8 NIL NIL) (-1125 2829781 2831742 2832022 "TREE" 2832637 NIL TREE (NIL T) -8 NIL NIL) (-1124 2829055 2829583 2829613 "TRANFUN" 2829648 T TRANFUN (NIL) -9 NIL 2829714) (-1123 2828334 2828525 2828805 "TRANFUN-" 2828810 NIL TRANFUN- (NIL T) -8 NIL NIL) (-1122 2828138 2828170 2828231 "TOPSP" 2828295 T TOPSP (NIL) -7 NIL NIL) (-1121 2827490 2827605 2827758 "TOOLSIGN" 2828019 NIL TOOLSIGN (NIL T) -7 NIL NIL) (-1120 2826151 2826667 2826906 "TEXTFILE" 2827273 T TEXTFILE (NIL) -8 NIL NIL) (-1119 2824016 2824530 2824968 "TEX" 2825735 T TEX (NIL) -8 NIL NIL) (-1118 2823797 2823828 2823900 "TEX1" 2823979 NIL TEX1 (NIL T) -7 NIL NIL) (-1117 2823445 2823508 2823598 "TEMUTL" 2823729 T TEMUTL (NIL) -7 NIL NIL) (-1116 2821599 2821879 2822204 "TBCMPPK" 2823168 NIL TBCMPPK (NIL T T) -7 NIL NIL) (-1115 2813488 2819760 2819816 "TBAGG" 2820216 NIL TBAGG (NIL T T) -9 NIL 2820427) (-1114 2808558 2810046 2811800 "TBAGG-" 2811805 NIL TBAGG- (NIL T T T) -8 NIL NIL) (-1113 2807942 2808049 2808194 "TANEXP" 2808447 NIL TANEXP (NIL T) -7 NIL NIL) (-1112 2801443 2807799 2807892 "TABLE" 2807897 NIL TABLE (NIL T T) -8 NIL NIL) (-1111 2800855 2800954 2801092 "TABLEAU" 2801340 NIL TABLEAU (NIL T) -8 NIL NIL) (-1110 2795463 2796683 2797931 "TABLBUMP" 2799641 NIL TABLBUMP (NIL T) -7 NIL NIL) (-1109 2794891 2794991 2795119 "SYSTEM" 2795357 T SYSTEM (NIL) -7 NIL NIL) (-1108 2791354 2792049 2792832 "SYSSOLP" 2794142 NIL SYSSOLP (NIL T) -7 NIL NIL) (-1107 2787645 2788353 2789087 "SYNTAX" 2790642 T SYNTAX (NIL) -8 NIL NIL) (-1106 2784779 2785387 2786025 "SYMTAB" 2787029 T SYMTAB (NIL) -8 NIL NIL) (-1105 2780028 2780930 2781913 "SYMS" 2783818 T SYMS (NIL) -8 NIL NIL) (-1104 2777307 2779488 2779717 "SYMPOLY" 2779833 NIL SYMPOLY (NIL T) -8 NIL NIL) (-1103 2776827 2776902 2777024 "SYMFUNC" 2777219 NIL SYMFUNC (NIL T) -7 NIL NIL) (-1102 2772804 2774064 2774886 "SYMBOL" 2776027 T SYMBOL (NIL) -8 NIL NIL) (-1101 2766343 2768032 2769752 "SWITCH" 2771106 T SWITCH (NIL) -8 NIL NIL) (-1100 2759619 2765170 2765472 "SUTS" 2766098 NIL SUTS (NIL T NIL NIL) -8 NIL NIL) (-1099 2751594 2758740 2759020 "SUPXS" 2759396 NIL SUPXS (NIL T NIL NIL) -8 NIL NIL) (-1098 2743131 2751215 2751340 "SUP" 2751503 NIL SUP (NIL T) -8 NIL NIL) (-1097 2742290 2742417 2742634 "SUPFRACF" 2742999 NIL SUPFRACF (NIL T T T T) -7 NIL NIL) (-1096 2741915 2741974 2742085 "SUP2" 2742225 NIL SUP2 (NIL T T) -7 NIL NIL) (-1095 2740333 2740607 2740969 "SUMRF" 2741614 NIL SUMRF (NIL T) -7 NIL NIL) (-1094 2739650 2739716 2739914 "SUMFS" 2740254 NIL SUMFS (NIL T T) -7 NIL NIL) (-1093 2723671 2738831 2739081 "SULS" 2739457 NIL SULS (NIL T NIL NIL) -8 NIL NIL) (-1092 2722993 2723196 2723336 "SUCH" 2723579 NIL SUCH (NIL T T) -8 NIL NIL) (-1091 2716920 2717932 2718890 "SUBSPACE" 2722081 NIL SUBSPACE (NIL NIL T) -8 NIL NIL) (-1090 2716350 2716440 2716604 "SUBRESP" 2716808 NIL SUBRESP (NIL T T) -7 NIL NIL) (-1089 2709719 2711015 2712326 "STTF" 2715086 NIL STTF (NIL T) -7 NIL NIL) (-1088 2703892 2705012 2706159 "STTFNC" 2708619 NIL STTFNC (NIL T) -7 NIL NIL) (-1087 2695243 2697110 2698903 "STTAYLOR" 2702133 NIL STTAYLOR (NIL T) -7 NIL NIL) (-1086 2688487 2695107 2695190 "STRTBL" 2695195 NIL STRTBL (NIL T) -8 NIL NIL) (-1085 2683878 2688442 2688473 "STRING" 2688478 T STRING (NIL) -8 NIL NIL) (-1084 2678767 2683252 2683282 "STRICAT" 2683341 T STRICAT (NIL) -9 NIL 2683403) (-1083 2671481 2676290 2676910 "STREAM" 2678182 NIL STREAM (NIL T) -8 NIL NIL) (-1082 2670991 2671068 2671212 "STREAM3" 2671398 NIL STREAM3 (NIL T T T) -7 NIL NIL) (-1081 2669973 2670156 2670391 "STREAM2" 2670804 NIL STREAM2 (NIL T T) -7 NIL NIL) (-1080 2669661 2669713 2669806 "STREAM1" 2669915 NIL STREAM1 (NIL T) -7 NIL NIL) (-1079 2668677 2668858 2669089 "STINPROD" 2669477 NIL STINPROD (NIL T) -7 NIL NIL) (-1078 2668256 2668440 2668470 "STEP" 2668550 T STEP (NIL) -9 NIL 2668628) (-1077 2661799 2668155 2668232 "STBL" 2668237 NIL STBL (NIL T T NIL) -8 NIL NIL) (-1076 2656975 2661022 2661065 "STAGG" 2661218 NIL STAGG (NIL T) -9 NIL 2661307) (-1075 2654677 2655279 2656151 "STAGG-" 2656156 NIL STAGG- (NIL T T) -8 NIL NIL) (-1074 2652872 2654447 2654539 "STACK" 2654620 NIL STACK (NIL T) -8 NIL NIL) (-1073 2645597 2651013 2651469 "SREGSET" 2652502 NIL SREGSET (NIL T T T T) -8 NIL NIL) (-1072 2638023 2639391 2640904 "SRDCMPK" 2644203 NIL SRDCMPK (NIL T T T T T) -7 NIL NIL) (-1071 2630991 2635464 2635494 "SRAGG" 2636797 T SRAGG (NIL) -9 NIL 2637405) (-1070 2630008 2630263 2630642 "SRAGG-" 2630647 NIL SRAGG- (NIL T) -8 NIL NIL) (-1069 2624503 2628927 2629354 "SQMATRIX" 2629627 NIL SQMATRIX (NIL NIL T) -8 NIL NIL) (-1068 2618255 2621223 2621949 "SPLTREE" 2623849 NIL SPLTREE (NIL T T) -8 NIL NIL) (-1067 2614245 2614911 2615557 "SPLNODE" 2617681 NIL SPLNODE (NIL T T) -8 NIL NIL) (-1066 2613292 2613525 2613555 "SPFCAT" 2613999 T SPFCAT (NIL) -9 NIL NIL) (-1065 2612029 2612239 2612503 "SPECOUT" 2613050 T SPECOUT (NIL) -7 NIL NIL) (-1064 2611790 2611830 2611899 "SPADPRSR" 2611982 T SPADPRSR (NIL) -7 NIL NIL) (-1063 2603813 2605560 2605602 "SPACEC" 2609925 NIL SPACEC (NIL T) -9 NIL 2611741) (-1062 2601985 2603746 2603794 "SPACE3" 2603799 NIL SPACE3 (NIL T) -8 NIL NIL) (-1061 2600737 2600908 2601199 "SORTPAK" 2601790 NIL SORTPAK (NIL T T) -7 NIL NIL) (-1060 2598793 2599096 2599514 "SOLVETRA" 2600401 NIL SOLVETRA (NIL T) -7 NIL NIL) (-1059 2597804 2598026 2598300 "SOLVESER" 2598566 NIL SOLVESER (NIL T) -7 NIL NIL) (-1058 2593024 2593905 2594907 "SOLVERAD" 2596856 NIL SOLVERAD (NIL T) -7 NIL NIL) (-1057 2588839 2589448 2590177 "SOLVEFOR" 2592391 NIL SOLVEFOR (NIL T T) -7 NIL NIL) (-1056 2583137 2588189 2588286 "SNTSCAT" 2588291 NIL SNTSCAT (NIL T T T T) -9 NIL 2588361) (-1055 2577287 2581468 2581858 "SMTS" 2582827 NIL SMTS (NIL T T T) -8 NIL NIL) (-1054 2571743 2577176 2577252 "SMP" 2577257 NIL SMP (NIL T T) -8 NIL NIL) (-1053 2569902 2570203 2570601 "SMITH" 2571440 NIL SMITH (NIL T T T T) -7 NIL NIL) (-1052 2562913 2567063 2567165 "SMATCAT" 2568505 NIL SMATCAT (NIL NIL T T T) -9 NIL 2569054) (-1051 2559854 2560677 2561854 "SMATCAT-" 2561859 NIL SMATCAT- (NIL T NIL T T T) -8 NIL NIL) (-1050 2557568 2559091 2559134 "SKAGG" 2559395 NIL SKAGG (NIL T) -9 NIL 2559530) (-1049 2553672 2556672 2556950 "SINT" 2557312 T SINT (NIL) -8 NIL NIL) (-1048 2553444 2553482 2553548 "SIMPAN" 2553628 T SIMPAN (NIL) -7 NIL NIL) (-1047 2552751 2552979 2553119 "SIG" 2553326 T SIG (NIL) -8 NIL NIL) (-1046 2551589 2551810 2552085 "SIGNRF" 2552510 NIL SIGNRF (NIL T) -7 NIL NIL) (-1045 2550398 2550549 2550839 "SIGNEF" 2551418 NIL SIGNEF (NIL T T) -7 NIL NIL) (-1044 2548088 2548542 2549048 "SHP" 2549939 NIL SHP (NIL T NIL) -7 NIL NIL) (-1043 2542027 2547989 2548065 "SHDP" 2548070 NIL SHDP (NIL NIL NIL T) -8 NIL NIL) (-1042 2541627 2541793 2541823 "SGROUP" 2541916 T SGROUP (NIL) -9 NIL 2541978) (-1041 2541485 2541511 2541584 "SGROUP-" 2541589 NIL SGROUP- (NIL T) -8 NIL NIL) (-1040 2538321 2539018 2539741 "SGCF" 2540784 T SGCF (NIL) -7 NIL NIL) (-1039 2532717 2537769 2537866 "SFRTCAT" 2537871 NIL SFRTCAT (NIL T T T T) -9 NIL 2537910) (-1038 2526141 2527156 2528292 "SFRGCD" 2531700 NIL SFRGCD (NIL T T T T T) -7 NIL NIL) (-1037 2519269 2520340 2521526 "SFQCMPK" 2525074 NIL SFQCMPK (NIL T T T T T) -7 NIL NIL) (-1036 2518891 2518980 2519090 "SFORT" 2519210 NIL SFORT (NIL T T) -8 NIL NIL) (-1035 2518036 2518731 2518852 "SEXOF" 2518857 NIL SEXOF (NIL T T T T T) -8 NIL NIL) (-1034 2517170 2517917 2517985 "SEX" 2517990 T SEX (NIL) -8 NIL NIL) (-1033 2511947 2512636 2512731 "SEXCAT" 2516502 NIL SEXCAT (NIL T T T T T) -9 NIL 2517121) (-1032 2509127 2511881 2511929 "SET" 2511934 NIL SET (NIL T) -8 NIL NIL) (-1031 2507378 2507840 2508145 "SETMN" 2508868 NIL SETMN (NIL NIL NIL) -8 NIL NIL) (-1030 2506986 2507112 2507142 "SETCAT" 2507259 T SETCAT (NIL) -9 NIL 2507343) (-1029 2506766 2506818 2506917 "SETCAT-" 2506922 NIL SETCAT- (NIL T) -8 NIL NIL) (-1028 2503154 2505228 2505271 "SETAGG" 2506141 NIL SETAGG (NIL T) -9 NIL 2506481) (-1027 2502612 2502728 2502965 "SETAGG-" 2502970 NIL SETAGG- (NIL T T) -8 NIL NIL) (-1026 2501816 2502109 2502170 "SEGXCAT" 2502456 NIL SEGXCAT (NIL T T) -9 NIL 2502576) (-1025 2500872 2501482 2501664 "SEG" 2501669 NIL SEG (NIL T) -8 NIL NIL) (-1024 2499779 2499992 2500035 "SEGCAT" 2500617 NIL SEGCAT (NIL T) -9 NIL 2500855) (-1023 2498828 2499158 2499358 "SEGBIND" 2499614 NIL SEGBIND (NIL T) -8 NIL NIL) (-1022 2498449 2498508 2498621 "SEGBIND2" 2498763 NIL SEGBIND2 (NIL T T) -7 NIL NIL) (-1021 2497668 2497794 2497998 "SEG2" 2498293 NIL SEG2 (NIL T T) -7 NIL NIL) (-1020 2497105 2497603 2497650 "SDVAR" 2497655 NIL SDVAR (NIL T) -8 NIL NIL) (-1019 2489403 2496878 2497006 "SDPOL" 2497011 NIL SDPOL (NIL T) -8 NIL NIL) (-1018 2487996 2488262 2488581 "SCPKG" 2489118 NIL SCPKG (NIL T) -7 NIL NIL) (-1017 2487132 2487312 2487512 "SCOPE" 2487818 T SCOPE (NIL) -8 NIL NIL) (-1016 2486353 2486486 2486665 "SCACHE" 2486987 NIL SCACHE (NIL T) -7 NIL NIL) (-1015 2486080 2486223 2486253 "SASTCAT" 2486258 T SASTCAT (NIL) -9 NIL 2486271) (-1014 2485519 2485840 2485925 "SAOS" 2486017 T SAOS (NIL) -8 NIL NIL) (-1013 2485084 2485119 2485292 "SAERFFC" 2485478 NIL SAERFFC (NIL T T T) -7 NIL NIL) (-1012 2479063 2484981 2485061 "SAE" 2485066 NIL SAE (NIL T T NIL) -8 NIL NIL) (-1011 2478656 2478691 2478850 "SAEFACT" 2479022 NIL SAEFACT (NIL T T T) -7 NIL NIL) (-1010 2476977 2477291 2477692 "RURPK" 2478322 NIL RURPK (NIL T NIL) -7 NIL NIL) (-1009 2475617 2475896 2476207 "RULESET" 2476811 NIL RULESET (NIL T T T) -8 NIL NIL) (-1008 2472815 2473318 2473781 "RULE" 2475299 NIL RULE (NIL T T T) -8 NIL NIL) (-1007 2472454 2472609 2472692 "RULECOLD" 2472767 NIL RULECOLD (NIL NIL) -8 NIL NIL) (-1006 2467303 2468097 2469017 "RSETGCD" 2471653 NIL RSETGCD (NIL T T T T T) -7 NIL NIL) (-1005 2456561 2461613 2461710 "RSETCAT" 2465829 NIL RSETCAT (NIL T T T T) -9 NIL 2466926) (-1004 2454488 2455027 2455851 "RSETCAT-" 2455856 NIL RSETCAT- (NIL T T T T T) -8 NIL NIL) (-1003 2446875 2448250 2449770 "RSDCMPK" 2453087 NIL RSDCMPK (NIL T T T T T) -7 NIL NIL) (-1002 2444881 2445322 2445396 "RRCC" 2446482 NIL RRCC (NIL T T) -9 NIL 2446826) (-1001 2444232 2444406 2444685 "RRCC-" 2444690 NIL RRCC- (NIL T T T) -8 NIL NIL) (-1000 2418562 2428141 2428207 "RPOLCAT" 2438790 NIL RPOLCAT (NIL T T T) -9 NIL 2441948) (-999 2410065 2412403 2415522 "RPOLCAT-" 2415527 NIL RPOLCAT- (NIL T T T T) -8 NIL NIL) (-998 2401131 2408295 2408775 "ROUTINE" 2409605 T ROUTINE (NIL) -8 NIL NIL) (-997 2397882 2400687 2400834 "ROMAN" 2401004 T ROMAN (NIL) -8 NIL NIL) (-996 2396166 2396751 2397009 "ROIRC" 2397687 NIL ROIRC (NIL T T) -8 NIL NIL) (-995 2392636 2394875 2394903 "RNS" 2395199 T RNS (NIL) -9 NIL 2395469) (-994 2391150 2391533 2392064 "RNS-" 2392137 NIL RNS- (NIL T) -8 NIL NIL) (-993 2390602 2390984 2391012 "RNG" 2391017 T RNG (NIL) -9 NIL 2391038) (-992 2390000 2390362 2390402 "RMODULE" 2390462 NIL RMODULE (NIL T) -9 NIL 2390504) (-991 2388852 2388946 2389276 "RMCAT2" 2389901 NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL) (-990 2385566 2388035 2388356 "RMATRIX" 2388587 NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL) (-989 2378563 2380797 2380909 "RMATCAT" 2384218 NIL RMATCAT (NIL NIL NIL T T T) -9 NIL 2385200) (-988 2377942 2378089 2378392 "RMATCAT-" 2378397 NIL RMATCAT- (NIL T NIL NIL T T T) -8 NIL NIL) (-987 2377512 2377587 2377713 "RINTERP" 2377861 NIL RINTERP (NIL NIL T) -7 NIL NIL) (-986 2376607 2377127 2377155 "RING" 2377265 T RING (NIL) -9 NIL 2377359) (-985 2376402 2376446 2376540 "RING-" 2376545 NIL RING- (NIL T) -8 NIL NIL) (-984 2375250 2375487 2375743 "RIDIST" 2376166 T RIDIST (NIL) -7 NIL NIL) (-983 2366570 2374722 2374926 "RGCHAIN" 2375098 NIL RGCHAIN (NIL T NIL) -8 NIL NIL) (-982 2363575 2364189 2364857 "RF" 2365934 NIL RF (NIL T) -7 NIL NIL) (-981 2363224 2363287 2363388 "RFFACTOR" 2363506 NIL RFFACTOR (NIL T) -7 NIL NIL) (-980 2362952 2362987 2363082 "RFFACT" 2363183 NIL RFFACT (NIL T) -7 NIL NIL) (-979 2361082 2361446 2361826 "RFDIST" 2362592 T RFDIST (NIL) -7 NIL NIL) (-978 2360540 2360632 2360792 "RETSOL" 2360984 NIL RETSOL (NIL T T) -7 NIL NIL) (-977 2360133 2360213 2360254 "RETRACT" 2360444 NIL RETRACT (NIL T) -9 NIL NIL) (-976 2359985 2360010 2360094 "RETRACT-" 2360099 NIL RETRACT- (NIL T T) -8 NIL NIL) (-975 2352843 2359642 2359767 "RESULT" 2359880 T RESULT (NIL) -8 NIL NIL) (-974 2351474 2352117 2352314 "RESRING" 2352746 NIL RESRING (NIL T T T T NIL) -8 NIL NIL) (-973 2351114 2351163 2351259 "RESLATC" 2351411 NIL RESLATC (NIL T) -7 NIL NIL) (-972 2350823 2350857 2350962 "REPSQ" 2351073 NIL REPSQ (NIL T) -7 NIL NIL) (-971 2348254 2348834 2349434 "REP" 2350243 T REP (NIL) -7 NIL NIL) (-970 2347955 2347989 2348098 "REPDB" 2348213 NIL REPDB (NIL T) -7 NIL NIL) (-969 2341900 2343279 2344499 "REP2" 2346767 NIL REP2 (NIL T) -7 NIL NIL) (-968 2338306 2338987 2339792 "REP1" 2341127 NIL REP1 (NIL T) -7 NIL NIL) (-967 2331044 2336459 2336913 "REGSET" 2337936 NIL REGSET (NIL T T T T) -8 NIL NIL) (-966 2329865 2330200 2330448 "REF" 2330829 NIL REF (NIL T) -8 NIL NIL) (-965 2329246 2329349 2329514 "REDORDER" 2329749 NIL REDORDER (NIL T T) -7 NIL NIL) (-964 2325280 2328480 2328701 "RECLOS" 2329077 NIL RECLOS (NIL T) -8 NIL NIL) (-963 2324337 2324518 2324731 "REALSOLV" 2325087 T REALSOLV (NIL) -7 NIL NIL) (-962 2324185 2324226 2324254 "REAL" 2324259 T REAL (NIL) -9 NIL 2324294) (-961 2320676 2321478 2322360 "REAL0Q" 2323350 NIL REAL0Q (NIL T) -7 NIL NIL) (-960 2316287 2317275 2318334 "REAL0" 2319657 NIL REAL0 (NIL T) -7 NIL NIL) (-959 2315695 2315767 2315972 "RDIV" 2316209 NIL RDIV (NIL T T T T T) -7 NIL NIL) (-958 2314768 2314942 2315153 "RDIST" 2315517 NIL RDIST (NIL T) -7 NIL NIL) (-957 2313372 2313659 2314028 "RDETRS" 2314476 NIL RDETRS (NIL T T) -7 NIL NIL) (-956 2311193 2311647 2312182 "RDETR" 2312914 NIL RDETR (NIL T T) -7 NIL NIL) (-955 2309809 2310087 2310488 "RDEEFS" 2310909 NIL RDEEFS (NIL T T) -7 NIL NIL) (-954 2308309 2308615 2309044 "RDEEF" 2309497 NIL RDEEF (NIL T T) -7 NIL NIL) (-953 2302659 2305526 2305554 "RCFIELD" 2306831 T RCFIELD (NIL) -9 NIL 2307561) (-952 2300728 2301232 2301925 "RCFIELD-" 2301998 NIL RCFIELD- (NIL T) -8 NIL NIL) (-951 2297060 2298845 2298886 "RCAGG" 2299957 NIL RCAGG (NIL T) -9 NIL 2300422) (-950 2296691 2296785 2296945 "RCAGG-" 2296950 NIL RCAGG- (NIL T T) -8 NIL NIL) (-949 2296035 2296147 2296309 "RATRET" 2296575 NIL RATRET (NIL T) -7 NIL NIL) (-948 2295592 2295659 2295778 "RATFACT" 2295963 NIL RATFACT (NIL T) -7 NIL NIL) (-947 2294907 2295027 2295177 "RANDSRC" 2295462 T RANDSRC (NIL) -7 NIL NIL) (-946 2294644 2294688 2294759 "RADUTIL" 2294856 T RADUTIL (NIL) -7 NIL NIL) (-945 2287716 2293387 2293704 "RADIX" 2294359 NIL RADIX (NIL NIL) -8 NIL NIL) (-944 2279377 2287560 2287688 "RADFF" 2287693 NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL) (-943 2279029 2279104 2279132 "RADCAT" 2279289 T RADCAT (NIL) -9 NIL NIL) (-942 2278814 2278862 2278959 "RADCAT-" 2278964 NIL RADCAT- (NIL T) -8 NIL NIL) (-941 2276965 2278589 2278678 "QUEUE" 2278758 NIL QUEUE (NIL T) -8 NIL NIL) (-940 2273547 2276902 2276947 "QUAT" 2276952 NIL QUAT (NIL T) -8 NIL NIL) (-939 2273185 2273228 2273355 "QUATCT2" 2273498 NIL QUATCT2 (NIL T T T T) -7 NIL NIL) (-938 2267064 2270359 2270399 "QUATCAT" 2271178 NIL QUATCAT (NIL T) -9 NIL 2271943) (-937 2263208 2264245 2265632 "QUATCAT-" 2265726 NIL QUATCAT- (NIL T T) -8 NIL NIL) (-936 2260729 2262293 2262334 "QUAGG" 2262709 NIL QUAGG (NIL T) -9 NIL 2262884) (-935 2259654 2260127 2260299 "QFORM" 2260601 NIL QFORM (NIL NIL T) -8 NIL NIL) (-934 2251013 2256209 2256249 "QFCAT" 2256907 NIL QFCAT (NIL T) -9 NIL 2257900) (-933 2246585 2247786 2249377 "QFCAT-" 2249471 NIL QFCAT- (NIL T T) -8 NIL NIL) (-932 2246223 2246266 2246393 "QFCAT2" 2246536 NIL QFCAT2 (NIL T T T T) -7 NIL NIL) (-931 2245683 2245793 2245923 "QEQUAT" 2246113 T QEQUAT (NIL) -8 NIL NIL) (-930 2238831 2239902 2241086 "QCMPACK" 2244616 NIL QCMPACK (NIL T T T T T) -7 NIL NIL) (-929 2236407 2236828 2237256 "QALGSET" 2238486 NIL QALGSET (NIL T T T T) -8 NIL NIL) (-928 2235652 2235826 2236058 "QALGSET2" 2236227 NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL) (-927 2234343 2234566 2234883 "PWFFINTB" 2235425 NIL PWFFINTB (NIL T T T T) -7 NIL NIL) (-926 2232531 2232699 2233052 "PUSHVAR" 2234157 NIL PUSHVAR (NIL T T T T) -7 NIL NIL) (-925 2228449 2229503 2229544 "PTRANFN" 2231428 NIL PTRANFN (NIL T) -9 NIL NIL) (-924 2226861 2227152 2227473 "PTPACK" 2228160 NIL PTPACK (NIL T) -7 NIL NIL) (-923 2226497 2226554 2226661 "PTFUNC2" 2226798 NIL PTFUNC2 (NIL T T) -7 NIL NIL) (-922 2220974 2225315 2225355 "PTCAT" 2225723 NIL PTCAT (NIL T) -9 NIL 2225885) (-921 2220632 2220667 2220791 "PSQFR" 2220933 NIL PSQFR (NIL T T T T) -7 NIL NIL) (-920 2219227 2219525 2219859 "PSEUDLIN" 2220330 NIL PSEUDLIN (NIL T) -7 NIL NIL) (-919 2205996 2208361 2210685 "PSETPK" 2216987 NIL PSETPK (NIL T T T T) -7 NIL NIL) (-918 2199062 2201776 2201871 "PSETCAT" 2204872 NIL PSETCAT (NIL T T T T) -9 NIL 2205686) (-917 2196899 2197533 2198353 "PSETCAT-" 2198358 NIL PSETCAT- (NIL T T T T T) -8 NIL NIL) (-916 2196248 2196413 2196441 "PSCURVE" 2196709 T PSCURVE (NIL) -9 NIL 2196876) (-915 2192744 2194226 2194290 "PSCAT" 2195126 NIL PSCAT (NIL T T T) -9 NIL 2195366) (-914 2191808 2192024 2192423 "PSCAT-" 2192428 NIL PSCAT- (NIL T T T T) -8 NIL NIL) (-913 2190460 2191093 2191307 "PRTITION" 2191614 T PRTITION (NIL) -8 NIL NIL) (-912 2179558 2181764 2183952 "PRS" 2188322 NIL PRS (NIL T T) -7 NIL NIL) (-911 2177417 2178909 2178949 "PRQAGG" 2179132 NIL PRQAGG (NIL T) -9 NIL 2179234) (-910 2176988 2177090 2177118 "PROPLOG" 2177303 T PROPLOG (NIL) -9 NIL NIL) (-909 2174111 2174676 2175203 "PROPFRML" 2176493 NIL PROPFRML (NIL T) -8 NIL NIL) (-908 2173571 2173681 2173811 "PROPERTY" 2174001 T PROPERTY (NIL) -8 NIL NIL) (-907 2167656 2171737 2172557 "PRODUCT" 2172797 NIL PRODUCT (NIL T T) -8 NIL NIL) (-906 2164976 2167116 2167349 "PR" 2167467 NIL PR (NIL T T) -8 NIL NIL) (-905 2164772 2164804 2164863 "PRINT" 2164937 T PRINT (NIL) -7 NIL NIL) (-904 2164112 2164229 2164381 "PRIMES" 2164652 NIL PRIMES (NIL T) -7 NIL NIL) (-903 2162177 2162578 2163044 "PRIMELT" 2163691 NIL PRIMELT (NIL T) -7 NIL NIL) (-902 2161906 2161955 2161983 "PRIMCAT" 2162107 T PRIMCAT (NIL) -9 NIL NIL) (-901 2158067 2161844 2161889 "PRIMARR" 2161894 NIL PRIMARR (NIL T) -8 NIL NIL) (-900 2157074 2157252 2157480 "PRIMARR2" 2157885 NIL PRIMARR2 (NIL T T) -7 NIL NIL) (-899 2156717 2156773 2156884 "PREASSOC" 2157012 NIL PREASSOC (NIL T T) -7 NIL NIL) (-898 2156192 2156325 2156353 "PPCURVE" 2156558 T PPCURVE (NIL) -9 NIL 2156694) (-897 2155814 2155987 2156070 "PORTNUM" 2156129 T PORTNUM (NIL) -8 NIL NIL) (-896 2153173 2153572 2154164 "POLYROOT" 2155395 NIL POLYROOT (NIL T T T T T) -7 NIL NIL) (-895 2147125 2152779 2152938 "POLY" 2153046 NIL POLY (NIL T) -8 NIL NIL) (-894 2146510 2146568 2146801 "POLYLIFT" 2147061 NIL POLYLIFT (NIL T T T T T) -7 NIL NIL) (-893 2142795 2143244 2143872 "POLYCATQ" 2146055 NIL POLYCATQ (NIL T T T T T) -7 NIL NIL) (-892 2129882 2135233 2135297 "POLYCAT" 2138782 NIL POLYCAT (NIL T T T) -9 NIL 2140709) (-891 2123333 2125194 2127577 "POLYCAT-" 2127582 NIL POLYCAT- (NIL T T T T) -8 NIL NIL) (-890 2122922 2122990 2123109 "POLY2UP" 2123259 NIL POLY2UP (NIL NIL T) -7 NIL NIL) (-889 2122558 2122615 2122722 "POLY2" 2122859 NIL POLY2 (NIL T T) -7 NIL NIL) (-888 2121243 2121482 2121758 "POLUTIL" 2122332 NIL POLUTIL (NIL T T) -7 NIL NIL) (-887 2119605 2119882 2120212 "POLTOPOL" 2120965 NIL POLTOPOL (NIL NIL T) -7 NIL NIL) (-886 2115128 2119542 2119587 "POINT" 2119592 NIL POINT (NIL T) -8 NIL NIL) (-885 2113315 2113672 2114047 "PNTHEORY" 2114773 T PNTHEORY (NIL) -7 NIL NIL) (-884 2111743 2112040 2112449 "PMTOOLS" 2113013 NIL PMTOOLS (NIL T T T) -7 NIL NIL) (-883 2111336 2111414 2111531 "PMSYM" 2111659 NIL PMSYM (NIL T) -7 NIL NIL) (-882 2110846 2110915 2111089 "PMQFCAT" 2111261 NIL PMQFCAT (NIL T T T) -7 NIL NIL) (-881 2110201 2110311 2110467 "PMPRED" 2110723 NIL PMPRED (NIL T) -7 NIL NIL) (-880 2109597 2109683 2109844 "PMPREDFS" 2110102 NIL PMPREDFS (NIL T T T) -7 NIL NIL) (-879 2108243 2108451 2108835 "PMPLCAT" 2109359 NIL PMPLCAT (NIL T T T T T) -7 NIL NIL) (-878 2107775 2107854 2108006 "PMLSAGG" 2108158 NIL PMLSAGG (NIL T T T) -7 NIL NIL) (-877 2107252 2107328 2107508 "PMKERNEL" 2107693 NIL PMKERNEL (NIL T T) -7 NIL NIL) (-876 2106869 2106944 2107057 "PMINS" 2107171 NIL PMINS (NIL T) -7 NIL NIL) (-875 2106299 2106368 2106583 "PMFS" 2106794 NIL PMFS (NIL T T T) -7 NIL NIL) (-874 2105530 2105648 2105852 "PMDOWN" 2106176 NIL PMDOWN (NIL T T T) -7 NIL NIL) (-873 2104693 2104852 2105034 "PMASS" 2105368 T PMASS (NIL) -7 NIL NIL) (-872 2103967 2104078 2104241 "PMASSFS" 2104579 NIL PMASSFS (NIL T T) -7 NIL NIL) (-871 2103622 2103690 2103784 "PLOTTOOL" 2103893 T PLOTTOOL (NIL) -7 NIL NIL) (-870 2098244 2099433 2100581 "PLOT" 2102494 T PLOT (NIL) -8 NIL NIL) (-869 2094058 2095092 2096013 "PLOT3D" 2097343 T PLOT3D (NIL) -8 NIL NIL) (-868 2092970 2093147 2093382 "PLOT1" 2093862 NIL PLOT1 (NIL T) -7 NIL NIL) (-867 2068364 2073036 2077887 "PLEQN" 2088236 NIL PLEQN (NIL T T T T) -7 NIL NIL) (-866 2067682 2067804 2067984 "PINTERP" 2068229 NIL PINTERP (NIL NIL T) -7 NIL NIL) (-865 2067375 2067422 2067525 "PINTERPA" 2067629 NIL PINTERPA (NIL T T) -7 NIL NIL) (-864 2066660 2067181 2067268 "PI" 2067308 T PI (NIL) -8 NIL NIL) (-863 2065096 2066037 2066065 "PID" 2066247 T PID (NIL) -9 NIL 2066381) (-862 2064821 2064858 2064946 "PICOERCE" 2065053 NIL PICOERCE (NIL T) -7 NIL NIL) (-861 2064141 2064280 2064456 "PGROEB" 2064677 NIL PGROEB (NIL T) -7 NIL NIL) (-860 2059728 2060542 2061447 "PGE" 2063256 T PGE (NIL) -7 NIL NIL) (-859 2057852 2058098 2058464 "PGCD" 2059445 NIL PGCD (NIL T T T T) -7 NIL NIL) (-858 2057190 2057293 2057454 "PFRPAC" 2057736 NIL PFRPAC (NIL T) -7 NIL NIL) (-857 2053870 2055738 2056091 "PFR" 2056869 NIL PFR (NIL T) -8 NIL NIL) (-856 2052259 2052503 2052828 "PFOTOOLS" 2053617 NIL PFOTOOLS (NIL T T) -7 NIL NIL) (-855 2050792 2051031 2051382 "PFOQ" 2052016 NIL PFOQ (NIL T T T) -7 NIL NIL) (-854 2049269 2049481 2049843 "PFO" 2050576 NIL PFO (NIL T T T T T) -7 NIL NIL) (-853 2045857 2049158 2049227 "PF" 2049232 NIL PF (NIL NIL) -8 NIL NIL) (-852 2043330 2044567 2044595 "PFECAT" 2045180 T PFECAT (NIL) -9 NIL 2045564) (-851 2042775 2042929 2043143 "PFECAT-" 2043148 NIL PFECAT- (NIL T) -8 NIL NIL) (-850 2041379 2041630 2041931 "PFBRU" 2042524 NIL PFBRU (NIL T T) -7 NIL NIL) (-849 2039246 2039597 2040029 "PFBR" 2041030 NIL PFBR (NIL T T T T) -7 NIL NIL) (-848 2035162 2036622 2037298 "PERM" 2038603 NIL PERM (NIL T) -8 NIL NIL) (-847 2030428 2031369 2032239 "PERMGRP" 2034325 NIL PERMGRP (NIL T) -8 NIL NIL) (-846 2028561 2029492 2029533 "PERMCAT" 2029979 NIL PERMCAT (NIL T) -9 NIL 2030284) (-845 2028216 2028257 2028380 "PERMAN" 2028514 NIL PERMAN (NIL NIL T) -7 NIL NIL) (-844 2025656 2027785 2027916 "PENDTREE" 2028118 NIL PENDTREE (NIL T) -8 NIL NIL) (-843 2023773 2024507 2024548 "PDRING" 2025205 NIL PDRING (NIL T) -9 NIL 2025490) (-842 2022876 2023094 2023456 "PDRING-" 2023461 NIL PDRING- (NIL T T) -8 NIL NIL) (-841 2020017 2020768 2021459 "PDEPROB" 2022205 T PDEPROB (NIL) -8 NIL NIL) (-840 2017588 2018084 2018633 "PDEPACK" 2019488 T PDEPACK (NIL) -7 NIL NIL) (-839 2016500 2016690 2016941 "PDECOMP" 2017387 NIL PDECOMP (NIL T T) -7 NIL NIL) (-838 2014112 2014927 2014955 "PDECAT" 2015740 T PDECAT (NIL) -9 NIL 2016451) (-837 2013865 2013898 2013987 "PCOMP" 2014073 NIL PCOMP (NIL T T) -7 NIL NIL) (-836 2012072 2012668 2012964 "PBWLB" 2013595 NIL PBWLB (NIL T) -8 NIL NIL) (-835 2004580 2006149 2007485 "PATTERN" 2010757 NIL PATTERN (NIL T) -8 NIL NIL) (-834 2004212 2004269 2004378 "PATTERN2" 2004517 NIL PATTERN2 (NIL T T) -7 NIL NIL) (-833 2001969 2002357 2002814 "PATTERN1" 2003801 NIL PATTERN1 (NIL T T) -7 NIL NIL) (-832 1999364 1999918 2000399 "PATRES" 2001534 NIL PATRES (NIL T T) -8 NIL NIL) (-831 1998928 1998995 1999127 "PATRES2" 1999291 NIL PATRES2 (NIL T T T) -7 NIL NIL) (-830 1996825 1997225 1997630 "PATMATCH" 1998597 NIL PATMATCH (NIL T T T) -7 NIL NIL) (-829 1996362 1996545 1996586 "PATMAB" 1996693 NIL PATMAB (NIL T) -9 NIL 1996776) (-828 1994907 1995216 1995474 "PATLRES" 1996167 NIL PATLRES (NIL T T T) -8 NIL NIL) (-827 1994453 1994576 1994617 "PATAB" 1994622 NIL PATAB (NIL T) -9 NIL 1994794) (-826 1991934 1992466 1993039 "PARTPERM" 1993900 T PARTPERM (NIL) -7 NIL NIL) (-825 1991555 1991618 1991720 "PARSURF" 1991865 NIL PARSURF (NIL T) -8 NIL NIL) (-824 1991187 1991244 1991353 "PARSU2" 1991492 NIL PARSU2 (NIL T T) -7 NIL NIL) (-823 1990951 1990991 1991058 "PARSER" 1991140 T PARSER (NIL) -7 NIL NIL) (-822 1990572 1990635 1990737 "PARSCURV" 1990882 NIL PARSCURV (NIL T) -8 NIL NIL) (-821 1990204 1990261 1990370 "PARSC2" 1990509 NIL PARSC2 (NIL T T) -7 NIL NIL) (-820 1989843 1989901 1989998 "PARPCURV" 1990140 NIL PARPCURV (NIL T) -8 NIL NIL) (-819 1989475 1989532 1989641 "PARPC2" 1989780 NIL PARPC2 (NIL T T) -7 NIL NIL) (-818 1988995 1989081 1989200 "PAN2EXPR" 1989376 T PAN2EXPR (NIL) -7 NIL NIL) (-817 1987801 1988116 1988344 "PALETTE" 1988787 T PALETTE (NIL) -8 NIL NIL) (-816 1986269 1986806 1987166 "PAIR" 1987487 NIL PAIR (NIL T T) -8 NIL NIL) (-815 1980184 1985528 1985722 "PADICRC" 1986124 NIL PADICRC (NIL NIL T) -8 NIL NIL) (-814 1973457 1979530 1979714 "PADICRAT" 1980032 NIL PADICRAT (NIL NIL) -8 NIL NIL) (-813 1971807 1973394 1973439 "PADIC" 1973444 NIL PADIC (NIL NIL) -8 NIL NIL) (-812 1969056 1970586 1970626 "PADICCT" 1971207 NIL PADICCT (NIL NIL) -9 NIL 1971489) (-811 1968013 1968213 1968481 "PADEPAC" 1968843 NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL) (-810 1967225 1967358 1967564 "PADE" 1967875 NIL PADE (NIL T T T) -7 NIL NIL) (-809 1965282 1966068 1966383 "OWP" 1966993 NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL) (-808 1964391 1964887 1965059 "OVAR" 1965150 NIL OVAR (NIL NIL) -8 NIL NIL) (-807 1963655 1963776 1963937 "OUT" 1964250 T OUT (NIL) -7 NIL NIL) (-806 1952709 1954880 1957050 "OUTFORM" 1961505 T OUTFORM (NIL) -8 NIL NIL) (-805 1952117 1952438 1952527 "OSI" 1952640 T OSI (NIL) -8 NIL NIL) (-804 1951674 1951986 1952014 "OSGROUP" 1952019 T OSGROUP (NIL) -9 NIL 1952041) (-803 1950419 1950646 1950931 "ORTHPOL" 1951421 NIL ORTHPOL (NIL T) -7 NIL NIL) (-802 1947836 1950080 1950218 "OREUP" 1950362 NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL) (-801 1945281 1947529 1947655 "ORESUP" 1947778 NIL ORESUP (NIL T NIL NIL) -8 NIL NIL) (-800 1942816 1943316 1943876 "OREPCTO" 1944770 NIL OREPCTO (NIL T T) -7 NIL NIL) (-799 1936770 1938932 1938972 "OREPCAT" 1941293 NIL OREPCAT (NIL T) -9 NIL 1942396) (-798 1933918 1934700 1935757 "OREPCAT-" 1935762 NIL OREPCAT- (NIL T T) -8 NIL NIL) (-797 1933096 1933368 1933396 "ORDSET" 1933705 T ORDSET (NIL) -9 NIL 1933869) (-796 1932615 1932737 1932930 "ORDSET-" 1932935 NIL ORDSET- (NIL T) -8 NIL NIL) (-795 1931273 1932030 1932058 "ORDRING" 1932260 T ORDRING (NIL) -9 NIL 1932384) (-794 1930918 1931012 1931156 "ORDRING-" 1931161 NIL ORDRING- (NIL T) -8 NIL NIL) (-793 1930325 1930762 1930790 "ORDMON" 1930795 T ORDMON (NIL) -9 NIL 1930816) (-792 1929487 1929634 1929829 "ORDFUNS" 1930174 NIL ORDFUNS (NIL NIL T) -7 NIL NIL) (-791 1928999 1929358 1929386 "ORDFIN" 1929391 T ORDFIN (NIL) -9 NIL 1929412) (-790 1925597 1927585 1927994 "ORDCOMP" 1928623 NIL ORDCOMP (NIL T) -8 NIL NIL) (-789 1924863 1924990 1925176 "ORDCOMP2" 1925457 NIL ORDCOMP2 (NIL T T) -7 NIL NIL) (-788 1921370 1922253 1923090 "OPTPROB" 1924046 T OPTPROB (NIL) -8 NIL NIL) (-787 1918212 1918841 1919535 "OPTPACK" 1920696 T OPTPACK (NIL) -7 NIL NIL) (-786 1915938 1916674 1916702 "OPTCAT" 1917517 T OPTCAT (NIL) -9 NIL 1918163) (-785 1915706 1915745 1915811 "OPQUERY" 1915892 T OPQUERY (NIL) -7 NIL NIL) (-784 1912888 1914033 1914533 "OP" 1915238 NIL OP (NIL T) -8 NIL NIL) (-783 1909739 1911685 1912054 "ONECOMP" 1912552 NIL ONECOMP (NIL T) -8 NIL NIL) (-782 1909044 1909159 1909333 "ONECOMP2" 1909611 NIL ONECOMP2 (NIL T T) -7 NIL NIL) (-781 1908463 1908569 1908699 "OMSERVER" 1908934 T OMSERVER (NIL) -7 NIL NIL) (-780 1905352 1907904 1907944 "OMSAGG" 1908005 NIL OMSAGG (NIL T) -9 NIL 1908069) (-779 1903975 1904238 1904520 "OMPKG" 1905090 T OMPKG (NIL) -7 NIL NIL) (-778 1903405 1903508 1903536 "OM" 1903835 T OM (NIL) -9 NIL NIL) (-777 1901990 1902957 1903125 "OMLO" 1903286 NIL OMLO (NIL T T) -8 NIL NIL) (-776 1900920 1901067 1901293 "OMEXPR" 1901816 NIL OMEXPR (NIL T) -7 NIL NIL) (-775 1900238 1900466 1900602 "OMERR" 1900804 T OMERR (NIL) -8 NIL NIL) (-774 1899416 1899659 1899819 "OMERRK" 1900098 T OMERRK (NIL) -8 NIL NIL) (-773 1898894 1899093 1899201 "OMENC" 1899328 T OMENC (NIL) -8 NIL NIL) (-772 1892789 1893974 1895145 "OMDEV" 1897743 T OMDEV (NIL) -8 NIL NIL) (-771 1891858 1892029 1892223 "OMCONN" 1892615 T OMCONN (NIL) -8 NIL NIL) (-770 1890518 1891460 1891488 "OINTDOM" 1891493 T OINTDOM (NIL) -9 NIL 1891514) (-769 1886326 1887510 1888225 "OFMONOID" 1889835 NIL OFMONOID (NIL T) -8 NIL NIL) (-768 1885764 1886263 1886308 "ODVAR" 1886313 NIL ODVAR (NIL T) -8 NIL NIL) (-767 1882974 1885261 1885446 "ODR" 1885639 NIL ODR (NIL T T NIL) -8 NIL NIL) (-766 1875326 1882753 1882877 "ODPOL" 1882882 NIL ODPOL (NIL T) -8 NIL NIL) (-765 1869235 1875198 1875303 "ODP" 1875308 NIL ODP (NIL NIL T NIL) -8 NIL NIL) (-764 1868001 1868216 1868491 "ODETOOLS" 1869009 NIL ODETOOLS (NIL T T) -7 NIL NIL) (-763 1864970 1865626 1866342 "ODESYS" 1867334 NIL ODESYS (NIL T T) -7 NIL NIL) (-762 1859874 1860782 1861805 "ODERTRIC" 1864045 NIL ODERTRIC (NIL T T) -7 NIL NIL) (-761 1859300 1859382 1859576 "ODERED" 1859786 NIL ODERED (NIL T T T T T) -7 NIL NIL) (-760 1856202 1856750 1857425 "ODERAT" 1858723 NIL ODERAT (NIL T T) -7 NIL NIL) (-759 1853170 1853634 1854230 "ODEPRRIC" 1855731 NIL ODEPRRIC (NIL T T T T) -7 NIL NIL) (-758 1851039 1851608 1852117 "ODEPROB" 1852681 T ODEPROB (NIL) -8 NIL NIL) (-757 1847571 1848054 1848700 "ODEPRIM" 1850518 NIL ODEPRIM (NIL T T T T) -7 NIL NIL) (-756 1846824 1846926 1847184 "ODEPAL" 1847463 NIL ODEPAL (NIL T T T T) -7 NIL NIL) (-755 1843026 1843807 1844661 "ODEPACK" 1845990 T ODEPACK (NIL) -7 NIL NIL) (-754 1842063 1842170 1842398 "ODEINT" 1842915 NIL ODEINT (NIL T T) -7 NIL NIL) (-753 1836164 1837589 1839036 "ODEIFTBL" 1840636 T ODEIFTBL (NIL) -8 NIL NIL) (-752 1831508 1832294 1833252 "ODEEF" 1835323 NIL ODEEF (NIL T T) -7 NIL NIL) (-751 1830845 1830934 1831163 "ODECONST" 1831413 NIL ODECONST (NIL T T T) -7 NIL NIL) (-750 1829003 1829636 1829664 "ODECAT" 1830267 T ODECAT (NIL) -9 NIL 1830796) (-749 1825921 1828715 1828834 "OCT" 1828916 NIL OCT (NIL T) -8 NIL NIL) (-748 1825559 1825602 1825729 "OCTCT2" 1825872 NIL OCTCT2 (NIL T T T T) -7 NIL NIL) (-747 1820437 1822831 1822871 "OC" 1823967 NIL OC (NIL T) -9 NIL 1824824) (-746 1817664 1818412 1819402 "OC-" 1819496 NIL OC- (NIL T T) -8 NIL NIL) (-745 1817043 1817485 1817513 "OCAMON" 1817518 T OCAMON (NIL) -9 NIL 1817539) (-744 1816601 1816916 1816944 "OASGP" 1816949 T OASGP (NIL) -9 NIL 1816969) (-743 1815889 1816352 1816380 "OAMONS" 1816420 T OAMONS (NIL) -9 NIL 1816463) (-742 1815330 1815737 1815765 "OAMON" 1815770 T OAMON (NIL) -9 NIL 1815790) (-741 1814635 1815127 1815155 "OAGROUP" 1815160 T OAGROUP (NIL) -9 NIL 1815180) (-740 1814325 1814375 1814463 "NUMTUBE" 1814579 NIL NUMTUBE (NIL T) -7 NIL NIL) (-739 1807898 1809416 1810952 "NUMQUAD" 1812809 T NUMQUAD (NIL) -7 NIL NIL) (-738 1803654 1804642 1805667 "NUMODE" 1806893 T NUMODE (NIL) -7 NIL NIL) (-737 1801058 1801904 1801932 "NUMINT" 1802849 T NUMINT (NIL) -9 NIL 1803605) (-736 1800006 1800203 1800421 "NUMFMT" 1800860 T NUMFMT (NIL) -7 NIL NIL) (-735 1786385 1789322 1791852 "NUMERIC" 1797515 NIL NUMERIC (NIL T) -7 NIL NIL) (-734 1780783 1785835 1785930 "NTSCAT" 1785935 NIL NTSCAT (NIL T T T T) -9 NIL 1785974) (-733 1779977 1780142 1780335 "NTPOLFN" 1780622 NIL NTPOLFN (NIL T) -7 NIL NIL) (-732 1767839 1776819 1777629 "NSUP" 1779199 NIL NSUP (NIL T) -8 NIL NIL) (-731 1767475 1767532 1767639 "NSUP2" 1767776 NIL NSUP2 (NIL T T) -7 NIL NIL) (-730 1757481 1767252 1767383 "NSMP" 1767388 NIL NSMP (NIL T T) -8 NIL NIL) (-729 1755913 1756214 1756571 "NREP" 1757169 NIL NREP (NIL T) -7 NIL NIL) (-728 1754504 1754756 1755114 "NPCOEF" 1755656 NIL NPCOEF (NIL T T T T T) -7 NIL NIL) (-727 1753570 1753685 1753901 "NORMRETR" 1754385 NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL) (-726 1751611 1751901 1752310 "NORMPK" 1753278 NIL NORMPK (NIL T T T T T) -7 NIL NIL) (-725 1751296 1751324 1751448 "NORMMA" 1751577 NIL NORMMA (NIL T T T T) -7 NIL NIL) (-724 1751123 1751253 1751282 "NONE" 1751287 T NONE (NIL) -8 NIL NIL) (-723 1750912 1750941 1751010 "NONE1" 1751087 NIL NONE1 (NIL T) -7 NIL NIL) (-722 1750397 1750459 1750644 "NODE1" 1750844 NIL NODE1 (NIL T T) -7 NIL NIL) (-721 1748737 1749560 1749815 "NNI" 1750162 T NNI (NIL) -8 NIL NIL) (-720 1747157 1747470 1747834 "NLINSOL" 1748405 NIL NLINSOL (NIL T) -7 NIL NIL) (-719 1743324 1744292 1745214 "NIPROB" 1746255 T NIPROB (NIL) -8 NIL NIL) (-718 1742081 1742315 1742617 "NFINTBAS" 1743086 NIL NFINTBAS (NIL T T) -7 NIL NIL) (-717 1740789 1741020 1741301 "NCODIV" 1741849 NIL NCODIV (NIL T T) -7 NIL NIL) (-716 1740551 1740588 1740663 "NCNTFRAC" 1740746 NIL NCNTFRAC (NIL T) -7 NIL NIL) (-715 1738731 1739095 1739515 "NCEP" 1740176 NIL NCEP (NIL T) -7 NIL NIL) (-714 1737643 1738382 1738410 "NASRING" 1738520 T NASRING (NIL) -9 NIL 1738594) (-713 1737438 1737482 1737576 "NASRING-" 1737581 NIL NASRING- (NIL T) -8 NIL NIL) (-712 1736592 1737091 1737119 "NARNG" 1737236 T NARNG (NIL) -9 NIL 1737327) (-711 1736284 1736351 1736485 "NARNG-" 1736490 NIL NARNG- (NIL T) -8 NIL NIL) (-710 1735163 1735370 1735605 "NAGSP" 1736069 T NAGSP (NIL) -7 NIL NIL) (-709 1726587 1728233 1729868 "NAGS" 1733548 T NAGS (NIL) -7 NIL NIL) (-708 1725151 1725455 1725782 "NAGF07" 1726280 T NAGF07 (NIL) -7 NIL NIL) (-707 1719733 1721013 1722309 "NAGF04" 1723875 T NAGF04 (NIL) -7 NIL NIL) (-706 1712765 1714363 1715980 "NAGF02" 1718136 T NAGF02 (NIL) -7 NIL NIL) (-705 1708029 1709119 1710226 "NAGF01" 1711678 T NAGF01 (NIL) -7 NIL NIL) (-704 1701689 1703247 1704824 "NAGE04" 1706472 T NAGE04 (NIL) -7 NIL NIL) (-703 1692930 1695033 1697145 "NAGE02" 1699597 T NAGE02 (NIL) -7 NIL NIL) (-702 1688923 1689860 1690814 "NAGE01" 1691996 T NAGE01 (NIL) -7 NIL NIL) (-701 1686730 1687261 1687816 "NAGD03" 1688388 T NAGD03 (NIL) -7 NIL NIL) (-700 1678516 1680435 1682380 "NAGD02" 1684805 T NAGD02 (NIL) -7 NIL NIL) (-699 1672375 1673788 1675216 "NAGD01" 1677108 T NAGD01 (NIL) -7 NIL NIL) (-698 1668632 1669442 1670267 "NAGC06" 1671570 T NAGC06 (NIL) -7 NIL NIL) (-697 1667109 1667438 1667791 "NAGC05" 1668299 T NAGC05 (NIL) -7 NIL NIL) (-696 1666493 1666610 1666752 "NAGC02" 1666987 T NAGC02 (NIL) -7 NIL NIL) (-695 1665555 1666112 1666152 "NAALG" 1666231 NIL NAALG (NIL T) -9 NIL 1666292) (-694 1665390 1665419 1665509 "NAALG-" 1665514 NIL NAALG- (NIL T T) -8 NIL NIL) (-693 1659340 1660448 1661635 "MULTSQFR" 1664286 NIL MULTSQFR (NIL T T T T) -7 NIL NIL) (-692 1658659 1658734 1658918 "MULTFACT" 1659252 NIL MULTFACT (NIL T T T T) -7 NIL NIL) (-691 1651899 1655764 1655816 "MTSCAT" 1656876 NIL MTSCAT (NIL T T) -9 NIL 1657390) (-690 1651611 1651665 1651757 "MTHING" 1651839 NIL MTHING (NIL T) -7 NIL NIL) (-689 1651403 1651436 1651496 "MSYSCMD" 1651571 T MSYSCMD (NIL) -7 NIL NIL) (-688 1647515 1650158 1650478 "MSET" 1651116 NIL MSET (NIL T) -8 NIL NIL) (-687 1644611 1647077 1647118 "MSETAGG" 1647123 NIL MSETAGG (NIL T) -9 NIL 1647157) (-686 1640513 1642009 1642750 "MRING" 1643914 NIL MRING (NIL T T) -8 NIL NIL) (-685 1640083 1640150 1640279 "MRF2" 1640440 NIL MRF2 (NIL T T T) -7 NIL NIL) (-684 1639701 1639736 1639880 "MRATFAC" 1640042 NIL MRATFAC (NIL T T T T) -7 NIL NIL) (-683 1637313 1637608 1638039 "MPRFF" 1639406 NIL MPRFF (NIL T T T T) -7 NIL NIL) (-682 1631379 1637168 1637264 "MPOLY" 1637269 NIL MPOLY (NIL NIL T) -8 NIL NIL) (-681 1630869 1630904 1631112 "MPCPF" 1631338 NIL MPCPF (NIL T T T T) -7 NIL NIL) (-680 1630385 1630428 1630611 "MPC3" 1630820 NIL MPC3 (NIL T T T T T T T) -7 NIL NIL) (-679 1629586 1629667 1629886 "MPC2" 1630300 NIL MPC2 (NIL T T T T T T T) -7 NIL NIL) (-678 1627887 1628224 1628614 "MONOTOOL" 1629246 NIL MONOTOOL (NIL T T) -7 NIL NIL) (-677 1627139 1627430 1627458 "MONOID" 1627677 T MONOID (NIL) -9 NIL 1627824) (-676 1626685 1626804 1626985 "MONOID-" 1626990 NIL MONOID- (NIL T) -8 NIL NIL) (-675 1617751 1623652 1623711 "MONOGEN" 1624385 NIL MONOGEN (NIL T T) -9 NIL 1624841) (-674 1614969 1615704 1616704 "MONOGEN-" 1616823 NIL MONOGEN- (NIL T T T) -8 NIL NIL) (-673 1613829 1614249 1614277 "MONADWU" 1614669 T MONADWU (NIL) -9 NIL 1614907) (-672 1613201 1613360 1613608 "MONADWU-" 1613613 NIL MONADWU- (NIL T) -8 NIL NIL) (-671 1612587 1612805 1612833 "MONAD" 1613040 T MONAD (NIL) -9 NIL 1613152) (-670 1612272 1612350 1612482 "MONAD-" 1612487 NIL MONAD- (NIL T) -8 NIL NIL) (-669 1610588 1611185 1611464 "MOEBIUS" 1612025 NIL MOEBIUS (NIL T) -8 NIL NIL) (-668 1609982 1610360 1610400 "MODULE" 1610405 NIL MODULE (NIL T) -9 NIL 1610431) (-667 1609550 1609646 1609836 "MODULE-" 1609841 NIL MODULE- (NIL T T) -8 NIL NIL) (-666 1607267 1607916 1608242 "MODRING" 1609375 NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL) (-665 1604269 1605388 1605905 "MODOP" 1606799 NIL MODOP (NIL T T) -8 NIL NIL) (-664 1602456 1602908 1603249 "MODMONOM" 1604068 NIL MODMONOM (NIL T T NIL) -8 NIL NIL) (-663 1592181 1600660 1601082 "MODMON" 1602084 NIL MODMON (NIL T T) -8 NIL NIL) (-662 1589372 1591025 1591301 "MODFIELD" 1592056 NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL) (-661 1588376 1588653 1588843 "MMLFORM" 1589202 T MMLFORM (NIL) -8 NIL NIL) (-660 1587902 1587945 1588124 "MMAP" 1588327 NIL MMAP (NIL T T T T T T) -7 NIL NIL) (-659 1586183 1586916 1586956 "MLO" 1587373 NIL MLO (NIL T) -9 NIL 1587614) (-658 1583550 1584065 1584667 "MLIFT" 1585664 NIL MLIFT (NIL T T T T) -7 NIL NIL) (-657 1582941 1583025 1583179 "MKUCFUNC" 1583461 NIL MKUCFUNC (NIL T T T) -7 NIL NIL) (-656 1582540 1582610 1582733 "MKRECORD" 1582864 NIL MKRECORD (NIL T T) -7 NIL NIL) (-655 1581588 1581749 1581977 "MKFUNC" 1582351 NIL MKFUNC (NIL T) -7 NIL NIL) (-654 1580976 1581080 1581236 "MKFLCFN" 1581471 NIL MKFLCFN (NIL T) -7 NIL NIL) (-653 1580402 1580769 1580858 "MKCHSET" 1580920 NIL MKCHSET (NIL T) -8 NIL NIL) (-652 1579679 1579781 1579966 "MKBCFUNC" 1580295 NIL MKBCFUNC (NIL T T T T) -7 NIL NIL) (-651 1576409 1579233 1579369 "MINT" 1579563 T MINT (NIL) -8 NIL NIL) (-650 1575221 1575464 1575741 "MHROWRED" 1576164 NIL MHROWRED (NIL T) -7 NIL NIL) (-649 1570557 1573666 1574090 "MFLOAT" 1574817 T MFLOAT (NIL) -8 NIL NIL) (-648 1569914 1569990 1570161 "MFINFACT" 1570469 NIL MFINFACT (NIL T T T T) -7 NIL NIL) (-647 1566229 1567077 1567961 "MESH" 1569050 T MESH (NIL) -7 NIL NIL) (-646 1564619 1564931 1565284 "MDDFACT" 1565916 NIL MDDFACT (NIL T) -7 NIL NIL) (-645 1561462 1563779 1563820 "MDAGG" 1564075 NIL MDAGG (NIL T) -9 NIL 1564218) (-644 1551247 1560755 1560962 "MCMPLX" 1561275 T MCMPLX (NIL) -8 NIL NIL) (-643 1550388 1550534 1550734 "MCDEN" 1551096 NIL MCDEN (NIL T T) -7 NIL NIL) (-642 1548278 1548548 1548928 "MCALCFN" 1550118 NIL MCALCFN (NIL T T T T) -7 NIL NIL) (-641 1547189 1547362 1547603 "MAYBE" 1548076 NIL MAYBE (NIL T) -8 NIL NIL) (-640 1544811 1545334 1545895 "MATSTOR" 1546660 NIL MATSTOR (NIL T) -7 NIL NIL) (-639 1540820 1544186 1544433 "MATRIX" 1544596 NIL MATRIX (NIL T) -8 NIL NIL) (-638 1536589 1537293 1538029 "MATLIN" 1540177 NIL MATLIN (NIL T T T T) -7 NIL NIL) (-637 1526787 1529925 1530001 "MATCAT" 1534839 NIL MATCAT (NIL T T T) -9 NIL 1536256) (-636 1523152 1524165 1525520 "MATCAT-" 1525525 NIL MATCAT- (NIL T T T T) -8 NIL NIL) (-635 1521754 1521907 1522238 "MATCAT2" 1522987 NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-634 1519866 1520190 1520574 "MAPPKG3" 1521429 NIL MAPPKG3 (NIL T T T) -7 NIL NIL) (-633 1518847 1519020 1519242 "MAPPKG2" 1519690 NIL MAPPKG2 (NIL T T) -7 NIL NIL) (-632 1517346 1517630 1517957 "MAPPKG1" 1518553 NIL MAPPKG1 (NIL T) -7 NIL NIL) (-631 1516957 1517015 1517138 "MAPHACK3" 1517282 NIL MAPHACK3 (NIL T T T) -7 NIL NIL) (-630 1516549 1516610 1516724 "MAPHACK2" 1516889 NIL MAPHACK2 (NIL T T) -7 NIL NIL) (-629 1515987 1516090 1516232 "MAPHACK1" 1516440 NIL MAPHACK1 (NIL T) -7 NIL NIL) (-628 1514095 1514689 1514992 "MAGMA" 1515716 NIL MAGMA (NIL T) -8 NIL NIL) (-627 1510570 1512339 1512799 "M3D" 1513668 NIL M3D (NIL T) -8 NIL NIL) (-626 1504726 1508941 1508982 "LZSTAGG" 1509764 NIL LZSTAGG (NIL T) -9 NIL 1510059) (-625 1500699 1501857 1503314 "LZSTAGG-" 1503319 NIL LZSTAGG- (NIL T T) -8 NIL NIL) (-624 1497815 1498592 1499078 "LWORD" 1500245 NIL LWORD (NIL T) -8 NIL NIL) (-623 1491021 1497586 1497720 "LSQM" 1497725 NIL LSQM (NIL NIL T) -8 NIL NIL) (-622 1490245 1490384 1490612 "LSPP" 1490876 NIL LSPP (NIL T T T T) -7 NIL NIL) (-621 1488057 1488358 1488814 "LSMP" 1489934 NIL LSMP (NIL T T T T) -7 NIL NIL) (-620 1484836 1485510 1486240 "LSMP1" 1487359 NIL LSMP1 (NIL T) -7 NIL NIL) (-619 1478763 1484005 1484046 "LSAGG" 1484108 NIL LSAGG (NIL T) -9 NIL 1484186) (-618 1475458 1476382 1477595 "LSAGG-" 1477600 NIL LSAGG- (NIL T T) -8 NIL NIL) (-617 1473084 1474602 1474851 "LPOLY" 1475253 NIL LPOLY (NIL T T) -8 NIL NIL) (-616 1472666 1472751 1472874 "LPEFRAC" 1472993 NIL LPEFRAC (NIL T) -7 NIL NIL) (-615 1471013 1471760 1472013 "LO" 1472498 NIL LO (NIL T T T) -8 NIL NIL) (-614 1470667 1470779 1470807 "LOGIC" 1470918 T LOGIC (NIL) -9 NIL 1470998) (-613 1470529 1470552 1470623 "LOGIC-" 1470628 NIL LOGIC- (NIL T) -8 NIL NIL) (-612 1469722 1469862 1470055 "LODOOPS" 1470385 NIL LODOOPS (NIL T T) -7 NIL NIL) (-611 1467186 1469639 1469704 "LODO" 1469709 NIL LODO (NIL T NIL) -8 NIL NIL) (-610 1465732 1465967 1466318 "LODOF" 1466933 NIL LODOF (NIL T T) -7 NIL NIL) (-609 1462196 1464588 1464628 "LODOCAT" 1465060 NIL LODOCAT (NIL T) -9 NIL 1465271) (-608 1461930 1461988 1462114 "LODOCAT-" 1462119 NIL LODOCAT- (NIL T T) -8 NIL NIL) (-607 1459290 1461771 1461889 "LODO2" 1461894 NIL LODO2 (NIL T T) -8 NIL NIL) (-606 1456765 1459227 1459272 "LODO1" 1459277 NIL LODO1 (NIL T) -8 NIL NIL) (-605 1455628 1455793 1456104 "LODEEF" 1456588 NIL LODEEF (NIL T T T) -7 NIL NIL) (-604 1450915 1453759 1453800 "LNAGG" 1454747 NIL LNAGG (NIL T) -9 NIL 1455191) (-603 1450062 1450276 1450618 "LNAGG-" 1450623 NIL LNAGG- (NIL T T) -8 NIL NIL) (-602 1446227 1446989 1447627 "LMOPS" 1449478 NIL LMOPS (NIL T T NIL) -8 NIL NIL) (-601 1445625 1445987 1446027 "LMODULE" 1446087 NIL LMODULE (NIL T) -9 NIL 1446129) (-600 1442871 1445270 1445393 "LMDICT" 1445535 NIL LMDICT (NIL T) -8 NIL NIL) (-599 1442615 1442779 1442839 "LITERAL" 1442844 NIL LITERAL (NIL T) -8 NIL NIL) (-598 1435842 1441561 1441859 "LIST" 1442350 NIL LIST (NIL T) -8 NIL NIL) (-597 1435367 1435441 1435580 "LIST3" 1435762 NIL LIST3 (NIL T T T) -7 NIL NIL) (-596 1434374 1434552 1434780 "LIST2" 1435185 NIL LIST2 (NIL T T) -7 NIL NIL) (-595 1432508 1432820 1433219 "LIST2MAP" 1434021 NIL LIST2MAP (NIL T T) -7 NIL NIL) (-594 1431265 1431901 1431941 "LINEXP" 1432194 NIL LINEXP (NIL T) -9 NIL 1432342) (-593 1429912 1430172 1430469 "LINDEP" 1431017 NIL LINDEP (NIL T T) -7 NIL NIL) (-592 1426679 1427398 1428175 "LIMITRF" 1429167 NIL LIMITRF (NIL T) -7 NIL NIL) (-591 1424959 1425254 1425669 "LIMITPS" 1426374 NIL LIMITPS (NIL T T) -7 NIL NIL) (-590 1419414 1424470 1424698 "LIE" 1424780 NIL LIE (NIL T T) -8 NIL NIL) (-589 1418465 1418908 1418948 "LIECAT" 1419088 NIL LIECAT (NIL T) -9 NIL 1419239) (-588 1418306 1418333 1418421 "LIECAT-" 1418426 NIL LIECAT- (NIL T T) -8 NIL NIL) (-587 1410918 1417755 1417920 "LIB" 1418161 T LIB (NIL) -8 NIL NIL) (-586 1406555 1407436 1408371 "LGROBP" 1410035 NIL LGROBP (NIL NIL T) -7 NIL NIL) (-585 1404421 1404695 1405057 "LF" 1406276 NIL LF (NIL T T) -7 NIL NIL) (-584 1403261 1403953 1403981 "LFCAT" 1404188 T LFCAT (NIL) -9 NIL 1404327) (-583 1400173 1400799 1401485 "LEXTRIPK" 1402627 NIL LEXTRIPK (NIL T NIL) -7 NIL NIL) (-582 1396944 1397743 1398246 "LEXP" 1399753 NIL LEXP (NIL T T NIL) -8 NIL NIL) (-581 1395342 1395655 1396056 "LEADCDET" 1396626 NIL LEADCDET (NIL T T T T) -7 NIL NIL) (-580 1394532 1394606 1394835 "LAZM3PK" 1395263 NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL) (-579 1389495 1392611 1393148 "LAUPOL" 1394045 NIL LAUPOL (NIL T T) -8 NIL NIL) (-578 1389062 1389106 1389273 "LAPLACE" 1389445 NIL LAPLACE (NIL T T) -7 NIL NIL) (-577 1387036 1388163 1388414 "LA" 1388895 NIL LA (NIL T T T) -8 NIL NIL) (-576 1386143 1386693 1386733 "LALG" 1386794 NIL LALG (NIL T) -9 NIL 1386852) (-575 1385858 1385917 1386052 "LALG-" 1386057 NIL LALG- (NIL T T) -8 NIL NIL) (-574 1384768 1384955 1385252 "KOVACIC" 1385658 NIL KOVACIC (NIL T T) -7 NIL NIL) (-573 1384603 1384627 1384668 "KONVERT" 1384730 NIL KONVERT (NIL T) -9 NIL NIL) (-572 1384438 1384462 1384503 "KOERCE" 1384565 NIL KOERCE (NIL T) -9 NIL NIL) (-571 1382172 1382932 1383325 "KERNEL" 1384077 NIL KERNEL (NIL T) -8 NIL NIL) (-570 1381674 1381755 1381885 "KERNEL2" 1382086 NIL KERNEL2 (NIL T T) -7 NIL NIL) (-569 1375526 1380214 1380268 "KDAGG" 1380645 NIL KDAGG (NIL T T) -9 NIL 1380851) (-568 1375055 1375179 1375384 "KDAGG-" 1375389 NIL KDAGG- (NIL T T T) -8 NIL NIL) (-567 1368230 1374716 1374871 "KAFILE" 1374933 NIL KAFILE (NIL T) -8 NIL NIL) (-566 1362685 1367741 1367969 "JORDAN" 1368051 NIL JORDAN (NIL T T) -8 NIL NIL) (-565 1362414 1362473 1362560 "JAVACODE" 1362618 T JAVACODE (NIL) -8 NIL NIL) (-564 1358714 1360620 1360674 "IXAGG" 1361603 NIL IXAGG (NIL T T) -9 NIL 1362062) (-563 1357633 1357939 1358358 "IXAGG-" 1358363 NIL IXAGG- (NIL T T T) -8 NIL NIL) (-562 1353218 1357555 1357614 "IVECTOR" 1357619 NIL IVECTOR (NIL T NIL) -8 NIL NIL) (-561 1351984 1352221 1352487 "ITUPLE" 1352985 NIL ITUPLE (NIL T) -8 NIL NIL) (-560 1350420 1350597 1350903 "ITRIGMNP" 1351806 NIL ITRIGMNP (NIL T T T) -7 NIL NIL) (-559 1349165 1349369 1349652 "ITFUN3" 1350196 NIL ITFUN3 (NIL T T T) -7 NIL NIL) (-558 1348797 1348854 1348963 "ITFUN2" 1349102 NIL ITFUN2 (NIL T T) -7 NIL NIL) (-557 1346645 1347670 1347967 "ITAYLOR" 1348532 NIL ITAYLOR (NIL T) -8 NIL NIL) (-556 1335679 1340831 1341990 "ISUPS" 1345518 NIL ISUPS (NIL T) -8 NIL NIL) (-555 1334783 1334923 1335159 "ISUMP" 1335526 NIL ISUMP (NIL T T T T) -7 NIL NIL) (-554 1330047 1334584 1334663 "ISTRING" 1334736 NIL ISTRING (NIL NIL) -8 NIL NIL) (-553 1329257 1329338 1329554 "IRURPK" 1329961 NIL IRURPK (NIL T T T T T) -7 NIL NIL) (-552 1328193 1328394 1328634 "IRSN" 1329037 T IRSN (NIL) -7 NIL NIL) (-551 1326228 1326583 1327018 "IRRF2F" 1327831 NIL IRRF2F (NIL T) -7 NIL NIL) (-550 1325975 1326013 1326089 "IRREDFFX" 1326184 NIL IRREDFFX (NIL T) -7 NIL NIL) (-549 1324590 1324849 1325148 "IROOT" 1325708 NIL IROOT (NIL T) -7 NIL NIL) (-548 1321228 1322279 1322969 "IR" 1323932 NIL IR (NIL T) -8 NIL NIL) (-547 1318841 1319336 1319902 "IR2" 1320706 NIL IR2 (NIL T T) -7 NIL NIL) (-546 1317917 1318030 1318250 "IR2F" 1318724 NIL IR2F (NIL T T) -7 NIL NIL) (-545 1317708 1317742 1317802 "IPRNTPK" 1317877 T IPRNTPK (NIL) -7 NIL NIL) (-544 1314327 1317597 1317666 "IPF" 1317671 NIL IPF (NIL NIL) -8 NIL NIL) (-543 1312690 1314252 1314309 "IPADIC" 1314314 NIL IPADIC (NIL NIL NIL) -8 NIL NIL) (-542 1312189 1312247 1312436 "INVLAPLA" 1312626 NIL INVLAPLA (NIL T T) -7 NIL NIL) (-541 1301838 1304191 1306577 "INTTR" 1309853 NIL INTTR (NIL T T) -7 NIL NIL) (-540 1298186 1298927 1299790 "INTTOOLS" 1301024 NIL INTTOOLS (NIL T T) -7 NIL NIL) (-539 1297772 1297863 1297980 "INTSLPE" 1298089 T INTSLPE (NIL) -7 NIL NIL) (-538 1295767 1297695 1297754 "INTRVL" 1297759 NIL INTRVL (NIL T) -8 NIL NIL) (-537 1293374 1293886 1294460 "INTRF" 1295252 NIL INTRF (NIL T) -7 NIL NIL) (-536 1292789 1292886 1293027 "INTRET" 1293272 NIL INTRET (NIL T) -7 NIL NIL) (-535 1290791 1291180 1291649 "INTRAT" 1292397 NIL INTRAT (NIL T T) -7 NIL NIL) (-534 1288024 1288607 1289232 "INTPM" 1290276 NIL INTPM (NIL T T) -7 NIL NIL) (-533 1284733 1285332 1286076 "INTPAF" 1287410 NIL INTPAF (NIL T T T) -7 NIL NIL) (-532 1279976 1280922 1281957 "INTPACK" 1283718 T INTPACK (NIL) -7 NIL NIL) (-531 1276876 1279705 1279832 "INT" 1279869 T INT (NIL) -8 NIL NIL) (-530 1276128 1276280 1276488 "INTHERTR" 1276718 NIL INTHERTR (NIL T T) -7 NIL NIL) (-529 1275567 1275647 1275835 "INTHERAL" 1276042 NIL INTHERAL (NIL T T T T) -7 NIL NIL) (-528 1273413 1273856 1274313 "INTHEORY" 1275130 T INTHEORY (NIL) -7 NIL NIL) (-527 1264735 1266356 1268134 "INTG0" 1271765 NIL INTG0 (NIL T T T) -7 NIL NIL) (-526 1245308 1250098 1254908 "INTFTBL" 1259945 T INTFTBL (NIL) -8 NIL NIL) (-525 1244557 1244695 1244868 "INTFACT" 1245167 NIL INTFACT (NIL T) -7 NIL NIL) (-524 1241948 1242394 1242957 "INTEF" 1244111 NIL INTEF (NIL T T) -7 NIL NIL) (-523 1240454 1241159 1241187 "INTDOM" 1241488 T INTDOM (NIL) -9 NIL 1241695) (-522 1239823 1239997 1240239 "INTDOM-" 1240244 NIL INTDOM- (NIL T) -8 NIL NIL) (-521 1236362 1238248 1238302 "INTCAT" 1239101 NIL INTCAT (NIL T) -9 NIL 1239420) (-520 1235835 1235937 1236065 "INTBIT" 1236254 T INTBIT (NIL) -7 NIL NIL) (-519 1234510 1234664 1234977 "INTALG" 1235680 NIL INTALG (NIL T T T T T) -7 NIL NIL) (-518 1233967 1234057 1234227 "INTAF" 1234414 NIL INTAF (NIL T T) -7 NIL NIL) (-517 1227421 1233777 1233917 "INTABL" 1233922 NIL INTABL (NIL T T T) -8 NIL NIL) (-516 1222418 1225101 1225129 "INS" 1226097 T INS (NIL) -9 NIL 1226778) (-515 1219658 1220429 1221403 "INS-" 1221476 NIL INS- (NIL T) -8 NIL NIL) (-514 1218437 1218664 1218961 "INPSIGN" 1219411 NIL INPSIGN (NIL T T) -7 NIL NIL) (-513 1217555 1217672 1217869 "INPRODPF" 1218317 NIL INPRODPF (NIL T T) -7 NIL NIL) (-512 1216449 1216566 1216803 "INPRODFF" 1217435 NIL INPRODFF (NIL T T T T) -7 NIL NIL) (-511 1215449 1215601 1215861 "INNMFACT" 1216285 NIL INNMFACT (NIL T T T T) -7 NIL NIL) (-510 1214646 1214743 1214931 "INMODGCD" 1215348 NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL) (-509 1213155 1213399 1213723 "INFSP" 1214391 NIL INFSP (NIL T T T) -7 NIL NIL) (-508 1212339 1212456 1212639 "INFPROD0" 1213035 NIL INFPROD0 (NIL T T) -7 NIL NIL) (-507 1209350 1210508 1210999 "INFORM" 1211856 T INFORM (NIL) -8 NIL NIL) (-506 1208960 1209020 1209118 "INFORM1" 1209285 NIL INFORM1 (NIL T) -7 NIL NIL) (-505 1208483 1208572 1208686 "INFINITY" 1208866 T INFINITY (NIL) -7 NIL NIL) (-504 1207100 1207349 1207670 "INEP" 1208231 NIL INEP (NIL T T T) -7 NIL NIL) (-503 1206376 1206997 1207062 "INDE" 1207067 NIL INDE (NIL T) -8 NIL NIL) (-502 1205940 1206008 1206125 "INCRMAPS" 1206303 NIL INCRMAPS (NIL T) -7 NIL NIL) (-501 1201251 1202176 1203120 "INBFF" 1205028 NIL INBFF (NIL T) -7 NIL NIL) (-500 1197746 1201096 1201199 "IMATRIX" 1201204 NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL) (-499 1196458 1196581 1196896 "IMATQF" 1197602 NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL) (-498 1194678 1194905 1195242 "IMATLIN" 1196214 NIL IMATLIN (NIL T T T T) -7 NIL NIL) (-497 1189304 1194602 1194660 "ILIST" 1194665 NIL ILIST (NIL T NIL) -8 NIL NIL) (-496 1187257 1189164 1189277 "IIARRAY2" 1189282 NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL) (-495 1182690 1187168 1187232 "IFF" 1187237 NIL IFF (NIL NIL NIL) -8 NIL NIL) (-494 1177733 1181982 1182170 "IFARRAY" 1182547 NIL IFARRAY (NIL T NIL) -8 NIL NIL) (-493 1176940 1177637 1177710 "IFAMON" 1177715 NIL IFAMON (NIL T T NIL) -8 NIL NIL) (-492 1176524 1176589 1176643 "IEVALAB" 1176850 NIL IEVALAB (NIL T T) -9 NIL NIL) (-491 1176199 1176267 1176427 "IEVALAB-" 1176432 NIL IEVALAB- (NIL T T T) -8 NIL NIL) (-490 1175857 1176113 1176176 "IDPO" 1176181 NIL IDPO (NIL T T) -8 NIL NIL) (-489 1175134 1175746 1175821 "IDPOAMS" 1175826 NIL IDPOAMS (NIL T T) -8 NIL NIL) (-488 1174468 1175023 1175098 "IDPOAM" 1175103 NIL IDPOAM (NIL T T) -8 NIL NIL) (-487 1173554 1173804 1173857 "IDPC" 1174270 NIL IDPC (NIL T T) -9 NIL 1174419) (-486 1173050 1173446 1173519 "IDPAM" 1173524 NIL IDPAM (NIL T T) -8 NIL NIL) (-485 1172453 1172942 1173015 "IDPAG" 1173020 NIL IDPAG (NIL T T) -8 NIL NIL) (-484 1172201 1172368 1172418 "IDENT" 1172423 T IDENT (NIL) -8 NIL NIL) (-483 1168456 1169304 1170199 "IDECOMP" 1171358 NIL IDECOMP (NIL NIL NIL) -7 NIL NIL) (-482 1161329 1162379 1163426 "IDEAL" 1167492 NIL IDEAL (NIL T T T T) -8 NIL NIL) (-481 1160493 1160605 1160804 "ICDEN" 1161213 NIL ICDEN (NIL T T T T) -7 NIL NIL) (-480 1159592 1159973 1160120 "ICARD" 1160366 T ICARD (NIL) -8 NIL NIL) (-479 1157664 1157977 1158380 "IBPTOOLS" 1159269 NIL IBPTOOLS (NIL T T T T) -7 NIL NIL) (-478 1153298 1157284 1157397 "IBITS" 1157583 NIL IBITS (NIL NIL) -8 NIL NIL) (-477 1150021 1150597 1151292 "IBATOOL" 1152715 NIL IBATOOL (NIL T T T) -7 NIL NIL) (-476 1147801 1148262 1148795 "IBACHIN" 1149556 NIL IBACHIN (NIL T T T) -7 NIL NIL) (-475 1145678 1147647 1147750 "IARRAY2" 1147755 NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL) (-474 1141831 1145604 1145661 "IARRAY1" 1145666 NIL IARRAY1 (NIL T NIL) -8 NIL NIL) (-473 1135834 1140249 1140727 "IAN" 1141373 T IAN (NIL) -8 NIL NIL) (-472 1135345 1135402 1135575 "IALGFACT" 1135771 NIL IALGFACT (NIL T T T T) -7 NIL NIL) (-471 1134873 1134986 1135014 "HYPCAT" 1135221 T HYPCAT (NIL) -9 NIL NIL) (-470 1134411 1134528 1134714 "HYPCAT-" 1134719 NIL HYPCAT- (NIL T) -8 NIL NIL) (-469 1134033 1134206 1134289 "HOSTNAME" 1134348 T HOSTNAME (NIL) -8 NIL NIL) (-468 1130713 1132044 1132085 "HOAGG" 1133066 NIL HOAGG (NIL T) -9 NIL 1133745) (-467 1129307 1129706 1130232 "HOAGG-" 1130237 NIL HOAGG- (NIL T T) -8 NIL NIL) (-466 1123202 1128748 1128914 "HEXADEC" 1129161 T HEXADEC (NIL) -8 NIL NIL) (-465 1121950 1122172 1122435 "HEUGCD" 1122979 NIL HEUGCD (NIL T) -7 NIL NIL) (-464 1121053 1121787 1121917 "HELLFDIV" 1121922 NIL HELLFDIV (NIL T T T T) -8 NIL NIL) (-463 1119281 1120830 1120918 "HEAP" 1120997 NIL HEAP (NIL T) -8 NIL NIL) (-462 1118616 1118856 1118986 "HEADAST" 1119171 T HEADAST (NIL) -8 NIL NIL) (-461 1112569 1118531 1118593 "HDP" 1118598 NIL HDP (NIL NIL T) -8 NIL NIL) (-460 1106327 1112206 1112357 "HDMP" 1112470 NIL HDMP (NIL NIL T) -8 NIL NIL) (-459 1105652 1105791 1105955 "HB" 1106183 T HB (NIL) -7 NIL NIL) (-458 1099149 1105498 1105602 "HASHTBL" 1105607 NIL HASHTBL (NIL T T NIL) -8 NIL NIL) (-457 1096967 1098777 1098956 "HACKPI" 1098990 T HACKPI (NIL) -8 NIL NIL) (-456 1092662 1096820 1096933 "GTSET" 1096938 NIL GTSET (NIL T T T T) -8 NIL NIL) (-455 1086188 1092540 1092638 "GSTBL" 1092643 NIL GSTBL (NIL T T T NIL) -8 NIL NIL) (-454 1078506 1085224 1085488 "GSERIES" 1085979 NIL GSERIES (NIL T NIL NIL) -8 NIL NIL) (-453 1077674 1078065 1078093 "GROUP" 1078296 T GROUP (NIL) -9 NIL 1078430) (-452 1077040 1077199 1077450 "GROUP-" 1077455 NIL GROUP- (NIL T) -8 NIL NIL) (-451 1075409 1075728 1076115 "GROEBSOL" 1076717 NIL GROEBSOL (NIL NIL T T) -7 NIL NIL) (-450 1074350 1074612 1074663 "GRMOD" 1075192 NIL GRMOD (NIL T T) -9 NIL 1075360) (-449 1074118 1074154 1074282 "GRMOD-" 1074287 NIL GRMOD- (NIL T T T) -8 NIL NIL) (-448 1069443 1070472 1071472 "GRIMAGE" 1073138 T GRIMAGE (NIL) -8 NIL NIL) (-447 1067910 1068170 1068494 "GRDEF" 1069139 T GRDEF (NIL) -7 NIL NIL) (-446 1067354 1067470 1067611 "GRAY" 1067789 T GRAY (NIL) -7 NIL NIL) (-445 1066588 1066968 1067019 "GRALG" 1067172 NIL GRALG (NIL T T) -9 NIL 1067264) (-444 1066249 1066322 1066485 "GRALG-" 1066490 NIL GRALG- (NIL T T T) -8 NIL NIL) (-443 1063055 1065836 1066013 "GPOLSET" 1066156 NIL GPOLSET (NIL T T T T) -8 NIL NIL) (-442 1062411 1062468 1062725 "GOSPER" 1062992 NIL GOSPER (NIL T T T T T) -7 NIL NIL) (-441 1058170 1058849 1059375 "GMODPOL" 1062110 NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL) (-440 1057175 1057359 1057597 "GHENSEL" 1057982 NIL GHENSEL (NIL T T) -7 NIL NIL) (-439 1051241 1052084 1053110 "GENUPS" 1056259 NIL GENUPS (NIL T T) -7 NIL NIL) (-438 1050938 1050989 1051078 "GENUFACT" 1051184 NIL GENUFACT (NIL T) -7 NIL NIL) (-437 1050350 1050427 1050592 "GENPGCD" 1050856 NIL GENPGCD (NIL T T T T) -7 NIL NIL) (-436 1049824 1049859 1050072 "GENMFACT" 1050309 NIL GENMFACT (NIL T T T T T) -7 NIL NIL) (-435 1048392 1048647 1048954 "GENEEZ" 1049567 NIL GENEEZ (NIL T T) -7 NIL NIL) (-434 1042312 1048005 1048166 "GDMP" 1048315 NIL GDMP (NIL NIL T T) -8 NIL NIL) (-433 1031689 1036083 1037189 "GCNAALG" 1041295 NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL) (-432 1030155 1030983 1031011 "GCDDOM" 1031266 T GCDDOM (NIL) -9 NIL 1031423) (-431 1029625 1029752 1029967 "GCDDOM-" 1029972 NIL GCDDOM- (NIL T) -8 NIL NIL) (-430 1028297 1028482 1028786 "GB" 1029404 NIL GB (NIL T T T T) -7 NIL NIL) (-429 1016917 1019243 1021635 "GBINTERN" 1025988 NIL GBINTERN (NIL T T T T) -7 NIL NIL) (-428 1014754 1015046 1015467 "GBF" 1016592 NIL GBF (NIL T T T T) -7 NIL NIL) (-427 1013535 1013700 1013967 "GBEUCLID" 1014570 NIL GBEUCLID (NIL T T T T) -7 NIL NIL) (-426 1012884 1013009 1013158 "GAUSSFAC" 1013406 T GAUSSFAC (NIL) -7 NIL NIL) (-425 1011261 1011563 1011876 "GALUTIL" 1012603 NIL GALUTIL (NIL T) -7 NIL NIL) (-424 1009578 1009852 1010175 "GALPOLYU" 1010988 NIL GALPOLYU (NIL T T) -7 NIL NIL) (-423 1006967 1007257 1007662 "GALFACTU" 1009275 NIL GALFACTU (NIL T T T) -7 NIL NIL) (-422 998773 1000272 1001880 "GALFACT" 1005399 NIL GALFACT (NIL T) -7 NIL NIL) (-421 996161 996819 996847 "FVFUN" 998003 T FVFUN (NIL) -9 NIL 998723) (-420 995427 995609 995637 "FVC" 995928 T FVC (NIL) -9 NIL 996111) (-419 995069 995224 995305 "FUNCTION" 995379 NIL FUNCTION (NIL NIL) -8 NIL NIL) (-418 992739 993290 993779 "FT" 994600 T FT (NIL) -8 NIL NIL) (-417 991557 992040 992243 "FTEM" 992556 T FTEM (NIL) -8 NIL NIL) (-416 989822 990110 990512 "FSUPFACT" 991249 NIL FSUPFACT (NIL T T T) -7 NIL NIL) (-415 988219 988508 988840 "FST" 989510 T FST (NIL) -8 NIL NIL) (-414 987394 987500 987694 "FSRED" 988101 NIL FSRED (NIL T T) -7 NIL NIL) (-413 986073 986328 986682 "FSPRMELT" 987109 NIL FSPRMELT (NIL T T) -7 NIL NIL) (-412 983158 983596 984095 "FSPECF" 985636 NIL FSPECF (NIL T T) -7 NIL NIL) (-411 965687 974089 974129 "FS" 977967 NIL FS (NIL T) -9 NIL 980249) (-410 954337 957327 961383 "FS-" 961680 NIL FS- (NIL T T) -8 NIL NIL) (-409 953853 953907 954083 "FSINT" 954278 NIL FSINT (NIL T T) -7 NIL NIL) (-408 952180 952846 953149 "FSERIES" 953632 NIL FSERIES (NIL T T) -8 NIL NIL) (-407 951198 951314 951544 "FSCINT" 952060 NIL FSCINT (NIL T T) -7 NIL NIL) (-406 947433 950143 950184 "FSAGG" 950554 NIL FSAGG (NIL T) -9 NIL 950813) (-405 945195 945796 946592 "FSAGG-" 946687 NIL FSAGG- (NIL T T) -8 NIL NIL) (-404 944237 944380 944607 "FSAGG2" 945048 NIL FSAGG2 (NIL T T T T) -7 NIL NIL) (-403 941896 942175 942728 "FS2UPS" 943955 NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL) (-402 941482 941525 941678 "FS2" 941847 NIL FS2 (NIL T T T T) -7 NIL NIL) (-401 940342 940513 940821 "FS2EXPXP" 941307 NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL) (-400 939768 939883 940035 "FRUTIL" 940222 NIL FRUTIL (NIL T) -7 NIL NIL) (-399 931234 935267 936623 "FR" 938444 NIL FR (NIL T) -8 NIL NIL) (-398 926311 928954 928994 "FRNAALG" 930390 NIL FRNAALG (NIL T) -9 NIL 930997) (-397 921989 923060 924335 "FRNAALG-" 925085 NIL FRNAALG- (NIL T T) -8 NIL NIL) (-396 921627 921670 921797 "FRNAAF2" 921940 NIL FRNAAF2 (NIL T T T T) -7 NIL NIL) (-395 920038 920484 920778 "FRMOD" 921440 NIL FRMOD (NIL T T T T NIL) -8 NIL NIL) (-394 917825 918429 918745 "FRIDEAL" 919829 NIL FRIDEAL (NIL T T T T) -8 NIL NIL) (-393 917024 917111 917398 "FRIDEAL2" 917732 NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL) (-392 916282 916690 916731 "FRETRCT" 916736 NIL FRETRCT (NIL T) -9 NIL 916907) (-391 915394 915625 915976 "FRETRCT-" 915981 NIL FRETRCT- (NIL T T) -8 NIL NIL) (-390 912648 913824 913883 "FRAMALG" 914765 NIL FRAMALG (NIL T T) -9 NIL 915057) (-389 910782 911237 911867 "FRAMALG-" 912090 NIL FRAMALG- (NIL T T T) -8 NIL NIL) (-388 904749 910257 910533 "FRAC" 910538 NIL FRAC (NIL T) -8 NIL NIL) (-387 904385 904442 904549 "FRAC2" 904686 NIL FRAC2 (NIL T T) -7 NIL NIL) (-386 904021 904078 904185 "FR2" 904322 NIL FR2 (NIL T T) -7 NIL NIL) (-385 898760 901608 901636 "FPS" 902755 T FPS (NIL) -9 NIL 903311) (-384 898209 898318 898482 "FPS-" 898628 NIL FPS- (NIL T) -8 NIL NIL) (-383 895720 897355 897383 "FPC" 897608 T FPC (NIL) -9 NIL 897750) (-382 895513 895553 895650 "FPC-" 895655 NIL FPC- (NIL T) -8 NIL NIL) (-381 894392 895002 895043 "FPATMAB" 895048 NIL FPATMAB (NIL T) -9 NIL 895200) (-380 892092 892568 892994 "FPARFRAC" 894029 NIL FPARFRAC (NIL T T) -8 NIL NIL) (-379 887485 887984 888666 "FORTRAN" 891524 NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL) (-378 885201 885701 886240 "FORT" 886966 T FORT (NIL) -7 NIL NIL) (-377 882877 883439 883467 "FORTFN" 884527 T FORTFN (NIL) -9 NIL 885151) (-376 882641 882691 882719 "FORTCAT" 882778 T FORTCAT (NIL) -9 NIL 882840) (-375 880701 881184 881583 "FORMULA" 882262 T FORMULA (NIL) -8 NIL NIL) (-374 880489 880519 880588 "FORMULA1" 880665 NIL FORMULA1 (NIL T) -7 NIL NIL) (-373 880012 880064 880237 "FORDER" 880431 NIL FORDER (NIL T T T T) -7 NIL NIL) (-372 879108 879272 879465 "FOP" 879839 T FOP (NIL) -7 NIL NIL) (-371 877716 878388 878562 "FNLA" 878990 NIL FNLA (NIL NIL NIL T) -8 NIL NIL) (-370 876385 876774 876802 "FNCAT" 877374 T FNCAT (NIL) -9 NIL 877667) (-369 875951 876344 876372 "FNAME" 876377 T FNAME (NIL) -8 NIL NIL) (-368 874655 875584 875612 "FMTC" 875617 T FMTC (NIL) -9 NIL 875652) (-367 871019 872180 872808 "FMONOID" 874060 NIL FMONOID (NIL T) -8 NIL NIL) (-366 870239 870762 870910 "FM" 870915 NIL FM (NIL T T) -8 NIL NIL) (-365 867663 868309 868337 "FMFUN" 869481 T FMFUN (NIL) -9 NIL 870189) (-364 866932 867113 867141 "FMC" 867431 T FMC (NIL) -9 NIL 867613) (-363 864162 864996 865049 "FMCAT" 866231 NIL FMCAT (NIL T T) -9 NIL 866725) (-362 863057 863930 864029 "FM1" 864107 NIL FM1 (NIL T T) -8 NIL NIL) (-361 860831 861247 861741 "FLOATRP" 862608 NIL FLOATRP (NIL T) -7 NIL NIL) (-360 854382 858487 859117 "FLOAT" 860221 T FLOAT (NIL) -8 NIL NIL) (-359 851820 852320 852898 "FLOATCP" 853849 NIL FLOATCP (NIL T) -7 NIL NIL) (-358 850653 851457 851497 "FLINEXP" 851502 NIL FLINEXP (NIL T) -9 NIL 851595) (-357 849808 850043 850370 "FLINEXP-" 850375 NIL FLINEXP- (NIL T T) -8 NIL NIL) (-356 848884 849028 849252 "FLASORT" 849660 NIL FLASORT (NIL T T) -7 NIL NIL) (-355 846103 846945 846997 "FLALG" 848224 NIL FLALG (NIL T T) -9 NIL 848691) (-354 839888 843590 843631 "FLAGG" 844893 NIL FLAGG (NIL T) -9 NIL 845545) (-353 838614 838953 839443 "FLAGG-" 839448 NIL FLAGG- (NIL T T) -8 NIL NIL) (-352 837656 837799 838026 "FLAGG2" 838467 NIL FLAGG2 (NIL T T T T) -7 NIL NIL) (-351 834673 835647 835706 "FINRALG" 836834 NIL FINRALG (NIL T T) -9 NIL 837342) (-350 833833 834062 834401 "FINRALG-" 834406 NIL FINRALG- (NIL T T T) -8 NIL NIL) (-349 833240 833453 833481 "FINITE" 833677 T FINITE (NIL) -9 NIL 833784) (-348 825700 827861 827901 "FINAALG" 831568 NIL FINAALG (NIL T) -9 NIL 833021) (-347 821041 822082 823226 "FINAALG-" 824605 NIL FINAALG- (NIL T T) -8 NIL NIL) (-346 820436 820796 820899 "FILE" 820971 NIL FILE (NIL T) -8 NIL NIL) (-345 819121 819433 819487 "FILECAT" 820171 NIL FILECAT (NIL T T) -9 NIL 820387) (-344 817046 818540 818568 "FIELD" 818608 T FIELD (NIL) -9 NIL 818688) (-343 815666 816051 816562 "FIELD-" 816567 NIL FIELD- (NIL T) -8 NIL NIL) (-342 813546 814303 814649 "FGROUP" 815353 NIL FGROUP (NIL T) -8 NIL NIL) (-341 812636 812800 813020 "FGLMICPK" 813378 NIL FGLMICPK (NIL T NIL) -7 NIL NIL) (-340 808503 812561 812618 "FFX" 812623 NIL FFX (NIL T NIL) -8 NIL NIL) (-339 808104 808165 808300 "FFSLPE" 808436 NIL FFSLPE (NIL T T T) -7 NIL NIL) (-338 804097 804876 805672 "FFPOLY" 807340 NIL FFPOLY (NIL T) -7 NIL NIL) (-337 803601 803637 803846 "FFPOLY2" 804055 NIL FFPOLY2 (NIL T T) -7 NIL NIL) (-336 799487 803520 803583 "FFP" 803588 NIL FFP (NIL T NIL) -8 NIL NIL) (-335 794920 799398 799462 "FF" 799467 NIL FF (NIL NIL NIL) -8 NIL NIL) (-334 790081 794263 794453 "FFNBX" 794774 NIL FFNBX (NIL T NIL) -8 NIL NIL) (-333 785055 789216 789474 "FFNBP" 789935 NIL FFNBP (NIL T NIL) -8 NIL NIL) (-332 779723 784339 784550 "FFNB" 784888 NIL FFNB (NIL NIL NIL) -8 NIL NIL) (-331 778555 778753 779068 "FFINTBAS" 779520 NIL FFINTBAS (NIL T T T) -7 NIL NIL) (-330 774844 777019 777047 "FFIELDC" 777667 T FFIELDC (NIL) -9 NIL 778043) (-329 773507 773877 774374 "FFIELDC-" 774379 NIL FFIELDC- (NIL T) -8 NIL NIL) (-328 773077 773122 773246 "FFHOM" 773449 NIL FFHOM (NIL T T T) -7 NIL NIL) (-327 770775 771259 771776 "FFF" 772592 NIL FFF (NIL T) -7 NIL NIL) (-326 766428 770517 770618 "FFCGX" 770718 NIL FFCGX (NIL T NIL) -8 NIL NIL) (-325 762095 766160 766267 "FFCGP" 766371 NIL FFCGP (NIL T NIL) -8 NIL NIL) (-324 757313 761822 761930 "FFCG" 762031 NIL FFCG (NIL NIL NIL) -8 NIL NIL) (-323 739387 748418 748504 "FFCAT" 753669 NIL FFCAT (NIL T T T) -9 NIL 755120) (-322 734585 735632 736946 "FFCAT-" 738176 NIL FFCAT- (NIL T T T T) -8 NIL NIL) (-321 733996 734039 734274 "FFCAT2" 734536 NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL) (-320 723242 726986 728203 "FEXPR" 732851 NIL FEXPR (NIL NIL NIL T) -8 NIL NIL) (-319 722242 722677 722718 "FEVALAB" 722802 NIL FEVALAB (NIL T) -9 NIL 723063) (-318 721401 721611 721949 "FEVALAB-" 721954 NIL FEVALAB- (NIL T T) -8 NIL NIL) (-317 719994 720784 720987 "FDIV" 721300 NIL FDIV (NIL T T T T) -8 NIL NIL) (-316 717061 717776 717891 "FDIVCAT" 719459 NIL FDIVCAT (NIL T T T T) -9 NIL 719896) (-315 716823 716850 717020 "FDIVCAT-" 717025 NIL FDIVCAT- (NIL T T T T T) -8 NIL NIL) (-314 716043 716130 716407 "FDIV2" 716730 NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL) (-313 714729 714988 715277 "FCPAK1" 715774 T FCPAK1 (NIL) -7 NIL NIL) (-312 713857 714229 714370 "FCOMP" 714620 NIL FCOMP (NIL T) -8 NIL NIL) (-311 697492 700906 704467 "FC" 710316 T FC (NIL) -8 NIL NIL) (-310 690153 694134 694174 "FAXF" 695976 NIL FAXF (NIL T) -9 NIL 696667) (-309 687432 688087 688912 "FAXF-" 689377 NIL FAXF- (NIL T T) -8 NIL NIL) (-308 682532 686808 686984 "FARRAY" 687289 NIL FARRAY (NIL T) -8 NIL NIL) (-307 677967 679994 680046 "FAMR" 681058 NIL FAMR (NIL T T) -9 NIL 681518) (-306 676858 677160 677594 "FAMR-" 677599 NIL FAMR- (NIL T T T) -8 NIL NIL) (-305 676054 676780 676833 "FAMONOID" 676838 NIL FAMONOID (NIL T) -8 NIL NIL) (-304 673887 674571 674624 "FAMONC" 675565 NIL FAMONC (NIL T T) -9 NIL 675950) (-303 672579 673641 673778 "FAGROUP" 673783 NIL FAGROUP (NIL T) -8 NIL NIL) (-302 670382 670701 671103 "FACUTIL" 672260 NIL FACUTIL (NIL T T T T) -7 NIL NIL) (-301 669481 669666 669888 "FACTFUNC" 670192 NIL FACTFUNC (NIL T) -7 NIL NIL) (-300 661886 668732 668944 "EXPUPXS" 669337 NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL) (-299 659369 659909 660495 "EXPRTUBE" 661320 T EXPRTUBE (NIL) -7 NIL NIL) (-298 655563 656155 656892 "EXPRODE" 658708 NIL EXPRODE (NIL T T) -7 NIL NIL) (-297 640999 654222 654648 "EXPR" 655169 NIL EXPR (NIL T) -8 NIL NIL) (-296 635427 636014 636826 "EXPR2UPS" 640297 NIL EXPR2UPS (NIL T T) -7 NIL NIL) (-295 635063 635120 635227 "EXPR2" 635364 NIL EXPR2 (NIL T T) -7 NIL NIL) (-294 626482 634200 634495 "EXPEXPAN" 634901 NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL) (-293 626309 626439 626468 "EXIT" 626473 T EXIT (NIL) -8 NIL NIL) (-292 625936 625998 626111 "EVALCYC" 626241 NIL EVALCYC (NIL T) -7 NIL NIL) (-291 625477 625595 625636 "EVALAB" 625806 NIL EVALAB (NIL T) -9 NIL 625910) (-290 624958 625080 625301 "EVALAB-" 625306 NIL EVALAB- (NIL T T) -8 NIL NIL) (-289 622465 623733 623761 "EUCDOM" 624316 T EUCDOM (NIL) -9 NIL 624666) (-288 620870 621312 621902 "EUCDOM-" 621907 NIL EUCDOM- (NIL T) -8 NIL NIL) (-287 608448 611196 613936 "ESTOOLS" 618150 T ESTOOLS (NIL) -7 NIL NIL) (-286 608084 608141 608248 "ESTOOLS2" 608385 NIL ESTOOLS2 (NIL T T) -7 NIL NIL) (-285 607835 607877 607957 "ESTOOLS1" 608036 NIL ESTOOLS1 (NIL T) -7 NIL NIL) (-284 601773 603497 603525 "ES" 606289 T ES (NIL) -9 NIL 607695) (-283 596720 598007 599824 "ES-" 599988 NIL ES- (NIL T) -8 NIL NIL) (-282 593095 593855 594635 "ESCONT" 595960 T ESCONT (NIL) -7 NIL NIL) (-281 592840 592872 592954 "ESCONT1" 593057 NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL) (-280 592515 592565 592665 "ES2" 592784 NIL ES2 (NIL T T) -7 NIL NIL) (-279 592145 592203 592312 "ES1" 592451 NIL ES1 (NIL T T) -7 NIL NIL) (-278 591361 591490 591666 "ERROR" 591989 T ERROR (NIL) -7 NIL NIL) (-277 584864 591220 591311 "EQTBL" 591316 NIL EQTBL (NIL T T) -8 NIL NIL) (-276 577427 580182 581629 "EQ" 583450 NIL -3861 (NIL T) -8 NIL NIL) (-275 577059 577116 577225 "EQ2" 577364 NIL EQ2 (NIL T T) -7 NIL NIL) (-274 572351 573397 574490 "EP" 575998 NIL EP (NIL T) -7 NIL NIL) (-273 570933 571234 571551 "ENV" 572054 T ENV (NIL) -8 NIL NIL) (-272 570137 570657 570685 "ENTIRER" 570690 T ENTIRER (NIL) -9 NIL 570735) (-271 566639 568092 568462 "EMR" 569936 NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL) (-270 565783 565968 566022 "ELTAGG" 566402 NIL ELTAGG (NIL T T) -9 NIL 566613) (-269 565502 565564 565705 "ELTAGG-" 565710 NIL ELTAGG- (NIL T T T) -8 NIL NIL) (-268 565291 565320 565374 "ELTAB" 565458 NIL ELTAB (NIL T T) -9 NIL NIL) (-267 564417 564563 564762 "ELFUTS" 565142 NIL ELFUTS (NIL T T) -7 NIL NIL) (-266 564159 564215 564243 "ELEMFUN" 564348 T ELEMFUN (NIL) -9 NIL NIL) (-265 564029 564050 564118 "ELEMFUN-" 564123 NIL ELEMFUN- (NIL T) -8 NIL NIL) (-264 558921 562130 562171 "ELAGG" 563111 NIL ELAGG (NIL T) -9 NIL 563574) (-263 557206 557640 558303 "ELAGG-" 558308 NIL ELAGG- (NIL T T) -8 NIL NIL) (-262 555863 556143 556438 "ELABEXPR" 556931 T ELABEXPR (NIL) -8 NIL NIL) (-261 548729 550530 551357 "EFUPXS" 555139 NIL EFUPXS (NIL T T T T) -8 NIL NIL) (-260 542179 543980 544790 "EFULS" 548005 NIL EFULS (NIL T T T) -8 NIL NIL) (-259 539610 539968 540446 "EFSTRUC" 541811 NIL EFSTRUC (NIL T T) -7 NIL NIL) (-258 528682 530247 531807 "EF" 538125 NIL EF (NIL T T) -7 NIL NIL) (-257 527783 528167 528316 "EAB" 528553 T EAB (NIL) -8 NIL NIL) (-256 526996 527742 527770 "E04UCFA" 527775 T E04UCFA (NIL) -8 NIL NIL) (-255 526209 526955 526983 "E04NAFA" 526988 T E04NAFA (NIL) -8 NIL NIL) (-254 525422 526168 526196 "E04MBFA" 526201 T E04MBFA (NIL) -8 NIL NIL) (-253 524635 525381 525409 "E04JAFA" 525414 T E04JAFA (NIL) -8 NIL NIL) (-252 523850 524594 524622 "E04GCFA" 524627 T E04GCFA (NIL) -8 NIL NIL) (-251 523065 523809 523837 "E04FDFA" 523842 T E04FDFA (NIL) -8 NIL NIL) (-250 522278 523024 523052 "E04DGFA" 523057 T E04DGFA (NIL) -8 NIL NIL) (-249 516463 517808 519170 "E04AGNT" 520936 T E04AGNT (NIL) -7 NIL NIL) (-248 515190 515670 515710 "DVARCAT" 516185 NIL DVARCAT (NIL T) -9 NIL 516383) (-247 514394 514606 514920 "DVARCAT-" 514925 NIL DVARCAT- (NIL T T) -8 NIL NIL) (-246 507302 514196 514323 "DSMP" 514328 NIL DSMP (NIL T T T) -8 NIL NIL) (-245 502112 503247 504315 "DROPT" 506254 T DROPT (NIL) -8 NIL NIL) (-244 501777 501836 501934 "DROPT1" 502047 NIL DROPT1 (NIL T) -7 NIL NIL) (-243 496892 498018 499155 "DROPT0" 500660 T DROPT0 (NIL) -7 NIL NIL) (-242 495237 495562 495948 "DRAWPT" 496526 T DRAWPT (NIL) -7 NIL NIL) (-241 489824 490747 491826 "DRAW" 494211 NIL DRAW (NIL T) -7 NIL NIL) (-240 489457 489510 489628 "DRAWHACK" 489765 NIL DRAWHACK (NIL T) -7 NIL NIL) (-239 488188 488457 488748 "DRAWCX" 489186 T DRAWCX (NIL) -7 NIL NIL) (-238 487706 487774 487924 "DRAWCURV" 488114 NIL DRAWCURV (NIL T T) -7 NIL NIL) (-237 478177 480136 482251 "DRAWCFUN" 485611 T DRAWCFUN (NIL) -7 NIL NIL) (-236 474991 476873 476914 "DQAGG" 477543 NIL DQAGG (NIL T) -9 NIL 477816) (-235 463544 470236 470318 "DPOLCAT" 472156 NIL DPOLCAT (NIL T T T T) -9 NIL 472700) (-234 458384 459730 461687 "DPOLCAT-" 461692 NIL DPOLCAT- (NIL T T T T T) -8 NIL NIL) (-233 451588 458246 458343 "DPMO" 458348 NIL DPMO (NIL NIL T T) -8 NIL NIL) (-232 444695 451369 451535 "DPMM" 451540 NIL DPMM (NIL NIL T T T) -8 NIL NIL) (-231 444115 444318 444432 "DOMAIN" 444601 T DOMAIN (NIL) -8 NIL NIL) (-230 437873 443752 443903 "DMP" 444016 NIL DMP (NIL NIL T) -8 NIL NIL) (-229 437473 437529 437673 "DLP" 437811 NIL DLP (NIL T) -7 NIL NIL) (-228 431117 436574 436801 "DLIST" 437278 NIL DLIST (NIL T) -8 NIL NIL) (-227 427964 429973 430014 "DLAGG" 430564 NIL DLAGG (NIL T) -9 NIL 430793) (-226 426819 427449 427477 "DIVRING" 427569 T DIVRING (NIL) -9 NIL 427652) (-225 426056 426246 426546 "DIVRING-" 426551 NIL DIVRING- (NIL T) -8 NIL NIL) (-224 424158 424515 424921 "DISPLAY" 425670 T DISPLAY (NIL) -7 NIL NIL) (-223 418133 424072 424135 "DIRPROD" 424140 NIL DIRPROD (NIL NIL T) -8 NIL NIL) (-222 416981 417184 417449 "DIRPROD2" 417926 NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL) (-221 406586 412505 412558 "DIRPCAT" 412966 NIL DIRPCAT (NIL NIL T) -9 NIL 413805) (-220 403912 404554 405435 "DIRPCAT-" 405772 NIL DIRPCAT- (NIL T NIL T) -8 NIL NIL) (-219 403199 403359 403545 "DIOSP" 403746 T DIOSP (NIL) -7 NIL NIL) (-218 399902 402112 402153 "DIOPS" 402587 NIL DIOPS (NIL T) -9 NIL 402816) (-217 399451 399565 399756 "DIOPS-" 399761 NIL DIOPS- (NIL T T) -8 NIL NIL) (-216 398367 398961 398989 "DIFRING" 399176 T DIFRING (NIL) -9 NIL 399285) (-215 398013 398090 398242 "DIFRING-" 398247 NIL DIFRING- (NIL T) -8 NIL NIL) (-214 395847 397085 397125 "DIFEXT" 397484 NIL DIFEXT (NIL T) -9 NIL 397777) (-213 394133 394561 395226 "DIFEXT-" 395231 NIL DIFEXT- (NIL T T) -8 NIL NIL) (-212 391456 393666 393707 "DIAGG" 393712 NIL DIAGG (NIL T) -9 NIL 393732) (-211 390840 390997 391249 "DIAGG-" 391254 NIL DIAGG- (NIL T T) -8 NIL NIL) (-210 386305 389799 390076 "DHMATRIX" 390609 NIL DHMATRIX (NIL T) -8 NIL NIL) (-209 381917 382826 383836 "DFSFUN" 385315 T DFSFUN (NIL) -7 NIL NIL) (-208 376768 380631 380996 "DFLOAT" 381572 T DFLOAT (NIL) -8 NIL NIL) (-207 375001 375282 375677 "DFINTTLS" 376476 NIL DFINTTLS (NIL T T) -7 NIL NIL) (-206 372080 373036 373434 "DERHAM" 374668 NIL DERHAM (NIL T NIL) -8 NIL NIL) (-205 369929 371855 371944 "DEQUEUE" 372024 NIL DEQUEUE (NIL T) -8 NIL NIL) (-204 369147 369280 369475 "DEGRED" 369791 NIL DEGRED (NIL T T) -7 NIL NIL) (-203 365547 366292 367144 "DEFINTRF" 368375 NIL DEFINTRF (NIL T) -7 NIL NIL) (-202 363078 363547 364145 "DEFINTEF" 365066 NIL DEFINTEF (NIL T T) -7 NIL NIL) (-201 356973 362519 362685 "DECIMAL" 362932 T DECIMAL (NIL) -8 NIL NIL) (-200 354485 354943 355449 "DDFACT" 356517 NIL DDFACT (NIL T T) -7 NIL NIL) (-199 354081 354124 354275 "DBLRESP" 354436 NIL DBLRESP (NIL T T T T) -7 NIL NIL) (-198 351791 352125 352494 "DBASE" 353839 NIL DBASE (NIL T) -8 NIL NIL) (-197 351060 351271 351417 "DATABUF" 351690 NIL DATABUF (NIL NIL T) -8 NIL NIL) (-196 350195 351019 351047 "D03FAFA" 351052 T D03FAFA (NIL) -8 NIL NIL) (-195 349331 350154 350182 "D03EEFA" 350187 T D03EEFA (NIL) -8 NIL NIL) (-194 347281 347747 348236 "D03AGNT" 348862 T D03AGNT (NIL) -7 NIL NIL) (-193 346599 347240 347268 "D02EJFA" 347273 T D02EJFA (NIL) -8 NIL NIL) (-192 345917 346558 346586 "D02CJFA" 346591 T D02CJFA (NIL) -8 NIL NIL) (-191 345235 345876 345904 "D02BHFA" 345909 T D02BHFA (NIL) -8 NIL NIL) (-190 344553 345194 345222 "D02BBFA" 345227 T D02BBFA (NIL) -8 NIL NIL) (-189 337751 339339 340945 "D02AGNT" 342967 T D02AGNT (NIL) -7 NIL NIL) (-188 335520 336042 336588 "D01WGTS" 337225 T D01WGTS (NIL) -7 NIL NIL) (-187 334623 335479 335507 "D01TRNS" 335512 T D01TRNS (NIL) -8 NIL NIL) (-186 333726 334582 334610 "D01GBFA" 334615 T D01GBFA (NIL) -8 NIL NIL) (-185 332829 333685 333713 "D01FCFA" 333718 T D01FCFA (NIL) -8 NIL NIL) (-184 331932 332788 332816 "D01ASFA" 332821 T D01ASFA (NIL) -8 NIL NIL) (-183 331035 331891 331919 "D01AQFA" 331924 T D01AQFA (NIL) -8 NIL NIL) (-182 330138 330994 331022 "D01APFA" 331027 T D01APFA (NIL) -8 NIL NIL) (-181 329241 330097 330125 "D01ANFA" 330130 T D01ANFA (NIL) -8 NIL NIL) (-180 328344 329200 329228 "D01AMFA" 329233 T D01AMFA (NIL) -8 NIL NIL) (-179 327447 328303 328331 "D01ALFA" 328336 T D01ALFA (NIL) -8 NIL NIL) (-178 326550 327406 327434 "D01AKFA" 327439 T D01AKFA (NIL) -8 NIL NIL) (-177 325653 326509 326537 "D01AJFA" 326542 T D01AJFA (NIL) -8 NIL NIL) (-176 318957 320506 322065 "D01AGNT" 324114 T D01AGNT (NIL) -7 NIL NIL) (-175 318294 318422 318574 "CYCLOTOM" 318825 T CYCLOTOM (NIL) -7 NIL NIL) (-174 315029 315742 316469 "CYCLES" 317587 T CYCLES (NIL) -7 NIL NIL) (-173 314341 314475 314646 "CVMP" 314890 NIL CVMP (NIL T) -7 NIL NIL) (-172 312122 312380 312755 "CTRIGMNP" 314069 NIL CTRIGMNP (NIL T T) -7 NIL NIL) (-171 311633 311822 311921 "CTORCALL" 312043 T CTORCALL (NIL) -8 NIL NIL) (-170 311007 311106 311259 "CSTTOOLS" 311530 NIL CSTTOOLS (NIL T T) -7 NIL NIL) (-169 306806 307463 308221 "CRFP" 310319 NIL CRFP (NIL T T) -7 NIL NIL) (-168 305853 306038 306266 "CRAPACK" 306610 NIL CRAPACK (NIL T) -7 NIL NIL) (-167 305237 305338 305542 "CPMATCH" 305729 NIL CPMATCH (NIL T T T) -7 NIL NIL) (-166 304962 304990 305096 "CPIMA" 305203 NIL CPIMA (NIL T T T) -7 NIL NIL) (-165 301326 301998 302716 "COORDSYS" 304297 NIL COORDSYS (NIL T) -7 NIL NIL) (-164 300710 300839 300989 "CONTOUR" 301196 T CONTOUR (NIL) -8 NIL NIL) (-163 296636 298713 299205 "CONTFRAC" 300250 NIL CONTFRAC (NIL T) -8 NIL NIL) (-162 295834 296354 296382 "COMRING" 296387 T COMRING (NIL) -9 NIL 296438) (-161 294915 295192 295376 "COMPPROP" 295670 T COMPPROP (NIL) -8 NIL NIL) (-160 294576 294611 294739 "COMPLPAT" 294874 NIL COMPLPAT (NIL T T T) -7 NIL NIL) (-159 284642 294385 294494 "COMPLEX" 294499 NIL COMPLEX (NIL T) -8 NIL NIL) (-158 284278 284335 284442 "COMPLEX2" 284579 NIL COMPLEX2 (NIL T T) -7 NIL NIL) (-157 283996 284031 284129 "COMPFACT" 284237 NIL COMPFACT (NIL T T) -7 NIL NIL) (-156 268416 278625 278665 "COMPCAT" 279667 NIL COMPCAT (NIL T) -9 NIL 281060) (-155 257931 260855 264482 "COMPCAT-" 264838 NIL COMPCAT- (NIL T T) -8 NIL NIL) (-154 257662 257690 257792 "COMMUPC" 257897 NIL COMMUPC (NIL T T T) -7 NIL NIL) (-153 257457 257490 257549 "COMMONOP" 257623 T COMMONOP (NIL) -7 NIL NIL) (-152 257040 257208 257295 "COMM" 257390 T COMM (NIL) -8 NIL NIL) (-151 256289 256483 256511 "COMBOPC" 256849 T COMBOPC (NIL) -9 NIL 257024) (-150 255185 255395 255637 "COMBINAT" 256079 NIL COMBINAT (NIL T) -7 NIL NIL) (-149 251383 251956 252596 "COMBF" 254607 NIL COMBF (NIL T T) -7 NIL NIL) (-148 250169 250499 250734 "COLOR" 251168 T COLOR (NIL) -8 NIL NIL) (-147 249809 249856 249981 "CMPLXRT" 250116 NIL CMPLXRT (NIL T T) -7 NIL NIL) (-146 245311 246339 247419 "CLIP" 248749 T CLIP (NIL) -7 NIL NIL) (-145 243695 244419 244657 "CLIF" 245139 NIL CLIF (NIL NIL T NIL) -8 NIL NIL) (-144 239918 241842 241883 "CLAGG" 242812 NIL CLAGG (NIL T) -9 NIL 243348) (-143 238340 238797 239380 "CLAGG-" 239385 NIL CLAGG- (NIL T T) -8 NIL NIL) (-142 237884 237969 238109 "CINTSLPE" 238249 NIL CINTSLPE (NIL T T) -7 NIL NIL) (-141 235385 235856 236404 "CHVAR" 237412 NIL CHVAR (NIL T T T) -7 NIL NIL) (-140 234652 235172 235200 "CHARZ" 235205 T CHARZ (NIL) -9 NIL 235219) (-139 234406 234446 234524 "CHARPOL" 234606 NIL CHARPOL (NIL T) -7 NIL NIL) (-138 233557 234110 234138 "CHARNZ" 234185 T CHARNZ (NIL) -9 NIL 234240) (-137 231582 232247 232582 "CHAR" 233242 T CHAR (NIL) -8 NIL NIL) (-136 231308 231369 231397 "CFCAT" 231508 T CFCAT (NIL) -9 NIL NIL) (-135 230553 230664 230846 "CDEN" 231192 NIL CDEN (NIL T T T) -7 NIL NIL) (-134 226545 229706 229986 "CCLASS" 230293 T CCLASS (NIL) -8 NIL NIL) (-133 226464 226490 226525 "CATEGORY" 226530 T -10 (NIL) -8 NIL NIL) (-132 221516 222493 223246 "CARTEN" 225767 NIL CARTEN (NIL NIL NIL T) -8 NIL NIL) (-131 220624 220772 220993 "CARTEN2" 221363 NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL) (-130 218968 219776 220032 "CARD" 220388 T CARD (NIL) -8 NIL NIL) (-129 218341 218669 218697 "CACHSET" 218829 T CACHSET (NIL) -9 NIL 218906) (-128 217838 218134 218162 "CABMON" 218212 T CABMON (NIL) -9 NIL 218268) (-127 217006 217385 217528 "BYTE" 217715 T BYTE (NIL) -8 NIL NIL) (-126 212954 216953 216987 "BYTEARY" 216992 T BYTEARY (NIL) -8 NIL NIL) (-125 210511 212646 212753 "BTREE" 212880 NIL BTREE (NIL T) -8 NIL NIL) (-124 208009 210159 210281 "BTOURN" 210421 NIL BTOURN (NIL T) -8 NIL NIL) (-123 205428 207481 207522 "BTCAT" 207590 NIL BTCAT (NIL T) -9 NIL 207667) (-122 205095 205175 205324 "BTCAT-" 205329 NIL BTCAT- (NIL T T) -8 NIL NIL) (-121 200388 204239 204267 "BTAGG" 204489 T BTAGG (NIL) -9 NIL 204650) (-120 199878 200003 200209 "BTAGG-" 200214 NIL BTAGG- (NIL T) -8 NIL NIL) (-119 196922 199156 199371 "BSTREE" 199695 NIL BSTREE (NIL T) -8 NIL NIL) (-118 196060 196186 196370 "BRILL" 196778 NIL BRILL (NIL T) -7 NIL NIL) (-117 192762 194789 194830 "BRAGG" 195479 NIL BRAGG (NIL T) -9 NIL 195736) (-116 191291 191697 192252 "BRAGG-" 192257 NIL BRAGG- (NIL T T) -8 NIL NIL) (-115 184564 190637 190821 "BPADICRT" 191139 NIL BPADICRT (NIL NIL) -8 NIL NIL) (-114 182914 184501 184546 "BPADIC" 184551 NIL BPADIC (NIL NIL) -8 NIL NIL) (-113 182614 182644 182757 "BOUNDZRO" 182878 NIL BOUNDZRO (NIL T T) -7 NIL NIL) (-112 178129 179220 180087 "BOP" 181767 T BOP (NIL) -8 NIL NIL) (-111 175750 176194 176714 "BOP1" 177642 NIL BOP1 (NIL T) -7 NIL NIL) (-110 174474 175160 175360 "BOOLEAN" 175570 T BOOLEAN (NIL) -8 NIL NIL) (-109 173841 174219 174271 "BMODULE" 174276 NIL BMODULE (NIL T T) -9 NIL 174340) (-108 169671 173639 173712 "BITS" 173788 T BITS (NIL) -8 NIL NIL) (-107 168768 169203 169355 "BINFILE" 169539 T BINFILE (NIL) -8 NIL NIL) (-106 168180 168302 168444 "BINDING" 168646 T BINDING (NIL) -8 NIL NIL) (-105 162079 167624 167789 "BINARY" 168035 T BINARY (NIL) -8 NIL NIL) (-104 159907 161335 161376 "BGAGG" 161636 NIL BGAGG (NIL T) -9 NIL 161773) (-103 159738 159770 159861 "BGAGG-" 159866 NIL BGAGG- (NIL T T) -8 NIL NIL) (-102 158836 159122 159327 "BFUNCT" 159553 T BFUNCT (NIL) -8 NIL NIL) (-101 157531 157709 157996 "BEZOUT" 158660 NIL BEZOUT (NIL T T T T T) -7 NIL NIL) (-100 154048 156383 156713 "BBTREE" 157234 NIL BBTREE (NIL T) -8 NIL NIL) (-99 153786 153839 153865 "BASTYPE" 153982 T BASTYPE (NIL) -9 NIL NIL) (-98 153641 153670 153740 "BASTYPE-" 153745 NIL BASTYPE- (NIL T) -8 NIL NIL) (-97 153079 153155 153305 "BALFACT" 153552 NIL BALFACT (NIL T T) -7 NIL NIL) (-96 151966 152498 152683 "AUTOMOR" 152924 NIL AUTOMOR (NIL T) -8 NIL NIL) (-95 151692 151697 151723 "ATTREG" 151728 T ATTREG (NIL) -9 NIL NIL) (-94 149971 150389 150741 "ATTRBUT" 151358 T ATTRBUT (NIL) -8 NIL NIL) (-93 149507 149620 149646 "ATRIG" 149847 T ATRIG (NIL) -9 NIL NIL) (-92 149316 149357 149444 "ATRIG-" 149449 NIL ATRIG- (NIL T) -8 NIL NIL) (-91 149042 149185 149211 "ASTCAT" 149216 T ASTCAT (NIL) -9 NIL 149246) (-90 148839 148882 148974 "ASTCAT-" 148979 NIL ASTCAT- (NIL T) -8 NIL NIL) (-89 147036 148615 148703 "ASTACK" 148782 NIL ASTACK (NIL T) -8 NIL NIL) (-88 145541 145838 146203 "ASSOCEQ" 146718 NIL ASSOCEQ (NIL T T) -7 NIL NIL) (-87 144573 145200 145324 "ASP9" 145448 NIL ASP9 (NIL NIL) -8 NIL NIL) (-86 144337 144521 144560 "ASP8" 144565 NIL ASP8 (NIL NIL) -8 NIL NIL) (-85 143206 143942 144084 "ASP80" 144226 NIL ASP80 (NIL NIL) -8 NIL NIL) (-84 142105 142841 142973 "ASP7" 143105 NIL ASP7 (NIL NIL) -8 NIL NIL) (-83 141059 141782 141900 "ASP78" 142018 NIL ASP78 (NIL NIL) -8 NIL NIL) (-82 140028 140739 140856 "ASP77" 140973 NIL ASP77 (NIL NIL) -8 NIL NIL) (-81 138940 139666 139797 "ASP74" 139928 NIL ASP74 (NIL NIL) -8 NIL NIL) (-80 137840 138575 138707 "ASP73" 138839 NIL ASP73 (NIL NIL) -8 NIL NIL) (-79 136795 137517 137635 "ASP6" 137753 NIL ASP6 (NIL NIL) -8 NIL NIL) (-78 135743 136472 136590 "ASP55" 136708 NIL ASP55 (NIL NIL) -8 NIL NIL) (-77 134693 135417 135536 "ASP50" 135655 NIL ASP50 (NIL NIL) -8 NIL NIL) (-76 133781 134394 134504 "ASP4" 134614 NIL ASP4 (NIL NIL) -8 NIL NIL) (-75 132869 133482 133592 "ASP49" 133702 NIL ASP49 (NIL NIL) -8 NIL NIL) (-74 131654 132408 132576 "ASP42" 132758 NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL) (-73 130431 131187 131357 "ASP41" 131541 NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL) (-72 129381 130108 130226 "ASP35" 130344 NIL ASP35 (NIL NIL) -8 NIL NIL) (-71 129146 129329 129368 "ASP34" 129373 NIL ASP34 (NIL NIL) -8 NIL NIL) (-70 128883 128950 129026 "ASP33" 129101 NIL ASP33 (NIL NIL) -8 NIL NIL) (-69 127778 128518 128650 "ASP31" 128782 NIL ASP31 (NIL NIL) -8 NIL NIL) (-68 127543 127726 127765 "ASP30" 127770 NIL ASP30 (NIL NIL) -8 NIL NIL) (-67 127278 127347 127423 "ASP29" 127498 NIL ASP29 (NIL NIL) -8 NIL NIL) (-66 127043 127226 127265 "ASP28" 127270 NIL ASP28 (NIL NIL) -8 NIL NIL) (-65 126808 126991 127030 "ASP27" 127035 NIL ASP27 (NIL NIL) -8 NIL NIL) (-64 125892 126506 126617 "ASP24" 126728 NIL ASP24 (NIL NIL) -8 NIL NIL) (-63 124808 125533 125663 "ASP20" 125793 NIL ASP20 (NIL NIL) -8 NIL NIL) (-62 123896 124509 124619 "ASP1" 124729 NIL ASP1 (NIL NIL) -8 NIL NIL) (-61 122840 123570 123689 "ASP19" 123808 NIL ASP19 (NIL NIL) -8 NIL NIL) (-60 122577 122644 122720 "ASP12" 122795 NIL ASP12 (NIL NIL) -8 NIL NIL) (-59 121429 122176 122320 "ASP10" 122464 NIL ASP10 (NIL NIL) -8 NIL NIL) (-58 119328 121273 121364 "ARRAY2" 121369 NIL ARRAY2 (NIL T) -8 NIL NIL) (-57 115144 118976 119090 "ARRAY1" 119245 NIL ARRAY1 (NIL T) -8 NIL NIL) (-56 114176 114349 114570 "ARRAY12" 114967 NIL ARRAY12 (NIL T T) -7 NIL NIL) (-55 108536 110407 110482 "ARR2CAT" 113112 NIL ARR2CAT (NIL T T T) -9 NIL 113870) (-54 105970 106714 107668 "ARR2CAT-" 107673 NIL ARR2CAT- (NIL T T T T) -8 NIL NIL) (-53 104722 104874 105179 "APPRULE" 105806 NIL APPRULE (NIL T T T) -7 NIL NIL) (-52 104375 104423 104541 "APPLYORE" 104668 NIL APPLYORE (NIL T T T) -7 NIL NIL) (-51 103349 103640 103835 "ANY" 104198 T ANY (NIL) -8 NIL NIL) (-50 102627 102750 102907 "ANY1" 103223 NIL ANY1 (NIL T) -7 NIL NIL) (-49 100205 101077 101402 "ANTISYM" 102352 NIL ANTISYM (NIL T NIL) -8 NIL NIL) (-48 99720 99909 100006 "ANON" 100126 T ANON (NIL) -8 NIL NIL) (-47 93862 98265 98716 "AN" 99287 T AN (NIL) -8 NIL NIL) (-46 90260 91614 91664 "AMR" 92403 NIL AMR (NIL T T) -9 NIL 93002) (-45 89373 89594 89956 "AMR-" 89961 NIL AMR- (NIL T T T) -8 NIL NIL) (-44 73923 89290 89351 "ALIST" 89356 NIL ALIST (NIL T T) -8 NIL NIL) (-43 70760 73517 73686 "ALGSC" 73841 NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL) (-42 67316 67870 68477 "ALGPKG" 70200 NIL ALGPKG (NIL T T) -7 NIL NIL) (-41 66593 66694 66878 "ALGMFACT" 67202 NIL ALGMFACT (NIL T T T) -7 NIL NIL) (-40 62342 63023 63677 "ALGMANIP" 66117 NIL ALGMANIP (NIL T T) -7 NIL NIL) (-39 53753 61968 62118 "ALGFF" 62275 NIL ALGFF (NIL T T T NIL) -8 NIL NIL) (-38 52949 53080 53259 "ALGFACT" 53611 NIL ALGFACT (NIL T) -7 NIL NIL) (-37 51984 52550 52588 "ALGEBRA" 52648 NIL ALGEBRA (NIL T) -9 NIL 52706) (-36 51702 51761 51893 "ALGEBRA-" 51898 NIL ALGEBRA- (NIL T T) -8 NIL NIL) (-35 33963 49706 49758 "ALAGG" 49894 NIL ALAGG (NIL T T) -9 NIL 50055) (-34 33499 33612 33638 "AHYP" 33839 T AHYP (NIL) -9 NIL NIL) (-33 32430 32678 32704 "AGG" 33203 T AGG (NIL) -9 NIL 33482) (-32 31864 32026 32240 "AGG-" 32245 NIL AGG- (NIL T) -8 NIL NIL) (-31 29551 29969 30386 "AF" 31507 NIL AF (NIL T T) -7 NIL NIL) (-30 28820 29078 29234 "ACPLOT" 29413 T ACPLOT (NIL) -8 NIL NIL) (-29 18349 26233 26284 "ACFS" 26995 NIL ACFS (NIL T) -9 NIL 27234) (-28 16363 16853 17628 "ACFS-" 17633 NIL ACFS- (NIL T T) -8 NIL NIL) (-27 12693 14587 14613 "ACF" 15492 T ACF (NIL) -9 NIL 15904) (-26 11397 11731 12224 "ACF-" 12229 NIL ACF- (NIL T) -8 NIL NIL) (-25 10996 11165 11191 "ABELSG" 11283 T ABELSG (NIL) -9 NIL 11348) (-24 10863 10888 10954 "ABELSG-" 10959 NIL ABELSG- (NIL T) -8 NIL NIL) (-23 10233 10494 10520 "ABELMON" 10690 T ABELMON (NIL) -9 NIL 10802) (-22 9897 9981 10119 "ABELMON-" 10124 NIL ABELMON- (NIL T) -8 NIL NIL) (-21 9232 9578 9604 "ABELGRP" 9729 T ABELGRP (NIL) -9 NIL 9811) (-20 8695 8824 9040 "ABELGRP-" 9045 NIL ABELGRP- (NIL T) -8 NIL NIL) (-19 4333 8035 8074 "A1AGG" 8079 NIL A1AGG (NIL T) -9 NIL 8119) (-18 30 1251 2813 "A1AGG-" 2818 NIL A1AGG- (NIL T T) -8 NIL NIL)) \ No newline at end of file
diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase
index d8072fc4..52415c5d 100644
--- a/src/share/algebra/operation.daase
+++ b/src/share/algebra/operation.daase
@@ -1,7155 +1,7904 @@
-(727394 . 3429259030)
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530))))
- (-5 *1 (-1037)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |pde| (-597 (-297 (-208))))
- (|:| |constraints|
- (-597
- (-2 (|:| |start| (-208)) (|:| |finish| (-208))
- (|:| |grid| (-719)) (|:| |boundaryType| (-530))
- (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
- (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
- (|:| |tol| (-208))))
- (-5 *2 (-110)) (-5 *1 (-194)))))
-(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *7)) (-4 *7 (-795))
- (-4 *8 (-890 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1181 (-388 *8)) "failed"))
- (|:| -3220 (-597 (-1181 (-388 *8))))))
- (-5 *1 (-620 *5 *6 *7 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-586)))))
-(((*1 *2 *2 *2)
- (-12
- (-5 *2
- (-597
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795))
- (-5 *1 (-429 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 (-530))))
- (-4 *5 (-411 *4)) (-5 *2 (-399 (-1095 (-388 (-530)))))
- (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1182))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-245))) (-5 *1 (-1183)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |polnum| (-730 *3)) (|:| |polden| *3) (|:| -4003 (-719))))
- (-5 *1 (-730 *3)) (-4 *3 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -4003 (-719))))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-159 (-208))))
- (-5 *2 (-973)) (-5 *1 (-704)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *3 (-1157 *4)) (-4 *2 (-1172 *4))
- (-5 *1 (-1175 *4 *3 *5 *2)) (-4 *5 (-607 *3)))))
-(((*1 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-804)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))
- (-5 *2 (-973)) (-5 *1 (-698))))
- ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))
- (-5 *8 (-369)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-506) (-597 (-506)))) (-5 *1 (-112)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-460 *3 *4))) (-14 *3 (-597 (-1099)))
- (-4 *4 (-432)) (-5 *1 (-585 *3 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4))))
- (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-600 *3 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -3304 *1)))
- (-4 *1 (-998 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -3304 *1)))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9))
- (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
- (-5 *2
- (-597
- (-2 (|:| -2776 (-597 *9)) (|:| -2473 *10) (|:| |ineq| (-597 *9)))))
- (-5 *1 (-928 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-597 *10)) (-5 *5 (-110)) (-4 *10 (-1003 *6 *7 *8 *9))
- (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
- (-5 *2
- (-597
- (-2 (|:| -2776 (-597 *9)) (|:| -2473 *10) (|:| |ineq| (-597 *9)))))
- (-5 *1 (-1034 *6 *7 *8 *9 *10)) (-5 *3 (-597 *9)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-555 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1141 *3)) (-4 *3 (-984))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 (-530))) (-4 *1 (-1172 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-4 *1 (-1047 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099))
- (-5 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186))
- (-5 *1 (-1102))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *3 (-1099))
- (-5 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *2 (-1186))
- (-5 *1 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+(727802 . 3429317351)
+(((*1 *1) (-5 *1 (-448))))
(((*1 *2 *1)
- (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719))
- (-14 *4 (-719)) (-4 *5 (-162)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
- ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
+ (-12 (-4 *3 (-216)) (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-248 *4))
+ (-4 *6 (-743)) (-5 *2 (-1 *1 (-721))) (-4 *1 (-235 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-986)) (-4 *3 (-797)) (-4 *5 (-248 *3)) (-4 *6 (-743))
+ (-5 *2 (-1 *1 (-721))) (-4 *1 (-235 *4 *3 *5 *6))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-248 *2)) (-4 *2 (-797)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531))))
+ ((*1 *1 *1 *1) (-5 *1 (-1049))))
+(((*1 *2 *1) (-12 (-4 *1 (-977 (-531))) (-4 *1 (-284)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8)))
- (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8)))
- (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)))))
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-598 (-1098 *4))) (-5 *3 (-1098 *4))
+ (-4 *4 (-852)) (-5 *1 (-616 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-110)) (-5 *1 (-112))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1102)) (-5 *2 (-110))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1102)) (-5 *2 (-110)) (-5 *1 (-571 *4)) (-4 *4 (-797))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-571 *4)) (-4 *4 (-797))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1030)) (-5 *2 (-110)) (-5 *1 (-830 *5 *3 *4))
+ (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *6)) (-4 *6 (-829 *5)) (-4 *5 (-1030))
+ (-5 *2 (-110)) (-5 *1 (-830 *5 *6 *4)) (-4 *4 (-573 (-835 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-5 *2
+ (-2 (|:| |zeros| (-1083 (-208))) (|:| |ones| (-1083 (-208)))
+ (|:| |singularities| (-1083 (-208)))))
+ (-5 *1 (-102)))))
+(((*1 *1 *2) (-12 (-5 *2 (-369)) (-5 *1 (-587)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-531)) (-4 *4 (-13 (-523) (-140))) (-5 *1 (-508 *4 *2))
+ (-4 *2 (-1175 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-531)) (-4 *4 (-13 (-344) (-349) (-573 *3)))
+ (-4 *5 (-1160 *4)) (-4 *6 (-675 *4 *5)) (-5 *1 (-512 *4 *5 *6 *2))
+ (-4 *2 (-1175 *6))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-531)) (-4 *4 (-13 (-344) (-349) (-573 *3)))
+ (-5 *1 (-513 *4 *2)) (-4 *2 (-1175 *4))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-13 (-523) (-140)))
+ (-5 *1 (-1079 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360))))
- ((*1 *1 *1 *1) (-4 *1 (-515)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-719)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-530)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-289))
- (-4 *9 (-890 *8 *6 *7))
- (-5 *2 (-2 (|:| -3109 (-1095 *9)) (|:| |polval| (-1095 *8))))
- (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)) (-5 *4 (-1095 *8)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 (-570 *4))) (-4 *4 (-411 *3)) (-4 *3 (-795))
- (-5 *1 (-539 *3 *4))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
+ (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1185))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1185))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-245))) (-5 *1 (-1186)))))
+(((*1 *2 *2 *3 *3 *4)
+ (-12 (-5 *4 (-721)) (-4 *3 (-523)) (-5 *1 (-912 *3 *2))
+ (-4 *2 (-1160 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531))))
+ ((*1 *1 *1 *1) (-5 *1 (-1049))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-612 *4 *2))
+ (-4 *2 (-609 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
+ (-5 *1 (-1053 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-598 (-276 *4))) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797))
+ (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-110)) (-5 *6 (-639 (-208)))
+ (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+ (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-573 (-835 (-531))))
+ (-4 *5 (-829 (-531)))
+ (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-534 *5 *3)) (-4 *3 (-584))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5))))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-507) (-598 (-507)))) (-5 *1 (-112))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-507) (-598 (-507)))) (-5 *1 (-112)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
- (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
- (-4 *3 (-1027)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-110))
- (-5 *1 (-845 *4))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-862)) (-5 *2 (-110)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
+ (-12 (-4 *5 (-523))
+ (-5 *2 (-2 (|:| -1751 (-639 *5)) (|:| |vec| (-1184 (-598 (-864))))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-864)) (-4 *3 (-609 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-399 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-941)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284))))
- ((*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-112)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110))
- (-5 *1 (-584 *4 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121))))))
-(((*1 *2 *2 *3 *4 *5)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-1 (-110) *9))
- (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9))
- (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741)) (-4 *8 (-795))
- (-5 *1 (-917 *6 *7 *8 *9)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+ (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-778) (-797) (-986)))
+ (-5 *2 (-1085)) (-5 *1 (-776 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 *5)) (-5 *4 (-110))
+ (-4 *5 (-13 (-778) (-797) (-986))) (-5 *2 (-1085))
+ (-5 *1 (-776 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-772)) (-5 *4 (-297 *5))
+ (-4 *5 (-13 (-778) (-797) (-986))) (-5 *2 (-1189))
+ (-5 *1 (-776 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-772)) (-5 *4 (-297 *6)) (-5 *5 (-110))
+ (-4 *6 (-13 (-778) (-797) (-986))) (-5 *2 (-1189))
+ (-5 *1 (-776 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-778)) (-5 *2 (-1085))))
+ ((*1 *2 *1 *3) (-12 (-4 *1 (-778)) (-5 *3 (-110)) (-5 *2 (-1085))))
+ ((*1 *2 *3 *1) (-12 (-4 *1 (-778)) (-5 *3 (-772)) (-5 *2 (-1189))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-4 *1 (-778)) (-5 *3 (-772)) (-5 *4 (-110)) (-5 *2 (-1189)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-806)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1160 *2)) (-4 *2 (-1142)) (-5 *1 (-141 *2 *4 *3))
+ (-4 *3 (-1160 (-388 *4))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-549 *4))
- (-4 *4 (-330)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-432)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
+ (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1124) (-943))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-176)))))
-(((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-4 *3 (-1160 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-927 *4 *2 *3 *5))
+ (-4 *4 (-330)) (-4 *5 (-675 *2 *3)))))
+(((*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-779)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-721)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-1182 *3)) (-4 *3 (-23)) (-4 *3 (-1138)))))
+(((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *2 (-598 *8)) (-5 *3 (-1 *8 *8 *8))
+ (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1132 *5 *6 *7 *8)) (-4 *5 (-523))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| -2065 (-388 *5)) (|:| |poly| *3)))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
+ (-12 (-4 *4 (-37 (-388 (-531))))
+ (-5 *2 (-2 (|:| -2198 (-1083 *4)) (|:| -2210 (-1083 *4))))
+ (-5 *1 (-1089 *4)) (-5 *3 (-1083 *4)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-230 *5 *6))) (-4 *6 (-432))
+ (-5 *2 (-230 *5 *6)) (-14 *5 (-598 (-1102))) (-5 *1 (-586 *5 *6)))))
+(((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-110)) (-5 *1 (-835 *4))
+ (-4 *4 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1083 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-630 *2)) (-4 *2 (-1027))))
+ (-12 (-5 *3 (-598 (-2 (|:| |deg| (-721)) (|:| -3239 *5))))
+ (-4 *5 (-1160 *4)) (-4 *4 (-330)) (-5 *2 (-598 *5))
+ (-5 *1 (-200 *4 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-597 *5) (-597 *5))) (-5 *4 (-530))
- (-5 *2 (-597 *5)) (-5 *1 (-630 *5)) (-4 *5 (-1027)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245))))
- ((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110))))
- (-5 *1 (-954 *4 *5)) (-5 *3 (-388 *5)))))
+ (-12 (-5 *3 (-598 (-2 (|:| -2552 *5) (|:| -2012 (-531)))))
+ (-5 *4 (-531)) (-4 *5 (-1160 *4)) (-5 *2 (-598 *5))
+ (-5 *1 (-646 *5)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))))
+(((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *4))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *4)))))))
+ (-5 *3 (-598 *7)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *7 (-892 *4 *6 *5)) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-5 *1 (-867 *4 *5 *6 *7)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-984))
- (-5 *2 (-637 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-51)) (-5 *1 (-833 *4))
- (-4 *4 (-1027)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530))))
- (-4 *2 (-162)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5))
- (-4 *3 (-1157 *4))
- (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-399 *4)) (-4 *4 (-522)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
+ (-12 (-4 *1 (-1182 *3)) (-4 *3 (-1138)) (-4 *3 (-986))
+ (-5 *2 (-639 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-4 *5 (-344)) (-5 *2 (-598 (-1133 *5)))
+ (-5 *1 (-1192 *5)) (-5 *4 (-1133 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 (-571 *4))) (-4 *4 (-411 *3)) (-4 *3 (-797))
+ (-5 *1 (-540 *3 *4))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
+ (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-344)) (-4 *2 (-793)) (-5 *1 (-886 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-515)) (-5 *1 (-150 *2)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2))
- (-4 *2 (-607 *4)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-506)))))
-(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
- (-12 (-5 *3 (-862)) (-5 *4 (-208)) (-5 *5 (-530)) (-5 *6 (-815))
- (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289))))
- ((*1 *2 *3 *2)
- (-12 (-5 *3 (-597 (-597 *4))) (-5 *2 (-597 *4)) (-4 *4 (-289))
- (-5 *1 (-168 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 *8))
- (-5 *4
- (-597
- (-2 (|:| -3220 (-637 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-637 *7)))))
- (-5 *5 (-719)) (-4 *8 (-1157 *7)) (-4 *7 (-1157 *6)) (-4 *6 (-330))
- (-5 *2
- (-2 (|:| -3220 (-637 *7)) (|:| |basisDen| *7)
- (|:| |basisInv| (-637 *7))))
- (-5 *1 (-476 *6 *7 *8))))
- ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+ (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-110))
+ (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-110)) (-5 *1 (-1128 *4 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *4))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-5 *2
- (-2 (|:| |contp| (-530))
- (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530)))))))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-5 *2
- (-2 (|:| |contp| (-530))
- (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530)))))))
- (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
+ (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-1102))) (-4 *6 (-344))
+ (-5 *2 (-598 (-276 (-895 *6)))) (-5 *1 (-509 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *7 (-13 (-344) (-795))))))
+(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1085)) (-5 *1 (-736)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-311)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-176))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-1186)) (-5 *1 (-779)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1135)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-719))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-570 *3)) (-4 *3 (-795))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984))
- (-5 *1 (-663 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))))
+ (-12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-548 *3)) (-5 *1 (-407 *5 *3))
+ (-4 *3 (-13 (-1124) (-29 *5))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-598 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
+ (-5 *1 (-194)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-570 *4)) (-4 *4 (-795)) (-4 *2 (-795))
- (-5 *1 (-569 *2 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027))
- (-5 *2 (-110)))))
+ (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-724)) (-5 *1 (-112)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-344)) (-4 *7 (-1160 *6))
+ (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *4))) (-5 *3 (-1095 *4))
- (-4 *4 (-850)) (-5 *1 (-614 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-687)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
+ (|partial| -12 (-5 *2 (-598 (-1098 *5))) (-5 *3 (-1098 *5))
+ (-4 *5 (-156 *4)) (-4 *4 (-516)) (-5 *1 (-142 *4 *5))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-598 *3)) (-4 *3 (-1160 *5))
+ (-4 *5 (-1160 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-598 (-1098 (-531)))) (-5 *3 (-1098 (-531)))
+ (-5 *1 (-539))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-598 (-1098 *1))) (-5 *3 (-1098 *1))
+ (-4 *1 (-852)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 *6)) (-4 *5 (-1142)) (-4 *6 (-1160 *5))
+ (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| *6)))
+ (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-721)) (-4 *7 (-1160 *3)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-996 (-964 *3) (-1098 (-964 *3))))
+ (-5 *1 (-964 *3)) (-4 *3 (-13 (-795) (-344) (-962))))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *3)) (-4 *3 (-1138)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-721))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-986))
+ (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-571 *3)) (-4 *3 (-797))))
+ ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870))
+ (-5 *1 (-868 *3)) (-4 *3 (-573 (-507)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102)) (-5 *2 (-870)) (-5 *1 (-868 *3))
+ (-4 *3 (-573 (-507)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-870))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870)))))
+(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2)
+ (-12 (-5 *2 (-531))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-721)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-743)) (-4 *4 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-797))
+ (-5 *1 (-429 *5 *6 *7 *4)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2))
+ (-4 *2 (-1138)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-689)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
-(((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-775 *2 *3)) (-4 *2 (-657 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
+ (|partial| -12 (-5 *3 (-639 (-388 (-895 (-531)))))
+ (-5 *2 (-639 (-297 (-531)))) (-5 *1 (-971)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-531))))
+ (-5 *1 (-287)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3))
+ (-4 *3 (-1160 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-721))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *2 (-399 *3))
+ (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-948 *3))
+ (-4 *3 (-1160 (-388 (-531))))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+ (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1140))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1140)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9))))
- (-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186))
- (-5 *1 (-1001 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9))))
- (-5 *4 (-719)) (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-1186))
- (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1103)) (-5 *1 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-844 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-115 *4)) (-14 *4 *3)
- (-5 *3 (-530))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530))))
+ (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9))))
+ (-5 *4 (-721)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-1189))
+ (-5 *1 (-1003 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9))))
+ (-5 *4 (-721)) (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-1189))
+ (-5 *1 (-1072 *5 *6 *7 *8 *9)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-224)))))
+(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-549 *3)) (-4 *3 (-516)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-342 *3)) (-4 *3 (-1030))))
((*1 *2 *1 *3)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-812 *4)) (-14 *4 *3)
- (-5 *3 (-530))))
+ (-12 (-5 *3 (-531)) (-5 *2 (-721)) (-5 *1 (-367 *4)) (-4 *4 (-1030))))
((*1 *2 *1 *3)
- (-12 (-14 *4 *3) (-5 *2 (-388 (-530))) (-5 *1 (-813 *4 *5))
- (-5 *3 (-530)) (-4 *5 (-810 *4))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-951)) (-5 *2 (-388 (-530)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344)))
- (-4 *3 (-1157 *2))))
+ (-12 (-5 *3 (-531)) (-4 *2 (-23)) (-5 *1 (-602 *4 *2 *5))
+ (-4 *4 (-1030)) (-14 *5 *2)))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740))
- (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2366 (*2 (-1099))))
- (-4 *2 (-984)))))
-(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
+ (-12 (-5 *3 (-531)) (-5 *2 (-721)) (-5 *1 (-769 *4)) (-4 *4 (-797)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))))
+(((*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186))
- (-5 *1 (-429 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-112)) (-4 *4 (-986)) (-5 *1 (-665 *4 *2))
+ (-4 *2 (-601 *4))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-784 *2)) (-4 *2 (-986)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-1095 *3)) (-5 *1 (-40 *4 *3))
- (-4 *3
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $))
- (-15 -1928 ((-1051 *4 (-570 $)) $))
- (-15 -2366 ($ (-1051 *4 (-570 $))))))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-522)) (-4 *2 (-432)) (-5 *1 (-910 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
- (|partial| -12 (-5 *2 (-597 (-1095 *13))) (-5 *3 (-1095 *13))
- (-5 *4 (-597 *12)) (-5 *5 (-597 *10)) (-5 *6 (-597 *13))
- (-5 *7 (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| *13)))))
- (-5 *8 (-597 (-719))) (-5 *9 (-1181 (-597 (-1095 *10))))
- (-4 *12 (-795)) (-4 *10 (-289)) (-4 *13 (-890 *10 *11 *12))
- (-4 *11 (-741)) (-5 *1 (-656 *11 *12 *10 *13)))))
-(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-984))))
- ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-1080 *4) (-1080 *4))) (-5 *2 (-1080 *4))
- (-5 *1 (-1204 *4)) (-4 *4 (-1135))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-597 (-1080 *5)) (-597 (-1080 *5)))) (-5 *4 (-530))
- (-5 *2 (-597 (-1080 *5))) (-5 *1 (-1204 *5)) (-4 *5 (-1135)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-31 *3 *4))
- (-4 *4 (-411 *3))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *1 (-112))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-112))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *4))
- (-4 *4 (-411 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-112)) (-5 *1 (-153))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *4))
- (-4 *4 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284))))
- ((*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *4 (-795)) (-5 *1 (-410 *3 *4))
- (-4 *3 (-411 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *4))
- (-4 *4 (-411 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-570 *3)) (-4 *3 (-795))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-112)) (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *4))
- (-4 *4 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
- (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-1104))) (-5 *1 (-1104)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
- (-4 *2 (-1157 *4))))
- ((*1 *2 *2 *3 *2 *3)
- (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *2 *1)
+ (-12 (-5 *3 (-639 (-388 (-895 *4)))) (-4 *4 (-432))
+ (-5 *2 (-598 (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4)))))
+ (-5 *1 (-274 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-817)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))))
+(((*1 *2 *1 *1)
(-12
(-5 *2
- (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804)))
- (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804)))
- (|:| |args| (-597 (-804)))))
- (-5 *1 (-1099)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1027) (-975 *5)))
- (-4 *5 (-827 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5))
- (-5 *1 (-872 *4 *5 *6)))))
+ (-2 (|:| |polnum| (-732 *3)) (|:| |polden| *3) (|:| -3158 (-721))))
+ (-5 *1 (-732 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3158 (-721))))
+ (-4 *1 (-1000 *3 *4 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *1 *1 *1) (-4 *1 (-453)))
+ ((*1 *1 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))
+ ((*1 *2 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-826))))
+ ((*1 *1 *1) (-5 *1 (-913)))
+ ((*1 *1 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-1144 *4)) (-4 *4 (-986)) (-4 *4 (-523))
+ (-5 *2 (-388 (-895 *4)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-1144 *4)) (-4 *4 (-986)) (-4 *4 (-523))
+ (-5 *2 (-388 (-895 *4))))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975))
+ (-5 *1 (-699)))))
+(((*1 *2 *3) (-12 (-5 *3 (-598 *2)) (-5 *1 (-1113 *2)) (-4 *2 (-344)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5))
+ (-5 *2 (-2 (|:| -2259 (-598 *6)) (|:| -1833 (-598 *6)))))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-549 *2)) (-4 *2 (-516)))))
(((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
+ (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208)))
(-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
(-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *3 (-208))
- (-5 *2 (-973)) (-5 *1 (-698)))))
+ (-5 *2 (-975)) (-5 *1 (-700)))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *1 *2)
+ (-12 (-4 *3 (-986)) (-5 *1 (-777 *2 *3)) (-4 *2 (-659 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
+ (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208)))
+ (-5 *1 (-647)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3523 (-598 *1))))
+ (-4 *1 (-348 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-433 *3 *4 *5 *6))
+ (|:| -3523 (-598 (-433 *3 *4 *5 *6)))))
+ (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *5 (-1139)) (-4 *6 (-1157 *5))
- (-4 *7 (-1157 (-388 *6))) (-5 *2 (-597 (-893 *5)))
- (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7))))
+ (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *1 (-754 *4 *2)) (-4 *2 (-13 (-29 *4) (-1124) (-902)))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1) (-5 *1 (-806)))
((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139))
- (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *4 (-344))
- (-5 *2 (-597 (-893 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-486 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-795)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-719)) (-4 *5 (-162))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *2 *4)) (-4 *2 (-354 *3))
- (-4 *4 (-354 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1066 *2 *3)) (-14 *2 (-719)) (-4 *3 (-984)))))
+ (-12 (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-690 *3)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-115 *4)) (-14 *4 *3)
+ (-5 *3 (-531))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-814 *4)) (-14 *4 *3)
+ (-5 *3 (-531))))
+ ((*1 *2 *1 *3)
+ (-12 (-14 *4 *3) (-5 *2 (-388 (-531))) (-5 *1 (-815 *4 *5))
+ (-5 *3 (-531)) (-4 *5 (-812 *4))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-953)) (-5 *2 (-388 (-531)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1002 *2 *3)) (-4 *2 (-13 (-795) (-344)))
+ (-4 *3 (-1160 *2))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742))
+ (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -2265 (*2 (-1102))))
+ (-4 *2 (-986)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4))))
- ((*1 *1 *1) (-4 *1 (-515)))
- ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-4 *1 (-934 *3)) (-4 *3 (-1135)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-1133 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941))
- (-4 *2 (-984)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-696)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-994 (-962 *4) (-1095 (-962 *4)))) (-5 *3 (-804))
- (-5 *1 (-962 *4)) (-4 *4 (-13 (-793) (-344) (-960))))))
-(((*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *7 (-1157 *5)) (-4 *4 (-673 *5 *7))
- (-5 *2 (-2 (|:| -2030 (-637 *6)) (|:| |vec| (-1181 *5))))
- (-5 *1 (-759 *5 *6 *7 *4 *3)) (-4 *6 (-607 *5)) (-4 *3 (-607 *4)))))
+ (-12 (-4 *2 (-330)) (-4 *2 (-986)) (-5 *1 (-663 *2 *3))
+ (-4 *3 (-1160 *2)))))
(((*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-287))))
((*1 *2 *1)
(|partial| -12
- (-5 *2 (-2 (|:| |num| (-833 *3)) (|:| |den| (-833 *3))))
- (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+ (-5 *2 (-2 (|:| |num| (-835 *3)) (|:| |den| (-835 *3))))
+ (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-110))
+ (-5 *2 (-975)) (-5 *1 (-704)))))
+(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
+ (|partial| -12 (-5 *3 (-571 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102))) (-5 *5 (-1098 *2))
+ (-4 *2 (-13 (-411 *6) (-27) (-1124)))
+ (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1030))))
+ ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
+ (|partial| -12 (-5 *3 (-571 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102)))
+ (-5 *5 (-388 (-1098 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1124)))
+ (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *1 (-527 *6 *2 *7)) (-4 *7 (-1030)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-703)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189))
+ (-5 *1 (-429 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1175 *4)) (-5 *1 (-1177 *4 *2))
+ (-4 *4 (-37 (-388 (-531)))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-1083 *4) (-1083 *4))) (-5 *2 (-1083 *4))
+ (-5 *1 (-1207 *4)) (-4 *4 (-1138))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-598 (-1083 *5)) (-598 (-1083 *5)))) (-5 *4 (-531))
+ (-5 *2 (-598 (-1083 *5))) (-5 *1 (-1207 *5)) (-4 *5 (-1138)))))
+(((*1 *1) (-5 *1 (-753))))
+(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-598 (-51))) (-5 *2 (-1189)) (-5 *1 (-807)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-707)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531))
+ (-14 *4 (-721)) (-4 *5 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-639 (-388 (-895 (-531))))) (-5 *2 (-598 (-297 (-531))))
+ (-5 *1 (-971)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-523) (-797) (-977 (-531))))
+ (-4 *5 (-411 *4)) (-5 *2 (-399 (-1098 (-388 (-531)))))
+ (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140))
+ (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-919 *3 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-918 *4 *5 *6 *3)) (-4 *4 (-986)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-628 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-769 *3)) (-4 *3 (-797)))))
+(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))))
+(((*1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4))
+ (-5 *2 (-2 (|:| -2005 (-388 *5)) (|:| |poly| *3)))
+ (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5))))))
+(((*1 *1 *1) (-5 *1 (-507))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-886 *5)) (-5 *3 (-721)) (-4 *5 (-986))
+ (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -2351 (-388 *6)) (|:| |coeff| (-388 *6))))
+ (-5 *1 (-541 *5 *6)) (-5 *3 (-388 *6)))))
(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-388 *5)) (-4 *4 (-1139)) (-4 *5 (-1157 *4))
- (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1157 *3))))
+ (-12 (-5 *3 (-388 *5)) (-4 *4 (-1142)) (-4 *5 (-1160 *4))
+ (-5 *1 (-141 *4 *5 *2)) (-4 *2 (-1160 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530)))
+ (-12 (-5 *3 (-1104 (-388 (-531)))) (-5 *2 (-388 (-531)))
(-5 *1 (-174))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-637 (-297 (-208)))) (-5 *3 (-597 (-1099)))
- (-5 *4 (-1181 (-297 (-208)))) (-5 *1 (-189))))
+ (-12 (-5 *2 (-639 (-297 (-208)))) (-5 *3 (-598 (-1102)))
+ (-5 *4 (-1184 (-297 (-208)))) (-5 *1 (-189))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-276 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1027))
- (-4 *3 (-1135)) (-5 *1 (-276 *3))))
+ (-12 (-5 *2 (-598 (-276 *3))) (-4 *3 (-291 *3)) (-4 *3 (-1030))
+ (-4 *3 (-1138)) (-5 *1 (-276 *3))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-291 *2)) (-4 *2 (-1027)) (-4 *2 (-1135))
+ (-12 (-4 *2 (-291 *2)) (-4 *2 (-1030)) (-4 *2 (-1138))
(-5 *1 (-276 *2))))
((*1 *1 *1 *2 *3)
(-12 (-5 *2 (-112)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-597 *1))) (-4 *1 (-284))))
+ (-12 (-5 *2 (-112)) (-5 *3 (-1 *1 (-598 *1))) (-4 *1 (-284))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 (-1 *1 (-597 *1))))
+ (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 (-1 *1 (-598 *1))))
(-4 *1 (-284))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 (-1 *1 *1))) (-4 *1 (-284))))
+ (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 (-1 *1 *1))) (-4 *1 (-284))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284))))
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1 *1 *1)) (-4 *1 (-284))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1 *1 (-597 *1))) (-4 *1 (-284))))
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1 *1 (-598 *1))) (-4 *1 (-284))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-1 *1 (-597 *1))))
+ (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-1 *1 (-598 *1))))
(-4 *1 (-284))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-1 *1 *1))) (-4 *1 (-284))))
+ (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-1 *1 *1))) (-4 *1 (-284))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-276 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-598 (-276 *3))) (-4 *1 (-291 *3)) (-4 *3 (-1030))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-276 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-276 *3)) (-4 *1 (-291 *3)) (-4 *3 (-1030))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-530))) (-5 *4 (-1101 (-388 (-530))))
- (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-530))))))
+ (-12 (-5 *3 (-1 *2 (-531))) (-5 *4 (-1104 (-388 (-531))))
+ (-5 *1 (-292 *2)) (-4 *2 (-37 (-388 (-531))))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 *1)) (-4 *1 (-355 *4 *5))
- (-4 *4 (-795)) (-4 *5 (-162))))
+ (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 *1)) (-4 *1 (-355 *4 *5))
+ (-4 *4 (-797)) (-4 *5 (-162))))
((*1 *1 *1 *2 *1)
- (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
+ (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *4 (-1 *1 *1))
- (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984))))
+ (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *4 (-1 *1 *1))
+ (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-719)) (-5 *4 (-1 *1 (-597 *1)))
- (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-984))))
+ (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *4 (-1 *1 (-598 *1)))
+ (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-986))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-719)))
- (-5 *4 (-597 (-1 *1 (-597 *1)))) (-4 *1 (-411 *5)) (-4 *5 (-795))
- (-4 *5 (-984))))
+ (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-721)))
+ (-5 *4 (-598 (-1 *1 (-598 *1)))) (-4 *1 (-411 *5)) (-4 *5 (-797))
+ (-4 *5 (-986))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-597 (-719)))
- (-5 *4 (-597 (-1 *1 *1))) (-4 *1 (-411 *5)) (-4 *5 (-795))
- (-4 *5 (-984))))
+ (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-598 (-721)))
+ (-5 *4 (-598 (-1 *1 *1))) (-4 *1 (-411 *5)) (-4 *5 (-797))
+ (-4 *5 (-986))))
((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-112))) (-5 *3 (-597 *1)) (-5 *4 (-1099))
- (-4 *1 (-411 *5)) (-4 *5 (-795)) (-4 *5 (-572 (-506)))))
+ (-12 (-5 *2 (-598 (-112))) (-5 *3 (-598 *1)) (-5 *4 (-1102))
+ (-4 *1 (-411 *5)) (-4 *5 (-797)) (-4 *5 (-573 (-507)))))
((*1 *1 *1 *2 *1 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1099)) (-4 *1 (-411 *4)) (-4 *4 (-795))
- (-4 *4 (-572 (-506)))))
+ (-12 (-5 *2 (-112)) (-5 *3 (-1102)) (-4 *1 (-411 *4)) (-4 *4 (-797))
+ (-4 *4 (-573 (-507)))))
((*1 *1 *1)
- (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-572 (-506)))))
+ (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-573 (-507)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-1099))) (-4 *1 (-411 *3)) (-4 *3 (-795))
- (-4 *3 (-572 (-506)))))
+ (-12 (-5 *2 (-598 (-1102))) (-4 *1 (-411 *3)) (-4 *3 (-797))
+ (-4 *3 (-573 (-507)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795))
- (-4 *3 (-572 (-506)))))
+ (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797))
+ (-4 *3 (-573 (-507)))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-491 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1135))))
+ (-12 (-4 *1 (-492 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1138))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 *5)) (-4 *1 (-491 *4 *5))
- (-4 *4 (-1027)) (-4 *5 (-1135))))
+ (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 *5)) (-4 *1 (-492 *4 *5))
+ (-4 *4 (-1030)) (-4 *5 (-1138))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-781 *3)) (-4 *3 (-344)) (-5 *1 (-667 *3))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1027))))
+ (-12 (-5 *2 (-783 *3)) (-4 *3 (-344)) (-5 *1 (-669 *3))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1030))))
((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099)) (-4 *4 (-522))
- (-5 *1 (-980 *4))))
+ (-12 (-5 *2 (-388 (-895 *4))) (-5 *3 (-1102)) (-4 *4 (-523))
+ (-5 *1 (-982 *4))))
((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1099))) (-5 *4 (-597 (-388 (-893 *5))))
- (-5 *2 (-388 (-893 *5))) (-4 *5 (-522)) (-5 *1 (-980 *5))))
+ (-12 (-5 *3 (-598 (-1102))) (-5 *4 (-598 (-388 (-895 *5))))
+ (-5 *2 (-388 (-895 *5))) (-4 *5 (-523)) (-5 *1 (-982 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-276 (-388 (-893 *4)))) (-5 *2 (-388 (-893 *4)))
- (-4 *4 (-522)) (-5 *1 (-980 *4))))
+ (-12 (-5 *3 (-276 (-388 (-895 *4)))) (-5 *2 (-388 (-895 *4)))
+ (-4 *4 (-523)) (-5 *1 (-982 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 *4))))) (-5 *2 (-388 (-893 *4)))
- (-4 *4 (-522)) (-5 *1 (-980 *4))))
+ (-12 (-5 *3 (-598 (-276 (-388 (-895 *4))))) (-5 *2 (-388 (-895 *4)))
+ (-4 *4 (-523)) (-5 *1 (-982 *4))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1080 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-2 (|:| |k| (-767 *3)) (|:| |c| *4))))))
+ (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742))
+ (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1083 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975))
+ (-5 *1 (-697)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-597 (-388 *6))) (-5 *3 (-388 *6))
- (-4 *6 (-1157 *5)) (-4 *5 (-13 (-344) (-140) (-975 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-534 *5 *6)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))))
-(((*1 *2 *3 *3 *2)
- (|partial| -12 (-5 *2 (-719))
- (-4 *3 (-13 (-675) (-349) (-10 -7 (-15 ** (*3 *3 (-530))))))
- (-5 *1 (-229 *3)))))
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *7)) (-4 *7 (-797))
+ (-4 *8 (-892 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1184 (-388 *8)) "failed"))
+ (|:| -3523 (-598 (-1184 (-388 *8))))))
+ (-5 *1 (-622 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1030)) (-5 *2 (-721)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *1)) (|has| *1 (-6 -4270)) (-4 *1 (-949 *3))
- (-4 *3 (-1135)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
- (-5 *1 (-1084 *4))))
- ((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
- (-14 *4 (-1099)) (-14 *5 *3))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-973))
- (-5 *1 (-695)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1181 (-597 *3))) (-4 *4 (-289))
- (-5 *2 (-597 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+ (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-797))
+ (-4 *5 (-743)) (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6)
+ (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360)))
+ (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189))
+ (-5 *1 (-738)))))
(((*1 *2 *1 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099)))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 (-862))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5))
- (-14 *4 (-862)) (-14 *5 (-933 *4 *2))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4))
- (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099)))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4))
- (-4 *4 (-1157 *2))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-675))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5))
- (-4 *4 (-984)) (-4 *5 (-795))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984))
- (-4 *2 (-795))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6))
- (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *2 (-795))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *2 (-890 *4 (-502 *5) *5))
- (-5 *1 (-1052 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-795))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-893 *4)) (-5 *1 (-1130 *4))
- (-4 *4 (-984)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
- (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
+ (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-721))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-721)))))
+(((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189))
+ (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189))
+ (-5 *1 (-1038 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *2 *2 *2 *3 *3 *4 *2 *5)
- (|partial| -12 (-5 *3 (-570 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099))) (-5 *5 (-1095 *2))
- (-4 *2 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027))))
- ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5)
- (|partial| -12 (-5 *3 (-570 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099)))
- (-5 *5 (-388 (-1095 *2))) (-4 *2 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *1 (-526 *6 *2 *7)) (-4 *7 (-1027)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-986)) (-5 *1 (-663 *3 *4))
+ (-4 *4 (-1160 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138))))
((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *1 *2)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-354 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1124) (-943))))))
+(((*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-582 *2 *3 *4)) (-4 *2 (-797))
+ (-4 *3 (-13 (-162) (-668 (-388 (-531))))) (-14 *4 (-864))))
+ ((*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))))
+(((*1 *1)
+ (-12 (-4 *1 (-385)) (-3745 (|has| *1 (-6 -4264)))
+ (-3745 (|has| *1 (-6 -4256)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-797))))
+ ((*1 *2 *1) (-12 (-4 *1 (-780 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1) (-4 *1 (-797))) ((*1 *1) (-5 *1 (-1049))))
+(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
+ ((*1 *1 *1) (-4 *1 (-1071))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102))
+ (-5 *2 (-598 *4)) (-5 *1 (-1044 *4 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-721)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-1030)) (-4 *2 (-843 *4)) (-5 *1 (-642 *4 *2 *5 *3))
+ (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4273)))))))
+(((*1 *1 *1 *1) (-4 *1 (-516))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-919 *4 *5 *6 *7)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *3 (-598 (-245)))
+ (-5 *1 (-243))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *1 (-245))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-460 *5 *6))) (-5 *3 (-460 *5 *6))
+ (-14 *5 (-598 (-1102))) (-4 *6 (-432)) (-5 *2 (-1184 *6))
+ (-5 *1 (-586 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-913)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-806))))
+ ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-905)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| |mval| (-637 *3)) (|:| |invmval| (-637 *3))
- (|:| |genIdeal| (-482 *3 *4 *5 *6))))
- (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-189)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7))
- (-4 *4 (-1157 *3)) (-14 *5 (-1 *4 *4 *2))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2))
- (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3))
+ (-4 *3 (-1160 *2)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-5 *2 (-721)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-660 *3 *2 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984))))
+ (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-721))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-638 *4 *5 *6 *3))
+ (-4 *3 (-637 *4 *5 *6))))
((*1 *2 *1)
- (-12 (-4 *2 (-23)) (-5 *1 (-664 *3 *2 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
- ((*1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208))
- (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-700)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-1 (-208) (-208) (-208)))
- (-5 *4 (-1 (-208) (-208) (-208) (-208)))
- (-5 *2 (-1 (-884 (-208)) (-208) (-208))) (-5 *1 (-645)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3638 *6) (|:| |sol?| (-110))) (-530)
- *6))
- (-4 *6 (-344)) (-4 *7 (-1157 *6))
- (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
-(((*1 *1 *1) (-5 *1 (-506))))
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523))
+ (-5 *2 (-721)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1049)) (-4 *4 (-330))
+ (-5 *1 (-501 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-4 *5 (-344))
- (-4 *5 (-984)) (-5 *2 (-110)) (-5 *1 (-967 *5))))
+ (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102)))
+ (-4 *5 (-523)) (-5 *2 (-598 (-598 (-895 *5)))) (-5 *1 (-1108 *5)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3))
+ (-4 *3 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-702)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *5 (-1142)) (-4 *6 (-1160 *5))
+ (-4 *7 (-1160 (-388 *6))) (-5 *2 (-598 (-895 *5)))
+ (-5 *1 (-322 *4 *5 *6 *7)) (-4 *4 (-323 *5 *6 *7))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344)) (-4 *4 (-984))
- (-5 *2 (-110)) (-5 *1 (-967 *4)))))
-(((*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
+ (-12 (-5 *3 (-1102)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1142))
+ (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-4 *4 (-344))
+ (-5 *2 (-598 (-895 *4))))))
+(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
+ ((*1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721))
+ (-4 *4 (-162))))
+ ((*1 *1) (-4 *1 (-677))) ((*1 *1) (-5 *1 (-1102))))
(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4269)) (-4 *1 (-563 *4 *3)) (-4 *4 (-1027))
- (-4 *3 (-1135)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1157 *5))
- (-5 *1 (-676 *5 *2)) (-4 *5 (-344)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-530))) (-5 *4 (-530)) (-5 *2 (-51))
- (-5 *1 (-944)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4))
- (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3))
- (-4 *3 (-1157 (-388 *4))))))
+ (-12 (-4 *1 (-918 *4 *5 *3 *6)) (-4 *4 (-986)) (-4 *5 (-743))
+ (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-110)))))
+(((*1 *1)
+ (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1034)) (-5 *3 (-724)) (-5 *1 (-51)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5))
- (-5 *2 (-597 (-2 (|:| -2708 *5) (|:| -2776 *3))))
- (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6))
- (-4 *7 (-607 (-388 *6))))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
- (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
+ (-12 (-5 *3 (-870))
+ (-5 *2
+ (-2 (|:| |brans| (-598 (-598 (-886 (-208)))))
+ (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))))
+ (-5 *1 (-146))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-870)) (-5 *4 (-388 (-531)))
+ (-5 *2
+ (-2 (|:| |brans| (-598 (-598 (-886 (-208)))))
+ (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))))
+ (-5 *1 (-146))))
((*1 *2 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6))
- (-4 *6 (-323 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
+ (-12
+ (-5 *2
+ (-2 (|:| |brans| (-598 (-598 (-886 (-208)))))
+ (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))))
+ (-5 *1 (-146)) (-5 *3 (-598 (-886 (-208))))))
((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530))))
- ((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1) (-4 *1 (-810 *2)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740))
- (-4 *4 (-795)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-1157 (-388 *3))) (-5 *2 (-862))
- (-5 *1 (-854 *4 *5)) (-4 *5 (-1157 (-388 *4))))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-696)))))
-(((*1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099)))))
- (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031))
- (-5 *1 (-378))))
- ((*1 *2 *3 *4 *5 *6 *3)
- (-12 (-5 *5 (-597 (-597 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
- (-5 *4 (-597 (-3 (|:| |array| (-597 *3)) (|:| |scalar| (-1099)))))
- (-5 *6 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1031))
- (-5 *1 (-378))))
- ((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *4 (-597 (-1099))) (-5 *5 (-1102)) (-5 *3 (-1099))
- (-5 *2 (-1031)) (-5 *1 (-378)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-984))
- (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-890 *2 *4 *5)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208)))
- (-5 *5 (-110)) (-5 *2 (-1183)) (-5 *1 (-239)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
-(((*1 *2 *3 *2)
(-12
(-5 *2
- (-597
- (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-719)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *3 (-741)) (-4 *6 (-890 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-795))
- (-5 *1 (-429 *4 *3 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-1135)) (-5 *2 (-719)) (-5 *1 (-170 *4 *3))
- (-4 *3 (-624 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *3 (-893 (-530)))
- (-5 *1 (-311))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1020 (-893 (-530)))) (-5 *1 (-311)))))
-(((*1 *1)
- (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027))
- (-4 *4 (-617 *3))))
- ((*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
- (-4 *3 (-908)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-602 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-795))
- (-4 *3 (-1027)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *4 (-1099))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-257)))))
+ (-2 (|:| |brans| (-598 (-598 (-886 (-208)))))
+ (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))))
+ (-5 *1 (-146)) (-5 *3 (-598 (-598 (-886 (-208)))))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1184 (-531))) (-5 *3 (-531)) (-5 *1 (-1040))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-1184 (-531))) (-5 *3 (-598 (-531))) (-5 *4 (-531))
+ (-5 *1 (-1040)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3))
- (-4 *3 (-13 (-1121) (-29 *5))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804))))
+ (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-1000 *3 *4 *2)) (-4 *2 (-797))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
- (-14 *3 (-597 (-1099))))))
-(((*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-647))) (-5 *1 (-311))))
- ((*1 *1) (-5 *1 (-311))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-411 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
- (-5 *1 (-149 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1027))
- (-4 *2 (-128)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2204 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
+ (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))))
+(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-986)) (-5 *2 (-1184 *4))
+ (-5 *1 (-1103 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-864)) (-5 *2 (-1184 *3)) (-5 *1 (-1103 *3))
+ (-4 *3 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-703)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432)))
+ (-5 *2
+ (-2
+ (|:| |%term|
+ (-2 (|:| |%coef| (-1169 *4 *5 *6))
+ (|:| |%expon| (-300 *4 *5 *6))
+ (|:| |%expTerms|
+ (-598 (-2 (|:| |k| (-388 (-531))) (|:| |c| *4))))))
+ (|:| |%type| (-1085))))
+ (-5 *1 (-1170 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3)))
+ (-14 *5 (-1102)) (-14 *6 *4))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *4 *5))
+ (-4 *5 (-13 (-27) (-1124) (-411 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *4 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-388 (-531)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *5 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-604 (-388 *7))) (-5 *4 (-1 (-597 *6) *7))
- (-5 *5 (-1 (-399 *7) *7))
- (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7))))
+ (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-531)))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5)) (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
+ (-12 (-5 *3 (-1 *6 (-531))) (-5 *4 (-276 *6))
+ (-4 *6 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-605 *7 (-388 *7))) (-5 *4 (-1 (-597 *6) *7))
- (-5 *5 (-1 (-399 *7) *7))
- (-4 *6 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *7 (-1157 *6)) (-5 *2 (-597 (-388 *7))) (-5 *1 (-760 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-604 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-1 (-399 *6) *6))
- (-4 *6 (-1157 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-605 *5 (-388 *5))) (-4 *5 (-1157 *4)) (-4 *4 (-27))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-388 *5))) (-5 *1 (-760 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6))
- (-4 *6 (-1157 *5)) (-4 *5 (-27))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-388 *6))) (-5 *1 (-760 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-388 (-530))))
- (-5 *2
- (-597
- (-2 (|:| |outval| *4) (|:| |outmult| (-530))
- (|:| |outvect| (-597 (-637 *4))))))
- (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
- (-5 *2
- (-3 (|:| |overq| (-1095 (-388 (-530))))
- (|:| |overan| (-1095 (-47))) (|:| -4031 (-110))))
- (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027))
- (-4 *2 (-795)))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795))))
+ (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-531)))
+ (-4 *7 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-531)))
+ (-4 *3 (-13 (-27) (-1124) (-411 *7)))
+ (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-1 *8 (-388 (-531)))) (-5 *4 (-276 *8))
+ (-5 *5 (-1151 (-388 (-531)))) (-5 *6 (-388 (-531)))
+ (-4 *8 (-13 (-27) (-1124) (-411 *7)))
+ (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-388 (-531))))
+ (-5 *7 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *8)))
+ (-4 *8 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *8 *3))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-806 *3)) (-14 *3 (-597 *2))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-907 *3)) (-4 *3 (-908))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-929))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1020 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-1099))))
- ((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+ (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3))))
+ (-4 *3 (-986)) (-5 *1 (-556 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-557 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3))))
+ (-4 *3 (-986)) (-4 *1 (-1144 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-721))
+ (-5 *3 (-1083 (-2 (|:| |k| (-388 (-531))) (|:| |c| *4))))
+ (-4 *4 (-986)) (-4 *1 (-1165 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-4 *1 (-1175 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1083 (-2 (|:| |k| (-721)) (|:| |c| *3))))
+ (-4 *3 (-986)) (-4 *1 (-1175 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-659 *3)) (-5 *1 (-777 *2 *3)) (-4 *3 (-986)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *1 (-1084 *3)))))
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140))
+ (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-919 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1))
- (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-530) (-530))) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-719) (-719))) (-5 *1 (-367 *3)) (-4 *3 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
- (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-249)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-795)) (-4 *4 (-344)) (-5 *2 (-721))
+ (-5 *1 (-888 *4 *5)) (-4 *5 (-1160 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *1)
+ (-12 (-4 *3 (-1030)) (-5 *1 (-828 *2 *3 *4)) (-4 *2 (-1030))
+ (-4 *4 (-619 *3))))
+ ((*1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *2 (-1186))
- (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1157 (-388 *5))) (-14 *7 *6))))
-(((*1 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))
- (-14 *4 (-1099)) (-14 *5 *2)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-4 *2 (-13 (-27) (-1121) (-411 *3) (-10 -8 (-15 -2366 ($ *4)))))
- (-4 *4 (-793))
- (-4 *5
- (-13 (-1159 *2 *4) (-344) (-1121)
- (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $)))))
- (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-923 *5)) (-14 *7 (-1099)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-5 *2 (-1095 *3)) (-5 *1 (-1110 *3))
- (-4 *3 (-344)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344))
- (-5 *2 (-1095 (-893 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-348 *3)))))
-(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
- ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2))))
- ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))))
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-297 *4)) (-4 *4 (-13 (-776) (-795) (-984)))
- (-5 *2 (-1082)) (-5 *1 (-774 *4))))
+ (|partial| -12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 *2))
+ (-5 *2 (-360)) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 *5)) (-5 *4 (-110))
- (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1082))
- (-5 *1 (-774 *5))))
+ (|partial| -12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986))
+ (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523))
+ (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-770)) (-5 *4 (-297 *5))
- (-4 *5 (-13 (-776) (-795) (-984))) (-5 *2 (-1186))
- (-5 *1 (-774 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-770)) (-5 *4 (-297 *6)) (-5 *5 (-110))
- (-4 *6 (-13 (-776) (-795) (-984))) (-5 *2 (-1186))
- (-5 *1 (-774 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-776)) (-5 *2 (-1082))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-776)) (-5 *3 (-110)) (-5 *2 (-1082))))
- ((*1 *2 *3 *1) (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *2 (-1186))))
- ((*1 *2 *3 *1 *4)
- (-12 (-4 *1 (-776)) (-5 *3 (-770)) (-5 *4 (-110)) (-5 *2 (-1186)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 (-597 *2))) (-5 *4 (-597 *5))
- (-4 *5 (-37 (-388 (-530)))) (-4 *2 (-1172 *5))
- (-5 *1 (-1174 *5 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-867)))))
+ (|partial| -12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797))
+ (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-797)) (-4 *5 (-573 *2)) (-5 *2 (-360))
+ (-5 *1 (-735 *5)))))
(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))))
-(((*1 *2 *3 *4 *3 *3)
- (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5))
- (-4 *5 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *5 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-597 *7))
- (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
- (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7))
- (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
- (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-597 (-276 *8))) (-5 *4 (-597 (-112))) (-5 *5 (-276 *8))
- (-5 *6 (-597 *8)) (-4 *8 (-411 *7))
- (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *7 *8))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112))) (-5 *5 (-276 *7))
- (-4 *7 (-411 *6)) (-4 *6 (-13 (-795) (-522) (-572 (-506))))
- (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-112))) (-5 *6 (-597 (-276 *8)))
- (-4 *8 (-411 *7)) (-5 *5 (-276 *8))
- (-4 *7 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *7 *8))))
- ((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6))
- (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *6 *5))))
- ((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6))
- (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *6 *3))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6))
- (-4 *6 (-13 (-795) (-522) (-572 (-506)))) (-5 *2 (-51))
- (-5 *1 (-298 *6 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-597 *3))
- (-4 *3 (-411 *7)) (-4 *7 (-13 (-795) (-522) (-572 (-506))))
- (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *2 (-597 (-159 *4)))
- (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *1 *1 *1) (-4 *1 (-710))))
-(((*1 *2 *3 *2)
- (-12 (-5 *1 (-628 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(((*1 *1 *2 *3 *4)
- (-12
- (-5 *3
- (-597
- (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *2))
- (|:| |logand| (-1095 *2)))))
- (-5 *4 (-597 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
- (-4 *2 (-344)) (-5 *1 (-547 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *2 (-531)) (-4 *1 (-604 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-604 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1098 (-1098 *4))))
+ (-5 *1 (-1137 *4)) (-5 *3 (-1098 (-1098 *4))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-4 *6 (-1160 *9)) (-4 *7 (-743)) (-4 *8 (-797)) (-4 *9 (-289))
+ (-4 *10 (-892 *9 *7 *8))
(-5 *2
- (-3 (|:| |%expansion| (-294 *5 *3 *6 *7))
- (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
- (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-14 *6 (-1099)) (-14 *7 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
- (-5 *1 (-582 *5 *6)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-311)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-2 (|:| |deter| (-598 (-1098 *10)))
+ (|:| |dterm|
+ (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| *10)))))
+ (|:| |nfacts| (-598 *6)) (|:| |nlead| (-598 *10))))
+ (-5 *1 (-728 *6 *7 *8 *9 *10)) (-5 *3 (-1098 *10)) (-5 *4 (-598 *6))
+ (-5 *5 (-598 *10)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900)))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1) (-5 *1 (-804)))
+ (|partial| -12 (-5 *3 (-895 (-159 *4))) (-4 *4 (-162))
+ (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-895 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-162))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *1 (-628 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
+ (|partial| -12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 (-360)))
+ (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523))
+ (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-895 (-159 *4)))) (-4 *4 (-523))
+ (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-388 (-895 (-159 *5)))) (-5 *4 (-864))
+ (-4 *5 (-523)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360)))
+ (-5 *1 (-735 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797))
+ (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360)))
+ (-5 *1 (-735 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-523)) (-4 *4 (-797))
+ (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360)))
+ (-5 *1 (-735 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-797) (-523))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-1106)) (-5 *1 (-1105)))))
+(((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-598 (-112))))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *5 (-571 *4)) (-5 *6 (-1102))
+ (-4 *4 (-13 (-411 *7) (-27) (-1124)))
+ (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4))))
+ (-5 *1 (-533 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *2 (-975)) (-5 *1 (-700))))
+ ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-59 COEFFN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-85 BDYVAL))))
+ (-5 *8 (-369)) (-5 *2 (-975)) (-5 *1 (-700)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-549 *2)) (-4 *2 (-516)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-797) (-523)))
+ (-5 *2 (-806)) (-5 *1 (-31 *4 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-964 (-788 (-530))))
- (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *4)))) (-4 *4 (-984))
- (-5 *1 (-555 *4)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1157 *4))
- (-5 *1 (-725 *3 *4 *5 *2 *6)) (-4 *2 (-1157 *5)) (-14 *6 (-862))))
+ (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
+ (-5 *2
+ (-2 (|:| -2968 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |poly| *6) (|:| -4216 (-388 *6))
+ (|:| |special| (-388 *6))))
+ (-5 *1 (-678 *5 *6)) (-5 *3 (-388 *6))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-839 *3 *4))
+ (-4 *3 (-1160 *4))))
+ ((*1 *2 *3 *4 *4)
+ (|partial| -12 (-5 *4 (-721)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -3144 *3) (|:| -3157 *3))) (-5 *1 (-839 *3 *5))
+ (-4 *3 (-1160 *5))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110))
+ (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1003 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110))
+ (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1003 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4)
+ (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110))
+ (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1072 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
+ (-12 (-5 *2 (-598 *9)) (-5 *3 (-598 *8)) (-5 *4 (-110))
+ (-4 *8 (-1000 *5 *6 *7)) (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-886 (-208))) (-5 *4 (-817)) (-5 *2 (-1189))
+ (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-922 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-886 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-886 *3)) (-4 *3 (-986)) (-4 *1 (-1063 *3))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1063 *3)) (-4 *3 (-986))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
- ((*1 *1 *1) (-12 (-4 *1 (-1198 *2)) (-4 *2 (-344)) (-4 *2 (-349)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
- (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-388 *5))) (-5 *1 (-955 *4 *5))
- (-5 *3 (-388 *5)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1135))
- (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))))
-(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-273)))
- ((*1 *1) (-5 *1 (-804)))
- ((*1 *1)
- (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741))
- (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3))))
- ((*1 *1) (-5 *1 (-1014)))
- ((*1 *1)
- (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33)))))
- ((*1 *1) (-5 *1 (-1102))) ((*1 *1) (-5 *1 (-1103))))
+ (-12 (-5 *2 (-598 *3)) (-4 *1 (-1063 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-886 *3)) (-4 *1 (-1063 *3)) (-4 *3 (-986))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)) (-5 *3 (-208)))))
+(((*1 *2 *2)
+ (-12
+ (-5 *2
+ (-929 (-388 (-531)) (-808 *3) (-223 *4 (-721))
+ (-230 *3 (-388 (-531)))))
+ (-14 *3 (-598 (-1102))) (-14 *4 (-721)) (-5 *1 (-928 *3 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47))))))
+(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
+ (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531))
+ (-5 *2 (-975)) (-5 *1 (-707)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 (-639 *4))) (-4 *4 (-162))
+ (-5 *2 (-1184 (-639 (-895 *4)))) (-5 *1 (-173 *4)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-578 *4 *2)) (-4 *2 (-13 (-1124) (-902) (-29 *4))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1102)) (-5 *1 (-311)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1181 (-719))) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-597 (-570 *6))) (-5 *4 (-1099)) (-5 *2 (-570 *6))
- (-4 *6 (-411 *5)) (-4 *5 (-795)) (-5 *1 (-539 *5 *6)))))
-(((*1 *1) (-5 *1 (-1183))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-570 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4)))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128))
+ (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| -2005 *3) (|:| -4007 *4))))
+ (-5 *1 (-686 *3 *4)) (-4 *3 (-986)) (-4 *4 (-677))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742))
+ (-5 *2 (-1083 (-2 (|:| |k| *4) (|:| |c| *3)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
- (-5 *2 (-597 (-597 (-884 *3))))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110)) (-4 *4 (-984))
- (-4 *1 (-1060 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 (-884 *3)))) (-4 *3 (-984))
- (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-110))
- (-4 *1 (-1060 *4)) (-4 *4 (-984))))
- ((*1 *1 *1 *2 *3 *3)
- (-12 (-5 *2 (-597 (-597 (-884 *4)))) (-5 *3 (-110))
- (-4 *1 (-1060 *4)) (-4 *4 (-984))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-597 (-161)))
- (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984))))
- ((*1 *1 *1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-597 (-884 *5)))) (-5 *3 (-597 (-161)))
- (-5 *4 (-161)) (-4 *1 (-1060 *5)) (-4 *5 (-984)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5)) (-4 *5 (-344))
- (-4 *5 (-522)) (-5 *2 (-1181 *5)) (-5 *1 (-592 *5 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 *5))
- (-3676 (-4 *5 (-344))) (-4 *5 (-522)) (-5 *2 (-1181 (-388 *5)))
- (-5 *1 (-592 *5 *4)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-719))))
- ((*1 *1 *1) (-4 *1 (-383))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815))
- (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-1182))
- (-5 *1 (-1185))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245)))
- (-5 *2 (-1182)) (-5 *1 (-1185)))))
+ (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2 (-1 *5 *5)) (-5 *1 (-754 *4 *5))
+ (-4 *5 (-13 (-29 *4) (-1124) (-902))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-159 (-208))) (-5 *4 (-531)) (-5 *2 (-975))
+ (-5 *1 (-709)))))
+(((*1 *2 *1) (-12 (-5 *2 (-774)) (-5 *1 (-775)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-753)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-886 *4)) (-4 *4 (-986)) (-5 *1 (-1091 *3 *4))
+ (-14 *3 (-864)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *3 (-1000 *6 *7 *8))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1006 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9))))
+ (-5 *5 (-110)) (-4 *8 (-1000 *6 *7 *4)) (-4 *9 (-1005 *6 *7 *4 *8))
+ (-4 *6 (-432)) (-4 *7 (-743)) (-4 *4 (-797))
+ (-5 *2 (-598 (-2 (|:| |val| *8) (|:| -2410 *9))))
+ (-5 *1 (-1006 *6 *7 *4 *8 *9)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-520)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
- (-5 *2
- (-2
- (|:| |%term|
- (-2 (|:| |%coef| (-1166 *4 *5 *6))
- (|:| |%expon| (-300 *4 *5 *6))
- (|:| |%expTerms|
- (-597 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4))))))
- (|:| |%type| (-1082))))
- (-5 *1 (-1167 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3)))
- (-14 *5 (-1099)) (-14 *6 *4))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515)))))
-(((*1 *1 *2 *3)
- (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3))
- (-4 *3 (-984))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-767 *4)) (-4 *4 (-795)) (-4 *1 (-1196 *4 *3))
- (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110))
- (-5 *2 (-973)) (-5 *1 (-694)))))
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-230 *4 *5))
- (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef1| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -2204 *1) (|:| |coef1| *1)))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
+ (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-176))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-282))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1083 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-287)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-107)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *1 (-214 *4))
+ (-4 *4 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-721))))
+ ((*1 *1 *1) (-4 *1 (-216)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))
+ (-4 *4 (-1160 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
- ((*1 *1 *1) (-4 *1 (-793)))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)) (-4 *2 (-993))))
- ((*1 *1 *1) (-4 *1 (-993))) ((*1 *1 *1) (-4 *1 (-1063))))
+ (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3))
+ (-4 *3 (-1160 *2))))
+ ((*1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 (-721))) (-4 *1 (-843 *4))
+ (-4 *4 (-1030))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-843 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *1 (-843 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1030)))))
+(((*1 *1 *2) (-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-644))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-651))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-649))) (-5 *1 (-311))))
+ ((*1 *1) (-5 *1 (-311))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-4 *4 (-986))
+ (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1160 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
(((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
- (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-797))
+ (-4 *4 (-743)) (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-531))) (-5 *1 (-1048))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1138))
+ (-4 *5 (-354 *4)) (-4 *2 (-354 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *6 *2 *7)) (-4 *6 (-986))
+ (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-786)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-785))))
- ((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785))))
+ (-12 (-5 *3 (-788)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-787))))
+ ((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-975)) (-5 *1 (-787))))
((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-597 (-360))) (-5 *5 (-597 (-788 (-360))))
- (-5 *6 (-597 (-297 (-360)))) (-5 *3 (-297 (-360))) (-5 *2 (-973))
- (-5 *1 (-785))))
+ (-12 (-5 *4 (-598 (-360))) (-5 *5 (-598 (-790 (-360))))
+ (-5 *6 (-598 (-297 (-360)))) (-5 *3 (-297 (-360))) (-5 *2 (-975))
+ (-5 *1 (-787))))
((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-360)))
- (-5 *5 (-597 (-788 (-360)))) (-5 *2 (-973)) (-5 *1 (-785))))
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-360)))
+ (-5 *5 (-598 (-790 (-360)))) (-5 *2 (-975)) (-5 *1 (-787))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-360))) (-5 *2 (-975))
+ (-5 *1 (-787))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-360))) (-5 *2 (-973))
- (-5 *1 (-785))))
+ (-12 (-5 *3 (-598 (-297 (-360)))) (-5 *4 (-598 (-360)))
+ (-5 *2 (-975)) (-5 *1 (-787)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870)))))
+(((*1 *1 *2 *3)
+ (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1030))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360)))
- (-5 *2 (-973)) (-5 *1 (-785)))))
+ (-12 (-5 *4 (-531)) (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3))
+ (-4 *3 (-986))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-769 *4)) (-4 *4 (-797)) (-4 *1 (-1199 *4 *3))
+ (-4 *3 (-986)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-399 *3)) (-4 *3 (-523)) (-5 *1 (-400 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1160 *5))
+ (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
+ (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-110))
+ (-5 *1 (-854 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6))
+ (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4)))
+ (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-110))
+ (-5 *1 (-855 *4 *5 *6)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-797)))
+ (-4 *2 (-13 (-411 *4) (-943) (-1124))) (-5 *1 (-560 *4 *2 *3))
+ (-4 *3 (-13 (-411 (-159 *4)) (-943) (-1124))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1055 *4 *3 *5))) (-4 *4 (-37 (-388 (-531))))
+ (-4 *4 (-986)) (-4 *3 (-797)) (-5 *1 (-1055 *4 *3 *5))
+ (-4 *5 (-892 *4 (-503 *3) *3))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1 (-1133 *4))) (-5 *3 (-1102)) (-5 *1 (-1133 *4))
+ (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-864))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-832 *4 *5)) (-5 *3 (-832 *4 *6)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-619 *5)) (-5 *1 (-828 *4 *5 *6)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-862)) (-4 *1 (-221 *3 *4)) (-4 *4 (-984))
- (-4 *4 (-1135))))
- ((*1 *1 *2)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-4 *5 (-221 (-2267 *3) (-719)))
- (-14 *6
- (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *5))
- (-2 (|:| -1986 *2) (|:| -3194 *5))))
- (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-795))
- (-4 *7 (-890 *4 *5 (-806 *3)))))
- ((*1 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))))
+ (-12 (-5 *2 (-639 *4)) (-4 *4 (-986)) (-5 *1 (-1069 *3 *4))
+ (-14 *3 (-721)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984))
- (-4 *6 (-1157 *5)) (-5 *2 (-1095 (-1095 *7)))
- (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1157 *6)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
-(((*1 *1) (-5 *1 (-418))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-795)) (-5 *1 (-870 *4 *2))
- (-4 *2 (-411 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-1082)) (-5 *2 (-297 (-530)))
- (-5 *1 (-871)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))))
+ (-12 (-5 *3 (-598 *6)) (-5 *4 (-1102)) (-4 *6 (-411 *5))
+ (-4 *5 (-797)) (-5 *2 (-598 (-571 *6))) (-5 *1 (-540 *5 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-901 *3)) (-5 *1 (-1090 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
+ (|partial| -12 (-5 *4 (-598 *11)) (-5 *5 (-598 (-1098 *9)))
+ (-5 *6 (-598 *9)) (-5 *7 (-598 *12)) (-5 *8 (-598 (-721)))
+ (-4 *11 (-797)) (-4 *9 (-289)) (-4 *12 (-892 *9 *10 *11))
+ (-4 *10 (-743)) (-5 *2 (-598 (-1098 *12)))
+ (-5 *1 (-658 *10 *11 *9 *12)) (-5 *3 (-1098 *12)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-1184 (-297 (-360))))
+ (-5 *1 (-287)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-986)) (-5 *1 (-837 *2 *3)) (-4 *2 (-1160 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-432)) (-4 *4 (-770))
+ (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-73 FCN JACOBF JACEPS))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-74 G JACOBG JACGEP))))
+ (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-459)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-817))
+ (-5 *5 (-864)) (-5 *6 (-598 (-245))) (-5 *2 (-1185))
+ (-5 *1 (-1188))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-598 (-245)))
+ (-5 *2 (-1185)) (-5 *1 (-1188)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-57 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-57 *3)))))
+(((*1 *1) (-5 *1 (-773))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
- (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
-(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
+ (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-531)) (-4 *5 (-344))
+ (-4 *5 (-986)) (-5 *2 (-110)) (-5 *1 (-969 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-639 *4))) (-4 *4 (-344)) (-4 *4 (-986))
+ (-5 *2 (-110)) (-5 *1 (-969 *4)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
+ (-12 (-5 *4 (-598 *7)) (-5 *5 (-598 (-598 *8))) (-4 *7 (-797))
+ (-4 *8 (-289)) (-4 *6 (-743)) (-4 *9 (-892 *8 *6 *7))
(-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1104)) (-5 *1 (-48)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
- (-4 *2 (-1157 *4)))))
+ (-2 (|:| |unitPart| *9)
+ (|:| |suPart|
+ (-598 (-2 (|:| -2552 (-1098 *9)) (|:| -1790 (-531)))))))
+ (-5 *1 (-693 *6 *7 *8 *9)) (-5 *3 (-1098 *9)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-598 (-598 (-531)))) (-5 *1 (-913))
+ (-5 *3 (-598 (-531))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-986))
+ (-5 *1 (-800 *5 *2)) (-4 *2 (-799 *5)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-112))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-797)) (-5 *1 (-872 *4 *2))
+ (-4 *2 (-411 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-1085)) (-5 *2 (-297 (-531)))
+ (-5 *1 (-873)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-159 (-208))) (-5 *5 (-531))
+ (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085))
+ (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-795)) (-4 *3 (-1027)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278))))
+ (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330))
+ (-4 *2
+ (-13 (-383)
+ (-10 -7 (-15 -2265 (*2 *4)) (-15 -2211 ((-864) *2))
+ (-15 -3523 ((-1184 *2) (-864))) (-15 -2730 (*2 *2)))))
+ (-5 *1 (-337 *2 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-48)))))
+(((*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649))))
+ ((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-797))) (-5 *2 (-159 *5))
+ (-5 *1 (-560 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-943) (-1124)))
+ (-4 *3 (-13 (-411 (-159 *4)) (-943) (-1124))))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-579 *4 *5))
+ (-5 *3
+ (-1 (-2 (|:| |ans| *4) (|:| -3157 *4) (|:| |sol?| (-110)))
+ (-531) *4))
+ (-4 *4 (-344)) (-4 *5 (-1160 *4)) (-5 *1 (-541 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
+ ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2))))
+ ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-293)) (-5 *1 (-278))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-278))))
+ (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-293)) (-5 *1 (-278))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-278))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1082))) (-5 *3 (-1082)) (-5 *2 (-293))
+ (-12 (-5 *4 (-598 (-1085))) (-5 *3 (-1085)) (-5 *2 (-293))
(-5 *1 (-278)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-135 *2 *4 *3))
- (-4 *3 (-354 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-481 *2 *4 *5 *3))
- (-4 *5 (-354 *2)) (-4 *3 (-354 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *4)) (-4 *4 (-932 *2)) (-4 *2 (-522))
- (-5 *1 (-641 *2 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-932 *2)) (-4 *2 (-522)) (-5 *1 (-1150 *2 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1099)))))
-(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
- ((*1 *1 *1) (-4 *1 (-1068))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-1192 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-106))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-112))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-705)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1120))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-531)) (-5 *1 (-224))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-531)) (-5 *1 (-224)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-112))))
((*1 *2 *1)
- (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-1027))))
- ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-419 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-462))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-906))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1005 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-5 *1 (-1099))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
- (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
- (-15 -1928 ((-1051 *3 (-570 $)) $))
- (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1) (-5 *1 (-1014))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
-(((*1 *1) (-5 *1 (-448))))
+ (-12 (-4 *1 (-345 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-1030))))
+ ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-419 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-462))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-908))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1007 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-5 *1 (-1102))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947))))
+ ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947)))))
+(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
+ (-12 (-5 *2 (-531))
+ (-5 *3
+ (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-721)) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-4 *6 (-743)) (-4 *4 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-797))
+ (-5 *1 (-429 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-797) (-523))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-637 *2)) (-4 *4 (-1157 *2))
- (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1082)) (-5 *1 (-51)))))
+ (-12 (-5 *2 (-531)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *1 *1) (-5 *1 (-110))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2))
- (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4269) (-6 -4270))))))
+ (|partial| -12 (-5 *2 (-388 (-895 *4))) (-5 *3 (-1102))
+ (-4 *4 (-13 (-523) (-977 (-531)) (-140))) (-5 *1 (-537 *4)))))
+(((*1 *2)
+ (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))
((*1 *2 *2)
- (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2))
- (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4269) (-6 -4270)))))))
-(((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-984))
- (-5 *1 (-798 *5 *2)) (-4 *2 (-797 *5)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-297 (-208))))
- (-5 *2
- (-2 (|:| |additions| (-530)) (|:| |multiplications| (-530))
- (|:| |exponentiations| (-530)) (|:| |functionCalls| (-530))))
- (-5 *1 (-287)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
- (-4 *4 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-1114)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1071 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-148))))
- ((*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-815))))
- ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-927 *3 *4 *5 *2))
- (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-388 (-893 (-530))))) (-5 *4 (-597 (-1099)))
- (-5 *2 (-597 (-597 *5))) (-5 *1 (-361 *5))
- (-4 *5 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-361 *4))
- (-4 *4 (-13 (-793) (-344))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
-(((*1 *2 *2 *2 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-570 *2))
- (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1099)))
- (-4 *2 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *1 (-532 *5 *2 *6)) (-4 *6 (-1027)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-597 (-730 *3))) (-5 *1 (-730 *3)) (-4 *3 (-522))
- (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-3 (-388 (-893 *6)) (-1089 (-1099) (-893 *6))))
- (-5 *5 (-719)) (-4 *6 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *6)))))
- (-5 *1 (-274 *6)) (-5 *4 (-637 (-388 (-893 *6))))))
- ((*1 *2 *3 *4)
+ (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-797))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-531)) (-4 *1 (-264 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-264 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2)
(-12
- (-5 *3
- (-2 (|:| |eigval| (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5))))
- (|:| |eigmult| (-719)) (|:| |eigvec| (-597 *4))))
- (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5)))))
- (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
-(((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
- (-5 *3 (-597 (-530)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
- (-5 *3 (-597 (-530))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-1181 *3))
- (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-311)))))
-(((*1 *1 *1) (-5 *1 (-110))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)) (-5 *3 (-1082)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
- (-4 *4 (-330)) (-5 *2 (-719)) (-5 *1 (-327 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-332 *3 *4)) (-14 *3 (-862))
- (-14 *4 (-862))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330))
- (-14 *4
- (-3 (-1095 *3)
- (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330))
- (-14 *4 (-862)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-705)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *1 *2 *3 *1 *3)
- (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
- (-4 *3 (-1027)))))
-(((*1 *2 *3 *4 *5 *6 *7 *6)
- (|partial| -12
- (-5 *5
- (-2 (|:| |contp| *3)
- (|:| -3721 (-597 (-2 (|:| |irr| *10) (|:| -2075 (-530)))))))
- (-5 *6 (-597 *3)) (-5 *7 (-597 *8)) (-4 *8 (-795)) (-4 *3 (-289))
- (-4 *10 (-890 *3 *9 *8)) (-4 *9 (-741))
- (-5 *2
- (-2 (|:| |polfac| (-597 *10)) (|:| |correct| *3)
- (|:| |corrfact| (-597 (-1095 *3)))))
- (-5 *1 (-580 *8 *9 *3 *10)) (-5 *4 (-597 (-1095 *3))))))
-(((*1 *2 *1)
+ (-5 *2
+ (-2
+ (|:| -3033
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -1798
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1083 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2368
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))))
+ (-5 *1 (-526))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-645 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-597
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
- (|:| |xpnt| (-530)))))
- (-5 *1 (-399 *3)) (-4 *3 (-522))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-719)) (-4 *3 (-330)) (-4 *5 (-1157 *3))
- (-5 *2 (-597 (-1095 *3))) (-5 *1 (-476 *3 *5 *6))
- (-4 *6 (-1157 *5)))))
-(((*1 *2 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-861)) (-5 *2 (-2 (|:| -2065 (-597 *1)) (|:| -1974 *1)))
- (-5 *3 (-597 *1)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *3 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
- (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
+ (-2
+ (|:| -3033
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (|:| -1798
+ (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
+ (|:| |expense| (-360)) (|:| |accuracy| (-360))
+ (|:| |intermediateResults| (-360))))))
+ (-5 *1 (-753))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-868)) (-5 *1 (-866 *3))
- (-4 *3 (-572 (-506)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-868))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-705)))))
+ (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
+ (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *2 (-892 *4 *6 *5)) (-5 *1 (-867 *4 *5 *6 *2))
+ (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)))))
+(((*1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1151 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 (-598 *7) *7 (-1098 *7))) (-5 *5 (-1 (-399 *7) *7))
+ (-4 *7 (-1160 *6)) (-4 *6 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-5 *2 (-598 (-2 (|:| |frac| (-388 *7)) (|:| -2723 *3))))
+ (-5 *1 (-759 *6 *7 *3 *8)) (-4 *3 (-609 *7))
+ (-4 *8 (-609 (-388 *7)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
(-5 *2
- (-2 (|:| -3509 (-394 *4 (-388 *4) *5 *6)) (|:| |principalPart| *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
+ (-598 (-2 (|:| |frac| (-388 *6)) (|:| -2723 (-607 *6 (-388 *6))))))
+ (-5 *1 (-762 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-639 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-639 *4)) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))))
+(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-1 (-548 *3) *3 (-1102)))
+ (-5 *6
+ (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
+ (-1102)))
+ (-4 *3 (-266)) (-4 *3 (-584)) (-4 *3 (-977 *4)) (-4 *3 (-411 *7))
+ (-5 *4 (-1102)) (-4 *7 (-573 (-835 (-531)))) (-4 *7 (-432))
+ (-4 *7 (-829 (-531))) (-4 *7 (-797)) (-5 *2 (-548 *3))
+ (-5 *1 (-540 *7 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1102)) (-5 *2 (-1 (-1098 (-895 *4)) (-895 *4)))
+ (-5 *1 (-1192 *4)) (-4 *4 (-344)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
(-5 *2
- (-2 (|:| |poly| *6) (|:| -4182 (-388 *6))
- (|:| |special| (-388 *6))))
- (-5 *1 (-676 *5 *6)) (-5 *3 (-388 *6))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-837 *3 *4))
- (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4 *4)
- (|partial| -12 (-5 *4 (-719)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| -3628 *3) (|:| -3638 *3))) (-5 *1 (-837 *3 *5))
- (-4 *3 (-1157 *5))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
- (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
- (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
- (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *2 *4 *4 *4 *4 *4)
- (-12 (-5 *2 (-597 *9)) (-5 *3 (-597 *8)) (-5 *4 (-110))
- (-4 *8 (-998 *5 *6 *7)) (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
+(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-707)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))))
(((*1 *1 *1 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
+ (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23))
(-14 *4 *3)))
((*1 *1 *2 *3 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
+ (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23))
(-14 *4 *3)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-984)) (-4 *2 (-1027)))))
-(((*1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-767 *3)) (-4 *3 (-795)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-627 *2)) (-4 *2 (-986)) (-4 *2 (-1030)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-228 *3)))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-707)))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *1 *1) (-5 *1 (-208)))
+ ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1) (-4 *1 (-1066))) ((*1 *1 *1 *1) (-4 *1 (-1066))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+ (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *3 (-598 (-531)))
+ (-5 *1 (-826)))))
(((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| -4145 (-112)) (|:| |arg| (-597 (-833 *3)))))
- (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-833 *4)))
- (-5 *1 (-833 *4)) (-4 *4 (-1027)))))
+ (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-598 (-598 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-598 (-598 *5)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-598 *3))) (-5 *1 (-1111 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *3 (-531)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *1 (-638 *4 *5 *6 *2))
+ (-4 *2 (-637 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098 *5)) (-4 *5 (-432)) (-5 *2 (-598 *6))
+ (-5 *1 (-509 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-895 *5)) (-4 *5 (-432)) (-5 *2 (-598 *6))
+ (-5 *1 (-509 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795))))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1175 *4)) (-5 *1 (-1177 *4 *2))
+ (-4 *4 (-37 (-388 (-531)))))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-531))) (-5 *1 (-287)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1025 (-208)))
+ (-5 *5 (-110)) (-5 *2 (-1186)) (-5 *1 (-239)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1139))
- (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-2 (|:| |num| (-637 *5)) (|:| |den| *5))))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3)))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1175 *4))
+ (-4 *4 (-37 (-388 (-531)))) (-5 *2 (-1 (-1083 *4) (-1083 *4)))
+ (-5 *1 (-1177 *4 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
- (-5 *2 (-597 *4)) (-5 *1 (-1041 *4 *5)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-388 (-1095 (-297 *3)))) (-4 *3 (-13 (-522) (-795)))
- (-5 *1 (-1056 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110))
+ (-5 *1 (-792 *4 *5)) (-14 *4 (-721)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 (-1184 *4))) (-4 *4 (-986)) (-5 *2 (-639 *4))
+ (-5 *1 (-969 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))
- (-4 *2 (-432))))
+ (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3))
+ (-4 *3 (-910)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-175)) (-5 *3 (-531))))
+ ((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-162))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-1157 (-530))) (-5 *2 (-597 (-530)))
- (-5 *1 (-465 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *3 (-432)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1103)))))
+ (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))))
+(((*1 *2 *3 *4 *4 *5 *3 *6)
+ (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3)) (-5 *6 (-1098 *3))
+ (-4 *3 (-13 (-411 *7) (-27) (-1124)))
+ (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1030))))
+ ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
+ (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3))
+ (-5 *6 (-388 (-1098 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1124)))
+ (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-527 *7 *3 *8)) (-4 *8 (-1030)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-784))
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *3 *5)
+ (-12 (-5 *4 (-571 *3)) (-5 *5 (-1098 *3))
+ (-4 *3 (-13 (-411 *6) (-27) (-1124)))
+ (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2 (-548 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030))))
+ ((*1 *2 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *4 (-571 *3)) (-5 *5 (-388 (-1098 *3)))
+ (-4 *3 (-13 (-411 *6) (-27) (-1124)))
+ (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2 (-548 *3)) (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| -2248 *4))) (-5 *1 (-912 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))
+ (-5 *2 (-975)) (-5 *1 (-704)))))
+(((*1 *1 *1) (-4 *1 (-516))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *1 (-111 *3)) (-4 *3 (-797)) (-4 *3 (-1030)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-797)) (-5 *1 (-1110 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-531)) (-4 *4 (-1160 (-388 *3))) (-5 *2 (-864))
+ (-5 *1 (-856 *4 *5)) (-4 *5 (-1160 (-388 *4))))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-4 *6 (-432))
+ (-5 *2 (-598 (-598 *7))) (-5 *1 (-509 *6 *7 *5)) (-4 *7 (-344))
+ (-4 *5 (-13 (-344) (-795))))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2))
+ (-4 *3 (-13 (-797) (-523))))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-721)) (-4 *5 (-523))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *1 (-737)) (-5 *2 (-975))
(-5 *3
- (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (-5 *2 (-973))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-784))
+ (-2 (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))))
+ ((*1 *2 *3 *2)
+ (-12 (-4 *1 (-737)) (-5 *2 (-975))
(-5 *3
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
- (-5 *2 (-973)))))
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208)))))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3))))
+ ((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-523)) (-4 *4 (-797))
+ (-5 *1 (-540 *4 *2)) (-4 *2 (-411 *4)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-27) (-411 *4)))
+ (-4 *4 (-13 (-797) (-523) (-977 (-531))))
+ (-4 *7 (-1160 (-388 *6))) (-5 *1 (-519 *4 *5 *6 *7 *2))
+ (-4 *2 (-323 *5 *6 *7)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-910 *4 *3))
- (-4 *3 (-1157 *4)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1030)) (-5 *2 (-110)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *3 (-841 *5)) (-5 *2 (-637 *3))
- (-5 *1 (-640 *5 *3 *6 *4)) (-4 *6 (-354 *3))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
+ (-12 (-5 *3 (-388 (-531))) (-5 *4 (-531)) (-5 *2 (-51))
+ (-5 *1 (-946)))))
+(((*1 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-516)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-245))))
+ ((*1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523)))))
+(((*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| -2104 (-388 *6)) (|:| |coeff| (-388 *6))))
- (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1099))
- (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3))) (-5 *1 (-523 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-522))
- (-4 *3 (-1135)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4)))
+ (-5 *2 (-2 (|:| |num| (-1184 *4)) (|:| |den| *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-639 *5))) (-4 *5 (-289)) (-4 *5 (-986))
+ (-5 *2 (-1184 (-1184 *5))) (-5 *1 (-969 *5)) (-5 *4 (-1184 *5)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-128))
+ (-4 *3 (-742)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-208)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-297 *5)))
+ (-5 *1 (-1058 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102)))
+ (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-598 (-297 *5))))
+ (-5 *1 (-1058 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-797))
+ (-5 *2
+ (-2 (|:| |f1| (-598 *4)) (|:| |f2| (-598 (-598 (-598 *4))))
+ (|:| |f3| (-598 (-598 *4))) (|:| |f4| (-598 (-598 (-598 *4))))))
+ (-5 *1 (-1110 *4)) (-5 *3 (-598 (-598 (-598 *4)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-5 *2 (-1082)))))
+ (-12 (-5 *2 (-1032 *3)) (-5 *1 (-848 *3)) (-4 *3 (-349))
+ (-4 *3 (-1030)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-189)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *5 (-349))
+ (-5 *2 (-721)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
- (-5 *2 (-388 (-530))) (-5 *1 (-958 *4)) (-4 *4 (-1157 (-530))))))
+ (-12 (-5 *3 (-1098 *6)) (-4 *6 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-1098 *7)) (-5 *1 (-302 *4 *5 *6 *7))
+ (-4 *7 (-892 *6 *4 *5)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-1083 *3))) (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-698)))))
(((*1 *2 *3)
- (-12 (-4 *2 (-1157 *4)) (-5 *1 (-757 *4 *2 *3 *5))
- (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
- (-4 *5 (-607 (-388 *2))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-415))
+ (|partial| -12 (-5 *2 (-531)) (-5 *1 (-536 *3)) (-4 *3 (-977 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531))) (-5 *2 (-110))
+ (-5 *1 (-1209 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743))
(-5 *2
- (-597
- (-3 (|:| -3907 (-1099))
- (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530)))))))))
- (-5 *1 (-1103)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
+ (-598
+ (-2 (|:| |eqzro| (-598 *7)) (|:| |neqzro| (-598 *7))
+ (|:| |wcond| (-598 (-895 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *4))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *4))))))))))
+ (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))))
+(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
+ (-12 (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-639 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))))
+ (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-4 *2 (-1157 *5))
- (-5 *1 (-1175 *5 *2 *6 *3)) (-4 *6 (-607 *2)) (-4 *3 (-1172 *5)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |k| (-1099)) (|:| |c| (-1201 *3)))))
- (-5 *1 (-1201 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |k| *3) (|:| |c| (-1203 *3 *4)))))
- (-5 *1 (-1203 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1046)) (-5 *1 (-107))))
- ((*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1027))))
- ((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
+ (-12 (-5 *4 (-598 *5)) (-4 *5 (-1160 *3)) (-4 *3 (-289))
+ (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-598 (-208)))
+ (-5 *1 (-448)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
- (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
- (-5 *1 (-1098)))))
-(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-688 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-349)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
- (-12 (-5 *4 (-597 (-110))) (-5 *5 (-637 (-208)))
- (-5 *6 (-637 (-530))) (-5 *7 (-208)) (-5 *3 (-530)) (-5 *2 (-973))
- (-5 *1 (-703)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 *4)) (-4 *4 (-323 *5 *6 *7))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
- (-5 *1 (-754 *5 *6 *7 *4)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5
- (-1 (-2 (|:| |ans| *6) (|:| -3638 *6) (|:| |sol?| (-110))) (-530)
- *6))
- (-4 *6 (-344)) (-4 *7 (-1157 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
- (-2 (|:| -2104 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360)))
+ (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101))))
+ (-5 *1 (-1101)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *4 (-344)) (-5 *1 (-839 *2 *4))
+ (-4 *2 (-1160 *4)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2109 *3)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2109 *3)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-986)) (-4 *4 (-162))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))
+ (-4 *3 (-162)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102))
+ (-14 *4 *2))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1101 (-388 (-530)))) (-5 *2 (-388 (-530)))
- (-5 *1 (-174)))))
+ (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5))
+ (-5 *1 (-930 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5))
+ (-5 *1 (-1037 *3 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
+ ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5))
(-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-13 (-793) (-344))) (-5 *2 (-110)) (-5 *1 (-994 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-64 FUNCT1))))
- (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
- ((*1 *2 *3 *1 *4)
- (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1129 *5 *6 *7 *3))
- (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795)) (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-110)))))
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4))))
+ (-5 *1 (-1053 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-1148 (-530))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-522)) (-5 *1 (-910 *4 *2))
- (-4 *2 (-1157 *4)))))
+ (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2))))
+ (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1160 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1160 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-530) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1013 *2)))))
+ (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-721)))
+ (-5 *1 (-510 *3 *2 *4 *5)) (-4 *2 (-1160 *3)))))
+(((*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1030)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-598 (-262))) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531))))
+ (-5 *2 (-2 (|:| -3267 *3) (|:| |nconst| *3))) (-5 *1 (-534 *5 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-399 *6)) (-4 *6 (-1160 *5))
+ (-4 *5 (-986)) (-5 *2 (-598 *6)) (-5 *1 (-424 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-597 *3))))
- ((*1 *2 *1)
- (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
- (-5 *2 (-597 *3)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
+ (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3))
+ (-4 *3 (-910)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-1138)) (-5 *2 (-721)) (-5 *1 (-170 *4 *3))
+ (-4 *3 (-626 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-224))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-598 (-1085))) (-5 *3 (-531)) (-5 *4 (-1085))
+ (-5 *1 (-224))))
+ ((*1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
+ (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208)))
+ (-5 *1 (-647))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-208)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-647))))
+ ((*1 *2 *2 *3 *4 *4 *5)
+ (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-1 (-886 (-208)) (-208) (-208)))
+ (-5 *4 (-1025 (-208))) (-5 *5 (-598 (-245))) (-5 *1 (-647)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975))
+ (-5 *1 (-707)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-388 (-530))) (-4 *4 (-975 (-530)))
- (-4 *4 (-13 (-795) (-522))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4))))
+ (-12 (-5 *3 (-388 (-531))) (-4 *4 (-977 (-531)))
+ (-4 *4 (-13 (-797) (-523))) (-5 *1 (-31 *4 *2)) (-4 *2 (-411 *4))))
((*1 *1 *1 *1) (-5 *1 (-130)))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2))
(-4 *2 (-411 *3))))
((*1 *1 *1 *1) (-5 *1 (-208)))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-530))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-226)) (-5 *2 (-531))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-388 (-530))) (-4 *4 (-344)) (-4 *4 (-37 *3))
- (-4 *5 (-1172 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1143 *4 *5))))
+ (-12 (-5 *3 (-388 (-531))) (-4 *4 (-344)) (-4 *4 (-37 *3))
+ (-4 *5 (-1175 *4)) (-5 *1 (-260 *4 *5 *2)) (-4 *2 (-1146 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-388 (-530))) (-4 *4 (-344)) (-4 *4 (-37 *3))
- (-4 *5 (-1141 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1164 *4 *5))
- (-4 *6 (-923 *5))))
+ (-12 (-5 *3 (-388 (-531))) (-4 *4 (-344)) (-4 *4 (-37 *3))
+ (-4 *5 (-1144 *4)) (-5 *1 (-261 *4 *5 *2 *6)) (-4 *2 (-1167 *4 *5))
+ (-4 *6 (-925 *5))))
((*1 *1 *1 *1) (-4 *1 (-266)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-342 *2)) (-4 *2 (-1030))))
((*1 *1 *1 *1) (-5 *1 (-360)))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-367 *2)) (-4 *2 (-1030))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-411 *3)) (-4 *3 (-795)) (-4 *3 (-1039))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-530))))
+ (-12 (-5 *2 (-721)) (-4 *1 (-411 *3)) (-4 *3 (-797)) (-4 *3 (-1042))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-453)) (-5 *2 (-531))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
+ (-12 (-5 *2 (-721)) (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330))
- (-5 *1 (-500 *4))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-506))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-506))))
+ (-12 (-5 *2 (-1184 *4)) (-5 *3 (-531)) (-4 *4 (-330))
+ (-5 *1 (-501 *4))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-507))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-507))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *4 (-1027))
- (-5 *1 (-630 *4))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *4 (-1030))
+ (-5 *1 (-632 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3)) (-4 *3 (-344))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-12 (-5 *2 (-721)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984))
- (-5 *1 (-638 *4))))
+ (-12 (-5 *2 (-639 *4)) (-5 *3 (-721)) (-4 *4 (-986))
+ (-5 *1 (-640 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *3 (-984)) (-5 *1 (-663 *3 *4))
- (-4 *4 (-599 *3))))
+ (-12 (-5 *2 (-531)) (-4 *3 (-986)) (-5 *1 (-665 *3 *4))
+ (-4 *4 (-601 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-530)) (-4 *4 (-984))
- (-5 *1 (-663 *4 *5)) (-4 *5 (-599 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-675)) (-5 *2 (-719))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-782 *3)) (-4 *3 (-984))))
+ (-12 (-5 *2 (-112)) (-5 *3 (-531)) (-4 *4 (-986))
+ (-5 *1 (-665 *4 *5)) (-4 *5 (-601 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-677)) (-5 *2 (-721))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-784 *3)) (-4 *3 (-986))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-530)) (-5 *1 (-782 *4)) (-4 *4 (-984))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-388 (-530)))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1039)) (-5 *2 (-862))))
+ (-12 (-5 *2 (-112)) (-5 *3 (-531)) (-5 *1 (-784 *4)) (-4 *4 (-986))))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-388 (-531)))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1042)) (-5 *2 (-864))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-1049 *3 *4 *5 *6)) (-4 *4 (-984))
+ (-12 (-5 *2 (-531)) (-4 *1 (-1052 *3 *4 *5 *6)) (-4 *4 (-986))
(-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)) (-4 *4 (-344))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3)))))
-(((*1 *1) (-5 *1 (-137))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2 *3 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-516))))
+ ((*1 *1 *1) (-4 *1 (-995))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-847 *4))
+ (-4 *4 (-1030))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-507)))))
(((*1 *1 *1 *1) (-5 *1 (-127))))
-(((*1 *2 *3) (-12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-637 (-388 (-893 (-530)))))
- (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969))
- (-5 *3 (-297 (-530))))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1088 3 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *1 *2 *3)
- (-12
- (-5 *3
- (-597
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
- (|:| |xpnt| (-530)))))
- (-4 *2 (-522)) (-5 *1 (-399 *2))))
- ((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |contp| (-530))
- (|:| -3721 (-597 (-2 (|:| |irr| *4) (|:| -2075 (-530)))))))
- (-4 *4 (-1157 (-530))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-289))))
- ((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3))))
- (-5 *1 (-367 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -1324 (-719)) (|:| -3304 (-719))))
- (-5 *1 (-719))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *3 *3 *4 *5 *6)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
- (-5 *1 (-645)))))
-(((*1 *2)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-530)) (-5 *4 (-399 *2)) (-4 *2 (-890 *7 *5 *6))
- (-5 *1 (-691 *5 *6 *7 *2)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-289)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-597 (-1181 *4))) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522))
- (-5 *2 (-597 (-1181 *3))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (|has| *4 (-6 (-4271 "*")))
- (-4 *4 (-984)) (-5 *1 (-966 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862))
- (|has| *4 (-6 (-4271 "*"))) (-4 *4 (-984)) (-5 *1 (-966 *4)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-740)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
- (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-110)))))
-(((*1 *2 *1 *2)
- (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3220 (-597 *1))))
- (-4 *1 (-348 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-433 *3 *4 *5 *6))
- (|:| -3220 (-597 (-433 *3 *4 *5 *6)))))
- (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530))))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
-(((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-2 (|:| |totdeg| (-719)) (|:| -3109 *4))) (-5 *5 (-719))
- (-4 *4 (-890 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-5 *2
- (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-5 *1 (-429 *6 *7 *8 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530))))
- (-5 *1 (-174)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-399 *5)) (-4 *5 (-522))
- (-5 *2
- (-2 (|:| -3194 (-719)) (|:| -2065 *5) (|:| |radicand| (-597 *5))))
- (-5 *1 (-301 *5)) (-5 *4 (-719))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-941)) (-5 *2 (-530)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-706)))))
+ (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531)))
+ (-5 *2 (-1184 (-531))) (-5 *1 (-1209 *4)))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))))
+(((*1 *1) (-5 *1 (-1186))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1027))
- (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
- (-5 *2 (-597 (-1099))) (-5 *1 (-1006 *3 *4 *5))
- (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-13 (-344) (-795)))
- (-14 *4 (-1099)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360)))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-884 *4))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-771)) (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4)))
- (-5 *1 (-1107 *4)) (-4 *4 (-795)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
- (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
- (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
- (-4 *4 (-330)) (-5 *2 (-637 *4)) (-5 *1 (-327 *4)))))
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-797) (-523))))))
+(((*1 *1) (-5 *1 (-1185))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3)))))
+(((*1 *1) (-5 *1 (-273))))
+(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124)))))
+ ((*1 *1 *1 *1) (-4 *1 (-743))))
(((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *2 (-597 *3)) (-5 *1 (-917 *4 *5 *6 *3))
- (-4 *3 (-998 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-1139)) (-4 *5 (-1157 *3)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *3 *4)
(-12
(-5 *3
- (-597
- (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
- (|:| |wcond| (-597 (-893 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *5))))))))))
- (-5 *4 (-1082)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-890 *5 *7 *6))
- (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-530)))))
- (-5 *1 (-342 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-719)))))
- (-5 *1 (-367 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| -2611 *3) (|:| -3194 (-530)))))
- (-5 *1 (-399 *3)) (-4 *3 (-522))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 (-719)))))
- (-5 *1 (-767 *3)) (-4 *3 (-795)))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-4 *5 (-221 (-2267 *3) (-719)))
- (-14 *6
- (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *5))
- (-2 (|:| -1986 *2) (|:| -3194 *5))))
- (-4 *2 (-795)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7))
- (-4 *7 (-890 *4 *5 (-806 *3))))))
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-531)) (-5 *1 (-188)))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-137)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-523) (-977 (-531)) (-140)))
+ (-5 *2
+ (-2 (|:| -2351 (-388 (-895 *5))) (|:| |coeff| (-388 (-895 *5)))))
+ (-5 *1 (-537 *5)) (-5 *3 (-388 (-895 *5))))))
+(((*1 *1 *1) (-5 *1 (-998))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-820 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-822 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-5 *1 (-825 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-1061 *4 *2))
+ (-4 *2 (-13 (-564 (-531) *4) (-10 -7 (-6 -4273) (-6 -4274))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-797)) (-4 *3 (-1138)) (-5 *1 (-1061 *3 *2))
+ (-4 *2 (-13 (-564 (-531) *3) (-10 -7 (-6 -4273) (-6 -4274)))))))
(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-5 *2 (-110)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
+(((*1 *1) (-5 *1 (-773))))
(((*1 *2 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5 *4 *4 *4)
- (-12 (-4 *6 (-795)) (-5 *3 (-597 *6)) (-5 *5 (-597 *3))
- (-5 *2
- (-2 (|:| |f1| *3) (|:| |f2| (-597 *5)) (|:| |f3| *5)
- (|:| |f4| (-597 *5))))
- (-5 *1 (-1107 *6)) (-5 *4 (-597 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-996)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-1000 *3 *4 *5)) (-5 *1 (-580 *3 *4 *5 *6 *7 *2))
+ (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *2 (-1039 *3 *4 *5 *6)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-429 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-293)) (-5 *1 (-777)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-459)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-570 *1)) (-4 *1 (-284)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7))
- (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-850)) (-4 *5 (-741))
- (-4 *6 (-795)) (-5 *1 (-847 *4 *5 *6 *7))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5))
- (-4 *5 (-1157 *4)) (-4 *4 (-850)) (-5 *1 (-848 *4 *5)))))
-(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-597 (-1082))) (-5 *3 (-530)) (-5 *4 (-1082))
- (-5 *1 (-224))))
- ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
- ((*1 *2 *1) (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984)))))
+ (-12 (-5 *2 (-598 (-598 *6))) (-4 *6 (-892 *3 *5 *4))
+ (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-797) (-573 (-1102))))
+ (-4 *5 (-743)) (-5 *1 (-867 *3 *4 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1027))
- (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
- (-5 *2 (-597 (-1006 *3 *4 *5))) (-5 *1 (-1007 *3 *4 *5))
- (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-597 *3)) (-5 *1 (-902 *3)) (-4 *3 (-515)))))
+ (-12 (-4 *1 (-564 *2 *3)) (-4 *3 (-1138)) (-4 *2 (-1030))
+ (-4 *2 (-797)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))
+ ((*1 *1 *1) (-5 *1 (-806))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-1030))
+ (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3))))
+ (-5 *2 (-598 (-1008 *3 *4 *5))) (-5 *1 (-1009 *3 *4 *5))
+ (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-597 (-1099))) (-5 *1 (-194))
- (-5 *3 (-1099))))
+ (-12 (-5 *4 (-721)) (-5 *2 (-598 (-1102))) (-5 *1 (-194))
+ (-5 *3 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-719)) (-5 *2 (-597 (-1099)))
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-721)) (-5 *2 (-598 (-1102)))
(-5 *1 (-249))))
((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
- (-5 *2 (-597 *3))))
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162))
+ (-5 *2 (-598 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-597 *3)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-767 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
+ (-12 (-5 *2 (-598 *3)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797))
+ (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-628 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-769 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797))))
((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-597 *3)))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *2 (-598 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3) (-12 (-5 *3 (-911)) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2)
- (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *4 (-1157 *3))
- (-5 *2
- (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
- ((*1 *2)
- (-12 (-4 *3 (-1157 (-530)))
- (-5 *2
- (-2 (|:| -3220 (-637 (-530))) (|:| |basisDen| (-530))
- (|:| |basisInv| (-637 (-530)))))
- (-5 *1 (-716 *3 *4)) (-4 *4 (-390 (-530) *3))))
- ((*1 *2)
- (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4))
- (-5 *2
- (-2 (|:| -3220 (-637 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-637 *4))))
- (-5 *1 (-925 *3 *4 *5 *6)) (-4 *6 (-673 *4 *5))))
- ((*1 *2)
- (-12 (-4 *3 (-330)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 *4))
- (-5 *2
- (-2 (|:| -3220 (-637 *4)) (|:| |basisDen| *4)
- (|:| |basisInv| (-637 *4))))
- (-5 *1 (-1190 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208))))
- (-5 *2 (-973)) (-5 *1 (-703)))))
+ (-12 (-5 *3 (-1184 *5)) (-4 *5 (-594 *4)) (-4 *4 (-523))
+ (-5 *2 (-110)) (-5 *1 (-593 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-1098 *4)) (-5 *1 (-501 *4))
+ (-4 *4 (-330)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3)))
+ (-5 *1 (-638 *3 *4 *5 *6)) (-4 *6 (-637 *3 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-650 *3))
+ (-4 *3 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-895 (-531)))) (-5 *1 (-418))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-639 (-208))) (-5 *2 (-1034))
+ (-5 *1 (-710))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-639 (-531))) (-5 *2 (-1034))
+ (-5 *1 (-710)))))
+(((*1 *2 *2 *3 *3)
+ (|partial| -12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-542 *4 *2))
+ (-4 *2 (-13 (-1124) (-902) (-1066) (-29 *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 *3)) (-4 *3 (-892 *5 *6 *7)) (-4 *5 (-432))
+ (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
+ (-5 *1 (-429 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797))))
+ ((*1 *1) (-4 *1 (-1078))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-1 (-110) *8))) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8))))
+ (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-399 *3)) (-4 *3 (-523)))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1124) (-943))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-2 (|:| |val| (-598 *6)) (|:| -2410 *7))))
+ (-4 *6 (-1000 *3 *4 *5)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-930 *3 *4 *5 *6 *7))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-2 (|:| |val| (-598 *6)) (|:| -2410 *7))))
+ (-4 *6 (-1000 *3 *4 *5)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-1037 *3 *4 *5 *6 *7)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *3 (-597 (-245)))
- (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-448)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-920 *2)) (-4 *2 (-984))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-5 *3 (-598 (-1008 *4 *5 *2))) (-4 *4 (-1030))
+ (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4))))
+ (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4))))
+ (-5 *1 (-53 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-598 (-1008 *5 *6 *2))) (-5 *4 (-864)) (-4 *5 (-1030))
+ (-4 *6 (-13 (-986) (-829 *5) (-797) (-573 (-835 *5))))
+ (-4 *2 (-13 (-411 *6) (-829 *5) (-573 (-835 *5))))
+ (-5 *1 (-53 *5 *6 *2)))))
+(((*1 *1) (-4 *1 (-33))) ((*1 *1) (-5 *1 (-273)))
+ ((*1 *1) (-5 *1 (-806)))
+ ((*1 *1)
+ (-12 (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743))
+ (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3))))
+ ((*1 *1) (-5 *1 (-1017)))
+ ((*1 *1)
+ (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33)))))
+ ((*1 *1) (-5 *1 (-1105))) ((*1 *1) (-5 *1 (-1106))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-112)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
- (|:| |expense| (-360)) (|:| |accuracy| (-360))
- (|:| |intermediateResults| (-360))))
- (-5 *2 (-973)) (-5 *1 (-287)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3))))
- (-5 *1 (-367 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *1)
- (-12
+ (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $))
+ (-15 -1853 ((-1054 *3 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *3 (-571 $))))))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1))
+ (-4 *1 (-1005 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360))))
+ ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *6)) (-4 *6 (-13 (-1030) (-977 *5)))
+ (-4 *5 (-829 *4)) (-4 *4 (-1030)) (-5 *2 (-1 (-110) *5))
+ (-5 *1 (-874 *4 *5 *6)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
(-5 *2
- (-2 (|:| |lm| (-767 *3)) (|:| |mm| (-767 *3)) (|:| |rm| (-767 *3))))
- (-5 *1 (-767 *3)) (-4 *3 (-795)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-862)) (-4 *4 (-984))))
- ((*1 *1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128))
- (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| -2065 *3) (|:| -3940 *4))))
- (-5 *1 (-684 *3 *4)) (-4 *3 (-984)) (-4 *4 (-675))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1159 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-1080 (-2 (|:| |k| *4) (|:| |c| *3)))))))
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-432)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-522))
- (-5 *2 (-2 (|:| -2030 (-637 *5)) (|:| |vec| (-1181 (-597 (-862))))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
-(((*1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1) (-4 *1 (-908))) ((*1 *1 *1) (-5 *1 (-1046))))
+ (-12 (-5 *3 (-598 (-388 (-895 (-159 (-531))))))
+ (-5 *2 (-598 (-598 (-276 (-895 (-159 *4)))))) (-5 *1 (-359 *4))
+ (-4 *4 (-13 (-344) (-795)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-276 (-388 (-895 (-159 (-531)))))))
+ (-5 *2 (-598 (-598 (-276 (-895 (-159 *4)))))) (-5 *1 (-359 *4))
+ (-4 *4 (-13 (-344) (-795)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 (-159 (-531)))))
+ (-5 *2 (-598 (-276 (-895 (-159 *4))))) (-5 *1 (-359 *4))
+ (-4 *4 (-13 (-344) (-795)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-276 (-388 (-895 (-159 (-531))))))
+ (-5 *2 (-598 (-276 (-895 (-159 *4))))) (-5 *1 (-359 *4))
+ (-4 *4 (-13 (-344) (-795))))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *4 (-523)) (-5 *1 (-912 *4 *2))
+ (-4 *2 (-1160 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))))
(((*1 *2)
(-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
(-4 *3 (-348 *4))))
((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1046)) (-5 *2 (-110)) (-5 *1 (-769)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-1134 *3))
+ (-4 *3 (-916)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138))
+ (-5 *2 (-598 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))))
+(((*1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-128)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-639 *6)) (-5 *5 (-1 (-399 (-1098 *6)) (-1098 *6)))
+ (-4 *6 (-344))
+ (-5 *2
+ (-598
+ (-2 (|:| |outval| *7) (|:| |outmult| (-531))
+ (|:| |outvect| (-598 (-639 *7))))))
+ (-5 *1 (-504 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-795))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743))
+ (-5 *2 (-598 (-388 (-895 *4)))) (-5 *1 (-867 *4 *5 *6 *7))
+ (-4 *7 (-892 *4 *6 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-639 (-297 (-531)))) (-5 *1 (-971)))))
+(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
+ (|partial| -12 (-5 *2 (-598 (-1098 *11))) (-5 *3 (-1098 *11))
+ (-5 *4 (-598 *10)) (-5 *5 (-598 *8)) (-5 *6 (-598 (-721)))
+ (-5 *7 (-1184 (-598 (-1098 *8)))) (-4 *10 (-797))
+ (-4 *8 (-289)) (-4 *11 (-892 *8 *9 *10)) (-4 *9 (-743))
+ (-5 *1 (-658 *9 *10 *8 *11)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-571 *5))) (-4 *4 (-797)) (-5 *2 (-571 *5))
+ (-5 *1 (-540 *4 *5)) (-4 *5 (-411 *4)))))
+(((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10)
+ (|partial| -12 (-5 *2 (-598 (-1098 *13))) (-5 *3 (-1098 *13))
+ (-5 *4 (-598 *12)) (-5 *5 (-598 *10)) (-5 *6 (-598 *13))
+ (-5 *7 (-598 (-598 (-2 (|:| -2646 (-721)) (|:| |pcoef| *13)))))
+ (-5 *8 (-598 (-721))) (-5 *9 (-1184 (-598 (-1098 *10))))
+ (-4 *12 (-797)) (-4 *10 (-289)) (-4 *13 (-892 *10 *11 *12))
+ (-4 *11 (-743)) (-5 *1 (-658 *11 *12 *10 *13)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |k| (-1102)) (|:| |c| (-1204 *3)))))
+ (-5 *1 (-1204 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |k| *3) (|:| |c| (-1206 *3 *4)))))
+ (-5 *1 (-1206 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986))))
+ ((*1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-701)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1124) (-943)))))
+ ((*1 *2)
+ (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 (-388 *2)))
+ (-4 *2 (-1160 *4)) (-5 *1 (-322 *3 *4 *2 *5))
+ (-4 *3 (-323 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1142))
+ (-4 *4 (-1160 (-388 *2))) (-4 *2 (-1160 *3)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4))
+ (-5 *2 (-2 (|:| |ans| (-388 *5)) (|:| |nosol| (-110))))
+ (-5 *1 (-956 *4 *5)) (-5 *3 (-388 *5)))))
+(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *5)) (-4 *5 (-1157 *3)) (-4 *3 (-289))
- (-5 *2 (-110)) (-5 *1 (-435 *3 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *3 (-597 (-245)))
- (-5 *1 (-243))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1) (-4 *1 (-910))) ((*1 *1 *1) (-5 *1 (-1049))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3))
+ (-4 *3 (-910)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-736)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1138)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-564 *3 *2)) (-4 *3 (-1030))
+ (-4 *2 (-1138)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1184 (-1102))) (-5 *3 (-1184 (-433 *4 *5 *6 *7)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-864))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-1184 (-639 *4)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-433 *4 *5 *6 *7)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-864))
+ (-14 *6 (-598 *2)) (-14 *7 (-1184 (-639 *4)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-460 *5 *6))) (-5 *3 (-460 *5 *6))
- (-14 *5 (-597 (-1099))) (-4 *6 (-432)) (-5 *2 (-1181 *6))
- (-5 *1 (-585 *5 *6)))))
+ (-12 (-5 *2 (-1184 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102)))
+ (-14 *6 (-1184 (-639 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1184 (-1102))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-162)) (-14 *4 (-864)) (-14 *5 (-598 (-1102)))
+ (-14 *6 (-1184 (-639 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1102)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-864)) (-14 *5 (-598 *2)) (-14 *6 (-1184 (-639 *3)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-864))
+ (-14 *4 (-598 (-1102))) (-14 *5 (-1184 (-639 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1069 *4 *2)) (-14 *4 (-864))
+ (-4 *2 (-13 (-986) (-10 -7 (-6 (-4275 "*"))))) (-5 *1 (-845 *4 *2)))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))))
+(((*1 *1 *1) (-5 *1 (-208))) ((*1 *1 *1) (-5 *1 (-360)))
+ ((*1 *1) (-5 *1 (-360))))
(((*1 *2 *3)
- (-12 (-5 *3 (-788 (-360))) (-5 *2 (-788 (-208))) (-5 *1 (-287)))))
+ (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4))
+ (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768))
- (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
+ (-12 (-4 *4 (-986)) (-4 *2 (-637 *4 *5 *6))
+ (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1160 *4)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-460 *3 *4))) (-14 *3 (-598 (-1102)))
+ (-4 *4 (-432)) (-5 *1 (-586 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-110))
- (-5 *1 (-341 *4 *5)) (-14 *5 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-728 *4 (-806 *5)))) (-4 *4 (-432))
- (-14 *5 (-597 (-1099))) (-5 *2 (-110)) (-5 *1 (-582 *4 *5)))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-888 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-977 *4)) (-4 *3 (-289))
+ (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *6 (-390 *4 *5))
+ (-14 *7 (-1184 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1184 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-934 *3))
+ (-4 *5 (-1160 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7))
+ (-14 *7 *2))))
(((*1 *2 *1)
- (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-555 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-522)) (-5 *2 (-110)) (-5 *1 (-578 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-675))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-110)))))
+ (-12
+ (-5 *2
+ (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
+ (|:| |Conditional| "conditional") (|:| |Return| "return")
+ (|:| |Block| "block") (|:| |Comment| "comment")
+ (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
+ (|:| |Repeat| "repeat") (|:| |Goto| "goto")
+ (|:| |Continue| "continue")
+ (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
+ (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
+ (-5 *1 (-311)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-986)) (-4 *3 (-1160 *4)) (-4 *2 (-1175 *4))
+ (-5 *1 (-1178 *4 *3 *5 *2)) (-4 *5 (-609 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-556 *3)) (-4 *3 (-37 *2))
+ (-4 *3 (-986)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 *4)) (-5 *3 (-721)) (-4 *4 (-330))
+ (-5 *1 (-501 *4)))))
+(((*1 *1 *1) (-5 *1 (-998))))
+(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-137)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 (-598 *2) *2 *2 *2)) (-4 *2 (-1030))
+ (-5 *1 (-100 *2))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1030)) (-5 *1 (-100 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984))
- (-4 *2 (-1172 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |preimage| (-597 *3)) (|:| |image| (-597 *3))))
- (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-818 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-845 *4))
- (-4 *4 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986))
+ (-5 *1 (-1087 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986))
+ (-14 *4 (-1102)) (-14 *5 *3))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085))
+ (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1124) (-29 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1160 (-531))) (-5 *1 (-465 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-864)) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-783 (-864))) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-864))))
+ ((*1 *2)
+ (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-783 (-864))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-895 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4))
+ (-14 *4 (-598 (-1102)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-430 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6))
+ (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *1 (-430 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6))
+ (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *1 (-430 *4 *5 *6 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-730 *3 (-808 *4)))) (-4 *3 (-432))
+ (-14 *4 (-598 (-1102))) (-5 *1 (-583 *3 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *1 (-100 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986))
+ (-5 *1 (-1087 *4))))
+ ((*1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986))
+ (-14 *4 (-1102)) (-14 *5 *3))))
(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *7 (-841 *6))
- (-5 *2 (-637 *7)) (-5 *1 (-640 *6 *7 *3 *4)) (-4 *3 (-354 *7))
- (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4269)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
+ (-12 (-5 *4 (-110)) (-5 *5 (-531)) (-4 *6 (-344)) (-4 *6 (-349))
+ (-4 *6 (-986)) (-5 *2 (-598 (-598 (-639 *6)))) (-5 *1 (-969 *6))
+ (-5 *3 (-598 (-639 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-986))
+ (-5 *2 (-598 (-598 (-639 *4)))) (-5 *1 (-969 *4))
+ (-5 *3 (-598 (-639 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986))
+ (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5))
+ (-5 *3 (-598 (-639 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-864)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986))
+ (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5))
+ (-5 *3 (-598 (-639 *5))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-721)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3 *3 *4 *4)
+ (-12 (-5 *3 (-721)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1104 (-388 (-531)))) (-5 *2 (-388 (-531)))
+ (-5 *1 (-174)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-360))))
+ ((*1 *1 *1 *1) (-4 *1 (-516)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344))))
+ ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-721)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-100 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))))
+(((*1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-721)) (-5 *1 (-528)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-522) (-140)))
- (-5 *2 (-2 (|:| -3628 *3) (|:| -3638 *3))) (-5 *1 (-1151 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1027)) (-5 *2 (-110)) (-5 *1 (-826 *3 *4 *5))
- (-4 *3 (-1027)) (-4 *5 (-617 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795))))
- ((*1 *1) (-4 *1 (-1075))))
+ (-12 (-5 *3 (-531)) (|has| *1 (-6 -4264)) (-4 *1 (-385))
+ (-5 *2 (-864)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-110))
+ (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6) (-10 -8 (-15 -2265 ($ *7)))))
+ (-4 *7 (-795))
+ (-4 *8
+ (-13 (-1162 *3 *7) (-344) (-1124)
+ (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))))
+ (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1085)) (-4 *9 (-925 *8))
+ (-14 *10 (-1102)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162))
- (-5 *2 (-1181 (-637 (-893 *4)))) (-5 *1 (-173 *4)))))
+ (-12 (-5 *3 (-870))
+ (-5 *2
+ (-2 (|:| |brans| (-598 (-598 (-886 (-208)))))
+ (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))))
+ (-5 *1 (-146))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-870)) (-5 *4 (-388 (-531)))
+ (-5 *2
+ (-2 (|:| |brans| (-598 (-598 (-886 (-208)))))
+ (|:| |xValues| (-1025 (-208))) (|:| |yValues| (-1025 (-208)))))
+ (-5 *1 (-146)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-1194 (-1099) *3)) (-4 *3 (-984)) (-5 *1 (-1201 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *1 (-1203 *3 *4)))))
+ (-12 (-5 *2 (-598 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5))
+ (-14 *3 (-531)) (-14 *4 (-721)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1017))) (-5 *1 (-273)))))
+(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3)))))
+(((*1 *1) (-5 *1 (-208))) ((*1 *1) (-5 *1 (-360))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 (-159 (-531))))) (-5 *2 (-598 (-159 *4)))
+ (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-795)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 (-388 (-895 (-159 (-531))))))
+ (-5 *4 (-598 (-1102))) (-5 *2 (-598 (-598 (-159 *5))))
+ (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-795))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-998)) (-5 *3 (-1085)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943)))
+ (-5 *1 (-165 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-864)) (-4 *1 (-1162 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-742))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-388 (-531))) (-4 *1 (-1165 *3)) (-4 *3 (-986)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-94)))))
+(((*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-597 *3))
- (-5 *1 (-552 *5 *6 *7 *8 *3)) (-4 *3 (-1036 *5 *6 *7 *8))))
+ (-12 (-5 *3 (-639 *8)) (-4 *8 (-892 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102))))
+ (-4 *7 (-743))
+ (-5 *2
+ (-598
+ (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8))
+ (|:| |wcond| (-598 (-895 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *5))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *5))))))))))
+ (-5 *1 (-867 *5 *6 *7 *8)) (-5 *4 (-598 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
+ (-12 (-5 *3 (-639 *8)) (-5 *4 (-598 (-1102))) (-4 *8 (-892 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102))))
+ (-4 *7 (-743))
(-5 *2
- (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
- (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099)))))
+ (-598
+ (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8))
+ (|:| |wcond| (-598 (-895 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *5))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *5))))))))))
+ (-5 *1 (-867 *5 *6 *7 *8))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140)))
+ (-12 (-5 *3 (-639 *7)) (-4 *7 (-892 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743))
(-5 *2
- (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4))))))
- (-5 *1 (-1008 *4 *5)) (-5 *3 (-597 (-893 *4)))
- (-14 *5 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
+ (-598
+ (-2 (|:| |eqzro| (-598 *7)) (|:| |neqzro| (-598 *7))
+ (|:| |wcond| (-598 (-895 *4)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *4))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *4))))))))))
+ (-5 *1 (-867 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-639 *9)) (-5 *5 (-864)) (-4 *9 (-892 *6 *8 *7))
+ (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-797) (-573 (-1102))))
+ (-4 *8 (-743))
(-5 *2
- (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
- (-5 *1 (-1008 *5 *6)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099))))))
-(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
- (-12 (-5 *4 (-530))
- (-5 *6
- (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))))
- (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736))))
- ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
- (-12 (-5 *4 (-530))
- (-5 *6
- (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -4052 (-360))))
- (-5 *7 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736)))))
+ (-598
+ (-2 (|:| |eqzro| (-598 *9)) (|:| |neqzro| (-598 *9))
+ (|:| |wcond| (-598 (-895 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *6))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *6))))))))))
+ (-5 *1 (-867 *6 *7 *8 *9)) (-5 *4 (-598 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 (-1102))) (-5 *5 (-864))
+ (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743))
+ (-5 *2
+ (-598
+ (-2 (|:| |eqzro| (-598 *9)) (|:| |neqzro| (-598 *9))
+ (|:| |wcond| (-598 (-895 *6)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *6))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *6))))))))))
+ (-5 *1 (-867 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 *8)) (-5 *4 (-864)) (-4 *8 (-892 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102))))
+ (-4 *7 (-743))
+ (-5 *2
+ (-598
+ (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8))
+ (|:| |wcond| (-598 (-895 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *5))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *5))))))))))
+ (-5 *1 (-867 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 *9)) (-5 *5 (-1085))
+ (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531))
+ (-5 *1 (-867 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-639 *9)) (-5 *4 (-598 (-1102))) (-5 *5 (-1085))
+ (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531))
+ (-5 *1 (-867 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 *8)) (-5 *4 (-1085)) (-4 *8 (-892 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102))))
+ (-4 *7 (-743)) (-5 *2 (-531)) (-5 *1 (-867 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-639 *10)) (-5 *4 (-598 *10)) (-5 *5 (-864))
+ (-5 *6 (-1085)) (-4 *10 (-892 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
+ (-4 *8 (-13 (-797) (-573 (-1102)))) (-4 *9 (-743)) (-5 *2 (-531))
+ (-5 *1 (-867 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-639 *10)) (-5 *4 (-598 (-1102))) (-5 *5 (-864))
+ (-5 *6 (-1085)) (-4 *10 (-892 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
+ (-4 *8 (-13 (-797) (-573 (-1102)))) (-4 *9 (-743)) (-5 *2 (-531))
+ (-5 *1 (-867 *7 *8 *9 *10))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-639 *9)) (-5 *4 (-864)) (-5 *5 (-1085))
+ (-4 *9 (-892 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-13 (-797) (-573 (-1102)))) (-4 *8 (-743)) (-5 *2 (-531))
+ (-5 *1 (-867 *6 *7 *8 *9)))))
+(((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-835 *6)))
+ (-5 *5 (-1 (-832 *6 *8) *8 (-835 *6) (-832 *6 *8))) (-4 *6 (-1030))
+ (-4 *8 (-13 (-986) (-573 (-835 *6)) (-977 *7))) (-5 *2 (-832 *6 *8))
+ (-4 *7 (-13 (-986) (-797))) (-5 *1 (-884 *6 *7 *8)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-530)) (-5 *1 (-465 *4))
- (-4 *4 (-1157 *2)))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
+ ((*1 *2 *3) (-12 (-5 *3 (-913)) (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-159 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-707)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1157 *2)) (-4 *2 (-1139)) (-5 *1 (-141 *2 *4 *3))
- (-4 *3 (-1157 (-388 *4))))))
+ (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *2 (-598 (-159 *4)))
+ (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795))))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870)))))
+(((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
+ (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531))
+ (-5 *2 (-975)) (-5 *1 (-707)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5))
+ (-4 *3 (-1160 *4))
+ (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *2)) (-4 *2 (-890 (-388 (-893 *6)) *5 *4))
- (-5 *1 (-681 *5 *4 *6 *2)) (-4 *5 (-741))
- (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $)))))
- (-4 *6 (-522)))))
+ (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311))
+ (-5 *1 (-313)))))
+(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
+ (-12 (-5 *3 (-531)) (-5 *5 (-110)) (-5 *6 (-639 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-639 *4)) (-5 *3 (-864)) (|has| *4 (-6 (-4275 "*")))
+ (-4 *4 (-986)) (-5 *1 (-968 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 (-639 *4))) (-5 *3 (-864))
+ (|has| *4 (-6 (-4275 "*"))) (-4 *4 (-986)) (-5 *1 (-968 *4)))))
+(((*1 *1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-986)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2))
- (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
- (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
+ (-12 (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-399 (-1098 *7)))
+ (-5 *1 (-849 *4 *5 *6 *7)) (-5 *3 (-1098 *7))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-795)) (-4 *5 (-572 *2)) (-5 *2 (-360))
- (-5 *1 (-733 *5)))))
-(((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186))
- (-5 *1 (-1136 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-5 *2 (-1186))
- (-5 *1 (-1136 *4)))))
+ (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5)))
+ (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
+ (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3)))))
(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1022 (-208)))
- (-5 *2 (-1183)) (-5 *1 (-239)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12
+ (-12 (-5 *4 (-721)) (-4 *5 (-330)) (-4 *6 (-1160 *5))
+ (-5 *2
+ (-598
+ (-2 (|:| -3523 (-639 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-639 *6)))))
+ (-5 *1 (-476 *5 *6 *7))
(-5 *3
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530)))))
- (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110))
- (-5 *1 (-483 *4 *5)))))
+ (-2 (|:| -3523 (-639 *6)) (|:| |basisDen| *6)
+ (|:| |basisInv| (-639 *6))))
+ (-4 *7 (-1160 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
- (-15 -1928 ((-1051 *3 (-570 $)) $))
- (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
-(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-547 *2)) (-4 *2 (-13 (-29 *4) (-1121)))
- (-5 *1 (-545 *4 *2))
- (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-547 (-388 (-893 *4))))
- (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *2 (-297 *4)) (-5 *1 (-550 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
- (-5 *1 (-1084 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
- (-14 *4 (-1099)) (-14 *5 *3))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-1181 *5)) (-4 *5 (-289))
- (-4 *5 (-984)) (-5 *2 (-637 *5)) (-5 *1 (-967 *5)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1598 (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1098 (-895 *4))) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344))
+ (-5 *2 (-1098 (-895 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2)
+ (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 (-388 *2)))
+ (-4 *2 (-1160 *4)) (-5 *1 (-322 *3 *4 *2 *5))
+ (-4 *3 (-323 *4 *2 *5))))
+ ((*1 *2)
+ (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1142))
+ (-4 *4 (-1160 (-388 *2))) (-4 *2 (-1160 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-975))
+ (-5 *1 (-700)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-986))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1)))
+ (-4 *1 (-799 *3)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))
+ (-5 *2 (-598 (-2 (|:| -2259 *1) (|:| -1833 (-598 *7)))))
+ (-5 *3 (-598 *7)) (-4 *1 (-1132 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1124))))
+ ((*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-571 *3)) (-4 *3 (-797)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7))))
+ (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))))
+(((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5)
+ (-12 (-5 *3 (-864)) (-5 *4 (-208)) (-5 *5 (-531)) (-5 *6 (-817))
+ (-5 *2 (-1189)) (-5 *1 (-1185)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-407 *5 *3))
- (-4 *3 (-13 (-1121) (-29 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-975 (-530)) (-140)))
- (-5 *2 (-547 (-388 (-893 *5)))) (-5 *1 (-536 *5))
- (-5 *3 (-388 (-893 *5))))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4))
+ (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2)
+ (-12 (-4 *3 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-1189))
+ (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-159 (-208)))) (-5 *2 (-975))
+ (-5 *1 (-705)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-779)))))
(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5)))
- (-5 *1 (-429 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1) (-12 (-5 *1 (-622 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-110))
+ (-5 *1 (-338 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-110))
+ (-5 *1 (-501 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-986))
+ (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))))
+(((*1 *1) (-5 *1 (-137))) ((*1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-721)))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *1) (-4 *1 (-812 *2))))
+(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))))
+(((*1 *2 *3 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-743)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797))
+ (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-5 *2 (-1108 (-597 *4))) (-5 *1 (-1107 *4))
- (-5 *3 (-597 *4)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-415)) (-4 *5 (-795))
- (-5 *1 (-1033 *5 *4)) (-4 *4 (-411 *5)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-388 (-530)))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-995))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
+ (-12 (-4 *1 (-330)) (-5 *3 (-531)) (-5 *2 (-1112 (-864) (-721))))))
+(((*1 *1) (-5 *1 (-273))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
+ (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3))
+ (-4 *3 (-1030)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1098 *7)) (-4 *5 (-986))
+ (-4 *7 (-986)) (-4 *2 (-1160 *5)) (-5 *1 (-479 *5 *2 *6 *7))
+ (-4 *6 (-1160 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-986)) (-4 *7 (-986))
+ (-4 *4 (-1160 *5)) (-5 *2 (-1098 *7)) (-5 *1 (-479 *5 *4 *6 *7))
+ (-4 *6 (-1160 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
- (-4 *2 (-221 *3 *4)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128))
- (-4 *3 (-740)))))
+ (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))))
(((*1 *2 *3)
- (|partial| -12 (-4 *2 (-1027)) (-5 *1 (-1113 *3 *2)) (-4 *3 (-1027)))))
-(((*1 *2 *1)
(-12
- (-5 *2
- (-597
- (-597
- (-3 (|:| -3907 (-1099))
- (|:| |bounds| (-597 (-3 (|:| S (-1099)) (|:| P (-893 (-530))))))))))
- (-5 *1 (-1103)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-941) (-1121)))
- (-4 *4 (-13 (-522) (-795)))
- (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121)))
- (-5 *1 (-559 *4 *5 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2))
- (-4 *2 (-1157 (-159 *3))))))
-(((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7)
- (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208)))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *2 *2 *3 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-5 *1 (-1153 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-110))
- (-5 *1 (-830 *4 *5)) (-4 *5 (-1027))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-833 *5)) (-4 *5 (-1027)) (-5 *2 (-110))
- (-5 *1 (-831 *5 *3)) (-4 *3 (-1135))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *6 (-1135)) (-5 *2 (-110)) (-5 *1 (-831 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-189)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
- (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
+ (-12 (-4 *4 (-986)) (-4 *5 (-1160 *4)) (-5 *2 (-1 *6 (-598 *6)))
+ (-5 *1 (-1178 *4 *5 *3 *6)) (-4 *3 (-609 *5)) (-4 *6 (-1175 *4)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-432))
- (-5 *2
- (-597
- (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))
- (|:| |geneigvec| (-597 (-637 (-388 (-893 *4))))))))
- (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-388 *6))
- (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5))))
- ((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344))
- (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5)))
- (-5 *1 (-809 *5 *6 *7))))
- ((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *3 (-719)) (-5 *4 (-1173 *5 *6 *7)) (-4 *5 (-344))
- (-14 *6 (-1099)) (-14 *7 *5) (-5 *2 (-388 (-1154 *6 *5)))
- (-5 *1 (-809 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-4 *7 (-795))
- (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741)) (-4 *8 (-289))
- (-5 *2 (-597 (-719))) (-5 *1 (-691 *6 *7 *8 *9)) (-5 *5 (-719)))))
+ (|partial| -12 (-4 *2 (-1030)) (-5 *1 (-1116 *3 *2)) (-4 *3 (-1030)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-300 *3 *4 *5))
+ (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975))
+ (-5 *1 (-699)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-5 *1 (-1177 *3 *2))
+ (-4 *2 (-1175 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-257)))))
+(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-721)))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-522)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-1126 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1186)) (-5 *1 (-198 *4))
- (-4 *4
- (-13 (-795)
- (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $))
- (-15 -3595 (*2 $)))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3))
- (-4 *3
- (-13 (-795)
- (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $))
- (-15 -3595 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480)))))
+ (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-833 *4 *3))
+ (-4 *3 (-1138))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-975)) (-5 *3 (-1102)) (-5 *1 (-249)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *5 *5))
- (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4))))
+ (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-1102)) (-5 *6 (-110))
+ (-4 *7 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-4 *3 (-13 (-1124) (-902) (-29 *7)))
(-5 *2
- (-2 (|:| |solns| (-597 *5))
- (|:| |maps| (-597 (-2 (|:| |arg| *5) (|:| |res| *5))))))
- (-5 *1 (-1054 *3 *5)) (-4 *3 (-1157 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135))
- (-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027))
- (-4 *2 (-1135)))))
-(((*1 *1) (-5 *1 (-148))))
-(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-719)))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-522)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-770)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1181 *5))) (-5 *4 (-530)) (-5 *2 (-1181 *5))
- (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-752 *4 *2)) (-4 *2 (-13 (-29 *4) (-1121) (-900))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4270)) (-4 *1 (-468 *3))
- (-4 *3 (-1135)))))
-(((*1 *1 *1 *1) (-4 *1 (-908))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522))
- (-5 *2 (-1095 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530))))
- (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4))))))
+ (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-202 *7 *3)) (-5 *5 (-790 *3)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-864)) (-4 *3 (-344))
+ (-14 *4 (-935 *2 *3))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
+ (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-14 *6 (-1 (-3 *4 "failed") *4 *4))
+ (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162))
+ (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
+ (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344))))
+ ((*1 *1) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1) (|partial| -4 *1 (-673)))
+ ((*1 *1 *1) (|partial| -4 *1 (-677)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
+ (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-13 (-795) (-344)))
+ (-4 *2 (-1160 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
+ (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-598 (-245))) (-5 *1 (-1186))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1062 (-208))) (-5 *3 (-1085)) (-5 *1 (-1186))))
+ ((*1 *1 *1) (-5 *1 (-1186))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-769 *3)) (|:| |rm| (-769 *3))))
+ (-5 *1 (-769 *3)) (-4 *3 (-797))))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1105)) (-5 *3 (-1102)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-675)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-399 *3)) (-4 *3 (-522))))
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797))
+ (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-721))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797))
+ (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-797)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-864))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -2611 *4) (|:| -1429 (-530)))))
- (-4 *4 (-1157 (-530))) (-5 *2 (-719)) (-5 *1 (-422 *4)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-162))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-793)))
- (-5 *2 (-2 (|:| |start| *3) (|:| -3721 (-399 *3))))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-597 (-1006 *4 *5 *2))) (-4 *4 (-1027))
- (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
- (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4))))
- (-5 *1 (-53 *4 *5 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-597 (-1006 *5 *6 *2))) (-5 *4 (-862)) (-4 *5 (-1027))
- (-4 *6 (-13 (-984) (-827 *5) (-795) (-572 (-833 *5))))
- (-4 *2 (-13 (-411 *6) (-827 *5) (-572 (-833 *5))))
- (-5 *1 (-53 *5 *6 *2)))))
-(((*1 *1 *1 *1) (-4 *1 (-289))) ((*1 *1 *1 *1) (-5 *1 (-719)))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-175)) (-5 *3 (-530))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-162))))
+ (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344)))
+ (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5))) (-4 *7 (-323 *4 *5 *6))
+ (-5 *2 (-721)) (-5 *1 (-373 *4 *5 *6 *7))))
+ ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-783 (-864)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-557 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-557 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-523)) (-5 *2 (-531)) (-5 *1 (-579 *3 *4))
+ (-4 *4 (-1160 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-691 *4 *3)) (-4 *4 (-986))
+ (-4 *3 (-797))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-691 *4 *3)) (-4 *4 (-986)) (-4 *3 (-797))
+ (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030))))
((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *2 (-841 *5)) (-5 *1 (-640 *5 *2 *3 *4))
- (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
- (-5 *2 (-597 *3)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
-(((*1 *1 *1 *1) (-5 *1 (-208)))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208)))))
- ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |lm| (-767 *3)) (|:| |rm| (-767 *3))))
- (-5 *1 (-767 *3)) (-4 *3 (-795))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
+ (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4))
+ (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6)))
+ (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531))))
+ (-5 *2 (-721)) (-5 *1 (-854 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6))
+ (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4)))
+ (-4 *6 (-323 (-388 (-531)) *4 *5)) (-5 *2 (-721))
+ (-5 *1 (-855 *4 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344))
+ (-4 *7 (-1160 *6)) (-4 *4 (-1160 (-388 *7))) (-4 *8 (-323 *6 *7 *4))
+ (-4 *9 (-13 (-349) (-344))) (-5 *2 (-721))
+ (-5 *1 (-959 *6 *7 *4 *8 *9))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-4 *3 (-523)) (-5 *2 (-721))))
+ ((*1 *2 *1 *2)
+ (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128))
+ (-4 *2 (-1030))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-342 *2)) (-4 *2 (-1030))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-367 *2)) (-4 *2 (-1030))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *2 (-1030)) (-5 *1 (-602 *2 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4)))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *1 (-769 *2)) (-4 *2 (-797)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1085)) (-5 *1 (-287)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 (-1 *6 (-597 *6))))
- (-4 *5 (-37 (-388 (-530)))) (-4 *6 (-1172 *5)) (-5 *2 (-597 *6))
- (-5 *1 (-1174 *5 *6)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
- (-4 *2 (-1157 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1) (-5 *1 (-273))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-1022 (-208)))))
- ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-1022 (-208))))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
-(((*1 *1 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721))
+ (-4 *4 (-162)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-797))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1175 *3)))))
(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
+ (|partial| -12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-523))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))
- (-4 *2 (-522))))
- ((*1 *1 *1 *1) (|partial| -4 *1 (-522)))
+ (|partial| -12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742))
+ (-4 *2 (-523))))
+ ((*1 *1 *1 *1) (|partial| -4 *1 (-523)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984))
- (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-522))))
- ((*1 *1 *1 *1) (|partial| -5 *1 (-719)))
+ (|partial| -12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986))
+ (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-523))))
+ ((*1 *1 *1 *1) (|partial| -5 *1 (-721)))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-522))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
+ (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-523))))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522))
- (-5 *1 (-910 *3 *4))))
+ (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-523))
+ (-5 *1 (-912 *3 *4))))
((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-987 *3 *4 *2 *5 *6)) (-4 *2 (-984))
- (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-522))))
+ (|partial| -12 (-4 *1 (-989 *3 *4 *2 *5 *6)) (-4 *2 (-986))
+ (-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-523))))
((*1 *2 *2 *2)
- (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
+ (|partial| -12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-977 (-531))) (-4 *3 (-13 (-797) (-523)))
+ (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1098 *4)) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-156 *4))))
+ ((*1 *1 *1) (-12 (-4 *1 (-986)) (-4 *1 (-284))))
+ ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1098 *3))))
+ ((*1 *2) (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1002 *3 *2)) (-4 *3 (-13 (-795) (-344)))
+ (-4 *2 (-1160 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *1) (-5 *1 (-1014))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2)
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-598 *11))
+ (|:| |todo| (-598 (-2 (|:| |val| *3) (|:| -2410 *11))))))
+ (-5 *6 (-721))
+ (-5 *2 (-598 (-2 (|:| |val| (-598 *10)) (|:| -2410 *11))))
+ (-5 *3 (-598 *10)) (-5 *4 (-598 *11)) (-4 *10 (-1000 *7 *8 *9))
+ (-4 *11 (-1005 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-743))
+ (-4 *9 (-797)) (-5 *1 (-1003 *7 *8 *9 *10 *11))))
+ ((*1 *2 *3 *4 *2 *5 *6)
+ (-12
+ (-5 *5
+ (-2 (|:| |done| (-598 *11))
+ (|:| |todo| (-598 (-2 (|:| |val| *3) (|:| -2410 *11))))))
+ (-5 *6 (-721))
+ (-5 *2 (-598 (-2 (|:| |val| (-598 *10)) (|:| -2410 *11))))
+ (-5 *3 (-598 *10)) (-5 *4 (-598 *11)) (-4 *10 (-1000 *7 *8 *9))
+ (-4 *11 (-1039 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-743))
+ (-4 *9 (-797)) (-5 *1 (-1072 *7 *8 *9 *10 *11)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1098 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3))
+ (-4 *3 (-344)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-806)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-721))
+ (-14 *4 (-721)) (-4 *5 (-162)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-597 (-597 (-208)))) (-5 *1 (-1132)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3))))
- ((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
+ (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4))
+ (-4 *4 (-986)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -3417 *4) (|:| -2001 (-530)))))
- (-4 *4 (-1027)) (-5 *2 (-1 *4)) (-5 *1 (-956 *4)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))))
+ (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-432)) (-5 *2 (-110))
+ (-5 *1 (-341 *4 *5)) (-14 *5 (-598 (-1102)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-730 *4 (-808 *5)))) (-4 *4 (-432))
+ (-14 *5 (-598 (-1102))) (-5 *2 (-110)) (-5 *1 (-583 *4 *5)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2248 *4)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12
+ (-4 *4 (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *5 (-1160 *4)) (-5 *2 (-1098 (-388 *5))) (-5 *1 (-574 *4 *5))
+ (-5 *3 (-388 *5))))
+ ((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-140) (-27) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2 (-1098 (-388 *6))) (-5 *1 (-574 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-140))
+ (-4 *3 (-289)) (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-919 *3 *4 *5 *6)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-5 *2
- (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
- (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *1))))
- (-4 *1 (-1003 *4 *5 *6 *3))))
- ((*1 *1 *1) (-4 *1 (-1139)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-1160 *3 *2))
- (-4 *2 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2204 ($ $ $))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-530)) (-5 *1 (-425 *2)) (-4 *2 (-984)))))
-(((*1 *1) (-5 *1 (-1102))))
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-323 *4 *5 *6)) (-4 *4 (-1142))
+ (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5)))
+ (-5 *2 (-2 (|:| |num| (-639 *5)) (|:| |den| *5))))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
+ (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-719)) (-4 *3 (-1135)) (-4 *1 (-55 *3 *4 *5))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1) (-5 *1 (-161)))
- ((*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-862)) (-4 *3 (-1027))))
- ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370))))
- ((*1 *1) (-5 *1 (-375)))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
- ((*1 *1)
- (-12 (-4 *3 (-1027)) (-5 *1 (-826 *2 *3 *4)) (-4 *2 (-1027))
- (-4 *4 (-617 *3))))
- ((*1 *1) (-12 (-5 *1 (-830 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027))))
- ((*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984))))
- ((*1 *1 *1) (-5 *1 (-1099))) ((*1 *1) (-5 *1 (-1099)))
- ((*1 *1) (-5 *1 (-1116))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-893 (-530)))) (-5 *1 (-418))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-208))) (-5 *2 (-1031))
- (-5 *1 (-708))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-637 (-530))) (-5 *2 (-1031))
- (-5 *1 (-708)))))
-(((*1 *2 *3 *4 *4 *3 *3 *5)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3)))
- (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027))))
- ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3)))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3)))
- (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-115 *3)) (-14 *3 (-531))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *3 (-1083 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-163 (-531))) (-5 *1 (-716 *3)) (-4 *3 (-385))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-163 (-388 (-531)))) (-5 *1 (-814 *3)) (-14 *3 (-531))))
+ ((*1 *2 *1)
+ (-12 (-14 *3 (-531)) (-5 *2 (-163 (-388 (-531))))
+ (-5 *1 (-815 *3 *4)) (-4 *4 (-812 *3)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-721)) (-4 *4 (-13 (-523) (-140)))
+ (-5 *1 (-1154 *4 *2)) (-4 *2 (-1160 *4)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
+ (-12 (-5 *4 (-531)) (-5 *5 (-1085)) (-5 *6 (-639 (-208)))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *1 (-928 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-916 *4 *5 *3 *6)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2))
- (-4 *5 (-354 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7))
- (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1098 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-771)) (-5 *2 (-51)) (-5 *1 (-781)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1157 *5))
- (-5 *1 (-755 *5 *2 *3 *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *3 (-607 *2)) (-4 *6 (-607 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-388 *2))) (-4 *2 (-1157 *5))
- (-5 *1 (-755 *5 *2 *3 *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
- (-4 *6 (-607 (-388 *2))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| -3078 *3) (|:| -1874 *4))))
- (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *1 (-1112 *3 *4))))
- ((*1 *1) (-12 (-4 *1 (-1112 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522))
- (-5 *2 (-110)) (-5 *1 (-592 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-815))))
- ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-304 *2 *4)) (-4 *4 (-128))
- (-4 *2 (-1027))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-342 *2)) (-4 *2 (-1027))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-1027)) (-5 *1 (-600 *2 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4)))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *1 (-767 *2)) (-4 *2 (-795)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3))
- (-4 *3 (-13 (-344) (-140) (-975 (-530)))) (-5 *1 (-534 *3 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-770)))))
+ (-12 (-5 *4 (-531)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2))
+ (-4 *3 (-977 *4)) (-4 *3 (-13 (-797) (-523))))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-848 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741))
+ (-12 (-5 *3 (-719))
(-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7))
- (|:| |wcond| (-597 (-893 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *4))))))))))
- (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110))
- (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *1 (-630 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-884 *4)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-523 *6 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-51)) (-5 *1 (-777)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *1 (-636 *4 *5 *6 *2))
- (-4 *2 (-635 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-893 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-846 (-530))) (-5 *4 (-530)) (-5 *2 (-637 *4))
- (-5 *1 (-966 *5)) (-4 *5 (-984))))
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))))
+ (-5 *1 (-532))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-719)) (-5 *4 (-998))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))))
+ (-5 *1 (-532))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-737)) (-5 *3 (-998))
+ (-5 *4
+ (-2 (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))
+ (|:| |extra| (-975))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-737)) (-5 *3 (-998))
+ (-5 *4
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))
+ (|:| |extra| (-975))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-750)) (-5 *3 (-998))
+ (-5 *4
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-758))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085)))))
+ (-5 *1 (-755))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-758)) (-5 *4 (-998))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085)))))
+ (-5 *1 (-755))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-786)) (-5 *3 (-998))
+ (-5 *4
+ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))
+ (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-786)) (-5 *3 (-998))
+ (-5 *4
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208)))
+ (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208))))
+ (|:| |ub| (-598 (-790 (-208))))))
+ (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-966 *4))
- (-4 *4 (-984))))
+ (-12 (-5 *3 (-788))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085)))))
+ (-5 *1 (-787))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-846 (-530)))) (-5 *4 (-530))
- (-5 *2 (-597 (-637 *4))) (-5 *1 (-966 *5)) (-4 *5 (-984))))
+ (-12 (-5 *3 (-788)) (-5 *4 (-998))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085)))))
+ (-5 *1 (-787))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *1 (-838)) (-5 *3 (-998))
+ (-5 *4
+ (-2 (|:| |pde| (-598 (-297 (-208))))
+ (|:| |constraints|
+ (-598
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208))
+ (|:| |grid| (-721)) (|:| |boundaryType| (-531))
+ (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208))))))
+ (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085))
+ (|:| |tol| (-208))))
+ (-5 *2 (-2 (|:| -3582 (-360)) (|:| |explanations| (-1085))))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-530)))) (-5 *2 (-597 (-637 (-530))))
- (-5 *1 (-966 *4)) (-4 *4 (-984)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-5 *3 (-841))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085)))))
+ (-5 *1 (-840))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-841)) (-5 *4 (-998))
+ (-5 *2
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085)))))
+ (-5 *1 (-840)))))
+(((*1 *2 *3) (-12 (-5 *3 (-772)) (-5 *2 (-51)) (-5 *1 (-779)))))
+(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-984)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
+ ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2))))
+ ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-884 *4)) (-4 *4 (-984)) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-862)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862))
- (-14 *4 (-862)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-1181 *2)) (-4 *5 (-289))
- (-4 *6 (-932 *5)) (-4 *2 (-13 (-390 *6 *7) (-975 *6)))
- (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1157 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *4 (-13 (-1030) (-33))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-703)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-176))))
+ (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-809 *4 *5 *6 *7))
+ (-4 *4 (-986)) (-14 *5 (-598 (-1102))) (-14 *6 (-598 *3))
+ (-14 *7 *3)))
((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-282))))
+ (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-4 *5 (-797)) (-4 *6 (-743))
+ (-14 *8 (-598 *5)) (-5 *2 (-1189))
+ (-5 *1 (-1194 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-892 *4 *6 *5))
+ (-14 *9 (-598 *3)) (-14 *10 *3))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
+ (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208))
+ (-5 *2 (-975)) (-5 *1 (-700)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-598 (-598 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-598 (-3 (|:| |array| (-598 *3)) (|:| |scalar| (-1102)))))
+ (-5 *6 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1034))
+ (-5 *1 (-378))))
+ ((*1 *2 *3 *4 *5 *6 *3)
+ (-12 (-5 *5 (-598 (-598 (-3 (|:| |array| *6) (|:| |scalar| *3)))))
+ (-5 *4 (-598 (-3 (|:| |array| (-598 *3)) (|:| |scalar| (-1102)))))
+ (-5 *6 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1034))
+ (-5 *1 (-378))))
+ ((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *4 (-598 (-1102))) (-5 *5 (-1105)) (-5 *3 (-1102))
+ (-5 *2 (-1034)) (-5 *1 (-378)))))
+(((*1 *2)
+ (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-864)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4))
+ (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531)))))
+ (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *5))
+ (-4 *5 (-1160 (-388 *4))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142))
+ (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-886 *5)) (-4 *5 (-986)) (-5 *2 (-721))
+ (-5 *1 (-1091 *4 *5)) (-14 *4 (-864))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-721))) (-5 *3 (-721)) (-5 *1 (-1091 *4 *5))
+ (-14 *4 (-864)) (-4 *5 (-986))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-721))) (-5 *3 (-886 *5)) (-4 *5 (-986))
+ (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *3 (-1000 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *3 (-1000 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1039 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-598 (-908))) (-5 *1 (-273)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))
+ (-5 *2 (-360)) (-5 *1 (-249))))
((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-208))) (-5 *2 (-597 (-1082))) (-5 *1 (-287)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *7)) (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))))
-(((*1 *2 *3) (-12 (-5 *3 (-388 (-530))) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
-(((*1 *1 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448)))))
-(((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-973)) (-5 *1 (-287))))
- ((*1 *2 *3) (-12 (-5 *3 (-597 (-973))) (-5 *2 (-973)) (-5 *1 (-287))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-602 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *1) (-5 *1 (-996)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1077 *4))
- (-4 *4 (-1135))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+ (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-779)))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-705)))))
+ (-12 (-5 *3 (-388 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-523))
+ (-4 *4 (-986)) (-4 *2 (-1175 *4)) (-5 *1 (-1178 *4 *5 *6 *2))
+ (-4 *6 (-609 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-698)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -3115 *3) (|:| |coef1| (-732 *3)) (|:| |coef2| (-732 *3))))
+ (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1027)) (-5 *1 (-905 *3 *2)) (-4 *3 (-1027)))))
+ (-12 (-4 *1 (-645 *3)) (-4 *3 (-1030))
+ (-5 *2 (-598 (-2 (|:| -1798 *3) (|:| -2539 (-721))))))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *2)
+ (|:| |polj| *2)))
+ (-4 *5 (-743)) (-4 *2 (-892 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2))
+ (-4 *4 (-432)) (-4 *6 (-797)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *7) (|:| -3157 *7) (|:| |sol?| (-110)))
+ (-531) *7))
+ (-5 *6 (-598 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1160 *7))
+ (-5 *3 (-388 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-541 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *6))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+ (-12 (-5 *2 (-1032 (-1032 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-360)))) (-5 *2 (-1022 (-788 (-208))))
- (-5 *1 (-287)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-164))))
- ((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-106)) (-5 *1 (-1014)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-4 *2 (-1157 *4))
- (-5 *1 (-863 *4 *2)))))
+ (-12 (-5 *2 (-2 (|:| |var| (-598 (-1102))) (|:| |pred| (-51))))
+ (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *6 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-506)) (-5 *1 (-505 *4))
- (-4 *4 (-1135)))))
+ (|partial| -12 (-5 *3 (-1184 *5)) (-4 *5 (-594 *4)) (-4 *4 (-523))
+ (-5 *2 (-1184 *4)) (-5 *1 (-593 *4 *5)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-719)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-597 (-276 *4))) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795))
- (-5 *2 (-597 (-622 *5))) (-5 *1 (-622 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
+ (-12
+ (-5 *2
+ (-482 (-388 (-531)) (-223 *4 (-721)) (-808 *3)
+ (-230 *3 (-388 (-531)))))
+ (-14 *3 (-598 (-1102))) (-14 *4 (-721)) (-5 *1 (-483 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-3 (-388 (-895 *6)) (-1092 (-1102) (-895 *6))))
+ (-5 *5 (-721)) (-4 *6 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *6)))))
+ (-5 *1 (-274 *6)) (-5 *4 (-639 (-388 (-895 *6))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-2 (|:| |eigval| (-3 (-388 (-895 *5)) (-1092 (-1102) (-895 *5))))
+ (|:| |eigmult| (-721)) (|:| |eigvec| (-598 *4))))
+ (-4 *5 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *5)))))
+ (-5 *1 (-274 *5)) (-5 *4 (-639 (-388 (-895 *5)))))))
+(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
+ (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
+ (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-700)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| -3887 *1) (|:| -4260 *1) (|:| |associate| *1)))
+ (-4 *1 (-523)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-598 (-531))) (-5 *3 (-639 (-531))) (-5 *1 (-1040)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-208) (-208) (-208)))
+ (-5 *4 (-1 (-208) (-208) (-208) (-208)))
+ (-5 *2 (-1 (-886 (-208)) (-208) (-208))) (-5 *1 (-647)))))
+(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1025 *3)) (-4 *3 (-892 *7 *6 *4)) (-4 *6 (-743))
+ (-4 *4 (-797)) (-4 *7 (-523))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-531))))
+ (-5 *1 (-555 *6 *4 *7 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-523))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-531))))
+ (-5 *1 (-555 *5 *4 *6 *3)) (-4 *3 (-892 *6 *5 *4))))
+ ((*1 *1 *1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1) (-5 *1 (-806)))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1094 *4 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1124)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1023 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1124)))
+ (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1094 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531))))
+ (-5 *2 (-388 (-895 *5))) (-5 *1 (-1095 *5)) (-5 *3 (-895 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-797) (-977 (-531))))
+ (-5 *2 (-3 (-388 (-895 *5)) (-297 *5))) (-5 *1 (-1095 *5))
+ (-5 *3 (-388 (-895 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1023 (-895 *5))) (-5 *3 (-895 *5))
+ (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-388 *3))
+ (-5 *1 (-1095 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1023 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5)))
+ (-4 *5 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-3 *3 (-297 *5)))
+ (-5 *1 (-1095 *5)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1102)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-652 *3 *5 *6 *7))
+ (-4 *3 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138))
+ (-4 *7 (-1138))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *3 *5 *6))
+ (-4 *3 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-975)) (-5 *1 (-287))))
+ ((*1 *2 *3) (-12 (-5 *3 (-598 (-975))) (-5 *2 (-975)) (-5 *1 (-287))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-604 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-604 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1 *1) (-5 *1 (-998)))
((*1 *2 *3)
- (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
- ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1))))
+ (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1080 *4))
+ (-4 *4 (-1138))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-735 *3)) (-4 *3 (-573 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-864)) (-5 *2 (-360)) (-5 *1 (-735 *3))
+ (-4 *3 (-573 *2))))
((*1 *2 *3)
- (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 *2))
+ (-5 *2 (-360)) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986))
+ (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1095 (-388 (-530)))) (-5 *2 (-597 *1)) (-4 *1 (-951))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-951)) (-5 *2 (-597 *1))))
+ (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 *2))
+ (-5 *2 (-360)) (-5 *1 (-735 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-793) (-344))) (-4 *3 (-1157 *4)) (-5 *2 (-597 *1))
- (-4 *1 (-1000 *4 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27))
- (-5 *2 (-597 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099)))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6))
- (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466)))))
-(((*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 (-597 (-597 *4)))) (-5 *3 (-597 *4)) (-4 *4 (-795))
- (-5 *1 (-1107 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-637 *4))
- (-5 *1 (-762 *4 *5)) (-4 *5 (-607 *4))))
+ (-12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797))
+ (-4 *4 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-344))
- (-5 *2 (-637 *5)) (-5 *1 (-762 *5 *6)) (-4 *6 (-607 *5)))))
+ (-12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797))
+ (-4 *5 (-573 *2)) (-5 *2 (-360)) (-5 *1 (-735 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *7 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522))
- (-4 *8 (-890 *7 *5 *6))
- (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| *3)))
- (-5 *1 (-894 *5 *6 *7 *8 *3)) (-5 *4 (-719))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -1918 (*8 $)) (-15 -1928 (*8 $)) (-15 -2366 ($ *8))))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *1 (-970 *2))
- (-4 *2 (-13 (-1027) (-10 -8 (-15 * ($ $ $))))))))
-(((*1 *2 *3 *4 *3 *4 *4 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-705)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-524 *2)) (-4 *2 (-515)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530)))))
- (-4 *2 (-13 (-795) (-21))))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *1 *1) (-4 *1 (-522))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2)
+ (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-852))
+ (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-892 *2 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *2 (-852))
+ (-5 *1 (-849 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4))))
+ ((*1 *2) (-12 (-4 *2 (-852)) (-5 *1 (-850 *2 *3)) (-4 *3 (-1160 *2)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-862))
- (-5 *2 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
- (-5 *1 (-327 *4)) (-4 *4 (-330)))))
+ (-12 (-5 *3 (-531)) (|has| *1 (-6 -4264)) (-4 *1 (-385))
+ (-5 *2 (-864)))))
+(((*1 *2)
+ (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2))
+ (-4 *3 (-13 (-797) (-523))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-1 (-1083 (-895 *4)) (-1083 (-895 *4))))
+ (-5 *1 (-1192 *4)) (-4 *4 (-344)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-531)) (-4 *3 (-162)) (-4 *5 (-354 *3))
+ (-4 *6 (-354 *3)) (-5 *1 (-638 *3 *5 *6 *2))
+ (-4 *2 (-637 *3 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-808 *3)) (-14 *3 (-598 *2))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-909 *3)) (-4 *3 (-910))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-931))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1023 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1162 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742))
+ (-5 *2 (-1102))))
+ ((*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1180 *3)) (-14 *3 *2))))
(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-110)) (-4 *7 (-998 *4 *5 *6))
- (-4 *4 (-432)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+ (-12 (-5 *2 (-1184 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289))
+ (-4 *3 (-523)) (-5 *1 (-42 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-864)) (-4 *4 (-344)) (-5 *2 (-1184 *1))
+ (-4 *1 (-310 *4))))
+ ((*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1184 *1)) (-4 *1 (-310 *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-162)) (-4 *4 (-1160 *3)) (-5 *2 (-1184 *1))
+ (-4 *1 (-390 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4))
+ (-5 *2 (-1184 *6)) (-5 *1 (-394 *3 *4 *5 *6))
+ (-4 *6 (-13 (-390 *4 *5) (-977 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4))
+ (-5 *2 (-1184 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))
+ (-4 *6 (-390 *4 *5)) (-14 *7 *2)))
+ ((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1184 *1)) (-4 *1 (-398 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1184 (-1184 *4))) (-5 *1 (-501 *4))
+ (-4 *4 (-330)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-639 *3))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-639 *3))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1030)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1099))) (-4 *6 (-344))
- (-5 *2 (-597 (-276 (-893 *6)))) (-5 *1 (-508 *5 *6 *7))
- (-4 *5 (-432)) (-4 *7 (-13 (-344) (-793))))))
+ (-12 (-5 *4 (-110))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2
+ (-3 (|:| |%expansion| (-294 *5 *3 *6 *7))
+ (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))))
+ (-5 *1 (-401 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1124) (-411 *5)))
+ (-14 *6 (-1102)) (-14 *7 *3))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
- (-5 *2 (-597 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-597 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
+ (-12 (-5 *2 (-598 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742))
+ (-5 *2 (-721))))
((*1 *2 *1)
- (-12 (-5 *2 (-597 *3)) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-675))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-597 *3))))
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030))
+ (-5 *2 (-721))))
((*1 *2 *1)
- (-12 (-4 *1 (-1172 *3)) (-4 *3 (-984)) (-5 *2 (-1080 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-519)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-597 (-388 *7)))
- (-4 *7 (-1157 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-540 *6 *7)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *1 *1) (-5 *1 (-208))) ((*1 *1 *1) (-5 *1 (-360)))
- ((*1 *1) (-5 *1 (-360))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3) (-12 (-5 *3 (-786)) (-5 *2 (-973)) (-5 *1 (-785))))
+ (-12 (-5 *2 (-721)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-677)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 *5)) (-4 *5 (-344))
+ (-4 *5 (-523)) (-5 *2 (-1184 *5)) (-5 *1 (-593 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-297 (-360)))) (-5 *4 (-597 (-360)))
- (-5 *2 (-973)) (-5 *1 (-785)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-597
- (-2 (|:| -2426 (-719))
- (|:| |eqns|
- (-597
- (-2 (|:| |det| *7) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530))))))
- (|:| |fgb| (-597 *7)))))
- (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719))
- (-5 *1 (-865 *4 *5 *6 *7)))))
+ (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 *5))
+ (-3745 (-4 *5 (-344))) (-4 *5 (-523)) (-5 *2 (-1184 (-388 *5)))
+ (-5 *1 (-593 *5 *4)))))
(((*1 *2)
- (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2)))
- (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5))
- (-4 *3 (-323 *4 *2 *5))))
+ (-12
+ (-5 *2
+ (-1184 (-598 (-2 (|:| -3482 (-853 *3)) (|:| -1889 (-1049))))))
+ (-5 *1 (-332 *3 *4)) (-14 *3 (-864)) (-14 *4 (-864))))
((*1 *2)
- (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139))
- (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
+ (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049))))))
+ (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1098 *3) *2))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049))))))
+ (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-864)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1022 *3)) (-4 *3 (-890 *7 *6 *4)) (-4 *6 (-741))
- (-4 *4 (-795)) (-4 *7 (-522))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-530))))
- (-5 *1 (-554 *6 *4 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-522))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-530))))
- (-5 *1 (-554 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4))))
- ((*1 *1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1091 *4 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1121)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-151) (-27) (-1121)))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1091 *4 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530))))
- (-5 *2 (-388 (-893 *5))) (-5 *1 (-1092 *5)) (-5 *3 (-893 *5))))
+ (|partial| -12 (-5 *5 (-1184 (-598 *3))) (-4 *4 (-289))
+ (-5 *2 (-598 *3)) (-5 *1 (-435 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-1030)) (-4 *6 (-829 *5)) (-5 *2 (-828 *5 *6 (-598 *6)))
+ (-5 *1 (-830 *5 *6 *4)) (-5 *3 (-598 *6)) (-4 *4 (-573 (-835 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-13 (-522) (-795) (-975 (-530))))
- (-5 *2 (-3 (-388 (-893 *5)) (-297 *5))) (-5 *1 (-1092 *5))
- (-5 *3 (-388 (-893 *5)))))
+ (-12 (-4 *5 (-1030)) (-5 *2 (-598 (-276 *3))) (-5 *1 (-830 *5 *3 *4))
+ (-4 *3 (-977 (-1102))) (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1020 (-893 *5))) (-5 *3 (-893 *5))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-388 *3))
- (-5 *1 (-1092 *5))))
+ (-12 (-4 *5 (-1030)) (-5 *2 (-598 (-276 (-895 *3))))
+ (-5 *1 (-830 *5 *3 *4)) (-4 *3 (-986))
+ (-3745 (-4 *3 (-977 (-1102)))) (-4 *3 (-829 *5))
+ (-4 *4 (-573 (-835 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1020 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5)))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-3 *3 (-297 *5)))
- (-5 *1 (-1092 *5)))))
-(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-360)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-570 *5))) (-5 *3 (-1099)) (-4 *5 (-411 *4))
- (-4 *4 (-795)) (-5 *1 (-539 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1035 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9))))
- (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8))
- (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795))
- (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2473 *9))))
- (-5 *1 (-1035 *6 *7 *4 *8 *9)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121)))))
- ((*1 *1 *1 *1) (-4 *1 (-741))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-803))))
- ((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-906))))
- ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-929))))
- ((*1 *2 *1) (-12 (-4 *1 (-949 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *2 *3))
- (-4 *3 (-13 (-1027) (-33))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 (-530))))) (-5 *2 (-597 (-297 (-530))))
- (-5 *1 (-969)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-1058 *4 *2))
- (-4 *2 (-13 (-563 (-530) *4) (-10 -7 (-6 -4269) (-6 -4270))))))
+ (-12 (-4 *5 (-1030)) (-5 *2 (-832 *5 *3)) (-5 *1 (-830 *5 *3 *4))
+ (-3745 (-4 *3 (-977 (-1102)))) (-3745 (-4 *3 (-986)))
+ (-4 *3 (-829 *5)) (-4 *4 (-573 (-835 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *1 *1) (-4 *1 (-584)))
((*1 *2 *2)
- (-12 (-4 *3 (-795)) (-4 *3 (-1135)) (-5 *1 (-1058 *3 *2))
- (-4 *2 (-13 (-563 (-530) *3) (-10 -7 (-6 -4269) (-6 -4270)))))))
-(((*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-426)) (-5 *3 (-530)))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-48))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-462)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-773)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *4 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *1) (-4 *1 (-330))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-719)) (-5 *3 (-884 *4)) (-4 *1 (-1060 *4))
- (-4 *4 (-984))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-884 (-208))) (-5 *2 (-1186))
- (-5 *1 (-1183)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-597
- (-2 (|:| |scalar| (-388 (-530))) (|:| |coeff| (-1095 *3))
- (|:| |logand| (-1095 *3)))))
- (-5 *1 (-547 *3)) (-4 *3 (-344)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943) (-1124))))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *6))))
+ (-5 *4 (-966 (-790 (-531)))) (-5 *5 (-1102)) (-5 *7 (-388 (-531)))
+ (-4 *6 (-986)) (-5 *2 (-806)) (-5 *1 (-556 *6)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)) (-4 *3 (-986))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4))
+ (-14 *3 (-864)) (-4 *4 (-986))))
+ ((*1 *1 *1 *1)
+ (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-522)) (-5 *2 (-399 *4))
- (-5 *1 (-400 *4))))
- ((*1 *1 *1) (-5 *1 (-867)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
- ((*1 *1 *1) (-5 *1 (-868)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
- (-5 *4 (-388 (-530))) (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
- (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
- (-5 *4 (-388 (-530))) (-5 *1 (-959 *3)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *2 *2)
- (|partial| -12
- (-5 *2 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))
- (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2)))))
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3))))))
(((*1 *2 *3)
- (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2))
- (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2))
- (-4 *4 (-635 *2 *5 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
- (-5 *2 (-1095 *3))))
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *5 *6)) (-4 *6 (-573 (-1102)))
+ (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *2 (-1092 (-598 (-895 *4)) (-598 (-276 (-895 *4)))))
+ (-5 *1 (-482 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-870)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-284))))
+ ((*1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-5 *1 (-806))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))))
+(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-159 (-208))))
+ (-5 *2 (-975)) (-5 *1 (-705)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-463 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-857 *3)) (-4 *3 (-289)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-639 *4)) (-5 *3 (-864)) (-4 *4 (-986))
+ (-5 *1 (-968 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 (-639 *4))) (-5 *3 (-864)) (-4 *4 (-986))
+ (-5 *1 (-968 *4)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-986)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-524 *6 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))))
+(((*1 *2 *1) (-12 (-4 *3 (-1138)) (-5 *2 (-598 *1)) (-4 *1 (-951 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
- (-5 *2 (-1095 *3)))))
+ (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4))
+ (-14 *3 (-864)) (-4 *4 (-986)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *3 *3)
- (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
+ (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *2))
+ (-2 (|:| -1889 *5) (|:| -1790 *2))))
+ (-4 *2 (-221 (-2167 *3) (-721))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7))
+ (-4 *5 (-797)) (-4 *7 (-892 *4 *2 (-808 *3))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-383)) (-5 *2 (-721))))
+ ((*1 *1 *1) (-4 *1 (-383))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-531)) (-4 *1 (-55 *4 *5 *3)) (-4 *4 (-1138))
+ (-4 *5 (-354 *4)) (-4 *3 (-354 *4)))))
+(((*1 *2)
+ (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162))
+ (-5 *2 (-2 (|:| |particular| *1) (|:| -3523 (-598 *1))))
+ (-4 *1 (-348 *3))))
+ ((*1 *2)
+ (|partial| -12
+ (-5 *2
+ (-2 (|:| |particular| (-433 *3 *4 *5 *6))
+ (|:| -3523 (-598 (-433 *3 *4 *5 *6)))))
+ (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 (-895 *4))) (-5 *3 (-598 (-1102))) (-4 *4 (-432))
+ (-5 *1 (-861 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1160 (-388 *2)))
+ (-4 *2 (-1160 *5)) (-5 *1 (-199 *5 *2 *6 *3))
+ (-4 *3 (-323 *5 *2 *6)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721))
+ (-4 *4 (-162))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-411 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1023 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523)))
+ (-5 *1 (-149 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-151))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-162)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *2)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))))
+(((*1 *2 *3 *3 *3 *4 *5 *6)
+ (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1025 (-208))) (-5 *6 (-598 (-245))) (-5 *2 (-1062 (-208)))
+ (-5 *1 (-647)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5))
+ (-4 *3 (-1160 *4))
+ (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-1106)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-805))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-908))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-931))))
+ ((*1 *2 *1) (-12 (-4 *1 (-951 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1030) (-33))) (-5 *1 (-1067 *2 *3))
+ (-4 *3 (-13 (-1030) (-33))))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-673)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-677)) (-5 *2 (-110)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
(((*1 *2 *3)
- (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-432))
- (-5 *2 (-460 *4 *5)) (-5 *1 (-585 *4 *5)))))
+ (-12 (-5 *3 (-721)) (-5 *2 (-639 (-895 *4))) (-5 *1 (-968 *4))
+ (-4 *4 (-986)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(((*1 *2 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-597 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-110)) (-5 *1 (-1088 *4 *5))
- (-14 *4 (-862)) (-4 *5 (-984)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *3 (-162))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
+ (|:| |expense| (-360)) (|:| |accuracy| (-360))
+ (|:| |intermediateResults| (-360))))
+ (-5 *1 (-753)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1157 *4 *5)) (-5 *3 (-598 *5)) (-14 *4 (-1102))
+ (-4 *5 (-344)) (-5 *1 (-866 *4 *5))))
((*1 *2 *3 *3)
- (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))))
+ (-12 (-5 *3 (-598 *5)) (-4 *5 (-344)) (-5 *2 (-1098 *5))
+ (-5 *1 (-866 *4 *5)) (-14 *4 (-1102))))
+ ((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-598 *6)) (-5 *4 (-721)) (-4 *6 (-344))
+ (-5 *2 (-388 (-895 *6))) (-5 *1 (-987 *5 *6)) (-14 *5 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-772)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *3))))
+ (-5 *1 (-556 *3)) (-4 *3 (-986)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-112)) (-5 *4 (-721)) (-4 *5 (-432)) (-4 *5 (-797))
+ (-4 *5 (-977 (-531))) (-4 *5 (-523)) (-5 *1 (-40 *5 *2))
+ (-4 *2 (-411 *5))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *5 (-571 $)) $))
+ (-15 -1853 ((-1054 *5 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *5 (-571 $))))))))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-743)) (-4 *5 (-986)) (-4 *6 (-892 *5 *4 *2))
+ (-4 *2 (-797)) (-5 *1 (-893 *4 *2 *5 *6 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2265 ($ *6)) (-15 -1840 (*6 $))
+ (-15 -1853 (*6 $)))))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523))
+ (-5 *2 (-1102)) (-5 *1 (-982 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-388 (-531))) (-4 *1 (-521 *3))
+ (-4 *3 (-13 (-385) (-1124)))))
+ ((*1 *1 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124)))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+ (-12 (-4 *5 (-1030)) (-4 *2 (-843 *5)) (-5 *1 (-642 *5 *2 *3 *4))
+ (-4 *3 (-354 *2)) (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))))
+(((*1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-102)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-864)) (-5 *2 (-1098 *3)) (-5 *1 (-1113 *3))
+ (-4 *3 (-344)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-598
+ (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-721)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *3 (-743)) (-4 *6 (-892 *4 *3 *5)) (-4 *4 (-432)) (-4 *5 (-797))
+ (-5 *1 (-429 *4 *3 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1102)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-986)) (-4 *2 (-1160 *4))
+ (-5 *1 (-424 *4 *2))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-388 (-1098 (-297 *5)))) (-5 *3 (-1184 (-297 *5)))
+ (-5 *4 (-531)) (-4 *5 (-13 (-523) (-797))) (-5 *1 (-1059 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-986))
+ (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1)))
+ (-4 *1 (-799 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-531))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-848 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344)))
+ (-4 *3 (-1160 *4)) (-5 *2 (-531))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432)))
+ (-5 *2 (-531)) (-5 *1 (-1045 *4 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *4)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-790 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432)))
+ (-5 *2 (-531)) (-5 *1 (-1045 *6 *3))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-1085))
+ (-4 *6 (-13 (-523) (-797) (-977 *2) (-594 *2) (-432)))
+ (-5 *2 (-531)) (-5 *1 (-1045 *6 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-432)) (-5 *2 (-531))
+ (-5 *1 (-1046 *4))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-790 (-388 (-895 *6))))
+ (-5 *3 (-388 (-895 *6))) (-4 *6 (-432)) (-5 *2 (-531))
+ (-5 *1 (-1046 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-388 (-895 *6))) (-5 *4 (-1102))
+ (-5 *5 (-1085)) (-4 *6 (-432)) (-5 *2 (-531)) (-5 *1 (-1046 *6))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-531)) (-5 *1 (-1121 *3)) (-4 *3 (-986)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))
+ (-5 *2 (-1184 *6)) (-5 *1 (-317 *3 *4 *5 *6))
+ (-4 *6 (-323 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-417)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))))
+(((*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-345 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-5 *2 (-1085)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3)))
- (-5 *1 (-715 *3 *4)) (-4 *3 (-657 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984))
- (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3))
- (-4 *3 (-797 *5)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3))))
- ((*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *1) (-4 *1 (-908))))
-(((*1 *2 *1 *3)
- (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-996)) (-5 *3 (-1082)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
+ (-12 (-4 *4 (-523))
+ (-5 *2
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
- (-5 *2 (-2 (|:| -2259 *3) (|:| |nconst| *3))) (-5 *1 (-533 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1064 *3 *2)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *2 (-13 (-1027) (-33))))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *2 (-522)) (-5 *1 (-910 *2 *4))
- (-4 *4 (-1157 *2)))))
+ (-12 (-5 *4 (-110))
+ (-5 *2
+ (-2 (|:| |contp| (-531))
+ (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531)))))))
+ (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110))
+ (-5 *2
+ (-2 (|:| |contp| (-531))
+ (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531)))))))
+ (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531))))))
(((*1 *1 *1)
- (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795))
- (-4 *4 (-248 *3)) (-4 *5 (-741)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6))
- (-4 *6 (-13 (-27) (-411 *5)))
- (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7)))
- (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3))
- (-4 *3 (-323 *6 *7 *8)))))
-(((*1 *1) (-5 *1 (-110))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515))
- (-4 *3 (-522))))
- ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-388 (-530)))))
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-598 (-639 *4))) (-5 *2 (-639 *4)) (-4 *4 (-986))
+ (-5 *1 (-969 *4)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-112))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-112))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797))
+ (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721))))
((*1 *2 *1)
- (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797))
+ (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-797)) (-5 *2 (-721)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1102)) (-4 *4 (-986)) (-4 *4 (-797))
+ (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531))))
+ (-4 *1 (-411 *4))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-112)) (-4 *4 (-986)) (-4 *4 (-797))
+ (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531))))
+ (-4 *1 (-411 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515))
- (-4 *3 (-1027))))
+ (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-797))
+ (-5 *2 (-2 (|:| |var| (-571 *1)) (|:| -1790 (-531))))
+ (-4 *1 (-411 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515))
- (-4 *3 (-1027))))
+ (|partial| -12 (-5 *2 (-2 (|:| |val| (-835 *3)) (|:| -1790 (-721))))
+ (-5 *1 (-835 *3)) (-4 *3 (-1030))))
((*1 *2 *1)
- (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
+ (|partial| -12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-2 (|:| |var| *5) (|:| -1790 (-721))))))
((*1 *2 *3)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3)) (-4 *3 (-975 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-719))
- (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
+ (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986))
+ (-4 *7 (-892 *6 *4 *5))
+ (-5 *2 (-2 (|:| |var| *5) (|:| -1790 (-531))))
+ (-5 *1 (-893 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $))
+ (-15 -1853 (*7 $))))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531))))
+ (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531))))
+ (-5 *4 (-297 (-360))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531))))
+ (-5 *4 (-297 (-531))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-159 (-360)))))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-531)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-159 (-360)))))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-531)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-360))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-531))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531))))
+ (-5 *4 (-297 (-644))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531))))
+ (-5 *4 (-297 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-895 (-531))))
+ (-5 *4 (-297 (-651))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-644)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-649)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-297 (-651)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-644)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-649)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-297 (-651)))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-644))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1184 (-651))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-644))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-639 (-651))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-644))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-649))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-297 (-651))) (-5 *1 (-311))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1085)) (-5 *1 (-311))))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))
+ ((*1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-1028 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
+ (|partial| -12 (-4 *3 (-1042)) (-4 *3 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-411 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
- (-5 *1 (-691 *5 *4 *6 *3)) (-4 *3 (-890 *6 *5 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-1181 (-637 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 (-637 *3)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1099))) (-4 *5 (-344))
- (-5 *2 (-1181 (-637 (-388 (-893 *5))))) (-5 *1 (-1015 *5))
- (-5 *4 (-637 (-388 (-893 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1099))) (-4 *5 (-344))
- (-5 *2 (-1181 (-637 (-893 *5)))) (-5 *1 (-1015 *5))
- (-5 *4 (-637 (-893 *5)))))
+ (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3))
+ (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-637 *4))) (-4 *4 (-344))
- (-5 *2 (-1181 (-637 *4))) (-5 *1 (-1015 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099)))
- (-4 *6 (-13 (-522) (-975 *5))) (-4 *5 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *6)))))) (-5 *1 (-976 *5 *6)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-388 (-893 *4))) (-5 *3 (-1099))
- (-4 *4 (-13 (-522) (-975 (-530)) (-140))) (-5 *1 (-536 *4)))))
-(((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 *8 *8 *8))
- (-5 *4 (-1 (-110) *8 *8)) (-4 *1 (-1129 *5 *6 *7 *8)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)))))
-(((*1 *2)
- (-12 (-4 *3 (-1139)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)))))
+ (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986))
+ (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *3))
+ (-5 *1 (-893 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $))
+ (-15 -1853 (*7 $))))))))
(((*1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-106))) (-5 *1 (-164)))))
-(((*1 *1 *2 *3 *3 *4 *5)
- (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
- (-5 *4 (-597 (-862))) (-5 *5 (-597 (-245))) (-5 *1 (-448))))
- ((*1 *1 *2 *3 *3 *4)
- (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
- (-5 *4 (-597 (-862))) (-5 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448))))
- ((*1 *1 *1) (-5 *1 (-448))))
-(((*1 *2)
- (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162))
- (-5 *2 (-2 (|:| |particular| *1) (|:| -3220 (-597 *1))))
- (-4 *1 (-348 *3))))
- ((*1 *2)
- (|partial| -12
- (-5 *2
- (-2 (|:| |particular| (-433 *3 *4 *5 *6))
- (|:| -3220 (-597 (-433 *3 *4 *5 *6)))))
- (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-388 (-530)))
- (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-570 *3)) (-4 *3 (-411 *5))
- (-4 *5 (-13 (-795) (-522) (-975 (-530))))
- (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-414 *5 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-652 *3))
- (-4 *3 (-572 (-506)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-1 (-208) (-208) (-208)))
- (-5 *1 (-652 *3)) (-4 *3 (-572 (-506))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649))))
+ ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |ir| (-547 (-388 *6))) (|:| |specpart| (-388 *6))
- (|:| |polypart| *6)))
- (-5 *1 (-540 *5 *6)) (-5 *3 (-388 *6)))))
+ (-12
+ (-5 *3
+ (-598
+ (-2 (|:| |eqzro| (-598 *8)) (|:| |neqzro| (-598 *8))
+ (|:| |wcond| (-598 (-895 *5)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *5))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *5))))))))))
+ (-5 *4 (-1085)) (-4 *5 (-13 (-289) (-140))) (-4 *8 (-892 *5 *7 *6))
+ (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-531))
+ (-5 *1 (-867 *5 *6 *7 *8)))))
+(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531))))
+ ((*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1) (-4 *1 (-812 *2)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-742))
+ (-4 *4 (-797)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-846 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1140)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-239)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1135))
+ (-12 (-5 *3 (-531)) (-4 *1 (-55 *4 *5 *2)) (-4 *4 (-1138))
(-4 *5 (-354 *4)) (-4 *2 (-354 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *7 *2)) (-4 *6 (-984))
+ (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *6 *7 *2)) (-4 *6 (-986))
(-4 *7 (-221 *5 *6)) (-4 *2 (-221 *4 *6)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-5 *1 (-1174 *3 *2))
- (-4 *2 (-1172 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
- (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
- (-5 *1 (-1076 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-1157 *4)) (-5 *2 (-1 *6 (-597 *6)))
- (-5 *1 (-1175 *4 *5 *3 *6)) (-4 *3 (-607 *5)) (-4 *6 (-1172 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1082)) (-5 *1 (-94)))))
-(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-704)))))
+(((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-886 (-208))) (-5 *4 (-817)) (-5 *5 (-864))
+ (-5 *2 (-1189)) (-5 *1 (-448))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-448))))
+ ((*1 *2 *1 *3 *4 *4 *5)
+ (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *4 (-817)) (-5 *5 (-864))
+ (-5 *2 (-1189)) (-5 *1 (-448)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *3 (-1142)) (-4 *5 (-1160 *3)) (-4 *6 (-1160 (-388 *5)))
+ (-5 *2 (-110)) (-5 *1 (-322 *4 *3 *5 *6)) (-4 *4 (-323 *3 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *1) (-4 *1 (-910))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-460 *4 *5))) (-14 *4 (-598 (-1102)))
+ (-4 *5 (-432)) (-5 *2 (-598 (-230 *4 *5))) (-5 *1 (-586 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-1085)) (-5 *1 (-736)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1030) (-33)))
+ (-5 *2 (-110)) (-5 *1 (-1067 *4 *5)) (-4 *4 (-13 (-1030) (-33))))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-12 (-5 *3 (-639 (-297 (-208))))
(-5 *2
(-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))))
(-5 *1 (-189)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1095 (-893 *4))) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344))
- (-5 *2 (-1095 (-893 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-721)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-1 (-110) *5))
- (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4))
- (-4 *4 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719))))
- ((*1 *1 *1) (-4 *1 (-216)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3))
- (-4 *3 (-1157 *2))))
- ((*1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 (-719))) (-4 *1 (-841 *4))
- (-4 *4 (-1027))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-530)) (-4 *4 (-330))
- (-5 *1 (-500 *4)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099)))
- (-4 *5 (-432))
- (-5 *2
- (-2 (|:| |gblist| (-597 (-230 *4 *5)))
- (|:| |gvlist| (-597 (-530)))))
- (-5 *1 (-585 *4 *5)))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-3 (-2 (|:| -2104 *7) (|:| |coeff| *7)) "failed") *7))
- (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7))
- (-5 *3 (-388 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-540 *7 *8)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-984))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-884 (-208))) (-5 *2 (-208)) (-5 *1 (-1132))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-984)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432))
- (-5 *1 (-859 *4)))))
+ (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-531))) (-5 *1 (-287)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-189))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 (-360))) (-5 *2 (-360)) (-5 *1 (-189)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -2611 *4) (|:| -1429 (-530)))))
- (-4 *4 (-1157 (-530))) (-5 *2 (-686 (-719))) (-5 *1 (-422 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-399 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-984))
- (-5 *2 (-686 (-719))) (-5 *1 (-424 *4 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
-(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
- *4 *6 *4)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208))) (-5 *6 (-625 (-208)))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-699)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *7)
+ (|:| |polj| *7)))
+ (-4 *5 (-743)) (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797))
+ (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
- (-4 *4 (-330)) (-5 *2 (-1186)) (-5 *1 (-500 *4)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-110)) (-5 *5 (-1029 (-719))) (-5 *6 (-719))
+ (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 (-1083 *7))) (-4 *6 (-797))
+ (-4 *7 (-892 *5 (-503 *6) *6)) (-4 *5 (-986))
+ (-5 *2 (-1 (-1083 *7) *7)) (-5 *1 (-1055 *5 *6 *7)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-806)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-721))
+ (-14 *4 (-721)) (-4 *5 (-162)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523))
+ (-5 *2 (-1098 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2
- (-2 (|:| |contp| (-530))
- (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530)))))))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1080 *3)) (-4 *3 (-1027))
- (-4 *3 (-1135)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-399 *3)) (-4 *3 (-522)) (-5 *1 (-400 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284))))
- ((*1 *1 *1) (-4 *1 (-284)))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *1) (-5 *1 (-148))))
+ (-2 (|:| |func| *3) (|:| |kers| (-598 (-571 *3)))
+ (|:| |vals| (-598 *3))))
+ (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5))))))
+(((*1 *1) (-5 *1 (-110))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-598 (-460 *4 *5))) (-5 *3 (-598 (-808 *4)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6))
+ (-4 *6 (-432)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
- (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-1095 *6))
- (-5 *1 (-302 *4 *5 *6 *7)))))
-(((*1 *1) (-5 *1 (-134))))
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))
+ (-5 *2 (-975)) (-5 *1 (-704)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4))
- (-5 *3 (-597 *4)))))
+ (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-639 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-198 *4))
+ (-4 *4
+ (-13 (-797)
+ (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $))
+ (-15 -3403 (*2 $)))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1189)) (-5 *1 (-198 *3))
+ (-4 *3
+ (-13 (-797)
+ (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $))
+ (-15 -3403 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-480)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 (-1157 *5 *4)))
+ (-5 *1 (-1044 *4 *5)) (-5 *3 (-1157 *5 *4)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-806)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1027)) (-4 *5 (-1027))
- (-5 *2 (-1 *5 *4)) (-5 *1 (-631 *4 *5)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
- (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
+ (-12
+ (-5 *3
+ (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4)
+ (-230 *4 (-388 (-531)))))
+ (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110))
+ (-5 *1 (-483 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-1192 *4 *5 *6 *7)))
- (-5 *1 (-1192 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 *9)) (-5 *4 (-1 (-110) *9 *9))
- (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522))
- (-4 *7 (-741)) (-4 *8 (-795)) (-5 *2 (-597 (-1192 *6 *7 *8 *9)))
- (-5 *1 (-1192 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-4 *1 (-284))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
+ (-12 (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3))
+ (-4 *3 (-13 (-411 *4) (-943))))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-986) (-797)))
+ (-5 *1 (-206 *3 *4)) (-14 *4 (-598 (-1102))))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+ (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531)))
+ (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $))
+ (-15 -1853 ((-1054 *3 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *3 (-571 $))))))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))))
+(((*1 *1) (-5 *1 (-773))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-995)) (-4 *3 (-1124))
+ (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-868))
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530)))
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
- ((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-12
+ (-5 *3
+ (-598
+ (-2 (|:| -2277 (-721))
+ (|:| |eqns|
+ (-598
+ (-2 (|:| |det| *7) (|:| |rows| (-598 (-531)))
+ (|:| |cols| (-598 (-531))))))
+ (|:| |fgb| (-598 *7)))))
+ (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-721))
+ (-5 *1 (-867 *4 *5 *6 *7)))))
+(((*1 *1) (-5 *1 (-148))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8)))
+ (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8)))
+ (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *8)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-919 *3 *4 *5 *6)))))
+(((*1 *2 *3 *4 *3 *3)
+ (-12 (-5 *3 (-276 *6)) (-5 *4 (-112)) (-4 *6 (-411 *5))
+ (-4 *5 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51))
+ (-5 *1 (-298 *5 *6))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-598 *7))
+ (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507))))
+ (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-598 (-276 *7))) (-5 *4 (-598 (-112))) (-5 *5 (-276 *7))
+ (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507))))
+ (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-598 (-276 *8))) (-5 *4 (-598 (-112))) (-5 *5 (-276 *8))
+ (-5 *6 (-598 *8)) (-4 *8 (-411 *7))
+ (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51))
+ (-5 *1 (-298 *7 *8))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-598 *7)) (-5 *4 (-598 (-112))) (-5 *5 (-276 *7))
+ (-4 *7 (-411 *6)) (-4 *6 (-13 (-797) (-523) (-573 (-507))))
+ (-5 *2 (-51)) (-5 *1 (-298 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 (-112))) (-5 *6 (-598 (-276 *8)))
+ (-4 *8 (-411 *7)) (-5 *5 (-276 *8))
+ (-4 *7 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51))
+ (-5 *1 (-298 *7 *8))))
+ ((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-276 *5)) (-5 *4 (-112)) (-4 *5 (-411 *6))
+ (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51))
+ (-5 *1 (-298 *6 *5))))
+ ((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6))
+ (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51))
+ (-5 *1 (-298 *6 *3))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-4 *3 (-411 *6))
+ (-4 *6 (-13 (-797) (-523) (-573 (-507)))) (-5 *2 (-51))
+ (-5 *1 (-298 *6 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-112)) (-5 *5 (-276 *3)) (-5 *6 (-598 *3))
+ (-4 *3 (-411 *7)) (-4 *7 (-13 (-797) (-523) (-573 (-507))))
+ (-5 *2 (-51)) (-5 *1 (-298 *7 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *5)) (-4 *4 (-986))
+ (-4 *5 (-797)) (-5 *2 (-895 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *5)) (-4 *4 (-986))
+ (-4 *5 (-797)) (-5 *2 (-895 *4))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-1175 *4)) (-4 *4 (-986))
+ (-5 *2 (-895 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-1175 *4)) (-4 *4 (-986))
+ (-5 *2 (-895 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
+ (-4 *1 (-675 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1160 *5))
+ (-5 *2 (-639 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-46 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742))
+ (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030))
+ (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-556 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-523)) (-5 *2 (-110)) (-5 *1 (-579 *3 *4))
+ (-4 *4 (-1160 *3))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-677))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *2 (-110)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-516)) (-5 *1 (-150 *2)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-774)) (-5 *3 (-598 (-1102))) (-5 *1 (-775)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-1085)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *4 (-1000 *6 *7 *8)) (-5 *2 (-1189))
+ (-5 *1 (-726 *6 *7 *8 *4 *5)) (-4 *5 (-1005 *6 *7 *8 *4)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *4 (-571 *3)) (-5 *5 (-1 (-1098 *3) (-1098 *3)))
+ (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-797) (-523)))
+ (-5 *2 (-548 *3)) (-5 *1 (-518 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-698)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-100 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-639 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-162)) (-4 *2 (-1160 *4)) (-5 *1 (-166 *4 *2 *3))
+ (-4 *3 (-675 *4 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 (-388 (-895 *5)))) (-5 *4 (-1102))
+ (-5 *2 (-895 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-639 (-388 (-895 *4)))) (-5 *2 (-895 *4))
+ (-5 *1 (-274 *4)) (-4 *4 (-432))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-639 (-159 (-388 (-531)))))
+ (-5 *2 (-895 (-159 (-388 (-531))))) (-5 *1 (-715 *4))
+ (-4 *4 (-13 (-344) (-795)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 (-159 (-388 (-531))))) (-5 *4 (-1102))
+ (-5 *2 (-895 (-159 (-388 (-531))))) (-5 *1 (-715 *5))
+ (-4 *5 (-13 (-344) (-795)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-895 (-388 (-531))))
+ (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *4 (-1102))
+ (-5 *2 (-895 (-388 (-531)))) (-5 *1 (-729 *5))
+ (-4 *5 (-13 (-344) (-795))))))
+(((*1 *2 *2 *3 *4 *4)
+ (-12 (-5 *4 (-531)) (-4 *3 (-162)) (-4 *5 (-354 *3))
+ (-4 *6 (-354 *3)) (-5 *1 (-638 *3 *5 *6 *2))
+ (-4 *2 (-637 *3 *5 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 *8)) (-5 *4 (-721)) (-4 *8 (-892 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102))))
+ (-4 *7 (-743))
(-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+ (-598
+ (-2 (|:| |det| *8) (|:| |rows| (-598 (-531)))
+ (|:| |cols| (-598 (-531))))))
+ (-5 *1 (-867 *5 *6 *7 *8)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085))
+ (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719))
- (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-795)) (-5 *2 (-719)) (-5 *1 (-410 *3 *4))
- (-4 *3 (-411 *4))))
- ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-514 *3)) (-4 *3 (-515))))
- ((*1 *2) (-12 (-4 *1 (-712)) (-5 *2 (-719))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-744 *3 *4))
- (-4 *3 (-745 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-931 *3 *4))
- (-4 *3 (-932 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-719)) (-5 *1 (-935 *3 *4))
- (-4 *3 (-936 *4))))
- ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-950 *3)) (-4 *3 (-951))))
- ((*1 *2) (-12 (-4 *1 (-984)) (-5 *2 (-719))))
- ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-992 *3)) (-4 *3 (-993)))))
+ (-12 (-5 *2 (-721)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3)))
- (-5 *1 (-636 *3 *4 *5 *6)) (-4 *6 (-635 *3 *4 *5))))
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-648 *3))
- (-4 *3 (-289)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *3) (-12 (-5 *3 (-159 (-530))) (-5 *2 (-110)) (-5 *1 (-426))))
- ((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))))
+(((*1 *2 *2 *2)
(-12
- (-5 *3
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530)))))
- (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110))
- (-5 *1 (-483 *4 *5))))
- ((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-902 *3)) (-4 *3 (-515))))
- ((*1 *2 *1) (-12 (-4 *1 (-1139)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+ (-5 *2
+ (-598
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-721)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-743)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-797))
+ (-5 *1 (-429 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-1157 *5 *4)) (-5 *1 (-1100 *4 *5 *6))
+ (-4 *4 (-986)) (-14 *5 (-1102)) (-14 *6 *4)))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-1157 *5 *4)) (-5 *1 (-1176 *4 *5 *6))
+ (-4 *4 (-986)) (-14 *5 (-1102)) (-14 *6 *4))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-598 *6)) (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5))
+ (-4 *3 (-523)))))
+(((*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-597 (-1130 *5)))
- (-5 *1 (-1189 *5)) (-5 *4 (-1130 *5)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795))) (-5 *2 (-159 *5))
- (-5 *1 (-559 *4 *5 *3)) (-4 *5 (-13 (-411 *4) (-941) (-1121)))
- (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-4 *4 (-432))
- (-5 *2 (-597 (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4)))))
- (-5 *1 (-274 *4)))))
+ (-12 (-5 *4 (-721)) (-4 *5 (-986)) (-5 *2 (-531))
+ (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1160 *5))
+ (-4 *6 (-13 (-385) (-977 *5) (-344) (-1124) (-266)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-986)) (-5 *2 (-531)) (-5 *1 (-423 *4 *3 *5))
+ (-4 *3 (-1160 *4))
+ (-4 *5 (-13 (-385) (-977 *4) (-344) (-1124) (-266))))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1083 *3)) (-4 *3 (-1030))
+ (-4 *3 (-1138)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-110)) (-5 *5 (-639 (-159 (-208))))
+ (-5 *2 (-975)) (-5 *1 (-706)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
+ (-5 *1 (-548 *3)) (-4 *3 (-344)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-469)))))
(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-719)) (-4 *1 (-214 *4))
- (-4 *4 (-984))))
+ (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-721)) (-4 *1 (-214 *4))
+ (-4 *4 (-986))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-719))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-214 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-216)) (-5 *2 (-721))))
((*1 *1 *1) (-4 *1 (-216)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-248 *3)) (-4 *3 (-795))))
- ((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-4 *1 (-248 *3)) (-4 *3 (-797))))
+ ((*1 *1 *1) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
- (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142))
+ (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))
- (-4 *4 (-1157 *3))))
+ (-12 (-5 *2 (-721)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))
+ (-4 *4 (-1160 *3))))
((*1 *1 *1)
(-12 (-4 *2 (-13 (-344) (-140))) (-5 *1 (-380 *2 *3))
- (-4 *3 (-1157 *2))))
+ (-4 *3 (-1160 *2))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *2 *1 *3)
- (-12 (-4 *2 (-344)) (-4 *2 (-841 *3)) (-5 *1 (-547 *2))
- (-5 *3 (-1099))))
+ (-12 (-4 *2 (-344)) (-4 *2 (-843 *3)) (-5 *1 (-548 *2))
+ (-5 *3 (-1102))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-547 *2)) (-4 *2 (-344))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-804))))
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-548 *2)) (-4 *2 (-344))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *4)) (-5 *3 (-597 (-719))) (-4 *1 (-841 *4))
- (-4 *4 (-1027))))
+ (-12 (-5 *2 (-598 *4)) (-5 *3 (-598 (-721))) (-4 *1 (-843 *4))
+ (-4 *4 (-1030))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-841 *2)) (-4 *2 (-1027))))
+ (-12 (-5 *3 (-721)) (-4 *1 (-843 *2)) (-4 *2 (-1030))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *1 (-841 *3)) (-4 *3 (-1027))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-841 *2)) (-4 *2 (-1027))))
+ (-12 (-5 *2 (-598 *3)) (-4 *1 (-843 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-843 *2)) (-4 *2 (-1030))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1157 *3)) (-4 *3 (-984))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1160 *3)) (-4 *3 (-986))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7))))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2))
+ (-4 *2 (-1175 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3))
+ (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2))
+ (-4 *2 (-1175 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140)))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
+ (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531))
+ (-5 *2 (-975)) (-5 *1 (-707)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-886 (-208)) (-886 (-208)))) (-5 *1 (-245))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344))
+ (-5 *2 (-639 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1184 *3))))
((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-639 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-1184 *4))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1160 *4)) (-5 *2 (-639 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1160 *4)) (-5 *2 (-1184 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1160 *4)) (-5 *2 (-639 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3))
+ (-5 *2 (-1184 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162))
+ (-5 *2 (-639 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-639 *5))) (-5 *3 (-639 *5)) (-4 *5 (-344))
+ (-5 *2 (-1184 *5)) (-5 *1 (-1018 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-993)) (-4 *3 (-1121))
- (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))))
-(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
+ (-12 (-4 *3 (-986)) (-5 *2 (-1184 *3)) (-5 *1 (-663 *3 *4))
+ (-4 *4 (-1160 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
(((*1 *2 *1)
(-12
(-5 *2
- (-597
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (-598
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208)))))
- (-5 *1 (-525))))
+ (-5 *1 (-526))))
((*1 *2 *1)
- (-12 (-4 *1 (-568 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-5 *2 (-597 *3))))
+ (-12 (-4 *1 (-569 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-5 *2 (-598 *3))))
((*1 *2 *1)
(-12
(-5 *2
- (-597
+ (-598
(-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
(|:| |abserr| (-208)) (|:| |relerr| (-208)))))
- (-5 *1 (-751)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973))
- (-5 *1 (-703)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1121) (-29 *4)))))
+ (-5 *1 (-753)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7)))
+ (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *2 (-297 *5)) (-5 *1 (-550 *5)))))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743))
+ (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8)))
+ (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1181 *3)))))
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1184 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-507)) (-5 *1 (-506 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-507)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-767 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))))
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-1000 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
- (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7))))
+ (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-140))) (-5 *2 (-597 *3))
- (-5 *1 (-1151 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-506)) (-5 *1 (-505 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-506)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
- ((*1 *2 *3 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
- (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-691 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-432)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-399 *1)) (-4 *1 (-890 *3 *4 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-432)) (-5 *2 (-399 *3))
- (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7))))
- (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-399 *3)) (-5 *1 (-1160 *4 *3))
- (-4 *3 (-13 (-1157 *4) (-522) (-10 -8 (-15 -2204 ($ $ $)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-14 *5 (-597 (-1099)))
- (-5 *2
- (-597 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099))))))
+ (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))))
+(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1030)) (-5 *2 (-110))
+ (-5 *1 (-1139 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-530))
- (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *2 (-597 (-159 *4))) (-5 *1 (-147 *3 *4))
- (-4 *3 (-1157 (-159 (-530)))) (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4)))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-597 (-159 *4)))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8))) (-4 *7 (-795))
- (-4 *8 (-289)) (-4 *6 (-741)) (-4 *9 (-890 *8 *6 *7))
- (-5 *2
- (-2 (|:| |unitPart| *9)
- (|:| |suPart|
- (-597 (-2 (|:| -2611 (-1095 *9)) (|:| -3194 (-530)))))))
- (-5 *1 (-691 *6 *7 *8 *9)) (-5 *3 (-1095 *9)))))
+ (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-901 (-1049)))
+ (-5 *1 (-327 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-1111 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289))
+ (-5 *2 (-598 (-721))) (-5 *1 (-728 *3 *4 *5 *6 *7))
+ (-4 *3 (-1160 *6)) (-4 *7 (-892 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))))
+(((*1 *2 *3) (-12 (-5 *3 (-598 (-531))) (-5 *2 (-721)) (-5 *1 (-552)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+ (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3))
+ (-4 *3 (-13 (-344) (-140) (-977 (-531)))) (-5 *1 (-535 *3 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4))
+ (-4 *4 (-330)))))
(((*1 *1 *1 *2)
(-12
(-5 *2
- (-2 (|:| -3807 (-597 (-804))) (|:| -3418 (-597 (-804)))
- (|:| |presup| (-597 (-804))) (|:| -2736 (-597 (-804)))
- (|:| |args| (-597 (-804)))))
- (-5 *1 (-1099))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-1099)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
-(((*1 *2 *1 *1)
- (|partial| -12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-4 *4 (-984))
- (-5 *1 (-967 *4)))))
-(((*1 *1) (-5 *1 (-273))))
+ (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806)))
+ (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806)))
+ (|:| |args| (-598 (-806)))))
+ (-5 *1 (-1102))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-598 (-806)))) (-5 *1 (-1102)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-919 *3 *4 *5 *6)))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1085)) (-5 *1 (-94))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-360)) (-5 *3 (-1085)) (-5 *1 (-94)))))
(((*1 *2 *3)
- (-12 (-4 *5 (-13 (-572 *2) (-162))) (-5 *2 (-833 *4))
- (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1027)) (-4 *3 (-156 *5))))
+ (-12 (-4 *5 (-13 (-573 *2) (-162))) (-5 *2 (-835 *4))
+ (-5 *1 (-160 *4 *5 *3)) (-4 *4 (-1030)) (-4 *3 (-156 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1022 (-788 (-360)))))
- (-5 *2 (-597 (-1022 (-788 (-208))))) (-5 *1 (-287))))
+ (-12 (-5 *3 (-598 (-1025 (-790 (-360)))))
+ (-5 *2 (-598 (-1025 (-790 (-208))))) (-5 *1 (-287))))
((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-360))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-375))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-375))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4))
- (-4 *4 (-1157 *3))))
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4))
+ (-4 *4 (-1160 *3))))
((*1 *2 *1)
- (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-1181 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3))))
+ (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3))
+ (-5 *2 (-1184 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-399 *1)) (-4 *1 (-411 *3)) (-4 *3 (-522))
- (-4 *3 (-795))))
+ (-12 (-5 *2 (-399 *1)) (-4 *1 (-411 *3)) (-4 *3 (-523))
+ (-4 *3 (-797))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-443 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-506))))
- ((*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1135))))
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-443 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-507))))
+ ((*1 *2 *1) (-12 (-4 *1 (-573 *2)) (-4 *2 (-1138))))
((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3))))
+ (-12 (-4 *3 (-162)) (-4 *1 (-675 *3 *2)) (-4 *2 (-1160 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-995))))
+ (-12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-922 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-997))))
((*1 *1 *2)
- (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5))
- (-4 *5 (-572 (-1099))) (-4 *4 (-741)) (-4 *5 (-795))))
+ (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5))
+ (-4 *5 (-573 (-1102))) (-4 *4 (-743)) (-4 *5 (-797))))
((*1 *1 *2)
- (-1461
- (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
- (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
- (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))))
+ (-1435
+ (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5))
+ (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531)))
+ (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))
+ (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))))
((*1 *1 *2)
- (-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8)))
- (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1003 *4 *5 *6 *7)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082))
- (-5 *1 (-1001 *4 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1012))))
- ((*1 *1 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135))))
+ (-12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8)))
+ (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1005 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1085))
+ (-5 *1 (-1003 *4 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1014))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138))))
((*1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *2)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027))))
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *2)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030))))
((*1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *2 (-1027)) (-4 *6 (-1027))))
+ (-12 (-4 *1 (-1033 *3 *4 *5 *2 *6)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *2 (-1030)) (-4 *6 (-1030))))
((*1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *4 *2 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *2 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))))
+ (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *2 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030))))
((*1 *1 *2)
- (-12 (-4 *1 (-1030 *3 *2 *4 *5 *6)) (-4 *3 (-1027)) (-4 *2 (-1027))
- (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))))
+ (-12 (-4 *1 (-1033 *3 *2 *4 *5 *6)) (-4 *3 (-1030)) (-4 *2 (-1030))
+ (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030))))
((*1 *1 *2)
- (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027))
- (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))))
+ (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030))
+ (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027))
- (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-2 (|:| |val| (-597 *7)) (|:| -2473 *8)))
- (-4 *7 (-998 *4 *5 *6)) (-4 *8 (-1036 *4 *5 *6 *7)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1082))
- (-5 *1 (-1069 *4 *5 *6 *7 *8))))
- ((*1 *1 *2) (-12 (-5 *2 (-1031)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-1104))))
- ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-1116))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-804)) (-5 *3 (-530)) (-5 *1 (-1116))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-728 *4 (-806 *5)))
- (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *5 (-597 (-1099)))
- (-5 *2 (-728 *4 (-806 *6))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *6 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-893 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-728 *4 (-806 *6)))
- (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099)))
- (-5 *2 (-893 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-1095 (-962 (-388 *4)))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099)))))
+ (-12 (-5 *2 (-598 *1)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030))
+ (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| |val| (-598 *7)) (|:| -2410 *8)))
+ (-4 *7 (-1000 *4 *5 *6)) (-4 *8 (-1039 *4 *5 *6 *7)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1085))
+ (-5 *1 (-1072 *4 *5 *6 *7 *8))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1034)) (-5 *1 (-1107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-1107))))
+ ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-1119))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-806)) (-5 *3 (-531)) (-5 *1 (-1119))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-730 *4 (-808 *5)))
+ (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *5 (-598 (-1102)))
+ (-5 *2 (-730 *4 (-808 *6))) (-5 *1 (-1208 *4 *5 *6))
+ (-14 *6 (-598 (-1102)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-895 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-730 *4 (-808 *6)))
+ (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *6 (-598 (-1102)))
+ (-5 *2 (-895 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6))
+ (-14 *5 (-598 (-1102)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1098 *4)) (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-1098 (-964 (-388 *4)))) (-5 *1 (-1208 *4 *5 *6))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102)))))
((*1 *2 *3)
(-12
- (-5 *3 (-1070 *4 (-502 (-806 *6)) (-806 *6) (-728 *4 (-806 *6))))
- (-4 *4 (-13 (-793) (-289) (-140) (-960))) (-14 *6 (-597 (-1099)))
- (-5 *2 (-597 (-728 *4 (-806 *6)))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-1029 *3))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-597 *4))) (-5 *1 (-845 *4))
- (-5 *3 (-597 *4))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-1027)) (-5 *2 (-1029 (-1029 *4))) (-5 *1 (-845 *4))
- (-5 *3 (-1029 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *2 (-1029 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
+ (-5 *3 (-1073 *4 (-503 (-808 *6)) (-808 *6) (-730 *4 (-808 *6))))
+ (-4 *4 (-13 (-795) (-289) (-140) (-962))) (-14 *6 (-598 (-1102)))
+ (-5 *2 (-598 (-730 *4 (-808 *6)))) (-5 *1 (-1208 *4 *5 *6))
+ (-14 *5 (-598 (-1102))))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1160 (-531))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-721))) (-5 *3 (-161)) (-5 *1 (-1091 *4 *5))
+ (-14 *4 (-864)) (-4 *5 (-986)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-975)) (-5 *1 (-699)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-289))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-427 *4 *5 *6 *2)))))
+(((*1 *2 *3) (-12 (-5 *2 (-531)) (-5 *1 (-536 *3)) (-4 *3 (-977 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *3 *4 *2 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))))
+(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-940 *3)) (-4 *3 (-162)) (-5 *1 (-749 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-598 *3)) (-5 *1 (-904 *3)) (-4 *3 (-516)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-372)))))
+(((*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *6))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-117 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-698)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3 (-531))) (-4 *3 (-986)) (-5 *1 (-96 *3))))
+ ((*1 *1 *2 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-96 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-96 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1098 *6)) (-5 *3 (-531)) (-4 *6 (-289)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4)))))
- ((*1 *1 *1) (-5 *1 (-360)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1138)) (-5 *1 (-816 *3 *2)) (-4 *3 (-1138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-911)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *1 *1) (|partial| -4 *1 (-138))) ((*1 *1 *1) (-4 *1 (-330)))
- ((*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-850)))))
-(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-110))
- (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-862)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-245)))))
-(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5))
- (-5 *2 (-597 *3)) (-5 *1 (-725 *4 *5 *6 *3 *7)) (-4 *3 (-1157 *6))
- (-14 *7 (-862)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1031)) (-5 *1 (-262)))))
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-947)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1135)) (-5 *1 (-814 *3 *2)) (-4 *3 (-1135))))
- ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4)))
- (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140)))
- (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-795) (-522))) (-5 *2 (-110)) (-5 *1 (-258 *4 *3))
- (-4 *3 (-13 (-411 *4) (-941))))))
+ (-12 (-4 *1 (-1160 *3)) (-4 *3 (-986)) (-5 *2 (-1098 *3)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
- (-4 *3 (-908)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-115 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-530))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-812 *3)) (-14 *3 *2)))
- ((*1 *1 *1) (-12 (-5 *1 (-812 *2)) (-14 *2 (-530))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-14 *3 *2) (-5 *1 (-813 *3 *4))
- (-4 *4 (-810 *3))))
- ((*1 *1 *1)
- (-12 (-14 *2 (-530)) (-5 *1 (-813 *2 *3)) (-4 *3 (-810 *2))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-4 *1 (-1143 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-1172 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1143 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1172 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
- (-5 *2 (-597 (-208))) (-5 *1 (-287)))))
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870))
+ (-5 *1 (-868 *3)) (-4 *3 (-573 (-507)))))
+ ((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *4 (-1102)) (-5 *5 (-1025 (-208))) (-5 *2 (-870))
+ (-5 *1 (-868 *3)) (-4 *3 (-573 (-507)))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869))))
+ ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-869))))
+ ((*1 *1 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-869))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870))))
+ ((*1 *1 *2 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-598 (-1 (-208) (-208)))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-1 (-208) (-208)))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797))
+ (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-598 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *3 *2 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-5 *1 (-839 *2 *3))
+ (-4 *2 (-1160 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975))
+ (-5 *1 (-706)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-836))
- (-5 *3
- (-2 (|:| |pde| (-597 (-297 (-208))))
- (|:| |constraints|
- (-597
- (-2 (|:| |start| (-208)) (|:| |finish| (-208))
- (|:| |grid| (-719)) (|:| |boundaryType| (-530))
- (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
- (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
- (|:| |tol| (-208))))
- (-5 *2 (-973)))))
+ (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249))))
+ ((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-998)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4))))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-721)) (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-797))
+ (-4 *3 (-1030)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef2| (-732 *3))))
+ (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))))
+(((*1 *2 *2 *2 *2 *3)
+ (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3)))))
(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4))
(-4 *4 (-398 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-751)))))
+(((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))) ((*1 *1) (-4 *1 (-516)))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649))))
+ ((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-649))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-1113 *2)) (-4 *2 (-344)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
- (-5 *2 (-597 (-597 (-597 (-884 *3))))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1027)) (-4 *2 (-795))
- (-5 *1 (-111 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-5 *2 (-597 *5))
- (-5 *1 (-831 *4 *5)) (-4 *5 (-1135)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *3 (-110)) (-5 *1 (-1037)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))))
-(((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
- (-5 *2 (-973)) (-5 *1 (-705)))))
-(((*1 *2 *1 *3 *3 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))))
-(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-1181 *5)) (-5 *3 (-719)) (-5 *4 (-1046)) (-4 *5 (-330))
- (-5 *1 (-500 *5)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+ (-12 (-5 *2 (-1083 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-148)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1181 *4)) (-4 *4 (-398 *3)) (-4 *3 (-289))
- (-4 *3 (-522)) (-5 *1 (-42 *3 *4))))
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))
((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-4 *4 (-344)) (-5 *2 (-1181 *1))
- (-4 *1 (-310 *4))))
- ((*1 *2) (-12 (-4 *3 (-344)) (-5 *2 (-1181 *1)) (-4 *1 (-310 *3))))
- ((*1 *2)
- (-12 (-4 *3 (-162)) (-4 *4 (-1157 *3)) (-5 *2 (-1181 *1))
- (-4 *1 (-390 *3 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4))
- (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6))
- (-4 *6 (-13 (-390 *4 *5) (-975 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4))
- (-5 *2 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))
- (-4 *6 (-390 *4 *5)) (-14 *7 *2)))
- ((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1181 *1)) (-4 *1 (-398 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 *4))) (-5 *1 (-500 *4))
- (-4 *4 (-330)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135)) (-14 *4 *2))))
-(((*1 *1 *2) (-12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))))
+ (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1083 *4)) (-4 *4 (-37 *3)) (-4 *4 (-986))
+ (-5 *3 (-388 (-531))) (-5 *1 (-1087 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-808 *5))) (-14 *5 (-598 (-1102))) (-4 *6 (-432))
+ (-5 *2
+ (-2 (|:| |dpolys| (-598 (-230 *5 *6)))
+ (|:| |coords| (-598 (-531)))))
+ (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-598 (-230 *5 *6))) (-4 *7 (-432)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-633 *4 *3)) (-4 *4 (-1030))
+ (-4 *3 (-1030)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986))
+ (-5 *2
+ (-2 (|:| -1943 (-721)) (|:| |curves| (-721))
+ (|:| |polygons| (-721)) (|:| |constructs| (-721)))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-721)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *2 (-986)) (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-1040)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245))))
+ ((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-740))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-46 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-742))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-49 *3 *4))
- (-14 *4 (-597 (-1099)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-49 *3 *4))
+ (-14 *4 (-598 (-1102)))))
((*1 *1 *2 *1 *1 *3)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-57 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-57 *6)) (-5 *1 (-56 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530))
- (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162))
+ (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-531))
+ (-14 *6 (-721)) (-4 *7 (-162)) (-4 *8 (-162))
(-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-159 *5)) (-4 *5 (-162))
(-4 *6 (-162)) (-5 *2 (-159 *6)) (-5 *1 (-158 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-297 *3) (-297 *3))) (-4 *3 (-13 (-984) (-795)))
- (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099)))))
+ (-12 (-5 *2 (-1 (-297 *3) (-297 *3))) (-4 *3 (-13 (-986) (-797)))
+ (-5 *1 (-206 *3 *4)) (-14 *4 (-598 (-1102)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719))
- (-4 *6 (-1135)) (-4 *7 (-1135)) (-5 *2 (-223 *5 *7))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-223 *5 *6)) (-14 *5 (-721))
+ (-4 *6 (-1138)) (-4 *7 (-1138)) (-5 *2 (-223 *5 *7))
(-5 *1 (-222 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-276 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-276 *6)) (-5 *1 (-275 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-276 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-276 *6)) (-5 *1 (-275 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-276 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-276 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1082)) (-5 *5 (-570 *6))
- (-4 *6 (-284)) (-4 *2 (-1135)) (-5 *1 (-279 *6 *2))))
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1085)) (-5 *5 (-571 *6))
+ (-4 *6 (-284)) (-4 *2 (-1138)) (-5 *1 (-279 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-570 *5)) (-4 *5 (-284))
+ (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-571 *5)) (-4 *5 (-284))
(-4 *2 (-284)) (-5 *1 (-280 *5 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-570 *1)) (-4 *1 (-284))))
+ (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-571 *1)) (-4 *1 (-284))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-637 *5)) (-4 *5 (-984))
- (-4 *6 (-984)) (-5 *2 (-637 *6)) (-5 *1 (-286 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-639 *5)) (-4 *5 (-986))
+ (-4 *6 (-986)) (-5 *2 (-639 *6)) (-5 *1 (-286 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-795))
- (-4 *6 (-795)) (-5 *2 (-297 *6)) (-5 *1 (-295 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-297 *5)) (-4 *5 (-797))
+ (-4 *6 (-797)) (-5 *2 (-297 *6)) (-5 *1 (-295 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-317 *5 *6 *7 *8)) (-4 *5 (-344))
- (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
- (-4 *9 (-344)) (-4 *10 (-1157 *9)) (-4 *11 (-1157 (-388 *10)))
+ (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
+ (-4 *9 (-344)) (-4 *10 (-1160 *9)) (-4 *11 (-1160 (-388 *10)))
(-5 *2 (-317 *9 *10 *11 *12))
(-5 *1 (-314 *5 *6 *7 *8 *9 *10 *11 *12))
(-4 *12 (-323 *9 *10 *11))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-319 *3)) (-4 *3 (-1030))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1139)) (-4 *8 (-1139))
- (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6))) (-4 *9 (-1157 *8))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1142)) (-4 *8 (-1142))
+ (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6))) (-4 *9 (-1160 *8))
(-4 *2 (-323 *8 *9 *10)) (-5 *1 (-321 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1157 (-388 *9)))))
+ (-4 *4 (-323 *5 *6 *7)) (-4 *10 (-1160 (-388 *9)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1135)) (-4 *6 (-1135))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1138)) (-4 *6 (-1138))
(-4 *2 (-354 *6)) (-5 *1 (-352 *5 *4 *6 *2)) (-4 *4 (-354 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-363 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-1027))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-363 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-1030))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-522))
- (-4 *6 (-522)) (-5 *2 (-399 *6)) (-5 *1 (-386 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-399 *5)) (-4 *5 (-523))
+ (-4 *6 (-523)) (-5 *2 (-399 *6)) (-5 *1 (-386 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-522))
- (-4 *6 (-522)) (-5 *2 (-388 *6)) (-5 *1 (-387 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-388 *5)) (-4 *5 (-523))
+ (-4 *6 (-523)) (-5 *2 (-388 *6)) (-5 *1 (-387 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-394 *5 *6 *7 *8)) (-4 *5 (-289))
- (-4 *6 (-932 *5)) (-4 *7 (-1157 *6))
- (-4 *8 (-13 (-390 *6 *7) (-975 *6))) (-4 *9 (-289))
- (-4 *10 (-932 *9)) (-4 *11 (-1157 *10))
+ (-4 *6 (-934 *5)) (-4 *7 (-1160 *6))
+ (-4 *8 (-13 (-390 *6 *7) (-977 *6))) (-4 *9 (-289))
+ (-4 *10 (-934 *9)) (-4 *11 (-1160 *10))
(-5 *2 (-394 *9 *10 *11 *12))
(-5 *1 (-393 *5 *6 *7 *8 *9 *10 *11 *12))
- (-4 *12 (-13 (-390 *10 *11) (-975 *10)))))
+ (-4 *12 (-13 (-390 *10 *11) (-977 *10)))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162))
(-4 *2 (-398 *6)) (-5 *1 (-396 *4 *5 *2 *6)) (-4 *4 (-398 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-522)) (-5 *1 (-399 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-523)) (-5 *1 (-399 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-984) (-795)))
- (-4 *6 (-13 (-984) (-795))) (-4 *2 (-411 *6))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-13 (-986) (-797)))
+ (-4 *6 (-13 (-986) (-797))) (-4 *2 (-411 *6))
(-5 *1 (-402 *5 *4 *6 *2)) (-4 *4 (-411 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030))
(-4 *2 (-406 *6)) (-5 *1 (-404 *5 *4 *6 *2)) (-4 *4 (-406 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-468 *3)) (-4 *3 (-1138))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-486 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-795))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-487 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-797))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-547 *5)) (-4 *5 (-344))
- (-4 *6 (-344)) (-5 *2 (-547 *6)) (-5 *1 (-546 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-548 *5)) (-4 *5 (-344))
+ (-4 *6 (-344)) (-5 *2 (-548 *6)) (-5 *1 (-547 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
- (-5 *4 (-3 (-2 (|:| -2104 *5) (|:| |coeff| *5)) "failed"))
+ (-5 *4 (-3 (-2 (|:| -2351 *5) (|:| |coeff| *5)) "failed"))
(-4 *5 (-344)) (-4 *6 (-344))
- (-5 *2 (-2 (|:| -2104 *6) (|:| |coeff| *6)))
- (-5 *1 (-546 *5 *6))))
+ (-5 *2 (-2 (|:| -2351 *6) (|:| |coeff| *6)))
+ (-5 *1 (-547 *5 *6))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed"))
- (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-546 *5 *2))))
+ (-4 *5 (-344)) (-4 *2 (-344)) (-5 *1 (-547 *5 *2))))
((*1 *2 *3 *4)
(|partial| -12 (-5 *3 (-1 *6 *5))
(-5 *4
(-3
(-2 (|:| |mainpart| *5)
(|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
+ (-598 (-2 (|:| |coeff| *5) (|:| |logand| *5)))))
"failed"))
(-4 *5 (-344)) (-4 *6 (-344))
(-5 *2
(-2 (|:| |mainpart| *6)
(|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
- (-5 *1 (-546 *5 *6))))
+ (-598 (-2 (|:| |coeff| *6) (|:| |logand| *6))))))
+ (-5 *1 (-547 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-560 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-560 *6)) (-5 *1 (-557 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-561 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-561 *6)) (-5 *1 (-558 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-560 *7))
- (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-560 *8))
- (-5 *1 (-558 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-561 *6)) (-5 *5 (-561 *7))
+ (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-561 *8))
+ (-5 *1 (-559 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1080 *6)) (-5 *5 (-560 *7))
- (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8))
- (-5 *1 (-558 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1083 *6)) (-5 *5 (-561 *7))
+ (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8))
+ (-5 *1 (-559 *6 *7 *8))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-560 *6)) (-5 *5 (-1080 *7))
- (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8))
- (-5 *1 (-558 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-561 *6)) (-5 *5 (-1083 *7))
+ (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8))
+ (-5 *1 (-559 *6 *7 *8))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-597 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-597 *6)) (-5 *1 (-595 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-598 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-598 *6)) (-5 *1 (-596 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-597 *6)) (-5 *5 (-597 *7))
- (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-597 *8))
- (-5 *1 (-596 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-598 *6)) (-5 *5 (-598 *7))
+ (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-598 *8))
+ (-5 *1 (-597 *6 *7 *8))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-604 *3)) (-4 *3 (-1138))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-984)) (-4 *8 (-984))
- (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-635 *8 *9 *10))
- (-5 *1 (-633 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-635 *5 *6 *7))
+ (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-986)) (-4 *8 (-986))
+ (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *2 (-637 *8 *9 *10))
+ (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-637 *5 *6 *7))
(-4 *9 (-354 *8)) (-4 *10 (-354 *8))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-984))
- (-4 *8 (-984)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5))
- (-4 *2 (-635 *8 *9 *10)) (-5 *1 (-633 *5 *6 *7 *4 *8 *9 *10 *2))
- (-4 *4 (-635 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-522)) (-4 *7 (-522))
- (-4 *6 (-1157 *5)) (-4 *2 (-1157 (-388 *8)))
- (-5 *1 (-658 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1157 (-388 *6)))
- (-4 *8 (-1157 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-984)) (-4 *9 (-984)) (-4 *5 (-795))
- (-4 *6 (-741)) (-4 *2 (-890 *9 *7 *5))
- (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741))
- (-4 *4 (-890 *8 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-795)) (-4 *6 (-795)) (-4 *7 (-741))
- (-4 *9 (-984)) (-4 *2 (-890 *9 *8 *6))
- (-5 *1 (-678 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-741))
- (-4 *4 (-890 *9 *7 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-684 *5 *7)) (-4 *5 (-984))
- (-4 *6 (-984)) (-4 *7 (-675)) (-5 *2 (-684 *6 *7))
- (-5 *1 (-683 *5 *6 *7))))
+ (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-986))
+ (-4 *8 (-986)) (-4 *6 (-354 *5)) (-4 *7 (-354 *5))
+ (-4 *2 (-637 *8 *9 *10)) (-5 *1 (-635 *5 *6 *7 *4 *8 *9 *10 *2))
+ (-4 *4 (-637 *5 *6 *7)) (-4 *9 (-354 *8)) (-4 *10 (-354 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-523)) (-4 *7 (-523))
+ (-4 *6 (-1160 *5)) (-4 *2 (-1160 (-388 *8)))
+ (-5 *1 (-660 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1160 (-388 *6)))
+ (-4 *8 (-1160 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-986)) (-4 *9 (-986)) (-4 *5 (-797))
+ (-4 *6 (-743)) (-4 *2 (-892 *9 *7 *5))
+ (-5 *1 (-679 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-743))
+ (-4 *4 (-892 *8 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-797)) (-4 *6 (-797)) (-4 *7 (-743))
+ (-4 *9 (-986)) (-4 *2 (-892 *9 *8 *6))
+ (-5 *1 (-680 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-743))
+ (-4 *4 (-892 *9 *7 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-686 *5 *7)) (-4 *5 (-986))
+ (-4 *6 (-986)) (-4 *7 (-677)) (-5 *2 (-686 *6 *7))
+ (-5 *1 (-685 *5 *6 *7))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-684 *3 *4))
- (-4 *4 (-675))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-686 *3 *4))
+ (-4 *4 (-677))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-730 *5)) (-4 *5 (-984))
- (-4 *6 (-984)) (-5 *2 (-730 *6)) (-5 *1 (-729 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-732 *5)) (-4 *5 (-986))
+ (-4 *6 (-986)) (-5 *2 (-732 *6)) (-5 *1 (-731 *5 *6))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162))
- (-4 *2 (-745 *6)) (-5 *1 (-746 *4 *5 *2 *6)) (-4 *4 (-745 *5))))
+ (-4 *2 (-747 *6)) (-5 *1 (-748 *4 *5 *2 *6)) (-4 *4 (-747 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-781 *6)) (-5 *1 (-780 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5)) (-4 *5 (-1030))
+ (-4 *6 (-1030)) (-5 *2 (-783 *6)) (-5 *1 (-782 *5 *6))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-781 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-781 *5))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-780 *5 *6))))
+ (-12 (-5 *2 (-783 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-783 *5))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *1 (-782 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-788 *6)) (-5 *1 (-787 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5)) (-4 *5 (-1030))
+ (-4 *6 (-1030)) (-5 *2 (-790 *6)) (-5 *1 (-789 *5 *6))))
((*1 *2 *3 *4 *2 *2)
- (-12 (-5 *2 (-788 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-788 *5))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-5 *1 (-787 *5 *6))))
+ (-12 (-5 *2 (-790 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-790 *5))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-5 *1 (-789 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-818 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-818 *6)) (-5 *1 (-817 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-820 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-820 *6)) (-5 *1 (-819 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-822 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-822 *6)) (-5 *1 (-821 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-823 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-823 *6)) (-5 *1 (-822 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-825 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-825 *6)) (-5 *1 (-824 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-830 *5 *6)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-830 *5 *7))
- (-5 *1 (-829 *5 *6 *7))))
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-832 *5 *6)) (-4 *5 (-1030))
+ (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-832 *5 *7))
+ (-5 *1 (-831 *5 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-833 *6)) (-5 *1 (-832 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-835 *5)) (-4 *5 (-1030))
+ (-4 *6 (-1030)) (-5 *2 (-835 *6)) (-5 *1 (-834 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-984))
- (-4 *6 (-984)) (-5 *2 (-893 *6)) (-5 *1 (-887 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-895 *5)) (-4 *5 (-986))
+ (-4 *6 (-986)) (-5 *2 (-895 *6)) (-5 *1 (-889 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-795))
- (-4 *8 (-984)) (-4 *6 (-741))
+ (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-797))
+ (-4 *8 (-986)) (-4 *6 (-743))
(-4 *2
- (-13 (-1027)
- (-10 -8 (-15 -2339 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-719))))))
- (-5 *1 (-892 *6 *7 *8 *5 *2)) (-4 *5 (-890 *8 *6 *7))))
+ (-13 (-1030)
+ (-10 -8 (-15 -2237 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-721))))))
+ (-5 *1 (-894 *6 *7 *8 *5 *2)) (-4 *5 (-892 *8 *6 *7))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-899 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-899 *6)) (-5 *1 (-898 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-901 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-901 *6)) (-5 *1 (-900 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-884 *5)) (-4 *5 (-984))
- (-4 *6 (-984)) (-5 *2 (-884 *6)) (-5 *1 (-921 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-886 *5)) (-4 *5 (-986))
+ (-4 *6 (-986)) (-5 *2 (-886 *6)) (-5 *1 (-923 *5 *6))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 *2 (-893 *4))) (-4 *4 (-984))
- (-4 *2 (-890 (-893 *4) *5 *6)) (-4 *5 (-741))
+ (-12 (-5 *3 (-1 *2 (-895 *4))) (-4 *4 (-986))
+ (-4 *2 (-892 (-895 *4) *5 *6)) (-4 *5 (-743))
(-4 *6
- (-13 (-795)
- (-10 -8 (-15 -3260 ((-1099) $))
- (-15 -4007 ((-3 $ "failed") (-1099))))))
- (-5 *1 (-924 *4 *5 *6 *2))))
+ (-13 (-797)
+ (-10 -8 (-15 -3318 ((-1102) $))
+ (-15 -3524 ((-3 $ "failed") (-1102))))))
+ (-5 *1 (-926 *4 *5 *6 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-522)) (-4 *6 (-522))
- (-4 *2 (-932 *6)) (-5 *1 (-930 *5 *6 *4 *2)) (-4 *4 (-932 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-523)) (-4 *6 (-523))
+ (-4 *2 (-934 *6)) (-5 *1 (-932 *5 *6 *4 *2)) (-4 *4 (-934 *5))))
((*1 *2 *3 *4)
(-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-162)) (-4 *6 (-162))
- (-4 *2 (-936 *6)) (-5 *1 (-937 *4 *5 *2 *6)) (-4 *4 (-936 *5))))
+ (-4 *2 (-938 *6)) (-5 *1 (-939 *4 *5 *2 *6)) (-4 *4 (-938 *5))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-987 *3 *4 *5 *6 *7))
- (-4 *5 (-984)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5))))
+ (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-989 *3 *4 *5 *6 *7))
+ (-4 *5 (-986)) (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
+ (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
(-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-984)) (-4 *10 (-984))
- (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7))
- (-4 *9 (-221 *5 *7)) (-4 *2 (-987 *5 *6 *10 *11 *12))
- (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
- (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10))
+ (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-986)) (-4 *10 (-986))
+ (-14 *5 (-721)) (-14 *6 (-721)) (-4 *8 (-221 *6 *7))
+ (-4 *9 (-221 *5 *7)) (-4 *2 (-989 *5 *6 *10 *11 *12))
+ (-5 *1 (-991 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2))
+ (-4 *4 (-989 *5 *6 *7 *8 *9)) (-4 *11 (-221 *6 *10))
(-4 *12 (-221 *5 *10))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1022 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-1022 *6)) (-5 *1 (-1018 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1025 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-1025 *6)) (-5 *1 (-1021 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1022 *5)) (-4 *5 (-793))
- (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-597 *6))
- (-5 *1 (-1018 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1025 *5)) (-4 *5 (-795))
+ (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-598 *6))
+ (-5 *1 (-1021 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1020 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-1020 *6)) (-5 *1 (-1019 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1023 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-1023 *6)) (-5 *1 (-1022 *5 *6))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1023 *4 *2)) (-4 *4 (-793))
- (-4 *2 (-1073 *4))))
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1026 *4 *2)) (-4 *4 (-795))
+ (-4 *2 (-1076 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1080 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-1080 *6)) (-5 *1 (-1078 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1083 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-1083 *6)) (-5 *1 (-1081 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1080 *6)) (-5 *5 (-1080 *7))
- (-4 *6 (-1135)) (-4 *7 (-1135)) (-4 *8 (-1135)) (-5 *2 (-1080 *8))
- (-5 *1 (-1079 *6 *7 *8))))
+ (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1083 *6)) (-5 *5 (-1083 *7))
+ (-4 *6 (-1138)) (-4 *7 (-1138)) (-4 *8 (-1138)) (-5 *2 (-1083 *8))
+ (-5 *1 (-1082 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1095 *5)) (-4 *5 (-984))
- (-4 *6 (-984)) (-5 *2 (-1095 *6)) (-5 *1 (-1093 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1098 *5)) (-4 *5 (-986))
+ (-4 *6 (-986)) (-5 *2 (-1098 *6)) (-5 *1 (-1096 *5 *6))))
((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1112 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027))))
+ (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1115 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1145 *5 *7 *9)) (-4 *5 (-984))
- (-4 *6 (-984)) (-14 *7 (-1099)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1145 *6 *8 *10)) (-5 *1 (-1140 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1099))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5 *7 *9)) (-4 *5 (-986))
+ (-4 *6 (-986)) (-14 *7 (-1102)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1148 *6 *8 *10)) (-5 *1 (-1143 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-1148 *6)) (-5 *1 (-1147 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-1151 *6)) (-5 *1 (-1150 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1148 *5)) (-4 *5 (-793))
- (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1080 *6))
- (-5 *1 (-1147 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1151 *5)) (-4 *5 (-795))
+ (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1083 *6))
+ (-5 *1 (-1150 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1154 *5 *6)) (-14 *5 (-1099))
- (-4 *6 (-984)) (-4 *8 (-984)) (-5 *2 (-1154 *7 *8))
- (-5 *1 (-1149 *5 *6 *7 *8)) (-14 *7 (-1099))))
+ (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1157 *5 *6)) (-14 *5 (-1102))
+ (-4 *6 (-986)) (-4 *8 (-986)) (-5 *2 (-1157 *7 *8))
+ (-5 *1 (-1152 *5 *6 *7 *8)) (-14 *7 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984))
- (-4 *2 (-1157 *6)) (-5 *1 (-1155 *5 *4 *6 *2)) (-4 *4 (-1157 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-986)) (-4 *6 (-986))
+ (-4 *2 (-1160 *6)) (-5 *1 (-1158 *5 *4 *6 *2)) (-4 *4 (-1160 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1166 *5 *7 *9)) (-4 *5 (-984))
- (-4 *6 (-984)) (-14 *7 (-1099)) (-14 *9 *5) (-14 *10 *6)
- (-5 *2 (-1166 *6 *8 *10)) (-5 *1 (-1161 *5 *6 *7 *8 *9 *10))
- (-14 *8 (-1099))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1169 *5 *7 *9)) (-4 *5 (-986))
+ (-4 *6 (-986)) (-14 *7 (-1102)) (-14 *9 *5) (-14 *10 *6)
+ (-5 *2 (-1169 *6 *8 *10)) (-5 *1 (-1164 *5 *6 *7 *8 *9 *10))
+ (-14 *8 (-1102))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-984)) (-4 *6 (-984))
- (-4 *2 (-1172 *6)) (-5 *1 (-1170 *5 *6 *4 *2)) (-4 *4 (-1172 *5))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-986)) (-4 *6 (-986))
+ (-4 *2 (-1175 *6)) (-5 *1 (-1173 *5 *6 *4 *2)) (-4 *4 (-1175 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-1135))
- (-4 *6 (-1135)) (-5 *2 (-1181 *6)) (-5 *1 (-1180 *5 *6))))
+ (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-1138))
+ (-4 *6 (-1138)) (-5 *2 (-1184 *6)) (-5 *1 (-1183 *5 *6))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1181 *5))
- (-4 *5 (-1135)) (-4 *6 (-1135)) (-5 *2 (-1181 *6))
- (-5 *1 (-1180 *5 *6))))
+ (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1184 *5))
+ (-4 *5 (-1138)) (-4 *6 (-1138)) (-5 *2 (-1184 *6))
+ (-5 *1 (-1183 *5 *6))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984))))
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-986))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-1202 *3 *4))
- (-4 *4 (-791)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *3 *4 *5 *5 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *3 (-893 *6)) (-5 *4 (-1099))
- (-5 *5 (-788 *7))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-4 *7 (-13 (-1121) (-29 *6))) (-5 *1 (-207 *6 *7))))
- ((*1 *2 *3 *4 *4 *2)
- (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1095 *6)) (-5 *4 (-788 *6))
- (-4 *6 (-13 (-1121) (-29 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-207 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-523 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(((*1 *2 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *5 (-1099))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-597 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1121) (-27) (-411 *8)))
- (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3)))
- (-5 *3 (-530))
- (-5 *2 (-2 (|:| |ans| *4) (|:| -3638 *4) (|:| |sol?| (-110))))
- (-5 *1 (-952 *8 *4)))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-289)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-570 *5)) (-4 *5 (-411 *4)) (-4 *4 (-975 (-530)))
- (-4 *4 (-13 (-795) (-522))) (-5 *2 (-1095 *5)) (-5 *1 (-31 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-570 *1)) (-4 *1 (-984)) (-4 *1 (-284))
- (-5 *2 (-1095 *1)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522)))))
-(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
- (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-1205 *3 *4))
+ (-4 *4 (-793)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189))
+ (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189))
+ (-5 *1 (-1038 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-721)) (-4 *6 (-1030)) (-4 *3 (-843 *6))
+ (-5 *2 (-639 *3)) (-5 *1 (-642 *6 *3 *7 *4)) (-4 *7 (-354 *3))
+ (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4273)))))))
+(((*1 *1 *1) (-4 *1 (-523))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-772)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-14 *5 (-597 (-1099)))
+ (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-14 *5 (-598 (-1102)))
(-5 *2
- (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4))))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
+ (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4))))))
+ (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102)))))
((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962)))
(-5 *2
- (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5))))))
+ (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5)))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962)))
(-5 *2
- (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5))))))
+ (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5)))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-793) (-289) (-140) (-960)))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-795) (-289) (-140) (-962)))
(-5 *2
- (-597 (-2 (|:| -1258 (-1095 *5)) (|:| -2328 (-597 (-893 *5))))))
- (-5 *1 (-1205 *5 *6 *7)) (-5 *3 (-597 (-893 *5)))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
+ (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5))))))
+ (-5 *1 (-1208 *5 *6 *7)) (-5 *3 (-598 (-895 *5)))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-793) (-289) (-140) (-960)))
+ (-12 (-4 *4 (-13 (-795) (-289) (-140) (-962)))
(-5 *2
- (-597 (-2 (|:| -1258 (-1095 *4)) (|:| -2328 (-597 (-893 *4))))))
- (-5 *1 (-1205 *4 *5 *6)) (-5 *3 (-597 (-893 *4)))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
- (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
- (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(((*1 *2)
- (-12 (-5 *2 (-2 (|:| -2594 (-597 *3)) (|:| -3884 (-597 *3))))
- (-5 *1 (-1136 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-4 *7 (-890 *4 *6 *5))
+ (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4))))))
+ (-5 *1 (-1208 *4 *5 *6)) (-5 *3 (-598 (-895 *4)))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-31 *3 *4))
+ (-4 *4 (-411 *3))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-721)) (-5 *1 (-112))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-112))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *4))
+ (-4 *4 (-411 *3))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-112)) (-5 *1 (-153))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *4))
+ (-4 *4 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-112)) (-5 *1 (-283 *3)) (-4 *3 (-284))))
+ ((*1 *2 *2) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *4 (-797)) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *4))
+ (-4 *4 (-411 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-112)) (-5 *1 (-571 *3)) (-4 *3 (-797))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-112)) (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *4))
+ (-4 *4 (-13 (-411 *3) (-943) (-1124))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344))
+ (-5 *1 (-498 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2))
+ (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162))
+ (-5 *1 (-638 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-2 (|:| |preimage| (-598 *3)) (|:| |image| (-598 *3))))
+ (-5 *1 (-848 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-1189))
+ (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-1049)) (-5 *2 (-110)) (-5 *1 (-771)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6))
+ (-4 *6 (-344)) (-4 *7 (-1160 *6))
(-5 *2
- (-2 (|:| |sysok| (-110)) (|:| |z0| (-597 *7)) (|:| |n0| (-597 *7))))
- (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+ (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
+ (-2 (|:| -2351 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
+ (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-637 (-893 *4))) (-5 *1 (-966 *4))
- (-4 *4 (-984)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
-(((*1 *2 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-996)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |pde| (-598 (-297 (-208))))
+ (|:| |constraints|
+ (-598
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208))
+ (|:| |grid| (-721)) (|:| |boundaryType| (-531))
+ (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208))))))
+ (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085))
+ (|:| |tol| (-208))))
+ (-5 *2 (-110)) (-5 *1 (-194)))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-448)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1166 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5))
- (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-399 *3)) (-4 *3 (-522))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-647))))
+ (-12 (-4 *4 (-344)) (-4 *4 (-523)) (-4 *5 (-1160 *4))
+ (-5 *2 (-2 (|:| -1994 (-579 *4 *5)) (|:| -1764 (-388 *5))))
+ (-5 *1 (-579 *4 *5)) (-5 *3 (-388 *5))))
((*1 *2 *1)
- (-12 (-4 *2 (-1027)) (-5 *1 (-662 *3 *2 *4)) (-4 *3 (-795))
- (-14 *4
- (-1 (-110) (-2 (|:| -1986 *3) (|:| -3194 *2))
- (-2 (|:| -1986 *3) (|:| -3194 *2)))))))
+ (-12 (-5 *2 (-598 (-1091 *3 *4))) (-5 *1 (-1091 *3 *4))
+ (-14 *3 (-864)) (-4 *4 (-986))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-432)) (-4 *3 (-986))
+ (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
+ (-4 *1 (-1160 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-919 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 *7)) (-5 *3 (-110)) (-4 *7 (-1000 *4 *5 *6))
+ (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *1 (-919 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986)) (-4 *2 (-344))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-612 *4 *2))
+ (-4 *2 (-609 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-797)) (-5 *2 (-598 (-617 *4 *5)))
+ (-5 *1 (-582 *4 *5 *6)) (-4 *5 (-13 (-162) (-668 (-388 (-531)))))
+ (-14 *6 (-864)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-984)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| |val| *1) (|:| -3194 (-530)))) (-4 *1 (-411 *3))))
- ((*1 *2 *1)
- (|partial| -12
- (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3194 (-833 *3))))
- (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5))
- (-5 *2 (-2 (|:| |val| *3) (|:| -3194 (-530))))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
- (-15 -1928 (*7 $))))))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *3) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-527)) (-5 *3 (-530))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *2 *3 *3 *2 *4)
- (-12 (-5 *3 (-637 *2)) (-5 *4 (-530))
- (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))))
-(((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *1 *1) (-5 *1 (-208)))
- ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-432))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *1))))
+ (-4 *1 (-1005 *4 *5 *6 *3))))
+ ((*1 *1 *1) (-4 *1 (-1142)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1) (-4 *1 (-1063))) ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110)))))
+ (-12 (-4 *3 (-523)) (-5 *1 (-1163 *3 *2))
+ (-4 *2 (-13 (-1160 *3) (-523) (-10 -8 (-15 -2109 ($ $ $))))))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1) (-5 *1 (-806))))
+(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *2 (-975)) (-5 *1 (-702)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
- (-5 *2 (-460 *4 *5)) (-5 *1 (-885 *4 *5)))))
-(((*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
+ (-12 (-5 *3 (-721)) (-4 *4 (-344)) (-4 *5 (-1160 *4)) (-5 *2 (-1189))
+ (-5 *1 (-39 *4 *5 *6 *7)) (-4 *6 (-1160 (-388 *5))) (-14 *7 *6))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-1118 *4))
- (-4 *4 (-984)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
- (-4 *3 (-1027)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-884 (-208)))) (-5 *1 (-1182)))))
-(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-862)) (-4 *5 (-522)) (-5 *2 (-637 *5))
- (-5 *1 (-897 *5 *3)) (-4 *3 (-607 *5)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-60 *3)) (-14 *3 (-1099))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-67 *3)) (-14 *3 (-1099))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-70 *3)) (-14 *3 (-1099))))
- ((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-1186))))
- ((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-378))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
- ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))))
-(((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515))))
- ((*1 *1 *1) (-4 *1 (-993))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530))
- (-5 *2 (-973)) (-5 *1 (-707)))))
+ (|partial| -12 (-4 *4 (-13 (-523) (-140)))
+ (-5 *2 (-2 (|:| -3144 *3) (|:| -3157 *3))) (-5 *1 (-1154 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-721)) (-5 *3 (-886 *4)) (-4 *1 (-1063 *4))
+ (-4 *4 (-986))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-721)) (-5 *4 (-886 (-208))) (-5 *2 (-1189))
+ (-5 *1 (-1186)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4))))
- (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-208))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-388 (-530))) (-5 *1 (-360)))))
-(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
- (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-208))
- (-5 *7 (-637 (-530))) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-163 *3)) (-4 *3 (-289))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-624 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-689 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-795))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *1 (-920 *3)) (-4 *3 (-984))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-5 *3 (-597 *7)) (-4 *1 (-1003 *4 *5 *6 *7))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *4 *5 *6 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
+ (-12 (-5 *2 (-598 (-1098 (-531)))) (-5 *1 (-175)) (-5 *3 (-531)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-516))))
+(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
+(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12
+ (-5 *3
+ (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4))
+ (-4 *4 (-344)) (-5 *1 (-541 *4 *2)) (-4 *2 (-1160 *4)))))
+(((*1 *1 *1) (-5 *1 (-998))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030))
+ (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-986))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806))))
+ ((*1 *1 *1) (-5 *1 (-806)))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-886 (-208))) (-5 *2 (-208)) (-5 *1 (-1135))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 *1)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-986)) (-5 *1 (-639 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 *4)) (-4 *4 (-986)) (-4 *1 (-1052 *3 *4 *5 *6))
+ (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3176 *4)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102))
+ (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-721)) (-5 *1 (-112)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027))))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-1081))))
- ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1099)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *3 (-530)) (-4 *1 (-810 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-372)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-1181 (-637 *4))) (-5 *1 (-88 *4 *5))
- (-5 *3 (-637 *4)) (-4 *5 (-607 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-998 *3 *4 *5)))))
+ (-12 (-5 *2 (-399 (-1098 (-531)))) (-5 *1 (-175)) (-5 *3 (-531)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -2109 *3)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *1 *1 *1) (-4 *1 (-453))) ((*1 *1 *1 *1) (-4 *1 (-712))))
+(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
+ (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531)))
+ (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-708)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *1 *2 *3 *3 *4 *5)
+ (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817)))
+ (-5 *4 (-598 (-864))) (-5 *5 (-598 (-245))) (-5 *1 (-448))))
+ ((*1 *1 *2 *3 *3 *4)
+ (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817)))
+ (-5 *4 (-598 (-864))) (-5 *1 (-448))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448))))
+ ((*1 *1 *1) (-5 *1 (-448))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-5 *2 (-110)) (-5 *1 (-867 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-110))
+ (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-779)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432))
+ (-5 *2
+ (-598
+ (-2 (|:| |eigval| (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4))))
+ (|:| |geneigvec| (-598 (-639 (-388 (-895 *4))))))))
+ (-5 *1 (-274 *4)) (-5 *3 (-639 (-388 (-895 *4)))))))
+(((*1 *2 *3 *4 *2 *2 *5)
+ (|partial| -12 (-5 *2 (-790 *4)) (-5 *3 (-571 *4)) (-5 *5 (-110))
+ (-4 *4 (-13 (-1124) (-29 *6)))
+ (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-207 *6 *4)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-60 *3)) (-14 *3 (-1102))))
+ ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-67 *3)) (-14 *3 (-1102))))
+ ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-70 *3)) (-14 *3 (-1102))))
+ ((*1 *2 *1) (-12 (-4 *1 (-376)) (-5 *2 (-1189))))
+ ((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1189)) (-5 *1 (-378))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065))))
+ ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-598 (-639 (-531))))
+ (-5 *1 (-1040)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1124) (-943))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1138))
+ (-4 *5 (-1138)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-721))
+ (-4 *7 (-1138)) (-4 *5 (-1138)) (-5 *2 (-223 *6 *5))
+ (-5 *1 (-222 *6 *7 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1138)) (-4 *5 (-1138))
+ (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1030)) (-4 *5 (-1030))
+ (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-598 *6)) (-4 *6 (-1138))
+ (-4 *5 (-1138)) (-5 *2 (-598 *5)) (-5 *1 (-596 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-901 *6)) (-4 *6 (-1138))
+ (-4 *5 (-1138)) (-5 *2 (-901 *5)) (-5 *1 (-900 *6 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1083 *6)) (-4 *6 (-1138))
+ (-4 *3 (-1138)) (-5 *2 (-1083 *3)) (-5 *1 (-1081 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1184 *6)) (-4 *6 (-1138))
+ (-4 *5 (-1138)) (-5 *2 (-1184 *5)) (-5 *1 (-1183 *6 *5)))))
(((*1 *2 *1)
- (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *4)) (-5 *1 (-826 *3 *4 *5))
- (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
+ (-12 (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1138))
+ (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-557 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-915 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-742))
+ (-4 *5 (-797)) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))
+ (-5 *2 (-1184 *6)) (-5 *1 (-317 *3 *4 *5 *6))
+ (-4 *6 (-323 *3 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-743))
+ (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *5 (-523))
+ (-5 *1 (-683 *4 *3 *5 *2)) (-4 *2 (-892 (-388 (-895 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-986)) (-4 *5 (-743))
+ (-4 *3
+ (-13 (-797)
+ (-10 -8 (-15 -3318 ((-1102) $))
+ (-15 -3524 ((-3 $ "failed") (-1102))))))
+ (-5 *1 (-926 *4 *5 *3 *2)) (-4 *2 (-892 (-895 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 *6))
+ (-4 *6
+ (-13 (-797)
+ (-10 -8 (-15 -3318 ((-1102) $))
+ (-15 -3524 ((-3 $ "failed") (-1102))))))
+ (-4 *4 (-986)) (-4 *5 (-743)) (-5 *1 (-926 *4 *5 *6 *2))
+ (-4 *2 (-892 (-895 *4) *5 *6)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-968 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 (-639 *3))) (-4 *3 (-986)) (-5 *1 (-968 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-968 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-639 *3))) (-4 *3 (-986)) (-5 *1 (-968 *3)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *2 (-523)) (-5 *1 (-912 *2 *4))
+ (-4 *4 (-1160 *2)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-1181 (-597 (-2 (|:| -3417 (-851 *3)) (|:| -1986 (-1046))))))
- (-5 *1 (-332 *3 *4)) (-14 *3 (-862)) (-14 *4 (-862))))
- ((*1 *2)
- (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046))))))
- (-5 *1 (-333 *3 *4)) (-4 *3 (-330)) (-14 *4 (-3 (-1095 *3) *2))))
- ((*1 *2)
- (-12 (-5 *2 (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046))))))
- (-5 *1 (-334 *3 *4)) (-4 *3 (-330)) (-14 *4 (-862)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-429 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-448)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1186)) (-5 *1 (-372))))
- ((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-372)))))
+ (-5 *3
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-1083 (-208))) (-5 *1 (-176))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-598 (-1102)))
+ (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *4 (-598 (-1102)))
+ (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-372)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1083 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-531))) (-4 *3 (-986)) (-5 *1 (-556 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-531))) (-4 *1 (-1144 *3)) (-4 *3 (-986))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 (-531))) (-4 *1 (-1175 *3)) (-4 *3 (-986)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-1160 *4)) (-4 *4 (-986))
+ (-5 *2 (-1184 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1029 *4)) (-4 *4 (-1027)) (-5 *2 (-1 *4))
- (-5 *1 (-956 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-360))) (-5 *1 (-977)) (-5 *3 (-360))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-530))) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-344)) (-4 *6 (-1157 (-388 *2)))
- (-4 *2 (-1157 *5)) (-5 *1 (-199 *5 *2 *6 *3))
- (-4 *3 (-323 *5 *2 *6)))))
+ (-12 (-5 *3 (-598 (-2 (|:| -3482 *4) (|:| -3449 (-531)))))
+ (-4 *4 (-1030)) (-5 *2 (-1 *4)) (-5 *1 (-958 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 (-598 *5))) (-4 *5 (-1175 *4))
+ (-4 *4 (-37 (-388 (-531))))
+ (-5 *2 (-1 (-1083 *4) (-598 (-1083 *4)))) (-5 *1 (-1177 *4 *5)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *2 (-986)) (-5 *1 (-49 *2 *3)) (-14 *3 (-598 (-1102)))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 (-864))) (-4 *2 (-344)) (-5 *1 (-145 *4 *2 *5))
+ (-14 *4 (-864)) (-14 *5 (-935 *4 *2))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4))
+ (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102)))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-128))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-986))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *2 (-523)) (-5 *1 (-579 *2 *4))
+ (-4 *4 (-1160 *2))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-659 *2)) (-4 *2 (-986))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-986)) (-5 *1 (-686 *2 *3)) (-4 *3 (-677))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 *5)) (-5 *3 (-598 (-721))) (-4 *1 (-691 *4 *5))
+ (-4 *4 (-986)) (-4 *5 (-797))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *2)) (-4 *4 (-986))
+ (-4 *2 (-797))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-721)) (-4 *1 (-799 *2)) (-4 *2 (-986))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 (-721))) (-4 *1 (-892 *4 *5 *6))
+ (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *1 (-892 *4 *5 *2)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *2 (-797))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-4 *2 (-892 *4 (-503 *5) *5))
+ (-5 *1 (-1055 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-797))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-895 *4)) (-5 *1 (-1133 *4))
+ (-4 *4 (-986)))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-415)) (-4 *5 (-797))
+ (-5 *1 (-1036 *5 *4)) (-4 *4 (-411 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-530))
- (-14 *6 (-719)) (-4 *7 (-162)) (-4 *8 (-162))
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-132 *5 *6 *7)) (-14 *5 (-531))
+ (-14 *6 (-721)) (-4 *7 (-162)) (-4 *8 (-162))
(-5 *2 (-132 *5 *6 *8)) (-5 *1 (-131 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *9)) (-4 *9 (-984)) (-4 *5 (-795)) (-4 *6 (-741))
- (-4 *8 (-984)) (-4 *2 (-890 *9 *7 *5))
- (-5 *1 (-677 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-741))
- (-4 *4 (-890 *8 *6 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
+ (-12 (-5 *3 (-598 *9)) (-4 *9 (-986)) (-4 *5 (-797)) (-4 *6 (-743))
+ (-4 *8 (-986)) (-4 *2 (-892 *9 *7 *5))
+ (-5 *1 (-679 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-743))
+ (-4 *4 (-892 *8 *6 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-48))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-462)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1138))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-571 *1))) (-5 *3 (-598 *1)) (-4 *1 (-284))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-276 *1))) (-4 *1 (-284))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
+(((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4
+ *4 *6 *4)
+ (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208))) (-5 *6 (-627 (-208)))
+ (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-701)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
+ (-4 *2 (-1160 *4))))
+ ((*1 *2 *2 *3 *2 *3)
+ (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $))
+ (-15 -1853 ((-1054 *3 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *3 (-571 $)))))))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-40 *3 *2))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $))
+ (-15 -1853 ((-1054 *3 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *3 (-571 $)))))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 *2))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $))
+ (-15 -1853 ((-1054 *4 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *4 (-571 $)))))))
+ (-4 *4 (-523)) (-5 *1 (-40 *4 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 (-571 *2)))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $))
+ (-15 -1853 ((-1054 *4 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *4 (-571 $)))))))
+ (-4 *4 (-523)) (-5 *1 (-40 *4 *2)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
- (-4 *3 (-908)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+ (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-369)) (-5 *2 (-1189)) (-5 *1 (-372))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-372)))))
+(((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1160 *2))
+ (-4 *2 (-162))))
+ ((*1 *2)
+ (-12 (-4 *4 (-1160 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4))
+ (-4 *3 (-390 *2 *4))))
+ ((*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1160 *2)) (-5 *2 (-531)) (-5 *1 (-718 *3 *4))
+ (-4 *4 (-390 *2 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)) (-4 *3 (-162))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-162)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-698)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 (-230 *4 *5))) (-5 *2 (-230 *4 *5))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-586 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-793))) (-5 *1 (-169 *3 *2))
- (-4 *2 (-1157 (-159 *3))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-388 (-893 *4))) (-5 *1 (-865 *4 *5 *6 *3))
- (-4 *3 (-890 *4 *6 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-637 (-388 (-893 *4))))
- (-5 *1 (-865 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-597 (-388 (-893 *4))))
- (-5 *1 (-865 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))
- (-14 *4 (-719)) (-4 *5 (-162)))))
-(((*1 *2 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-330)) (-5 *3 (-530)) (-5 *2 (-1109 (-862) (-719))))))
+ (-12 (-5 *2 (-598 *5)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531))
+ (-14 *4 (-721)) (-4 *5 (-162)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-4 *7 (-797))
+ (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743)) (-4 *8 (-289))
+ (-5 *2 (-598 (-721))) (-5 *1 (-693 *6 *7 *8 *9)) (-5 *5 (-721)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-89 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 (-1 *6 (-598 *6))))
+ (-4 *5 (-37 (-388 (-531)))) (-4 *6 (-1175 *5)) (-5 *2 (-598 *6))
+ (-5 *1 (-1177 *5 *6)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-276 (-893 (-530))))
- (-5 *2
- (-2 (|:| |varOrder| (-597 (-1099)))
- (|:| |inhom| (-3 (-597 (-1181 (-719))) "failed"))
- (|:| |hom| (-597 (-1181 (-719))))))
- (-5 *1 (-219)))))
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110))
+ (-5 *1 (-31 *4 *5)) (-4 *5 (-411 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110))
+ (-5 *1 (-149 *4 *5)) (-4 *5 (-411 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110))
+ (-5 *1 (-258 *4 *5)) (-4 *5 (-13 (-411 *4) (-943)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-283 *4)) (-4 *4 (-284))))
+ ((*1 *2 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-410 *4 *5)) (-4 *4 (-411 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110))
+ (-5 *1 (-412 *4 *5)) (-4 *5 (-411 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-112)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-110))
+ (-5 *1 (-585 *4 *5)) (-4 *5 (-13 (-411 *4) (-943) (-1124))))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-344)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-148))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-721)) (-5 *1 (-549 *2)) (-4 *2 (-516))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -3276 *3) (|:| -1790 (-721)))) (-5 *1 (-549 *3))
+ (-4 *3 (-516)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099)))))
+ (-12
+ (-5 *2
+ (-598
+ (-2
+ (|:| -3033
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -1798
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1083 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2368
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite|
+ "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated"))))))))
+ (-5 *1 (-526))))
((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
- (-14 *4 (-597 (-1099))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+ (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138))
+ (-5 *2 (-598 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))))
+(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
+ (|partial| -12 (-5 *5 (-1102))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-598 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1124) (-27) (-411 *8)))
+ (-4 *8 (-13 (-432) (-797) (-140) (-977 *3) (-594 *3)))
+ (-5 *3 (-531)) (-5 *2 (-598 *4)) (-5 *1 (-955 *8 *4)))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-148)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *3 (-986))
+ (-5 *1 (-1087 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3))
+ (-4 *3 (-1160 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1116 *4 *5))
+ (-4 *4 (-1030)) (-4 *5 (-1030)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1169 *3 *4 *5)) (-4 *3 (-13 (-344) (-797)))
+ (-14 *4 (-1102)) (-14 *5 *3) (-5 *1 (-300 *3 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135))))
+ (|partial| -12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1138))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (|partial| -12 (-5 *2 (-895 (-360))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-388 (-893 (-360)))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (|partial| -12 (-5 *2 (-388 (-895 (-360)))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-893 (-530))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (|partial| -12 (-5 *2 (-895 (-531))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-388 (-893 (-530)))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (|partial| -12 (-5 *2 (-388 (-895 (-531)))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-297 (-530))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (|partial| -12 (-5 *2 (-297 (-531))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-320 *3 *4 *5))
- (-14 *3 (-597 *2)) (-14 *4 (-597 *2)) (-4 *5 (-368))))
+ (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-320 *3 *4 *5))
+ (-14 *3 (-598 *2)) (-14 *4 (-598 *2)) (-4 *5 (-368))))
((*1 *1 *2)
(|partial| -12 (-5 *2 (-297 *5)) (-4 *5 (-368))
- (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099)))))
+ (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-637 (-388 (-893 (-530))))) (-4 *1 (-365))))
+ (|partial| -12 (-5 *2 (-639 (-388 (-895 (-531))))) (-4 *1 (-365))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-637 (-388 (-893 (-360))))) (-4 *1 (-365))))
+ (|partial| -12 (-5 *2 (-639 (-388 (-895 (-360))))) (-4 *1 (-365))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-637 (-893 (-530)))) (-4 *1 (-365))))
+ (|partial| -12 (-5 *2 (-639 (-895 (-531)))) (-4 *1 (-365))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-637 (-893 (-360)))) (-4 *1 (-365))))
+ (|partial| -12 (-5 *2 (-639 (-895 (-360)))) (-4 *1 (-365))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-637 (-297 (-530)))) (-4 *1 (-365))))
+ (|partial| -12 (-5 *2 (-639 (-297 (-531)))) (-4 *1 (-365))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-637 (-297 (-360)))) (-4 *1 (-365))))
+ (|partial| -12 (-5 *2 (-639 (-297 (-360)))) (-4 *1 (-365))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-388 (-893 (-530)))) (-4 *1 (-377))))
+ (|partial| -12 (-5 *2 (-388 (-895 (-531)))) (-4 *1 (-377))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-388 (-893 (-360)))) (-4 *1 (-377))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-530))) (-4 *1 (-377))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-893 (-360))) (-4 *1 (-377))))
- ((*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-530))) (-4 *1 (-377))))
+ (|partial| -12 (-5 *2 (-388 (-895 (-360)))) (-4 *1 (-377))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-531))) (-4 *1 (-377))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-895 (-360))) (-4 *1 (-377))))
+ ((*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-531))) (-4 *1 (-377))))
((*1 *1 *2) (|partial| -12 (-5 *2 (-297 (-360))) (-4 *1 (-377))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1181 (-388 (-893 (-530))))) (-4 *1 (-421))))
+ (|partial| -12 (-5 *2 (-1184 (-388 (-895 (-531))))) (-4 *1 (-421))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1181 (-388 (-893 (-360))))) (-4 *1 (-421))))
+ (|partial| -12 (-5 *2 (-1184 (-388 (-895 (-360))))) (-4 *1 (-421))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1181 (-893 (-530)))) (-4 *1 (-421))))
+ (|partial| -12 (-5 *2 (-1184 (-895 (-531)))) (-4 *1 (-421))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1181 (-893 (-360)))) (-4 *1 (-421))))
+ (|partial| -12 (-5 *2 (-1184 (-895 (-360)))) (-4 *1 (-421))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1181 (-297 (-530)))) (-4 *1 (-421))))
+ (|partial| -12 (-5 *2 (-1184 (-297 (-531)))) (-4 *1 (-421))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1181 (-297 (-360)))) (-4 *1 (-421))))
+ (|partial| -12 (-5 *2 (-1184 (-297 (-360)))) (-4 *1 (-421))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1157 *5))
- (-5 *2 (-1095 (-1095 *4))) (-5 *1 (-725 *4 *5 *6 *3 *7))
- (-4 *3 (-1157 *6)) (-14 *7 (-862))))
+ (|partial| -12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1160 *5))
+ (-5 *2 (-1098 (-1098 *4))) (-5 *1 (-727 *4 *5 *6 *3 *7))
+ (-4 *3 (-1160 *6)) (-14 *7 (-864))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *1 (-916 *3 *4 *5 *6))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-975 *2)) (-4 *2 (-1135))))
+ (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5))
+ (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *1 (-918 *3 *4 *5 *6))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-977 *2)) (-4 *2 (-1138))))
((*1 *1 *2)
- (|partial| -1461
- (-12 (-5 *2 (-893 *3))
- (-12 (-3676 (-4 *3 (-37 (-388 (-530)))))
- (-3676 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)))
- (-12 (-5 *2 (-893 *3))
- (-12 (-3676 (-4 *3 (-515))) (-3676 (-4 *3 (-37 (-388 (-530)))))
- (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)))
- (-12 (-5 *2 (-893 *3))
- (-12 (-3676 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530))))
- (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)))))
+ (|partial| -1435
+ (-12 (-5 *2 (-895 *3))
+ (-12 (-3745 (-4 *3 (-37 (-388 (-531)))))
+ (-3745 (-4 *3 (-37 (-531)))) (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743))
+ (-4 *5 (-797)))
+ (-12 (-5 *2 (-895 *3))
+ (-12 (-3745 (-4 *3 (-516))) (-3745 (-4 *3 (-37 (-388 (-531)))))
+ (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743))
+ (-4 *5 (-797)))
+ (-12 (-5 *2 (-895 *3))
+ (-12 (-3745 (-4 *3 (-934 (-531)))) (-4 *3 (-37 (-388 (-531))))
+ (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743))
+ (-4 *5 (-797)))))
((*1 *1 *2)
- (|partial| -1461
- (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
- (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
- (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))))
+ (|partial| -1435
+ (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5))
+ (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531)))
+ (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))
+ (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))))
((*1 *1 *2)
- (|partial| -12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
+ (|partial| -12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797)))))
+(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 (-418)))))
- (-5 *1 (-1103)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-289))
- (-5 *2 (-719)) (-5 *1 (-435 *5 *3)))))
+ (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 (-418)))))
+ (-5 *1 (-1106)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))))
+(((*1 *1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))))
+(((*1 *1 *1) (-5 *1 (-806)))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030))))
+ ((*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-1084))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1102)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-4 *4 (-1138)) (-5 *2 (-110))
+ (-5 *1 (-1083 *4)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-703)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-216)) (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-248 *4))
- (-4 *6 (-741)) (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *3 *4 *5 *6))))
+ (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-5 *2 (-110)))))
+(((*1 *1 *1) (-12 (-4 *1 (-117 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3))
+ (-4 *3 (-1160 *2)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-531)) (-5 *1 (-297 *3)) (-4 *3 (-523)) (-4 *3 (-797)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-795)))
+ (-5 *2 (-2 (|:| |start| *3) (|:| -2721 (-399 *3))))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-977 (-388 *2)))) (-5 *2 (-531))
+ (-5 *1 (-113 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-564 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1138)) (-5 *2 (-1189)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743))
+ (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-892 *4 *5 *6))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))))
+(((*1 *1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *3 (-523)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-598 (-895 *3))) (-4 *3 (-432))
+ (-5 *1 (-341 *3 *4)) (-14 *4 (-598 (-1102)))))
+ ((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-598 (-730 *3 (-808 *4)))) (-4 *3 (-432))
+ (-14 *4 (-598 (-1102))) (-5 *1 (-583 *3 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1184 (-1184 (-531)))) (-5 *1 (-446)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1160 (-159 *2))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-344)) (-5 *2 (-639 *4))
+ (-5 *1 (-764 *4 *5)) (-4 *5 (-609 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-721)) (-4 *5 (-344))
+ (-5 *2 (-639 *5)) (-5 *1 (-764 *5 *6)) (-4 *6 (-609 *5)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-110))
+ (-5 *2 (-975)) (-5 *1 (-696)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102))
+ (-14 *4 *2))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-176))))
((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *3 (-795)) (-4 *5 (-248 *3)) (-4 *6 (-741))
- (-5 *2 (-1 *1 (-719))) (-4 *1 (-235 *4 *3 *5 *6))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-248 *2)) (-4 *2 (-795)))))
-(((*1 *1) (-5 *1 (-137)))
+ (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-282))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-245)))))
+ (-12 (-5 *3 (-598 (-208))) (-5 *2 (-598 (-1085))) (-5 *1 (-287)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1066 *4 *2)) (-14 *4 (-862))
- (-4 *2 (-13 (-984) (-10 -7 (-6 (-4271 "*"))))) (-5 *1 (-843 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-189)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1172 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))))
+(((*1 *2 *3 *2)
+ (-12
+ (-5 *2
+ (-598
+ (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-721)) (|:| |poli| *3)
+ (|:| |polj| *3))))
+ (-4 *5 (-743)) (-4 *3 (-892 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-797))
+ (-5 *1 (-429 *4 *5 *6 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-996 (-964 *4) (-1098 (-964 *4)))) (-5 *3 (-806))
+ (-5 *1 (-964 *4)) (-4 *4 (-13 (-795) (-344) (-962))))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| |mval| (-639 *3)) (|:| |invmval| (-639 *3))
+ (|:| |genIdeal| (-482 *3 *4 *5 *6))))
+ (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *3 (-864)) (-5 *1 (-422 *2))
+ (-4 *2 (-1160 (-531)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-864)) (-5 *4 (-721)) (-5 *1 (-422 *2))
+ (-4 *2 (-1160 (-531)))))
+ ((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *1 (-422 *2))
+ (-4 *2 (-1160 (-531)))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *5 (-721))
+ (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531)))))
+ ((*1 *2 *3 *2 *4 *5 *6)
+ (|partial| -12 (-5 *3 (-864)) (-5 *4 (-598 (-721))) (-5 *5 (-721))
+ (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1160 (-531)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-399 *2)) (-4 *2 (-1160 *5))
+ (-5 *1 (-424 *5 *2)) (-4 *5 (-986)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)) (-4 *3 (-162))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-162)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-1104 (-388 (-531))))
+ (-5 *1 (-174)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-1120)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
+(((*1 *1 *2 *3 *4)
+ (-12
+ (-5 *3
+ (-598
+ (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 *2))
+ (|:| |logand| (-1098 *2)))))
+ (-5 *4 (-598 (-2 (|:| |integrand| *2) (|:| |intvar| *2))))
+ (-4 *2 (-344)) (-5 *1 (-548 *2)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1160 *6))
+ (-4 *6 (-13 (-344) (-140) (-977 *4))) (-5 *4 (-531))
+ (-5 *2
+ (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110))))
+ (|:| -2723
+ (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
+ (|:| |beta| *3)))))
+ (-5 *1 (-956 *6 *3)))))
+(((*1 *1 *1) (-4 *1 (-516))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-276 (-781 *3)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-781 *3)) (-5 *1 (-590 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
+ (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4))))
+ (-5 *1 (-760 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-781 (-893 *5)))) (-4 *5 (-432))
- (-5 *2 (-781 (-388 (-893 *5)))) (-5 *1 (-591 *5))
- (-5 *3 (-388 (-893 *5)))))
+ (-12 (-5 *3 (-606 (-388 *6))) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2 (-2 (|:| -3523 (-598 (-388 *6))) (|:| -1751 (-639 *5))))
+ (-5 *1 (-760 *5 *6)) (-5 *4 (-598 (-388 *6)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5)))
- (-4 *5 (-432)) (-5 *2 (-781 *3)) (-5 *1 (-591 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-722)) (-5 *1 (-112)))))
+ (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4))))
+ (-5 *1 (-760 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-607 *6 (-388 *6))) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2 (-2 (|:| -3523 (-598 (-388 *6))) (|:| -1751 (-639 *5))))
+ (-5 *1 (-760 *5 *6)) (-5 *4 (-598 (-388 *6))))))
+(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *2 *1)
+ (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162))
+ (-4 *5 (-221 (-2167 *3) (-721)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *5))
+ (-2 (|:| -1889 *2) (|:| -1790 *5))))
+ (-4 *2 (-797)) (-5 *1 (-441 *3 *4 *2 *5 *6 *7))
+ (-4 *7 (-892 *4 *5 (-808 *3))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095 (-530))) (-5 *2 (-530)) (-5 *1 (-883)))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-598 (-208))) (-5 *1 (-188)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-598 (-161)))))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
- (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
- (-5 *1 (-1098)))))
-(((*1 *2 *3 *4 *4 *4 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
+ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360)))
+ (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101))))
+ (-5 *1 (-1101)))))
(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+ (-12
+ (-5 *2 (-2 (|:| -4189 (-598 (-1102))) (|:| -1915 (-598 (-1102)))))
+ (-5 *1 (-1140)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-1053 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-417)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-998 *3 *4 *2)) (-4 *2 (-795))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (|has| *1 (-6 -4270)) (-4 *1 (-354 *3))
- (-4 *3 (-1135)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-721)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-806)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-1061)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-1082)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *4 (-998 *6 *7 *8)) (-5 *2 (-1186))
- (-5 *1 (-724 *6 *7 *8 *4 *5)) (-4 *5 (-1003 *6 *7 *8 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-1121))))
- ((*1 *2 *1) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-570 *3)) (-4 *3 (-795)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1027)) (-4 *6 (-1027))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *5 (-1027)))))
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-797) (-523))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-598 (-1107))) (-5 *1 (-1064)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-698)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-531)) (-5 *2 (-598 (-2 (|:| -2552 *3) (|:| -2012 *4))))
+ (-5 *1 (-646 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 (-388 (-895 *6))))
+ (-5 *3 (-388 (-895 *6)))
+ (-4 *6 (-13 (-523) (-977 (-531)) (-140)))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-537 *6)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-817)) (-5 *3 (-598 (-245))) (-5 *1 (-243)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-601 *3)) (-4 *3 (-986))
+ (-5 *1 (-665 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-784 *3)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138))
+ (-4 *2 (-1030)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
- (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
- (-5 *1 (-1098)))))
+ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360)))
+ (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101))))
+ (-5 *1 (-1101)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-276 (-388 (-895 *5)))) (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-797) (-140)))
+ (-5 *2 (-1092 (-598 (-297 *5)) (-598 (-276 (-297 *5)))))
+ (-5 *1 (-1058 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-797) (-140)))
+ (-5 *2 (-1092 (-598 (-297 *5)) (-598 (-276 (-297 *5)))))
+ (-5 *1 (-1058 *5)))))
(((*1 *2 *3)
+ (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1184 (-3 (-448) "undefined"))) (-5 *1 (-1185)))))
+(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121)))
+ ((*1 *1 *1 *1) (-5 *1 (-1049))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-1 (-110) *5))
+ (-5 *1 (-833 *4 *5)) (-4 *5 (-1138)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-531) (-531))) (-5 *1 (-342 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-721) (-721))) (-5 *1 (-367 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4)
+ (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))))
+(((*1 *1 *1 *1) (-4 *1 (-910))))
+(((*1 *2 *1 *1)
(-12
- (-5 *3
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530)))))
- (-14 *4 (-597 (-1099))) (-14 *5 (-719)) (-5 *2 (-110))
- (-5 *1 (-483 *4 *5)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *6)) (-5 *5 (-1 (-399 (-1095 *6)) (-1095 *6)))
- (-4 *6 (-344))
(-5 *2
- (-597
- (-2 (|:| |outval| *7) (|:| |outmult| (-530))
- (|:| |outvect| (-597 (-637 *7))))))
- (-5 *1 (-503 *6 *7 *4)) (-4 *7 (-344)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+ (-2 (|:| -2109 (-732 *3)) (|:| |coef1| (-732 *3))
+ (|:| |coef2| (-732 *3))))
+ (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-2 (|:| -2109 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-1000 *3 *4 *5)))))
+(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-600 *2)) (-4 *2 (-1030)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+ (-12 (-5 *3 (-639 *1)) (-5 *4 (-1184 *1)) (-4 *1 (-594 *5))
+ (-4 *5 (-986))
+ (-5 *2 (-2 (|:| -1751 (-639 *5)) (|:| |vec| (-1184 *5))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-639 *1)) (-4 *1 (-594 *4)) (-4 *4 (-986))
+ (-5 *2 (-639 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4))
- (-5 *1 (-500 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(((*1 *1 *2 *2)
- (-12
+ (-12 (-14 *4 (-598 (-1102))) (-4 *5 (-432))
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
- (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
- (-5 *1 (-1098)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-159 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-360))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-530))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-159 (-360)))))
- (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-530)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-159 (-360)))))
- (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-530)))) (-5 *1 (-311))))
+ (-2 (|:| |glbase| (-598 (-230 *4 *5))) (|:| |glval| (-598 (-531)))))
+ (-5 *1 (-586 *4 *5)) (-5 *3 (-598 (-230 *4 *5))))))
+(((*1 *1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1) (-5 *1 (-806)))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-159 (-360)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-360))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-530))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-647))) (-5 *1 (-311))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-893 (-530))))
- (-5 *4 (-297 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-642)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-647)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-297 (-649)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-642)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-647)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-297 (-649)))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-647))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-647))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-637 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-642))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-647))) (-5 *1 (-311))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-297 (-649))) (-5 *1 (-311))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-311))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
- (-5 *2 (-973)) (-5 *1 (-705)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-768)) (-14 *5 (-1099)) (-5 *2 (-597 (-1154 *5 *4)))
- (-5 *1 (-1041 *4 *5)) (-5 *3 (-1154 *5 *4)))))
-(((*1 *1 *1) (-4 *1 (-515))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1082)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-899 (-1046)))
- (-5 *1 (-327 *4)))))
-(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370)))))
-(((*1 *2 *3 *4 *5 *3 *6 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-159 (-208))) (-5 *6 (-1082))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *2 (-1098 (-531))) (-5 *3 (-531)) (-4 *1 (-812 *4)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-741))
- (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *5 (-522))
- (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3
- (-13 (-795)
- (-10 -8 (-15 -3260 ((-1099) $))
- (-15 -4007 ((-3 $ "failed") (-1099))))))
- (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *6))
- (-4 *6
- (-13 (-795)
- (-10 -8 (-15 -3260 ((-1099) $))
- (-15 -4007 ((-3 $ "failed") (-1099))))))
- (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2))
- (-4 *2 (-890 (-893 *4) *5 *6)))))
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *2)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
- (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
- (-5 *1 (-1098)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 (-110) *7 (-597 *7))) (-4 *1 (-1129 *4 *5 *6 *7))
- (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-998 *4 *5 *6))
+ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360)))
+ (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101))))
+ (-5 *1 (-1101)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-886 (-208)))) (-5 *1 (-1185)))))
+(((*1 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-918 *4 *5 *6 *3)) (-4 *4 (-986)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-462)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *2 (-523))
+ (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-1000 *2 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-721)) (-5 *3 (-886 *5)) (-4 *5 (-986))
+ (-5 *1 (-1091 *4 *5)) (-14 *4 (-864))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-721))) (-5 *3 (-721)) (-5 *1 (-1091 *4 *5))
+ (-14 *4 (-864)) (-4 *5 (-986))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-721))) (-5 *3 (-886 *5)) (-4 *5 (-986))
+ (-5 *1 (-1091 *4 *5)) (-14 *4 (-864)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-564 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1138))
(-5 *2 (-110)))))
-(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-986)) (-4 *3 (-797))
+ (-5 *2 (-2 (|:| |val| *1) (|:| -1790 (-531)))) (-4 *1 (-411 *3))))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| |val| (-835 *3)) (|:| -1790 (-835 *3))))
+ (-5 *1 (-835 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986))
+ (-4 *7 (-892 *6 *4 *5))
+ (-5 *2 (-2 (|:| |val| *3) (|:| -1790 (-531))))
+ (-5 *1 (-893 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $))
+ (-15 -1853 (*7 $))))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098 *5)) (-4 *5 (-344)) (-5 *2 (-598 *6))
+ (-5 *1 (-504 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-795))))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *1 *2 *2)
(-12
- (-5 *3
- (-2 (|:| |det| *12) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530)))))
- (-5 *4 (-637 *12)) (-5 *5 (-597 (-388 (-893 *9))))
- (-5 *6 (-597 (-597 *12))) (-5 *7 (-719)) (-5 *8 (-530))
- (-4 *9 (-13 (-289) (-140))) (-4 *12 (-890 *9 *11 *10))
- (-4 *10 (-13 (-795) (-572 (-1099)))) (-4 *11 (-741))
(-5 *2
- (-2 (|:| |eqzro| (-597 *12)) (|:| |neqzro| (-597 *12))
- (|:| |wcond| (-597 (-893 *9)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *9))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *9)))))))))
- (-5 *1 (-865 *9 *10 *11 *12)))))
+ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360)))
+ (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101))))
+ (-5 *1 (-1101)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33))))))
+(((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *1 *1) (-4 *1 (-910))))
(((*1 *1) (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-506))) ((*1 *1) (-4 *1 (-671)))
- ((*1 *1) (-4 *1 (-675)))
- ((*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
- ((*1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-804)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |k| (-622 *3)) (|:| |c| *4))))
- (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862)))))
-(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *2 (-1131 (-867)))
- (-5 *1 (-299))))
- ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-530)) (-5 *7 (-1082))
- (-5 *2 (-1131 (-867))) (-5 *1 (-299))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530))
- (-5 *2 (-1131 (-867))) (-5 *1 (-299))))
- ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
- (-12 (-5 *3 (-297 (-530))) (-5 *4 (-1 (-208) (-208)))
- (-5 *5 (-1022 (-208))) (-5 *6 (-208)) (-5 *7 (-530)) (-5 *8 (-1082))
- (-5 *2 (-1131 (-867))) (-5 *1 (-299)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-106)))))
-(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-773)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-649)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1095 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
-(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121)))
- ((*1 *1 *1 *1) (-5 *1 (-1046))))
+ ((*1 *1) (-5 *1 (-507))) ((*1 *1) (-4 *1 (-673)))
+ ((*1 *1) (-4 *1 (-677)))
+ ((*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030))))
+ ((*1 *1) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *4 *5 *6))
- (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
+ (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-176))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743))
+ (-5 *2
+ (-2 (|:| |mval| (-639 *4)) (|:| |invmval| (-639 *4))
+ (|:| |genIdeal| (-482 *4 *5 *6 *7))))
+ (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *2 (-110)) (-5 *1 (-459)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-1088 3 *3))))
- ((*1 *1) (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183))))
- ((*1 *2 *1) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1183)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-862)) (-4 *1 (-1159 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-740))))
+ (-12 (-4 *1 (-564 *3 *2)) (-4 *3 (-1030)) (-4 *3 (-797))
+ (-4 *2 (-1138))))
+ ((*1 *2 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797))))
+ ((*1 *2 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1138)) (-5 *1 (-816 *2 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-624 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-388 (-530))) (-4 *1 (-1162 *3)) (-4 *3 (-984)))))
+ (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-4 *5 (-344)) (-5 *2 (-1083 (-1083 (-895 *5))))
+ (-5 *1 (-1192 *5)) (-5 *4 (-1083 (-895 *5))))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1105))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105))))
+ ((*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *2 (-2 (|:| |k| (-769 *3)) (|:| |c| *4))))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-289)))))
+(((*1 *1 *2) (-12 (-5 *2 (-769 *3)) (-4 *3 (-797)) (-5 *1 (-624 *3)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *1) (-4 *1 (-23)))
((*1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1) (-5 *1 (-506)))
- ((*1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-448))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1183)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135))
- (-4 *2 (-1027)))))
+ ((*1 *1) (-5 *1 (-507)))
+ ((*1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1185))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1186)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1066))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124)))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344))))
+ ((*1 *1 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1185)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-5 *1 (-418)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-637 (-388 (-893 (-530)))))
- (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))))
-(((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-148))))
- ((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-1000 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-545)))))
+(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-986))))
+ ((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))))
+(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869))))
+ ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1117)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-598 (-1107))) (-5 *1 (-823)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| -2099)) (-5 *2 (-110)) (-5 *1 (-639 *4))
- (-4 *4 (-571 (-804)))))
+ (-12 (-5 *3 (|[\|\|]| -1473)) (-5 *2 (-110)) (-5 *1 (-641 *4))
+ (-4 *4 (-572 (-806)))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-571 (-804))) (-5 *2 (-110))
- (-5 *1 (-639 *4))))
+ (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-572 (-806))) (-5 *2 (-110))
+ (-5 *1 (-641 *4))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1082))) (-5 *2 (-110)) (-5 *1 (-1104))))
+ (-12 (-5 *3 (|[\|\|]| (-1085))) (-5 *2 (-110)) (-5 *1 (-1107))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-1099))) (-5 *2 (-110)) (-5 *1 (-1104))))
+ (-12 (-5 *3 (|[\|\|]| (-1102))) (-5 *2 (-110)) (-5 *1 (-1107))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1104))))
+ (-12 (-5 *3 (|[\|\|]| (-208))) (-5 *2 (-110)) (-5 *1 (-1107))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (|[\|\|]| (-530))) (-5 *2 (-110)) (-5 *1 (-1104)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-230 *5 *6))) (-4 *6 (-432))
- (-5 *2 (-230 *5 *6)) (-14 *5 (-597 (-1099))) (-5 *1 (-585 *5 *6)))))
-(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1027)))))
-(((*1 *2)
- (-12 (-5 *2 (-1181 (-1028 *3 *4))) (-5 *1 (-1028 *3 *4))
- (-14 *3 (-862)) (-14 *4 (-862)))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5))
- (-4 *3 (-1157 *4))
- (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
-(((*1 *1 *1 *1) (-4 *1 (-908))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-804)) (-5 *1 (-1080 *3)) (-4 *3 (-1027))
- (-4 *3 (-1135)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| -2065 (-530)) (|:| |var| (-570 *1))))
- (-4 *1 (-411 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530))) (-5 *2 (-110))
- (-5 *1 (-1206 *4)))))
-(((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-155 *3 *2)) (-4 *3 (-156 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *2 *4)) (-4 *4 (-1157 *2))
- (-4 *2 (-162))))
- ((*1 *2)
- (-12 (-4 *4 (-1157 *2)) (-4 *2 (-162)) (-5 *1 (-389 *3 *2 *4))
- (-4 *3 (-390 *2 *4))))
- ((*1 *2) (-12 (-4 *1 (-390 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162))))
- ((*1 *2)
- (-12 (-4 *3 (-1157 *2)) (-5 *2 (-530)) (-5 *1 (-716 *3 *4))
- (-4 *4 (-390 *2 *3))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *3 (-162))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-522)) (-5 *1 (-910 *2 *3)) (-4 *3 (-1157 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-162)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-597 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522))
- (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+ (-12 (-5 *3 (|[\|\|]| (-531))) (-5 *2 (-110)) (-5 *1 (-1107)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1181 (-1181 (-530)))) (-5 *1 (-446)))))
-(((*1 *2)
- (-12 (-4 *3 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-1186))
- (-5 *1 (-414 *3 *4)) (-4 *4 (-411 *3)))))
-(((*1 *1) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ (-12 (-5 *3 (-639 (-388 (-895 (-531)))))
+ (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)))))
+(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *2 (-110)) (-5 *1 (-249))))
- ((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *1) (-5 *1 (-771))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344)))
+ (-4 *3 (-1160 *4)) (-5 *2 (-110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-563 *3 *2)) (-4 *3 (-1027)) (-4 *3 (-795))
- (-4 *2 (-1135))))
- ((*1 *2 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
- ((*1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743))
+ (-5 *2 (-110)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3)))))
+(((*1 *2 *1) (-12 (-4 *3 (-986)) (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 (-598 *2))) (-5 *4 (-598 *5))
+ (-4 *5 (-37 (-388 (-531)))) (-4 *2 (-1175 *5))
+ (-5 *1 (-1177 *5 *2)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-516))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))
((*1 *2 *1)
- (-12 (-4 *2 (-1135)) (-5 *1 (-814 *2 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1) (-12 (-5 *2 (-622 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *2 (-110))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-793)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
- (-5 *2 (-394 *4 (-388 *4) *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 *6)) (-4 *6 (-13 (-390 *4 *5) (-975 *4)))
- (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *3 (-289))
- (-5 *1 (-394 *3 *4 *5 *6))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-719)) (-5 *3 (-884 *5)) (-4 *5 (-984))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5))
- (-14 *4 (-862)) (-4 *5 (-984))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719)))
- (-5 *1 (-845 *4)))))
-(((*1 *1 *2 *3 *3 *3 *4)
- (-12 (-4 *4 (-344)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 (-388 *3)))
- (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-344)) (-4 *4 (-1157 *2))
- (-4 *5 (-1157 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6))
- (-4 *6 (-323 *2 *4 *5))))
- ((*1 *1 *2 *2)
- (-12 (-4 *2 (-344)) (-4 *3 (-1157 *2)) (-4 *4 (-1157 (-388 *3)))
- (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344))
- (-4 *1 (-316 *3 *4 *5 *6)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *5 (-522))
+ (-12 (-5 *3 (-1184 (-297 (-208))))
(-5 *2
- (-2 (|:| |minor| (-597 (-862))) (|:| -2776 *3)
- (|:| |minors| (-597 (-597 (-862)))) (|:| |ops| (-597 *3))))
- (-5 *1 (-88 *5 *3)) (-5 *4 (-862)) (-4 *3 (-607 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1135))))
+ (-2 (|:| |additions| (-531)) (|:| |multiplications| (-531))
+ (|:| |exponentiations| (-531)) (|:| |functionCalls| (-531))))
+ (-5 *1 (-287)))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *2 (-721)) (-4 *3 (-1138)) (-4 *1 (-55 *3 *4 *5))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1) (-5 *1 (-161)))
+ ((*1 *1) (-12 (-5 *1 (-197 *2 *3)) (-14 *2 (-864)) (-4 *3 (-1030))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370))))
+ ((*1 *1) (-5 *1 (-375)))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-4 *1 (-604 *3)) (-4 *3 (-1138))))
+ ((*1 *1)
+ (-12 (-4 *3 (-1030)) (-5 *1 (-828 *2 *3 *4)) (-4 *2 (-1030))
+ (-4 *4 (-619 *3))))
+ ((*1 *1) (-12 (-5 *1 (-832 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030))))
+ ((*1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986))))
+ ((*1 *1 *1) (-5 *1 (-1102))) ((*1 *1) (-5 *1 (-1102)))
+ ((*1 *1) (-5 *1 (-1119))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1138)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098 *1)) (-5 *4 (-1102)) (-4 *1 (-27))
+ (-5 *2 (-598 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-598 *1))
+ (-4 *1 (-29 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
-(((*1 *2 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-417)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-161)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))))
-(((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-906))) (-5 *1 (-273)))))
-(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-1152 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
-(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-597 (-893 *4)))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-597 (-893 *4))) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2)
- (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-597 (-893 *3)))))
- ((*1 *2)
- (-12 (-5 *2 (-597 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-433 *4 *5 *6 *7))) (-5 *2 (-597 (-893 *4)))
- (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-522)) (-4 *4 (-162))
- (-14 *5 (-862)) (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-110)) (-5 *1 (-200 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
- (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *3)))))
(((*1 *2)
- (-12 (-14 *4 *2) (-4 *5 (-1135)) (-5 *2 (-719))
+ (-12 (-14 *4 *2) (-4 *5 (-1138)) (-5 *2 (-721))
(-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-128))
- (-5 *2 (-719))))
+ (-12 (-4 *1 (-304 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-128))
+ (-5 *2 (-721))))
((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4))
+ (-12 (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-309 *3 *4))
(-4 *3 (-310 *4))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
- ((*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-367 *3)) (-4 *3 (-1027))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-342 *3)) (-4 *3 (-1030))))
+ ((*1 *2) (-12 (-4 *1 (-349)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-367 *3)) (-4 *3 (-1030))))
((*1 *2)
- (-12 (-4 *4 (-1027)) (-5 *2 (-719)) (-5 *1 (-405 *3 *4))
+ (-12 (-4 *4 (-1030)) (-5 *2 (-721)) (-5 *1 (-405 *3 *4))
(-4 *3 (-406 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027))
+ (-12 (-5 *2 (-721)) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030))
(-4 *4 (-23)) (-14 *5 *4)))
((*1 *2)
- (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-719))
- (-5 *1 (-672 *3 *4 *5)) (-4 *3 (-673 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-767 *3)) (-4 *3 (-795))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945))))
+ (-12 (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-721))
+ (-5 *1 (-674 *3 *4 *5)) (-4 *3 (-675 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-769 *3)) (-4 *3 (-797))))
+ ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-947))))
((*1 *2 *1)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5))
- (-4 *4 (-1027)) (-4 *5 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *6)) (-4 *6 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-1095 *7)) (-5 *1 (-302 *4 *5 *6 *7))
- (-4 *7 (-890 *6 *4 *5)))))
-(((*1 *1) (-5 *1 (-1186))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-788 (-208)))) (-5 *4 (-208)) (-5 *2 (-597 *4))
- (-5 *1 (-249)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-4 *1 (-385))))
- ((*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-4 *1 (-385))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *2 *6)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *1))))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
+ (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3))
+ (-4 *3 (-1160 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742))))
+ ((*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-986)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-721))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-721)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743))
+ (-4 *3 (-797)) (-5 *2 (-721)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-515)) (-4 *3 (-522))))
- ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-399 *3)) (-4 *3 (-516)) (-4 *3 (-523))))
+ ((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
+ (-12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-516)) (-4 *3 (-1030))))
((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-515)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-516)) (-4 *3 (-1030))))
((*1 *2 *1)
- (-12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515)) (-5 *2 (-110))))
+ (-12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516)) (-5 *2 (-110))))
((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-947 *3)) (-4 *3 (-975 (-388 (-530)))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -2611 (-1095 *6)) (|:| -3194 (-530)))))
- (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5))))
- ((*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-1068)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *6 (-208))
- (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-719))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-208)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-597 (-1099)))
- (-5 *2 (-597 (-597 (-360)))) (-5 *1 (-961)) (-5 *5 (-360))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4)))
- (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-597 (-597 (-530)))) (-5 *1 (-911))
- (-5 *3 (-597 (-530))))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-949 *3)) (-4 *3 (-977 (-388 (-531)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
- (-5 *2 (-1095 *3)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3))))
+ (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef2| (-732 *3))))
+ (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-2 (|:| -2109 *1) (|:| |coef2| *1)))
+ (-4 *1 (-1000 *3 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (|has| *6 (-6 -4274)) (-4 *4 (-344)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-598 *6)) (-5 *1 (-498 *4 *5 *6 *3))
+ (-4 *3 (-637 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (|has| *9 (-6 -4274)) (-4 *4 (-523)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-4 *7 (-934 *4)) (-4 *8 (-354 *7))
+ (-4 *9 (-354 *7)) (-5 *2 (-598 *6))
+ (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-637 *4 *5 *6))
+ (-4 *10 (-637 *7 *8 *9))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-598 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-598 *6)) (-5 *1 (-638 *4 *5 *6 *3))
+ (-4 *3 (-637 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523))
+ (-5 *2 (-598 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-550 *4))
+ (-4 *4 (-330)))))
+(((*1 *1) (-5 *1 (-773))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-721))) (-5 *3 (-110)) (-5 *1 (-1091 *4 *5))
+ (-14 *4 (-864)) (-4 *5 (-986)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-2 (|:| -3033 *3) (|:| -1798 *4))))
+ (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *1 (-1115 *3 *4))))
+ ((*1 *1) (-12 (-4 *1 (-1115 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-721)) (-4 *5 (-162))))
+ ((*1 *1 *1 *2 *1 *2)
+ (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-721)) (-4 *5 (-162))))
+ ((*1 *2 *2 *3)
+ (-12
+ (-5 *2
+ (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4)
+ (-230 *4 (-388 (-531)))))
+ (-5 *3 (-598 (-808 *4))) (-14 *4 (-598 (-1102))) (-14 *5 (-721))
+ (-5 *1 (-483 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-432))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *5 (-852)) (-5 *1 (-437 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-852)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *2 (-975)) (-5 *1 (-702)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-548 *3)) (-5 *1 (-524 *5 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-289))
+ (-5 *2 (-721)) (-5 *1 (-435 *5 *3)))))
+(((*1 *1) (-5 *1 (-1189))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-548 *3)) (-5 *1 (-407 *5 *3))
+ (-4 *3 (-13 (-1124) (-29 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102)) (-4 *5 (-13 (-523) (-977 (-531)) (-140)))
+ (-5 *2 (-548 (-388 (-895 *5)))) (-5 *1 (-537 *5))
+ (-5 *3 (-388 (-895 *5))))))
+(((*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1105)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344)))
+ (-4 *3 (-1160 *4)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-721)) (-4 *4 (-289)) (-4 *6 (-1160 *4))
+ (-5 *2 (-1184 (-598 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-598 *6)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-110)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7)))
+ (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984))
- (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3))
- (-4 *3 (-797 *5)))))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743))
+ (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8)))
+ (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-598 (-598 *7)))
+ (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-598 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743))
+ (-4 *7 (-797)) (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-598 (-598 *8)))
+ (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-598 *8)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-599 *5)) (-4 *5 (-984))
- (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-797 *5))))
+ (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-601 *5)) (-4 *5 (-986))
+ (-5 *1 (-52 *5 *2 *3)) (-4 *3 (-799 *5))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-637 *3)) (-4 *1 (-398 *3)) (-4 *3 (-162))))
- ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ (-12 (-5 *2 (-639 *3)) (-4 *1 (-398 *3)) (-4 *3 (-162))))
+ ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986))))
((*1 *2 *3 *2 *2 *4 *5)
- (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-984))
- (-5 *1 (-798 *2 *3)) (-4 *3 (-797 *2)))))
+ (-12 (-5 *4 (-96 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-986))
+ (-5 *1 (-800 *2 *3)) (-4 *3 (-799 *2)))))
+(((*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 (-893 *6))) (-4 *6 (-522))
- (-4 *2 (-890 (-388 (-893 *6)) *5 *4)) (-5 *1 (-681 *5 *4 *6 *2))
- (-4 *5 (-741))
- (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
- (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
- (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-928 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1003 *5 *6 *7 *8)) (-4 *5 (-432))
- (-4 *6 (-741)) (-4 *7 (-795)) (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1034 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *3 *1)
- (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-1031)) (-5 *1 (-273)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-37 (-388 (-530))))
- (-4 *2 (-162)))))
-(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-530)) (-5 *2 (-110)))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-893 *4))) (-5 *3 (-597 (-1099))) (-4 *4 (-432))
- (-5 *1 (-859 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-1 (-110) *8))) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |goodPols| (-597 *8)) (|:| |badPols| (-597 *8))))
- (-5 *1 (-917 *5 *6 *7 *8)) (-5 *4 (-597 *8)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-522)) (-4 *2 (-984))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *1))))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-1000 *4 *5 *6)) (-4 *4 (-523))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-597 (-208)))
- (-5 *1 (-448)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-1082)) (-5 *1 (-734)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9))
- (-4 *9 (-998 *6 *7 *8)) (-4 *6 (-522)) (-4 *7 (-741))
- (-4 *8 (-795)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1598 (-597 *9))))
- (-5 *3 (-597 *9)) (-4 *1 (-1129 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-2 (|:| |bas| *1) (|:| -1598 (-597 *8))))
- (-5 *3 (-597 *8)) (-4 *1 (-1129 *5 *6 *7 *8)))))
-(((*1 *2 *3)
- (-12 (-14 *4 (-597 (-1099))) (-4 *5 (-432))
- (-5 *2
- (-2 (|:| |glbase| (-597 (-230 *4 *5))) (|:| |glval| (-597 (-530)))))
- (-5 *1 (-585 *4 *5)) (-5 *3 (-597 (-230 *4 *5))))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1 *8 *8))
- (-5 *5
- (-1 (-2 (|:| |ans| *7) (|:| -3638 *7) (|:| |sol?| (-110)))
- (-530) *7))
- (-5 *6 (-597 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1157 *7))
- (-5 *3 (-388 *8))
- (-5 *2
- (-2
- (|:| |answer|
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (|:| |a0| *7)))
- (-5 *1 (-540 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-791)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-818 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-820 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-719)) (-5 *1 (-823 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
+ (-12 (-5 *3 (-1102)) (-5 *2 (-1 *6 *5)) (-5 *1 (-657 *4 *5 *6))
+ (-4 *4 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-1102)) (-5 *1 (-548 *2)) (-4 *2 (-977 *3))
+ (-4 *2 (-344))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-344))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-585 *4 *2))
+ (-4 *2 (-13 (-411 *4) (-943) (-1124)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1023 *2)) (-4 *2 (-13 (-411 *4) (-943) (-1124)))
+ (-4 *4 (-13 (-797) (-523))) (-5 *1 (-585 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-902)) (-5 *2 (-1102))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-902)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
- (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-148)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-597 (-2 (|:| -2361 *1) (|:| -2551 (-597 *7)))))
- (-5 *3 (-597 *7)) (-4 *1 (-1129 *4 *5 *6 *7)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-137))))
- ((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-137)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-530)) (-5 *1 (-1037))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-1181 (-530))) (-5 *3 (-597 (-530))) (-5 *4 (-530))
- (-5 *1 (-1037)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-4 *6 (-1157 *9)) (-4 *7 (-741)) (-4 *8 (-795)) (-4 *9 (-289))
- (-4 *10 (-890 *9 *7 *8))
+ (-12
(-5 *2
- (-2 (|:| |deter| (-597 (-1095 *10)))
- (|:| |dterm|
- (-597 (-597 (-2 (|:| -3451 (-719)) (|:| |pcoef| *10)))))
- (|:| |nfacts| (-597 *6)) (|:| |nlead| (-597 *10))))
- (-5 *1 (-726 *6 *7 *8 *9 *10)) (-5 *3 (-1095 *10)) (-5 *4 (-597 *6))
- (-5 *5 (-597 *10)))))
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
+ (|:| |xpnt| (-531))))
+ (-4 *4 (-13 (-1160 *3) (-523) (-10 -8 (-15 -2109 ($ $ $)))))
+ (-4 *3 (-523)) (-5 *1 (-1163 *3 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
- (-5 *2
- (-597
- (-2 (|:| -2426 (-719))
- (|:| |eqns|
- (-597
- (-2 (|:| |det| *8) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530))))))
- (|:| |fgb| (-597 *8)))))
- (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-719)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-830 *4 *3))
- (-4 *3 (-1027)))))
-(((*1 *1 *1) (|partial| -4 *1 (-1075))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-984))
- (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-1157 *4)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
+ (-5 *4 (-639 (-1098 *8))) (-4 *5 (-986)) (-4 *8 (-986))
+ (-4 *6 (-1160 *5)) (-5 *2 (-639 *6)) (-5 *1 (-479 *5 *6 *7 *8))
+ (-4 *7 (-1160 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-572 (-833 *3))) (-4 *3 (-827 *3))
- (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-572 (-833 *3))) (-4 *2 (-827 *3))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1106)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102))
+ (-14 *4 *2))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-1099))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-4 *4 (-13 (-29 *6) (-1121) (-900)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3220 (-597 *4))))
- (-5 *1 (-749 *6 *4 *3)) (-4 *3 (-607 *4)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *3 (-1000 *6 *7 *8))
(-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *3 *4 *4 *3)
- (|partial| -12 (-5 *4 (-570 *3))
- (-4 *3 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3)))
- (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
-(((*1 *1 *1) (-4 *1 (-993))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *3 (-522))
- (-4 *7 (-890 *3 *5 *6))
- (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *8) (|:| |radicand| *8)))
- (-5 *1 (-894 *5 *6 *3 *7 *8)) (-5 *4 (-719))
- (-4 *8
- (-13 (-344)
- (-10 -8 (-15 -1918 (*7 $)) (-15 -1928 (*7 $)) (-15 -2366 ($ *7))))))))
-(((*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027))
- (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-597
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *3)
- (|:| |polj| *3))))
- (-4 *5 (-741)) (-4 *3 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
- (-5 *1 (-429 *4 *5 *6 *3)))))
-(((*1 *1 *1) (-4 *1 (-810 *2))))
-(((*1 *2 *3)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
- (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
- (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530)))
- (-5 *4 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))))
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
(-5 *2
- (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
- (-5 *1 (-958 *3)) (-4 *3 (-1157 (-530))) (-5 *4 (-388 (-530)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-388 (-530)))
- (-5 *2 (-597 (-2 (|:| -3628 *5) (|:| -3638 *5)))) (-5 *1 (-958 *3))
- (-4 *3 (-1157 (-530))) (-5 *4 (-2 (|:| -3628 *5) (|:| -3638 *5)))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
- (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))))
- ((*1 *2 *3 *4)
- (-12
- (-5 *2
- (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
- (-5 *1 (-959 *3)) (-4 *3 (-1157 (-388 (-530))))
- (-5 *4 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-388 (-530)))
- (-5 *2 (-597 (-2 (|:| -3628 *4) (|:| -3638 *4)))) (-5 *1 (-959 *3))
- (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-388 (-530)))
- (-5 *2 (-597 (-2 (|:| -3628 *5) (|:| -3638 *5)))) (-5 *1 (-959 *3))
- (-4 *3 (-1157 *5)) (-5 *4 (-2 (|:| -3628 *5) (|:| -3638 *5))))))
-(((*1 *2 *3) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-527)) (-5 *3 (-530)))))
-(((*1 *1) (-5 *1 (-134))))
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
- (-5 *2 (-230 *4 *5)) (-5 *1 (-885 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1030 *2 *3 *4 *5 *6)) (-4 *2 (-1027)) (-4 *3 (-1027))
- (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2))
- (-4 *4 (-37 (-388 (-530)))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-741)) (-4 *2 (-248 *4)))))
-(((*1 *1 *1 *1) (-4 *1 (-136)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982))
- (-5 *3 (-530)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *1) (-12 (-4 *1 (-307 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3 (-795)) (-5 *2 (-719)))))
+ (-12 (-5 *3 (-895 *5)) (-4 *5 (-986)) (-5 *2 (-230 *4 *5))
+ (-5 *1 (-887 *4 *5)) (-14 *4 (-598 (-1102))))))
+(((*1 *2 *2) (-12 (-5 *1 (-632 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085))
+ (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *1 *1 *1)
(|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162))
+ (|partial| -12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162))
(-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
(-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162))
+ (|partial| -12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162))
(-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
(-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
- (-12 (-5 *4 (-637 (-530))) (-5 *5 (-110)) (-5 *7 (-637 (-208)))
- (-5 *3 (-530)) (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-597 (-530))) (-5 *2 (-719)) (-5 *1 (-551)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-100 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2) (-12 (-4 *1 (-617 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1099)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-159 (-208))))
+ (-5 *2 (-975)) (-5 *1 (-705)))))
+(((*1 *2 *3 *3)
+ (-12 (|has| *2 (-6 (-4275 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2))
+ (-4 *2 (-986)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1160 *2))
+ (-4 *4 (-637 *2 *5 *6)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-1063 *3)) (-4 *3 (-986))))
+ ((*1 *2 *2 *1)
+ (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1160 *3)) (-4 *3 (-986))
+ (-4 *3 (-523))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *1 *1 *1) (-4 *1 (-136)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
+ (|partial| -12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-4 *5 (-344)) (-5 *2 (-1080 (-1080 (-893 *5))))
- (-5 *1 (-1189 *5)) (-5 *4 (-1080 (-893 *5))))))
+ (-12 (-5 *3 (-3 (-388 (-895 *5)) (-1092 (-1102) (-895 *5))))
+ (-4 *5 (-432)) (-5 *2 (-598 (-639 (-388 (-895 *5)))))
+ (-5 *1 (-274 *5)) (-5 *4 (-639 (-388 (-895 *5)))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))))))
+(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3))
+ (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-892 *6 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289))
+ (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 *7)))
+ (-5 *1 (-693 *4 *5 *6 *7)) (-5 *3 (-1098 *7))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-432)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-399 *1)) (-4 *1 (-892 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-432)) (-5 *2 (-399 *3))
+ (-5 *1 (-921 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-432))
+ (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 (-388 *7))))
+ (-5 *1 (-1097 *4 *5 *6 *7)) (-5 *3 (-1098 (-388 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1142))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-399 *3)) (-5 *1 (-1163 *4 *3))
+ (-4 *3 (-13 (-1160 *4) (-523) (-10 -8 (-15 -2109 ($ $ $)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-14 *5 (-598 (-1102)))
+ (-5 *2
+ (-598 (-1073 *4 (-503 (-808 *6)) (-808 *6) (-730 *4 (-808 *6)))))
+ (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102))))))
+(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-531)) (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))))
+(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-110)) (-5 *2 (-1085)) (-5 *1 (-51)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-864)) (-4 *1 (-385))))
+ ((*1 *1 *2 *2) (-12 (-5 *2 (-531)) (-4 *1 (-385))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *3 *4 *5 *2 *6)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *2 (-1030)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 *3)) (-4 *3 (-1005 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7))
+ (-5 *2 (-110)) (-5 *1 (-930 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 *3)) (-4 *3 (-1005 *5 *6 *7 *8)) (-4 *5 (-432))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7))
+ (-5 *2 (-110)) (-5 *1 (-1037 *5 *6 *7 *8 *3)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-806)))))
+(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-516))))
+ ((*1 *1 *1) (-4 *1 (-995))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-1083 *4)) (-5 *3 (-531)) (-4 *4 (-986))
+ (-5 *1 (-1087 *4))))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-531)) (-5 *1 (-1176 *3 *4 *5)) (-4 *3 (-986))
+ (-14 *4 (-1102)) (-14 *5 *3))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-797))
+ (-4 *5 (-743)) (-4 *2 (-248 *4)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -1751 (-639 (-388 (-895 *4))))
+ (|:| |vec| (-598 (-388 (-895 *4)))) (|:| -2277 (-721))
+ (|:| |rows| (-598 (-531))) (|:| |cols| (-598 (-531)))))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743))
+ (-5 *2
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *4))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *4)))))))
+ (-5 *1 (-867 *4 *5 *6 *7)) (-4 *7 (-892 *4 *6 *5)))))
+(((*1 *1 *2)
+ (-12
+ (-5 *2
+ (-598
+ (-2
+ (|:| -3033
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208))))
+ (|:| |yinit| (-598 (-208))) (|:| |intvals| (-598 (-208)))
+ (|:| |g| (-297 (-208))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (|:| -1798
+ (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
+ (|:| |expense| (-360)) (|:| |accuracy| (-360))
+ (|:| |intermediateResults| (-360)))))))
+ (-5 *1 (-753)))))
+(((*1 *1 *1 *1)
+ (-12 (-5 *1 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-1138)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-864))
+ (-5 *2 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049))))))
+ (-5 *1 (-327 *4)) (-4 *4 (-330)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4))
+ (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *3 *3 *3 *4 *5 *4 *6)
+ (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1025 (-208))) (-5 *6 (-531)) (-5 *2 (-1134 (-869)))
+ (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1025 (-208))) (-5 *6 (-531)) (-5 *7 (-1085))
+ (-5 *2 (-1134 (-869))) (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1025 (-208))) (-5 *6 (-208)) (-5 *7 (-531))
+ (-5 *2 (-1134 (-869))) (-5 *1 (-299))))
+ ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8)
+ (-12 (-5 *3 (-297 (-531))) (-5 *4 (-1 (-208) (-208)))
+ (-5 *5 (-1025 (-208))) (-5 *6 (-208)) (-5 *7 (-531)) (-5 *8 (-1085))
+ (-5 *2 (-1134 (-869))) (-5 *1 (-299)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-106)) (-5 *1 (-164))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-106)) (-5 *1 (-1017)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-986))
+ (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-986))
+ (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3))
+ (-4 *3 (-799 *5)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-162))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))))
+(((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030))
+ (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))
+ (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1102)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))
+ (-5 *2 (-2 (|:| |bas| (-456 *4 *5 *6 *7)) (|:| -1573 (-598 *7))))
+ (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-862)) (-4 *5 (-795))
- (-5 *2 (-57 (-597 (-622 *5)))) (-5 *1 (-622 *5)))))
-(((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-597 (-1099)))
- (-4 *2 (-13 (-411 (-159 *5)) (-941) (-1121)))
- (-4 *5 (-13 (-522) (-795))) (-5 *1 (-559 *5 *6 *2))
- (-4 *6 (-13 (-411 *5) (-941) (-1121))))))
+ (|partial| -12 (-5 *4 (-864)) (-4 *5 (-523)) (-5 *2 (-639 *5))
+ (-5 *1 (-899 *5 *3)) (-4 *3 (-609 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *1)) (-5 *4 (-1099)) (-4 *1 (-27))
- (-5 *2 (-597 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-1095 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
- ((*1 *2 *3) (-12 (-5 *3 (-893 *1)) (-4 *1 (-27)) (-5 *2 (-597 *1))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *2 (-597 *1))
- (-4 *1 (-29 *4))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *2 (-597 *1)) (-4 *1 (-29 *3)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-110)) (-5 *6 (-637 (-208)))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))))
-(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344))))
+ (-12 (-5 *2 (-598 (-159 *4))) (-5 *1 (-147 *3 *4))
+ (-4 *3 (-1160 (-159 (-531)))) (-4 *4 (-13 (-344) (-795)))))
((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4))
- (-4 *4 (-330)))))
-(((*1 *1) (-5 *1 (-771))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))))
+ (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-159 *4)))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-598 (-159 *4)))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-786))
+ (-5 *3
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208)))
+ (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208))))
+ (|:| |ub| (-598 (-790 (-208))))))
+ (-5 *2 (-975))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-786))
+ (-5 *3
+ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))
+ (-5 *2 (-975)))))
+(((*1 *2 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1107)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1033 *2 *3 *4 *5 *6)) (-4 *2 (-1030)) (-4 *3 (-1030))
+ (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1))
+ (-4 *1 (-1005 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-308 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-531)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138)) (-14 *4 *2))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
+ (-5 *1 (-541 *5 *3)))))
+(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530))))
+ (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1098 (-1098 *4))))
+ (-5 *1 (-1137 *4)) (-5 *3 (-1098 (-1098 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-308 *3)) (-4 *3 (-1138))))
((*1 *2 *1)
- (-12 (-5 *2 (-1181 (-3 (-448) "undefined"))) (-5 *1 (-1182)))))
+ (-12 (-5 *2 (-721)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138))
+ (-14 *4 (-531)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-307 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-742)) (-4 *3 (-162)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-4 *3 (-1030))
+ (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33))))))
+(((*1 *1 *2) (-12 (-4 *1 (-619 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1102)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-1040)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-429 *3 *4 *5 *6)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-137))))
+ ((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-137)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-721))
+ (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))))
+(((*1 *1) (-5 *1 (-1017))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-399 (-1098 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1098 *1))
+ (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-797))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-864)) (-5 *1 (-1031 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1109)))))
+(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
+ ((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864))))
+ ((*1 *2 *1) (-12 (-4 *1 (-812 *3)) (-5 *2 (-1083 (-531))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-110))
- (-5 *1 (-245)))))
+ (-12 (-5 *3 (-1098 (-895 *6))) (-4 *6 (-523))
+ (-4 *2 (-892 (-388 (-895 *6)) *5 *4)) (-5 *1 (-683 *5 *4 *6 *2))
+ (-4 *5 (-743))
+ (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2))
+ (-4 *2 (-637 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-677)) (-4 *2 (-1138)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741))
- (-5 *2 (-597 (-388 (-893 *4)))) (-5 *1 (-865 *4 *5 *6 *7))
- (-4 *7 (-890 *4 *6 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-998 *3 *4 *5)))))
+ (-12 (|has| *2 (-6 (-4275 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2))
+ (-4 *2 (-986)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1160 *2))
+ (-4 *4 (-637 *2 *5 *6)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-984)) (-5 *2 (-530))
- (-5 *1 (-423 *5 *3 *6)) (-4 *3 (-1157 *5))
- (-4 *6 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-5 *2 (-530)) (-5 *1 (-423 *4 *3 *5))
- (-4 *3 (-1157 *4))
- (-4 *5 (-13 (-385) (-975 *4) (-344) (-1121) (-266))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2) (-12 (-5 *1 (-842 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-699)))))
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743))
+ (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1003 *5 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743))
+ (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360))))
+ ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *6)) (-4 *5 (-1027))
- (-4 *6 (-1135)) (-5 *2 (-1 *6 *5)) (-5 *1 (-594 *5 *6))))
+ (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-598 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *6 (-1160 *5)) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-4 *5 (-1027))
- (-4 *2 (-1135)) (-5 *1 (-594 *5 *2))))
+ (-12 (-5 *3 (-606 (-388 *7))) (-5 *4 (-1 (-598 *6) *7))
+ (-5 *5 (-1 (-399 *7) *7))
+ (-4 *6 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *7 (-1160 *6)) (-5 *2 (-598 (-388 *7))) (-5 *1 (-762 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-598 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *6 (-1160 *5)) (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 *5)) (-4 *6 (-1027))
- (-4 *5 (-1135)) (-5 *2 (-1 *5 *6)) (-5 *1 (-594 *6 *5))))
- ((*1 *2 *3 *4 *5 *2)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-4 *5 (-1027))
- (-4 *2 (-1135)) (-5 *1 (-594 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-597 *5)) (-5 *4 (-597 *6))
- (-4 *5 (-1027)) (-4 *6 (-1135)) (-5 *1 (-594 *5 *6))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-597 *2)) (-5 *6 (-1 *2 *5))
- (-4 *5 (-1027)) (-4 *2 (-1135)) (-5 *1 (-594 *5 *2))))
- ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1068)) (-5 *3 (-137)) (-5 *2 (-719)))))
+ (-12 (-5 *3 (-607 *7 (-388 *7))) (-5 *4 (-1 (-598 *6) *7))
+ (-5 *5 (-1 (-399 *7) *7))
+ (-4 *6 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *7 (-1160 *6)) (-5 *2 (-598 (-388 *7))) (-5 *1 (-762 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-606 (-388 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2 (-598 (-388 *5))) (-5 *1 (-762 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-606 (-388 *6))) (-5 *4 (-1 (-399 *6) *6))
+ (-4 *6 (-1160 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-607 *5 (-388 *5))) (-4 *5 (-1160 *4)) (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2 (-598 (-388 *5))) (-5 *1 (-762 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-607 *6 (-388 *6))) (-5 *4 (-1 (-399 *6) *6))
+ (-4 *6 (-1160 *5)) (-4 *5 (-27))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-5 *2 (-598 (-388 *6))) (-5 *1 (-762 *5 *6)))))
+(((*1 *2 *3 *4 *5 *6 *5 *3 *7)
+ (-12 (-5 *4 (-531))
+ (-5 *6
+ (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))))
+ (-5 *7 (-1 (-1189) (-1184 *5) (-1184 *5) (-360)))
+ (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189))
+ (-5 *1 (-738))))
+ ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3)
+ (-12 (-5 *4 (-531))
+ (-5 *6
+ (-2 (|:| |try| (-360)) (|:| |did| (-360)) (|:| -3566 (-360))))
+ (-5 *7 (-1 (-1189) (-1184 *5) (-1184 *5) (-360)))
+ (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189))
+ (-5 *1 (-738)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-304 *4 *2)) (-4 *4 (-1030))
+ (-4 *2 (-128)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-162))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-1203 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-986)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3)
+ (-12 (-5 *4 (-639 (-531))) (-5 *5 (-110)) (-5 *7 (-639 (-208)))
+ (-5 *3 (-531)) (-5 *6 (-208)) (-5 *2 (-975)) (-5 *1 (-705)))))
+(((*1 *2 *2 *2 *2 *2 *3)
+ (-12 (-5 *2 (-639 *4)) (-5 *3 (-721)) (-4 *4 (-986))
+ (-5 *1 (-640 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3 *4 *5 *6 *7 *6)
+ (|partial| -12
+ (-5 *5
+ (-2 (|:| |contp| *3)
+ (|:| -2721 (-598 (-2 (|:| |irr| *10) (|:| -2460 (-531)))))))
+ (-5 *6 (-598 *3)) (-5 *7 (-598 *8)) (-4 *8 (-797)) (-4 *3 (-289))
+ (-4 *10 (-892 *3 *9 *8)) (-4 *9 (-743))
+ (-5 *2
+ (-2 (|:| |polfac| (-598 *10)) (|:| |correct| *3)
+ (|:| |corrfact| (-598 (-1098 *3)))))
+ (-5 *1 (-581 *8 *9 *3 *10)) (-5 *4 (-598 (-1098 *3))))))
+(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1030)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
- (-5 *2 (-597 (-597 (-597 (-719))))))))
-(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824))
- (-5 *3 (-597 (-530))))))
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
+ (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))))
(((*1 *1 *1)
- (-12 (-4 *2 (-330)) (-4 *2 (-984)) (-5 *1 (-661 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *6)) (-4 *5 (-1030))
+ (-4 *6 (-1138)) (-5 *2 (-1 *6 *5)) (-5 *1 (-595 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-4 *5 (-1030))
+ (-4 *2 (-1138)) (-5 *1 (-595 *5 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 *6)) (-5 *4 (-598 *5)) (-4 *6 (-1030))
+ (-4 *5 (-1138)) (-5 *2 (-1 *5 *6)) (-5 *1 (-595 *6 *5))))
+ ((*1 *2 *3 *4 *5 *2)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-4 *5 (-1030))
+ (-4 *2 (-1138)) (-5 *1 (-595 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-598 *5)) (-5 *4 (-598 *6))
+ (-4 *5 (-1030)) (-4 *6 (-1138)) (-5 *1 (-595 *5 *6))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-598 *2)) (-5 *6 (-1 *2 *5))
+ (-4 *5 (-1030)) (-4 *2 (-1138)) (-5 *1 (-595 *5 *2))))
+ ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1071)) (-5 *3 (-137)) (-5 *2 (-721)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 (-884 *4))) (-4 *1 (-1060 *4)) (-4 *4 (-984))
- (-5 *2 (-719)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-388 (-530))) (-4 *1 (-520 *3))
- (-4 *3 (-13 (-385) (-1121)))))
- ((*1 *1 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121)))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-1131 *3))
- (-4 *3 (-914)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 *4)) (-5 *1 (-1065 *3 *4))
- (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
- (-12 (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530))) (-5 *3 (-530))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-973)) (-5 *1 (-697)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-719)) (-5 *1 (-1028 *4 *5)) (-14 *4 *3)
- (-14 *5 *3))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3))
- (-4 *3 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135)))))
-(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-862)) (-5 *1 (-647))))
- ((*1 *2 *2 *2 *3 *4)
- (-12 (-5 *2 (-637 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5))
- (-4 *5 (-344)) (-5 *1 (-918 *5)))))
-(((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
- ((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (|partial| -12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-110))
+ (-5 *1 (-832 *4 *5)) (-4 *5 (-1030))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-835 *5)) (-4 *5 (-1030)) (-5 *2 (-110))
+ (-5 *1 (-833 *5 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *6)) (-5 *4 (-835 *5)) (-4 *5 (-1030))
+ (-4 *6 (-1138)) (-5 *2 (-110)) (-5 *1 (-833 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
+ (|partial| -12
+ (-5 *3
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-2 (|:| -4155 (-112)) (|:| |w| (-208)))) (-5 *1 (-188)))))
+(((*1 *2 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-975))
+ (-5 *1 (-697)))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1132 *2 *3 *4 *5)) (-4 *2 (-523)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *5 (-1000 *2 *3 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-4 *7 (-892 *4 *6 *5))
(-5 *2
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite| "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))
- (-5 *1 (-176)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-411 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099))))
- ((*1 *1 *1) (-4 *1 (-151))))
+ (-2 (|:| |sysok| (-110)) (|:| |z0| (-598 *7)) (|:| |n0| (-598 *7))))
+ (-5 *1 (-867 *4 *5 *6 *7)) (-5 *3 (-598 *7)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-530)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-984)))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
+ ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 *4)) (-5 *1 (-1068 *3 *4))
+ (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33))))))
+(((*1 *2 *1 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
+ (-4 *1 (-289))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1861 *1)))
+ (-4 *1 (-289)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-986))
+ (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-986))
+ (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3))
+ (-4 *3 (-799 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-741)) (-4 *6 (-795)) (-4 *7 (-522))
- (-4 *3 (-890 *7 *5 *6))
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 *10))
+ (-5 *1 (-580 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1005 *5 *6 *7 *8))
+ (-4 *10 (-1039 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6)))
+ (-5 *1 (-583 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-598 (-1102)))
(-5 *2
- (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| (-597 *3))))
- (-5 *1 (-894 *5 *6 *7 *3 *8)) (-5 *4 (-719))
- (-4 *8
- (-13 (-344)
- (-10 -8 (-15 -1918 (*3 $)) (-15 -1928 (*3 $)) (-15 -2366 ($ *3))))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-962 *3))
- (-4 *3 (-13 (-793) (-344) (-960)))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *2 (-13 (-793) (-344))) (-5 *1 (-994 *2 *3))
- (-4 *3 (-1157 *2))))
- ((*1 *2 *3 *1 *2)
- (-12 (-4 *1 (-1000 *2 *3)) (-4 *2 (-13 (-793) (-344)))
- (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *3 (-156 *6)) (-4 (-893 *6) (-827 *5))
- (-4 *6 (-13 (-827 *5) (-162))) (-5 *1 (-167 *5 *6 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-830 *4 *1)) (-5 *3 (-833 *4)) (-4 *1 (-827 *4))
- (-4 *4 (-1027))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *6)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *6 (-13 (-1027) (-975 *3))) (-4 *3 (-827 *5))
- (-5 *1 (-872 *5 *3 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027))
- (-4 *3 (-13 (-411 *6) (-572 *4) (-827 *5) (-975 (-570 $))))
- (-5 *4 (-833 *5)) (-4 *6 (-13 (-522) (-795) (-827 *5)))
- (-5 *1 (-873 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 (-530) *3)) (-5 *4 (-833 (-530))) (-4 *3 (-515))
- (-5 *1 (-874 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *6)) (-5 *3 (-570 *6)) (-4 *5 (-1027))
- (-4 *6 (-13 (-795) (-975 (-570 $)) (-572 *4) (-827 *5)))
- (-5 *4 (-833 *5)) (-5 *1 (-875 *5 *6))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-826 *5 *6 *3)) (-5 *4 (-833 *5)) (-4 *5 (-1027))
- (-4 *6 (-827 *5)) (-4 *3 (-617 *6)) (-5 *1 (-876 *5 *6 *3))))
- ((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *5 (-1 (-830 *6 *3) *8 (-833 *6) (-830 *6 *3)))
- (-4 *8 (-795)) (-5 *2 (-830 *6 *3)) (-5 *4 (-833 *6))
- (-4 *6 (-1027)) (-4 *3 (-13 (-890 *9 *7 *8) (-572 *4)))
- (-4 *7 (-741)) (-4 *9 (-13 (-984) (-795) (-827 *6)))
- (-5 *1 (-877 *6 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027))
- (-4 *3 (-13 (-890 *8 *6 *7) (-572 *4))) (-5 *4 (-833 *5))
- (-4 *7 (-827 *5)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *8 (-13 (-984) (-795) (-827 *5))) (-5 *1 (-877 *5 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 *3)) (-4 *5 (-1027)) (-4 *3 (-932 *6))
- (-4 *6 (-13 (-522) (-827 *5) (-572 *4))) (-5 *4 (-833 *5))
- (-5 *1 (-880 *5 *6 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-830 *5 (-1099))) (-5 *3 (-1099)) (-5 *4 (-833 *5))
- (-4 *5 (-1027)) (-5 *1 (-881 *5))))
- ((*1 *2 *3 *4 *5 *2 *6)
- (-12 (-5 *4 (-597 (-833 *7))) (-5 *5 (-1 *9 (-597 *9)))
- (-5 *6 (-1 (-830 *7 *9) *9 (-833 *7) (-830 *7 *9))) (-4 *7 (-1027))
- (-4 *9 (-13 (-984) (-572 (-833 *7)) (-975 *8))) (-5 *2 (-830 *7 *9))
- (-5 *3 (-597 *9)) (-4 *8 (-13 (-984) (-795)))
- (-5 *1 (-882 *7 *8 *9)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1066 *3 *4)) (-14 *3 (-862)) (-4 *4 (-344))
- (-5 *1 (-933 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1102))))
+ (-598 (-1073 *5 (-503 (-808 *6)) (-808 *6) (-730 *5 (-808 *6)))))
+ (-5 *1 (-583 *5 *6))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6)))
+ (-5 *1 (-983 *5 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186))
- (-5 *1 (-1102))))
- ((*1 *2 *3 *4 *1)
- (-12 (-5 *4 (-597 (-1099))) (-5 *3 (-1099)) (-5 *2 (-1186))
- (-5 *1 (-1102)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (|has| *1 (-6 -4260)) (-4 *1 (-385))
- (-5 *2 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-1005 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-1132 *4 *5 *6 *7)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-719)) (-4 *4 (-330))
- (-5 *1 (-500 *4)))))
-(((*1 *2 *2 *2)
- (-12
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-344))
+ (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *1 (-430 *4 *5 *6 *2))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344))
(-5 *2
- (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2473 *7))))
- (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-928 *3 *4 *5 *6 *7))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-2 (|:| |val| (-597 *6)) (|:| -2473 *7))))
- (-4 *6 (-998 *3 *4 *5)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
+ (-2 (|:| R (-639 *6)) (|:| A (-639 *6)) (|:| |Ainv| (-639 *6))))
+ (-5 *1 (-920 *6)) (-5 *3 (-639 *6)))))
+(((*1 *2 *1 *1 *3 *4)
+ (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6))
+ (-4 *5 (-13 (-1030) (-33))) (-4 *6 (-13 (-1030) (-33)))
+ (-5 *2 (-110)) (-5 *1 (-1067 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1102))
+ (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *1 (-1105)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-344)) (-5 *1 (-963 *3 *2)) (-4 *2 (-607 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2776 *3) (|:| -4145 (-597 *5))))
- (-5 *1 (-963 *5 *3)) (-5 *4 (-597 *5)) (-4 *3 (-607 *5)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))))
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-37 (-388 (-531))))
+ (-4 *2 (-162)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
+ (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 (-721) *2)) (-5 *4 (-721)) (-4 *2 (-1030))
+ (-5 *1 (-629 *2))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1 *3 (-721) *3)) (-4 *3 (-1030)) (-5 *1 (-632 *3)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522))
- (-5 *2 (-388 (-893 *4)))))
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -4155 (-112)) (|:| |arg| (-598 (-835 *3)))))
+ (-5 *1 (-835 *3)) (-4 *3 (-1030))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-1141 *4)) (-4 *4 (-984)) (-4 *4 (-522))
- (-5 *2 (-388 (-893 *4))))))
+ (|partial| -12 (-5 *3 (-112)) (-5 *2 (-598 (-835 *4)))
+ (-5 *1 (-835 *4)) (-4 *4 (-1030)))))
+(((*1 *1 *1 *2 *2)
+ (|partial| -12 (-5 *2 (-864)) (-5 *1 (-1031 *3 *4)) (-14 *3 *2)
+ (-14 *4 *2))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-531)) (-5 *2 (-110)) (-5 *1 (-520)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1120)))))
+(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)) (-4 *2 (-523))))
+ ((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-797)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-276 (-783 *3)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-783 *3)) (-5 *1 (-591 *5 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 (-783 (-895 *5)))) (-4 *5 (-432))
+ (-5 *2 (-783 (-388 (-895 *5)))) (-5 *1 (-592 *5))
+ (-5 *3 (-388 (-895 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5)))
+ (-4 *5 (-432)) (-5 *2 (-783 *3)) (-5 *1 (-592 *5)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-710)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *1 (-630 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))))
+(((*1 *2 *3 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-5 *2 (-388 (-895 *4))) (-5 *1 (-867 *4 *5 *6 *3))
+ (-4 *3 (-892 *4 *6 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-639 *7)) (-4 *7 (-892 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-5 *2 (-639 (-388 (-895 *4))))
+ (-5 *1 (-867 *4 *5 *6 *7))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-5 *2 (-598 (-388 (-895 *4))))
+ (-5 *1 (-867 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
+ (-12 (-5 *4 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *3 (-208))
+ (-5 *2 (-975)) (-5 *1 (-699)))))
+(((*1 *2 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986))))
+ ((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135))
- (-14 *4 (-530)))))
-(((*1 *2 *3 *4 *3 *5)
- (-12 (-5 *3 (-1082)) (-5 *4 (-159 (-208))) (-5 *5 (-530))
- (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-4 *3 (-13 (-344) (-795))) (-5 *1 (-169 *3 *2))
+ (-4 *2 (-1160 (-159 *3))))))
+(((*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-721))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-447))))
+ ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))))
+(((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *1 (-630 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))))
+(((*1 *2)
+ (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-324 *3 *4)) (-14 *3 (-864))
+ (-14 *4 (-864))))
+ ((*1 *2)
+ (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330))
+ (-14 *4 (-1098 *3))))
+ ((*1 *2)
+ (-12 (-5 *2 (-901 (-1049))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330))
+ (-14 *4 (-864)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-523)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-1129 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-51))) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-342 (-112))) (-4 *2 (-984)) (-5 *1 (-663 *2 *4))
- (-4 *4 (-599 *2))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-342 (-112))) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1157 *6))
- (-4 *6 (-13 (-344) (-140) (-975 *4))) (-5 *4 (-530))
+ (-12 (-4 *1 (-1052 *3 *4 *2 *5)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4))
+ (-4 *2 (-221 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289))
+ (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-892 *5 *3 *4))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *6 *4 *5))
+ (-5 *1 (-859 *4 *5 *6 *2)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-289)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))))
+(((*1 *1 *1) (-4 *1 (-1071))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4))
(-5 *2
- (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-110))))
- (|:| -2776
- (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3)
- (|:| |beta| *3)))))
- (-5 *1 (-954 *6 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 *4)) (-4 *4 (-344)) (-5 *2 (-1095 *4))
- (-5 *1 (-503 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-793))))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-134))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-137)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-669)) (-5 *2 (-862))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-719)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110))))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))))
+ (-3 (|:| |overq| (-1098 (-388 (-531))))
+ (|:| |overan| (-1098 (-47))) (|:| -4062 (-110))))
+ (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1160 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-134))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-137)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4))
+ (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1017)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-135 *2 *4 *3))
+ (-4 *3 (-354 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-481 *2 *4 *5 *3))
+ (-4 *5 (-354 *2)) (-4 *3 (-354 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-639 *4)) (-4 *4 (-934 *2)) (-4 *2 (-523))
+ (-5 *1 (-643 *2 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-934 *2)) (-4 *2 (-523)) (-5 *1 (-1153 *2 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-639 *2)) (-4 *4 (-1160 *2))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-5 *1 (-477 *2 *4 *5)) (-4 *5 (-390 *2 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)) (-4 *2 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-159 (-388 (-530)))))
- (-5 *2
- (-597
- (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-530))
- (|:| |outvect| (-597 (-637 (-159 *4)))))))
- (-5 *1 (-713 *4)) (-4 *4 (-13 (-344) (-793))))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4))))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-598 *8))) (-5 *3 (-598 *8))
+ (-4 *8 (-892 *5 *7 *6)) (-4 *5 (-13 (-289) (-140)))
+ (-4 *6 (-13 (-797) (-573 (-1102)))) (-4 *7 (-743)) (-5 *2 (-110))
+ (-5 *1 (-867 *5 *6 *7 *8)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-975 (-388 *2)))) (-5 *2 (-530))
- (-5 *1 (-113 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-607 *3)) (-4 *3 (-984)) (-4 *3 (-344))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
- (-5 *1 (-610 *5 *2)) (-4 *2 (-607 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *3 *6)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *3 (-795)) (-4 *6 (-998 *4 *5 *3)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2))
+ (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162))
+ (-5 *1 (-638 *2 *4 *5 *3)) (-4 *3 (-637 *2 *4 *5))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4275 "*"))) (-4 *2 (-986)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162))
+ (-5 *1 (-617 *3 *4))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-617 *3 *4)) (-5 *1 (-1202 *3 *4))
+ (-4 *3 (-797)) (-4 *4 (-162)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-712))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-4 *7 (-934 *4)) (-4 *2 (-637 *7 *8 *9))
+ (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-637 *4 *5 *6))
+ (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2)) (-4 *2 (-289))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2))
+ (-4 *2 (-637 *3 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-989 *2 *3 *4 *5 *6)) (-4 *4 (-986))
+ (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))))
+(((*1 *2 *3 *4 *5 *4)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *5 (-110))
+ (-5 *2 (-975)) (-5 *1 (-696)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099)))))
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-49 *3 *4)) (-4 *3 (-986))
+ (-14 *4 (-598 (-1102)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *1 *1) (-4 *1 (-266)))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *1 *2)
- (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-5 *1 (-581 *3 *4 *5))
- (-14 *5 (-862))))
+ (-12 (-5 *2 (-617 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-5 *1 (-582 *3 *4 *5))
+ (-14 *5 (-864))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530)))))
- (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))
+ (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531)))))
+ (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4))
- (-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-1186))
- (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-890 *4 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-289))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-427 *4 *5 *6 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432))
- (-5 *1 (-341 *3 *4)) (-14 *4 (-597 (-1099)))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432))
- (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-360)) (-5 *1 (-996)))))
-(((*1 *2 *3 *3 *4 *5 *5)
- (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1004 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-2 (|:| |val| (-597 *8)) (|:| -2473 *9))))
- (-5 *5 (-110)) (-4 *8 (-998 *6 *7 *4)) (-4 *9 (-1003 *6 *7 *4 *8))
- (-4 *6 (-432)) (-4 *7 (-741)) (-4 *4 (-795))
- (-5 *2 (-597 (-2 (|:| |val| *8) (|:| -2473 *9))))
- (-5 *1 (-1004 *6 *7 *4 *8 *9)))))
-(((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1108 (-597 *4))) (-4 *4 (-795))
- (-5 *2 (-597 (-597 *4))) (-5 *1 (-1107 *4)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-224)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *2)) (-4 *2 (-162))))
- ((*1 *2) (-12 (-4 *2 (-162)) (-5 *1 (-397 *3 *2)) (-4 *3 (-398 *2))))
- ((*1 *2) (-12 (-4 *1 (-398 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-110)) (-5 *1 (-865 *4 *5 *6 *7))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-110))
- (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
-(((*1 *2)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719)))))
+ (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4))
+ (-4 *4 (-668 (-388 (-531)))) (-4 *3 (-797)) (-4 *4 (-162)))))
+(((*1 *2 *3 *4 *5 *6 *5)
+ (-12 (-5 *4 (-159 (-208))) (-5 *5 (-531)) (-5 *6 (-1085))
+ (-5 *3 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1 *1) (-4 *1 (-995)))
+ ((*1 *1 *1 *2 *2)
+ (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *1 (-1067 *3 *2)) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *2 (-13 (-1030) (-33))))))
(((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-917 *5 *6 *7 *8)))))
-(((*1 *1 *2 *3 *1)
- (-12 (-14 *4 (-597 (-1099))) (-4 *2 (-162))
- (-4 *3 (-221 (-2267 *4) (-719)))
- (-14 *6
- (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *3))
- (-2 (|:| -1986 *5) (|:| -3194 *3))))
- (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-795))
- (-4 *7 (-890 *2 *3 (-806 *4))))))
-(((*1 *2 *1 *1 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-289))))
- ((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1)))
- (-4 *1 (-289)))))
+ (|partial| -12 (-5 *2 (-598 (-1098 *7))) (-5 *3 (-1098 *7))
+ (-4 *7 (-892 *5 *6 *4)) (-4 *5 (-852)) (-4 *6 (-743))
+ (-4 *4 (-797)) (-5 *1 (-849 *5 *6 *4 *7)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-769)))))
-(((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162)))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1157 (-388 (-530))))
- (-5 *2 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530))))
- (-5 *1 (-854 *3 *4)) (-4 *4 (-1157 (-388 *3)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *3))
- (-4 *3 (-1157 (-388 *4))))))
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-356 *4 *2))
+ (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274)))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-832 *5 *3)) (-5 *4 (-835 *5)) (-4 *5 (-1030))
+ (-4 *3 (-156 *6)) (-4 (-895 *6) (-829 *5))
+ (-4 *6 (-13 (-829 *5) (-162))) (-5 *1 (-167 *5 *6 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *2 (-832 *4 *1)) (-5 *3 (-835 *4)) (-4 *1 (-829 *4))
+ (-4 *4 (-1030))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-832 *5 *6)) (-5 *4 (-835 *5)) (-4 *5 (-1030))
+ (-4 *6 (-13 (-1030) (-977 *3))) (-4 *3 (-829 *5))
+ (-5 *1 (-874 *5 *3 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030))
+ (-4 *3 (-13 (-411 *6) (-573 *4) (-829 *5) (-977 (-571 $))))
+ (-5 *4 (-835 *5)) (-4 *6 (-13 (-523) (-797) (-829 *5)))
+ (-5 *1 (-875 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-832 (-531) *3)) (-5 *4 (-835 (-531))) (-4 *3 (-516))
+ (-5 *1 (-876 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-832 *5 *6)) (-5 *3 (-571 *6)) (-4 *5 (-1030))
+ (-4 *6 (-13 (-797) (-977 (-571 $)) (-573 *4) (-829 *5)))
+ (-5 *4 (-835 *5)) (-5 *1 (-877 *5 *6))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-828 *5 *6 *3)) (-5 *4 (-835 *5)) (-4 *5 (-1030))
+ (-4 *6 (-829 *5)) (-4 *3 (-619 *6)) (-5 *1 (-878 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2 *5)
+ (-12 (-5 *5 (-1 (-832 *6 *3) *8 (-835 *6) (-832 *6 *3)))
+ (-4 *8 (-797)) (-5 *2 (-832 *6 *3)) (-5 *4 (-835 *6))
+ (-4 *6 (-1030)) (-4 *3 (-13 (-892 *9 *7 *8) (-573 *4)))
+ (-4 *7 (-743)) (-4 *9 (-13 (-986) (-797) (-829 *6)))
+ (-5 *1 (-879 *6 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030))
+ (-4 *3 (-13 (-892 *8 *6 *7) (-573 *4))) (-5 *4 (-835 *5))
+ (-4 *7 (-829 *5)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *8 (-13 (-986) (-797) (-829 *5))) (-5 *1 (-879 *5 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-832 *5 *3)) (-4 *5 (-1030)) (-4 *3 (-934 *6))
+ (-4 *6 (-13 (-523) (-829 *5) (-573 *4))) (-5 *4 (-835 *5))
+ (-5 *1 (-882 *5 *6 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-832 *5 (-1102))) (-5 *3 (-1102)) (-5 *4 (-835 *5))
+ (-4 *5 (-1030)) (-5 *1 (-883 *5))))
+ ((*1 *2 *3 *4 *5 *2 *6)
+ (-12 (-5 *4 (-598 (-835 *7))) (-5 *5 (-1 *9 (-598 *9)))
+ (-5 *6 (-1 (-832 *7 *9) *9 (-835 *7) (-832 *7 *9))) (-4 *7 (-1030))
+ (-4 *9 (-13 (-986) (-573 (-835 *7)) (-977 *8))) (-5 *2 (-832 *7 *9))
+ (-5 *3 (-598 *9)) (-4 *8 (-13 (-986) (-797)))
+ (-5 *1 (-884 *7 *8 *9)))))
+(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-110)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-706)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-5 *2 (-597 (-2 (|:| -2611 *3) (|:| -1429 *4))))
- (-5 *1 (-644 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-702)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797)))
+ (-14 *3 (-598 (-1102))))))
+(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4))
+ (-5 *2
+ (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5))
+ (|:| |c2| (-388 *5)) (|:| |deg| (-721))))
+ (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5))))))
+(((*1 *2 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-702)))))
+(((*1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-523)) (-4 *2 (-162)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-775)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1102)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-986)) (-4 *4 (-1160 *3)) (-5 *1 (-154 *3 *4 *2))
+ (-4 *2 (-1160 *4))))
+ ((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3)
+ (-12 (-5 *5 (-639 (-208))) (-5 *6 (-639 (-531))) (-5 *3 (-531))
+ (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-703)))))
(((*1 *1 *2)
(-12
(-5 *2
- (-597
+ (-598
(-2
- (|:| -3078
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (|:| -3033
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
- (|:| -1874
+ (|:| -1798
(-2
(|:| |endPointContinuity|
(-3 (|:| |continuous| "Continuous at the end points")
@@ -7162,10 +7911,10 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
+ (-3 (|:| |str| (-1083 (-208)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1300
+ (|:| -2368
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite|
"The bottom of range is infinite")
@@ -7173,3353 +7922,3290 @@
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-525)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
- (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-705)))))
+ (-5 *1 (-526)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1027)) (-4 *4 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *5 *4 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
- (-5 *2
- (-2 (|:| |mval| (-637 *4)) (|:| |invmval| (-637 *4))
- (|:| |genIdeal| (-482 *4 *5 *6 *7))))
- (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *4 *5))
- (-4 *5 (-13 (-27) (-1121) (-411 *4)))))
+ (-12 (-5 *3 (-598 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1139 *2))
+ (-4 *2 (-1030))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-4 *5 (-13 (-432) (-795) (-975 *4) (-593 *4)))
- (-5 *2 (-51)) (-5 *1 (-296 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 *5) (-593 *5))) (-5 *5 (-530))
- (-5 *2 (-51)) (-5 *1 (-296 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530)))
- (-4 *7 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530)))
- (-4 *3 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *7 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-530)) (-4 *4 (-984)) (-4 *1 (-1143 *4 *3))
- (-4 *3 (-1172 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1141 *3)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
- (-5 *2 (-399 *3)) (-5 *1 (-416 *4 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-1030)) (-4 *2 (-797))
+ (-5 *1 (-1139 *2)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
(-5 *2
- (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-388 *5))
- (|:| |c2| (-388 *5)) (|:| |deg| (-719))))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
-(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *1) (-4 *1 (-908))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-432)) (-4 *4 (-795))
- (-5 *1 (-539 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))))
-(((*1 *1) (-5 *1 (-137))) ((*1 *1 *1) (-5 *1 (-804))))
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |k| (-624 *3)) (|:| |c| *4))))
+ (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797))
+ (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-531)) (-5 *3 (-864)) (-5 *1 (-649))))
+ ((*1 *2 *2 *2 *3 *4)
+ (-12 (-5 *2 (-639 *5)) (-5 *3 (-96 *5)) (-5 *4 (-1 *5 *5))
+ (-4 *5 (-344)) (-5 *1 (-920 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))))
(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-571 *2))) (-5 *4 (-598 (-1102)))
+ (-4 *2 (-13 (-411 (-159 *5)) (-943) (-1124)))
+ (-4 *5 (-13 (-523) (-797))) (-5 *1 (-560 *5 *6 *2))
+ (-4 *6 (-13 (-411 *5) (-943) (-1124))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1160 *4)) (-4 *4 (-1142))
+ (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1160 (-388 *3)))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-162))
+ (-4 *1 (-348 *4))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1184 *4)) (-5 *3 (-1184 *1)) (-4 *4 (-162))
+ (-4 *1 (-351 *4 *5)) (-4 *5 (-1160 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4))
+ (-4 *4 (-1160 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *4 *5))
- (-4 *5 (-13 (-27) (-1121) (-411 *4)))))
+ (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-719))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-276 *3)) (-5 *5 (-719))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-296 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6))
- (-4 *6 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-719)))
- (-4 *7 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-719)))
- (-4 *3 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *7 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1172 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-388 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-522))
- (-4 *4 (-984)) (-4 *2 (-1172 *4)) (-5 *1 (-1175 *4 *5 *6 *2))
- (-4 *6 (-607 *5)))))
-(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-159 (-208)))) (-5 *2 (-973))
- (-5 *1 (-705)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1004 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-1082)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-1186))
- (-5 *1 (-1035 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-149 *4 *2))
- (-4 *2 (-411 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1020 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
- (-5 *1 (-149 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-151))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1099))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-445 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-162)))))
-(((*1 *2 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-703)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
-(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110))))
+ (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))
((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110))
- (-5 *1 (-338 *4)))))
-(((*1 *1) (-5 *1 (-418))))
-(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *1 *1) (-4 *1 (-1068))))
-(((*1 *1 *1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-1099)) (-4 *6 (-411 *5))
- (-4 *5 (-795)) (-5 *2 (-597 (-570 *6))) (-5 *1 (-539 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-770)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *3 *4 *4)
- (|partial| -12 (-5 *3 (-719)) (-4 *5 (-344)) (-5 *2 (-163 *6))
- (-5 *1 (-808 *5 *4 *6)) (-4 *4 (-1172 *5)) (-4 *6 (-1157 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
- (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+ (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-311)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-862))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-719)) (-4 *2 (-1027))
- (-5 *1 (-627 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-378)))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-5 *2 (-719)) (-4 *1 (-1157 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 (-597 *7) *7 (-1095 *7))) (-5 *5 (-1 (-399 *7) *7))
- (-4 *7 (-1157 *6)) (-4 *6 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-5 *2 (-597 (-2 (|:| |frac| (-388 *7)) (|:| -2776 *3))))
- (-5 *1 (-757 *6 *7 *3 *8)) (-4 *3 (-607 *7))
- (-4 *8 (-607 (-388 *7)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2
- (-597 (-2 (|:| |frac| (-388 *6)) (|:| -2776 (-605 *6 (-388 *6))))))
- (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-1157 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-925 *4 *2 *3 *5))
- (-4 *4 (-330)) (-4 *5 (-673 *2 *3)))))
+ (|partial| -12 (-5 *3 (-112)) (-4 *2 (-1030)) (-4 *2 (-797))
+ (-5 *1 (-111 *2)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *7 (-1160 *5)) (-4 *4 (-675 *5 *7))
+ (-5 *2 (-2 (|:| -1751 (-639 *6)) (|:| |vec| (-1184 *5))))
+ (-5 *1 (-761 *5 *6 *7 *4 *3)) (-4 *6 (-609 *5)) (-4 *3 (-609 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN)))) (-5 *2 (-973))
- (-5 *1 (-698)))))
+ (-12 (-5 *2 (-1091 3 *3)) (-4 *3 (-986)) (-4 *1 (-1063 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-344))
- (-5 *2
- (-2 (|:| A (-637 *5))
- (|:| |eqs|
- (-597
- (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)) (|:| -2776 *6)
- (|:| |rh| *5))))))
- (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5))
- (-4 *6 (-607 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-607 *5))
- (-5 *2 (-2 (|:| -2030 (-637 *6)) (|:| |vec| (-1181 *5))))
- (-5 *1 (-761 *5 *6)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-1027)) (-4 *3 (-841 *6))
- (-5 *2 (-637 *3)) (-5 *1 (-640 *6 *3 *7 *4)) (-4 *7 (-354 *3))
- (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4269)))))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9)
- (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208)))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099)))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
- (-14 *3 (-597 (-1099))))))
-(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-973)) (-5 *3 (-1099)) (-5 *1 (-176)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-12 (-5 *4 (-721)) (-5 *2 (-110)) (-5 *1 (-549 *3)) (-4 *3 (-516)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1030)) (-4 *5 (-1030))
+ (-5 *2 (-1 *5 *4)) (-5 *1 (-633 *4 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *4 (-531)) (-4 *5 (-330)) (-5 *2 (-399 (-1098 (-1098 *5))))
+ (-5 *1 (-1137 *5)) (-5 *3 (-1098 (-1098 *5))))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *3 *4 *5 *5 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *3 (-895 *6)) (-5 *4 (-1102))
+ (-5 *5 (-790 *7))
+ (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-4 *7 (-13 (-1124) (-29 *6))) (-5 *1 (-207 *6 *7))))
+ ((*1 *2 *3 *4 *4 *2)
+ (|partial| -12 (-5 *2 (-110)) (-5 *3 (-1098 *6)) (-5 *4 (-790 *6))
+ (-4 *6 (-13 (-1124) (-29 *5)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-207 *5 *6)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1074 *3)))))
+(((*1 *1 *1) (|partial| -4 *1 (-138))) ((*1 *1 *1) (-4 *1 (-330)))
+ ((*1 *1 *1) (|partial| -12 (-4 *1 (-138)) (-4 *1 (-852)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-816 (-909 *3) (-909 *3))) (-5 *1 (-909 *3))
+ (-4 *3 (-910)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *1 (-579 *3 *4 *5 *6 *7 *2))
- (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *2 (-1036 *3 *4 *5 *6)))))
+ (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4)))))
+ ((*1 *1 *1) (-5 *1 (-360)))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189))
+ (-5 *1 (-1006 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189))
+ (-5 *1 (-1038 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-198 (-480))) (-5 *1 (-785)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))))
(((*1 *2 *2)
- (-12
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *1 *1) (-12 (-5 *2 (-531)) (-5 *1 (-360)))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1098 *7)) (-5 *3 (-531)) (-4 *7 (-892 *6 *4 *5))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986))
+ (-5 *1 (-302 *4 *5 *6 *7)))))
+(((*1 *1 *1) (-5 *1 (-998))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 (-388 (-531))))
(-5 *2
- (-927 (-388 (-530)) (-806 *3) (-223 *4 (-719))
- (-230 *3 (-388 (-530)))))
- (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-926 *3 *4)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
+ (-598
+ (-2 (|:| |outval| *4) (|:| |outmult| (-531))
+ (|:| |outvect| (-598 (-639 *4))))))
+ (-5 *1 (-729 *4)) (-4 *4 (-13 (-344) (-795))))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-5 *3 (-1102)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-895 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1102)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-797) (-523)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-797) (-523)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098 *2)) (-5 *4 (-1102)) (-4 *2 (-411 *5))
+ (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-797) (-523)))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1098 *1)) (-5 *3 (-864)) (-4 *1 (-953))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-1098 *1)) (-5 *3 (-864)) (-5 *4 (-806))
+ (-4 *1 (-953))))
+ ((*1 *1 *2 *3)
+ (|partial| -12 (-5 *3 (-864)) (-4 *4 (-13 (-795) (-344)))
+ (-4 *1 (-1002 *4 *2)) (-4 *2 (-1160 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-892 *3 *4 *5)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-307 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-742)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-721)) (-4 *2 (-1030))
+ (-5 *1 (-629 *2)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-360)) (-5 *1 (-998)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-571 *5)) (-4 *5 (-411 *4)) (-4 *4 (-977 (-531)))
+ (-4 *4 (-13 (-797) (-523))) (-5 *2 (-1098 *5)) (-5 *1 (-31 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-571 *1)) (-4 *1 (-986)) (-4 *1 (-284))
+ (-5 *2 (-1098 *1)))))
(((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-719)) (-5 *1 (-309 *3 *4))
- (-4 *3 (-310 *4))))
- ((*1 *2) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-719)))))
+ (-12 (-5 *2 (-1184 (-1031 *3 *4))) (-5 *1 (-1031 *3 *4))
+ (-14 *3 (-864)) (-14 *4 (-864)))))
+(((*1 *1) (-5 *1 (-1017))))
(((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-135 *3 *4 *2))
- (-4 *2 (-354 *4))))
+ (-12 (-4 *3 (-330)) (-4 *4 (-310 *3)) (-4 *5 (-1160 *4))
+ (-5 *1 (-727 *3 *4 *5 *2 *6)) (-4 *2 (-1160 *5)) (-14 *6 (-864))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1201 *2)) (-4 *2 (-344)) (-4 *2 (-349)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-598 *6))
+ (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-986)) (-14 *3 (-598 (-1102)))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797)))
+ (-14 *3 (-598 (-1102))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516))
+ (-5 *2 (-388 (-531)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-399 *3)) (-4 *3 (-516))
+ (-4 *3 (-523))))
+ ((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-388 (-531)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516))
+ (-5 *2 (-388 (-531)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-783 *3)) (-4 *3 (-516))
+ (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-790 *3)) (-4 *3 (-516))
+ (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516))
+ (-5 *2 (-388 (-531)))))
((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-932 *4)) (-4 *2 (-354 *4))
- (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5))))
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-949 *3)) (-4 *3 (-977 *2)))))
+(((*1 *1 *1 *1) (-4 *1 (-121))) ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *1) (-4 *1 (-910))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-598 (-721)))
+ (-5 *1 (-847 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-531)))))
+ (-5 *1 (-342 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-721)))))
+ (-5 *1 (-367 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| -2552 *3) (|:| -1790 (-531)))))
+ (-5 *1 (-399 *3)) (-4 *3 (-523))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 (-721)))))
+ (-5 *1 (-769 *3)) (-4 *3 (-797)))))
+(((*1 *2 *3)
+ (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *4 (-1160 *3))
+ (-5 *2
+ (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-639 *3))))
+ (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522))
- (-5 *2 (-637 *4)) (-5 *1 (-641 *4 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-4 *4 (-932 *3)) (-5 *1 (-1150 *3 *4 *2))
- (-4 *2 (-1157 *4)))))
+ (-12 (-5 *3 (-531)) (-4 *4 (-1160 *3))
+ (-5 *2
+ (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-639 *3))))
+ (-5 *1 (-718 *4 *5)) (-4 *5 (-390 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-330)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 *3))
+ (-5 *2
+ (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-639 *3))))
+ (-5 *1 (-927 *4 *3 *5 *6)) (-4 *6 (-675 *3 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-330)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 *3))
+ (-5 *2
+ (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-639 *3))))
+ (-5 *1 (-1193 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-33)) (-5 *3 (-719)) (-5 *2 (-110))))
- ((*1 *2 *3 *3)
- (|partial| -12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *3 (-1027)) (-5 *2 (-110))
- (-5 *1 (-1136 *3)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-598 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-94)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1114)))))
+ (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-13 (-795) (-344))) (-5 *2 (-110)) (-5 *1 (-996 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-218 *3))
+ (-4 *3 (-1030))))
+ ((*1 *1 *2 *1)
+ (-12 (|has| *1 (-6 -4273)) (-4 *1 (-218 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-1030))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-569 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-531)) (-4 *4 (-1030))
+ (-5 *1 (-688 *4))))
+ ((*1 *1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-5 *1 (-688 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3))))
+ ((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-771)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-569 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 *1)) (|has| *1 (-6 -4274)) (-4 *1 (-951 *3))
+ (-4 *3 (-1138)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943)))
+ (-5 *1 (-165 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-330))
- (-5 *2
- (-2 (|:| |cont| *5)
- (|:| -3721 (-597 (-2 (|:| |irr| *3) (|:| -2075 (-530)))))))
- (-5 *1 (-200 *5 *3)) (-4 *3 (-1157 *5)))))
+ (-12 (-5 *4 (-1102)) (-5 *2 (-1 (-208) (-208))) (-5 *1 (-654 *3))
+ (-4 *3 (-573 (-507)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-1102)) (-5 *2 (-1 (-208) (-208) (-208)))
+ (-5 *1 (-654 *3)) (-4 *3 (-573 (-507))))))
(((*1 *2 *3)
- (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
- (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
+ (-12 (-4 *3 (-1160 (-388 (-531))))
+ (-5 *2 (-2 (|:| |den| (-531)) (|:| |gcdnum| (-531))))
+ (-5 *1 (-856 *3 *4)) (-4 *4 (-1160 (-388 *3)))))
((*1 *2 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-112)) (-5 *4 (-597 *2)) (-5 *1 (-111 *2))
- (-4 *2 (-1027))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-597 *4))) (-4 *4 (-1027))
- (-5 *1 (-111 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027))
- (-5 *1 (-111 *4))))
+ (-12 (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *3))
+ (-4 *3 (-1160 (-388 *4))))))
+(((*1 *2)
+ (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5)))
+ (-5 *2 (-598 (-598 *4))) (-5 *1 (-322 *3 *4 *5 *6))
+ (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-598 (-598 *3))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742))
+ (-5 *2 (-598 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030))
+ (-5 *2 (-598 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-557 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 *3)) (-5 *1 (-686 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-677))))
+ ((*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-598 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1175 *3)) (-4 *3 (-986)) (-5 *2 (-1083 *3)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3)
+ (-12 (-5 *4 (-598 (-110))) (-5 *5 (-639 (-208)))
+ (-5 *6 (-639 (-531))) (-5 *7 (-208)) (-5 *3 (-531)) (-5 *2 (-975))
+ (-5 *1 (-705)))))
+(((*1 *2 *3 *3 *3 *4 *5)
+ (-12 (-5 *5 (-598 (-598 (-208)))) (-5 *4 (-208))
+ (-5 *2 (-598 (-886 *4))) (-5 *1 (-1135)) (-5 *3 (-886 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138)) (-4 *2 (-1030))))
+ ((*1 *1 *1) (-12 (-4 *1 (-645 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-460 *4 *5))) (-14 *4 (-598 (-1102)))
+ (-4 *5 (-432))
+ (-5 *2
+ (-2 (|:| |gblist| (-598 (-230 *4 *5)))
+ (|:| |gvlist| (-598 (-531)))))
+ (-5 *1 (-586 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *2 (-769 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)))))
+(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-597 *4)))
- (-5 *1 (-111 *4)) (-4 *4 (-1027))))
+ (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-230 *3 *4))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-986))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-599 *3)) (-4 *3 (-984))
- (-5 *1 (-663 *3 *4))))
+ (-12 (-5 *2 (-598 (-531))) (-14 *3 (-598 (-1102)))
+ (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-986))
+ (-4 *5 (-221 (-2167 *3) (-721)))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-782 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1169 *3)) (-4 *3 (-1135)) (-5 *2 (-719)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-57 *6)) (-4 *6 (-1135))
- (-4 *5 (-1135)) (-5 *2 (-57 *5)) (-5 *1 (-56 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-223 *6 *7)) (-14 *6 (-719))
- (-4 *7 (-1135)) (-4 *5 (-1135)) (-5 *2 (-223 *6 *5))
- (-5 *1 (-222 *6 *7 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1135)) (-4 *5 (-1135))
- (-4 *2 (-354 *5)) (-5 *1 (-352 *6 *4 *5 *2)) (-4 *4 (-354 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1027)) (-4 *5 (-1027))
- (-4 *2 (-406 *5)) (-5 *1 (-404 *6 *4 *5 *2)) (-4 *4 (-406 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-597 *6)) (-4 *6 (-1135))
- (-4 *5 (-1135)) (-5 *2 (-597 *5)) (-5 *1 (-595 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-899 *6)) (-4 *6 (-1135))
- (-4 *5 (-1135)) (-5 *2 (-899 *5)) (-5 *1 (-898 *6 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1080 *6)) (-4 *6 (-1135))
- (-4 *3 (-1135)) (-5 *2 (-1080 *3)) (-5 *1 (-1078 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1181 *6)) (-4 *6 (-1135))
- (-4 *5 (-1135)) (-5 *2 (-1181 *5)) (-5 *1 (-1180 *6 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4129 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-697)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099)))
- (-5 *2
- (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6)))))
- (-5 *1 (-582 *5 *6)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-515))))
- ((*1 *1 *1) (-4 *1 (-993))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-460 *3 *4))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-986)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-360)) (-5 *1 (-998)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-245)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-148))))
+ ((*1 *2 *1) (-12 (-5 *2 (-148)) (-5 *1 (-817))))
+ ((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098 (-531))) (-5 *2 (-531)) (-5 *1 (-885)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
- (-5 *2 (-597 (-1099))) (-5 *1 (-249))))
+ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))
+ (-5 *2 (-598 (-1102))) (-5 *1 (-249))))
((*1 *2 *3)
- (-12 (-5 *3 (-1095 *7)) (-4 *7 (-890 *6 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-984)) (-5 *2 (-597 *5))
+ (-12 (-5 *3 (-1098 *7)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-986)) (-5 *2 (-598 *5))
(-5 *1 (-302 *4 *5 *6 *7))))
((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2)
+ (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-320 *3 *4 *5)) (-14 *3 *2)
(-14 *4 *2) (-4 *5 (-368))))
((*1 *2 *1)
- (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-597 (-1099)))))
+ (-12 (-4 *1 (-411 *3)) (-4 *3 (-797)) (-5 *2 (-598 (-1102)))))
((*1 *2 *1)
- (-12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3)) (-4 *3 (-1030))))
((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-597 *5))))
+ (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-598 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *5))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
+ (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986))
+ (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *5))
+ (-5 *1 (-893 *4 *5 *6 *7 *3))
(-4 *3
(-13 (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $)))))))
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $)))))))
((*1 *2 *1)
- (-12 (-5 *2 (-1029 (-1099))) (-5 *1 (-907 *3)) (-4 *3 (-908))))
+ (-12 (-5 *2 (-1032 (-1102))) (-5 *1 (-909 *3)) (-4 *3 (-910))))
((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-740))
- (-4 *5 (-795)) (-5 *2 (-597 *5))))
+ (-12 (-4 *1 (-915 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-742))
+ (-4 *5 (-797)) (-5 *2 (-598 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5))))
+ (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-5 *2 (-597 (-1099)))
- (-5 *1 (-980 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *1 *1 *2 *2 *2 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-530)) (-5 *1 (-535 *3)) (-4 *3 (-975 *2)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-795)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135))
- (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-330)) (-4 *6 (-1157 *5))
- (-5 *2
- (-597
- (-2 (|:| -3220 (-637 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-637 *6)))))
- (-5 *1 (-476 *5 *6 *7))
+ (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-5 *2 (-598 (-1102)))
+ (-5 *1 (-982 *4)))))
+(((*1 *2 *3 *4 *5 *6 *7 *7 *8)
+ (-12
(-5 *3
- (-2 (|:| -3220 (-637 *6)) (|:| |basisDen| *6)
- (|:| |basisInv| (-637 *6))))
- (-4 *7 (-1157 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-171)))))
-(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-2 (|:| |det| *12) (|:| |rows| (-598 (-531)))
+ (|:| |cols| (-598 (-531)))))
+ (-5 *4 (-639 *12)) (-5 *5 (-598 (-388 (-895 *9))))
+ (-5 *6 (-598 (-598 *12))) (-5 *7 (-721)) (-5 *8 (-531))
+ (-4 *9 (-13 (-289) (-140))) (-4 *12 (-892 *9 *11 *10))
+ (-4 *10 (-13 (-797) (-573 (-1102)))) (-4 *11 (-743))
+ (-5 *2
+ (-2 (|:| |eqzro| (-598 *12)) (|:| |neqzro| (-598 *12))
+ (|:| |wcond| (-598 (-895 *9)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *9))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *9)))))))))
+ (-5 *1 (-867 *9 *10 *11 *12)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138))
+ (-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1030))
+ (-4 *2 (-1138)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-1087 *4)) (-4 *4 (-986))
+ (-5 *3 (-531)))))
+(((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-975)) (-5 *1 (-787))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-297 (-360)))) (-5 *4 (-598 (-360)))
+ (-5 *2 (-975)) (-5 *1 (-787)))))
+(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-399 *3)) (-4 *3 (-523))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-2 (|:| -2552 *4) (|:| -2012 (-531)))))
+ (-4 *4 (-1160 (-531))) (-5 *2 (-721)) (-5 *1 (-422 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-171)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-140))) (-5 *2 (-598 *3))
+ (-5 *1 (-1154 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-795)))
+ (-5 *2 (-598 (-2 (|:| -2721 (-598 *3)) (|:| -3959 *5))))
+ (-5 *1 (-169 *5 *3)) (-4 *3 (-1160 (-159 *5)))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-344) (-795)))
+ (-5 *2 (-598 (-2 (|:| -2721 (-598 *3)) (|:| -3959 *4))))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4))))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23))
+ (-14 *4 *3))))
(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1095 (-388 (-1095 *2)))) (-5 *4 (-570 *2))
- (-4 *2 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *1 (-526 *5 *2 *6)) (-4 *6 (-1027))))
+ (-12 (-5 *3 (-1098 (-388 (-1098 *2)))) (-5 *4 (-571 *2))
+ (-4 *2 (-13 (-411 *5) (-27) (-1124)))
+ (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *1 (-527 *5 *2 *6)) (-4 *6 (-1030))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095 *1)) (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *3 (-795))))
+ (-12 (-5 *2 (-1098 *1)) (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *3 (-797))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1095 *4)) (-4 *4 (-984)) (-4 *1 (-890 *4 *5 *3))
- (-4 *5 (-741)) (-4 *3 (-795))))
+ (-12 (-5 *2 (-1098 *4)) (-4 *4 (-986)) (-4 *1 (-892 *4 *5 *3))
+ (-4 *5 (-743)) (-4 *3 (-797))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-1095 *2))) (-4 *5 (-741)) (-4 *4 (-795))
- (-4 *6 (-984))
+ (-12 (-5 *3 (-388 (-1098 *2))) (-4 *5 (-743)) (-4 *4 (-797))
+ (-4 *6 (-986))
(-4 *2
(-13 (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $)))))
- (-5 *1 (-891 *5 *4 *6 *7 *2)) (-4 *7 (-890 *6 *5 *4))))
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $)))))
+ (-5 *1 (-893 *5 *4 *6 *7 *2)) (-4 *7 (-892 *6 *5 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-1095 (-388 (-893 *5))))) (-5 *4 (-1099))
- (-5 *2 (-388 (-893 *5))) (-5 *1 (-980 *5)) (-4 *5 (-522)))))
-(((*1 *2 *3 *4 *5 *6 *2 *7 *8)
- (|partial| -12 (-5 *2 (-597 (-1095 *11))) (-5 *3 (-1095 *11))
- (-5 *4 (-597 *10)) (-5 *5 (-597 *8)) (-5 *6 (-597 (-719)))
- (-5 *7 (-1181 (-597 (-1095 *8)))) (-4 *10 (-795))
- (-4 *8 (-289)) (-4 *11 (-890 *8 *9 *10)) (-4 *9 (-741))
- (-5 *1 (-656 *9 *10 *8 *11)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
+ (-12 (-5 *3 (-388 (-1098 (-388 (-895 *5))))) (-5 *4 (-1102))
+ (-5 *2 (-388 (-895 *5))) (-5 *1 (-982 *5)) (-4 *5 (-523)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4274)) (-4 *1 (-468 *3))
+ (-4 *3 (-1138)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5))))
- (-5 *1 (-1055 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1055 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *5))))
- (-5 *1 (-1055 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-276 (-388 (-893 *4))))
- (-4 *4 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-276 (-297 *4))))
- (-5 *1 (-1055 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-388 (-893 *4))))
- (-4 *4 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 *5))))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1055 *5))))
+ (|partial| -12 (-5 *3 (-112)) (-5 *4 (-598 *2)) (-5 *1 (-111 *2))
+ (-4 *2 (-1030))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 (-598 *4))) (-4 *4 (-1030))
+ (-5 *1 (-111 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1030))
+ (-5 *1 (-111 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 *4)))))
- (-4 *4 (-13 (-289) (-795) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *4))))) (-5 *1 (-1055 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-671)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-675)) (-5 *2 (-110)))))
+ (|partial| -12 (-5 *3 (-112)) (-5 *2 (-1 *4 (-598 *4)))
+ (-5 *1 (-111 *4)) (-4 *4 (-1030))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-601 *3)) (-4 *3 (-986))
+ (-5 *1 (-665 *3 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-986)) (-5 *1 (-784 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-148))))
+ ((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))))
+(((*1 *2)
+ (-12 (-4 *4 (-344)) (-5 *2 (-721)) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-721)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *5 (-349))
- (-5 *2 (-719)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *2 (-973))
- (-5 *1 (-695)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
-(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-647)) (-5 *1 (-287)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1031)) (-5 *3 (-722)) (-5 *1 (-51)))))
+ (-12 (-4 *3 (-1030))
+ (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3))))
+ (-5 *2 (-598 (-1102))) (-5 *1 (-1008 *3 *4 *5))
+ (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
+(((*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208))))))
+(((*1 *2)
+ (-12 (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))
+ (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *4 (-1160 *3))
+ (-5 *2
+ (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-639 *3))))
+ (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
+ ((*1 *2)
+ (-12 (-4 *3 (-1160 (-531)))
+ (-5 *2
+ (-2 (|:| -3523 (-639 (-531))) (|:| |basisDen| (-531))
+ (|:| |basisInv| (-639 (-531)))))
+ (-5 *1 (-718 *3 *4)) (-4 *4 (-390 (-531) *3))))
+ ((*1 *2)
+ (-12 (-4 *3 (-330)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 *4))
+ (-5 *2
+ (-2 (|:| -3523 (-639 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-639 *4))))
+ (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-675 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *3 (-330)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 *4))
+ (-5 *2
+ (-2 (|:| -3523 (-639 *4)) (|:| |basisDen| *4)
+ (|:| |basisInv| (-639 *4))))
+ (-5 *1 (-1193 *3 *4 *5 *6)) (-4 *6 (-390 *4 *5)))))
(((*1 *1 *2 *3)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-597 (-862))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-862))
- (-4 *2 (-344)) (-14 *5 (-933 *4 *2))))
+ (-12 (-5 *3 (-598 (-864))) (-5 *1 (-145 *4 *2 *5)) (-14 *4 (-864))
+ (-4 *2 (-344)) (-14 *5 (-935 *4 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-662 *5 *6 *7)) (-4 *5 (-795))
- (-4 *6 (-221 (-2267 *4) (-719)))
+ (-12 (-5 *3 (-664 *5 *6 *7)) (-4 *5 (-797))
+ (-4 *6 (-221 (-2167 *4) (-721)))
(-14 *7
- (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6))
- (-2 (|:| -1986 *5) (|:| -3194 *6))))
- (-14 *4 (-597 (-1099))) (-4 *2 (-162))
- (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-890 *2 *6 (-806 *4)))))
+ (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6))
+ (-2 (|:| -1889 *5) (|:| -1790 *6))))
+ (-14 *4 (-598 (-1102))) (-4 *2 (-162))
+ (-5 *1 (-441 *4 *2 *5 *6 *7 *8)) (-4 *8 (-892 *2 *6 (-808 *4)))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795))))
+ (-12 (-4 *1 (-487 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-797))))
((*1 *1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-522)) (-5 *1 (-578 *2 *4))
- (-4 *4 (-1157 *2))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ (-12 (-5 *3 (-531)) (-4 *2 (-523)) (-5 *1 (-579 *2 *4))
+ (-4 *4 (-1160 *2))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-659 *2)) (-4 *2 (-986))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-684 *2 *3)) (-4 *2 (-984)) (-4 *3 (-675))))
+ (-12 (-5 *1 (-686 *2 *3)) (-4 *2 (-986)) (-4 *3 (-677))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *5)) (-5 *3 (-597 (-719))) (-4 *1 (-689 *4 *5))
- (-4 *4 (-984)) (-4 *5 (-795))))
+ (-12 (-5 *2 (-598 *5)) (-5 *3 (-598 (-721))) (-4 *1 (-691 *4 *5))
+ (-4 *4 (-986)) (-4 *5 (-797))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *2)) (-4 *4 (-984))
- (-4 *2 (-795))))
- ((*1 *1 *2 *3) (-12 (-5 *3 (-719)) (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ (-12 (-5 *3 (-721)) (-4 *1 (-691 *4 *2)) (-4 *4 (-986))
+ (-4 *2 (-797))))
+ ((*1 *1 *2 *3) (-12 (-5 *3 (-721)) (-4 *1 (-799 *2)) (-4 *2 (-986))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 (-719))) (-4 *1 (-890 *4 *5 *6))
- (-4 *4 (-984)) (-4 *5 (-741)) (-4 *6 (-795))))
+ (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 (-721))) (-4 *1 (-892 *4 *5 *6))
+ (-4 *4 (-986)) (-4 *5 (-743)) (-4 *6 (-797))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-890 *4 *5 *2)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *2 (-795))))
+ (-12 (-5 *3 (-721)) (-4 *1 (-892 *4 *5 *2)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *2 (-797))))
((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 *6)) (-5 *3 (-597 *5)) (-4 *1 (-913 *4 *5 *6))
- (-4 *4 (-984)) (-4 *5 (-740)) (-4 *6 (-795))))
+ (-12 (-5 *2 (-598 *6)) (-5 *3 (-598 *5)) (-4 *1 (-915 *4 *5 *6))
+ (-4 *4 (-986)) (-4 *5 (-742)) (-4 *6 (-797))))
((*1 *1 *1 *2 *3)
- (-12 (-4 *1 (-913 *4 *3 *2)) (-4 *4 (-984)) (-4 *3 (-740))
- (-4 *2 (-795)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082)))))
-(((*1 *2 *3 *3 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-696)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-965 *5 *6 *7 *3))) (-5 *1 (-965 *5 *6 *7 *3))
- (-4 *3 (-998 *5 *6 *7))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-597 *6)) (-4 *1 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-1003 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5))))
- ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-1070 *5 *6 *7 *3))) (-5 *1 (-1070 *5 *6 *7 *3))
- (-4 *3 (-998 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-448)) (-5 *3 (-597 (-245))) (-5 *1 (-1182))))
- ((*1 *1 *1) (-5 *1 (-1182))))
-(((*1 *2 *3 *3 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-208) (-208) (-208)))
- (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
- (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
- (-5 *1 (-645))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-208)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-645))))
- ((*1 *2 *2 *3 *4 *4 *5)
- (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1 (-884 (-208)) (-208) (-208)))
- (-5 *4 (-1022 (-208))) (-5 *5 (-597 (-245))) (-5 *1 (-645)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-2 (|:| |func| *3) (|:| |kers| (-597 (-570 *3)))
- (|:| |vals| (-597 *3))))
- (-5 *1 (-259 *5 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2))
- (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162))
- (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-289)) (-5 *1 (-168 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
- (-5 *1 (-313)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5)) (-4 *5 (-1027)) (-5 *2 (-1 *5 *4))
- (-5 *1 (-631 *4 *5)) (-4 *4 (-1027))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871))))
- ((*1 *2 *1) (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
- ((*1 *2 *1) (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-145 *2 *3 *4)) (-14 *2 (-862)) (-4 *3 (-344))
- (-14 *4 (-933 *2 *3))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
- (-14 *6 (-1 (-3 *4 "failed") *4 *4))
- (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162))
- (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3))
- (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *1 *1) (|partial| -4 *1 (-671)))
- ((*1 *1 *1) (|partial| -4 *1 (-675)))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3)))
- (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344)))
- (-4 *2 (-1157 *3))))
- ((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-719))))
- (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1157 (-388 *5))))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
+ (-12 (-4 *1 (-915 *4 *3 *2)) (-4 *4 (-986)) (-4 *3 (-742))
+ (-4 *2 (-797)))))
+(((*1 *1) (-5 *1 (-148))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5))
- (-14 *3 (-530)) (-14 *4 (-719)))))
+ (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5))
+ (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-1195 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1195 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 (-598 (-598 *4)))) (-5 *2 (-598 (-598 *4)))
+ (-4 *4 (-797)) (-5 *1 (-1110 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-5 *1 (-311)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-847 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-797) (-523))))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 (-598 (-598 *4)))) (-5 *3 (-598 *4)) (-4 *4 (-797))
+ (-5 *1 (-1110 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-609 *2)) (-4 *2 (-986))))
((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
- (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-297 (-208)))) (-5 *4 (-719))
- (-5 *2 (-637 (-208))) (-5 *1 (-249)))))
-(((*1 *2 *3 *4 *4 *4 *5 *6 *7)
- (|partial| -12 (-5 *5 (-1099))
- (-5 *6
- (-1
- (-3
- (-2 (|:| |mainpart| *4)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
- "failed")
- *4 (-597 *4)))
- (-5 *7
- (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4 *4))
- (-4 *4 (-13 (-1121) (-27) (-411 *8)))
- (-4 *8 (-13 (-432) (-795) (-140) (-975 *3) (-593 *3)))
- (-5 *3 (-530)) (-5 *2 (-597 *4)) (-5 *1 (-953 *8 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
- ((*1 *2 *1) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
-(((*1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-14 *6
- (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *2))
- (-2 (|:| -1986 *5) (|:| -3194 *2))))
- (-4 *2 (-221 (-2267 *3) (-719))) (-5 *1 (-441 *3 *4 *5 *2 *6 *7))
- (-4 *5 (-795)) (-4 *7 (-890 *4 *2 (-806 *3))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 (-530))) (-4 *3 (-984)) (-5 *1 (-96 *3))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-984)) (-5 *1 (-96 *3)))))
-(((*1 *2 *2 *3) (-12 (-5 *2 (-530)) (-5 *3 (-719)) (-5 *1 (-527)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *2 (-1186)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |Null| "null") (|:| |Assignment| "assignment")
- (|:| |Conditional| "conditional") (|:| |Return| "return")
- (|:| |Block| "block") (|:| |Comment| "comment")
- (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while")
- (|:| |Repeat| "repeat") (|:| |Goto| "goto")
- (|:| |Continue| "continue")
- (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save")
- (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")))
- (-5 *1 (-311)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
- (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
- (-15 -1928 ((-1051 *3 (-570 $)) $))
- (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
-(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-82 FCNF))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-83 FCNG)))) (-5 *3 (-208))
- (-5 *2 (-973)) (-5 *1 (-698)))))
+ (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
+ (-5 *1 (-638 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3))
+ (-4 *3 (-601 *2))))
+ ((*1 *1 *1)
+ (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3))
+ (-4 *3 (-601 *2))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986))))
+ ((*1 *1 *1) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 (-530)))))
- (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4))
- (-4 *4 (-13 (-793) (-344)))))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743))
+ (-4 *7 (-797)) (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-598 *3))
+ (-5 *1 (-553 *5 *6 *7 *8 *3)) (-4 *3 (-1039 *5 *6 *7 *8))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 (-530))))))
- (-5 *2 (-597 (-597 (-276 (-893 *4))))) (-5 *1 (-361 *4))
- (-4 *4 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-530)))) (-5 *2 (-597 (-276 (-893 *4))))
- (-5 *1 (-361 *4)) (-4 *4 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-276 (-388 (-893 (-530)))))
- (-5 *2 (-597 (-276 (-893 *4)))) (-5 *1 (-361 *4))
- (-4 *4 (-13 (-793) (-344)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1099))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-4 *4 (-13 (-29 *6) (-1121) (-900)))
- (-5 *2 (-2 (|:| |particular| *4) (|:| -3220 (-597 *4))))
- (-5 *1 (-603 *6 *4 *3)) (-4 *3 (-607 *4))))
- ((*1 *2 *3 *2 *4 *2 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 *2))
- (-4 *2 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-603 *6 *2 *3)) (-4 *3 (-607 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *5)) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
- (|:| -3220 (-597 (-1181 *5)))))
- (-5 *1 (-618 *5)) (-5 *4 (-1181 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
- (|:| -3220 (-597 (-1181 *5)))))
- (-5 *1 (-618 *5)) (-5 *4 (-1181 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *5)) (-4 *5 (-344))
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
(-5 *2
- (-597
- (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
- (|:| -3220 (-597 (-1181 *5))))))
- (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 *5))) (-4 *5 (-344))
+ (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5))))))
+ (-5 *1 (-1010 *5 *6)) (-5 *3 (-598 (-895 *5)))
+ (-14 *6 (-598 (-1102)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140)))
(-5 *2
- (-597
- (-2 (|:| |particular| (-3 (-1181 *5) "failed"))
- (|:| -3220 (-597 (-1181 *5))))))
- (-5 *1 (-618 *5)) (-5 *4 (-597 (-1181 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270))))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270))))
+ (-598 (-2 (|:| -3694 (-1098 *4)) (|:| -3348 (-598 (-895 *4))))))
+ (-5 *1 (-1010 *4 *5)) (-5 *3 (-598 (-895 *4)))
+ (-14 *5 (-598 (-1102)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140)))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
- (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270))))
- (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4270))))
+ (-598 (-2 (|:| -3694 (-1098 *5)) (|:| -3348 (-598 (-895 *5))))))
+ (-5 *1 (-1010 *5 *6)) (-5 *3 (-598 (-895 *5)))
+ (-14 *6 (-598 (-1102))))))
+(((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1025 (-208)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208))))))
+(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 (-790 *3))) (-4 *3 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2
- (-597
- (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3220 (-597 *7)))))
- (-5 *1 (-619 *5 *6 *7 *3)) (-5 *4 (-597 *7))
- (-4 *3 (-635 *5 *6 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4))))
- ((*1 *2 *2 *2 *3 *4)
- (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1099))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-720 *5 *2)) (-4 *2 (-13 (-29 *5) (-1121) (-900)))))
+ (-3 (-790 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-790 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-790 *3) "failed")))
+ "failed"))
+ (-5 *1 (-591 *5 *3))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-637 *7)) (-5 *5 (-1099))
- (-4 *7 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7)))))
- (-5 *1 (-750 *6 *7)) (-5 *4 (-1181 *7))))
+ (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1085))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-790 *3)) (-5 *1 (-591 *6 *3))))
((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-637 *6)) (-5 *4 (-1099))
- (-4 *6 (-13 (-29 *5) (-1121) (-900)))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-1181 *6))) (-5 *1 (-750 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-597 (-276 *7))) (-5 *4 (-597 (-112)))
- (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7)))))
- (-5 *1 (-750 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-597 *7)) (-5 *4 (-597 (-112)))
- (-5 *5 (-1099)) (-4 *7 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2
- (-2 (|:| |particular| (-1181 *7)) (|:| -3220 (-597 (-1181 *7)))))
- (-5 *1 (-750 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1099))
- (-4 *7 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2
- (-3 (-2 (|:| |particular| *7) (|:| -3220 (-597 *7))) *7 "failed"))
- (-5 *1 (-750 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-112)) (-5 *5 (-1099))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
+ (-12 (-5 *4 (-276 (-790 (-895 *5)))) (-4 *5 (-432))
(-5 *2
- (-3 (-2 (|:| |particular| *3) (|:| -3220 (-597 *3))) *3 "failed"))
- (-5 *1 (-750 *6 *3)) (-4 *3 (-13 (-29 *6) (-1121) (-900)))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-597 *2))
- (-4 *2 (-13 (-29 *6) (-1121) (-900))) (-5 *1 (-750 *6 *2))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))))
- ((*1 *2 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-597 *2))
- (-4 *2 (-13 (-29 *6) (-1121) (-900)))
- (-4 *6 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *1 (-750 *6 *2))))
- ((*1 *2 *3) (-12 (-5 *3 (-756)) (-5 *2 (-973)) (-5 *1 (-753))))
+ (-3 (-790 (-388 (-895 *5)))
+ (-2 (|:| |leftHandLimit| (-3 (-790 (-388 (-895 *5))) "failed"))
+ (|:| |rightHandLimit| (-3 (-790 (-388 (-895 *5))) "failed")))
+ "failed"))
+ (-5 *1 (-592 *5)) (-5 *3 (-388 (-895 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-756)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
- (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *4)
- (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
- (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *6 *4)
- (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
- (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1181 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-597 *4))
- (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
- (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
- (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
- ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
- (-12 (-5 *3 (-1181 (-297 *4))) (-5 *5 (-597 (-360)))
- (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-973)) (-5 *1 (-753))))
+ (-12 (-5 *4 (-276 (-388 (-895 *5)))) (-5 *3 (-388 (-895 *5)))
+ (-4 *5 (-432))
+ (-5 *2
+ (-3 (-790 *3)
+ (-2 (|:| |leftHandLimit| (-3 (-790 *3) "failed"))
+ (|:| |rightHandLimit| (-3 (-790 *3) "failed")))
+ "failed"))
+ (-5 *1 (-592 *5))))
((*1 *2 *3 *4 *5)
- (|partial| -12
- (-5 *5
- (-1
- (-3 (-2 (|:| |particular| *6) (|:| -3220 (-597 *6))) "failed")
- *7 *6))
- (-4 *6 (-344)) (-4 *7 (-607 *6))
- (-5 *2 (-2 (|:| |particular| (-1181 *6)) (|:| -3220 (-637 *6))))
- (-5 *1 (-761 *6 *7)) (-5 *3 (-637 *6)) (-5 *4 (-1181 *6))))
- ((*1 *2 *3) (-12 (-5 *3 (-839)) (-5 *2 (-973)) (-5 *1 (-838))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-839)) (-5 *4 (-996)) (-5 *2 (-973)) (-5 *1 (-838))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
- (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082))
- (-5 *8 (-208)) (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360))
- (-5 *2 (-973)) (-5 *1 (-838))))
- ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
- (-12 (-5 *4 (-719)) (-5 *6 (-597 (-597 (-297 *3)))) (-5 *7 (-1082))
- (-5 *5 (-597 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-973))
- (-5 *1 (-838))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 (-388 (-530)))) (-5 *2 (-597 (-360)))
- (-5 *1 (-961)) (-5 *4 (-360))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 (-530))) (-5 *2 (-597 (-360))) (-5 *1 (-961))
- (-5 *4 (-360))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4))
- (-5 *3 (-297 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-276 (-297 *4)))) (-5 *1 (-1057 *4))
- (-5 *3 (-276 (-297 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5))
- (-5 *3 (-276 (-297 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-276 (-297 *5)))) (-5 *1 (-1057 *5))
- (-5 *3 (-297 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-597 (-597 (-276 (-297 *5))))) (-5 *1 (-1057 *5))
- (-5 *3 (-597 (-276 (-297 *5))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *5))))))
- (-5 *1 (-1105 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1099))) (-4 *5 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-1105 *5))
- (-5 *3 (-597 (-276 (-388 (-893 *5)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-388 (-893 *4)))) (-4 *4 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-1105 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 (-597 (-276 (-388 (-893 *4))))))
- (-5 *1 (-1105 *4)) (-5 *3 (-597 (-276 (-388 (-893 *4)))))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-522))
- (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5))
- (-5 *3 (-388 (-893 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-522))
- (-5 *2 (-597 (-276 (-388 (-893 *5))))) (-5 *1 (-1105 *5))
- (-5 *3 (-276 (-388 (-893 *5))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4)))))
- (-5 *1 (-1105 *4)) (-5 *3 (-388 (-893 *4)))))
+ (|partial| -12 (-5 *4 (-276 (-388 (-895 *6)))) (-5 *5 (-1085))
+ (-5 *3 (-388 (-895 *6))) (-4 *6 (-432)) (-5 *2 (-790 *3))
+ (-5 *1 (-592 *6)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-161)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-417)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *3 (-598 (-245)))
+ (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-448)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5)) (-4 *5 (-1030)) (-5 *2 (-1 *5 *4))
+ (-5 *1 (-633 *4 *5)) (-4 *4 (-1030))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 (-276 (-388 (-893 *4)))))
- (-5 *1 (-1105 *4)) (-5 *3 (-276 (-388 (-893 *4)))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+ (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986))))
+ ((*1 *2 *1) (-12 (-4 *2 (-986)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-793)))))
+(((*1 *2 *2)
+ (-12 (-4 *2 (-162)) (-4 *2 (-986)) (-5 *1 (-665 *2 *3))
+ (-4 *3 (-601 *2))))
+ ((*1 *2 *2) (-12 (-5 *1 (-784 *2)) (-4 *2 (-162)) (-4 *2 (-986)))))
+(((*1 *2) (-12 (-5 *2 (-1074 (-1085))) (-5 *1 (-372)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6))
+ (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *1))))
+ (-4 *1 (-1005 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-1025 (-208)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-1025 (-208))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-864)) (-5 *1 (-972 *2))
+ (-4 *2 (-13 (-1030) (-10 -8 (-15 * ($ $ $))))))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-425 *3)) (-4 *3 (-986)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
- (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
- (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8))))
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3115 *4)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-573 (-835 *3))) (-4 *3 (-829 *3))
+ (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-573 (-835 *3))) (-4 *2 (-829 *3))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-913)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-864)) (-5 *2 (-448)) (-5 *1 (-1185)))))
+(((*1 *1 *2 *2)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))))
+(((*1 *2 *3 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6)
+ (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4073 *6)))
+ (-5 *1 (-957 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1098 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-598 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5))
+ (-5 *2 (-598 (-2 (|:| -2651 *5) (|:| -2723 *3))))
+ (-5 *1 (-759 *5 *6 *3 *7)) (-4 *3 (-609 *6))
+ (-4 *7 (-609 (-388 *6))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-531))) (-5 *4 (-848 (-531)))
+ (-5 *2 (-639 (-531))) (-5 *1 (-552))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
- (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-598 (-639 (-531))))
+ (-5 *1 (-552))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
- (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *4 (-598 (-848 (-531))))
+ (-5 *2 (-598 (-639 (-531)))) (-5 *1 (-552)))))
+(((*1 *1 *2) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3)
- (|partial| -12 (-4 *5 (-975 (-47)))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-4 *5 (-411 *4))
- (-5 *2 (-399 (-1095 (-47)))) (-5 *1 (-416 *4 *5 *3))
- (-4 *3 (-1157 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-911)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
+ (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-797) (-573 (-1102))))
+ (-4 *5 (-743)) (-5 *1 (-867 *3 *4 *5 *2)) (-4 *2 (-892 *3 *5 *4)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-698)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))))
+(((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2))
+ (-4 *5 (-354 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7))
+ (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-986)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-14 *4 (-598 (-1102))) (-4 *2 (-162))
+ (-4 *3 (-221 (-2167 *4) (-721)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *3))
+ (-2 (|:| -1889 *5) (|:| -1790 *3))))
+ (-5 *1 (-441 *4 *2 *5 *3 *6 *7)) (-4 *5 (-797))
+ (-4 *7 (-892 *2 *3 (-808 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 *4))))
- (-5 *1 (-830 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))))
+ (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 *4))))
+ (-5 *1 (-832 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030))))
((*1 *2 *1)
- (-12 (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))
- (-4 *7 (-1027)) (-5 *2 (-597 *1)) (-4 *1 (-1030 *3 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-51)))))
+ (-12 (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030))
+ (-4 *7 (-1030)) (-5 *2 (-598 *1)) (-4 *1 (-1033 *3 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516)))))
+(((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-130)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4))))
+ (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-704)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))))
+(((*1 *2 *1 *2)
+ (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030)))))
+(((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-208)) (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-570 *3)) (-5 *5 (-1 (-1095 *3) (-1095 *3)))
- (-4 *3 (-13 (-27) (-411 *6))) (-4 *6 (-13 (-795) (-522)))
- (-5 *2 (-547 *3)) (-5 *1 (-517 *6 *3)))))
-(((*1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-349)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-597 (-297 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
- (-5 *1 (-194)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1099)) (-5 *1 (-262))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-411 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102))))
+ ((*1 *1 *1) (-4 *1 (-151))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-721)) (-4 *6 (-344)) (-5 *4 (-1133 *6))
+ (-5 *2 (-1 (-1083 *4) (-1083 *4))) (-5 *1 (-1192 *6))
+ (-5 *5 (-1083 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-1098 *3)) (-5 *1 (-40 *4 *3))
+ (-4 *3
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *4 (-571 $)) $))
+ (-15 -1853 ((-1054 *4 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *4 (-571 $))))))))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-964 *3))
+ (-4 *3 (-13 (-795) (-344) (-962)))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3))
+ (-4 *3 (-1160 *2))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-4 *1 (-1002 *2 *3)) (-4 *2 (-13 (-795) (-344)))
+ (-4 *3 (-1160 *2)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-1098 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523)))
+ (-5 *1 (-31 *4 *2)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1030)) (-5 *2 (-110)) (-5 *1 (-828 *3 *4 *5))
+ (-4 *3 (-1030)) (-4 *5 (-619 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-3 (-530) (-208) (-1099) (-1082) (-1104)))
- (-5 *1 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-330)) (-5 *2 (-1181 *1))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-637 *1)) (-4 *1 (-138)) (-4 *1 (-850))
- (-5 *2 (-1181 *1)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986))
+ (-5 *2 (-460 *4 *5)) (-5 *1 (-887 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-5 *2 (-1189)) (-5 *1 (-1105))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102))
+ (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189))
+ (-5 *1 (-1105))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *3 (-1102))
+ (-5 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void"))) (-5 *2 (-1189))
+ (-5 *1 (-1105)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-1208 *5 *6 *7))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-983 *5 *6))) (-5 *1 (-1208 *5 *6 *7))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-895 *4)))
+ (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-983 *4 *5))) (-5 *1 (-1208 *4 *5 *6))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))))
+(((*1 *1 *1 *2)
+ (|partial| -12 (-5 *2 (-721)) (-4 *1 (-1160 *3)) (-4 *3 (-986)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-864)) (-5 *1 (-736)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
+ ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1138)) (-4 *1 (-221 *3 *4)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-598 *7)) (-5 *3 (-110)) (-4 *7 (-1000 *4 *5 *6))
+ (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *1 (-919 *4 *5 *6 *7)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))))
+(((*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-795)) (-5 *1 (-285 *3)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-293)) (-5 *1 (-779)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
+ (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-119 *3)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-790 (-360))) (-5 *2 (-790 (-208))) (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-297 *4))
+ (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))))
+(((*1 *1 *1 *1) (-4 *1 (-136)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516))))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984))
+ (-5 *3 (-531)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1 *8 *8))
+ (-5 *5
+ (-1 (-3 (-2 (|:| -2351 *7) (|:| |coeff| *7)) "failed") *7))
+ (-5 *6 (-598 (-388 *8))) (-4 *7 (-344)) (-4 *8 (-1160 *7))
+ (-5 *3 (-388 *8))
+ (-5 *2
+ (-2
+ (|:| |answer|
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (|:| |a0| *7)))
+ (-5 *1 (-541 *7 *8)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-523)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 (-388 (-531)))) (-5 *2 (-598 *4)) (-5 *1 (-729 *4))
+ (-4 *4 (-13 (-344) (-795))))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-835 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1030))
+ (-4 *5 (-1138)) (-5 *1 (-833 *4 *5))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-835 *4)) (-5 *3 (-598 (-1 (-110) *5))) (-4 *4 (-1030))
+ (-4 *5 (-1138)) (-5 *1 (-833 *4 *5))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-835 *5)) (-5 *3 (-598 (-1102)))
+ (-5 *4 (-1 (-110) (-598 *6))) (-4 *5 (-1030)) (-4 *6 (-1138))
+ (-5 *1 (-833 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1138)) (-4 *4 (-797))
+ (-5 *1 (-880 *4 *2 *5)) (-4 *2 (-411 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 (-1 (-110) *5))) (-4 *5 (-1138)) (-4 *4 (-797))
+ (-5 *1 (-880 *4 *2 *5)) (-4 *2 (-411 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1138))
+ (-5 *2 (-297 (-531))) (-5 *1 (-881 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-598 (-1 (-110) *5))) (-4 *5 (-1138))
+ (-5 *2 (-297 (-531))) (-5 *1 (-881 *5))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-1 (-110) (-598 *6)))
+ (-4 *6 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))) (-4 *4 (-1030))
+ (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4))))
+ (-5 *1 (-1008 *4 *5 *6)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-115 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-115 *2)) (-14 *2 (-531))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-814 *3)) (-14 *3 *2)))
+ ((*1 *1 *1) (-12 (-5 *1 (-814 *2)) (-14 *2 (-531))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-531)) (-14 *3 *2) (-5 *1 (-815 *3 *4))
+ (-4 *4 (-812 *3))))
+ ((*1 *1 *1)
+ (-12 (-14 *2 (-531)) (-5 *1 (-815 *2 *3)) (-4 *3 (-812 *2))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-531)) (-4 *1 (-1146 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-1175 *3))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1146 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1175 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-649)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
(((*1 *2)
(-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
(-4 *3 (-348 *4))))
((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-307 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-740)) (-4 *3 (-162)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1135)) (-4 *1 (-221 *3 *4)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1) (-5 *1 (-311))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-597 (-597 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-597 (-597 *5)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-597 *3))) (-5 *1 (-1108 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
-(((*1 *2 *1) (-12 (-5 *2 (-399 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4))
- (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4))))))
+ (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-5 *2 (-297 *4))
+ (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6))
- (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)))))
-(((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1182))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1182))))
- ((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1082)) (-5 *1 (-1183))))
- ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1183)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
+ (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-1189)) (-5 *1 (-781)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1080 (-1080 *4))) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4))
- (-4 *4 (-984)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1102)) (-5 *3 (-1099)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-522))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *2) (-12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-297 *4))
- (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4))))))
- ((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3))))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-360)) (-5 *1 (-176)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-793)) (-4 *4 (-344)) (-5 *2 (-719))
- (-5 *1 (-886 *4 *5)) (-4 *5 (-1157 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
- ((*1 *1 *1) (|partial| -4 *1 (-671))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-597 *6) "failed") (-530) *6 *6)) (-4 *6 (-344))
- (-4 *7 (-1157 *6))
- (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))))
-(((*1 *2 *3 *1)
- (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
- (-4 *3 (-1027)) (-5 *2 (-719))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
- (-4 *4 (-1135)) (-5 *2 (-719)))))
+ (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1124) (-943))))))
+(((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-297 (-208)))) (-5 *4 (-721))
+ (-5 *2 (-639 (-208))) (-5 *1 (-249)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-717))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
- (-5 *1 (-531))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-717)) (-5 *4 (-996))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
- (-5 *1 (-531))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-735)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |fn| (-297 (-208)))
- (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))
- (|:| |extra| (-973))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-735)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))
- (|:| |extra| (-973))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-748)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-756))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-753))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-756)) (-5 *4 (-996))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-753))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-784)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
- (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-784)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-786))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-785))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-786)) (-5 *4 (-996))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-785))))
- ((*1 *2 *3 *4)
- (-12 (-4 *1 (-836)) (-5 *3 (-996))
- (-5 *4
- (-2 (|:| |pde| (-597 (-297 (-208))))
- (|:| |constraints|
- (-597
- (-2 (|:| |start| (-208)) (|:| |finish| (-208))
- (|:| |grid| (-719)) (|:| |boundaryType| (-530))
- (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
- (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
- (|:| |tol| (-208))))
- (-5 *2 (-2 (|:| -2631 (-360)) (|:| |explanations| (-1082))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-839))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-838))))
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-598 (-895 *4)))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-598 (-895 *4))) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-598 (-895 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-598 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 (-433 *4 *5 *6 *7))) (-5 *2 (-598 (-895 *4)))
+ (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-523)) (-4 *4 (-162))
+ (-14 *5 (-864)) (-14 *6 (-598 (-1102))) (-14 *7 (-1184 (-639 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-51)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-632 *2)) (-4 *2 (-1030))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-839)) (-5 *4 (-996))
- (-5 *2
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *1 (-838)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-1157 (-388 (-530)))) (-5 *1 (-854 *3 *2))
- (-4 *2 (-1157 (-388 *3))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1148 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *1 *1) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-581 *2 *3 *4)) (-4 *2 (-795))
- (-4 *3 (-13 (-162) (-666 (-388 (-530))))) (-14 *4 (-862))))
- ((*1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-530)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1135))
- (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))))
+ (-12 (-5 *3 (-1 (-598 *5) (-598 *5))) (-5 *4 (-531))
+ (-5 *2 (-598 *5)) (-5 *1 (-632 *5)) (-4 *5 (-1030)))))
+(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-360)) (-5 *1 (-998)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-975)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530))))
- ((*1 *1 *1) (-4 *1 (-941)))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-951))))
- ((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-4 *1 (-951))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-862))))
- ((*1 *1 *1) (-4 *1 (-951))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-208))))
- ((*1 *1 *1) (-4 *1 (-515)))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-553 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1046)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 (-719) *2)) (-5 *4 (-719)) (-4 *2 (-1027))
- (-5 *1 (-627 *2))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1 *3 (-719) *3)) (-4 *3 (-1027)) (-5 *1 (-630 *3)))))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531))))
+ ((*1 *1 *1) (-4 *1 (-943)))
+ ((*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-953))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-4 *1 (-953))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-953)) (-5 *2 (-864))))
+ ((*1 *1 *1) (-4 *1 (-953))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-1040)) (-5 *3 (-531)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-515)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1) (-5 *1 (-1014))))
+ (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102)))
+ (-4 *6 (-13 (-523) (-977 *5))) (-4 *5 (-523))
+ (-5 *2 (-598 (-598 (-276 (-388 (-895 *6)))))) (-5 *1 (-978 *5 *6)))))
+(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
+ ((*1 *1 *1) (-4 *1 (-1071))))
+(((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *3 (-743)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-892 *4 *3 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1184)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -2204 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-5 *3 (-1 (-110) *5 *5)) (-4 *5 (-13 (-1027) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-2 (|:| |num| (-1181 *4)) (|:| |den| *4))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804)))))
- ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1104)))))
+ (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1124) (-943))))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-986)))))
+(((*1 *1 *1 *1) (-4 *1 (-136)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1120)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))
+ (-5 *2 (-598 (-388 (-531)))) (-5 *1 (-960 *4))
+ (-4 *4 (-1160 (-531))))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-47))) (-5 *2 (-399 *3)) (-5 *1 (-38 *3))
- (-4 *3 (-1157 (-47)))))
+ (-12 (-5 *4 (-598 (-47))) (-5 *2 (-399 *3)) (-5 *1 (-38 *3))
+ (-4 *3 (-1160 (-47)))))
((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47)))))
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-47))) (-4 *5 (-795)) (-4 *6 (-741))
- (-5 *2 (-399 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-890 (-47) *6 *5))))
+ (-12 (-5 *4 (-598 (-47))) (-4 *5 (-797)) (-4 *6 (-743))
+ (-5 *2 (-399 *3)) (-5 *1 (-41 *5 *6 *3)) (-4 *3 (-892 (-47) *6 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-47))) (-4 *5 (-795)) (-4 *6 (-741))
- (-4 *7 (-890 (-47) *6 *5)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1095 *7))))
+ (-12 (-5 *4 (-598 (-47))) (-4 *5 (-797)) (-4 *6 (-743))
+ (-4 *7 (-892 (-47) *6 *5)) (-5 *2 (-399 (-1098 *7)))
+ (-5 *1 (-41 *5 *6 *7)) (-5 *3 (-1098 *7))))
((*1 *2 *3)
(-12 (-4 *4 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-157 *4 *3))
- (-4 *3 (-1157 (-159 *4)))))
+ (-4 *3 (-1160 (-159 *4)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
+ (-12 (-5 *5 (-110)) (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))
((*1 *2 *3 *4)
- (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
+ (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-793))) (-5 *2 (-399 *3))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4)))))
+ (-12 (-4 *4 (-13 (-344) (-795))) (-5 *2 (-399 *3))
+ (-5 *1 (-169 *4 *3)) (-4 *3 (-1160 (-159 *4)))))
((*1 *2 *3)
(-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3))
- (-4 *3 (-1157 *4))))
+ (-4 *3 (-1160 *4))))
((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
+ (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1160 (-531)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
+ (-12 (-5 *4 (-598 (-721))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1160 (-531)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
+ (-12 (-5 *4 (-598 (-721))) (-5 *5 (-721)) (-5 *2 (-399 *3))
+ (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
+ (-12 (-5 *4 (-721)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
+ (-4 *3 (-1160 (-531)))))
((*1 *2 *3)
- (-12 (-5 *2 (-399 (-159 (-530)))) (-5 *1 (-426))
- (-5 *3 (-159 (-530)))))
+ (-12 (-5 *2 (-399 (-159 (-531)))) (-5 *1 (-426))
+ (-5 *3 (-159 (-531)))))
((*1 *2 *3)
(-12
(-4 *4
- (-13 (-795)
- (-10 -8 (-15 -3260 ((-1099) $))
- (-15 -4007 ((-3 $ "failed") (-1099))))))
- (-4 *5 (-741)) (-4 *7 (-522)) (-5 *2 (-399 *3))
- (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-522))
- (-4 *3 (-890 *7 *5 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-289)) (-5 *2 (-399 (-1095 *4))) (-5 *1 (-438 *4))
- (-5 *3 (-1095 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-4 *7 (-13 (-344) (-140) (-673 *5 *6))) (-5 *2 (-399 *3))
- (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1157 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-399 (-1095 *7)) (-1095 *7)))
- (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741))
- (-5 *2 (-399 *3)) (-5 *1 (-510 *5 *6 *7 *3))
- (-4 *3 (-890 *7 *6 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-399 (-1095 *7)) (-1095 *7)))
- (-4 *7 (-13 (-289) (-140))) (-4 *5 (-795)) (-4 *6 (-741))
- (-4 *8 (-890 *7 *6 *5)) (-5 *2 (-399 (-1095 *8)))
- (-5 *1 (-510 *5 *6 *7 *8)) (-5 *3 (-1095 *8))))
- ((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5)) (-5 *2 (-597 (-604 (-388 *6))))
- (-5 *1 (-608 *5 *6)) (-5 *3 (-604 (-388 *6)))))
+ (-13 (-797)
+ (-10 -8 (-15 -3318 ((-1102) $))
+ (-15 -3524 ((-3 $ "failed") (-1102))))))
+ (-4 *5 (-743)) (-4 *7 (-523)) (-5 *2 (-399 *3))
+ (-5 *1 (-436 *4 *5 *6 *7 *3)) (-4 *6 (-523))
+ (-4 *3 (-892 *7 *5 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-289)) (-5 *2 (-399 (-1098 *4))) (-5 *1 (-438 *4))
+ (-5 *3 (-1098 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344))
+ (-4 *7 (-13 (-344) (-140) (-675 *5 *6))) (-5 *2 (-399 *3))
+ (-5 *1 (-472 *5 *6 *7 *3)) (-4 *3 (-1160 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-399 (-1098 *7)) (-1098 *7)))
+ (-4 *7 (-13 (-289) (-140))) (-4 *5 (-797)) (-4 *6 (-743))
+ (-5 *2 (-399 *3)) (-5 *1 (-511 *5 *6 *7 *3))
+ (-4 *3 (-892 *7 *6 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-399 (-1098 *7)) (-1098 *7)))
+ (-4 *7 (-13 (-289) (-140))) (-4 *5 (-797)) (-4 *6 (-743))
+ (-4 *8 (-892 *7 *6 *5)) (-5 *2 (-399 (-1098 *8)))
+ (-5 *1 (-511 *5 *6 *7 *8)) (-5 *3 (-1098 *8))))
+ ((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-525 *3)) (-4 *3 (-516))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-598 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *6 (-1160 *5)) (-5 *2 (-598 (-606 (-388 *6))))
+ (-5 *1 (-610 *5 *6)) (-5 *3 (-606 (-388 *6)))))
((*1 *2 *3)
(-12 (-4 *4 (-27))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5))))
- (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5)))))
+ (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *5 (-1160 *4)) (-5 *2 (-598 (-606 (-388 *5))))
+ (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5)))))
((*1 *2 *3)
- (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-622 *4)))
- (-5 *1 (-622 *4))))
+ (-12 (-5 *3 (-769 *4)) (-4 *4 (-797)) (-5 *2 (-598 (-624 *4)))
+ (-5 *1 (-624 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-5 *2 (-597 *3)) (-5 *1 (-644 *3))
- (-4 *3 (-1157 *4))))
+ (-12 (-5 *4 (-531)) (-5 *2 (-598 *3)) (-5 *1 (-646 *3))
+ (-4 *3 (-1160 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-330)) (-5 *2 (-399 *3))
- (-5 *1 (-646 *4 *5 *6 *3)) (-4 *3 (-890 *6 *5 *4))))
+ (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-330)) (-5 *2 (-399 *3))
+ (-5 *1 (-648 *4 *5 *6 *3)) (-4 *3 (-892 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-330))
- (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-646 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
+ (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-330))
+ (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-399 (-1098 *7)))
+ (-5 *1 (-648 *4 *5 *6 *7)) (-5 *3 (-1098 *7))))
((*1 *2 *3)
- (-12 (-4 *4 (-741))
+ (-12 (-4 *4 (-743))
(-4 *5
- (-13 (-795)
- (-10 -8 (-15 -3260 ((-1099) $))
- (-15 -4007 ((-3 $ "failed") (-1099))))))
- (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-679 *4 *5 *6 *3))
- (-4 *3 (-890 (-893 *6) *4 *5))))
+ (-13 (-797)
+ (-10 -8 (-15 -3318 ((-1102) $))
+ (-15 -3524 ((-3 $ "failed") (-1102))))))
+ (-4 *6 (-289)) (-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3))
+ (-4 *3 (-892 (-895 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-741))
- (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522))
- (-5 *2 (-399 *3)) (-5 *1 (-681 *4 *5 *6 *3))
- (-4 *3 (-890 (-388 (-893 *6)) *4 *5))))
+ (-12 (-4 *4 (-743))
+ (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523))
+ (-5 *2 (-399 *3)) (-5 *1 (-683 *4 *5 *6 *3))
+ (-4 *3 (-892 (-388 (-895 *6)) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-13 (-289) (-140)))
- (-5 *2 (-399 *3)) (-5 *1 (-682 *4 *5 *6 *3))
- (-4 *3 (-890 (-388 *6) *4 *5))))
+ (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-13 (-289) (-140)))
+ (-5 *2 (-399 *3)) (-5 *1 (-684 *4 *5 *6 *3))
+ (-4 *3 (-892 (-388 *6) *4 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140)))
- (-5 *2 (-399 *3)) (-5 *1 (-690 *4 *5 *6 *3))
- (-4 *3 (-890 *6 *5 *4))))
+ (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-13 (-289) (-140)))
+ (-5 *2 (-399 *3)) (-5 *1 (-692 *4 *5 *6 *3))
+ (-4 *3 (-892 *6 *5 *4))))
((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-4 *5 (-741)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-399 (-1095 *7)))
- (-5 *1 (-690 *4 *5 *6 *7)) (-5 *3 (-1095 *7))))
+ (-12 (-4 *4 (-797)) (-4 *5 (-743)) (-4 *6 (-13 (-289) (-140)))
+ (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-399 (-1098 *7)))
+ (-5 *1 (-692 *4 *5 *6 *7)) (-5 *3 (-1098 *7))))
((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3))
- (-4 *3 (-1157 (-388 (-530))))))
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-948 *3))
+ (-4 *3 (-1160 (-388 (-531))))))
((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-978 *3))
- (-4 *3 (-1157 (-388 (-893 (-530)))))))
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-980 *3))
+ (-4 *3 (-1160 (-388 (-895 (-531)))))))
((*1 *2 *3)
- (-12 (-4 *4 (-1157 (-388 (-530))))
- (-4 *5 (-13 (-344) (-140) (-673 (-388 (-530)) *4)))
- (-5 *2 (-399 *3)) (-5 *1 (-1009 *4 *5 *3)) (-4 *3 (-1157 *5))))
+ (-12 (-4 *4 (-1160 (-388 (-531))))
+ (-4 *5 (-13 (-344) (-140) (-675 (-388 (-531)) *4)))
+ (-5 *2 (-399 *3)) (-5 *1 (-1011 *4 *5 *3)) (-4 *3 (-1160 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-1157 (-388 (-893 (-530)))))
- (-4 *5 (-13 (-344) (-140) (-673 (-388 (-893 (-530))) *4)))
- (-5 *2 (-399 *3)) (-5 *1 (-1011 *4 *5 *3)) (-4 *3 (-1157 *5))))
+ (-12 (-4 *4 (-1160 (-388 (-895 (-531)))))
+ (-4 *5 (-13 (-344) (-140) (-675 (-388 (-895 (-531))) *4)))
+ (-5 *2 (-399 *3)) (-5 *1 (-1013 *4 *5 *3)) (-4 *3 (-1160 *5))))
((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-432))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-399 (-1095 (-388 *7))))
- (-5 *1 (-1094 *4 *5 *6 *7)) (-5 *3 (-1095 (-388 *7)))))
- ((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1139))))
+ (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-432))
+ (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-399 (-1098 (-388 *7))))
+ (-5 *1 (-1097 *4 *5 *6 *7)) (-5 *3 (-1098 (-388 *7)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-399 *1)) (-4 *1 (-1142))))
((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8))
- (-4 *8 (-890 *5 *7 *6)) (-4 *5 (-13 (-289) (-140)))
- (-4 *6 (-13 (-795) (-572 (-1099)))) (-4 *7 (-741)) (-5 *2 (-110))
- (-5 *1 (-865 *5 *6 *7 *8)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-5 *2 (-1095 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432))
- (-5 *2 (-597 (-597 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7))
- (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
-(((*1 *1 *1 *1) (-4 *1 (-453))) ((*1 *1 *1 *1) (-4 *1 (-710))))
-(((*1 *2 *3 *3 *3)
- (|partial| -12
- (-4 *4 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-1095 (-388 *5))) (-5 *1 (-573 *4 *5))
- (-5 *3 (-388 *5))))
- ((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 (-399 *6) *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-140) (-27) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-1095 (-388 *6))) (-5 *1 (-573 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-1157 *3)) (-5 *1 (-380 *3 *2))
- (-4 *3 (-13 (-344) (-140))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-795)) (-5 *4 (-597 *6))
- (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-597 *4))))
- (-5 *1 (-1107 *6)) (-5 *5 (-597 *4)))))
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-1149 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-1184 (-639 *4)))))
((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4))
+ (-12 (-4 *4 (-162)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-397 *3 *4))
(-4 *3 (-398 *4))))
- ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-311)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-945)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-833 *4)) (-5 *3 (-1 (-110) *5)) (-4 *4 (-1027))
- (-4 *5 (-1135)) (-5 *1 (-831 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-833 *4)) (-5 *3 (-597 (-1 (-110) *5))) (-4 *4 (-1027))
- (-4 *5 (-1135)) (-5 *1 (-831 *4 *5))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *2 (-833 *5)) (-5 *3 (-597 (-1099)))
- (-5 *4 (-1 (-110) (-597 *6))) (-4 *5 (-1027)) (-4 *6 (-1135))
- (-5 *1 (-831 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1 (-110) *5)) (-4 *5 (-1135)) (-4 *4 (-795))
- (-5 *1 (-878 *4 *2 *5)) (-4 *2 (-411 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-1 (-110) *5))) (-4 *5 (-1135)) (-4 *4 (-795))
- (-5 *1 (-878 *4 *2 *5)) (-4 *2 (-411 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1184 (-639 *3)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-1 (-110) *5)) (-4 *5 (-1135))
- (-5 *2 (-297 (-530))) (-5 *1 (-879 *5))))
+ (-12 (-5 *3 (-598 (-1102))) (-4 *5 (-344))
+ (-5 *2 (-1184 (-639 (-388 (-895 *5))))) (-5 *1 (-1018 *5))
+ (-5 *4 (-639 (-388 (-895 *5))))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-597 (-1 (-110) *5))) (-4 *5 (-1135))
- (-5 *2 (-297 (-530))) (-5 *1 (-879 *5))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1 (-110) (-597 *6)))
- (-4 *6 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))) (-4 *4 (-1027))
- (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
- (-5 *1 (-1006 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530)))) (-5 *2 (-110))
- (-5 *1 (-172 *4 *3)) (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4))))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-110)) (-5 *1 (-1125 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *3)
- (-12 (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *4 (-1157 *3))
- (-5 *2
- (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-331 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-1157 *3))
- (-5 *2
- (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-716 *4 *5)) (-4 *5 (-390 *3 *4))))
+ (-12 (-5 *3 (-598 (-1102))) (-4 *5 (-344))
+ (-5 *2 (-1184 (-639 (-895 *5)))) (-5 *1 (-1018 *5))
+ (-5 *4 (-639 (-895 *5)))))
((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3))
- (-5 *2
- (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-925 *4 *3 *5 *6)) (-4 *6 (-673 *3 *5))))
+ (-12 (-5 *3 (-598 (-639 *4))) (-4 *4 (-344))
+ (-5 *2 (-1184 (-639 *4))) (-5 *1 (-1018 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *1 *2 *3)
+ (|partial| -12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-998)))))
+(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-773)) (-5 *1 (-772)))))
+(((*1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-388 (-1098 (-297 *3)))) (-4 *3 (-13 (-523) (-797)))
+ (-5 *1 (-1059 *3)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-1008 *3 *4 *5))) (-4 *3 (-1030))
+ (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3))))
+ (-4 *5 (-13 (-411 *4) (-829 *3) (-573 (-835 *3))))
+ (-5 *1 (-1009 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-218 *3))))
+ ((*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208)))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))
+ (-5 *2 (-975)) (-5 *1 (-704)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-795))) (-5 *1 (-169 *3 *2))
+ (-4 *2 (-1160 (-159 *3))))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-432))
+ (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-919 *3 *4 *5 *6)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138))
+ (-4 *3 (-1030)) (-5 *2 (-721))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4))
+ (-4 *4 (-1138)) (-5 *2 (-721)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-770)) (-14 *5 (-1102))
+ (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 (-571 *5))) (-5 *3 (-1102)) (-4 *5 (-411 *4))
+ (-4 *4 (-797)) (-5 *1 (-540 *4 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-721)) (-5 *1 (-733 *2)) (-4 *2 (-37 (-388 (-531))))
+ (-4 *2 (-162)))))
+(((*1 *1 *2 *3 *3 *3 *4)
+ (-12 (-4 *4 (-344)) (-4 *3 (-1160 *4)) (-4 *5 (-1160 (-388 *3)))
+ (-4 *1 (-316 *4 *3 *5 *2)) (-4 *2 (-323 *4 *3 *5))))
+ ((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-531)) (-4 *2 (-344)) (-4 *4 (-1160 *2))
+ (-4 *5 (-1160 (-388 *4))) (-4 *1 (-316 *2 *4 *5 *6))
+ (-4 *6 (-323 *2 *4 *5))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *2 (-344)) (-4 *3 (-1160 *2)) (-4 *4 (-1160 (-388 *3)))
+ (-4 *1 (-316 *2 *3 *4 *5)) (-4 *5 (-323 *2 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))
+ (-4 *1 (-316 *3 *4 *5 *2)) (-4 *2 (-323 *3 *4 *5))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-394 *4 (-388 *4) *5 *6)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-4 *3 (-344))
+ (-4 *1 (-316 *3 *4 *5 *6)))))
+(((*1 *2 *3) (-12 (-5 *3 (-159 (-531))) (-5 *2 (-110)) (-5 *1 (-426))))
((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-4 *3 (-1157 *4)) (-4 *5 (-1157 *3))
- (-5 *2
- (-2 (|:| -3220 (-637 *3)) (|:| |basisDen| *3)
- (|:| |basisInv| (-637 *3))))
- (-5 *1 (-1190 *4 *3 *5 *6)) (-4 *6 (-390 *3 *5)))))
+ (-12
+ (-5 *3
+ (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4)
+ (-230 *4 (-388 (-531)))))
+ (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110))
+ (-5 *1 (-483 *4 *5))))
+ ((*1 *2 *3) (-12 (-5 *2 (-110)) (-5 *1 (-904 *3)) (-4 *3 (-516))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1142)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *2 (-975)) (-5 *1 (-702)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098 *2)) (-4 *2 (-892 (-388 (-895 *6)) *5 *4))
+ (-5 *1 (-683 *5 *4 *6 *2)) (-4 *5 (-743))
+ (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $)))))
+ (-4 *6 (-523)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-208))))
+ ((*1 *1 *1) (-4 *1 (-516)))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-554 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-1049)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-639 *3)) (-4 *3 (-986)) (-5 *1 (-640 *3)))))
(((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
- (-5 *2 (-788 *4)) (-5 *1 (-294 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099))
- (-14 *6 *4)))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-531))))
((*1 *2 *1)
- (|partial| -12
- (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
- (-5 *2 (-788 *4)) (-5 *1 (-1167 *3 *4 *5 *6))
- (-4 *4 (-13 (-27) (-1121) (-411 *3))) (-14 *5 (-1099))
- (-14 *6 *4))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef2| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-312 *3)) (-4 *3 (-795)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-1101 (-388 (-530))))
- (-5 *1 (-174)))))
-(((*1 *2 *1 *3 *3 *4)
- (-12 (-5 *3 (-1 (-804) (-804) (-804))) (-5 *4 (-530)) (-5 *2 (-804))
- (-5 *1 (-600 *5 *6 *7)) (-4 *5 (-1027)) (-4 *6 (-23)) (-14 *7 *6)))
- ((*1 *2 *1 *2)
- (-12 (-5 *2 (-804)) (-5 *1 (-799 *3 *4 *5)) (-4 *3 (-984))
- (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-804))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-804))))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1095 *3)) (-4 *3 (-984)))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-522)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
- (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2366 ($ *7)))))
- (-4 *7 (-793))
- (-4 *8
- (-13 (-1159 *3 *7) (-344) (-1121)
- (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
- (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8))
- (-14 *10 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))))
-(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1135))))
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-797)) (-4 *5 (-852)) (-4 *6 (-743))
+ (-4 *8 (-892 *5 *6 *7)) (-5 *2 (-399 (-1098 *8)))
+ (-5 *1 (-849 *5 *6 *7 *8)) (-5 *4 (-1098 *8))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5)))
+ (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-528)) (-5 *3 (-531)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-104 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-50 *2)) (-4 *2 (-1138))))
((*1 *1 *2)
- (-12 (-5 *2 (-893 (-360))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (-12 (-5 *2 (-895 (-360))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (-12 (-5 *2 (-388 (-893 (-360)))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (-12 (-5 *2 (-388 (-895 (-360)))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-360))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-360))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (-4 *5 (-977 (-360))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (-12 (-5 *2 (-893 (-530))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (-12 (-5 *2 (-895 (-531))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (-12 (-5 *2 (-388 (-893 (-530)))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (-12 (-5 *2 (-388 (-895 (-531)))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (-12 (-5 *2 (-297 (-530))) (-5 *1 (-320 *3 *4 *5))
- (-4 *5 (-975 (-530))) (-14 *3 (-597 (-1099)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (-12 (-5 *2 (-297 (-531))) (-5 *1 (-320 *3 *4 *5))
+ (-4 *5 (-977 (-531))) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *1 *2)
- (-12 (-5 *2 (-1099)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-597 *2))
- (-14 *4 (-597 *2)) (-4 *5 (-368))))
+ (-12 (-5 *2 (-1102)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 *2))
+ (-14 *4 (-598 *2)) (-4 *5 (-368))))
((*1 *1 *2)
(-12 (-5 *2 (-297 *5)) (-4 *5 (-368)) (-5 *1 (-320 *3 *4 *5))
- (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099)))))
- ((*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-893 (-530))))) (-4 *1 (-365))))
- ((*1 *1 *2) (-12 (-5 *2 (-637 (-388 (-893 (-360))))) (-4 *1 (-365))))
- ((*1 *1 *2) (-12 (-5 *2 (-637 (-893 (-530)))) (-4 *1 (-365))))
- ((*1 *1 *2) (-12 (-5 *2 (-637 (-893 (-360)))) (-4 *1 (-365))))
- ((*1 *1 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-4 *1 (-365))))
- ((*1 *1 *2) (-12 (-5 *2 (-637 (-297 (-360)))) (-4 *1 (-365))))
- ((*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-530)))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-388 (-893 (-360)))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-893 (-530))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-893 (-360))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-297 (-530))) (-4 *1 (-377))))
+ (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-639 (-388 (-895 (-531))))) (-4 *1 (-365))))
+ ((*1 *1 *2) (-12 (-5 *2 (-639 (-388 (-895 (-360))))) (-4 *1 (-365))))
+ ((*1 *1 *2) (-12 (-5 *2 (-639 (-895 (-531)))) (-4 *1 (-365))))
+ ((*1 *1 *2) (-12 (-5 *2 (-639 (-895 (-360)))) (-4 *1 (-365))))
+ ((*1 *1 *2) (-12 (-5 *2 (-639 (-297 (-531)))) (-4 *1 (-365))))
+ ((*1 *1 *2) (-12 (-5 *2 (-639 (-297 (-360)))) (-4 *1 (-365))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-531)))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-388 (-895 (-360)))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-895 (-531))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-895 (-360))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-297 (-531))) (-4 *1 (-377))))
((*1 *1 *2) (-12 (-5 *2 (-297 (-360))) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 (-530))))) (-4 *1 (-421))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 (-388 (-893 (-360))))) (-4 *1 (-421))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 (-893 (-530)))) (-4 *1 (-421))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 (-893 (-360)))) (-4 *1 (-421))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 (-297 (-530)))) (-4 *1 (-421))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 (-297 (-360)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 (-531))))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 (-388 (-895 (-360))))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 (-895 (-531)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 (-895 (-360)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 (-297 (-531)))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 (-297 (-360)))) (-4 *1 (-421))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(|:| |mdnia|
(-2 (|:| |fn| (-297 (-208)))
- (|:| -1300 (-597 (-1022 (-788 (-208)))))
+ (|:| -2368 (-598 (-1025 (-790 (-208)))))
(|:| |abserr| (-208)) (|:| |relerr| (-208))))))
- (-5 *1 (-717))))
+ (-5 *1 (-719))))
((*1 *2 *1)
(-12
(-5 *2
(-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
(|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *1 (-756))))
+ (-5 *1 (-758))))
((*1 *2 *1)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208))))
- (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208)))
+ (|:| |lb| (-598 (-790 (-208))))
+ (|:| |cf| (-598 (-297 (-208))))
+ (|:| |ub| (-598 (-790 (-208))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-597 (-297 (-208))))
- (|:| -3657 (-597 (-208)))))))
- (-5 *1 (-786))))
+ (-2 (|:| |lfn| (-598 (-297 (-208))))
+ (|:| -3788 (-598 (-208)))))))
+ (-5 *1 (-788))))
((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |pde| (-597 (-297 (-208))))
+ (-2 (|:| |pde| (-598 (-297 (-208))))
(|:| |constraints|
- (-597
+ (-598
(-2 (|:| |start| (-208)) (|:| |finish| (-208))
- (|:| |grid| (-719)) (|:| |boundaryType| (-530))
- (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
- (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
+ (|:| |grid| (-721)) (|:| |boundaryType| (-531))
+ (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208))))))
+ (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085))
(|:| |tol| (-208))))
- (-5 *1 (-839))))
+ (-5 *1 (-841))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *1 (-916 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135))))
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *1 (-918 *3 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1138))))
((*1 *1 *2)
- (-1461
- (-12 (-5 *2 (-893 *3))
- (-12 (-3676 (-4 *3 (-37 (-388 (-530)))))
- (-3676 (-4 *3 (-37 (-530)))) (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)))
- (-12 (-5 *2 (-893 *3))
- (-12 (-3676 (-4 *3 (-515))) (-3676 (-4 *3 (-37 (-388 (-530)))))
- (-4 *3 (-37 (-530))) (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)))
- (-12 (-5 *2 (-893 *3))
- (-12 (-3676 (-4 *3 (-932 (-530)))) (-4 *3 (-37 (-388 (-530))))
- (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *1 (-998 *3 *4 *5)) (-4 *4 (-741))
- (-4 *5 (-795)))))
+ (-1435
+ (-12 (-5 *2 (-895 *3))
+ (-12 (-3745 (-4 *3 (-37 (-388 (-531)))))
+ (-3745 (-4 *3 (-37 (-531)))) (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743))
+ (-4 *5 (-797)))
+ (-12 (-5 *2 (-895 *3))
+ (-12 (-3745 (-4 *3 (-516))) (-3745 (-4 *3 (-37 (-388 (-531)))))
+ (-4 *3 (-37 (-531))) (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743))
+ (-4 *5 (-797)))
+ (-12 (-5 *2 (-895 *3))
+ (-12 (-3745 (-4 *3 (-934 (-531)))) (-4 *3 (-37 (-388 (-531))))
+ (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *1 (-1000 *3 *4 *5)) (-4 *4 (-743))
+ (-4 *5 (-797)))))
((*1 *1 *2)
- (-1461
- (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-3676 (-4 *3 (-37 (-388 (-530))))) (-4 *3 (-37 (-530)))
- (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))
- (-12 (-5 *2 (-893 (-530))) (-4 *1 (-998 *3 *4 *5))
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))))
- (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)))))
+ (-1435
+ (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5))
+ (-12 (-3745 (-4 *3 (-37 (-388 (-531))))) (-4 *3 (-37 (-531)))
+ (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))
+ (-12 (-5 *2 (-895 (-531))) (-4 *1 (-1000 *3 *4 *5))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))))
+ (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)))))
((*1 *1 *2)
- (-12 (-5 *2 (-893 (-388 (-530)))) (-4 *1 (-998 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *5 (-572 (-1099))) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-544)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
- ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
- ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647)))))
-(((*1 *2) (-12 (-5 *2 (-597 *3)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-128))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-342 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-367 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-600 *3 *4 *5))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-112)))
- ((*1 *1 *1) (-5 *1 (-161))) ((*1 *1 *1) (-4 *1 (-515)))
- ((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1) (-12 (-4 *1 (-1060 *2)) (-4 *2 (-984))))
+ (-12 (-5 *2 (-895 (-388 (-531)))) (-4 *1 (-1000 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *5 (-573 (-1102))) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-30))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-399 *4) *4)) (-4 *4 (-523)) (-5 *2 (-399 *4))
+ (-5 *1 (-400 *4))))
+ ((*1 *1 *1) (-5 *1 (-869)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869))))
+ ((*1 *1 *1) (-5 *1 (-870)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))
+ (-5 *4 (-388 (-531))) (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))
+ (-5 *4 (-388 (-531))) (-5 *1 (-961 *3)) (-4 *3 (-1160 *4))))
+ ((*1 *2 *3 *2 *2)
+ (|partial| -12
+ (-5 *2 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))
+ (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531))))))
((*1 *1 *1)
- (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
+ (-12 (-4 *2 (-13 (-795) (-344))) (-5 *1 (-996 *2 *3))
+ (-4 *3 (-1160 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1107)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330))
+ (-5 *2 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049))))))
+ (-5 *1 (-327 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-986))
+ (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-523)) (-4 *5 (-986))
+ (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3))
+ (-4 *3 (-799 *5)))))
(((*1 *2 *1 *3)
- (-12 (-5 *3 (-570 *1)) (-4 *1 (-411 *4)) (-4 *4 (-795))
- (-4 *4 (-522)) (-5 *2 (-388 (-1095 *1)))))
+ (-12 (-5 *3 (-571 *1)) (-4 *1 (-411 *4)) (-4 *4 (-797))
+ (-4 *4 (-523)) (-5 *2 (-388 (-1098 *1)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-1095 (-388 (-1095 *3)))) (-5 *1 (-526 *6 *3 *7))
- (-5 *5 (-1095 *3)) (-4 *7 (-1027))))
+ (-12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *6) (-27) (-1124)))
+ (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2 (-1098 (-388 (-1098 *3)))) (-5 *1 (-527 *6 *3 *7))
+ (-5 *5 (-1098 *3)) (-4 *7 (-1030))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1177 *5)) (-14 *5 (-1099)) (-4 *6 (-984))
- (-5 *2 (-1154 *5 (-893 *6))) (-5 *1 (-888 *5 *6)) (-5 *3 (-893 *6))))
+ (-12 (-5 *4 (-1180 *5)) (-14 *5 (-1102)) (-4 *6 (-986))
+ (-5 *2 (-1157 *5 (-895 *6))) (-5 *1 (-890 *5 *6)) (-5 *3 (-895 *6))))
((*1 *2 *1)
- (-12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-1095 *3))))
+ (-12 (-4 *1 (-892 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-1098 *3))))
((*1 *2 *1 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795)) (-5 *2 (-1095 *1))
- (-4 *1 (-890 *4 *5 *3))))
+ (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797)) (-5 *2 (-1098 *1))
+ (-4 *1 (-892 *4 *5 *3))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *5 *4)) (-5 *2 (-388 (-1095 *3)))
- (-5 *1 (-891 *5 *4 *6 *7 *3))
+ (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986))
+ (-4 *7 (-892 *6 *5 *4)) (-5 *2 (-388 (-1098 *3)))
+ (-5 *1 (-893 *5 *4 *6 *7 *3))
(-4 *3
(-13 (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $)))))))
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $)))))))
((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-1095 *3))
+ (-12 (-5 *2 (-1098 *3))
(-4 *3
(-13 (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $)) (-15 -1928 (*7 $)))))
- (-4 *7 (-890 *6 *5 *4)) (-4 *5 (-741)) (-4 *4 (-795)) (-4 *6 (-984))
- (-5 *1 (-891 *5 *4 *6 *7 *3))))
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $)) (-15 -1853 (*7 $)))))
+ (-4 *7 (-892 *6 *5 *4)) (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-986))
+ (-5 *1 (-893 *5 *4 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-4 *5 (-522))
- (-5 *2 (-388 (-1095 (-388 (-893 *5))))) (-5 *1 (-980 *5))
- (-5 *3 (-388 (-893 *5))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-1099))) (-5 *2 (-1186)) (-5 *1 (-1137)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-77 LSFUN1))))
- (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-1181 (-297 (-360))))
- (-5 *1 (-287)))))
-(((*1 *1) (-5 *1 (-418))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-884 *5)) (-5 *3 (-719)) (-4 *5 (-984))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-1050 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-432))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *5 (-850)) (-5 *1 (-437 *3 *4 *5 *6))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-850)))))
+ (-12 (-5 *4 (-1102)) (-4 *5 (-523))
+ (-5 *2 (-388 (-1098 (-388 (-895 *5))))) (-5 *1 (-982 *5))
+ (-5 *3 (-388 (-895 *5))))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-531)))))
+ (-4 *2 (-13 (-797) (-21))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *3 (-795)) (-4 *3 (-975 (-530)))
- (-4 *3 (-522)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
- (-15 -1928 ((-1051 *3 (-570 $)) $))
- (-15 -2366 ($ (-1051 *3 (-570 $))))))))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1199 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-793)))))
+(((*1 *1) (-5 *1 (-998))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *2 *1) (-12 (-5 *2 (-722)) (-5 *1 (-51)))))
-(((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-459)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-1006 *3 *4 *5))) (-4 *3 (-1027))
- (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
- (-4 *5 (-13 (-411 *4) (-827 *3) (-572 (-833 *3))))
- (-5 *1 (-1007 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))))
+ (-12 (-5 *3 (-598 (-598 (-598 *4)))) (-5 *2 (-598 (-598 *4)))
+ (-5 *1 (-1110 *4)) (-4 *4 (-797)))))
+(((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5)))
+ (-5 *2 (-721)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-721)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-5 *5 (-598 *8))
+ (-4 *7 (-797)) (-4 *8 (-986)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743))
+ (-5 *2 (-1098 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 *1)) (-4 *1 (-411 *4))
+ (-4 *4 (-797))))
+ ((*1 *1 *2 *1 *1 *1 *1)
+ (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797))))
+ ((*1 *1 *2 *1 *1 *1)
+ (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797))))
+ ((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1102)) (-4 *1 (-411 *3)) (-4 *3 (-797)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2)
+ (-12 (-4 *3 (-1142)) (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))
+ (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826))
+ (-5 *3 (-598 (-531))))))
+(((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-571 *1))) (-4 *1 (-284)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742))))
((*1 *1 *1)
- (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-984)) (-14 *3 (-597 (-1099)))))
+ (-12 (-5 *1 (-49 *2 *3)) (-4 *2 (-986)) (-14 *3 (-598 (-1102)))))
((*1 *1 *1)
- (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-984) (-795)))
- (-14 *3 (-597 (-1099)))))
- ((*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027))))
+ (-12 (-5 *1 (-206 *2 *3)) (-4 *2 (-13 (-986) (-797)))
+ (-14 *3 (-598 (-1102)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1030))))
((*1 *1 *1)
- (-12 (-14 *2 (-597 (-1099))) (-4 *3 (-162))
- (-4 *5 (-221 (-2267 *2) (-719)))
+ (-12 (-14 *2 (-598 (-1102))) (-4 *3 (-162))
+ (-4 *5 (-221 (-2167 *2) (-721)))
(-14 *6
- (-1 (-110) (-2 (|:| -1986 *4) (|:| -3194 *5))
- (-2 (|:| -1986 *4) (|:| -3194 *5))))
- (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-795))
- (-4 *7 (-890 *3 *5 (-806 *2)))))
- ((*1 *1 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-795))))
+ (-1 (-110) (-2 (|:| -1889 *4) (|:| -1790 *5))
+ (-2 (|:| -1889 *4) (|:| -1790 *5))))
+ (-5 *1 (-441 *2 *3 *4 *5 *6 *7)) (-4 *4 (-797))
+ (-4 *7 (-892 *3 *5 (-808 *2)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-487 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-797))))
((*1 *1 *1)
- (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2))))
- ((*1 *1 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2))))
+ ((*1 *1 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-986))))
((*1 *1 *1)
- (-12 (-5 *1 (-684 *2 *3)) (-4 *3 (-795)) (-4 *2 (-984))
- (-4 *3 (-675))))
- ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ (-12 (-5 *1 (-686 *2 *3)) (-4 *3 (-797)) (-4 *2 (-986))
+ (-4 *3 (-677))))
+ ((*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *1 *1) (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1037)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-862)) (-4 *4 (-984)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
- ((*1 *1 *1 *1) (-4 *1 (-453)))
- ((*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-824))))
- ((*1 *1 *1) (-5 *1 (-911)))
- ((*1 *1 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-700)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
-(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135))
- (-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "right") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3))
- (-4 *3 (-1135))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "left") (|has| *1 (-6 -4270)) (-4 *1 (-117 *3))
- (-4 *3 (-1135))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-197 *4 *2)) (-14 *4 (-862))
- (-4 *2 (-1027))))
- ((*1 *2 *1 *3 *2)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1027))
- (-4 *2 (-1135))))
- ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1099)) (-5 *1 (-586))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 (-1148 (-530))) (|has| *1 (-6 -4270)) (-4 *1 (-602 *2))
- (-4 *2 (-1135))))
- ((*1 *1 *1 *2 *2 *1)
- (-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "value") (|has| *1 (-6 -4270)) (-4 *1 (-949 *2))
- (-4 *2 (-1135))))
- ((*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-1112 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "last") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2))
- (-4 *2 (-1135))))
- ((*1 *1 *1 *2 *1)
- (-12 (-5 *2 "rest") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *3))
- (-4 *3 (-1135))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *3 "first") (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2))
- (-4 *2 (-1135)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1082)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1027))
- (-4 *4 (-1027))))
- ((*1 *1 *2)
- (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))))
+ (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))))
+(((*1 *2 *3 *4 *4 *5 *6)
+ (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-817))
+ (-5 *5 (-864)) (-5 *6 (-598 (-245))) (-5 *2 (-448)) (-5 *1 (-1188))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *2 (-448))
+ (-5 *1 (-1188))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-598 (-245)))
+ (-5 *2 (-448)) (-5 *1 (-1188)))))
+(((*1 *1) (-4 *1 (-330))))
+(((*1 *2 *3 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531))))
+ (-5 *2
+ (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6))
+ (|:| -4073 *6)))
+ (-5 *1 (-956 *5 *6)) (-5 *3 (-388 *6)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-289))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-427 *3 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6))
+ (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *1 (-427 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-598 *7)) (-5 *3 (-1085)) (-4 *7 (-892 *4 *5 *6))
+ (-4 *4 (-289)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *1 (-427 *4 *5 *6 *7)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360)))
+ (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189))
+ (-5 *1 (-738)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142))
+ (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))))
+(((*1 *2 *3 *4 *4 *5 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-1206 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-162))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-769 *3)) (-4 *1 (-1199 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-890 *3 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082)))))
- (-5 *2 (-973)) (-5 *1 (-287))))
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-892 *3 *4 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-224))))
((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2631 (-360)) (|:| -3907 (-1082))
- (|:| |explanations| (-597 (-1082))) (|:| |extra| (-973))))
- (-5 *2 (-973)) (-5 *1 (-287)))))
-(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
+ (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1189)) (-5 *1 (-224)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098 *1)) (-5 *4 (-1102)) (-4 *1 (-27))
+ (-5 *2 (-598 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1))))
+ ((*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-27)) (-5 *2 (-598 *1))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *2 (-598 *1))
+ (-4 *1 (-29 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *2 (-598 *1)) (-4 *1 (-29 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-598 (-1102)))
+ (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-1083 (-208))) (-5 *1 (-282)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-224))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-1186)) (-5 *1 (-224)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-597 *1)) (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))))
+ (-12 (-5 *3 (-1111 (-598 *4))) (-4 *4 (-797))
+ (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-128))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-342 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-367 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1030)) (-5 *1 (-602 *3 *4 *5))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-886 (-208))) (-5 *2 (-1189)) (-5 *1 (-448)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 (-110) *6 *6)) (-4 *6 (-797)) (-5 *4 (-598 *6))
+ (-5 *2 (-2 (|:| |fs| (-110)) (|:| |sd| *4) (|:| |td| (-598 *4))))
+ (-5 *1 (-1110 *6)) (-5 *5 (-598 *4)))))
+(((*1 *1 *1) (-4 *1 (-33))) ((*1 *1 *1) (-5 *1 (-112)))
+ ((*1 *1 *1) (-5 *1 (-161))) ((*1 *1 *1) (-4 *1 (-516)))
+ ((*1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33))))))
(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *3 *4 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-707)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-5 *2 (-598 (-598 (-531))))
+ (-5 *1 (-867 *4 *5 *6 *7)) (-5 *3 (-531)) (-4 *7 (-892 *4 *6 *5)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-159 (-360))) (-5 *1 (-733 *3)) (-4 *3 (-572 (-360)))))
+ (-12 (-5 *2 (-159 (-360))) (-5 *1 (-735 *3)) (-4 *3 (-573 (-360)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-5 *2 (-159 (-360))) (-5 *1 (-733 *3))
- (-4 *3 (-572 (-360)))))
+ (-12 (-5 *4 (-864)) (-5 *2 (-159 (-360))) (-5 *1 (-735 *3))
+ (-4 *3 (-573 (-360)))))
((*1 *2 *3)
- (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-572 (-360)))
- (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-159 *4)) (-4 *4 (-162)) (-4 *4 (-573 (-360)))
+ (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-159 *5)) (-5 *4 (-862)) (-4 *5 (-162))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-159 *5)) (-5 *4 (-864)) (-4 *5 (-162))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-572 (-360)))
- (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-895 (-159 *4))) (-4 *4 (-162)) (-4 *4 (-573 (-360)))
+ (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-895 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-162))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360)))
- (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-895 *4)) (-4 *4 (-986)) (-4 *4 (-573 (-360)))
+ (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-895 *5)) (-5 *4 (-864)) (-4 *5 (-986))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 (-360)))
- (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-523)) (-4 *4 (-573 (-360)))
+ (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-388 (-895 (-159 *4)))) (-4 *4 (-523))
+ (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-388 (-895 (-159 *5)))) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-297 *4)) (-4 *4 (-523)) (-4 *4 (-797))
+ (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-297 *5)) (-5 *4 (-864)) (-4 *5 (-523)) (-4 *5 (-797))
+ (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
+ (-12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-523)) (-4 *4 (-797))
+ (-4 *4 (-573 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-735 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
- (-5 *1 (-733 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289))
- (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5))
- (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-289)))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
+ (-12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-864)) (-4 *5 (-523))
+ (-4 *5 (-797)) (-4 *5 (-573 (-360))) (-5 *2 (-159 (-360)))
+ (-5 *1 (-735 *5)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986))))
((*1 *2 *1)
- (-12 (-4 *2 (-984)) (-5 *1 (-49 *2 *3)) (-14 *3 (-597 (-1099)))))
+ (-12 (-4 *2 (-986)) (-5 *1 (-49 *2 *3)) (-14 *3 (-598 (-1102)))))
((*1 *2 *1)
(-12 (-5 *2 (-297 *3)) (-5 *1 (-206 *3 *4))
- (-4 *3 (-13 (-984) (-795))) (-14 *4 (-597 (-1099)))))
- ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1027)) (-4 *2 (-984))))
+ (-4 *3 (-13 (-986) (-797))) (-14 *4 (-598 (-1102)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-363 *2 *3)) (-4 *3 (-1030)) (-4 *2 (-986))))
((*1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *5 (-221 (-2267 *3) (-719)))
+ (-12 (-14 *3 (-598 (-1102))) (-4 *5 (-221 (-2167 *3) (-721)))
(-14 *6
- (-1 (-110) (-2 (|:| -1986 *4) (|:| -3194 *5))
- (-2 (|:| -1986 *4) (|:| -3194 *5))))
- (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-795))
- (-4 *7 (-890 *2 *5 (-806 *3)))))
- ((*1 *2 *1) (-12 (-4 *1 (-486 *2 *3)) (-4 *3 (-795)) (-4 *2 (-1027))))
+ (-1 (-110) (-2 (|:| -1889 *4) (|:| -1790 *5))
+ (-2 (|:| -1889 *4) (|:| -1790 *5))))
+ (-4 *2 (-162)) (-5 *1 (-441 *3 *2 *4 *5 *6 *7)) (-4 *4 (-797))
+ (-4 *7 (-892 *2 *5 (-808 *3)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-487 *2 *3)) (-4 *3 (-797)) (-4 *2 (-1030))))
((*1 *2 *1)
- (-12 (-4 *2 (-522)) (-5 *1 (-578 *2 *3)) (-4 *3 (-1157 *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-657 *2)) (-4 *2 (-984))))
+ (-12 (-4 *2 (-523)) (-5 *1 (-579 *2 *3)) (-4 *3 (-1160 *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-659 *2)) (-4 *2 (-986))))
((*1 *2 *1)
- (-12 (-4 *2 (-984)) (-5 *1 (-684 *2 *3)) (-4 *3 (-795))
- (-4 *3 (-675))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984))))
+ (-12 (-4 *2 (-986)) (-5 *1 (-686 *2 *3)) (-4 *3 (-797))
+ (-4 *3 (-677))))
+ ((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986))))
((*1 *2 *1)
- (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *3 (-740)) (-4 *4 (-795))
- (-4 *2 (-984))))
+ (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *3 (-742)) (-4 *4 (-797))
+ (-4 *2 (-986))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
- (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
- ((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-1022 (-208))) (-5 *2 (-868))
- (-5 *1 (-866 *3)) (-4 *3 (-572 (-506)))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-867))))
- ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-867))))
- ((*1 *1 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-867))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1022 (-208))) (-5 *1 (-868))))
- ((*1 *1 *2 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1 (-208) (-208)))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-208) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868)))))
-(((*1 *2) (-12 (-5 *2 (-1071 (-1082))) (-5 *1 (-372)))))
+ (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-597 (-2 (|:| -3628 (-388 (-530))) (|:| -3638 (-388 (-530))))))
- (-5 *2 (-597 (-388 (-530)))) (-5 *1 (-958 *4))
- (-4 *4 (-1157 (-530))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-171)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741)) (-5 *2 (-597 *6))
- (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1022 *3)) (-5 *1 (-1020 *3)) (-4 *3 (-1135))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2) (-12 (-5 *1 (-1148 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *1) (-4 *1 (-612))) ((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))))
- ((*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-984)) (-4 *2 (-1027))))
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
+ (-4 *4 (-13 (-797) (-523))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-110))
+ (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6) (-10 -8 (-15 -2265 ($ *7)))))
+ (-4 *7 (-795))
+ (-4 *8
+ (-13 (-1162 *3 *7) (-344) (-1124)
+ (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $)))))
+ (-5 *2
+ (-3 (|:| |%series| *8)
+ (|:| |%problem| (-2 (|:| |func| (-1085)) (|:| |prob| (-1085))))))
+ (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1085)) (-4 *9 (-925 *8))
+ (-14 *10 (-1102)))))
+(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))))
+(((*1 *1 *1 *1)
+ (|partial| -12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33))))))
+(((*1 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-528)) (-5 *3 (-531)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1160 *4)) (-5 *1 (-757 *4 *2 *3 *5))
+ (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2))
+ (-4 *5 (-609 (-388 *2)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *2 (-1160 *4)) (-5 *1 (-757 *4 *2 *5 *3))
+ (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-609 *2))
+ (-4 *3 (-609 (-388 *2))))))
+(((*1 *1 *1 *1) (-4 *1 (-516))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1184 *4)) (-4 *4 (-594 (-531)))
+ (-5 *2 (-1184 (-388 (-531)))) (-5 *1 (-1209 *4)))))
+(((*1 *1 *1) (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742))))
+ ((*1 *2 *1) (-12 (-4 *1 (-363 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1030))))
((*1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-4 *6 (-221 (-2267 *3) (-719)))
+ (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162))
+ (-4 *6 (-221 (-2167 *3) (-721)))
(-14 *7
- (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6))
- (-2 (|:| -1986 *5) (|:| -3194 *6))))
- (-5 *2 (-662 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8))
- (-4 *5 (-795)) (-4 *8 (-890 *4 *6 (-806 *3)))))
+ (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6))
+ (-2 (|:| -1889 *5) (|:| -1790 *6))))
+ (-5 *2 (-664 *5 *6 *7)) (-5 *1 (-441 *3 *4 *5 *6 *7 *8))
+ (-4 *5 (-797)) (-4 *8 (-892 *4 *6 (-808 *3)))))
((*1 *2 *1)
- (-12 (-4 *2 (-675)) (-4 *2 (-795)) (-5 *1 (-684 *3 *2))
- (-4 *3 (-984))))
+ (-12 (-4 *2 (-677)) (-4 *2 (-797)) (-5 *1 (-686 *3 *2))
+ (-4 *3 (-986))))
((*1 *1 *1)
- (-12 (-4 *1 (-913 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-740))
- (-4 *4 (-795)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 *1)) (-4 *1 (-411 *4))
- (-4 *4 (-795))))
- ((*1 *1 *2 *1 *1 *1 *1)
- (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795))))
- ((*1 *1 *2 *1 *1 *1)
- (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1099)) (-4 *1 (-411 *3)) (-4 *3 (-795)))))
-(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *1) (-5 *1 (-134))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-112)) (-5 *4 (-719)) (-4 *5 (-432)) (-4 *5 (-795))
- (-4 *5 (-975 (-530))) (-4 *5 (-522)) (-5 *1 (-40 *5 *2))
- (-4 *2 (-411 *5))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *5 (-570 $)) $))
- (-15 -1928 ((-1051 *5 (-570 $)) $))
- (-15 -2366 ($ (-1051 *5 (-570 $))))))))))
-(((*1 *1 *2 *3 *3 *4 *4)
- (-12 (-5 *2 (-893 (-530))) (-5 *3 (-1099))
- (-5 *4 (-1022 (-388 (-530)))) (-5 *1 (-30)))))
-(((*1 *2 *3)
- (-12 (|has| *6 (-6 -4270)) (-4 *4 (-344)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-497 *4 *5 *6 *3))
- (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (|has| *9 (-6 -4270)) (-4 *4 (-522)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-4 *7 (-932 *4)) (-4 *8 (-354 *7))
- (-4 *9 (-354 *7)) (-5 *2 (-597 *6))
- (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-635 *4 *5 *6))
- (-4 *10 (-635 *7 *8 *9))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-597 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-597 *6)) (-5 *1 (-636 *4 *5 *6 *3))
- (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
- (-5 *2 (-597 *7)))))
+ (-12 (-4 *1 (-915 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-742))
+ (-4 *4 (-797)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-4 *5 (-1160 *4))
+ (-5 *2 (-598 (-2 (|:| |deg| (-721)) (|:| -2723 *5))))
+ (-5 *1 (-759 *4 *5 *3 *6)) (-4 *3 (-609 *5))
+ (-4 *6 (-609 (-388 *5))))))
+(((*1 *2)
+ (-12 (-4 *3 (-986)) (-5 *2 (-901 (-663 *3 *4))) (-5 *1 (-663 *3 *4))
+ (-4 *4 (-1160 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
+ ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
- (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
- ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-384 *3)) (-4 *3 (-385))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
- ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862))))
- ((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-1080 (-530))))))
-(((*1 *2 *3) (-12 (-5 *3 (-769)) (-5 *2 (-51)) (-5 *1 (-779)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-506))) (-5 *2 (-1099)) (-5 *1 (-506)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027)))))
-(((*1 *1)
- (-12 (-4 *1 (-385)) (-3676 (|has| *1 (-6 -4260)))
- (-3676 (|has| *1 (-6 -4252)))))
- ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795))))
- ((*1 *2 *1) (-12 (-4 *1 (-778 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (-4 *1 (-795))) ((*1 *1) (-5 *1 (-1046))))
+ (-12 (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-929 *3 *4 *5 *2))
+ (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-507))) (-5 *2 (-1102)) (-5 *1 (-507)))))
+(((*1 *2 *1 *3 *3 *2)
+ (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138))
+ (-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "right") (|has| *1 (-6 -4274)) (-4 *1 (-117 *3))
+ (-4 *3 (-1138))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "left") (|has| *1 (-6 -4274)) (-4 *1 (-117 *3))
+ (-4 *3 (-1138))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-721)) (-5 *1 (-197 *4 *2)) (-14 *4 (-864))
+ (-4 *2 (-1030))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-270 *3 *2)) (-4 *3 (-1030))
+ (-4 *2 (-1138))))
+ ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1102)) (-5 *1 (-587))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 (-1151 (-531))) (|has| *1 (-6 -4274)) (-4 *1 (-604 *2))
+ (-4 *2 (-1138))))
+ ((*1 *1 *1 *2 *2 *1)
+ (-12 (-5 *2 (-598 (-531))) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "value") (|has| *1 (-6 -4274)) (-4 *1 (-951 *2))
+ (-4 *2 (-1138))))
+ ((*1 *2 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-4 *1 (-1115 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1030))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "last") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2))
+ (-4 *2 (-1138))))
+ ((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 "rest") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *3))
+ (-4 *3 (-1138))))
+ ((*1 *2 *1 *3 *2)
+ (-12 (-5 *3 "first") (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2))
+ (-4 *2 (-1138)))))
+(((*1 *2)
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2 *3 *3 *4 *4)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975))
+ (-5 *1 (-699)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-1098 *4))
+ (-5 *1 (-501 *4)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
+ *7 *3 *8)
+ (-12 (-5 *5 (-639 (-208))) (-5 *6 (-110)) (-5 *7 (-639 (-531)))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))
+ (-5 *3 (-531)) (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-704)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))))
-(((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-706)))))
-(((*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
- ((*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| -2065 *4) (|:| -1324 *3) (|:| -3304 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-998 *3 *4 *5))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -2065 *3) (|:| -1324 *1) (|:| -3304 *1)))
- (-4 *1 (-1157 *3)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-344)) (-5 *1 (-837 *2 *3))
- (-4 *2 (-1157 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-597 *8))) (-5 *3 (-597 *8))
- (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-110)) (-5 *1 (-917 *5 *6 *7 *8)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-372)))))
-(((*1 *2 *3 *4 *2 *5 *6)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *1) (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986))))
+ ((*1 *2 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-797)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-51)) (-5 *1 (-1117)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138))
+ (-5 *2 (-598 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-688 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-864)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-245)))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))))
+(((*1 *1 *1) (-4 *1 (-34)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))
+ ((*1 *2 *1)
(-12
- (-5 *5
- (-2 (|:| |done| (-597 *11))
- (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2473 *11))))))
- (-5 *6 (-719))
- (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2473 *11))))
- (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9))
- (-4 *11 (-1003 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741))
- (-4 *9 (-795)) (-5 *1 (-1001 *7 *8 *9 *10 *11))))
- ((*1 *2 *3 *4 *2 *5 *6)
+ (-5 *2
+ (-2 (|:| -1250 (-598 (-806))) (|:| -3818 (-598 (-806)))
+ (|:| |presup| (-598 (-806))) (|:| -3394 (-598 (-806)))
+ (|:| |args| (-598 (-806)))))
+ (-5 *1 (-1102)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *2 *2 *2)
+ (|partial| -12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-1154 *3 *2))
+ (-4 *2 (-1160 *3)))))
+(((*1 *2 *3 *1)
(-12
- (-5 *5
- (-2 (|:| |done| (-597 *11))
- (|:| |todo| (-597 (-2 (|:| |val| *3) (|:| -2473 *11))))))
- (-5 *6 (-719))
- (-5 *2 (-597 (-2 (|:| |val| (-597 *10)) (|:| -2473 *11))))
- (-5 *3 (-597 *10)) (-5 *4 (-597 *11)) (-4 *10 (-998 *7 *8 *9))
- (-4 *11 (-1036 *7 *8 *9 *10)) (-4 *7 (-432)) (-4 *8 (-741))
- (-4 *9 (-795)) (-5 *1 (-1069 *7 *8 *9 *10 *11)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *3 (-1157 *4)) (-5 *1 (-757 *4 *3 *2 *5)) (-4 *2 (-607 *3))
- (-4 *5 (-607 (-388 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-388 *5))
- (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-1157 *4))
- (-5 *1 (-757 *4 *5 *2 *6)) (-4 *2 (-607 *5)) (-4 *6 (-607 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
- (-5 *1 (-555 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1)
- (-12 (-4 *4 (-1027)) (-5 *2 (-830 *3 *5)) (-5 *1 (-826 *3 *4 *5))
- (-4 *3 (-1027)) (-4 *5 (-617 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-597 (-719)))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330))
- (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -1360 *3))))
- (-5 *1 (-200 *4 *3)) (-4 *3 (-1157 *4)))))
+ (-5 *2
+ (-2 (|:| |cycle?| (-110)) (|:| -3936 (-721)) (|:| |period| (-721))))
+ (-5 *1 (-1083 *4)) (-4 *4 (-1138)) (-5 *3 (-721)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-984)) (-4 *4 (-740))
+ (-12 (-4 *1 (-307 *3 *4)) (-4 *3 (-986)) (-4 *4 (-742))
(-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-795)) (-5 *2 (-110)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1095 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
- (-5 *1 (-31 *4 *2)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289)) (-5 *2 (-399 *3))
- (-5 *1 (-691 *4 *5 *6 *3)) (-4 *3 (-890 *6 *4 *5)))))
-(((*1 *1) (-5 *1 (-1012))))
+ ((*1 *2 *1) (-12 (-4 *1 (-411 *3)) (-4 *3 (-797)) (-5 *2 (-110)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+ (-12 (-4 *1 (-863)) (-5 *2 (-2 (|:| -2005 (-598 *1)) (|:| -1861 *1)))
+ (-5 *3 (-598 *1)))))
+(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| -2030 (-637 (-388 (-893 *4))))
- (|:| |vec| (-597 (-388 (-893 *4)))) (|:| -2426 (-719))
- (|:| |rows| (-597 (-530))) (|:| |cols| (-597 (-530)))))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741))
- (-5 *2
- (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *4)))))))
- (-5 *1 (-865 *4 *5 *6 *7)) (-4 *7 (-890 *4 *6 *5)))))
+ (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)) (-5 *3 (-531)))))
(((*1 *2)
- (-12 (-14 *4 (-719)) (-4 *5 (-1135)) (-5 *2 (-130))
- (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
- ((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4))
- (-4 *3 (-310 *4))))
- ((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
- (-4 *5 (-162))))
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-820 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-822 *2)) (-4 *2 (-1138))))
((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
- (-5 *2 (-530)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-890 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-4 *1 (-920 *3)) (-4 *3 (-984)) (-5 *2 (-862))))
- ((*1 *2) (-12 (-4 *1 (-1188 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-208)) (-5 *5 (-530)) (-5 *2 (-1131 *3))
- (-5 *1 (-738 *3)) (-4 *3 (-914))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-110))
- (-5 *1 (-1131 *2)) (-4 *2 (-914)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-597 (-806 *4)))
- (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-451 *4 *5 *6))
- (-4 *6 (-432)))))
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-886 *3)))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-886 *3))) (-4 *3 (-986)) (-4 *1 (-1063 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-886 *3))) (-4 *1 (-1063 *3)) (-4 *3 (-986)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-986))
+ (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4))))
+ ((*1 *1 *1) (-4 *1 (-516)))
+ ((*1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-624 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-628 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-769 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-836 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-4 *1 (-936 *3)) (-4 *3 (-1138)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-1136 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-943))
+ (-4 *2 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-531)) (-5 *1 (-1121 *4))
+ (-4 *4 (-986)))))
+(((*1 *2 *3 *4 *3 *5 *3)
+ (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *3 (-531))
+ (-5 *2 (-975)) (-5 *1 (-705)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1098 *1)) (-5 *3 (-1102)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1098 *1)) (-4 *1 (-27))))
+ ((*1 *1 *2) (-12 (-5 *2 (-895 *1)) (-4 *1 (-27))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1102)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-797) (-523)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-797) (-523))))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-797) (-523))) (-5 *1 (-149 *4 *2))
+ (-4 *2 (-411 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1023 *2)) (-4 *2 (-411 *4)) (-4 *4 (-13 (-797) (-523)))
+ (-5 *1 (-149 *4 *2))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1023 *1)) (-4 *1 (-151))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-151)) (-5 *2 (-1102)))))
(((*1 *1 *1) (-4 *1 (-226)))
((*1 *1 *1)
(-12 (-4 *2 (-162)) (-5 *1 (-271 *2 *3 *4 *5 *6 *7))
- (-4 *3 (-1157 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
+ (-4 *3 (-1160 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *3 "failed") *3 *3 *4))))
((*1 *1 *1)
- (-1461 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135)))
- (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135)))))
+ (-1435 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1138)))
+ (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1138)))))
((*1 *1 *1) (-4 *1 (-453)))
- ((*1 *2 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3))))
+ ((*1 *2 *2) (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3))))
((*1 *1 *1)
- (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-469)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2)
- (-12 (-4 *1 (-330))
- (-5 *2 (-597 (-2 (|:| -2611 (-530)) (|:| -3194 (-530))))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-530))) (-5 *4 (-846 (-530)))
- (-5 *2 (-637 (-530))) (-5 *1 (-551))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-597 (-637 (-530))))
- (-5 *1 (-551))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-530))) (-5 *4 (-597 (-846 (-530))))
- (-5 *2 (-597 (-637 (-530)))) (-5 *1 (-551)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)) (-4 *2 (-344)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-360)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-637 *4)) (-4 *4 (-984)) (-5 *1 (-1066 *3 *4))
- (-14 *3 (-719)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -2204 *3)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-570 *1))) (-4 *1 (-284)))))
+ (-12 (-5 *2 (-1 (-1083 *3))) (-5 *1 (-1083 *3)) (-4 *3 (-1138)))))
+(((*1 *1 *1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109)))))
(((*1 *1 *1) (-4 *1 (-34)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *1)
- (-12 (-4 *2 (-657 *3)) (-5 *1 (-775 *2 *3)) (-4 *3 (-984)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-447))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-1027)) (-5 *2 (-597 *1))
- (-4 *1 (-363 *3 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-684 *3 *4))) (-5 *1 (-684 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-675))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-890 *3 *4 *5)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-998 *3 *4 *5)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1030)) (-4 *5 (-1030))
+ (-5 *2 (-1 *5)) (-5 *1 (-633 *4 *5)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-520)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))))
+(((*1 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1187)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-571 *1))) (-4 *1 (-284)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-531)) (-5 *1 (-425 *3)) (-4 *3 (-385)) (-4 *3 (-986)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1071)) (-5 *2 (-1151 (-531))))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-5 *2 (-110)))))
+(((*1 *2 *3)
(-12
- (-5 *2
- (-2 (|:| -3388 *3) (|:| |coef1| (-730 *3)) (|:| |coef2| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
+ (-5 *3
+ (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4)
+ (-230 *4 (-388 (-531)))))
+ (-14 *4 (-598 (-1102))) (-14 *5 (-721)) (-5 *2 (-110))
+ (-5 *1 (-483 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *1) (-4 *1 (-471)))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1160 (-531))) (-5 *1 (-465 *3)))))
+(((*1 *2 *3 *2)
+ (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1160 (-159 *2)))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))))
-(((*1 *1) (-5 *1 (-418))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| |den| (-530)) (|:| |gcdnum| (-530)))))
- (-4 *4 (-1157 (-388 *2))) (-5 *2 (-530)) (-5 *1 (-854 *4 *5))
- (-4 *5 (-1157 (-388 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1095 *3)))))
+ (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1160 (-159 *2))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1030))
+ (-5 *2 (-598 (-2 (|:| |k| *4) (|:| |c| *3))))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |k| (-836 *3)) (|:| |c| *4))))
+ (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797))
+ (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-624 *3))) (-5 *1 (-836 *3)) (-4 *3 (-797)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-531)) (-4 *1 (-55 *4 *3 *5)) (-4 *4 (-1138))
+ (-4 *3 (-354 *4)) (-4 *5 (-354 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-296 *4 *5))
- (-4 *5 (-13 (-27) (-1121) (-411 *4)))))
+ (-4 *5 (-13 (-27) (-1124) (-411 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-296 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
+ (-4 *3 (-13 (-27) (-1124) (-411 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-388 (-530)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *4 (-388 (-531)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-296 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-296 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530)))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-531)))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-296 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 (-530))) (-5 *4 (-276 *6))
- (-4 *6 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *6 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *7 (-530))) (-5 *4 (-276 *7)) (-5 *5 (-1148 (-530)))
- (-4 *7 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *6 *7))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-530)))
- (-4 *3 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *7 *3))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8))
- (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530)))
- (-4 *8 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *3 (-1 *8 (-388 (-531)))) (-5 *4 (-276 *8))
+ (-5 *5 (-1151 (-388 (-531)))) (-5 *6 (-388 (-531)))
+ (-4 *8 (-13 (-27) (-1124) (-411 *7)))
+ (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-439 *7 *8))))
((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530))))
- (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8)))
- (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-388 (-531))))
+ (-5 *7 (-388 (-531))) (-4 *3 (-13 (-27) (-1124) (-411 *8)))
+ (-4 *8 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-439 *8 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
- (-4 *3 (-984)) (-5 *1 (-555 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-556 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *3))))
- (-4 *3 (-984)) (-4 *1 (-1141 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-719))
- (-5 *3 (-1080 (-2 (|:| |k| (-388 (-530))) (|:| |c| *4))))
- (-4 *4 (-984)) (-4 *1 (-1162 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-4 *1 (-1172 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1080 (-2 (|:| |k| (-719)) (|:| |c| *3))))
- (-4 *3 (-984)) (-4 *1 (-1172 *3)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-5 *2 (-388 (-531))) (-4 *4 (-986)) (-4 *1 (-1167 *4 *3))
+ (-4 *3 (-1144 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1040)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531)))
+ (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $))
+ (-15 -1853 ((-1054 *3 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *3 (-571 $))))))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-531))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-769 *4)) (-4 *4 (-797)) (-5 *2 (-110))
+ (-5 *1 (-624 *4)))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-516))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-5 *1 (-418)))))
+(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3)))))
+(((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975))
+ (-5 *1 (-699)))))
+(((*1 *2 *3 *2 *4)
+ (-12 (-5 *3 (-639 *2)) (-5 *4 (-721))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *5 (-1160 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-296 *4 *5))
- (-4 *5 (-13 (-27) (-1121) (-411 *4)))))
+ (-4 *5 (-13 (-27) (-1124) (-411 *4)))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-296 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
+ (-4 *3 (-13 (-27) (-1124) (-411 *4)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-388 (-530)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *4 (-531)) (-4 *5 (-13 (-432) (-797) (-977 *4) (-594 *4)))
(-5 *2 (-51)) (-5 *1 (-296 *5 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
(-5 *2 (-51)) (-5 *1 (-296 *5 *3))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-276 *3)) (-5 *5 (-388 (-530)))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-432) (-797) (-977 *5) (-594 *5))) (-5 *5 (-531))
(-5 *2 (-51)) (-5 *1 (-296 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-531)))
+ (-4 *7 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *6 *7))))
((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-1 *8 (-388 (-530)))) (-5 *4 (-276 *8))
- (-5 *5 (-1148 (-388 (-530)))) (-5 *6 (-388 (-530)))
- (-4 *8 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *7 *8))))
- ((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *4 (-1099)) (-5 *5 (-276 *3)) (-5 *6 (-1148 (-388 (-530))))
- (-5 *7 (-388 (-530))) (-4 *3 (-13 (-27) (-1121) (-411 *8)))
- (-4 *8 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-51)) (-5 *1 (-439 *8 *3))))
+ (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-531)))
+ (-4 *3 (-13 (-27) (-1124) (-411 *7)))
+ (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *7 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-388 (-530))) (-4 *4 (-984)) (-4 *1 (-1164 *4 *3))
- (-4 *3 (-1141 *4)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-4 *1 (-998 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *4)) (-4 *4 (-37 *3)) (-4 *4 (-984))
- (-5 *3 (-388 (-530))) (-5 *1 (-1084 *4)))))
-(((*1 *2 *3 *3 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *1 *1) (-12 (-5 *1 (-566 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1) (-5 *1 (-586))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-815)) (-5 *3 (-597 (-245))) (-5 *1 (-243)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-112)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-1203 *3 *4)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-162))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (|partial| -12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-767 *3)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-705)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-5 *2 (-531)) (-4 *4 (-986)) (-4 *1 (-1146 *4 *3))
+ (-4 *3 (-1175 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1144 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797))
+ (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-892 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-986)) (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1)))
+ (-4 *1 (-1160 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-531)))))
+ (-4 *2 (-13 (-797) (-21))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1083 (-1083 *4))) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4))
+ (-4 *4 (-37 (-388 (-531)))) (-4 *4 (-986)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530)))
- (-5 *2 (-1181 (-388 (-530)))) (-5 *1 (-1206 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-597 (-2 (|:| |totdeg| (-719)) (|:| -3109 *3))))
- (-5 *4 (-719)) (-4 *3 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *1 (-429 *5 *6 *7 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-795))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-124 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-264 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3078
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (|:| -1874
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1300
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))))
- (-5 *1 (-525))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-643 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2
- (|:| -3078
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (|:| -1874
- (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
- (|:| |expense| (-360)) (|:| |accuracy| (-360))
- (|:| |intermediateResults| (-360))))))
- (-5 *1 (-751))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-448)) (-5 *3 (-598 (-245))) (-5 *1 (-1185))))
+ ((*1 *1 *1) (-5 *1 (-1185))))
+(((*1 *1 *1 *1 *1) (-4 *1 (-516))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-432)))))
+(((*1 *1 *1)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-354 *2)) (-4 *2 (-1138))
+ (-4 *2 (-797))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4274))
+ (-4 *1 (-354 *3)) (-4 *3 (-1138)))))
+(((*1 *1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *4 *5))
+ (-4 *5 (-13 (-27) (-1124) (-411 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *4 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-721))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *5 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-276 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-276 *3)) (-5 *5 (-721))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-296 *6 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
+ (-12 (-5 *3 (-1 *6 (-531))) (-5 *4 (-276 *6))
+ (-4 *6 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *6 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *7 (-531))) (-5 *4 (-276 *7)) (-5 *5 (-1151 (-721)))
+ (-4 *7 (-13 (-27) (-1124) (-411 *6)))
+ (-4 *6 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *6 *7))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-1102)) (-5 *5 (-276 *3)) (-5 *6 (-1151 (-721)))
+ (-4 *3 (-13 (-27) (-1124) (-411 *7)))
+ (-4 *7 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-51)) (-5 *1 (-439 *7 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986)) (-4 *2 (-1175 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-432)) (-4 *4 (-768))
- (-14 *5 (-1099)) (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
+ (-12 (-4 *4 (-797)) (-5 *2 (-598 (-598 (-598 *4))))
+ (-5 *1 (-1110 *4)) (-5 *3 (-598 (-598 *4))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 (-530)))))
- (-5 *2
- (-597
- (-2 (|:| |radval| (-297 (-530))) (|:| |radmult| (-530))
- (|:| |radvect| (-597 (-637 (-297 (-530))))))))
- (-5 *1 (-969)))))
+ (-12 (-4 *4 (-27))
+ (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *5 (-1160 *4)) (-5 *2 (-598 (-606 (-388 *5))))
+ (-5 *1 (-610 *4 *5)) (-5 *3 (-606 (-388 *5))))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-14 *5 (-598 (-1102))) (-4 *2 (-162))
+ (-4 *4 (-221 (-2167 *5) (-721)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1889 *3) (|:| -1790 *4))
+ (-2 (|:| -1889 *3) (|:| -1790 *4))))
+ (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-797))
+ (-4 *7 (-892 *2 *4 (-808 *5))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1025 (-790 (-360)))) (-5 *2 (-1025 (-790 (-208))))
+ (-5 *1 (-287)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-388 (-531))))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-1025 (-360)))) (-5 *1 (-245)))))
(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2))
- (-4 *2 (-624 *3)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-432)) (-4 *3 (-795)) (-4 *4 (-741))
- (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3)))))
-(((*1 *1 *1) (-4 *1 (-34)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
+ ((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *3 (-598 (-1 *4 (-598 *4)))) (-4 *4 (-1030))
+ (-5 *1 (-111 *4))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1030))
+ (-5 *1 (-111 *4))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-112)) (-5 *2 (-598 (-1 *4 (-598 *4))))
+ (-5 *1 (-111 *4)) (-4 *4 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-1025 *3)) (-4 *3 (-1027)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-3 (-110) "failed")) (-4 *3 (-432)) (-4 *4 (-795))
- (-4 *5 (-741)) (-5 *1 (-927 *3 *4 *5 *6)) (-4 *6 (-890 *3 *5 *4)))))
+ (-12 (-5 *2 (-2 (|:| -2109 (-732 *3)) (|:| |coef1| (-732 *3))))
+ (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-2 (|:| -2109 *1) (|:| |coef1| *1)))
+ (-4 *1 (-1000 *3 *4 *5)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-702)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1160 *6))
+ (-4 *6 (-13 (-27) (-411 *5)))
+ (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-4 *8 (-1160 (-388 *7)))
+ (-5 *2 (-548 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3))
+ (-4 *3 (-323 *6 *7 *8)))))
(((*1 *2 *3 *4)
(-12 (-4 *5 (-344))
- (-5 *2 (-597 (-2 (|:| C (-637 *5)) (|:| |g| (-1181 *5)))))
- (-5 *1 (-918 *5)) (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-984))
- (-5 *1 (-1084 *4))))
- ((*1 *1 *2 *2 *1)
- (-12 (-5 *2 (-530)) (-5 *1 (-1173 *3 *4 *5)) (-4 *3 (-984))
- (-14 *4 (-1099)) (-14 *5 *3))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))
- (-14 *4 *2) (-4 *5 (-162))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-862)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-862))))
- ((*1 *2)
- (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-862))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344))
- (-5 *2 (-719)) (-5 *1 (-618 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270))))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-719))
- (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3))
- (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
- (-5 *2 (-719)))))
-(((*1 *2 *1) (-12 (-4 *1 (-896)) (-5 *2 (-597 (-597 (-884 (-208)))))))
- ((*1 *2 *1) (-12 (-4 *1 (-914)) (-5 *2 (-597 (-597 (-884 (-208))))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
-(((*1 *2 *2 *2 *2 *2 *3)
- (-12 (-5 *2 (-637 *4)) (-5 *3 (-719)) (-4 *4 (-984))
- (-5 *1 (-638 *4)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *2 (-1186))
- (-5 *1 (-448))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-920 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-884 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-884 *3)) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132)) (-5 *3 (-208)))))
+ (-5 *2 (-598 (-2 (|:| C (-639 *5)) (|:| |g| (-1184 *5)))))
+ (-5 *1 (-920 *5)) (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-864))
+ (-5 *2
+ (-3 (-1098 *4)
+ (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049)))))))
+ (-5 *1 (-327 *4)) (-4 *4 (-330)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-531)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-597 (-1080 *7))) (-4 *6 (-795))
- (-4 *7 (-890 *5 (-502 *6) *6)) (-4 *5 (-984))
- (-5 *2 (-1 (-1080 *7) *7)) (-5 *1 (-1052 *5 *6 *7)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *4 (-1030)) (-5 *2 (-832 *3 *5)) (-5 *1 (-828 *3 *4 *5))
+ (-4 *3 (-1030)) (-4 *5 (-619 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-531)) (-5 *2 (-598 (-598 (-208)))) (-5 *1 (-1135)))))
+(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-698)))))
+(((*1 *2 *1) (-12 (-5 *1 (-548 *2)) (-4 *2 (-344)))))
+(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-721))))
+ ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-721)))))
+(((*1 *2 *3) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-528)) (-5 *3 (-531))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *3 *2 *3)
+ (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105))))
+ ((*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105))))
+ ((*1 *2 *3 *2 *4 *1)
+ (-12 (-5 *2 (-418)) (-5 *3 (-598 (-1102))) (-5 *4 (-1102))
+ (-5 *1 (-1105))))
+ ((*1 *2 *3 *2 *3 *1)
+ (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1105))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-418)) (-5 *3 (-1102)) (-5 *1 (-1106))))
+ ((*1 *2 *3 *2 *1)
+ (-12 (-5 *2 (-418)) (-5 *3 (-598 (-1102))) (-5 *1 (-1106)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-94)))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-951)) (-5 *2 (-804)))))
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330))
- (-5 *2 (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046))))))
- (-5 *1 (-327 *4)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1080 (-388 *3))) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-5 *2 (-2 (|:| -3078 *3) (|:| -1874 *4))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-643 *3)) (-4 *3 (-1027))
- (-5 *2 (-597 (-2 (|:| -1874 *3) (|:| -2632 (-719))))))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-597 (-637 *6))) (-5 *4 (-110)) (-5 *5 (-530))
- (-5 *2 (-637 *6)) (-5 *1 (-967 *6)) (-4 *6 (-344)) (-4 *6 (-984))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-637 *4))) (-5 *2 (-637 *4)) (-5 *1 (-967 *4))
- (-4 *4 (-344)) (-4 *4 (-984))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-597 (-637 *5))) (-5 *4 (-530)) (-5 *2 (-637 *5))
- (-5 *1 (-967 *5)) (-4 *5 (-344)) (-4 *5 (-984)))))
-(((*1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740)))))
+ (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-531))) (-5 *1 (-984)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-523)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2))
+ (-4 *2 (-637 *3 *4 *5)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *1 *1) (-4 *1 (-471)))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2204 (-730 *3)) (|:| |coef1| (-730 *3))
- (|:| |coef2| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -2204 *1) (|:| |coef1| *1) (|:| |coef2| *1)))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1169 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-982)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-830 *4 *5)) (-5 *3 (-830 *4 *6)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-617 *5)) (-5 *1 (-826 *4 *5 *6)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-308 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-493 *3 *4))
- (-14 *4 (-530)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *1 *1) (|partial| -4 *1 (-1078))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-571 *4)) (-4 *4 (-797)) (-4 *2 (-797))
+ (-5 *1 (-570 *2 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *2 *1)
+ (-12 (-5 *2 (-598 *6)) (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5))
+ (-4 *3 (-523)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-897)))))
+(((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-257)))))
+(((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-68 APROD)))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-707)))))
+(((*1 *2 *1) (|partial| -12 (-4 *1 (-953)) (-5 *2 (-806)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-299)) (-5 *3 (-208)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531)))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *1 *1) (-4 *1 (-93)))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *1 *1) (-4 *1 (-471)))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-522))
- (-5 *2
- (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-708)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
(((*1 *2 *1)
- (-12 (|has| *1 (-6 -4269)) (-4 *1 (-468 *3)) (-4 *3 (-1135))
- (-5 *2 (-597 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-686 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-704))))
- ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369))
- (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-704)))))
-(((*1 *2 *3 *4 *4 *5)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-532 *6 *3 *7)) (-4 *7 (-1027)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 *5)) (-5 *4 (-530)) (-4 *5 (-793)) (-4 *5 (-344))
- (-5 *2 (-719)) (-5 *1 (-886 *5 *6)) (-4 *6 (-1157 *5)))))
+ (-12 (-4 *1 (-564 *2 *3)) (-4 *3 (-1138)) (-4 *2 (-1030))
+ (-4 *2 (-797)))))
+(((*1 *1) (-5 *1 (-418))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-797) (-523) (-977 (-531)))) (-5 *2 (-388 (-531)))
+ (-5 *1 (-414 *4 *3)) (-4 *3 (-411 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-571 *3)) (-4 *3 (-411 *5))
+ (-4 *5 (-13 (-797) (-523) (-977 (-531))))
+ (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-414 *5 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))))
(((*1 *2 *3 *3)
- (|partial| -12 (-4 *4 (-13 (-344) (-140) (-975 (-530))))
- (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| -2104 (-388 *5)) (|:| |coeff| (-388 *5))))
- (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-804))) (-5 *1 (-112))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112))))
+ (|partial| -12 (-4 *4 (-13 (-344) (-140) (-977 (-531))))
+ (-4 *5 (-1160 *4))
+ (-5 *2 (-2 (|:| -2351 (-388 *5)) (|:| |coeff| (-388 *5))))
+ (-5 *1 (-535 *4 *5)) (-5 *3 (-388 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466))))
+ ((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-289))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-1 (-804) (-597 (-804)))) (-5 *1 (-112))))
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))
+ ((*1 *1 *1) (-4 *1 (-995))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-986)) (-4 *3 (-797))
+ (-4 *4 (-248 *3)) (-4 *5 (-743)))))
+(((*1 *1 *1) (-4 *1 (-93)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *3 *1)
+ (|partial| -12 (-4 *1 (-35 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-5 *2 (-2 (|:| -3033 *3) (|:| -1798 *4))))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1102)) (-5 *2 (-507)) (-5 *1 (-506 *4))
+ (-4 *4 (-1138)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049))))))
+ (-4 *4 (-330)) (-5 *2 (-639 *4)) (-5 *1 (-327 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-130))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-783 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-790 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-721)) (-5 *2 (-1189)))))
+(((*1 *2 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138))))
((*1 *2 *1)
- (-12 (-5 *2 (-1186)) (-5 *1 (-198 *3))
- (-4 *3
- (-13 (-795)
- (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 (*2 $))
- (-15 -3595 (*2 $)))))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-375))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-375))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-480))))
- ((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-659))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1116))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1116)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
+ (|partial| -12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-1172 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-1195 *4 *5 *6 *7)))
+ (-5 *1 (-1195 *4 *5 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 *9)) (-5 *4 (-1 (-110) *9 *9))
+ (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523))
+ (-4 *7 (-743)) (-4 *8 (-797)) (-5 *2 (-598 (-1195 *6 *7 *8 *9)))
+ (-5 *1 (-1195 *6 *7 *8 *9)))))
+(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
+(((*1 *1 *2 *3 *1 *3)
+ (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3))
+ (-4 *3 (-1030)))))
+(((*1 *1 *1) (-4 *1 (-93)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-639 (-388 (-895 (-531)))))
+ (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971))
+ (-5 *3 (-297 (-531))))))
+(((*1 *2 *3 *4 *5 *5 *4 *6)
+ (-12 (-5 *5 (-571 *4)) (-5 *6 (-1098 *4))
+ (-4 *4 (-13 (-411 *7) (-27) (-1124)))
+ (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4))))
+ (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030))))
+ ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
+ (-12 (-5 *5 (-571 *4)) (-5 *6 (-388 (-1098 *4)))
+ (-4 *4 (-13 (-411 *7) (-27) (-1124)))
+ (-4 *7 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4))))
+ (-5 *1 (-527 *7 *4 *3)) (-4 *3 (-609 *4)) (-4 *3 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1175 *4))
+ (-4 *4 (-37 (-388 (-531))))
+ (-5 *2 (-1 (-1083 *4) (-1083 *4) (-1083 *4))) (-5 *1 (-1177 *4 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-531)) (|has| *1 (-6 -4274)) (-4 *1 (-1172 *3))
+ (-4 *3 (-1138)))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1327)))) (-5 *2 (-975))
+ (-5 *1 (-699)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
+ (-4 *2 (-1160 *4)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-1102))) (-5 *2 (-1189)) (-5 *1 (-1105))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1189))
+ (-5 *1 (-1105))))
+ ((*1 *2 *3 *4 *1)
+ (-12 (-5 *4 (-598 (-1102))) (-5 *3 (-1102)) (-5 *2 (-1189))
+ (-5 *1 (-1105)))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-698)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4))
+ (-4 *4 (-1138)) (-5 *2 (-110)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
+ ((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-320 *3 *4 *5)) (-14 *3 (-598 (-1102)))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-368)))))
+(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-208)))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *1 *1) (-4 *1 (-471)))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
+ ((*1 *1 *1 *1) (-5 *1 (-360)))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-984)) (-4 *3 (-795))
- (-4 *4 (-248 *3)) (-4 *5 (-741)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-344)) (-5 *1 (-965 *3 *2)) (-4 *2 (-609 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-5 *2 (-2 (|:| -2723 *3) (|:| -4155 (-598 *5))))
+ (-5 *1 (-965 *5 *3)) (-5 *4 (-598 *5)) (-4 *3 (-609 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-5 *2 (-598 *3)) (-5 *1 (-867 *4 *5 *6 *3))
+ (-4 *3 (-892 *4 *6 *5)))))
+(((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-1065))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-806))) (-5 *2 (-1189)) (-5 *1 (-1065)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-806) (-806))) (-5 *1 (-112))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-806) (-598 (-806)))) (-5 *1 (-112))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-1 (-806) (-598 (-806)))) (-5 *1 (-112))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1189)) (-5 *1 (-198 *3))
+ (-4 *3
+ (-13 (-797)
+ (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 (*2 $))
+ (-15 -3403 (*2 $)))))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-375))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-375))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-480))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-661))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1119))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1119)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-156 *4))))
+ ((*1 *2)
+ (-12 (-14 *4 *2) (-4 *5 (-1138)) (-5 *2 (-721))
+ (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *4 (-797)) (-5 *2 (-721)) (-5 *1 (-410 *3 *4))
+ (-4 *3 (-411 *4))))
+ ((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-515 *3)) (-4 *3 (-516))))
+ ((*1 *2) (-12 (-4 *1 (-714)) (-5 *2 (-721))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-746 *3 *4))
+ (-4 *3 (-747 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-933 *3 *4))
+ (-4 *3 (-934 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-721)) (-5 *1 (-937 *3 *4))
+ (-4 *3 (-938 *4))))
+ ((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-952 *3)) (-4 *3 (-953))))
+ ((*1 *2) (-12 (-4 *1 (-986)) (-5 *2 (-721))))
+ ((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-994 *3)) (-4 *3 (-995)))))
(((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4269)) (-4 *1 (-144 *2)) (-4 *2 (-1135))
- (-4 *2 (-1027))))
+ (-12 (|has| *1 (-6 -4273)) (-4 *1 (-144 *2)) (-4 *2 (-1138))
+ (-4 *2 (-1030))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3))
- (-4 *3 (-1135))))
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *3))
+ (-4 *3 (-1138))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-626 *3)) (-4 *3 (-1138))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027))
- (-5 *1 (-686 *4))))
+ (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-531)) (-4 *4 (-1030))
+ (-5 *1 (-688 *4))))
((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027))))
+ (-12 (-5 *3 (-531)) (-5 *1 (-688 *2)) (-4 *2 (-1030))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))))
-(((*1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-597 (-112))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 *6)) (-4 *5 (-1139)) (-4 *6 (-1157 *5))
- (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *3) (|:| |radicand| *6)))
- (-5 *1 (-141 *5 *6 *7)) (-5 *4 (-719)) (-4 *7 (-1157 *3)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-144 *3))))
+ (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-606 (-388 *2))) (-4 *2 (-1160 *4)) (-5 *1 (-760 *4 *2))
+ (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-607 *2 (-388 *2))) (-4 *2 (-1160 *4))
+ (-5 *1 (-760 *4 *2))
+ (-4 *4 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531))))))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-1098 (-895 *4))) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-4 *3 (-344))
+ (-5 *2 (-1098 (-895 *3)))))
+ ((*1 *2)
+ (-12 (-5 *2 (-1098 (-388 (-895 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *1 *1) (-4 *1 (-93)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105))))
+ ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1105)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-721)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531))
+ (-14 *4 *2) (-4 *5 (-162))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-864)) (-5 *1 (-155 *3 *4))
+ (-4 *3 (-156 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-864))))
+ ((*1 *2)
+ (-12 (-4 *1 (-351 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3))
+ (-5 *2 (-864))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-5 *2 (-721)) (-5 *1 (-498 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-344))
+ (-5 *2 (-721)) (-5 *1 (-620 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274))))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-721))
+ (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-4 *3 (-523)) (-5 *2 (-721))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *4 (-162)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)) (-5 *2 (-721)) (-5 *1 (-638 *4 *5 *6 *3))
+ (-4 *3 (-637 *4 *5 *6))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-523))
+ (-5 *2 (-721)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-415))
+ (-5 *2
+ (-598
+ (-3 (|:| -3955 (-1102))
+ (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531)))))))))
+ (-5 *1 (-1106)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110))
+ (-5 *1 (-792 *4 *5)) (-14 *4 (-721)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-144 *3))))
((*1 *1 *2)
(-12
- (-5 *2 (-597 (-2 (|:| -3194 (-719)) (|:| -3705 *4) (|:| |num| *4))))
- (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))))
+ (-5 *2 (-598 (-2 (|:| -1790 (-721)) (|:| -3840 *4) (|:| |num| *4))))
+ (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *4))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-5 *3 (-597 (-893 (-530)))) (-5 *4 (-110)) (-5 *1 (-418))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-110)) (-5 *1 (-418))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-5 *3 (-597 (-1099))) (-5 *4 (-110)) (-5 *1 (-418))))
+ (-12 (-5 *2 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-5 *3 (-598 (-1102))) (-5 *4 (-110)) (-5 *1 (-418))))
((*1 *2 *1)
- (-12 (-5 *2 (-1080 *3)) (-5 *1 (-560 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-588 *2)) (-4 *2 (-162))))
+ (-12 (-5 *2 (-1083 *3)) (-5 *1 (-561 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4))
+ (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4))
(-4 *4 (-162))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4))
+ (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4))
(-4 *4 (-162))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-5 *1 (-615 *3 *4))
+ (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-5 *1 (-617 *3 *4))
(-4 *4 (-162))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 (-597 *3)))) (-4 *3 (-1027))
- (-5 *1 (-625 *3))))
+ (-12 (-5 *2 (-598 (-598 (-598 *3)))) (-4 *3 (-1030))
+ (-5 *1 (-627 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-662 *2 *3 *4)) (-4 *2 (-795)) (-4 *3 (-1027))
+ (-12 (-5 *1 (-664 *2 *3 *4)) (-4 *2 (-797)) (-4 *3 (-1030))
(-14 *4
- (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *3))
- (-2 (|:| -1986 *2) (|:| -3194 *3))))))
+ (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *3))
+ (-2 (|:| -1889 *2) (|:| -1790 *3))))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135))))
+ (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1138)) (-4 *3 (-1138))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| -3078 (-1099)) (|:| -1874 *4))))
- (-4 *4 (-1027)) (-5 *1 (-830 *3 *4)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-598 (-2 (|:| -3033 (-1102)) (|:| -1798 *4))))
+ (-4 *4 (-1030)) (-5 *1 (-832 *3 *4)) (-4 *3 (-1030))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *5)) (-4 *5 (-13 (-1027) (-33)))
- (-5 *2 (-597 (-1064 *3 *5))) (-5 *1 (-1064 *3 *5))
- (-4 *3 (-13 (-1027) (-33)))))
+ (-12 (-5 *4 (-598 *5)) (-4 *5 (-13 (-1030) (-33)))
+ (-5 *2 (-598 (-1067 *3 *5))) (-5 *1 (-1067 *3 *5))
+ (-4 *3 (-13 (-1030) (-33)))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| |val| *4) (|:| -2473 *5))))
- (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33)))
- (-5 *2 (-597 (-1064 *4 *5))) (-5 *1 (-1064 *4 *5))))
+ (-12 (-5 *3 (-598 (-2 (|:| |val| *4) (|:| -2410 *5))))
+ (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33)))
+ (-5 *2 (-598 (-1067 *4 *5))) (-5 *1 (-1067 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2473 *4)))
- (-4 *3 (-13 (-1027) (-33))) (-4 *4 (-13 (-1027) (-33)))
- (-5 *1 (-1064 *3 *4))))
+ (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -2410 *4)))
+ (-4 *3 (-13 (-1030) (-33))) (-4 *4 (-13 (-1030) (-33)))
+ (-5 *1 (-1067 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33)))))
+ (-12 (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33)))))
+ (-12 (-5 *4 (-110)) (-5 *1 (-1067 *2 *3)) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33)))))
((*1 *1 *2 *3 *2 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-13 (-1027) (-33)))
- (-5 *1 (-1065 *2 *3)) (-4 *2 (-13 (-1027) (-33)))))
+ (-12 (-5 *4 (-598 *3)) (-4 *3 (-13 (-1030) (-33)))
+ (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33)))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1064 *2 *3))) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))) (-5 *1 (-1065 *2 *3))))
+ (-12 (-5 *4 (-598 (-1067 *2 *3))) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33))) (-5 *1 (-1068 *2 *3))))
((*1 *1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-1065 *2 *3))) (-5 *1 (-1065 *2 *3))
- (-4 *2 (-13 (-1027) (-33))) (-4 *3 (-13 (-1027) (-33)))))
+ (-12 (-5 *4 (-598 (-1068 *2 *3))) (-5 *1 (-1068 *2 *3))
+ (-4 *2 (-13 (-1030) (-33))) (-4 *3 (-13 (-1030) (-33)))))
((*1 *1 *2)
- (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4))))
+ (-12 (-5 *2 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-1089 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-47)))) (-5 *1 (-47))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570 (-47))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-597 (-570 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 (-47))) (-5 *3 (-570 (-47))) (-5 *1 (-47))))
- ((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1157 (-159 *2)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
- ((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3)) (-5 *1 (-394 *3 *2 *4 *5))
- (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-975 *2)))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-1157 *2)) (-4 *2 (-932 *3))
- (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4))
- (-14 *6 (-1181 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))
- (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-570 (-473)))) (-5 *1 (-473))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-570 (-473))) (-5 *1 (-473))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-597 (-570 (-473))))
- (-5 *1 (-473))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 (-473))) (-5 *3 (-570 (-473))) (-5 *1 (-473))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330))
- (-5 *1 (-500 *4))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-673 *4 *2)) (-4 *2 (-1157 *4))
- (-5 *1 (-723 *4 *2 *5 *3)) (-4 *3 (-1157 *5))))
- ((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162))))
- ((*1 *1 *1) (-4 *1 (-993))))
+ (-12 (-5 *1 (-1092 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-598 (-1184 *4))) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2)
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523))
+ (-5 *2 (-598 (-1184 *3))))))
+(((*1 *2)
+ (-12 (-4 *1 (-330))
+ (-5 *2 (-598 (-2 (|:| -2552 (-531)) (|:| -1790 (-531))))))))
+(((*1 *2 *3 *4 *5 *6 *7)
+ (-12 (-5 *3 (-639 *11)) (-5 *4 (-598 (-388 (-895 *8))))
+ (-5 *5 (-721)) (-5 *6 (-1085)) (-4 *8 (-13 (-289) (-140)))
+ (-4 *11 (-892 *8 *10 *9)) (-4 *9 (-13 (-797) (-573 (-1102))))
+ (-4 *10 (-743))
+ (-5 *2
+ (-2
+ (|:| |rgl|
+ (-598
+ (-2 (|:| |eqzro| (-598 *11)) (|:| |neqzro| (-598 *11))
+ (|:| |wcond| (-598 (-895 *8)))
+ (|:| |bsoln|
+ (-2 (|:| |partsol| (-1184 (-388 (-895 *8))))
+ (|:| -3523 (-598 (-1184 (-388 (-895 *8))))))))))
+ (|:| |rgsz| (-531))))
+ (-5 *1 (-867 *8 *9 *10 *11)) (-5 *7 (-531)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-719)) (-5 *1 (-548 *2)) (-4 *2 (-515))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -1510 *3) (|:| -3194 (-719)))) (-5 *1 (-548 *3))
- (-4 *3 (-515)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *2 (-1000 *4 *5 *6)) (-5 *1 (-726 *4 *5 *6 *2 *3))
+ (-4 *3 (-1005 *4 *5 *6 *2)))))
+(((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-769 *3)) (-4 *3 (-797)) (-5 *1 (-624 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *2 (-110))
+ (-5 *1 (-245)))))
+(((*1 *1 *1) (-4 *1 (-93)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *1 *1) (-4 *1 (-471)))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2 *2) (|partial| -12 (-5 *1 (-548 *2)) (-4 *2 (-515)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1046)) (-4 *4 (-330))
- (-5 *1 (-500 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| -4129 *4))) (-5 *1 (-910 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3)))))
(((*1 *1 *2) (-12 (-4 *1 (-37 *2)) (-4 *2 (-162))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-14 *6 (-1181 (-637 *3)))
- (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-862)) (-14 *5 (-597 (-1099)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-344)) (-14 *6 (-1184 (-639 *3)))
+ (-5 *1 (-43 *3 *4 *5 *6)) (-14 *4 (-864)) (-14 *5 (-598 (-1102)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-50 *3)) (-4 *3 (-1138))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377 'JINT 'X 'ELAM) (-2377) (-647))))
- (-5 *1 (-59 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274 'JINT 'X 'ELAM) (-2274) (-649))))
+ (-5 *1 (-59 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'XC) (-647))))
- (-5 *1 (-61 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'XC) (-649))))
+ (-5 *1 (-61 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2377 'X) (-2377) (-647))) (-5 *1 (-62 *3))
- (-14 *3 (-1099))))
+ (-12 (-5 *2 (-320 (-2274 'X) (-2274) (-649))) (-5 *1 (-62 *3))
+ (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-637 (-320 (-2377) (-2377 'X 'HESS) (-647))))
- (-5 *1 (-63 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-639 (-320 (-2274) (-2274 'X 'HESS) (-649))))
+ (-5 *1 (-63 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2377) (-2377 'XC) (-647))) (-5 *1 (-64 *3))
- (-14 *3 (-1099))))
+ (-12 (-5 *2 (-320 (-2274) (-2274 'XC) (-649))) (-5 *1 (-64 *3))
+ (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377 'X) (-2377 '-4126) (-647))))
- (-5 *1 (-69 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274 'X) (-2274 '-4139) (-649))))
+ (-5 *1 (-69 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'X) (-647))))
- (-5 *1 (-72 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'X) (-649))))
+ (-5 *1 (-72 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377 'X 'EPS) (-2377 '-4126) (-647))))
- (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099))
- (-14 *5 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274 'X 'EPS) (-2274 '-4139) (-649))))
+ (-5 *1 (-73 *3 *4 *5)) (-14 *3 (-1102)) (-14 *4 (-1102))
+ (-14 *5 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377 'EPS) (-2377 'YA 'YB) (-647))))
- (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1099)) (-14 *4 (-1099))
- (-14 *5 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274 'EPS) (-2274 'YA 'YB) (-649))))
+ (-5 *1 (-74 *3 *4 *5)) (-14 *3 (-1102)) (-14 *4 (-1102))
+ (-14 *5 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2377) (-2377 'X) (-647))) (-5 *1 (-75 *3))
- (-14 *3 (-1099))))
+ (-12 (-5 *2 (-320 (-2274) (-2274 'X) (-649))) (-5 *1 (-75 *3))
+ (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2377) (-2377 'X) (-647))) (-5 *1 (-76 *3))
- (-14 *3 (-1099))))
+ (-12 (-5 *2 (-320 (-2274) (-2274 'X) (-649))) (-5 *1 (-76 *3))
+ (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'XC) (-647))))
- (-5 *1 (-77 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'XC) (-649))))
+ (-5 *1 (-77 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'X) (-647))))
- (-5 *1 (-78 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'X) (-649))))
+ (-5 *1 (-78 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377) (-2377 'X) (-647))))
- (-5 *1 (-79 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274) (-2274 'X) (-649))))
+ (-5 *1 (-79 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377 'X '-4126) (-2377) (-647))))
- (-5 *1 (-80 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274 'X '-4139) (-2274) (-649))))
+ (-5 *1 (-80 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-637 (-320 (-2377 'X '-4126) (-2377) (-647))))
- (-5 *1 (-81 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-639 (-320 (-2274 'X '-4139) (-2274) (-649))))
+ (-5 *1 (-81 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-637 (-320 (-2377 'X) (-2377) (-647)))) (-5 *1 (-82 *3))
- (-14 *3 (-1099))))
+ (-12 (-5 *2 (-639 (-320 (-2274 'X) (-2274) (-649)))) (-5 *1 (-82 *3))
+ (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377 'X) (-2377) (-647))))
- (-5 *1 (-83 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274 'X) (-2274) (-649))))
+ (-5 *1 (-83 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-320 (-2377 'X) (-2377 '-4126) (-647))))
- (-5 *1 (-84 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-1184 (-320 (-2274 'X) (-2274 '-4139) (-649))))
+ (-5 *1 (-84 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-637 (-320 (-2377 'XL 'XR 'ELAM) (-2377) (-647))))
- (-5 *1 (-85 *3)) (-14 *3 (-1099))))
+ (-12 (-5 *2 (-639 (-320 (-2274 'XL 'XR 'ELAM) (-2274) (-649))))
+ (-5 *1 (-85 *3)) (-14 *3 (-1102))))
((*1 *1 *2)
- (-12 (-5 *2 (-320 (-2377 'X) (-2377 '-4126) (-647))) (-5 *1 (-87 *3))
- (-14 *3 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-943 2)) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105))))
- ((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127))))
+ (-12 (-5 *2 (-320 (-2274 'X) (-2274 '-4139) (-649))) (-5 *1 (-87 *3))
+ (-14 *3 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-945 2)) (-5 *1 (-105))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105))))
+ ((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-127))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5))
- (-14 *3 (-530)) (-14 *4 (-719)) (-4 *5 (-162))))
+ (-12 (-5 *2 (-598 (-132 *3 *4 *5))) (-5 *1 (-132 *3 *4 *5))
+ (-14 *3 (-531)) (-14 *4 (-721)) (-4 *5 (-162))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5))
- (-14 *3 (-530)) (-14 *4 (-719))))
+ (-12 (-5 *2 (-598 *5)) (-4 *5 (-162)) (-5 *1 (-132 *3 *4 *5))
+ (-14 *3 (-531)) (-14 *4 (-721))))
((*1 *1 *2)
- (-12 (-5 *2 (-1066 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162))
- (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))))
+ (-12 (-5 *2 (-1069 *4 *5)) (-14 *4 (-721)) (-4 *5 (-162))
+ (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531))))
((*1 *1 *2)
- (-12 (-5 *2 (-223 *4 *5)) (-14 *4 (-719)) (-4 *5 (-162))
- (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))))
+ (-12 (-5 *2 (-223 *4 *5)) (-14 *4 (-721)) (-4 *5 (-162))
+ (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-531))))
((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-637 *4))) (-4 *4 (-162))
- (-5 *2 (-1181 (-637 (-388 (-893 *4))))) (-5 *1 (-173 *4))))
+ (-12 (-5 *3 (-1184 (-639 *4))) (-4 *4 (-162))
+ (-5 *2 (-1184 (-639 (-388 (-895 *4))))) (-5 *1 (-173 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 *3))
+ (-12 (-5 *2 (-598 *3))
(-4 *3
- (-13 (-795)
- (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $))
- (-15 -3595 ((-1186) $)))))
+ (-13 (-797)
+ (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $))
+ (-15 -3403 ((-1189) $)))))
(-5 *1 (-198 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-943 10)) (-5 *1 (-201))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-228 *3)) (-4 *3 (-795))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-945 10)) (-5 *1 (-201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-201))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 *3)) (-5 *1 (-228 *3)) (-4 *3 (-797))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-228 *3))))
((*1 *2 *3)
- (-12 (-5 *3 (-1020 (-297 *4)))
- (-4 *4 (-13 (-795) (-522) (-572 (-360)))) (-5 *2 (-1020 (-360)))
+ (-12 (-5 *3 (-1023 (-297 *4)))
+ (-4 *4 (-13 (-797) (-523) (-573 (-360)))) (-5 *2 (-1023 (-360)))
(-5 *1 (-240 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-795))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-257))))
+ ((*1 *1 *2) (-12 (-4 *1 (-248 *2)) (-4 *2 (-797))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-257))))
((*1 *2 *1)
- (-12 (-4 *2 (-1157 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7))
+ (-12 (-4 *2 (-1160 *3)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7))
(-4 *3 (-162)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
((*1 *1 *2)
- (-12 (-5 *2 (-1166 *4 *5 *6)) (-4 *4 (-13 (-27) (-1121) (-411 *3)))
- (-14 *5 (-1099)) (-14 *6 *4)
- (-4 *3 (-13 (-795) (-975 (-530)) (-593 (-530)) (-432)))
+ (-12 (-5 *2 (-1169 *4 *5 *6)) (-4 *4 (-13 (-27) (-1124) (-411 *3)))
+ (-14 *5 (-1102)) (-14 *6 *4)
+ (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432)))
(-5 *1 (-294 *3 *4 *5 *6))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-311))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-311))))
((*1 *2 *1)
(-12 (-5 *2 (-297 *5)) (-5 *1 (-320 *3 *4 *5))
- (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-1099))) (-4 *5 (-368))))
+ (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-1102))) (-4 *5 (-368))))
((*1 *2 *3)
(-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *3 *4 *2))
(-4 *3 (-310 *4))))
@@ -10527,1696 +11213,1108 @@
(-12 (-4 *4 (-330)) (-4 *2 (-310 *4)) (-5 *1 (-328 *2 *4 *3))
(-4 *3 (-310 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
- (-5 *2 (-1203 *3 *4))))
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162))
+ (-5 *2 (-1206 *3 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
- (-5 *2 (-1194 *3 *4))))
- ((*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-795)) (-4 *3 (-162))))
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162))
+ (-5 *2 (-1197 *3 *4))))
+ ((*1 *1 *2) (-12 (-4 *1 (-355 *2 *3)) (-4 *2 (-797)) (-4 *3 (-162))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))
(-4 *1 (-364))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-364))))
- ((*1 *1 *2) (-12 (-5 *2 (-637 (-647))) (-4 *1 (-364))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-364))))
+ ((*1 *1 *2) (-12 (-5 *2 (-639 (-649))) (-4 *1 (-364))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))
(-4 *1 (-365))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-365))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-365))))
- ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1082))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-4 *1 (-370))))
- ((*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-374 *3)) (-4 *3 (-1027))))
- ((*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-375))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-365))))
+ ((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-4 *1 (-370))))
+ ((*1 *2 *3) (-12 (-5 *2 (-375)) (-5 *1 (-374 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-375))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))
(-4 *1 (-377))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-377))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-377))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-377))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-159 (-360))))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-360)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
- (-12 (-5 *2 (-276 (-297 (-530)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-12 (-5 *2 (-276 (-297 (-531)))) (-5 *1 (-379 *3 *4 *5 *6))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-159 (-360)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-360))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
- (-12 (-5 *2 (-297 (-530))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-12 (-5 *2 (-297 (-531))) (-5 *1 (-379 *3 *4 *5 *6))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
- (-12 (-5 *2 (-276 (-297 (-642)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-276 (-297 (-647)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-12 (-5 *2 (-276 (-297 (-644)))) (-5 *1 (-379 *3 *4 *5 *6))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
(-12 (-5 *2 (-276 (-297 (-649)))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
- (-12 (-5 *2 (-297 (-642))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-12 (-5 *2 (-276 (-297 (-651)))) (-5 *1 (-379 *3 *4 *5 *6))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
- (-12 (-5 *2 (-297 (-647))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-12 (-5 *2 (-297 (-644))) (-5 *1 (-379 *3 *4 *5 *6))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
(-12 (-5 *2 (-297 (-649))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-297 (-651))) (-5 *1 (-379 *3 *4 *5 *6))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
- (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099))
- (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))
+ (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-311))) (-5 *1 (-379 *3 *4 *5 *6))
- (-14 *3 (-1099)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-12 (-5 *2 (-598 (-311))) (-5 *1 (-379 *3 *4 *5 *6))
+ (-14 *3 (-1102)) (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
- (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1099))
- (-14 *4 (-3 (|:| |fst| (-415)) (|:| -3020 "void")))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1103))))
+ (-12 (-5 *2 (-311)) (-5 *1 (-379 *3 *4 *5 *6)) (-14 *3 (-1102))
+ (-14 *4 (-3 (|:| |fst| (-415)) (|:| -2989 "void")))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1106))))
((*1 *1 *2)
- (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-795) (-21)))
- (-5 *1 (-408 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-530)))))))
+ (-12 (-5 *2 (-312 *4)) (-4 *4 (-13 (-797) (-21)))
+ (-5 *1 (-408 *3 *4)) (-4 *3 (-13 (-162) (-37 (-388 (-531)))))))
((*1 *1 *2)
- (-12 (-5 *1 (-408 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-530)))))
- (-4 *3 (-13 (-795) (-21)))))
+ (-12 (-5 *1 (-408 *2 *3)) (-4 *2 (-13 (-162) (-37 (-388 (-531)))))
+ (-4 *3 (-13 (-797) (-21)))))
((*1 *1 *2)
- (-12 (-5 *2 (-388 (-893 (-388 *3)))) (-4 *3 (-522)) (-4 *3 (-795))
+ (-12 (-5 *2 (-388 (-895 (-388 *3)))) (-4 *3 (-523)) (-4 *3 (-797))
(-4 *1 (-411 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-893 (-388 *3))) (-4 *3 (-522)) (-4 *3 (-795))
+ (-12 (-5 *2 (-895 (-388 *3))) (-4 *3 (-523)) (-4 *3 (-797))
(-4 *1 (-411 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-388 *3)) (-4 *3 (-522)) (-4 *3 (-795))
+ (-12 (-5 *2 (-388 *3)) (-4 *3 (-523)) (-4 *3 (-797))
(-4 *1 (-411 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1051 *3 (-570 *1))) (-4 *3 (-984)) (-4 *3 (-795))
+ (-12 (-5 *2 (-1054 *3 (-571 *1))) (-4 *3 (-986)) (-4 *3 (-797))
(-4 *1 (-411 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-415))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-415))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-415))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-415))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-415))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-415))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-415))))
((*1 *1 *2) (-12 (-5 *2 (-415)) (-5 *1 (-418))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-418))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-418))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))
(-4 *1 (-420))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-420))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 (-647))) (-4 *1 (-420))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-420))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1184 (-649))) (-4 *1 (-420))))
((*1 *1 *2)
(-12
- (-5 *2 (-2 (|:| |localSymbols| (-1103)) (|:| -1897 (-597 (-311)))))
+ (-5 *2 (-2 (|:| |localSymbols| (-1106)) (|:| -1289 (-598 (-311)))))
(-4 *1 (-421))))
((*1 *1 *2) (-12 (-5 *2 (-311)) (-4 *1 (-421))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-4 *1 (-421))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-311))) (-4 *1 (-421))))
((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-388 (-893 *3)))) (-4 *3 (-162))
- (-14 *6 (-1181 (-637 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-14 *4 (-862)) (-14 *5 (-597 (-1099)))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *1 (-448))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-448))))
+ (-12 (-5 *2 (-1184 (-388 (-895 *3)))) (-4 *3 (-162))
+ (-14 *6 (-1184 (-639 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-14 *4 (-864)) (-14 *5 (-598 (-1102)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-448))))
((*1 *1 *2)
- (-12 (-5 *2 (-1166 *3 *4 *5)) (-4 *3 (-984)) (-14 *4 (-1099))
+ (-12 (-5 *2 (-1169 *3 *4 *5)) (-4 *3 (-986)) (-14 *4 (-1102))
(-14 *5 *3) (-5 *1 (-454 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
- ((*1 *2 *1) (-12 (-5 *2 (-943 16)) (-5 *1 (-466))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466))))
- ((*1 *1 *2) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-480))))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-5 *2 (-945 16)) (-5 *1 (-466))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-466))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-480))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-344))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-482 *3 *4 *5 *6))))
- ((*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-564))))
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6))))
+ ((*1 *1 *2) (-12 (-5 *2 (-127)) (-5 *1 (-565))))
((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-5 *1 (-565 *3 *2)) (-4 *2 (-693 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-571 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2) (-12 (-4 *1 (-575 *2)) (-4 *2 (-984))))
+ (-12 (-4 *3 (-162)) (-5 *1 (-566 *3 *2)) (-4 *2 (-695 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-572 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2) (-12 (-4 *1 (-576 *2)) (-4 *2 (-986))))
((*1 *2 *1)
- (-12 (-5 *2 (-1199 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862))))
+ (-12 (-5 *2 (-1202 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797))
+ (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864))))
((*1 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862))))
+ (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797))
+ (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864))))
((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-5 *1 (-589 *3 *2)) (-4 *2 (-693 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-626 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-622 *3)) (-4 *3 (-795))))
+ (-12 (-4 *3 (-162)) (-5 *1 (-590 *3 *2)) (-4 *2 (-695 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-628 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-624 *3)) (-4 *3 (-797))))
((*1 *2 *1)
- (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-5 *1 (-625 *3))
- (-4 *3 (-1027))))
+ (-12 (-5 *2 (-901 (-901 (-901 *3)))) (-5 *1 (-627 *3))
+ (-4 *3 (-1030))))
((*1 *1 *2)
- (-12 (-5 *2 (-899 (-899 (-899 *3)))) (-4 *3 (-1027))
- (-5 *1 (-625 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-626 *3)) (-4 *3 (-795))))
- ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-901 (-901 (-901 *3)))) (-4 *3 (-1030))
+ (-5 *1 (-627 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-628 *3)) (-4 *3 (-797))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-632 *3)) (-4 *3 (-1030))))
((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *2)) (-4 *4 (-354 *3))
+ (-12 (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *2)) (-4 *4 (-354 *3))
(-4 *2 (-354 *3))))
- ((*1 *2 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804)))))
- ((*1 *1 *2) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804)))))
- ((*1 *2 *1) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-642))))
- ((*1 *1 *2) (-12 (-5 *2 (-159 (-649))) (-5 *1 (-642))))
- ((*1 *1 *2) (-12 (-5 *2 (-159 (-647))) (-5 *1 (-642))))
- ((*1 *1 *2) (-12 (-5 *2 (-159 (-530))) (-5 *1 (-642))))
- ((*1 *1 *2) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-642))))
- ((*1 *1 *2) (-12 (-5 *2 (-649)) (-5 *1 (-647))))
- ((*1 *2 *1) (-12 (-5 *2 (-360)) (-5 *1 (-647))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-297 (-530))) (-5 *2 (-297 (-649))) (-5 *1 (-649))))
- ((*1 *1 *2) (-12 (-5 *1 (-651 *2)) (-4 *2 (-1027))))
- ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659))))
+ ((*1 *2 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806)))))
+ ((*1 *1 *2) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-644))))
+ ((*1 *1 *2) (-12 (-5 *2 (-159 (-651))) (-5 *1 (-644))))
+ ((*1 *1 *2) (-12 (-5 *2 (-159 (-649))) (-5 *1 (-644))))
+ ((*1 *1 *2) (-12 (-5 *2 (-159 (-531))) (-5 *1 (-644))))
+ ((*1 *1 *2) (-12 (-5 *2 (-159 (-360))) (-5 *1 (-644))))
+ ((*1 *1 *2) (-12 (-5 *2 (-651)) (-5 *1 (-649))))
+ ((*1 *2 *1) (-12 (-5 *2 (-360)) (-5 *1 (-649))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-297 (-531))) (-5 *2 (-297 (-651))) (-5 *1 (-651))))
+ ((*1 *1 *2) (-12 (-5 *1 (-653 *2)) (-4 *2 (-1030))))
+ ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1085)) (-5 *1 (-661))))
((*1 *2 *1)
- (-12 (-4 *2 (-162)) (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-162)) (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3))))
+ (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -1986 *3) (|:| -3194 *4)))
- (-5 *1 (-662 *3 *4 *5)) (-4 *3 (-795)) (-4 *4 (-1027))
+ (-12 (-5 *2 (-2 (|:| -1889 *3) (|:| -1790 *4)))
+ (-5 *1 (-664 *3 *4 *5)) (-4 *3 (-797)) (-4 *4 (-1030))
(-14 *5 (-1 (-110) *2 *2))))
((*1 *1 *2)
- (-12 (-5 *2 (-2 (|:| -1986 *3) (|:| -3194 *4))) (-4 *3 (-795))
- (-4 *4 (-1027)) (-5 *1 (-662 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2))))
+ (-12 (-5 *2 (-2 (|:| -1889 *3) (|:| -1790 *4))) (-4 *3 (-797))
+ (-4 *4 (-1030)) (-5 *1 (-664 *3 *4 *5)) (-14 *5 (-1 (-110) *2 *2))))
((*1 *2 *1)
- (-12 (-4 *2 (-162)) (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *3 (-23))
+ (-12 (-4 *2 (-162)) (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *3 (-23))
(-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
(-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-2 (|:| -2065 *3) (|:| -3940 *4)))) (-4 *3 (-984))
- (-4 *4 (-675)) (-5 *1 (-684 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-712))))
+ (-12 (-5 *2 (-598 (-2 (|:| -2005 *3) (|:| -4007 *4)))) (-4 *3 (-986))
+ (-4 *4 (-677)) (-5 *1 (-686 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-714))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |nia|
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(|:| |mdnia|
(-2 (|:| |fn| (-297 (-208)))
- (|:| -1300 (-597 (-1022 (-788 (-208)))))
+ (|:| -2368 (-598 (-1025 (-790 (-208)))))
(|:| |abserr| (-208)) (|:| |relerr| (-208))))))
- (-5 *1 (-717))))
+ (-5 *1 (-719))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |fn| (-297 (-208)))
- (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
+ (|:| -2368 (-598 (-1025 (-790 (-208))))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
- (-5 *1 (-717))))
+ (-5 *1 (-719))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
- (-5 *1 (-717))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-717))))
- ((*1 *2 *3) (-12 (-5 *2 (-722)) (-5 *1 (-721 *3)) (-4 *3 (-1135))))
+ (-5 *1 (-719))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-719))))
+ ((*1 *2 *3) (-12 (-5 *2 (-724)) (-5 *1 (-723 *3)) (-4 *3 (-1138))))
((*1 *1 *2)
(-12
(-5 *2
(-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
(|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *1 (-756))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-756))))
+ (-5 *1 (-758))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-758))))
((*1 *2 *1)
- (-12 (-4 *2 (-841 *3)) (-5 *1 (-765 *3 *2 *4)) (-4 *3 (-1027))
+ (-12 (-4 *2 (-843 *3)) (-5 *1 (-767 *3 *2 *4)) (-4 *3 (-1030))
(-14 *4 *3)))
((*1 *1 *2)
- (-12 (-4 *3 (-1027)) (-14 *4 *3) (-5 *1 (-765 *3 *2 *4))
- (-4 *2 (-841 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-772))))
+ (-12 (-4 *3 (-1030)) (-14 *4 *3) (-5 *1 (-767 *3 *2 *4))
+ (-4 *2 (-843 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-774))))
((*1 *1 *2)
(-12
(-5 *2
(-3
(|:| |noa|
- (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208))))
- (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208)))
+ (|:| |lb| (-598 (-790 (-208))))
+ (|:| |cf| (-598 (-297 (-208))))
+ (|:| |ub| (-598 (-790 (-208))))))
(|:| |lsa|
- (-2 (|:| |lfn| (-597 (-297 (-208))))
- (|:| -3657 (-597 (-208)))))))
- (-5 *1 (-786))))
+ (-2 (|:| |lfn| (-598 (-297 (-208))))
+ (|:| -3788 (-598 (-208)))))))
+ (-5 *1 (-788))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
- (-5 *1 (-786))))
+ (-2 (|:| |lfn| (-598 (-297 (-208)))) (|:| -3788 (-598 (-208)))))
+ (-5 *1 (-788))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (-5 *1 (-786))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-786))))
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208)))
+ (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208))))
+ (|:| |ub| (-598 (-790 (-208))))))
+ (-5 *1 (-788))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-788))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-14 *3 (-1099)) (-5 *1 (-800 *3 *4 *5 *6))
- (-4 *4 (-984)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4))))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-803))))
+ (-12 (-5 *2 (-1180 *3)) (-14 *3 (-1102)) (-5 *1 (-802 *3 *4 *5 *6))
+ (-4 *4 (-986)) (-14 *5 (-96 *4)) (-14 *6 (-1 *4 *4))))
+ ((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-805))))
((*1 *1 *2)
- (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-5 *1 (-807 *3 *4 *5 *6))
- (-14 *4 (-597 (-1099))) (-14 *5 (-597 (-719))) (-14 *6 (-719))))
+ (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-5 *1 (-809 *3 *4 *5 *6))
+ (-14 *4 (-598 (-1102))) (-14 *5 (-598 (-721))) (-14 *6 (-721))))
((*1 *2 *1)
- (-12 (-5 *2 (-893 *3)) (-5 *1 (-807 *3 *4 *5 *6)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099))) (-14 *5 (-597 (-719))) (-14 *6 (-719))))
- ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815))))
+ (-12 (-5 *2 (-895 *3)) (-5 *1 (-809 *3 *4 *5 *6)) (-4 *3 (-986))
+ (-14 *4 (-598 (-1102))) (-14 *5 (-598 (-721))) (-14 *6 (-721))))
+ ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817))))
((*1 *2 *3)
- (-12 (-5 *3 (-893 (-47))) (-5 *2 (-297 (-530))) (-5 *1 (-816))))
+ (-12 (-5 *3 (-895 (-47))) (-5 *2 (-297 (-531))) (-5 *1 (-818))))
((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 (-47)))) (-5 *2 (-297 (-530)))
- (-5 *1 (-816))))
- ((*1 *1 *2) (-12 (-5 *1 (-834 *2)) (-4 *2 (-795))))
- ((*1 *2 *1) (-12 (-5 *2 (-767 *3)) (-5 *1 (-834 *3)) (-4 *3 (-795))))
+ (-12 (-5 *3 (-388 (-895 (-47)))) (-5 *2 (-297 (-531)))
+ (-5 *1 (-818))))
+ ((*1 *1 *2) (-12 (-5 *1 (-836 *2)) (-4 *2 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-769 *3)) (-5 *1 (-836 *3)) (-4 *3 (-797))))
((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |pde| (-597 (-297 (-208))))
+ (-2 (|:| |pde| (-598 (-297 (-208))))
(|:| |constraints|
- (-597
+ (-598
(-2 (|:| |start| (-208)) (|:| |finish| (-208))
- (|:| |grid| (-719)) (|:| |boundaryType| (-530))
- (|:| |dStart| (-637 (-208))) (|:| |dFinish| (-637 (-208))))))
- (|:| |f| (-597 (-597 (-297 (-208))))) (|:| |st| (-1082))
+ (|:| |grid| (-721)) (|:| |boundaryType| (-531))
+ (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208))))))
+ (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085))
(|:| |tol| (-208))))
- (-5 *1 (-839))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-839))))
+ (-5 *1 (-841))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-841))))
((*1 *2 *1)
- (-12 (-5 *2 (-1122 *3)) (-5 *1 (-842 *3)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-1125 *3)) (-5 *1 (-844 *3)) (-4 *3 (-1030))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-846 *3))) (-4 *3 (-1027)) (-5 *1 (-845 *3))))
+ (-12 (-5 *2 (-598 (-848 *3))) (-4 *3 (-1030)) (-5 *1 (-847 *3))))
((*1 *2 *1)
- (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3))))
+ (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-848 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-846 *3))))
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-5 *1 (-848 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-388 (-399 *3))) (-4 *3 (-289)) (-5 *1 (-855 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-855 *3)) (-4 *3 (-289))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-457)) (-5 *2 (-297 *4)) (-5 *1 (-860 *4))
- (-4 *4 (-13 (-795) (-522)))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-907 *3)) (-4 *3 (-908))))
- ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911))))
+ (-12 (-5 *2 (-388 (-399 *3))) (-4 *3 (-289)) (-5 *1 (-857 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-388 *3)) (-5 *1 (-857 *3)) (-4 *3 (-289))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-457)) (-5 *2 (-297 *4)) (-5 *1 (-862 *4))
+ (-4 *4 (-13 (-797) (-523)))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-909 *3)) (-4 *3 (-910))))
+ ((*1 *1 *2) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-913))))
((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530))))
- ((*1 *2 *3) (-12 (-5 *2 (-1186)) (-5 *1 (-971 *3)) (-4 *3 (-1135))))
- ((*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-971 *2)) (-4 *2 (-1135))))
+ (-12 (-5 *2 (-388 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1189)) (-5 *1 (-973 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *3) (-12 (-5 *3 (-293)) (-5 *1 (-973 *2)) (-4 *2 (-1138))))
((*1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5))
- (-14 *6 (-597 *2))))
- ((*1 *1 *2) (-12 (-4 *1 (-975 *2)) (-4 *2 (-1135))))
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-892 *3 *4 *5))
+ (-14 *6 (-598 *2))))
+ ((*1 *1 *2) (-12 (-4 *1 (-977 *2)) (-4 *2 (-1138))))
((*1 *2 *3)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-980 *3)) (-4 *3 (-522))))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-984))))
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-982 *3)) (-4 *3 (-523))))
+ ((*1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-986))))
((*1 *2 *1)
- (-12 (-5 *2 (-637 *5)) (-5 *1 (-988 *3 *4 *5)) (-14 *3 (-719))
- (-14 *4 (-719)) (-4 *5 (-984))))
+ (-12 (-5 *2 (-639 *5)) (-5 *1 (-990 *3 *4 *5)) (-14 *3 (-721))
+ (-14 *4 (-721)) (-4 *5 (-986))))
((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2))
- (-4 *2 (-890 *3 (-502 *4) *4))))
+ (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-5 *1 (-1055 *3 *4 *2))
+ (-4 *2 (-892 *3 (-503 *4) *4))))
((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-4 *2 (-795)) (-5 *1 (-1052 *3 *2 *4))
- (-4 *4 (-890 *3 (-502 *2) *2))))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-804))))
+ (-12 (-4 *3 (-986)) (-4 *2 (-797)) (-5 *1 (-1055 *3 *2 *4))
+ (-4 *4 (-892 *3 (-503 *2) *2))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-806))))
((*1 *2 *1)
- (-12 (-5 *2 (-637 *4)) (-5 *1 (-1066 *3 *4)) (-14 *3 (-719))
- (-4 *4 (-984))))
- ((*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1068))))
+ (-12 (-5 *2 (-639 *4)) (-5 *1 (-1069 *3 *4)) (-14 *3 (-721))
+ (-4 *4 (-986))))
+ ((*1 *1 *2) (-12 (-5 *2 (-137)) (-4 *1 (-1071))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3))))
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3))))
((*1 *2 *3)
- (-12 (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3)) (-4 *3 (-984))))
+ (-12 (-5 *2 (-1083 *3)) (-5 *1 (-1087 *3)) (-4 *3 (-986))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1154 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1099))
- (-14 *5 *3) (-5 *1 (-1097 *3 *4 *5))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1098))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1099))))
- ((*1 *2 *1) (-12 (-5 *2 (-1109 (-1099) (-418))) (-5 *1 (-1103))))
- ((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1104))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1104))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1104))))
- ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-1104))))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-1104))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1108 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3) (-12 (-5 *2 (-1116)) (-5 *1 (-1115 *3)) (-4 *3 (-1027))))
- ((*1 *1 *2) (-12 (-5 *2 (-804)) (-5 *1 (-1116))))
- ((*1 *1 *2) (-12 (-5 *2 (-893 *3)) (-4 *3 (-984)) (-5 *1 (-1130 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-984))))
+ (-12 (-5 *2 (-1157 *4 *3)) (-4 *3 (-986)) (-14 *4 (-1102))
+ (-14 *5 *3) (-5 *1 (-1100 *3 *4 *5))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1101))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1102))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1112 (-1102) (-418))) (-5 *1 (-1106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-1107))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1107))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-1107))))
+ ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-1107))))
+ ((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-1107))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1111 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *3) (-12 (-5 *2 (-1119)) (-5 *1 (-1118 *3)) (-4 *3 (-1030))))
+ ((*1 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-1119))))
+ ((*1 *1 *2) (-12 (-5 *2 (-895 *3)) (-4 *3 (-986)) (-5 *1 (-1133 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1133 *3)) (-4 *3 (-986))))
((*1 *1 *2)
- (-12 (-5 *2 (-899 *3)) (-4 *3 (-1135)) (-5 *1 (-1133 *3))))
+ (-12 (-5 *2 (-901 *3)) (-4 *3 (-1138)) (-5 *1 (-1136 *3))))
((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-4 *1 (-1143 *3 *2)) (-4 *2 (-1172 *3))))
+ (-12 (-4 *3 (-986)) (-4 *1 (-1146 *3 *2)) (-4 *2 (-1175 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1022 *3)) (-4 *3 (-1135)) (-5 *1 (-1148 *3))))
+ (-12 (-5 *2 (-1025 *3)) (-4 *3 (-1138)) (-5 *1 (-1151 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *3)) (-14 *3 (-1099)) (-5 *1 (-1154 *3 *4))
- (-4 *4 (-984))))
+ (-12 (-5 *2 (-1180 *3)) (-14 *3 (-1102)) (-5 *1 (-1157 *3 *4))
+ (-4 *4 (-986))))
((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-4 *1 (-1164 *3 *2)) (-4 *2 (-1141 *3))))
+ (-12 (-4 *3 (-986)) (-4 *1 (-1167 *3 *2)) (-4 *2 (-1144 *3))))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5))
- (-4 *3 (-984)) (-14 *5 *3)))
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5))
+ (-4 *3 (-986)) (-14 *5 *3)))
((*1 *1 *2)
- (-12 (-5 *2 (-1154 *4 *3)) (-4 *3 (-984)) (-14 *4 (-1099))
- (-14 *5 *3) (-5 *1 (-1173 *3 *4 *5))))
- ((*1 *2 *1) (-12 (-5 *2 (-1099)) (-5 *1 (-1177 *3)) (-14 *3 *2)))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1182))))
- ((*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1182)) (-5 *1 (-1185))))
- ((*1 *2 *1) (-12 (-5 *2 (-804)) (-5 *1 (-1186))))
+ (-12 (-5 *2 (-1157 *4 *3)) (-4 *3 (-986)) (-14 *4 (-1102))
+ (-14 *5 *3) (-5 *1 (-1176 *3 *4 *5))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-1180 *3)) (-14 *3 *2)))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1185))))
+ ((*1 *2 *3) (-12 (-5 *3 (-448)) (-5 *2 (-1185)) (-5 *1 (-1188))))
+ ((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-1189))))
((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-597 *4))
- (-5 *1 (-1191 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-890 *3 *5 *4))
- (-14 *7 (-597 (-719))) (-14 *8 (-719))))
+ (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-14 *6 (-598 *4))
+ (-5 *1 (-1194 *3 *4 *5 *2 *6 *7 *8)) (-4 *2 (-892 *3 *5 *4))
+ (-14 *7 (-598 (-721))) (-14 *8 (-721))))
((*1 *2 *1)
- (-12 (-4 *2 (-890 *3 *5 *4)) (-5 *1 (-1191 *3 *4 *5 *2 *6 *7 *8))
- (-4 *3 (-984)) (-4 *4 (-795)) (-4 *5 (-741)) (-14 *6 (-597 *4))
- (-14 *7 (-597 (-719))) (-14 *8 (-719))))
- ((*1 *1 *2) (-12 (-4 *1 (-1193 *2)) (-4 *2 (-984))))
- ((*1 *1 *2) (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ (-12 (-4 *2 (-892 *3 *5 *4)) (-5 *1 (-1194 *3 *4 *5 *2 *6 *7 *8))
+ (-4 *3 (-986)) (-4 *4 (-797)) (-4 *5 (-743)) (-14 *6 (-598 *4))
+ (-14 *7 (-598 (-721))) (-14 *8 (-721))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1196 *2)) (-4 *2 (-986))))
+ ((*1 *1 *2) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))))
((*1 *2 *1)
- (-12 (-5 *2 (-1203 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795))
+ (-12 (-5 *2 (-1206 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797))
(-4 *4 (-162))))
((*1 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1199 *3 *4)) (-4 *3 (-795))
+ (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-797))
(-4 *4 (-162))))
((*1 *1 *2)
- (-12 (-5 *2 (-615 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
- (-5 *1 (-1199 *3 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)) (-4 *2 (-791)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-228 *3)))))
+ (-12 (-5 *2 (-617 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162))
+ (-5 *1 (-1202 *3 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)) (-4 *2 (-793)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-639 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))))
(((*1 *1 *1 *2)
- (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))
+ (-12 (-4 *1 (-46 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742))
(-4 *2 (-344))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-208))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-208))))
((*1 *1 *1 *1)
- (-1461 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1135)))
- (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1135)))))
+ (-1435 (-12 (-5 *1 (-276 *2)) (-4 *2 (-344)) (-4 *2 (-1138)))
+ (-12 (-5 *1 (-276 *2)) (-4 *2 (-453)) (-4 *2 (-1138)))))
((*1 *1 *1 *1) (-4 *1 (-344)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-360))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-360))))
((*1 *1 *2 *2)
- (-12 (-5 *2 (-1051 *3 (-570 *1))) (-4 *3 (-522)) (-4 *3 (-795))
+ (-12 (-5 *2 (-1054 *3 (-571 *1))) (-4 *3 (-523)) (-4 *3 (-797))
(-4 *1 (-411 *3))))
((*1 *1 *1 *1) (-4 *1 (-453)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-506)))
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-507)))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-162)) (-5 *1 (-576 *2 *4 *3)) (-4 *2 (-37 *4))
- (-4 *3 (|SubsetCategory| (-675) *4))))
+ (-12 (-4 *4 (-162)) (-5 *1 (-577 *2 *4 *3)) (-4 *2 (-37 *4))
+ (-4 *3 (|SubsetCategory| (-677) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-162)) (-5 *1 (-576 *3 *4 *2)) (-4 *3 (-37 *4))
- (-4 *2 (|SubsetCategory| (-675) *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-588 *2)) (-4 *2 (-162)) (-4 *2 (-344))))
+ (-12 (-4 *4 (-162)) (-5 *1 (-577 *3 *4 *2)) (-4 *3 (-37 *4))
+ (-4 *2 (|SubsetCategory| (-677) *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-589 *2)) (-4 *2 (-162)) (-4 *2 (-344))))
((*1 *1 *2 *3)
- (-12 (-4 *4 (-162)) (-5 *1 (-613 *2 *4 *3)) (-4 *2 (-666 *4))
- (-4 *3 (|SubsetCategory| (-675) *4))))
+ (-12 (-4 *4 (-162)) (-5 *1 (-615 *2 *4 *3)) (-4 *2 (-668 *4))
+ (-4 *3 (|SubsetCategory| (-677) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *4 (-162)) (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4))
- (-4 *2 (|SubsetCategory| (-675) *4))))
+ (-12 (-4 *4 (-162)) (-5 *1 (-615 *3 *4 *2)) (-4 *3 (-668 *4))
+ (-4 *2 (|SubsetCategory| (-677) *4))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
(-4 *4 (-354 *2)) (-4 *2 (-344))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
((*1 *1 *1 *1)
- (|partial| -12 (-5 *1 (-807 *2 *3 *4 *5)) (-4 *2 (-344))
- (-4 *2 (-984)) (-14 *3 (-597 (-1099))) (-14 *4 (-597 (-719)))
- (-14 *5 (-719))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *2) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522))))
+ (|partial| -12 (-5 *1 (-809 *2 *3 *4 *5)) (-4 *2 (-344))
+ (-4 *2 (-986)) (-14 *3 (-598 (-1102))) (-14 *4 (-598 (-721)))
+ (-14 *5 (-721))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-987 *3 *4 *2 *5 *6)) (-4 *2 (-984))
+ (-12 (-4 *1 (-989 *3 *4 *2 *5 *6)) (-4 *2 (-986))
(-4 *5 (-221 *4 *2)) (-4 *6 (-221 *3 *2)) (-4 *2 (-344))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-1188 *2)) (-4 *2 (-344))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-1191 *2)) (-4 *2 (-344))))
((*1 *1 *1 *1)
- (|partial| -12 (-4 *2 (-344)) (-4 *2 (-984)) (-4 *3 (-795))
- (-4 *4 (-741)) (-14 *6 (-597 *3))
- (-5 *1 (-1191 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-890 *2 *4 *3))
- (-14 *7 (-597 (-719))) (-14 *8 (-719))))
+ (|partial| -12 (-4 *2 (-344)) (-4 *2 (-986)) (-4 *3 (-797))
+ (-4 *4 (-743)) (-14 *6 (-598 *3))
+ (-5 *1 (-1194 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-892 *2 *4 *3))
+ (-14 *7 (-598 (-721))) (-14 *8 (-721))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-344)) (-4 *2 (-984))
- (-4 *3 (-791)))))
-(((*1 *2 *3 *2 *3)
- (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102))))
- ((*1 *2 *3 *2) (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102))))
- ((*1 *2 *3 *2 *4 *1)
- (-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *4 (-1099))
- (-5 *1 (-1102))))
- ((*1 *2 *3 *2 *3 *1)
- (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1102))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-418)) (-5 *3 (-1099)) (-5 *1 (-1103))))
- ((*1 *2 *3 *2 *1)
- (-12 (-5 *2 (-418)) (-5 *3 (-597 (-1099))) (-5 *1 (-1103)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-344)) (-4 *2 (-986))
+ (-4 *3 (-793)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5)))
+ (-5 *2 (-721)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-721)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-922 *2)) (-4 *2 (-986))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-986)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-975)))))
(((*1 *2 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *2) (-12 (-5 *2 (-598 (-297 (-208)))) (-5 *1 (-249)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-864)) (-5 *1 (-970 *2))
+ (-4 *2 (-13 (-1030) (-10 -8 (-15 -2237 ($ $ $))))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-531)) (-4 *6 (-743)) (-4 *7 (-797)) (-4 *8 (-289))
+ (-4 *9 (-892 *8 *6 *7))
+ (-5 *2 (-2 (|:| -2451 (-1098 *9)) (|:| |polval| (-1098 *8))))
+ (-5 *1 (-693 *6 *7 *8 *9)) (-5 *3 (-1098 *9)) (-5 *4 (-1098 *8)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-732 *2)) (-4 *2 (-523)) (-4 *2 (-986))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-523)) (-5 *1 (-912 *3 *2)) (-4 *2 (-1160 *3))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523))))
+ ((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *1))))
+ (-4 *1 (-1005 *4 *5 *6 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-1189)) (-5 *1 (-360))))
+ ((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-360)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *1 *1) (-4 *1 (-471)))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-975 (-530))))
- (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 (-159 *4))))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-159 *3)) (-5 *1 (-1125 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *3 *2)
- (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1157 (-159 *2)))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1157 (-159 *2))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *1) (-12 (-4 *1 (-289)) (-5 *2 (-719)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-1184)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-5 *2 (-597 *3)) (-5 *1 (-886 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
+ ((*1 *1 *1) (-4 *1 (-1127))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-37 (-388 (-531))))
+ (-5 *2 (-2 (|:| -2343 (-1083 *4)) (|:| -2356 (-1083 *4))))
+ (-5 *1 (-1089 *4)) (-5 *3 (-1083 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
(((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21)))
((*1 *1 *1 *1) (|partial| -5 *1 (-130)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-198 *2))
(-4 *2
- (-13 (-795)
- (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $))
- (-15 -3595 ((-1186) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135))))
+ (-13 (-797)
+ (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $))
+ (-15 -3403 ((-1189) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
((*1 *1 *1) (-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
((*1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
(-4 *4 (-354 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
(-4 *4 (-354 *2))))
- ((*1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
+ ((*1 *1 *1) (-5 *1 (-806))) ((*1 *1 *1 *1) (-5 *1 (-806)))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21))))
- ((*1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-21)))))
-(((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-33)))
- ((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162))))
- ((*1 *1) (-4 *1 (-675))) ((*1 *1) (-5 *1 (-1099))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-21))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-21)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-399 *5)) (-4 *5 (-523))
+ (-5 *2
+ (-2 (|:| -1790 (-721)) (|:| -2005 *5) (|:| |radicand| (-598 *5))))
+ (-5 *1 (-301 *5)) (-5 *4 (-721))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-943)) (-5 *2 (-531)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *5)) (-4 *5 (-740)) (-5 *2 (-110))
- (-5 *1 (-790 *4 *5)) (-14 *4 (-719)))))
+ (-12 (-4 *2 (-523)) (-4 *2 (-432)) (-5 *1 (-912 *2 *3))
+ (-4 *3 (-1160 *2)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
(((*1 *2 *3 *4)
- (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
- (-5 *1 (-654 *3 *4)) (-4 *3 (-1135)) (-4 *4 (-1135)))))
-(((*1 *1 *1) (-4 *1 (-93)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-523))
+ (-4 *7 (-892 *3 *5 *6))
+ (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *8) (|:| |radicand| *8)))
+ (-5 *1 (-896 *5 *6 *3 *7 *8)) (-5 *4 (-721))
+ (-4 *8
+ (-13 (-344)
+ (-10 -8 (-15 -1840 (*7 $)) (-15 -1853 (*7 $)) (-15 -2265 ($ *7))))))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-218 *3))
+ (-4 *3 (-1030))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))))
+(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187))))
+ ((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-1187)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1049)) (-5 *2 (-110)) (-5 *1 (-771)))))
+(((*1 *1) (-5 *1 (-526))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-710))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-110))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-4 *3 (-13 (-27) (-1121) (-411 *6) (-10 -8 (-15 -2366 ($ *7)))))
- (-4 *7 (-793))
- (-4 *8
- (-13 (-1159 *3 *7) (-344) (-1121)
- (-10 -8 (-15 -3289 ($ $)) (-15 -1545 ($ $)))))
- (-5 *2
- (-3 (|:| |%series| *8)
- (|:| |%problem| (-2 (|:| |func| (-1082)) (|:| |prob| (-1082))))))
- (-5 *1 (-403 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1082)) (-4 *9 (-923 *8))
- (-14 *10 (-1099)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4))))
- (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-1 (-208) (-208) (-208)))
- (-5 *4 (-3 (-1 (-208) (-208) (-208) (-208)) "undefined"))
- (-5 *5 (-1022 (-208))) (-5 *6 (-597 (-245))) (-5 *2 (-1059 (-208)))
- (-5 *1 (-645)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1) (-5 *1 (-418))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
+ ((*1 *1 *1) (-4 *1 (-1127))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-769)) (-5 *4 (-51)) (-5 *2 (-1186)) (-5 *1 (-779)))))
+ (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4)))
+ (-5 *1 (-656 *3 *4)) (-4 *3 (-1138)) (-4 *4 (-1138)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
(((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-148)))
((*1 *1 *1 *1)
(-12 (-5 *1 (-198 *2))
(-4 *2
- (-13 (-795)
- (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $))
- (-15 -3595 ((-1186) $)))))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1135))))
+ (-13 (-797)
+ (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $))
+ (-15 -3403 ((-1189) $)))))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1138))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-25)) (-4 *2 (-1138))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-128))))
+ (-12 (-4 *1 (-304 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-128))))
((*1 *1 *2 *1)
(-12 (-4 *3 (-13 (-344) (-140))) (-5 *1 (-380 *3 *2))
- (-4 *2 (-1157 *3))))
+ (-4 *2 (-1160 *3))))
((*1 *1 *1 *1)
(-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *1 *1 *1) (-5 *1 (-506)))
+ (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4))))
+ ((*1 *1 *1 *1) (-5 *1 (-507)))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
(-4 *4 (-354 *2))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-884 (-208))) (-5 *1 (-1132))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-25)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-25)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-598 (-732 *3))) (-5 *1 (-732 *3)) (-4 *3 (-523))
+ (-4 *3 (-986)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523))))
+ ((*1 *1 *1) (|partial| -4 *1 (-673))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649))))
+ ((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-649)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-344))
- (-5 *1 (-497 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *3 (-354 *2)) (-4 *4 (-354 *2))
- (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-354 *2)) (-4 *5 (-354 *2)) (-4 *2 (-162))
- (-5 *1 (-636 *2 *4 *5 *3)) (-4 *3 (-635 *2 *4 *5))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)) (|has| *2 (-6 (-4271 "*"))) (-4 *2 (-984)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-941))
- (-4 *2 (-984)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *1 *1) (-4 *1 (-93)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-522)) (-5 *2 (-597 (-597 (-893 *5)))) (-5 *1 (-1105 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-1 (-547 *3) *3 (-1099)))
- (-5 *6
- (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3
- (-1099)))
- (-4 *3 (-266)) (-4 *3 (-583)) (-4 *3 (-975 *4)) (-4 *3 (-411 *7))
- (-5 *4 (-1099)) (-4 *7 (-572 (-833 (-530)))) (-4 *7 (-432))
- (-4 *7 (-827 (-530))) (-4 *7 (-795)) (-5 *2 (-547 *3))
- (-5 *1 (-539 *7 *3)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-795)) (-4 *4 (-344)) (-4 *5 (-741))
- (-5 *1 (-482 *4 *5 *6 *2)) (-4 *2 (-890 *4 *5 *6))))
- ((*1 *1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *1)) (-5 *4 (-1181 *1)) (-4 *1 (-593 *5))
- (-4 *5 (-984))
- (-5 *2 (-2 (|:| -2030 (-637 *5)) (|:| |vec| (-1181 *5))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *1)) (-4 *1 (-593 *4)) (-4 *4 (-984))
- (-5 *2 (-637 *4)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-884 (-208)) (-884 (-208)))) (-5 *1 (-245))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-310 *4)) (-4 *4 (-344))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1181 *3))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-1181 *4))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-1181 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-390 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-1181 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-398 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-1181 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-637 *5))) (-5 *3 (-637 *5)) (-4 *5 (-344))
- (-5 *2 (-1181 *5)) (-5 *1 (-1015 *5)))))
-(((*1 *2 *3 *3)
(-12
(-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *7)
- (|:| |polj| *7)))
- (-4 *5 (-741)) (-4 *7 (-890 *4 *5 *6)) (-4 *4 (-432)) (-4 *6 (-795))
- (-5 *2 (-110)) (-5 *1 (-429 *4 *5 *6 *7)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795)))))
-(((*1 *1 *1) (-4 *1 (-93)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
+ (|:| |expense| (-360)) (|:| |accuracy| (-360))
+ (|:| |intermediateResults| (-360))))
+ (-5 *2 (-975)) (-5 *1 (-287)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099))) (-4 *5 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *5)))))) (-5 *1 (-718 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4))) (-4 *4 (-522))
- (-5 *2 (-597 (-597 (-276 (-388 (-893 *4)))))) (-5 *1 (-718 *4))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *7))
- (-5 *5
- (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3220 (-597 *6)))
- *7 *6))
- (-4 *6 (-344)) (-4 *7 (-607 *6))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
+ ((*1 *1 *1) (-4 *1 (-1127))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
(-5 *2
- (-2 (|:| |particular| (-3 (-1181 *6) "failed"))
- (|:| -3220 (-597 (-1181 *6)))))
- (-5 *1 (-761 *6 *7)) (-5 *4 (-1181 *6)))))
-(((*1 *2 *3 *1 *4)
- (-12 (-5 *3 (-1064 *5 *6)) (-5 *4 (-1 (-110) *6 *6))
- (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1065 *5 *6)))))
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-814 (-907 *3) (-907 *3))) (-5 *1 (-907 *3))
- (-4 *3 (-908)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 (-1181 (-530)))) (-5 *3 (-862)) (-5 *1 (-446)))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-118 *3)) (-4 *3 (-1157 (-530))))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-598 *3))))
+ ((*1 *2 *1)
+ (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138))
+ (-5 *2 (-598 *3)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+ (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-986)) (-4 *3 (-742))
+ (-4 *2 (-432))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1142)) (-4 *3 (-1160 *2))
+ (-4 *4 (-1160 (-388 *3)))))
+ ((*1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-432))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)) (-4 *3 (-432))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-892 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-432))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *3 (-289)) (-4 *3 (-523)) (-5 *1 (-1090 *3 *2))
+ (-4 *2 (-1160 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *6 (-864)) (-4 *5 (-289)) (-4 *3 (-1160 *5))
+ (-5 *2 (-2 (|:| |plist| (-598 *3)) (|:| |modulo| *5)))
+ (-5 *1 (-440 *5 *3)) (-5 *4 (-598 *3)))))
+(((*1 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-848 *3))) (-4 *3 (-1030)) (-5 *1 (-847 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-597 (-1099))) (-4 *5 (-984))
- (-5 *2 (-893 *5)) (-5 *1 (-885 *4 *5)))))
-(((*1 *1 *1) (-4 *1 (-93))) ((*1 *1 *1 *1) (-5 *1 (-208)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-5 *2 (-1083 (-531))) (-5 *1 (-1087 *4)) (-4 *4 (-986))
+ (-5 *3 (-531)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-1102))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-4 *4 (-13 (-29 *6) (-1124) (-902)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3523 (-598 *4))))
+ (-5 *1 (-751 *6 *4 *3)) (-4 *3 (-609 *4)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-388 (-531)))
+ (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *1 *1 *1) (-5 *1 (-360)))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1 (-1080 *3))) (-5 *1 (-1080 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 *6)) (-5 *3 (-530)) (-4 *6 (-289)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2)
- (-12 (-5 *2 (-530))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795))
- (-5 *1 (-429 *5 *6 *7 *4)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
+ ((*1 *1 *1) (-4 *1 (-1127))))
(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *2 (-597 (-1095 *7))) (-5 *3 (-1095 *7))
- (-4 *7 (-890 *5 *6 *4)) (-4 *5 (-850)) (-4 *6 (-741))
- (-4 *4 (-795)) (-5 *1 (-847 *5 *6 *4 *7)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1064 *4 *5)) (-4 *4 (-13 (-1027) (-33)))
- (-4 *5 (-13 (-1027) (-33))) (-5 *2 (-110)) (-5 *1 (-1065 *4 *5)))))
+ (-12 (-5 *3 (-598 (-571 *6))) (-5 *4 (-1102)) (-5 *2 (-571 *6))
+ (-4 *6 (-411 *5)) (-4 *5 (-797)) (-5 *1 (-540 *5 *6)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2 (-110)) (-5 *1 (-282)))))
+(((*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1025 (-790 (-208)))) (-5 *1 (-287)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-530)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1) (-4 *1 (-93)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *1) (-5 *1 (-418))))
+ (-12 (-4 *1 (-1005 *3 *4 *5 *6)) (-4 *3 (-432)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-688 *3))))
+ ((*1 *1 *2) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1030))))
+ ((*1 *1) (-12 (-5 *1 (-688 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-864))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-864))
+ (-5 *1 (-501 *4)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *5)) (-5 *4 (-1181 *5)) (-4 *5 (-344))
- (-5 *2 (-110)) (-5 *1 (-618 *5))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4270))))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4270)))) (-5 *2 (-110))
- (-5 *1 (-619 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1082))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-110)) (-5 *1 (-207 *4 *5)) (-4 *5 (-13 (-1121) (-29 *4))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-522))
- (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-770)) (-5 *1 (-769)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1181 *5)) (-4 *5 (-593 *4)) (-4 *4 (-522))
- (-5 *2 (-1181 *4)) (-5 *1 (-592 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-137))) (-5 *1 (-134))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-134)))))
-(((*1 *1 *1) (-4 *1 (-93)))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797))))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3)))))
-(((*1 *1 *1) (-12 (-5 *1 (-555 *2)) (-4 *2 (-984)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-245))))
- ((*1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121))))))
-(((*1 *1 *1) (-4 *1 (-1068))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-622 *3)) (-4 *3 (-795)) (-4 *1 (-355 *3 *4))
- (-4 *4 (-162)))))
-(((*1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027))))
- ((*1 *1 *1) (-12 (-4 *1 (-643 *2)) (-4 *2 (-1027)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
+ ((*1 *1 *1) (-4 *1 (-1127))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523)))))
(((*1 *2 *2)
(-12
(-5 *2
- (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4)
- (|:| |xpnt| (-530))))
- (-4 *4 (-13 (-1157 *3) (-522) (-10 -8 (-15 -2204 ($ $ $)))))
- (-4 *3 (-522)) (-5 *1 (-1160 *3 *4)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-862)) (-5 *1 (-968 *2))
- (-4 *2 (-13 (-1027) (-10 -8 (-15 -2339 ($ $ $))))))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *3))
- (-4 *3 (-1135))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-624 *3)) (-4 *3 (-1135))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-4 *1 (-1129 *4 *5 *3 *2)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *3 (-795)) (-4 *2 (-998 *4 *5 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *1 (-1133 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
- ((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741))
- (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1001 *7 *8 *9 *3 *4)) (-4 *4 (-1003 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1001 *6 *7 *8 *3 *4)) (-4 *4 (-1003 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1001 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *5 (-719)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-741))
- (-4 *9 (-795)) (-4 *3 (-998 *7 *8 *9))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1069 *7 *8 *9 *3 *4)) (-4 *4 (-1036 *7 *8 *9 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *5 (-719)) (-4 *6 (-432)) (-4 *7 (-741)) (-4 *8 (-795))
- (-4 *3 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1069 *6 *7 *8 *3 *4)) (-4 *4 (-1036 *6 *7 *8 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |done| (-597 *4))
- (|:| |todo| (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))))
- (-5 *1 (-1069 *5 *6 *7 *3 *4)) (-4 *4 (-1036 *5 *6 *7 *3)))))
-(((*1 *2 *3 *4 *5 *5 *4 *6)
- (-12 (-5 *5 (-570 *4)) (-5 *6 (-1095 *4))
- (-4 *4 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
- (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027))))
- ((*1 *2 *3 *4 *5 *5 *5 *4 *6)
- (-12 (-5 *5 (-570 *4)) (-5 *6 (-388 (-1095 *4)))
- (-4 *4 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
- (-5 *1 (-526 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-5 *2 (-110)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *1 (-57 *3)) (-4 *3 (-1135))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-5 *1 (-57 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *1) (-5 *1 (-996))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *1 *1) (-12 (-4 *1 (-844 *3)) (-4 *3 (-1027)) (-5 *2 (-110))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *3 *4 *5 *3)
- (-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2104 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-344)) (-4 *7 (-1157 *6))
- (-5 *2
- (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
- (-2 (|:| -2104 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
- ((*1 *1 *1) (-4 *1 (-1124))))
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208)))
+ (|:| |lb| (-598 (-790 (-208)))) (|:| |cf| (-598 (-297 (-208))))
+ (|:| |ub| (-598 (-790 (-208))))))
+ (-5 *1 (-249)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-531)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-399 *2)) (-4 *2 (-523)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-330))
+ (-5 *2 (-598 (-2 (|:| |deg| (-721)) (|:| -3239 *3))))
+ (-5 *1 (-200 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *1 *1) (-5 *1 (-998))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |lfn| (-597 (-297 (-208)))) (|:| -3657 (-597 (-208)))))
- (-5 *2 (-360)) (-5 *1 (-249))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-287)))))
-(((*1 *2 *1) (-12 (|has| *1 (-6 -4269)) (-4 *1 (-33)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-791)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
-(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-1082)) (-5 *3 (-771)) (-5 *1 (-770)))))
-(((*1 *1 *1)
- (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-675)) (-4 *2 (-1135)))))
+ (-3
+ (|:| |noa|
+ (-2 (|:| |fn| (-297 (-208))) (|:| -3788 (-598 (-208)))
+ (|:| |lb| (-598 (-790 (-208))))
+ (|:| |cf| (-598 (-297 (-208))))
+ (|:| |ub| (-598 (-790 (-208))))))
+ (|:| |lsa|
+ (-2 (|:| |lfn| (-598 (-297 (-208))))
+ (|:| -3788 (-598 (-208)))))))
+ (-5 *2 (-598 (-1085))) (-5 *1 (-249)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-986)) (-4 *1 (-637 *3 *4 *5))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-597 (-804)))) (-5 *1 (-804))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-598 (-806)))) (-5 *1 (-806))))
((*1 *2 *1)
- (-12 (-5 *2 (-1066 *3 *4)) (-5 *1 (-933 *3 *4)) (-14 *3 (-862))
+ (-12 (-5 *2 (-1069 *3 *4)) (-5 *1 (-935 *3 *4)) (-14 *3 (-864))
(-4 *4 (-344))))
((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *5))) (-4 *5 (-984))
- (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5))
+ (-12 (-5 *2 (-598 (-598 *5))) (-4 *5 (-986))
+ (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *6 (-221 *4 *5))
(-4 *7 (-221 *3 *5)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *2)))))
-(((*1 *2 *1)
- (-12
- (-5 *2
- (-597
- (-2
- (|:| -3078
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (|:| -1874
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1300
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite|
- "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated"))))))))
- (-5 *1 (-525))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
- (-5 *2 (-597 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-311))) (-5 *1 (-311)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-631 *4 *3)) (-4 *4 (-1027))
- (-4 *3 (-1027)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-432))
- (-5 *2
- (-597
- (-2 (|:| |eigval| (-3 (-388 (-893 *4)) (-1089 (-1099) (-893 *4))))
- (|:| |eigmult| (-719))
- (|:| |eigvec| (-597 (-637 (-388 (-893 *4))))))))
- (-5 *1 (-274 *4)) (-5 *3 (-637 (-388 (-893 *4)))))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94))))
- ((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-94)))))
-(((*1 *2)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-719)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-719)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
- ((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-297 *5)))
- (-5 *1 (-1055 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 *5)))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-289) (-795) (-140))) (-5 *2 (-597 (-597 (-297 *5))))
- (-5 *1 (-1055 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1157 *6))
- (-4 *6 (-13 (-27) (-411 *5)))
- (-4 *5 (-13 (-795) (-522) (-975 (-530)))) (-4 *8 (-1157 (-388 *7)))
- (-5 *2 (-547 *3)) (-5 *1 (-518 *5 *6 *7 *8 *3))
- (-4 *3 (-323 *6 *7 *8)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-140)) (-4 *2 (-289)) (-4 *2 (-432)) (-4 *3 (-795))
- (-4 *4 (-741)) (-5 *1 (-927 *2 *3 *4 *5)) (-4 *5 (-890 *2 *4 *3))))
- ((*1 *2 *3) (-12 (-5 *3 (-47)) (-5 *2 (-297 (-530))) (-5 *1 (-1045))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
- (-4 *9 (-1003 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1001 *5 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 *9)) (-4 *8 (-998 *5 *6 *7))
- (-4 *9 (-1036 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-741))
- (-4 *7 (-795)) (-5 *2 (-719)) (-5 *1 (-1069 *5 *6 *7 *8 *9)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-964 *3)) (-4 *3 (-1135)))))
-(((*1 *2 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-945)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-4 *6 (-13 (-522) (-795)))
- (-5 *2 (-597 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6))
- (-4 *5 (-984))))
- ((*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-522))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-547 *5)) (-4 *5 (-13 (-29 *4) (-1121)))
- (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *2 (-597 *5)) (-5 *1 (-545 *4 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-547 (-388 (-893 *4))))
- (-4 *4 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *2 (-597 (-297 *4))) (-5 *1 (-550 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1023 *3 *2)) (-4 *3 (-793)) (-4 *2 (-1073 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-1023 *4 *2)) (-4 *4 (-793))
- (-4 *2 (-1073 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1194 (-1099) *3)) (-5 *1 (-1201 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-1194 *3 *4)) (-5 *1 (-1203 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984)))))
-(((*1 *2 *3) (-12 (-5 *3 (-770)) (-5 *2 (-51)) (-5 *1 (-777)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-797))))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
- ((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-104 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3060 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))
- (-5 *2 (-973)) (-5 *1 (-697)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |cd| (-1082)) (|:| -3907 (-1082))))
- (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-4 *1 (-748))
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-973)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-1192 *3 *4 *5 *6))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-597 *8)) (-5 *3 (-1 (-110) *8 *8))
- (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-998 *5 *6 *7)) (-4 *5 (-522))
- (-4 *6 (-741)) (-4 *7 (-795)) (-5 *1 (-1192 *5 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-795) (-289) (-975 (-530)) (-593 (-530)) (-140)))
- (-5 *2 (-1 *5 *5)) (-5 *1 (-752 *4 *5))
- (-4 *5 (-13 (-29 *4) (-1121) (-900))))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-239)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-501 *3)) (-4 *3 (-13 (-675) (-25))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-597 (-1 *4 (-597 *4)))) (-4 *4 (-1027))
- (-5 *1 (-111 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1027))
- (-5 *1 (-111 *4))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
+ ((*1 *1 *1) (-4 *1 (-1127))))
+(((*1 *2 *3 *2)
+ (|partial| -12 (-5 *2 (-1184 *4)) (-5 *3 (-639 *4)) (-4 *4 (-344))
+ (-5 *1 (-620 *4))))
+ ((*1 *2 *3 *2)
+ (|partial| -12 (-4 *4 (-344))
+ (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4274))))
+ (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4274))))
+ (-5 *1 (-621 *4 *5 *2 *3)) (-4 *3 (-637 *4 *5 *2))))
+ ((*1 *2 *3 *2 *4 *5)
+ (|partial| -12 (-5 *4 (-598 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344))
+ (-5 *1 (-764 *2 *3)) (-4 *3 (-609 *2))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-112)) (-5 *2 (-597 (-1 *4 (-597 *4))))
- (-5 *1 (-111 *4)) (-4 *4 (-1027)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
- ((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-473)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-597 (-506))) (-5 *1 (-506)))))
-(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1184))))
- ((*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1184)))))
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-597 (-597 (-530))))
- (-5 *1 (-865 *4 *5 *6 *7)) (-5 *3 (-530)) (-4 *7 (-890 *4 *6 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-597 *6))) (-4 *6 (-890 *3 *5 *4))
- (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099))))
- (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *6)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121)))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *5)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208)))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-61 LSFUN2))))
- (-5 *2 (-973)) (-5 *1 (-702)))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3115 *4)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1083 *4)) (-5 *3 (-1 *4 (-531))) (-4 *4 (-986))
+ (-5 *1 (-1087 *4)))))
+(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3157 *6) (|:| |sol?| (-110))) (-531)
+ *6))
+ (-4 *6 (-344)) (-4 *7 (-1160 *6))
+ (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))))
(((*1 *2)
- (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850))
- (-5 *1 (-437 *3 *4 *2 *5)) (-4 *5 (-890 *2 *3 *4))))
+ (-12 (-14 *4 (-721)) (-4 *5 (-1138)) (-5 *2 (-130))
+ (-5 *1 (-220 *3 *4 *5)) (-4 *3 (-221 *4 *5))))
((*1 *2)
- (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *2 (-850))
- (-5 *1 (-847 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *2) (-12 (-4 *2 (-850)) (-5 *1 (-848 *2 *3)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *1 *2) (-12 (-5 *1 (-312 *2)) (-4 *2 (-795))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-130)) (-5 *1 (-309 *3 *4))
+ (-4 *3 (-310 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-4 *5 (-162))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-531))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *6)) (-4 *6 (-797)) (-4 *4 (-344)) (-4 *5 (-743))
+ (-5 *2 (-531)) (-5 *1 (-482 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6))))
+ ((*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-986)) (-5 *2 (-864))))
+ ((*1 *2) (-12 (-4 *1 (-1191 *3)) (-4 *3 (-344)) (-5 *2 (-130)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *1 *1) (-4 *1 (-584)))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
- ((*1 *1 *1) (-4 *1 (-1124))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| -4182 (-399 *3)) (|:| |special| (-399 *3))))
- (-5 *1 (-676 *5 *3)))))
-(((*1 *1) (-5 *1 (-110))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-289))
- (-5 *2 (-597 (-719))) (-5 *1 (-726 *3 *4 *5 *6 *7))
- (-4 *3 (-1157 *6)) (-4 *7 (-890 *6 *4 *5)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943) (-1124))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-418)))))
+(((*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-378)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
- (-5 *1 (-313)))))
-(((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-928 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1034 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-906))) (-5 *1 (-106))))
- ((*1 *2 *1) (-12 (-5 *2 (-44 (-1082) (-722))) (-5 *1 (-112)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
+ (-12 (-4 *5 (-1030)) (-4 *3 (-843 *5)) (-5 *2 (-639 *3))
+ (-5 *1 (-642 *5 *3 *6 *4)) (-4 *6 (-354 *3))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-522))
- (-5 *2 (-1095 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1181 (-597 (-530)))) (-5 *1 (-459))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-560 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1135)) (-5 *1 (-1080 *3)))))
-(((*1 *1) (-5 *1 (-148))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *1 *2 *3 *4)
- (-12 (-14 *5 (-597 (-1099))) (-4 *2 (-162))
- (-4 *4 (-221 (-2267 *5) (-719)))
- (-14 *6
- (-1 (-110) (-2 (|:| -1986 *3) (|:| -3194 *4))
- (-2 (|:| -1986 *3) (|:| -3194 *4))))
- (-5 *1 (-441 *5 *2 *3 *4 *6 *7)) (-4 *3 (-795))
- (-4 *7 (-890 *2 *4 (-806 *5))))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432))))
- ((*1 *1 *1 *1) (-4 *1 (-432)))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1157 (-530)))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-530)) (-5 *1 (-644 *2)) (-4 *2 (-1157 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-719)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-741)) (-4 *4 (-795)) (-4 *5 (-289))
- (-5 *1 (-857 *3 *4 *5 *2)) (-4 *2 (-890 *5 *3 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *6 *4 *5))
- (-5 *1 (-857 *4 *5 *6 *2)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-289))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1095 *6)) (-4 *6 (-890 *5 *3 *4)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *5 (-289)) (-5 *1 (-857 *3 *4 *5 *6))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1095 *7))) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-289)) (-5 *2 (-1095 *7)) (-5 *1 (-857 *4 *5 *6 *7))
- (-4 *7 (-890 *6 *4 *5))))
- ((*1 *1 *1 *1) (-5 *1 (-862)))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2))
- (-4 *2 (-1157 *3))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *1) (-5 *1 (-1182))))
+ (|partial| -12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743))
+ (-5 *2 (-110)) (-5 *1 (-929 *3 *4 *5 *6))
+ (-4 *6 (-892 *3 *5 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *4 (-13 (-1030) (-33))))))
(((*1 *1 *1)
- (-12 (-4 *2 (-289)) (-4 *3 (-932 *2)) (-4 *4 (-1157 *3))
- (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3))))))
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *3 (-598 (-817)))
+ (-5 *1 (-448)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-771)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *3))
+ (-4 *3 (-1138))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-626 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *1 *3)
+ (|partial| -12 (-4 *1 (-1132 *4 *5 *3 *2)) (-4 *4 (-523))
+ (-4 *5 (-743)) (-4 *3 (-797)) (-4 *2 (-1000 *4 *5 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-5 *1 (-1136 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *3 *3 *4)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-708)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1172 *4))
- (-4 *4 (-37 (-388 (-530))))
- (-5 *2 (-1 (-1080 *4) (-1080 *4) (-1080 *4))) (-5 *1 (-1174 *4 *5)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-637 (-530))) (-5 *1 (-1037)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-432)) (-4 *4 (-795)) (-4 *5 (-741))
- (-5 *2 (-110)) (-5 *1 (-927 *3 *4 *5 *6))
- (-4 *6 (-890 *3 *5 *4))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3) (-12 (-5 *3 (-597 (-51))) (-5 *2 (-1186)) (-5 *1 (-805)))))
+ (-12 (-4 *4 (-330)) (-5 *2 (-901 (-1098 *4))) (-5 *1 (-338 *4))
+ (-5 *3 (-1098 *4)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-797)) (-5 *2 (-110))))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *2 *1 *1) (-12 (-4 *1 (-846 *3)) (-4 *3 (-1030)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-1085)) (-5 *3 (-773)) (-5 *1 (-772)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-639 *5)) (-4 *5 (-986)) (-5 *1 (-990 *3 *4 *5))
+ (-14 *3 (-721)) (-14 *4 (-721)))))
(((*1 *2)
- (-12
- (-5 *2 (-2 (|:| -3884 (-597 (-1099))) (|:| -2594 (-597 (-1099)))))
- (-5 *1 (-1137)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-360))) (-5 *2 (-297 (-208))) (-5 *1 (-287)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135)))))
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1)))
- (-4 *1 (-797 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1136 *3)) (-4 *3 (-1027)))))
-(((*1 *1) (-5 *1 (-148))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-805))))
- ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-805))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-804)) (-5 *2 (-1186)) (-5 *1 (-805))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1080 *4))
- (-4 *4 (-1027)) (-4 *4 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3))
- (-5 *2 (-388 (-530))))))
-(((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-804)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))))
+ (-12 (-4 *1 (-1028 *3)) (-4 *3 (-1030)) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-399 *3)) (-4 *3 (-515))
- (-4 *3 (-522))))
- ((*1 *2 *1) (|partial| -12 (-4 *1 (-515)) (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-745 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-781 *3)) (-4 *3 (-515))
- (-4 *3 (-1027))))
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-531))) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-523)) (-4 *8 (-892 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *9) (|:| |radicand| *9)))
+ (-5 *1 (-896 *5 *6 *7 *8 *9)) (-5 *4 (-721))
+ (-4 *9
+ (-13 (-344)
+ (-10 -8 (-15 -1840 (*8 $)) (-15 -1853 (*8 $)) (-15 -2265 ($ *8))))))))
+(((*1 *2 *1) (-12 (|has| *1 (-6 -4273)) (-4 *1 (-33)) (-5 *2 (-721))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-788 *3)) (-4 *3 (-515))
- (-4 *3 (-1027))))
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-531))))
((*1 *2 *1)
- (|partial| -12 (-4 *1 (-936 *3)) (-4 *3 (-162)) (-4 *3 (-515))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-388 (-530))) (-5 *1 (-947 *3))
- (-4 *3 (-975 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099))
- (-5 *2
- (-2 (|:| |zeros| (-1080 (-208))) (|:| |ones| (-1080 (-208)))
- (|:| |singularities| (-1080 (-208)))))
- (-5 *1 (-102)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1099))
- (-5 *2 (-3 (|:| |fst| (-415)) (|:| -3020 "void"))) (-5 *1 (-1102)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -2204 (-730 *3)) (|:| |coef2| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-2 (|:| -2204 *1) (|:| |coef2| *1)))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941)))))
- ((*1 *2)
- (|partial| -12 (-4 *4 (-1139)) (-4 *5 (-1157 (-388 *2)))
- (-4 *2 (-1157 *4)) (-5 *1 (-322 *3 *4 *2 *5))
- (-4 *3 (-323 *4 *2 *5))))
- ((*1 *2)
- (|partial| -12 (-4 *1 (-323 *3 *2 *4)) (-4 *3 (-1139))
- (-4 *4 (-1157 (-388 *2))) (-4 *2 (-1157 *3)))))
+ (-12 (-5 *2 (-721)) (-5 *1 (-1205 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-793)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027))
- (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
- (-5 *1 (-53 *4 *5 *2))
- (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4)))))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139))
- (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3))))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-432))))
- ((*1 *1 *1 *1) (-4 *1 (-432))))
-(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-1098)) (-5 *1 (-311)))))
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-507))) (-5 *1 (-507)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-448)) (-5 *4 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-531)) (|has| *1 (-6 -4274)) (-4 *1 (-354 *3))
+ (-4 *3 (-1138)))))
+(((*1 *1 *2 *2 *2)
+ (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124)))))
+ ((*1 *2 *1 *3 *4 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *1 (-909 *2)) (-4 *2 (-910)))))
+(((*1 *1 *1 *2 *2 *2 *2)
+ (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(((*1 *1 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-986)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-721)) (-4 *5 (-344)) (-5 *2 (-163 *6))
+ (-5 *1 (-810 *5 *4 *6)) (-4 *4 (-1175 *5)) (-4 *6 (-1160 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-771)) (-5 *4 (-51)) (-5 *2 (-1189)) (-5 *1 (-781)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941)))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1172 *3))
- (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1143 *3 *4))))
+ (-12 (-4 *3 (-432)) (-4 *3 (-797)) (-4 *3 (-977 (-531)))
+ (-4 *3 (-523)) (-5 *1 (-40 *3 *2)) (-4 *2 (-411 *3))
+ (-4 *2
+ (-13 (-344) (-284)
+ (-10 -8 (-15 -1840 ((-1054 *3 (-571 $)) $))
+ (-15 -1853 ((-1054 *3 (-571 $)) $))
+ (-15 -2265 ($ (-1054 *3 (-571 $))))))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1151 *3)) (-4 *3 (-1138)))))
+(((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))))
+(((*1 *1 *1) (-4 *1 (-584)))
((*1 *2 *2)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *4 (-1141 *3))
- (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1164 *3 *4)) (-4 *5 (-923 *4))))
- ((*1 *1 *1) (-4 *1 (-266)))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943) (-1124))))))
+(((*1 *1 *2 *2) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-908))) (-5 *1 (-106))))
+ ((*1 *2 *1) (-12 (-5 *2 (-44 (-1085) (-724))) (-5 *1 (-112)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-99)) (-5 *2 (-110))))
+ ((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *2 *1 *1) (-12 (-5 *2 (-110)) (-5 *1 (-966 *3)) (-4 *3 (-1138)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-498 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-399 *4)) (-4 *4 (-522))
- (-5 *2 (-597 (-2 (|:| -2065 (-719)) (|:| |logand| *4))))
- (-5 *1 (-301 *4))))
+ (|partial| -12 (-4 *4 (-523)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
+ (-4 *7 (-934 *4)) (-4 *2 (-637 *7 *8 *9))
+ (-5 *1 (-499 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-637 *4 *5 *6))
+ (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-615 *3 *4)) (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1085 *3))))
+ (|partial| -12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986))
+ (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344))))
((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530))))
- (-5 *1 (-1086 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530)))))
- (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-1199 *3 *4))
- (-4 *4 (-666 (-388 (-530)))) (-4 *3 (-795)) (-4 *4 (-162)))))
-(((*1 *2 *2 *1)
- (-12 (-5 *2 (-597 *6)) (-4 *1 (-916 *3 *4 *5 *6)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-4 *3 (-522)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-520 *3)) (-4 *3 (-13 (-385) (-1121))) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
- (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-899 (-1095 *4))) (-5 *1 (-338 *4))
- (-5 *3 (-1095 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-388 (-530))) (-5 *1 (-287)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
+ (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *1 (-638 *3 *4 *5 *2))
+ (-4 *2 (-637 *3 *4 *5))))
+ ((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-639 *2)) (-4 *2 (-344)) (-4 *2 (-986))))
+ ((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-1052 *2 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344))))
+ ((*1 *2 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-1110 *3)))))
(((*1 *2 *3)
- (-12
+ (-12 (-4 *1 (-750))
(-5 *3
- (-3
- (|:| |noa|
- (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208))))
- (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (|:| |lsa|
- (-2 (|:| |lfn| (-597 (-297 (-208))))
- (|:| -3657 (-597 (-208)))))))
- (-5 *2 (-597 (-1082))) (-5 *1 (-249)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-708)))))
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2 (-975)))))
(((*1 *2 *3)
(-12
(-5 *3
@@ -12232,4506 +12330,4473 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
+ (-3 (|:| |str| (-1083 (-208)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1300
+ (|:| -2368
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *2 (-973)) (-5 *1 (-287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1080 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
+ (-5 *2 (-975)) (-5 *1 (-287)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-4 *5 (-743)) (-4 *4 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3))
+ (-5 *1 (-693 *5 *4 *6 *3)) (-4 *3 (-892 *6 *5 *4)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1076 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530))))
- (-4 *5 (-827 (-530)))
- (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-533 *5 *3)) (-4 *3 (-583))
- (-4 *3 (-13 (-27) (-1121) (-411 *5))))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-1062))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-804))) (-5 *2 (-1186)) (-5 *1 (-1062)))))
-(((*1 *2 *2) (-12 (-5 *1 (-902 *2)) (-4 *2 (-515)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1106)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-522)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-981 *5 *6))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4)))
- (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-981 *4 *5))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
-(((*1 *2 *3 *3 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-1103)))))
+ (-12 (-5 *4 (-864)) (-4 *6 (-13 (-523) (-797)))
+ (-5 *2 (-598 (-297 *6))) (-5 *1 (-204 *5 *6)) (-5 *3 (-297 *6))
+ (-4 *5 (-986))))
+ ((*1 *2 *1) (-12 (-5 *1 (-399 *2)) (-4 *2 (-523))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-548 *5)) (-4 *5 (-13 (-29 *4) (-1124)))
+ (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531))))
+ (-5 *2 (-598 *5)) (-5 *1 (-546 *4 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-548 (-388 (-895 *4))))
+ (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531))))
+ (-5 *2 (-598 (-297 *4))) (-5 *1 (-551 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1026 *3 *2)) (-4 *3 (-795)) (-4 *2 (-1076 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 *1)) (-4 *1 (-1026 *4 *2)) (-4 *4 (-795))
+ (-4 *2 (-1076 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1197 (-1102) *3)) (-5 *1 (-1204 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1197 *3 *4)) (-5 *1 (-1206 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-548 *2)) (-4 *2 (-13 (-29 *4) (-1124)))
+ (-5 *1 (-546 *4 *2))
+ (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-548 (-388 (-895 *4))))
+ (-4 *4 (-13 (-432) (-977 (-531)) (-797) (-594 (-531))))
+ (-5 *2 (-297 *4)) (-5 *1 (-551 *4)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-721)) (-5 *3 (-110)) (-5 *1 (-108))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (|has| *1 (-6 -4264)) (-4 *1 (-385))))
+ ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-864)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030))
+ (-4 *6 (-1030)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-634 *4 *5 *6)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1098 (-388 (-531)))) (-5 *1 (-885)) (-5 *3 (-531)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-1139 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *1) (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-5 *2 (-598 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-807))))
+ ((*1 *2 *3) (-12 (-5 *3 (-806)) (-5 *2 (-1189)) (-5 *1 (-807))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-806)) (-5 *2 (-1189)) (-5 *1 (-807))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1083 *4))
+ (-4 *4 (-1030)) (-4 *4 (-1138)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984))
- (-5 *3 (-530)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-107)))))
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-502 *3)) (-4 *3 (-13 (-677) (-25))))))
+(((*1 *2 *3 *3 *1)
+ (|partial| -12 (-5 *3 (-1102)) (-5 *2 (-1034)) (-5 *1 (-273)))))
+(((*1 *1 *1 *1) (|partial| -4 *1 (-128))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986))
+ (-5 *2 (-598 (-598 (-598 (-721))))))))
+(((*1 *2 *1) (-12 (-4 *1 (-898)) (-5 *2 (-598 (-598 (-886 (-208)))))))
+ ((*1 *2 *1) (-12 (-4 *1 (-916)) (-5 *2 (-598 (-598 (-886 (-208))))))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1 *4)
+ (-12 (-5 *4 (-1 (-110) *3 *3)) (-4 *1 (-1132 *5 *6 *7 *3))
+ (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-1027)) (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 *2)))
- (-5 *2 (-833 *3)) (-5 *1 (-1006 *3 *4 *5))
- (-4 *5 (-13 (-411 *4) (-827 *3) (-572 *2))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1027)) (-4 *6 (-1027))
- (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-632 *4 *5 *6)) (-4 *4 (-1027)))))
-(((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-1103)))))
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-797))
+ (-5 *2 (-2 (|:| -2005 (-531)) (|:| |var| (-571 *1))))
+ (-4 *1 (-411 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-388 (-531))) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-721))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *1) (-5 *1 (-110))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *3 (-598 (-571 *2))) (-5 *4 (-1102))
+ (-4 *2 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-259 *5 *2)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1006 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| -2291 *1) (|:| -4256 *1) (|:| |associate| *1)))
- (-4 *1 (-522)))))
+ (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *2 *2) (-12 (-5 *1 (-904 *2)) (-4 *2 (-516)))))
+(((*1 *2 *3 *3 *3)
+ (|partial| -12 (-4 *4 (-13 (-344) (-140) (-977 (-531))))
+ (-4 *5 (-1160 *4)) (-5 *2 (-598 (-388 *5))) (-5 *1 (-957 *4 *5))
+ (-5 *3 (-388 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-913)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-194)))))
(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *5 (-522))
+ (-12 (-5 *4 (-721)) (-4 *5 (-523))
(-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
- (-5 *1 (-910 *5 *3)) (-4 *3 (-1157 *5)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(((*1 *1) (-5 *1 (-525))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *1) (-5 *1 (-47)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-56 *5 *2))))
- ((*1 *2 *3 *1 *2 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (|has| *1 (-6 -4269))
- (-4 *1 (-144 *2)) (-4 *2 (-1135))))
- ((*1 *2 *3 *1 *2)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2))
- (-4 *2 (-1135))))
- ((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4269)) (-4 *1 (-144 *2))
- (-4 *2 (-1135))))
+ (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-51)) (-5 *1 (-835 *4))
+ (-4 *4 (-1030)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-432))))
+ ((*1 *1 *1 *1) (-4 *1 (-432)))
((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-5 *2 (-2 (|:| -3109 (-1095 *4)) (|:| |deg| (-862))))
- (-5 *1 (-204 *4 *5)) (-5 *3 (-1095 *4)) (-4 *5 (-13 (-522) (-795)))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-719))
- (-4 *6 (-1135)) (-4 *2 (-1135)) (-5 *1 (-222 *5 *6 *2))))
- ((*1 *1 *2 *3)
- (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7))
- (-4 *2 (-1157 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
- (-14 *6 (-1 (-3 *3 "failed") *3 *3))
- (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-522)) (-4 *2 (-795))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1157 *2))
- (-4 *4 (-1157 (-388 *3))) (-4 *5 (-323 *2 *3 *4))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1135)) (-4 *2 (-1135))
- (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1027)) (-4 *2 (-1027))
- (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2))))
- ((*1 *1 *1) (-5 *1 (-473)))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-597 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-595 *5 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-984)) (-4 *2 (-984))
- (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2))
- (-4 *9 (-354 *2)) (-5 *1 (-633 *5 *6 *7 *4 *2 *8 *9 *10))
- (-4 *4 (-635 *5 *6 *7)) (-4 *10 (-635 *2 *8 *9))))
+ (-12 (-5 *3 (-598 *2)) (-5 *1 (-465 *2)) (-4 *2 (-1160 (-531)))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-531)) (-5 *1 (-646 *2)) (-4 *2 (-1160 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-721)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-743)) (-4 *4 (-797)) (-4 *5 (-289))
+ (-5 *1 (-859 *3 *4 *5 *2)) (-4 *2 (-892 *5 *3 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *6 *4 *5))
+ (-5 *1 (-859 *4 *5 *6 *2)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-289))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1098 *6)) (-4 *6 (-892 *5 *3 *4)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *5 (-289)) (-5 *1 (-859 *3 *4 *5 *6))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-1098 *7))) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-289)) (-5 *2 (-1098 *7)) (-5 *1 (-859 *4 *5 *6 *7))
+ (-4 *7 (-892 *6 *4 *5))))
+ ((*1 *1 *1 *1) (-5 *1 (-864)))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-432)) (-4 *3 (-523)) (-5 *1 (-912 *3 *2))
+ (-4 *2 (-1160 *3))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-432)))))
+(((*1 *1) (-5 *1 (-137)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-245)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-1184 (-598 (-531)))) (-5 *1 (-459))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-660 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-561 *3))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-664 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
- (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
- (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
- ((*1 *1 *2)
- (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-344))
- (-4 *3 (-162)) (-4 *1 (-673 *3 *4))))
- ((*1 *1 *2)
- (-12 (-4 *3 (-162)) (-4 *1 (-673 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-899 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-898 *5 *2))))
+ (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1138)) (-5 *1 (-1083 *3)))))
+(((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-598 (-967 *5 *6 *7 *3))) (-5 *1 (-967 *5 *6 *7 *3))
+ (-4 *3 (-1000 *5 *6 *7))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-598 *6)) (-4 *1 (-1005 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5))))
+ ((*1 *1 *2 *1)
+ (-12 (-4 *1 (-1005 *3 *4 *5 *2)) (-4 *3 (-432)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))
+ ((*1 *2 *3 *1 *4 *4 *4 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-598 (-1073 *5 *6 *7 *3))) (-5 *1 (-1073 *5 *6 *7 *3))
+ (-4 *3 (-1000 *5 *6 *7)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-602 *3 *4 *5)) (-4 *3 (-1030))
+ (-4 *4 (-23)) (-14 *5 *4))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-919 *4 *5 *6 *7)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-598 *4)) (-4 *4 (-344)) (-5 *2 (-1184 *4))
+ (-5 *1 (-764 *4 *3)) (-4 *3 (-609 *4)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-432)) (-4 *4 (-797))
+ (-5 *1 (-540 *4 *2)) (-4 *2 (-266)) (-4 *2 (-411 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-289))))
+ ((*1 *2 *1 *1)
+ (|partial| -12 (-5 *2 (-2 (|:| |lm| (-367 *3)) (|:| |rm| (-367 *3))))
+ (-5 *1 (-367 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -2937 (-721)) (|:| -4124 (-721))))
+ (-5 *1 (-721))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))))
+(((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189))
+ (-5 *1 (-1006 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189))
+ (-5 *1 (-1038 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))))
+(((*1 *1 *1 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-531)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
+ (-14 *4 (-721)) (-4 *5 (-162))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721))
+ (-4 *4 (-162))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2))))
((*1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-972 *3 *4 *5 *2 *6)) (-4 *2 (-890 *3 *4 *5))
- (-14 *6 (-597 *2))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-984)) (-4 *2 (-984))
- (-14 *5 (-719)) (-14 *6 (-719)) (-4 *8 (-221 *6 *7))
- (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2))
- (-5 *1 (-989 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
- (-4 *4 (-987 *5 *6 *7 *8 *9)) (-4 *12 (-987 *5 *6 *2 *10 *11))))
- ((*1 *2 *2 *3 *4)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1080 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-1078 *5 *2))))
- ((*1 *2 *2 *1 *3 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2))
- (-4 *1 (-1129 *5 *6 *7 *2)) (-4 *5 (-522)) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *2 (-998 *5 *6 *7))))
- ((*1 *2 *3 *4 *2)
- (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1181 *5)) (-4 *5 (-1135))
- (-4 *2 (-1135)) (-5 *1 (-1180 *5 *2)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135))))
+ (-12 (-4 *3 (-986)) (-4 *1 (-637 *3 *2 *4)) (-4 *2 (-354 *3))
+ (-4 *4 (-354 *3))))
((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795))))
- ((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+ (-12 (-5 *1 (-1069 *2 *3)) (-14 *2 (-721)) (-4 *3 (-986)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-239)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-806)))))
+(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975))
+ (-5 *1 (-699)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795)))
- (-4 *2 (-13 (-411 *4) (-941) (-1121))) (-5 *1 (-559 *4 *2 *3))
- (-4 *3 (-13 (-411 (-159 *4)) (-941) (-1121))))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-639 *3)) (-4 *3 (-289)) (-5 *1 (-650 *3)))))
+(((*1 *2 *2 *2)
+ (-12
+ (-5 *2
+ (-2 (|:| -3523 (-639 *3)) (|:| |basisDen| *3)
+ (|:| |basisInv| (-639 *3))))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-388 (-530))))
- (-5 *1 (-287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1117)))))
-(((*1 *2 *3) (-12 (-5 *3 (-597 *2)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 *1)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-984)) (-5 *1 (-637 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *4)) (-4 *4 (-984)) (-4 *1 (-1049 *3 *4 *5 *6))
- (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *3 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1095 *7)) (-4 *5 (-984))
- (-4 *7 (-984)) (-4 *2 (-1157 *5)) (-5 *1 (-479 *5 *2 *6 *7))
- (-4 *6 (-1157 *2))))
+ (-12
+ (-5 *2
+ (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531)))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-984)) (-4 *7 (-984))
- (-4 *4 (-1157 *5)) (-5 *2 (-1095 *7)) (-5 *1 (-479 *5 *4 *6 *7))
- (-4 *6 (-1157 *4)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-140))
- (-4 *3 (-289)) (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-5 *4 (-719)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
+ (-12
(-5 *2
- (-597
- (-2 (|:| |det| *8) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530))))))
- (-5 *1 (-865 *5 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-570 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-1095 (-388 (-1095 *6)))) (-5 *1 (-526 *5 *6 *7))
- (-5 *3 (-1095 *6)) (-4 *7 (-1027))))
+ (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531)))
+ (-5 *4 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))
+ (-5 *1 (-960 *3)) (-4 *3 (-1160 (-531))) (-5 *4 (-388 (-531)))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-388 (-531)))
+ (-5 *2 (-598 (-2 (|:| -3144 *5) (|:| -3157 *5)))) (-5 *1 (-960 *3))
+ (-4 *3 (-1160 (-531))) (-5 *4 (-2 (|:| -3144 *5) (|:| -3157 *5)))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *2
+ (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))
+ (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531))))))
+ ((*1 *2 *3 *4)
+ (-12
+ (-5 *2
+ (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))
+ (-5 *1 (-961 *3)) (-4 *3 (-1160 (-388 (-531))))
+ (-5 *4 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-388 (-531)))
+ (-5 *2 (-598 (-2 (|:| -3144 *4) (|:| -3157 *4)))) (-5 *1 (-961 *3))
+ (-4 *3 (-1160 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-388 (-531)))
+ (-5 *2 (-598 (-2 (|:| -3144 *5) (|:| -3157 *5)))) (-5 *1 (-961 *3))
+ (-4 *3 (-1160 *5)) (-5 *4 (-2 (|:| -3144 *5) (|:| -3157 *5))))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-51))) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-695 *3)) (-4 *3 (-162)))))
+(((*1 *2 *3 *3 *2 *4)
+ (-12 (-5 *3 (-639 *2)) (-5 *4 (-531))
+ (-4 *2 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *5 (-1160 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-524 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-852)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-892 *4 *5 *6)) (-5 *2 (-399 (-1098 *7)))
+ (-5 *1 (-849 *4 *5 *6 *7)) (-5 *3 (-1098 *7))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-852)) (-4 *5 (-1160 *4)) (-5 *2 (-399 (-1098 *5)))
+ (-5 *1 (-850 *4 *5)) (-5 *3 (-1098 *5)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-432))))
+ ((*1 *1 *1 *1) (-4 *1 (-432))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *3 (-25)) (-4 *3 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-411 *3))))
((*1 *2 *1)
- (-12 (-4 *2 (-1157 *3)) (-5 *1 (-661 *3 *2)) (-4 *3 (-984))))
+ (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3))
+ (-4 *3 (-1030))))
((*1 *2 *1)
- (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
- ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
- (|partial| -12 (-5 *4 (-1095 *11)) (-5 *6 (-597 *10))
- (-5 *7 (-597 (-719))) (-5 *8 (-597 *11)) (-4 *10 (-795))
- (-4 *11 (-289)) (-4 *9 (-741)) (-4 *5 (-890 *11 *9 *10))
- (-5 *2 (-597 (-1095 *5))) (-5 *1 (-691 *9 *10 *11 *5))
- (-5 *3 (-1095 *5))))
+ (|partial| -12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-598 *1)) (-4 *1 (-892 *3 *4 *5))))
+ ((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-986))
+ (-4 *7 (-892 *6 *4 *5)) (-5 *2 (-598 *3))
+ (-5 *1 (-893 *4 *5 *6 *7 *3))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $))
+ (-15 -1853 (*7 $))))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943)))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1175 *3))
+ (-5 *1 (-260 *3 *4 *2)) (-4 *2 (-1146 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *4 (-1144 *3))
+ (-5 *1 (-261 *3 *4 *2 *5)) (-4 *2 (-1167 *3 *4)) (-4 *5 (-925 *4))))
+ ((*1 *1 *1) (-4 *1 (-266)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-399 *4)) (-4 *4 (-523))
+ (-5 *2 (-598 (-2 (|:| -2005 (-721)) (|:| |logand| *4))))
+ (-5 *1 (-301 *4))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *2 *1)
- (-12 (-4 *2 (-890 *3 *4 *5)) (-5 *1 (-972 *3 *4 *5 *2 *6))
- (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-14 *6 (-597 *2)))))
-(((*1 *1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795))))
- ((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-719)) (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-706)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-741))
- (-4 *3 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *5 (-522))
- (-5 *1 (-681 *4 *3 *5 *2)) (-4 *2 (-890 (-388 (-893 *5)) *4 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3
- (-13 (-795)
- (-10 -8 (-15 -3260 ((-1099) $))
- (-15 -4007 ((-3 $ "failed") (-1099))))))
- (-5 *1 (-924 *4 *5 *3 *2)) (-4 *2 (-890 (-893 *4) *5 *3))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *6))
- (-4 *6
- (-13 (-795)
- (-10 -8 (-15 -3260 ((-1099) $))
- (-15 -4007 ((-3 $ "failed") (-1099))))))
- (-4 *4 (-984)) (-4 *5 (-741)) (-5 *1 (-924 *4 *5 *6 *2))
- (-4 *2 (-890 (-893 *4) *5 *6)))))
-(((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *6 (-862)) (-4 *5 (-289)) (-4 *3 (-1157 *5))
- (-5 *2 (-2 (|:| |plist| (-597 *3)) (|:| |modulo| *5)))
- (-5 *1 (-440 *5 *3)) (-5 *4 (-597 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4)) (-4 *6 (-1157 *5))
- (-4 *7 (-1157 (-388 *6))) (-4 *8 (-323 *5 *6 *7))
- (-4 *4 (-13 (-795) (-522) (-975 (-530)))) (-5 *2 (-110))
- (-5 *1 (-852 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
- (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
- (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-110))
- (-5 *1 (-853 *4 *5 *6)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-777)))))
-(((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 -1334)))) (-5 *3 (-208))
- (-5 *2 (-973)) (-5 *1 (-697)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-686 *3))))
- ((*1 *1 *2) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027))))
- ((*1 *1) (-12 (-5 *1 (-686 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6))
- (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 *5)) (-4 *5 (-432)) (-5 *2 (-597 *6))
- (-5 *1 (-508 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)))))
-(((*1 *1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289)))))
-(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2) (-12 (-5 *1 (-125 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 (-1181 *4))) (-4 *4 (-984)) (-5 *2 (-637 *4))
- (-5 *1 (-967 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
- ((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1181 *4)) (-4 *4 (-593 (-530)))
- (-5 *2 (-1181 (-530))) (-5 *1 (-1206 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ (-12 (-5 *2 (-617 *3 *4)) (-5 *1 (-582 *3 *4 *5)) (-4 *3 (-797))
+ (-4 *4 (-13 (-162) (-668 (-388 (-531))))) (-14 *5 (-864))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-884 *5)) (-4 *5 (-984)) (-5 *2 (-719))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-719)) (-5 *1 (-1088 *4 *5))
- (-14 *4 (-862)) (-4 *5 (-984))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-884 *5)) (-4 *5 (-984))
- (-5 *1 (-1088 *4 *5)) (-14 *4 (-862)))))
-(((*1 *1) (-12 (-5 *1 (-639 *2)) (-4 *2 (-571 (-804))))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-388 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-13 (-344) (-140)))
- (-5 *1 (-380 *3 *4)))))
-(((*1 *2 *1 *3 *3)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1135)) (-5 *2 (-1186)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-117 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-700)))))
-(((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-148)))))
-(((*1 *2 *3) (-12 (-5 *3 (-893 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 (-597 *8)))
- (-4 *7 (-795)) (-4 *8 (-289)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1088 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-5 *1 (-1089 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531)))))
+ (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-1202 *3 *4))
+ (-4 *4 (-668 (-388 (-531)))) (-4 *3 (-797)) (-4 *4 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-276 (-895 (-531))))
(-5 *2
- (-2 (|:| |upol| (-1095 *8)) (|:| |Lval| (-597 *8))
- (|:| |Lfact|
- (-597 (-2 (|:| -2611 (-1095 *8)) (|:| -3194 (-530)))))
- (|:| |ctpol| *8)))
- (-5 *1 (-691 *6 *7 *8 *9)))))
+ (-2 (|:| |varOrder| (-598 (-1102)))
+ (|:| |inhom| (-3 (-598 (-1184 (-721))) "failed"))
+ (|:| |hom| (-598 (-1184 (-721))))))
+ (-5 *1 (-219)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))
+ ((*1 *1 *1 *1) (-5 *1 (-806))))
(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-795))))
- ((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795)))))
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-857 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2)))))
+(((*1 *2 *3 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-3 *3 (-598 *1)))
+ (-4 *1 (-1005 *4 *5 *6 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975))
+ (-5 *1 (-699)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3 *4 *3 *5)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-159 (-208))) (-5 *5 (-531))
+ (-5 *2 (-975)) (-5 *1 (-709)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183))))
- ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1183)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-388 (-530))))
- (-5 *2 (-2 (|:| -2219 (-1080 *4)) (|:| -2231 (-1080 *4))))
- (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)) (-5 *3 (-531)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-5 *2 (-3 "nil" "sqfr" "irred" "prime"))
+ (-5 *1 (-399 *4)) (-4 *4 (-523)))))
(((*1 *2 *3 *1)
- (-12 (-5 *3 (-846 *4)) (-4 *4 (-1027)) (-5 *2 (-597 (-719)))
- (-5 *1 (-845 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4273)) (-4 *1 (-468 *4))
+ (-4 *4 (-1138)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-817))))
+ ((*1 *2 *3) (-12 (-5 *3 (-886 *2)) (-5 *1 (-924 *2)) (-4 *2 (-986)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *4 (-110)) (-5 *5 (-1032 (-721))) (-5 *6 (-721))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
- (-5 *1 (-758 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-604 (-388 *6))) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-2 (|:| -3220 (-597 (-388 *6))) (|:| -2030 (-637 *5))))
- (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6)))))
+ (-2 (|:| |contp| (-531))
+ (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531)))))))
+ (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2 *3 *1) (-12 (-5 *3 (-1102)) (-5 *2 (-418)) (-5 *1 (-1106)))))
+(((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-721)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-743))
+ (-4 *9 (-797)) (-4 *3 (-1000 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1003 *7 *8 *9 *3 *4)) (-4 *4 (-1005 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *3 (-1000 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1003 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-605 *6 (-388 *6))) (-5 *4 (-388 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1003 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))
+ ((*1 *2 *3 *4 *5 *6)
+ (-12 (-5 *5 (-721)) (-5 *6 (-110)) (-4 *7 (-432)) (-4 *8 (-743))
+ (-4 *9 (-797)) (-4 *3 (-1000 *7 *8 *9))
+ (-5 *2
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1072 *7 *8 *9 *3 *4)) (-4 *4 (-1039 *7 *8 *9 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *5 (-721)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *3 (-1000 *6 *7 *8))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
- (-5 *1 (-758 *5 *6))))
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1072 *6 *7 *8 *3 *4)) (-4 *4 (-1039 *6 *7 *8 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-605 *6 (-388 *6))) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-5 *2 (-2 (|:| -3220 (-597 (-388 *6))) (|:| -2030 (-637 *5))))
- (-5 *1 (-758 *5 *6)) (-5 *4 (-597 (-388 *6))))))
-(((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *4 (-208))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
(-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 *4))))
- (|:| |xValues| (-1022 *4)) (|:| |yValues| (-1022 *4))))
- (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 *4)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
+ (-2 (|:| |done| (-598 *4))
+ (|:| |todo| (-598 (-2 (|:| |val| (-598 *3)) (|:| -2410 *4))))))
+ (-5 *1 (-1072 *5 *6 *7 *3 *4)) (-4 *4 (-1039 *5 *6 *7 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-997))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-997)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862))
- (-5 *2
- (-3 (-1095 *4)
- (-1181 (-597 (-2 (|:| -3417 *4) (|:| -1986 (-1046)))))))
- (-5 *1 (-327 *4)) (-4 *4 (-330)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
- (-5 *2 (-973)) (-5 *1 (-705)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-110)) (-5 *1 (-777)))))
+ (-12 (-5 *3 (-895 (-531))) (-5 *2 (-598 *1)) (-4 *1 (-953))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *2 (-598 *1)) (-4 *1 (-953))))
+ ((*1 *2 *3) (-12 (-5 *3 (-895 *1)) (-4 *1 (-953)) (-5 *2 (-598 *1))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1098 (-531))) (-5 *2 (-598 *1)) (-4 *1 (-953))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1098 (-388 (-531)))) (-5 *2 (-598 *1)) (-4 *1 (-953))))
+ ((*1 *2 *3) (-12 (-5 *3 (-1098 *1)) (-4 *1 (-953)) (-5 *2 (-598 *1))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-795) (-344))) (-4 *3 (-1160 *4)) (-5 *2 (-598 *1))
+ (-4 *1 (-1002 *4 *3)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-13 (-1027) (-33))) (-5 *1 (-1064 *3 *2))
- (-4 *3 (-13 (-1027) (-33))))))
+ (-12 (-4 *4 (-1030)) (-5 *2 (-832 *3 *4)) (-5 *1 (-828 *3 *4 *5))
+ (-4 *3 (-1030)) (-4 *5 (-619 *4)))))
(((*1 *2 *1)
- (-12 (-4 *2 (-1027)) (-5 *1 (-905 *2 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-523 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
+ (-12 (-4 *3 (-1030)) (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 *2)))
+ (-5 *2 (-835 *3)) (-5 *1 (-1008 *3 *4 *5))
+ (-4 *5 (-13 (-411 *4) (-829 *3) (-573 *2))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-262)))))
(((*1 *2)
- (-12 (-4 *3 (-984)) (-5 *2 (-899 (-661 *3 *4))) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *4 (-1027)) (-4 *2 (-841 *4)) (-5 *1 (-640 *4 *2 *5 *3))
- (-4 *5 (-354 *2)) (-4 *3 (-13 (-354 *4) (-10 -7 (-6 -4269)))))))
+ (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-598 *3))) (-4 *3 (-1030)) (-4 *1 (-846 *3)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-797)) (-5 *2 (-1111 (-598 *4))) (-5 *1 (-1110 *4))
+ (-5 *3 (-598 *4)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-13 (-984) (-666 (-388 (-530)))))
- (-4 *5 (-795)) (-5 *1 (-1195 *4 *5 *2)) (-4 *2 (-1200 *5 *4)))))
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986))
+ (-5 *2 (-598 (-598 (-886 *3))))))
+ ((*1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-598 (-598 (-886 *4)))) (-5 *3 (-110)) (-4 *4 (-986))
+ (-4 *1 (-1063 *4))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-598 (-886 *3)))) (-4 *3 (-986))
+ (-4 *1 (-1063 *3))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-598 (-598 (-598 *4)))) (-5 *3 (-110))
+ (-4 *1 (-1063 *4)) (-4 *4 (-986))))
+ ((*1 *1 *1 *2 *3 *3)
+ (-12 (-5 *2 (-598 (-598 (-886 *4)))) (-5 *3 (-110))
+ (-4 *1 (-1063 *4)) (-4 *4 (-986))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-598 (-598 (-598 *5)))) (-5 *3 (-598 (-161)))
+ (-5 *4 (-161)) (-4 *1 (-1063 *5)) (-4 *5 (-986))))
+ ((*1 *1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-598 (-598 (-886 *5)))) (-5 *3 (-598 (-161)))
+ (-5 *4 (-161)) (-4 *1 (-1063 *5)) (-4 *5 (-986)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 *4)) (-5 *3 (-531)) (-4 *4 (-330))
+ (-5 *1 (-501 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-624 *3)) (-4 *3 (-797)) (-4 *1 (-355 *3 *4))
+ (-4 *4 (-162)))))
+(((*1 *2 *2 *2 *2 *3 *3 *4)
+ (|partial| -12 (-5 *3 (-571 *2))
+ (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1102)))
+ (-4 *2 (-13 (-411 *5) (-27) (-1124)))
+ (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *1 (-533 *5 *2 *6)) (-4 *6 (-1030)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-790 (-208)))) (-5 *4 (-208)) (-5 *2 (-598 *4))
+ (-5 *1 (-249)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1160 (-47)))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3))))
+ (-5 *1 (-119 *3)) (-4 *3 (-797))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-548 *4)) (-4 *4 (-13 (-29 *3) (-1124)))
+ (-4 *3 (-13 (-432) (-977 (-531)) (-797) (-594 (-531))))
+ (-5 *1 (-546 *3 *4))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-548 (-388 (-895 *3))))
+ (-4 *3 (-13 (-432) (-977 (-531)) (-797) (-594 (-531))))
+ (-5 *1 (-551 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -4216 *3) (|:| |special| *3))) (-5 *1 (-678 *5 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1184 *5)) (-4 *5 (-344)) (-4 *5 (-986))
+ (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5))
+ (-5 *3 (-598 (-639 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1184 (-1184 *5))) (-4 *5 (-344)) (-4 *5 (-986))
+ (-5 *2 (-598 (-598 (-639 *5)))) (-5 *1 (-969 *5))
+ (-5 *3 (-598 (-639 *5)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-598 *1)) (-4 *1 (-1071))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-598 *1)) (-4 *1 (-1071)))))
+(((*1 *2 *1 *2)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-951 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-2 (|:| -3115 *3) (|:| |coef1| (-732 *3))))
+ (-5 *1 (-732 *3)) (-4 *3 (-523)) (-4 *3 (-986)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-531)) (-4 *4 (-743)) (-4 *5 (-797)) (-4 *2 (-986))
+ (-5 *1 (-302 *4 *5 *2 *6)) (-4 *6 (-892 *2 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-774)))))
+(((*1 *2 *3 *4 *5 *6)
+ (|partial| -12 (-5 *4 (-1102)) (-5 *6 (-598 (-571 *3)))
+ (-5 *5 (-571 *3)) (-4 *3 (-13 (-27) (-1124) (-411 *7)))
+ (-4 *7 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3)))
+ (-5 *1 (-524 *7 *3)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)))))
+(((*1 *1 *1 *1) (-4 *1 (-516))))
+(((*1 *2 *3 *4 *4 *3 *3 *5)
+ (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-1098 *3))
+ (-4 *3 (-13 (-411 *6) (-27) (-1124)))
+ (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3)))
+ (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030))))
+ ((*1 *2 *3 *4 *4 *3 *4 *3 *5)
+ (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-388 (-1098 *3)))
+ (-4 *3 (-13 (-411 *6) (-27) (-1124)))
+ (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3)))
+ (-5 *1 (-527 *6 *3 *7)) (-4 *7 (-1030)))))
+(((*1 *2 *2) (|partial| -12 (-5 *1 (-525 *2)) (-4 *2 (-516)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-639 (-297 (-208)))) (-5 *2 (-360)) (-5 *1 (-189)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-571 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1124)))
+ (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2 (-548 *3)) (-5 *1 (-533 *5 *3 *6)) (-4 *6 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986))
+ (-5 *2 (-895 *5)) (-5 *1 (-887 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208) (-208))) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1 (-208) (-208))) (-5 *1 (-245)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-571 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4)))
+ (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-259 *4 *2)))))
+(((*1 *2 *3 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-699)))))
+(((*1 *2 *3)
+ (|partial| -12 (-4 *4 (-1142)) (-4 *5 (-1160 *4))
+ (-5 *2 (-2 (|:| |radicand| (-388 *5)) (|:| |deg| (-721))))
+ (-5 *1 (-141 *4 *5 *3)) (-4 *3 (-1160 (-388 *5))))))
(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
- (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *3)) (-4 *3 (-1135)) (-5 *2 (-530)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1157 (-530))) (-5 *1 (-465 *3)))))
-(((*1 *2 *3 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
+ (-12 (-5 *2 (-598 (-598 (-721)))) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *2) (-12 (-4 *3 (-162)) (-5 *2 (-1184 *1)) (-4 *1 (-348 *3)))))
+(((*1 *1 *1 *2)
+ (-12 (-4 *1 (-918 *3 *4 *2 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)) (-4 *5 (-1000 *3 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1184 (-649))) (-5 *1 (-287)))))
+(((*1 *2 *1 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-429 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5)))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1203 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-795))
- (-4 *2 (-162))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-767 *4)) (-4 *1 (-1196 *4 *2)) (-4 *4 (-795))
- (-4 *2 (-984))))
- ((*1 *2 *1 *3)
- (-12 (-4 *2 (-984)) (-5 *1 (-1202 *2 *3)) (-4 *3 (-791)))))
-(((*1 *2 *1 *1 *3 *4)
- (-12 (-5 *3 (-1 (-110) *5 *5)) (-5 *4 (-1 (-110) *6 *6))
- (-4 *5 (-13 (-1027) (-33))) (-4 *6 (-13 (-1027) (-33)))
- (-5 *2 (-110)) (-5 *1 (-1064 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-13 (-1030) (-33))) (-5 *1 (-1067 *3 *2))
+ (-4 *3 (-13 (-1030) (-33))))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 *3)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *2 *2 *3 *3 *4)
- (-12 (-5 *4 (-719)) (-4 *3 (-522)) (-5 *1 (-910 *3 *2))
- (-4 *2 (-1157 *3)))))
+ (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1030)) (-4 *6 (-1030))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-634 *4 *5 *6)) (-4 *5 (-1030)))))
+(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-110)) (-5 *1 (-249)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1021 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *2 (-1181 *4)) (-5 *3 (-637 *4)) (-4 *4 (-344))
- (-5 *1 (-618 *4))))
- ((*1 *2 *3 *2)
- (|partial| -12 (-4 *4 (-344))
- (-4 *5 (-13 (-354 *4) (-10 -7 (-6 -4270))))
- (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270))))
- (-5 *1 (-619 *4 *5 *2 *3)) (-4 *3 (-635 *4 *5 *2))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *4 (-597 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-344))
- (-5 *1 (-762 *2 *3)) (-4 *3 (-607 *2))))
- ((*1 *2 *3)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-344) (-793)))
- (-5 *2 (-597 (-2 (|:| -3721 (-597 *3)) (|:| -3913 *5))))
- (-5 *1 (-169 *5 *3)) (-4 *3 (-1157 (-159 *5)))))
+ (-12 (-5 *3 (-1032 *4)) (-4 *4 (-1030)) (-5 *2 (-1 *4))
+ (-5 *1 (-958 *4))))
((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-344) (-793)))
- (-5 *2 (-597 (-2 (|:| -3721 (-597 *3)) (|:| -3913 *4))))
- (-5 *1 (-169 *4 *3)) (-4 *3 (-1157 (-159 *4))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
- (-15 -1928 ((-1051 *3 (-570 $)) $))
- (-15 -2366 ($ (-1051 *3 (-570 $)))))))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-522)) (-5 *1 (-40 *3 *2))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *3 (-570 $)) $))
- (-15 -1928 ((-1051 *3 (-570 $)) $))
- (-15 -2366 ($ (-1051 *3 (-570 $)))))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $))
- (-15 -1928 ((-1051 *4 (-570 $)) $))
- (-15 -2366 ($ (-1051 *4 (-570 $)))))))
- (-4 *4 (-522)) (-5 *1 (-40 *4 *2))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-570 *2)))
- (-4 *2
- (-13 (-344) (-284)
- (-10 -8 (-15 -1918 ((-1051 *4 (-570 $)) $))
- (-15 -1928 ((-1051 *4 (-570 $)) $))
- (-15 -2366 ($ (-1051 *4 (-570 $)))))))
- (-4 *4 (-522)) (-5 *1 (-40 *4 *2)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-115 *3)) (-14 *3 (-530))))
- ((*1 *1 *2 *3 *3)
- (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2))))
- ((*1 *1 *2) (-12 (-5 *2 (-388 *3)) (-4 *3 (-289)) (-5 *1 (-163 *3))))
+ (-12 (-5 *2 (-1 (-360))) (-5 *1 (-979)) (-5 *3 (-360))))
((*1 *2 *3)
- (-12 (-5 *2 (-163 (-530))) (-5 *1 (-714 *3)) (-4 *3 (-385))))
+ (-12 (-5 *3 (-1025 (-531))) (-5 *2 (-1 (-531))) (-5 *1 (-984)))))
+(((*1 *2 *2 *3)
+ (|partial| -12
+ (-5 *3 (-598 (-2 (|:| |func| *2) (|:| |pole| (-110)))))
+ (-4 *2 (-13 (-411 *4) (-943))) (-4 *4 (-13 (-797) (-523)))
+ (-5 *1 (-258 *4 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742))))
((*1 *2 *1)
- (-12 (-5 *2 (-163 (-388 (-530)))) (-5 *1 (-812 *3)) (-14 *3 (-530))))
+ (-12 (-5 *2 (-721)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986))
+ (-14 *4 (-598 (-1102)))))
((*1 *2 *1)
- (-12 (-14 *3 (-530)) (-5 *2 (-163 (-388 (-530))))
- (-5 *1 (-813 *3 *4)) (-4 *4 (-810 *3)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-2 (|:| -3388 *3) (|:| |coef1| (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-522)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
+ (-12 (-5 *2 (-531)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797)))
+ (-14 *4 (-598 (-1102)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797))
+ (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-257))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1098 *8)) (-5 *4 (-598 *6)) (-4 *6 (-797))
+ (-4 *8 (-892 *7 *5 *6)) (-4 *5 (-743)) (-4 *7 (-986))
+ (-5 *2 (-598 (-721))) (-5 *1 (-302 *5 *6 *7 *8))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-864))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-797)) (-4 *4 (-162))
+ (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-523)) (-5 *2 (-531)) (-5 *1 (-579 *3 *4))
+ (-4 *4 (-1160 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-659 *3)) (-4 *3 (-986)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-4 *1 (-799 *3)) (-4 *3 (-986)) (-5 *2 (-721))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-848 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *6)) (-4 *1 (-892 *4 *5 *6)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 (-721)))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *1 (-892 *4 *5 *3)) (-4 *4 (-986)) (-4 *5 (-743))
+ (-4 *3 (-797)) (-5 *2 (-721))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-915 *3 *2 *4)) (-4 *3 (-986)) (-4 *4 (-797))
+ (-4 *2 (-742))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-721))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1146 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1175 *3))
+ (-5 *2 (-531))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1167 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1144 *3))
+ (-5 *2 (-388 (-531)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-783 (-864)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *2 (-721)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
- (|:| |wcond| (-597 (-893 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *5))))))))))
- (-5 *1 (-865 *5 *6 *7 *8)) (-5 *4 (-597 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-5 *4 (-597 (-1099))) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
- (|:| |wcond| (-597 (-893 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *5))))))))))
- (-5 *1 (-865 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *7)) (-4 *7 (-890 *4 *6 *5))
- (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741))
- (-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *7)) (|:| |neqzro| (-597 *7))
- (|:| |wcond| (-597 (-893 *4)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *4))))))))))
- (-5 *1 (-865 *4 *5 *6 *7))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *5 (-862)) (-4 *9 (-890 *6 *8 *7))
- (-4 *6 (-13 (-289) (-140))) (-4 *7 (-13 (-795) (-572 (-1099))))
- (-4 *8 (-741))
+ (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1030)) (-4 *4 (-1030))
+ (-4 *6 (-1030)) (-5 *2 (-1 *6 *5)) (-5 *1 (-634 *5 *4 *6)))))
+(((*1 *2 *3 *2)
+ (-12
(-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9))
- (|:| |wcond| (-597 (-893 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *6))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *6))))))))))
- (-5 *1 (-865 *6 *7 *8 *9)) (-5 *4 (-597 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-862))
- (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741))
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2)
+ (-12
(-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *9)) (|:| |neqzro| (-597 *9))
- (|:| |wcond| (-597 (-893 *6)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *6))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *6))))))))))
- (-5 *1 (-865 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-5 *4 (-862)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741))
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *1 (-245))))
+ ((*1 *2 *1 *3 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *3 *3 *4 *4 *4)
+ (-12 (-5 *3 (-531)) (-5 *4 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *2 (-1189)) (-5 *1 (-1186))))
+ ((*1 *2 *1)
+ (-12
(-5 *2
- (-597
- (-2 (|:| |eqzro| (-597 *8)) (|:| |neqzro| (-597 *8))
- (|:| |wcond| (-597 (-893 *5)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *5))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *5))))))))))
- (-5 *1 (-865 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 *9)) (-5 *5 (-1082))
- (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *4 (-597 (-1099))) (-5 *5 (-1082))
- (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *6 *7 *8 *9))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 *8)) (-5 *4 (-1082)) (-4 *8 (-890 *5 *7 *6))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-795) (-572 (-1099))))
- (-4 *7 (-741)) (-5 *2 (-530)) (-5 *1 (-865 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 *10)) (-5 *5 (-862))
- (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
- (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5 *6)
- (-12 (-5 *3 (-637 *10)) (-5 *4 (-597 (-1099))) (-5 *5 (-862))
- (-5 *6 (-1082)) (-4 *10 (-890 *7 *9 *8)) (-4 *7 (-13 (-289) (-140)))
- (-4 *8 (-13 (-795) (-572 (-1099)))) (-4 *9 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *7 *8 *9 *10))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-637 *9)) (-5 *4 (-862)) (-5 *5 (-1082))
- (-4 *9 (-890 *6 *8 *7)) (-4 *6 (-13 (-289) (-140)))
- (-4 *7 (-13 (-795) (-572 (-1099)))) (-4 *8 (-741)) (-5 *2 (-530))
- (-5 *1 (-865 *6 *7 *8 *9)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-597 *4)) (-4 *4 (-344)) (-5 *2 (-1181 *4))
- (-5 *1 (-762 *4 *3)) (-4 *3 (-607 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-411 *4)) (-5 *1 (-149 *4 *2))
- (-4 *4 (-13 (-795) (-522))))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1099))) (-5 *3 (-1099)) (-5 *1 (-506))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506)))))
- ((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506)))))
- ((*1 *2 *3 *2 *2 *2)
- (-12 (-5 *2 (-1099)) (-5 *1 (-653 *3)) (-4 *3 (-572 (-506)))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *4 (-597 (-1099))) (-5 *2 (-1099)) (-5 *1 (-653 *3))
- (-4 *3 (-572 (-506))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3705 *5) (|:| -1685 *5))))
- (-5 *1 (-755 *4 *5 *3 *6)) (-4 *3 (-607 *5))
- (-4 *6 (-607 (-388 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3705 *4) (|:| -1685 *4))))
- (-5 *1 (-755 *5 *4 *3 *6)) (-4 *3 (-607 *4))
- (-4 *6 (-607 (-388 *4)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-2 (|:| -3705 *5) (|:| -1685 *5))))
- (-5 *1 (-755 *4 *5 *6 *3)) (-4 *6 (-607 *5))
- (-4 *3 (-607 (-388 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *4 (-1157 *5)) (-5 *2 (-597 (-2 (|:| -3705 *4) (|:| -1685 *4))))
- (-5 *1 (-755 *5 *4 *6 *3)) (-4 *6 (-607 *4))
- (-4 *3 (-607 (-388 *4))))))
+ (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -3030 (-208))
+ (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
+ (-5 *1 (-1186))))
+ ((*1 *2 *1 *3 *3 *3 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))))
+(((*1 *1 *2 *2 *3 *1)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1034)) (-5 *1 (-273)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943)))
+ (-5 *1 (-165 *3)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1206 *4 *2)) (-4 *1 (-355 *4 *2)) (-4 *4 (-797))
+ (-4 *2 (-162))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-769 *4)) (-4 *1 (-1199 *4 *2)) (-4 *4 (-797))
+ (-4 *2 (-986))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *2 (-986)) (-5 *1 (-1205 *2 *3)) (-4 *3 (-793)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-523)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-4 *6 (-323 *3 *4 *5))
+ (-5 *2 (-394 *4 (-388 *4) *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1184 *6)) (-4 *6 (-13 (-390 *4 *5) (-977 *4)))
+ (-4 *4 (-934 *3)) (-4 *5 (-1160 *4)) (-4 *3 (-289))
+ (-5 *1 (-394 *3 *4 *5 *6))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-344))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-639 *3))
+ (-4 *3 (-13 (-289) (-10 -8 (-15 -2956 ((-399 $) $)))))
+ (-4 *4 (-1160 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-864)) (-5 *1 (-736)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1189)) (-5 *1 (-1116 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
+(((*1 *1 *1 *2 *1)
+ (-12 (-5 *2 (-531)) (-5 *1 (-1083 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-721)) (-4 *5 (-523))
+ (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-598 *1)) (-4 *1 (-863)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1160 *3)) (-5 *1 (-380 *3 *2))
+ (-4 *3 (-13 (-344) (-140))))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-2 (|:| -4145 (-112)) (|:| |w| (-208)))) (-5 *1 (-188)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-806 *5))) (-14 *5 (-597 (-1099))) (-4 *6 (-432))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
+ ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-966 (-790 (-531)))) (-5 *1 (-556 *3)) (-4 *3 (-986)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *8 (-1000 *5 *6 *7))
(-5 *2
- (-2 (|:| |dpolys| (-597 (-230 *5 *6)))
- (|:| |coords| (-597 (-530)))))
- (-5 *1 (-451 *5 *6 *7)) (-5 *3 (-597 (-230 *5 *6))) (-4 *7 (-432)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
+ (-2 (|:| |val| (-598 *8)) (|:| |towers| (-598 (-967 *5 *6 *7 *8)))))
+ (-5 *1 (-967 *5 *6 *7 *8)) (-5 *3 (-598 *8))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *8 (-1000 *5 *6 *7))
+ (-5 *2
+ (-2 (|:| |val| (-598 *8))
+ (|:| |towers| (-598 (-1073 *5 *6 *7 *8)))))
+ (-5 *1 (-1073 *5 *6 *7 *8)) (-5 *3 (-598 *8)))))
+(((*1 *1 *1 *2 *2)
+ (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-311))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-311)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1059 (-208))) (-5 *1 (-237))))
+ (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1062 (-208))) (-5 *1 (-237))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-820 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245)))
- (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208)))
+ (-12 (-5 *3 (-822 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245)))
+ (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208)))
(-5 *1 (-241 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-820 *5)) (-5 *4 (-1020 (-360)))
- (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208)))
+ (-12 (-5 *3 (-822 *5)) (-5 *4 (-1023 (-360)))
+ (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208)))
(-5 *1 (-241 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245)))
- (-5 *2 (-1059 (-208))) (-5 *1 (-241 *3))
- (-4 *3 (-13 (-572 (-506)) (-1027)))))
+ (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245)))
+ (-5 *2 (-1062 (-208))) (-5 *1 (-241 *3))
+ (-4 *3 (-13 (-573 (-507)) (-1030)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1059 (-208))) (-5 *1 (-241 *3))
- (-4 *3 (-13 (-572 (-506)) (-1027)))))
+ (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1062 (-208))) (-5 *1 (-241 *3))
+ (-4 *3 (-13 (-573 (-507)) (-1030)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-823 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245)))
- (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208)))
+ (-12 (-5 *3 (-825 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245)))
+ (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208)))
(-5 *1 (-241 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360)))
- (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1059 (-208)))
+ (-12 (-5 *3 (-825 *5)) (-5 *4 (-1023 (-360)))
+ (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1062 (-208)))
(-5 *1 (-241 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-124 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-984)) (-4 *6 (-890 *5 *4 *2))
- (-4 *2 (-795)) (-5 *1 (-891 *4 *2 *5 *6 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2366 ($ *6)) (-15 -1918 (*6 $))
- (-15 -1928 (*6 $)))))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
- (-5 *2 (-1099)) (-5 *1 (-980 *4)))))
+ (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-5 *2 (-110)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1160 *4)) (-5 *2 (-639 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3))
+ (-5 *2 (-639 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))))
(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-770)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1154 *5 *4)) (-4 *4 (-768)) (-14 *5 (-1099))
- (-5 *2 (-530)) (-5 *1 (-1041 *4 *5)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5
- *7 *3 *8)
- (-12 (-5 *5 (-637 (-208))) (-5 *6 (-110)) (-5 *7 (-637 (-530)))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-63 QPHESS))))
- (-5 *3 (-530)) (-5 *4 (-208)) (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-342 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-367 *4)) (-4 *4 (-1027))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-23)) (-5 *1 (-600 *4 *2 *5))
- (-4 *4 (-1027)) (-14 *5 *2)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-719)) (-5 *1 (-767 *4)) (-4 *4 (-795)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-463 *3)))))
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943)))
+ (-5 *1 (-165 *3)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
- (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-862))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-317 *4 *5 *6 *7)) (-4 *4 (-13 (-349) (-344)))
- (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5))) (-4 *7 (-323 *4 *5 *6))
- (-5 *2 (-719)) (-5 *1 (-373 *4 *5 *6 *7))))
- ((*1 *2 *1) (-12 (-4 *1 (-383)) (-5 *2 (-781 (-862)))))
- ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-530))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *2 *1 *3 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-689 *4 *3)) (-4 *4 (-984))
- (-4 *3 (-795))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-689 *4 *3)) (-4 *4 (-984)) (-4 *3 (-795))
- (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4))
- (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
- (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530))))
- (-5 *2 (-719)) (-5 *1 (-852 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
- (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
- (-4 *6 (-323 (-388 (-530)) *4 *5)) (-5 *2 (-719))
- (-5 *1 (-853 *4 *5 *6))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-317 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-344))
- (-4 *7 (-1157 *6)) (-4 *4 (-1157 (-388 *7))) (-4 *8 (-323 *6 *7 *4))
- (-4 *9 (-13 (-349) (-344))) (-5 *2 (-719))
- (-5 *1 (-957 *6 *7 *4 *8 *9))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1157 *3)) (-4 *3 (-984)) (-4 *3 (-522)) (-5 *2 (-719))))
- ((*1 *2 *1 *2)
- (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *2 *1) (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-208))) (-5 *4 (-719)) (-5 *2 (-637 (-208)))
- (-5 *1 (-287)))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12
- (-5 *3
- (-1 (-3 (-2 (|:| -2104 *4) (|:| |coeff| *4)) "failed") *4))
- (-4 *4 (-344)) (-5 *1 (-540 *4 *2)) (-4 *2 (-1157 *4)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099)))
- (-5 *2 (-637 (-297 (-208)))) (-5 *1 (-189))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *6 (-841 *5)) (-5 *2 (-637 *6))
- (-5 *1 (-640 *5 *6 *3 *4)) (-4 *3 (-354 *6))
- (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4269)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-107))))
- ((*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-719))))
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-598 (-639 (-297 (-531))))) (-5 *1 (-971)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3176 *4)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1049)) (-5 *1 (-107))))
+ ((*1 *2 *1) (-12 (-4 *1 (-129)) (-5 *2 (-721))))
((*1 *2 *3 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-354 *3)) (-4 *3 (-1135))
- (-4 *3 (-1027))))
+ (-12 (-5 *2 (-531)) (-4 *1 (-354 *3)) (-4 *3 (-1138))
+ (-4 *3 (-1030))))
((*1 *2 *3 *1)
- (-12 (-4 *1 (-354 *3)) (-4 *3 (-1135)) (-4 *3 (-1027))
- (-5 *2 (-530))))
+ (-12 (-4 *1 (-354 *3)) (-4 *3 (-1138)) (-4 *3 (-1030))
+ (-5 *2 (-531))))
((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-354 *4)) (-4 *4 (-1135))
- (-5 *2 (-530))))
- ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)) (-5 *3 (-134))))
- ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1068)) (-5 *2 (-530)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *4 (-522)) (-4 *5 (-1157 *4))
- (-5 *2 (-2 (|:| -2605 (-578 *4 *5)) (|:| -1423 (-388 *5))))
- (-5 *1 (-578 *4 *5)) (-5 *3 (-388 *5))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1088 *3 *4))) (-5 *1 (-1088 *3 *4))
- (-14 *3 (-862)) (-4 *4 (-984))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-432)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1)))
- (-4 *1 (-1157 *3)))))
+ (-12 (-5 *3 (-1 (-110) *4)) (-4 *1 (-354 *4)) (-4 *4 (-1138))
+ (-5 *2 (-531))))
+ ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-531)) (-5 *3 (-134))))
+ ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1071)) (-5 *2 (-531)))))
+(((*1 *2 *3 *1 *4)
+ (-12 (-5 *3 (-1067 *5 *6)) (-5 *4 (-1 (-110) *6 *6))
+ (-4 *5 (-13 (-1030) (-33))) (-4 *6 (-13 (-1030) (-33)))
+ (-5 *2 (-110)) (-5 *1 (-1068 *5 *6)))))
(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1024 *3)) (-4 *3 (-1138)) (-5 *2 (-531)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))))
+(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-110))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1098 *4)) (-4 *4 (-330)) (-5 *2 (-110))
+ (-5 *1 (-338 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3) (-12 (-5 *2 (-598 (-531))) (-5 *1 (-426)) (-5 *3 (-531)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-2 (|:| -4020 (-530)) (|:| -3721 (-597 *3))))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+ (-12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-5 *2 (-598 *5))
+ (-5 *1 (-833 *4 *5)) (-4 *5 (-1138)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-44 (-1085) (-724))) (-5 *1 (-112)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-2 (|:| |gen| *3) (|:| -2798 *4))))
+ (-4 *3 (-1030)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-602 *3 *4 *5)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124) (-943)))
+ (-5 *1 (-165 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-297 (-208))) (-5 *2 (-388 (-530))) (-5 *1 (-287)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-1021 *3)) (-4 *3 (-1135)))))
+ (-12 (-5 *3 (-895 *5)) (-4 *5 (-986)) (-5 *2 (-460 *4 *5))
+ (-5 *1 (-887 *4 *5)) (-14 *4 (-598 (-1102))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1184 (-721))) (-5 *1 (-627 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1) (-12 (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-1030) (-33)))
+ (-4 *5 (-13 (-1030) (-33))) (-5 *2 (-110)) (-5 *1 (-1068 *4 *5)))))
+(((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-1102))) (-5 *3 (-1102)) (-5 *1 (-507))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507)))))
+ ((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507)))))
+ ((*1 *2 *3 *2 *2 *2)
+ (-12 (-5 *2 (-1102)) (-5 *1 (-655 *3)) (-4 *3 (-573 (-507)))))
+ ((*1 *2 *3 *2 *4)
+ (-12 (-5 *4 (-598 (-1102))) (-5 *2 (-1102)) (-5 *1 (-655 *3))
+ (-4 *3 (-573 (-507))))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-814 *2 *3)) (-4 *2 (-1135)) (-4 *3 (-1135)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
+ (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1160 *6))
+ (-4 *6 (-13 (-27) (-411 *5)))
+ (-4 *5 (-13 (-797) (-523) (-977 (-531)))) (-4 *8 (-1160 (-388 *7)))
+ (-5 *2 (-548 *3)) (-5 *1 (-519 *5 *6 *7 *8 *3))
+ (-4 *3 (-323 *6 *7 *8)))))
(((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3))))
- ((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-984))
- (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3))
- (-4 *3 (-797 *5)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-4 *3 (-523)) (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-598 *1)) (-4 *1 (-1000 *3 *4 *5)))))
(((*1 *2)
- (-12 (-5 *2 (-1186)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-637 *11)) (-5 *4 (-597 (-388 (-893 *8))))
- (-5 *5 (-719)) (-5 *6 (-1082)) (-4 *8 (-13 (-289) (-140)))
- (-4 *11 (-890 *8 *10 *9)) (-4 *9 (-13 (-795) (-572 (-1099))))
- (-4 *10 (-741))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-208)) (-5 *5 (-531)) (-5 *2 (-1134 *3))
+ (-5 *1 (-740 *3)) (-4 *3 (-916))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-598 (-886 (-208))))) (-5 *4 (-110))
+ (-5 *1 (-1134 *2)) (-4 *2 (-916)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-627 *3)) (-4 *3 (-986)) (-4 *3 (-1030)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
+ (-5 *2 (-639 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-639 *4)) (-5 *1 (-397 *3 *4))
+ (-4 *3 (-398 *4))))
+ ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-639 *3)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-289)) (-4 *3 (-934 *2)) (-4 *4 (-1160 *3))
+ (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-977 *3))))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-110) (-112) (-112))) (-5 *1 (-112)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-1125 *3))) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-721)) (-4 *5 (-523))
(-5 *2
- (-2
- (|:| |rgl|
- (-597
- (-2 (|:| |eqzro| (-597 *11)) (|:| |neqzro| (-597 *11))
- (|:| |wcond| (-597 (-893 *8)))
- (|:| |bsoln|
- (-2 (|:| |partsol| (-1181 (-388 (-893 *8))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *8))))))))))
- (|:| |rgsz| (-530))))
- (-5 *1 (-865 *8 *9 *10 *11)) (-5 *7 (-530)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-4 *3 (-1135)) (-5 *2 (-597 *1)) (-4 *1 (-949 *3)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3)))
+ (-5 *1 (-912 *5 *3)) (-4 *3 (-1160 *5)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *4)) (-5 *3 (-862)) (-4 *4 (-984))
- (-5 *1 (-966 *4))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-637 *4))) (-5 *3 (-862)) (-4 *4 (-984))
- (-5 *1 (-966 *4)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-767 *3))))
- ((*1 *2 *1) (-12 (-4 *2 (-791)) (-5 *1 (-1202 *3 *2)) (-4 *3 (-984)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099))
- (-5 *1 (-244 *2)) (-4 *2 (-1135))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-597 (-245))) (-5 *4 (-1099)) (-5 *2 (-51))
- (-5 *1 (-245)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-311))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-311)))))
-(((*1 *1 *1) (-12 (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-110)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-112))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-112))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
- (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-248 *3)) (-4 *3 (-795)) (-5 *2 (-719)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3))))
- ((*1 *2 *2) (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-966 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-637 *3))) (-4 *3 (-984)) (-5 *1 (-966 *3)))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
+ (-12 (-5 *2 (-1 (-886 (-208)) (-208) (-208)))
+ (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))))
(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-237))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1182)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1185)) (-5 *1 (-237))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1182)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1185)) (-5 *1 (-237))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-818 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1182)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1185)) (-5 *1 (-237))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-820 (-1 (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-822 (-1 (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-208) (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 (-884 (-208)) (-208) (-208))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-1 (-886 (-208)) (-208) (-208))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *5 (-597 (-245))) (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *5 (-598 (-245))) (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-823 (-1 (-208) (-208) (-208)))) (-5 *4 (-1022 (-360)))
- (-5 *2 (-1183)) (-5 *1 (-237))))
+ (-12 (-5 *3 (-825 (-1 (-208) (-208) (-208)))) (-5 *4 (-1025 (-360)))
+ (-5 *2 (-1186)) (-5 *1 (-237))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-276 *7)) (-5 *4 (-1099)) (-5 *5 (-597 (-245)))
- (-4 *7 (-411 *6)) (-4 *6 (-13 (-522) (-795) (-975 (-530))))
- (-5 *2 (-1182)) (-5 *1 (-238 *6 *7))))
+ (-12 (-5 *3 (-276 *7)) (-5 *4 (-1102)) (-5 *5 (-598 (-245)))
+ (-4 *7 (-411 *6)) (-4 *6 (-13 (-523) (-797) (-977 (-531))))
+ (-5 *2 (-1185)) (-5 *1 (-238 *6 *7))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1182))
- (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027)))))
+ (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1185))
+ (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030)))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1182)) (-5 *1 (-241 *3))
- (-4 *3 (-13 (-572 (-506)) (-1027)))))
+ (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1185)) (-5 *1 (-241 *3))
+ (-4 *3 (-13 (-573 (-507)) (-1030)))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-818 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245)))
- (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1182))
+ (-12 (-5 *3 (-820 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245)))
+ (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1185))
(-5 *1 (-241 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-818 *5)) (-5 *4 (-1020 (-360)))
- (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1182))
+ (-12 (-5 *3 (-820 *5)) (-5 *4 (-1023 (-360)))
+ (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1185))
(-5 *1 (-241 *5))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-820 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245)))
- (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-822 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245)))
+ (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186))
(-5 *1 (-241 *6))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-820 *5)) (-5 *4 (-1020 (-360)))
- (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-822 *5)) (-5 *4 (-1023 (-360)))
+ (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186))
(-5 *1 (-241 *5))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245))) (-5 *2 (-1183))
- (-5 *1 (-241 *3)) (-4 *3 (-13 (-572 (-506)) (-1027)))))
+ (-12 (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245))) (-5 *2 (-1186))
+ (-5 *1 (-241 *3)) (-4 *3 (-13 (-573 (-507)) (-1030)))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1020 (-360))) (-5 *2 (-1183)) (-5 *1 (-241 *3))
- (-4 *3 (-13 (-572 (-506)) (-1027)))))
+ (-12 (-5 *4 (-1023 (-360))) (-5 *2 (-1186)) (-5 *1 (-241 *3))
+ (-4 *3 (-13 (-573 (-507)) (-1030)))))
((*1 *2 *3 *4 *4 *5)
- (-12 (-5 *3 (-823 *6)) (-5 *4 (-1020 (-360))) (-5 *5 (-597 (-245)))
- (-4 *6 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-825 *6)) (-5 *4 (-1023 (-360))) (-5 *5 (-598 (-245)))
+ (-4 *6 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186))
(-5 *1 (-241 *6))))
((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-823 *5)) (-5 *4 (-1020 (-360)))
- (-4 *5 (-13 (-572 (-506)) (-1027))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-825 *5)) (-5 *4 (-1023 (-360)))
+ (-4 *5 (-13 (-573 (-507)) (-1030))) (-5 *2 (-1186))
(-5 *1 (-241 *5))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1182)) (-5 *1 (-242))))
+ (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1185)) (-5 *1 (-242))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1182))
+ (-12 (-5 *3 (-598 (-208))) (-5 *4 (-598 (-245))) (-5 *2 (-1185))
(-5 *1 (-242))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *2 (-1182)) (-5 *1 (-242))))
+ (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *2 (-1185)) (-5 *1 (-242))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-597 (-245)))
- (-5 *2 (-1182)) (-5 *1 (-242))))
+ (-12 (-5 *3 (-598 (-886 (-208)))) (-5 *4 (-598 (-245)))
+ (-5 *2 (-1185)) (-5 *1 (-242))))
((*1 *2 *3 *3 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1183)) (-5 *1 (-242))))
+ (-12 (-5 *3 (-598 (-208))) (-5 *2 (-1186)) (-5 *1 (-242))))
((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-597 (-208))) (-5 *4 (-597 (-245))) (-5 *2 (-1183))
+ (-12 (-5 *3 (-598 (-208))) (-5 *4 (-598 (-245))) (-5 *2 (-1186))
(-5 *1 (-242)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-37 (-388 (-531))))
+ (-4 *2 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-2 (|:| -1658 (-531)) (|:| -2721 (-598 *3))))
+ (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-110)) (-5 *1 (-536 *3)) (-4 *3 (-977 (-531)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1116 *4 *5))
+ (-4 *4 (-1030)) (-4 *5 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-239)))))
+(((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-531)) (-5 *1 (-1121 *3)) (-4 *3 (-986)))))
+(((*1 *2 *3)
+ (-12 (-4 *1 (-838))
+ (-5 *3
+ (-2 (|:| |pde| (-598 (-297 (-208))))
+ (|:| |constraints|
+ (-598
+ (-2 (|:| |start| (-208)) (|:| |finish| (-208))
+ (|:| |grid| (-721)) (|:| |boundaryType| (-531))
+ (|:| |dStart| (-639 (-208))) (|:| |dFinish| (-639 (-208))))))
+ (|:| |f| (-598 (-598 (-297 (-208))))) (|:| |st| (-1085))
+ (|:| |tol| (-208))))
+ (-5 *2 (-975)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
- (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
+ (-12 (-4 *2 (-523)) (-5 *1 (-912 *2 *3)) (-4 *3 (-1160 *2)))))
+(((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 *1)) (-4 *1 (-284))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-571 *3)) (-4 *3 (-797))))
+ ((*1 *1 *2 *3 *4)
+ (-12 (-5 *2 (-112)) (-5 *3 (-598 *5)) (-5 *4 (-721)) (-4 *5 (-797))
+ (-5 *1 (-571 *5)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-531)) (-4 *1 (-1024 *3)) (-4 *3 (-1138)))))
+(((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085)))))
+ (-5 *2 (-975)) (-5 *1 (-287))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| -3582 (-360)) (|:| -3955 (-1085))
+ (|:| |explanations| (-598 (-1085))) (|:| |extra| (-975))))
+ (-5 *2 (-975)) (-5 *1 (-287)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
+ (-12 (-5 *3 (-531)) (-5 *4 (-399 *2)) (-4 *2 (-892 *7 *5 *6))
+ (-5 *1 (-693 *5 *6 *7 *2)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-289)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-531)) (-4 *5 (-795)) (-4 *5 (-344))
+ (-5 *2 (-721)) (-5 *1 (-888 *5 *6)) (-4 *6 (-1160 *5)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-816 *2 *3)) (-4 *2 (-1138)) (-4 *3 (-1138)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-795) (-975 (-530)))) (-5 *1 (-172 *3 *2))
- (-4 *2 (-13 (-27) (-1121) (-411 (-159 *3))))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-522) (-795) (-975 (-530))))
- (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 (-159 *4))))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *3 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *3)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-1125 *4 *2)) (-4 *2 (-13 (-27) (-1121) (-411 *4))))))
-(((*1 *2 *2)
- (|partial| -12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986))
+ (-14 *4 (-598 (-1102)))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9))
- (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6))
- (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984))
- (-4 *3 (-354 *2)) (-4 *4 (-354 *2)) (-4 *2 (-344))))
+ (-12 (-5 *3 (-51)) (-5 *2 (-110)) (-5 *1 (-50 *4)) (-4 *4 (-1138))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797)))
+ (-14 *4 (-598 (-1102)))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-624 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-628 *3)) (-4 *3 (-797))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-836 *3)) (-4 *3 (-797)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797))
+ (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-110)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *2 (-598 (-531))) (-5 *3 (-110)) (-5 *1 (-1040)))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-1104 (-388 (-531)))) (-5 *1 (-174)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2)
+ (-12 (-4 *3 (-986)) (-5 *2 (-901 (-663 *3 *4))) (-5 *1 (-663 *3 *4))
+ (-4 *4 (-1160 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311))
+ (-5 *1 (-313)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-598
+ (-2 (|:| |scalar| (-388 (-531))) (|:| |coeff| (-1098 *3))
+ (|:| |logand| (-1098 *3)))))
+ (-5 *1 (-548 *3)) (-4 *3 (-344)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3)))
+ (-5 *1 (-717 *3 *4)) (-4 *3 (-659 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *3 (-986))
+ (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-799 *3))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *4 (-96 *5)) (-4 *5 (-344)) (-4 *5 (-986))
+ (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-800 *5 *3))
+ (-4 *3 (-799 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4))))
+ (-5 *1 (-726 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1134 *3)) (-4 *3 (-916)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *6 (-523)) (-4 *2 (-892 *3 *5 *4))
+ (-5 *1 (-683 *5 *4 *6 *2)) (-5 *3 (-388 (-895 *6))) (-4 *5 (-743))
+ (-4 *4 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-598 (-245))) (-5 *4 (-1102))
+ (-5 *1 (-244 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-598 (-245))) (-5 *4 (-1102)) (-5 *2 (-51))
+ (-5 *1 (-245)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5))
+ (-5 *1 (-930 *3 *4 *5 *6 *7))))
((*1 *2 *2)
- (|partial| -12 (-4 *3 (-344)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
- (-4 *2 (-635 *3 *4 *5))))
- ((*1 *1 *1)
- (|partial| -12 (-5 *1 (-637 *2)) (-4 *2 (-344)) (-4 *2 (-984))))
- ((*1 *1 *1)
- (|partial| -12 (-4 *1 (-1049 *2 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-221 *2 *3)) (-4 *5 (-221 *2 *3)) (-4 *3 (-344))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-1107 *3)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
- ((*1 *1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-570 *3)) (-4 *3 (-795))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-112)) (-5 *3 (-597 *5)) (-5 *4 (-719)) (-4 *5 (-795))
- (-5 *1 (-570 *5)))))
+ (-12 (-5 *2 (-598 *7)) (-4 *7 (-1005 *3 *4 *5 *6)) (-4 *3 (-432))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5))
+ (-5 *1 (-1037 *3 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-570 *5))) (-4 *4 (-795)) (-5 *2 (-570 *5))
- (-5 *1 (-539 *4 *5)) (-4 *5 (-411 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+ (-12 (-5 *3 (-598 (-598 (-886 (-208)))))
+ (-5 *2 (-598 (-1025 (-208)))) (-5 *1 (-871)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23))
+ (-14 *4 *3))))
+(((*1 *1 *1) (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))))
+ ((*1 *1 *1) (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-3 (-388 (-893 *5)) (-1089 (-1099) (-893 *5))))
- (-4 *5 (-432)) (-5 *2 (-597 (-637 (-388 (-893 *5)))))
- (-5 *1 (-274 *5)) (-5 *4 (-637 (-388 (-893 *5)))))))
-(((*1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-349))))
+ (-12 (-5 *3 (-848 (-531))) (-5 *4 (-531)) (-5 *2 (-639 *4))
+ (-5 *1 (-968 *5)) (-4 *5 (-986))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-639 (-531))) (-5 *1 (-968 *4))
+ (-4 *4 (-986))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-848 (-531)))) (-5 *4 (-531))
+ (-5 *2 (-598 (-639 *4))) (-5 *1 (-968 *5)) (-4 *5 (-986))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-598 (-531)))) (-5 *2 (-598 (-639 (-531))))
+ (-5 *1 (-968 *4)) (-4 *4 (-986)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-276 *3))) (-5 *1 (-276 *3)) (-4 *3 (-523))
+ (-4 *3 (-1138)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-571 (-47)))) (-5 *1 (-47))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-571 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1098 (-47))) (-5 *3 (-598 (-571 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1098 (-47))) (-5 *3 (-571 (-47))) (-5 *1 (-47))))
+ ((*1 *2 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-4 *2 (-13 (-344) (-795))) (-5 *1 (-169 *2 *3))
+ (-4 *3 (-1160 (-159 *2)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-864)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1160 *2)) (-4 *2 (-934 *3)) (-5 *1 (-394 *3 *2 *4 *5))
+ (-4 *3 (-289)) (-4 *5 (-13 (-390 *2 *4) (-977 *2)))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-1160 *2)) (-4 *2 (-934 *3))
+ (-5 *1 (-395 *3 *2 *4 *5 *6)) (-4 *3 (-289)) (-4 *5 (-390 *2 *4))
+ (-14 *6 (-1184 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-864)) (-4 *5 (-986))
+ (-4 *2 (-13 (-385) (-977 *5) (-344) (-1124) (-266)))
+ (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1160 *5))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-571 (-473)))) (-5 *1 (-473))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-571 (-473))) (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1098 (-473))) (-5 *3 (-598 (-571 (-473))))
+ (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1098 (-473))) (-5 *3 (-571 (-473))) (-5 *1 (-473))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 *4)) (-5 *3 (-864)) (-4 *4 (-330))
+ (-5 *1 (-501 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-675 *4 *2)) (-4 *2 (-1160 *4))
+ (-5 *1 (-725 *4 *2 *5 *3)) (-4 *3 (-1160 *5))))
+ ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162))))
+ ((*1 *1 *1) (-4 *1 (-995))))
+(((*1 *2 *3 *4 *4 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1 (-159 (-208)) (-159 (-208)))) (-5 *4 (-1025 (-208)))
+ (-5 *2 (-1186)) (-5 *1 (-239)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2) (-12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2) (-12 (-5 *2 (-783 (-531))) (-5 *1 (-505))))
+ ((*1 *1) (-12 (-5 *1 (-783 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *4 (-1 *7 *7))
+ (-5 *5
+ (-1 (-2 (|:| |ans| *6) (|:| -3157 *6) (|:| |sol?| (-110))) (-531)
+ *6))
+ (-4 *6 (-344)) (-4 *7 (-1160 *6))
+ (-5 *2
+ (-3 (-2 (|:| |answer| (-388 *7)) (|:| |a0| *6))
+ (-2 (|:| -2351 (-388 *7)) (|:| |coeff| (-388 *7))) "failed"))
+ (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1146 *3 *2)) (-4 *3 (-986))
+ (-4 *2 (-1175 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-176))))
+ ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-282))))
+ ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1085)) (-5 *1 (-287)))))
+(((*1 *1 *2) (-12 (-5 *2 (-864)) (-4 *1 (-349))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4))
+ (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4))
(-4 *4 (-330))))
((*1 *2 *1)
- (-12 (-4 *2 (-795)) (-5 *1 (-662 *2 *3 *4)) (-4 *3 (-1027))
+ (-12 (-4 *2 (-797)) (-5 *1 (-664 *2 *3 *4)) (-4 *3 (-1030))
(-14 *4
- (-1 (-110) (-2 (|:| -1986 *2) (|:| -3194 *3))
- (-2 (|:| -1986 *2) (|:| -3194 *3)))))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-637 *3)))))
+ (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *3))
+ (-2 (|:| -1889 *2) (|:| -1790 *3)))))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-1184 *5)) (-5 *3 (-721)) (-5 *4 (-1049)) (-4 *5 (-330))
+ (-5 *1 (-501 *5)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-276 *2)) (-4 *2 (-677)) (-4 *2 (-1138)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-908))) (-5 *1 (-106)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-344)) (-5 *1 (-717 *2 *3)) (-4 *2 (-659 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4273)) (-4 *1 (-468 *3)) (-4 *3 (-1138))
+ (-4 *3 (-1030)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-110))
+ (-5 *1 (-847 *4))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-864)) (-5 *2 (-110)) (-5 *1 (-1031 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-1 (-886 *3) (-886 *3))) (-5 *1 (-165 *3))
+ (-4 *3 (-13 (-344) (-1124) (-943))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
(((*1 *2)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1184)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-597 *4))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *1 *1 *2 *2)
- (|partial| -12 (-5 *2 (-862)) (-5 *1 (-1028 *3 *4)) (-14 *3 *2)
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201))))
- ((*1 *2 *1) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-466))))
- ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289))))
+ (-12 (-4 *2 (-13 (-411 *3) (-943))) (-5 *1 (-258 *3 *2))
+ (-4 *3 (-13 (-797) (-523)))))
+ ((*1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
+ ((*1 *1) (-5 *1 (-457))) ((*1 *1) (-4 *1 (-1124))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-4 *1 (-1000 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530))))
- ((*1 *1 *1) (-4 *1 (-993))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-797)) (-5 *1 (-124 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *3 *3 *3)
- (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
- (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
- (-5 *1 (-1076 *3)))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
+ ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-1098 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| A (-639 *5))
+ (|:| |eqs|
+ (-598
+ (-2 (|:| C (-639 *5)) (|:| |g| (-1184 *5)) (|:| -2723 *6)
+ (|:| |rh| *5))))))
+ (-5 *1 (-763 *5 *6)) (-5 *3 (-639 *5)) (-5 *4 (-1184 *5))
+ (-4 *6 (-609 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-609 *5))
+ (-5 *2 (-2 (|:| -1751 (-639 *6)) (|:| |vec| (-1184 *5))))
+ (-5 *1 (-763 *5 *6)) (-5 *3 (-639 *6)) (-5 *4 (-1184 *5)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-110)) (-5 *1 (-282)))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432)))
+ (-5 *2 (-790 *4)) (-5 *1 (-294 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102))
+ (-14 *6 *4)))
+ ((*1 *2 *1)
+ (|partial| -12
+ (-4 *3 (-13 (-797) (-977 (-531)) (-594 (-531)) (-432)))
+ (-5 *2 (-790 *4)) (-5 *1 (-1170 *3 *4 *5 *6))
+ (-4 *4 (-13 (-27) (-1124) (-411 *3))) (-14 *5 (-1102))
+ (-14 *6 *4))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-388 (-895 (-531)))))
+ (-5 *2 (-598 (-598 (-276 (-895 *4))))) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-795) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-276 (-388 (-895 (-531))))))
+ (-5 *2 (-598 (-598 (-276 (-895 *4))))) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-795) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 (-531)))) (-5 *2 (-598 (-276 (-895 *4))))
+ (-5 *1 (-361 *4)) (-4 *4 (-13 (-795) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-276 (-388 (-895 (-531)))))
+ (-5 *2 (-598 (-276 (-895 *4)))) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-795) (-344)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *5 (-1102))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-4 *4 (-13 (-29 *6) (-1124) (-902)))
+ (-5 *2 (-2 (|:| |particular| *4) (|:| -3523 (-598 *4))))
+ (-5 *1 (-605 *6 *4 *3)) (-4 *3 (-609 *4))))
+ ((*1 *2 *3 *2 *4 *2 *5)
+ (|partial| -12 (-5 *4 (-1102)) (-5 *5 (-598 *2))
+ (-4 *2 (-13 (-29 *6) (-1124) (-902)))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *1 (-605 *6 *2 *3)) (-4 *3 (-609 *2))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1184 *5) "failed"))
+ (|:| -3523 (-598 (-1184 *5)))))
+ (-5 *1 (-620 *5)) (-5 *4 (-1184 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-598 *5))) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |particular| (-3 (-1184 *5) "failed"))
+ (|:| -3523 (-598 (-1184 *5)))))
+ (-5 *1 (-620 *5)) (-5 *4 (-1184 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-598
+ (-2 (|:| |particular| (-3 (-1184 *5) "failed"))
+ (|:| -3523 (-598 (-1184 *5))))))
+ (-5 *1 (-620 *5)) (-5 *4 (-598 (-1184 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-598 *5))) (-4 *5 (-344))
+ (-5 *2
+ (-598
+ (-2 (|:| |particular| (-3 (-1184 *5) "failed"))
+ (|:| -3523 (-598 (-1184 *5))))))
+ (-5 *1 (-620 *5)) (-5 *4 (-598 (-1184 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274))))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274))))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4))))
+ (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274))))
+ (-4 *7 (-13 (-354 *5) (-10 -7 (-6 -4274))))
+ (-5 *2
+ (-598
+ (-2 (|:| |particular| (-3 *7 "failed")) (|:| -3523 (-598 *7)))))
+ (-5 *1 (-621 *5 *6 *7 *3)) (-5 *4 (-598 *7))
+ (-4 *3 (-637 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-523))
+ (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-720 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-523))
+ (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-720 *4))))
+ ((*1 *2 *2 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-112)) (-5 *4 (-1102))
+ (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *1 (-722 *5 *2)) (-4 *2 (-13 (-29 *5) (-1124) (-902)))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-639 *7)) (-5 *5 (-1102))
+ (-4 *7 (-13 (-29 *6) (-1124) (-902)))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2
+ (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7)))))
+ (-5 *1 (-752 *6 *7)) (-5 *4 (-1184 *7))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-639 *6)) (-5 *4 (-1102))
+ (-4 *6 (-13 (-29 *5) (-1124) (-902)))
+ (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2 (-598 (-1184 *6))) (-5 *1 (-752 *5 *6))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-598 (-276 *7))) (-5 *4 (-598 (-112)))
+ (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902)))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2
+ (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7)))))
+ (-5 *1 (-752 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-598 *7)) (-5 *4 (-598 (-112)))
+ (-5 *5 (-1102)) (-4 *7 (-13 (-29 *6) (-1124) (-902)))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2
+ (-2 (|:| |particular| (-1184 *7)) (|:| -3523 (-598 (-1184 *7)))))
+ (-5 *1 (-752 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-276 *7)) (-5 *4 (-112)) (-5 *5 (-1102))
+ (-4 *7 (-13 (-29 *6) (-1124) (-902)))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *7) (|:| -3523 (-598 *7))) *7 "failed"))
+ (-5 *1 (-752 *6 *7))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-112)) (-5 *5 (-1102))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2
+ (-3 (-2 (|:| |particular| *3) (|:| -3523 (-598 *3))) *3 "failed"))
+ (-5 *1 (-752 *6 *3)) (-4 *3 (-13 (-29 *6) (-1124) (-902)))))
+ ((*1 *2 *3 *4 *3 *5)
+ (|partial| -12 (-5 *3 (-276 *2)) (-5 *4 (-112)) (-5 *5 (-598 *2))
+ (-4 *2 (-13 (-29 *6) (-1124) (-902))) (-5 *1 (-752 *6 *2))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))))
+ ((*1 *2 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-112)) (-5 *4 (-276 *2)) (-5 *5 (-598 *2))
+ (-4 *2 (-13 (-29 *6) (-1124) (-902)))
+ (-4 *6 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *1 (-752 *6 *2))))
+ ((*1 *2 *3) (-12 (-5 *3 (-758)) (-5 *2 (-975)) (-5 *1 (-755))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-758)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-755))))
+ ((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4))
+ (-5 *2 (-975)) (-5 *1 (-755))))
+ ((*1 *2 *3 *4 *4 *5 *4)
+ (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4))
+ (-5 *2 (-975)) (-5 *1 (-755))))
+ ((*1 *2 *3 *4 *4 *5 *6 *4)
+ (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360)))
+ (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755))))
+ ((*1 *2 *3 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1184 (-297 (-360)))) (-5 *4 (-360)) (-5 *5 (-598 *4))
+ (-5 *2 (-975)) (-5 *1 (-755))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4)
+ (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360)))
+ (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755))))
+ ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4)
+ (-12 (-5 *3 (-1184 (-297 *4))) (-5 *5 (-598 (-360)))
+ (-5 *6 (-297 (-360))) (-5 *4 (-360)) (-5 *2 (-975)) (-5 *1 (-755))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12
+ (-5 *5
+ (-1
+ (-3 (-2 (|:| |particular| *6) (|:| -3523 (-598 *6))) "failed")
+ *7 *6))
+ (-4 *6 (-344)) (-4 *7 (-609 *6))
+ (-5 *2 (-2 (|:| |particular| (-1184 *6)) (|:| -3523 (-639 *6))))
+ (-5 *1 (-763 *6 *7)) (-5 *3 (-639 *6)) (-5 *4 (-1184 *6))))
+ ((*1 *2 *3) (-12 (-5 *3 (-841)) (-5 *2 (-975)) (-5 *1 (-840))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-841)) (-5 *4 (-998)) (-5 *2 (-975)) (-5 *1 (-840))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8)
+ (-12 (-5 *4 (-721)) (-5 *6 (-598 (-598 (-297 *3)))) (-5 *7 (-1085))
+ (-5 *8 (-208)) (-5 *5 (-598 (-297 (-360)))) (-5 *3 (-360))
+ (-5 *2 (-975)) (-5 *1 (-840))))
+ ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *4 (-721)) (-5 *6 (-598 (-598 (-297 *3)))) (-5 *7 (-1085))
+ (-5 *5 (-598 (-297 (-360)))) (-5 *3 (-360)) (-5 *2 (-975))
+ (-5 *1 (-840))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *2 (-598 (-360)))
+ (-5 *1 (-963)) (-5 *4 (-360))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-895 (-531))) (-5 *2 (-598 (-360))) (-5 *1 (-963))
+ (-5 *4 (-360))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1060 *4))
+ (-5 *3 (-297 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1060 *4))
+ (-5 *3 (-276 (-297 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1060 *5))
+ (-5 *3 (-276 (-297 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2 (-598 (-276 (-297 *5)))) (-5 *1 (-1060 *5))
+ (-5 *3 (-297 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-1102)))
+ (-4 *5 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1060 *5))
+ (-5 *3 (-598 (-276 (-297 *5))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102)))
+ (-4 *5 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *5))))))
+ (-5 *1 (-1108 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-1102))) (-4 *5 (-523))
+ (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-1108 *5))
+ (-5 *3 (-598 (-276 (-388 (-895 *5)))))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-388 (-895 *4)))) (-4 *4 (-523))
+ (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-1108 *4))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-598 (-598 (-276 (-388 (-895 *4))))))
+ (-5 *1 (-1108 *4)) (-5 *3 (-598 (-276 (-388 (-895 *4)))))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102)) (-4 *5 (-523))
+ (-5 *2 (-598 (-276 (-388 (-895 *5))))) (-5 *1 (-1108 *5))
+ (-5 *3 (-388 (-895 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102)) (-4 *5 (-523))
+ (-5 *2 (-598 (-276 (-388 (-895 *5))))) (-5 *1 (-1108 *5))
+ (-5 *3 (-276 (-388 (-895 *5))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *4)))))
+ (-5 *1 (-1108 *4)) (-5 *3 (-388 (-895 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-598 (-276 (-388 (-895 *4)))))
+ (-5 *1 (-1108 *4)) (-5 *3 (-276 (-388 (-895 *4)))))))
+(((*1 *2 *3 *3 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-507)))))
+(((*1 *1 *1 *1) (-4 *1 (-614))) ((*1 *1 *1 *1) (-5 *1 (-1049))))
+(((*1 *1 *2 *2 *3)
+ (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-1030))
+ (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4))))
+ (-5 *1 (-1008 *4 *5 *2))
+ (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4))))))
+ ((*1 *1 *2 *2)
+ (-12 (-4 *3 (-1030))
+ (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3))))
+ (-5 *1 (-1008 *3 *4 *2))
+ (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3)))))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-344)))))
+(((*1 *2) (-12 (-5 *2 (-598 *3)) (-5 *1 (-1016 *3)) (-4 *3 (-129)))))
+(((*1 *2 *3 *3 *4 *5 *5)
+ (-12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *3 (-1000 *6 *7 *8))
+ (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1038 *6 *7 *8 *3 *4)) (-4 *4 (-1005 *6 *7 *8 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 (-2 (|:| |val| (-598 *8)) (|:| -2410 *9))))
+ (-5 *5 (-110)) (-4 *8 (-1000 *6 *7 *4)) (-4 *9 (-1005 *6 *7 *4 *8))
+ (-4 *6 (-432)) (-4 *7 (-743)) (-4 *4 (-797))
+ (-5 *2 (-598 (-2 (|:| |val| *8) (|:| -2410 *9))))
+ (-5 *1 (-1038 *6 *7 *4 *8 *9)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-743))
+ (-4 *3 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *5 (-523))
+ (-5 *1 (-683 *4 *3 *5 *2)) (-4 *2 (-892 (-388 (-895 *5)) *4 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-4 *4 (-986)) (-4 *5 (-743))
+ (-4 *3
+ (-13 (-797)
+ (-10 -8 (-15 -3318 ((-1102) $))
+ (-15 -3524 ((-3 $ "failed") (-1102))))))
+ (-5 *1 (-926 *4 *5 *3 *2)) (-4 *2 (-892 (-895 *4) *5 *3))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 *6))
+ (-4 *6
+ (-13 (-797)
+ (-10 -8 (-15 -3318 ((-1102) $))
+ (-15 -3524 ((-3 $ "failed") (-1102))))))
+ (-4 *4 (-986)) (-4 *5 (-743)) (-5 *1 (-926 *4 *5 *6 *2))
+ (-4 *2 (-892 (-895 *4) *5 *6)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-110) *2)) (-4 *2 (-129)) (-5 *1 (-1016 *2))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-531) *2 *2)) (-4 *2 (-129)) (-5 *1 (-1016 *2)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099)))))
+ (-12 (-5 *2 (-721)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986))
+ (-14 *4 (-598 (-1102)))))
((*1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
- (-14 *4 (-597 (-1099)))))
+ (-12 (-5 *2 (-721)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797)))
+ (-14 *4 (-598 (-1102)))))
((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344))))
((*1 *2 *1)
(|partial| -12 (-4 *1 (-316 *3 *4 *5 *2)) (-4 *3 (-344))
- (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
+ (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4)))
(-4 *2 (-323 *3 *4 *5))))
((*1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2)
(-4 *5 (-162))))
- ((*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-673 *2 *3)) (-4 *3 (-1157 *2)))))
+ ((*1 *1) (-12 (-4 *2 (-162)) (-4 *1 (-675 *2 *3)) (-4 *3 (-1160 *2)))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-137))) (-5 *1 (-134))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-134)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-606 *4)) (-4 *4 (-323 *5 *6 *7))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6)))
+ (-5 *2
+ (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3523 (-598 *4))))
+ (-5 *1 (-756 *5 *6 *7 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1027)) (-5 *1 (-100 *3))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-100 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1097 *4 *5 *6))
- (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4)))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1154 *5 *4)) (-5 *1 (-1173 *4 *5 *6))
- (-4 *4 (-984)) (-14 *5 (-1099)) (-14 *6 *4))))
+ (-12
+ (-5 *3
+ (-598
+ (-2 (|:| -2277 (-721))
+ (|:| |eqns|
+ (-598
+ (-2 (|:| |det| *7) (|:| |rows| (-598 (-531)))
+ (|:| |cols| (-598 (-531))))))
+ (|:| |fgb| (-598 *7)))))
+ (-4 *7 (-892 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
+ (-4 *5 (-13 (-797) (-573 (-1102)))) (-4 *6 (-743)) (-5 *2 (-721))
+ (-5 *1 (-867 *4 *5 *6 *7)))))
+(((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))))
+(((*1 *2)
+ (-12 (-4 *4 (-1142)) (-4 *5 (-1160 *4)) (-4 *6 (-1160 (-388 *5)))
+ (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *1 *1) (-4 *1 (-614))) ((*1 *1 *1 *1) (-5 *1 (-1049))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-934 *2)) (-4 *4 (-1160 *3)) (-4 *2 (-289))
+ (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-977 *3)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-797)) (-5 *2 (-1054 *3 (-571 *1)))
+ (-4 *1 (-411 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-677) *4))
+ (-5 *1 (-577 *3 *4 *2)) (-4 *3 (-37 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-677) *4))
+ (-5 *1 (-615 *3 *4 *2)) (-4 *3 (-668 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-360)) (-5 *1 (-734)))))
+ (-12 (-4 *4 (-523)) (-5 *2 (-1184 (-639 *4))) (-5 *1 (-88 *4 *5))
+ (-5 *3 (-639 *4)) (-4 *5 (-609 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-724)) (-5 *1 (-51)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3388 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-795)) (-5 *1 (-119 *3)))))
-(((*1 *1 *2)
- (-12
+ (-12 (-5 *3 (-598 *2)) (-5 *1 (-168 *2)) (-4 *2 (-289))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *3 (-598 (-598 *4))) (-5 *2 (-598 *4)) (-4 *4 (-289))
+ (-5 *1 (-168 *4))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 *8))
+ (-5 *4
+ (-598
+ (-2 (|:| -3523 (-639 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-639 *7)))))
+ (-5 *5 (-721)) (-4 *8 (-1160 *7)) (-4 *7 (-1160 *6)) (-4 *6 (-330))
(-5 *2
- (-597
- (-2
- (|:| -3078
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208))))
- (|:| |yinit| (-597 (-208))) (|:| |intvals| (-597 (-208)))
- (|:| |g| (-297 (-208))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (|:| -1874
- (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
- (|:| |expense| (-360)) (|:| |accuracy| (-360))
- (|:| |intermediateResults| (-360)))))))
- (-5 *1 (-751)))))
-(((*1 *1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-1064 *4 *5))) (-5 *3 (-1 (-110) *5 *5))
- (-4 *4 (-13 (-1027) (-33))) (-4 *5 (-13 (-1027) (-33)))
- (-5 *1 (-1065 *4 *5))))
- ((*1 *1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-1064 *3 *4))) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-1095 *1)) (-4 *1 (-951)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-916 *4 *5 *6 *3)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *3 *3 *3 *4 *5)
- (-12 (-5 *5 (-597 (-597 (-208)))) (-5 *4 (-208))
- (-5 *2 (-597 (-884 *4))) (-5 *1 (-1132)) (-5 *3 (-884 *4)))))
-(((*1 *2 *2 *3 *2)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-984)) (-5 *1 (-638 *3)))))
-(((*1 *2) (-12 (-5 *2 (-781 (-530))) (-5 *1 (-504))))
- ((*1 *1) (-12 (-5 *1 (-781 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-890 *4 *5 *6)) (-4 *6 (-572 (-1099)))
- (-4 *4 (-344)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *2 (-1089 (-597 (-893 *4)) (-597 (-276 (-893 *4)))))
- (-5 *1 (-482 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (|partial| -12 (-5 *3 (-862)) (-5 *1 (-422 *2))
- (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-862)) (-5 *4 (-719)) (-5 *1 (-422 *2))
- (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *1 (-422 *2))
- (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4 *5)
- (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719))
- (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *2 *4 *5 *6)
- (|partial| -12 (-5 *3 (-862)) (-5 *4 (-597 (-719))) (-5 *5 (-719))
- (-5 *6 (-110)) (-5 *1 (-422 *2)) (-4 *2 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-399 *2)) (-4 *2 (-1157 *5))
- (-5 *1 (-424 *5 *2)) (-4 *5 (-984)))))
-(((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
- (-4 *3 (-348 *4))))
- ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-5 *1 (-127))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-360)) (-5 *1 (-977)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-868)))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-27) (-411 *4)))
- (-4 *4 (-13 (-795) (-522) (-975 (-530))))
- (-4 *7 (-1157 (-388 *6))) (-5 *1 (-518 *4 *5 *6 *7 *2))
- (-4 *2 (-323 *5 *6 *7)))))
+ (-2 (|:| -3523 (-639 *7)) (|:| |basisDen| *7)
+ (|:| |basisInv| (-639 *7))))
+ (-5 *1 (-476 *6 *7 *8))))
+ ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
-(((*1 *1 *1) (-4 *1 (-993)))
- ((*1 *1 *1 *2 *2)
- (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
+ (-12 (-5 *3 (-1184 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
+ (-4 *5 (-1160 *4)) (-5 *2 (-639 *4))))
+ ((*1 *2)
+ (-12 (-4 *4 (-162)) (-4 *5 (-1160 *4)) (-5 *2 (-639 *4))
+ (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5))))
+ ((*1 *2)
+ (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1160 *3))
+ (-5 *2 (-639 *3)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-941 *3)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-344))
+ (-5 *2 (-2 (|:| -4216 (-399 *3)) (|:| |special| (-399 *3))))
+ (-5 *1 (-678 *5 *3)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-163 *3)) (-4 *3 (-289))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-626 *3)) (-4 *3 (-1138))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1159 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740)))))
-(((*1 *2 *3)
+ (-12 (-5 *2 (-721)) (-4 *1 (-691 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-797))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *1 (-922 *3)) (-4 *3 (-986))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1))
+ (-4 *1 (-1005 *4 *5 *6 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-1162 *3 *2)) (-4 *3 (-986)) (-4 *2 (-742)))))
+(((*1 *1 *1 *1) (-5 *1 (-127))))
+(((*1 *2 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1189)) (-5 *1 (-1105))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-1106)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-886 *4)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
+(((*1 *2 *3 *1)
+ (-12 (-5 *3 (-848 *4)) (-4 *4 (-1030)) (-5 *2 (-598 (-721)))
+ (-5 *1 (-847 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-1091 3 *3))))
+ ((*1 *1) (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1186))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1186)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-47)))) (-5 *1 (-47))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-289)) (-4 *4 (-934 *3)) (-4 *5 (-1160 *4))
+ (-5 *2 (-1184 *6)) (-5 *1 (-394 *3 *4 *5 *6))
+ (-4 *6 (-13 (-390 *4 *5) (-977 *4)))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-986)) (-4 *3 (-797)) (-5 *2 (-1054 *3 (-571 *1)))
+ (-4 *1 (-411 *3))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1054 (-531) (-571 (-473)))) (-5 *1 (-473))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-577 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-677) *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-162)) (-4 *2 (-668 *3)) (-5 *1 (-615 *2 *3 *4))
+ (-4 *4 (|SubsetCategory| (-677) *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)))))
+(((*1 *2 *3) (-12 (-5 *3 (-721)) (-5 *2 (-360)) (-5 *1 (-979)))))
+(((*1 *2 *1)
(-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-1080 (-208))) (-5 *1 (-176))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-597 (-1099)))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1181 (-297 (-208)))) (-5 *4 (-597 (-1099)))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-1080 (-208))) (-5 *1 (-282)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-5 *2
+ (-598
+ (-598
+ (-3 (|:| -3955 (-1102))
+ (|:| |bounds| (-598 (-3 (|:| S (-1102)) (|:| P (-895 (-531))))))))))
+ (-5 *1 (-1106)))))
(((*1 *2)
- (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2))
- (-4 *3 (-13 (-795) (-522)))))
- ((*1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
- ((*1 *1) (-5 *1 (-457))) ((*1 *1) (-4 *1 (-1121))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1181 *6)) (-5 *4 (-1181 (-530))) (-5 *5 (-530))
- (-4 *6 (-1027)) (-5 *2 (-1 *6)) (-5 *1 (-956 *6)))))
-(((*1 *2 *2 *3) (-12 (-5 *3 (-530)) (-5 *1 (-1110 *2)) (-4 *2 (-344)))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189))
+ (-5 *1 (-930 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6))))
+ ((*1 *2)
+ (-12 (-4 *3 (-432)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-1189))
+ (-5 *1 (-1037 *3 *4 *5 *6 *7)) (-4 *7 (-1005 *3 *4 *5 *6)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1109)))))
(((*1 *1 *1) (-5 *1 (-208)))
((*1 *1 *1)
- (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-597 (-1099)))
- (-14 *3 (-597 (-1099))) (-4 *4 (-368))))
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
((*1 *1 *1) (-5 *1 (-360))) ((*1 *1) (-5 *1 (-360))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-884 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *3 (-984)) (-4 *1 (-1060 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-884 *3))) (-4 *1 (-1060 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6))
- (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
-(((*1 *1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-1099))) (-4 *4 (-1027))
- (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
- (-5 *1 (-1006 *4 *5 *2))
- (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4))))))
- ((*1 *1 *2 *2)
- (-12 (-4 *3 (-1027))
- (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))
- (-5 *1 (-1006 *3 *4 *2))
- (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3)))))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3))
- (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2))
- (-4 *2 (-635 *3 *5 *6)))))
+ (-12 (-5 *2 (-806)) (-5 *1 (-1083 *3)) (-4 *3 (-1030))
+ (-4 *3 (-1138)))))
(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 (-1099))) (-5 *3 (-1181 (-433 *4 *5 *6 *7)))
- (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862))
- (-14 *6 (-597 (-1099))) (-14 *7 (-1181 (-637 *4)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1181 (-433 *4 *5 *6 *7)))
- (-5 *1 (-433 *4 *5 *6 *7)) (-4 *4 (-162)) (-14 *5 (-862))
- (-14 *6 (-597 *2)) (-14 *7 (-1181 (-637 *4)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-433 *3 *4 *5 *6))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099)))
- (-14 *6 (-1181 (-637 *3)))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 (-1099))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-162)) (-14 *4 (-862)) (-14 *5 (-597 (-1099)))
- (-14 *6 (-1181 (-637 *3)))))
+ (-12 (-5 *3 (-1085)) (-4 *1 (-345 *2 *4)) (-4 *2 (-1030))
+ (-4 *4 (-1030))))
((*1 *1 *2)
- (-12 (-5 *2 (-1099)) (-5 *1 (-433 *3 *4 *5 *6)) (-4 *3 (-162))
- (-14 *4 (-862)) (-14 *5 (-597 *2)) (-14 *6 (-1181 (-637 *3)))))
- ((*1 *1)
- (-12 (-5 *1 (-433 *2 *3 *4 *5)) (-4 *2 (-162)) (-14 *3 (-862))
- (-14 *4 (-597 (-1099))) (-14 *5 (-1181 (-637 *2))))))
+ (-12 (-4 *1 (-345 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
+ (-5 *2 (-1098 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-703)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3))
- (-4 *4 (-13 (-344) (-793))) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *4 *4 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
+ (-12 (-5 *3 (-1102)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-652 *4 *5 *6 *7))
+ (-4 *4 (-573 (-507))) (-4 *5 (-1138)) (-4 *6 (-1138))
+ (-4 *7 (-1138)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-986)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1160 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-602 *2 *3 *4)) (-4 *2 (-1030)) (-4 *3 (-23))
(-14 *4 *3))))
+(((*1 *2 *2 *3 *3)
+ (-12 (-5 *2 (-598 *7)) (-5 *3 (-531)) (-4 *7 (-892 *4 *5 *6))
+ (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *1 (-429 *4 *5 *6 *7)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-482 (-388 (-530)) (-223 *4 (-719)) (-806 *3)
- (-230 *3 (-388 (-530)))))
- (-14 *3 (-597 (-1099))) (-14 *4 (-719)) (-5 *1 (-483 *3 *4)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-344)) (-5 *1 (-267 *3 *2)) (-4 *2 (-1172 *3)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-719)) (-4 *6 (-344)) (-5 *4 (-1130 *6))
- (-5 *2 (-1 (-1080 *4) (-1080 *4))) (-5 *1 (-1189 *6))
- (-5 *5 (-1080 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-932 *2)) (-4 *4 (-1157 *3)) (-4 *2 (-289))
- (-5 *1 (-394 *2 *3 *4 *5)) (-4 *5 (-13 (-390 *3 *4) (-975 *3)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-795)) (-5 *2 (-1051 *3 (-570 *1)))
- (-4 *1 (-411 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4))
- (-5 *1 (-576 *3 *4 *2)) (-4 *3 (-37 *4))))
- ((*1 *2 *1)
- (-12 (-4 *4 (-162)) (-4 *2 (|SubsetCategory| (-675) *4))
- (-5 *1 (-613 *3 *4 *2)) (-4 *3 (-666 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
-(((*1 *2 *3 *1)
- (-12 (-4 *1 (-563 *3 *4)) (-4 *3 (-1027)) (-4 *4 (-1135))
- (-5 *2 (-110)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-1135)) (-5 *1 (-170 *3 *2)) (-4 *2 (-624 *3)))))
-(((*1 *2 *3) (-12 (-5 *2 (-360)) (-5 *1 (-733 *3)) (-4 *3 (-572 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-5 *2 (-360)) (-5 *1 (-733 *3))
- (-4 *3 (-572 *2))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 *2))
- (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522)) (-4 *4 (-572 *2))
- (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522)) (-4 *5 (-795))
- (-4 *5 (-572 *2)) (-5 *2 (-360)) (-5 *1 (-733 *5)))))
-(((*1 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-530))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-176))))
- ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-282))))
- ((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-1082)) (-5 *1 (-287)))))
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3))
+ (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1000 *4 *5 *6)) (-4 *4 (-523))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *3))))
+ ((*1 *2 *2 *2)
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6))))
+ ((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-1 (-598 *7) (-598 *7))) (-5 *2 (-598 *7))
+ (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-523)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-5 *1 (-919 *4 *5 *6 *7)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-1016 *3)) (-4 *3 (-129)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531))))
+ (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-598 *3)) (-5 *1 (-912 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864))
+ (-14 *4 (-864)))))
+(((*1 *1) (-5 *1 (-137))))
+(((*1 *2 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-797)) (-4 *5 (-743))
+ (-4 *6 (-523)) (-4 *7 (-892 *6 *5 *3))
+ (-5 *1 (-442 *5 *3 *6 *7 *2))
+ (-4 *2
+ (-13 (-977 (-388 (-531))) (-344)
+ (-10 -8 (-15 -2265 ($ *7)) (-15 -1840 (*7 $))
+ (-15 -1853 (*7 $))))))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-227 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1 *2)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
(((*1 *2)
(-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
(-4 *3 (-348 *4))))
((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-721)) (-5 *1 (-732 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *1 (-906 *3 *2)) (-4 *2 (-128)) (-4 *3 (-523))
+ (-4 *3 (-986)) (-4 *2 (-742))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-721)) (-5 *1 (-1098 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-913)) (-4 *2 (-128)) (-5 *1 (-1104 *3)) (-4 *3 (-523))
+ (-4 *3 (-986))))
+ ((*1 *1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-721)) (-5 *1 (-1157 *4 *3)) (-14 *4 (-1102))
+ (-4 *3 (-986)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-705)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-110)) (-5 *1 (-494 *3 *4)) (-4 *3 (-1138))
+ (-14 *4 (-531)))))
+(((*1 *1 *1) (-4 *1 (-614))) ((*1 *1 *1) (-5 *1 (-1049))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986))
+ (-5 *2 (-895 *5)) (-5 *1 (-887 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))))
+(((*1 *2 *1) (-12 (-5 *2 (-806)) (-5 *1 (-51)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098 *1)) (-4 *1 (-953)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *1) (-4 *1 (-330)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 *5)) (-4 *5 (-411 *4))
+ (-4 *4 (-13 (-523) (-797) (-140)))
+ (-5 *2
+ (-2 (|:| |primelt| *5) (|:| |poly| (-598 (-1098 *5)))
+ (|:| |prim| (-1098 *5))))
+ (-5 *1 (-413 *4 *5))))
+ ((*1 *2 *3 *3)
+ (-12 (-4 *4 (-13 (-523) (-797) (-140)))
+ (-5 *2
+ (-2 (|:| |primelt| *3) (|:| |pol1| (-1098 *3))
+ (|:| |pol2| (-1098 *3)) (|:| |prim| (-1098 *3))))
+ (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4))))
+ ((*1 *2 *3 *4 *3 *4)
+ (-12 (-5 *3 (-895 *5)) (-5 *4 (-1102)) (-4 *5 (-13 (-344) (-140)))
+ (-5 *2
+ (-2 (|:| |coef1| (-531)) (|:| |coef2| (-531))
+ (|:| |prim| (-1098 *5))))
+ (-5 *1 (-903 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102)))
+ (-4 *5 (-13 (-344) (-140)))
+ (-5 *2
+ (-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 *5)))
+ (|:| |prim| (-1098 *5))))
+ (-5 *1 (-903 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 (-895 *6))) (-5 *4 (-598 (-1102))) (-5 *5 (-1102))
+ (-4 *6 (-13 (-344) (-140)))
+ (-5 *2
+ (-2 (|:| -2005 (-598 (-531))) (|:| |poly| (-598 (-1098 *6)))
+ (|:| |prim| (-1098 *6))))
+ (-5 *1 (-903 *6)))))
+(((*1 *1 *1) (-4 *1 (-584)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943) (-1124))))))
(((*1 *2 *2 *3)
- (-12 (-4 *3 (-289)) (-5 *1 (-435 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-289)) (-5 *1 (-440 *3 *2)) (-4 *2 (-1157 *3))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-289)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-719)))
- (-5 *1 (-509 *3 *2 *4 *5)) (-4 *2 (-1157 *3)))))
+ (-12 (-4 *3 (-523)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-1129 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1160 *5))
+ (-5 *1 (-678 *5 *2)) (-4 *5 (-344)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *2 (-2 (|:| -2361 (-597 *6)) (|:| -2551 (-597 *6)))))))
-(((*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-47)))) (-5 *1 (-47))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-289)) (-4 *4 (-932 *3)) (-4 *5 (-1157 *4))
- (-5 *2 (-1181 *6)) (-5 *1 (-394 *3 *4 *5 *6))
- (-4 *6 (-13 (-390 *4 *5) (-975 *4)))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *3 (-795)) (-5 *2 (-1051 *3 (-570 *1)))
- (-4 *1 (-411 *3))))
- ((*1 *2 *1) (-12 (-5 *2 (-1051 (-530) (-570 (-473)))) (-5 *1 (-473))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-162)) (-4 *2 (-37 *3)) (-5 *1 (-576 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-675) *3))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-162)) (-4 *2 (-666 *3)) (-5 *1 (-613 *2 *3 *4))
- (-4 *4 (|SubsetCategory| (-675) *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-741))
- (-4 *5 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))) (-4 *6 (-522))
- (-5 *2 (-2 (|:| -3418 (-893 *6)) (|:| -1726 (-893 *6))))
- (-5 *1 (-681 *4 *5 *6 *3)) (-4 *3 (-890 (-388 (-893 *6)) *4 *5)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
+ (-12 (-5 *2 (-2 (|:| |cd| (-1085)) (|:| -3955 (-1085))))
+ (-5 *1 (-772)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94))))
+ ((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-94)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344))
+ (-4 *7 (-1160 (-388 *6)))
+ (-5 *2 (-2 (|:| |answer| *3) (|:| -1913 *3)))
+ (-5 *1 (-529 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |answer| (-388 *6)) (|:| -1913 (-388 *6))
+ (|:| |specpart| (-388 *6)) (|:| |polypart| *6)))
+ (-5 *1 (-530 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743))
+ (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2723 (-598 *9)) (|:| -2410 *4) (|:| |ineq| (-598 *9))))
+ (-5 *1 (-930 *6 *7 *8 *9 *4)) (-5 *3 (-598 *9))
+ (-4 *4 (-1005 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
+ (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-743))
+ (-4 *8 (-797)) (-4 *9 (-1000 *6 *7 *8))
+ (-5 *2
+ (-2 (|:| -2723 (-598 *9)) (|:| -2410 *4) (|:| |ineq| (-598 *9))))
+ (-5 *1 (-1037 *6 *7 *8 *9 *4)) (-5 *3 (-598 *9))
+ (-4 *4 (-1005 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3))
- (-4 *3 (-354 *5))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
- (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
- (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 *5)) (-4 *5 (-932 *4)) (-4 *4 (-522))
- (-5 *2 (-2 (|:| |num| (-637 *4)) (|:| |den| *4)))
- (-5 *1 (-641 *4 *5))))
+ (-12
+ (-5 *3
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
+ (-5 *2
+ (-2
+ (|:| |endPointContinuity|
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular|
+ "There are singularities at both end points")
+ (|:| |notEvaluated|
+ "End point continuity not yet evaluated")))
+ (|:| |singularitiesStream|
+ (-3 (|:| |str| (-1083 (-208)))
+ (|:| |notEvaluated|
+ "Internal singularities not yet evaluated")))
+ (|:| -2368
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite|
+ "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))))
+ (-5 *1 (-526)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-510 *4 *2 *5 *6))
+ (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-721))))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-779)) (-5 *3 (-1085)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-311)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 (-886 *4))) (-4 *1 (-1063 *4)) (-4 *4 (-986))
+ (-5 *2 (-721)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-531)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *2 (-1189)) (-5 *1 (-429 *4 *5 *6 *7)) (-4 *7 (-892 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2))
+ (-4 *2 (-1175 *3))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3))
+ (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2))
+ (-4 *2 (-1175 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140)))
+ (-5 *1 (-1079 *3)))))
+(((*1 *1 *2 *1 *1)
+ (-12 (-5 *2 (-1102)) (-5 *1 (-627 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1169 *3 *4 *5)) (-5 *1 (-300 *3 *4 *5))
+ (-4 *3 (-13 (-344) (-797))) (-14 *4 (-1102)) (-14 *5 *3)))
+ ((*1 *2 *1) (-12 (-4 *1 (-385)) (-5 *2 (-531))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-399 *3)) (-4 *3 (-523))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-649))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1030)) (-5 *1 (-664 *3 *2 *4)) (-4 *3 (-797))
+ (-14 *4
+ (-1 (-110) (-2 (|:| -1889 *3) (|:| -1790 *2))
+ (-2 (|:| -1889 *3) (|:| -1790 *2)))))))
+(((*1 *2)
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-639 (-388 *4))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1023 (-790 *3))) (-4 *3 (-13 (-1124) (-902) (-29 *5)))
+ (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2
+ (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-202 *5 *3))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1023 (-790 *3))) (-5 *5 (-1085))
+ (-4 *3 (-13 (-1124) (-902) (-29 *6)))
+ (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2
+ (-3 (|:| |f1| (-790 *3)) (|:| |f2| (-598 (-790 *3)))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-202 *6 *3))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1023 (-790 (-297 *5))))
+ (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2
+ (-3 (|:| |f1| (-790 (-297 *5))) (|:| |f2| (-598 (-790 (-297 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-203 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-388 (-895 *6))) (-5 *4 (-1023 (-790 (-297 *6))))
+ (-5 *5 (-1085))
+ (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2
+ (-3 (|:| |f1| (-790 (-297 *6))) (|:| |f2| (-598 (-790 (-297 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-203 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1023 (-790 (-388 (-895 *5))))) (-5 *3 (-388 (-895 *5)))
+ (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2
+ (-3 (|:| |f1| (-790 (-297 *5))) (|:| |f2| (-598 (-790 (-297 *5))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-203 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-1023 (-790 (-388 (-895 *6))))) (-5 *5 (-1085))
+ (-5 *3 (-388 (-895 *6)))
+ (-4 *6 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2
+ (-3 (|:| |f1| (-790 (-297 *6))) (|:| |f2| (-598 (-790 (-297 *6))))
+ (|:| |fail| "failed") (|:| |pole| "potentialPole")))
+ (-5 *1 (-203 *6))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-3 *3 (-598 *3))) (-5 *1 (-409 *5 *3))
+ (-4 *3 (-13 (-1124) (-902) (-29 *5)))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-454 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360))))
+ (-5 *5 (-360)) (-5 *6 (-998)) (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360))))
+ (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360))))
+ (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1025 (-790 (-360))))
+ (-5 *2 (-975)) (-5 *1 (-532))))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5))
- (-5 *2 (-2 (|:| -2776 *7) (|:| |rh| (-597 (-388 *6)))))
- (-5 *1 (-755 *5 *6 *7 *3)) (-5 *4 (-597 (-388 *6)))
- (-4 *7 (-607 *6)) (-4 *3 (-607 (-388 *6)))))
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360)))))
+ (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360)))))
+ (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360)))))
+ (-5 *5 (-360)) (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *3 (-297 (-360))) (-5 *4 (-598 (-1025 (-790 (-360)))))
+ (-5 *5 (-360)) (-5 *6 (-998)) (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1023 (-790 (-360))))
+ (-5 *5 (-1085)) (-5 *2 (-975)) (-5 *1 (-532))))
+ ((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1023 (-790 (-360))))
+ (-5 *5 (-1102)) (-5 *2 (-975)) (-5 *1 (-532))))
((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-932 *4))
- (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1150 *4 *5 *3))
- (-4 *3 (-1157 *5)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-355 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-162))))
+ (-12 (-4 *4 (-13 (-344) (-140) (-977 (-531)))) (-4 *5 (-1160 *4))
+ (-5 *2 (-548 (-388 *5))) (-5 *1 (-535 *4 *5)) (-5 *3 (-388 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-140))
+ (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-594 (-531))))
+ (-5 *2 (-3 (-297 *5) (-598 (-297 *5)))) (-5 *1 (-551 *5))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1200 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-230 *4 *5))) (-5 *2 (-230 *4 *5))
- (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-205 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1135)) (-4 *1 (-236 *3))))
- ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *2 *2)
- (-12 (-5 *2 (-597 (-460 *4 *5))) (-5 *3 (-806 *4))
- (-14 *4 (-597 (-1099))) (-4 *5 (-432)) (-5 *1 (-585 *4 *5)))))
-(((*1 *1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-730 *2)) (-4 *2 (-984)))))
-(((*1 *2 *1) (-12 (-4 *1 (-349)) (-5 *2 (-862))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-862))
- (-5 *1 (-500 *4)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-846 *3)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
+ (-12 (-4 *1 (-691 *3 *2)) (-4 *3 (-986)) (-4 *2 (-797))
+ (-4 *3 (-37 (-388 (-531))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1102)) (-5 *1 (-895 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-4 *3 (-986))))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-4 *2 (-797))
+ (-5 *1 (-1055 *3 *2 *4)) (-4 *4 (-892 *3 (-503 *2) *2))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986))
+ (-5 *1 (-1087 *3))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1093 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1099 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1100 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))
+ ((*1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *1 (-1133 *3)) (-4 *3 (-37 (-388 (-531))))
+ (-4 *3 (-986))))
+ ((*1 *1 *1 *2)
+ (-1435
+ (-12 (-5 *2 (-1102)) (-4 *1 (-1144 *3)) (-4 *3 (-986))
+ (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124))
+ (-4 *3 (-37 (-388 (-531))))))
+ (-12 (-5 *2 (-1102)) (-4 *1 (-1144 *3)) (-4 *3 (-986))
+ (-12 (|has| *3 (-15 -2695 ((-598 *2) *3)))
+ (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1144 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1148 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531))))))
+ ((*1 *1 *1 *2)
+ (-1435
+ (-12 (-5 *2 (-1102)) (-4 *1 (-1165 *3)) (-4 *3 (-986))
+ (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124))
+ (-4 *3 (-37 (-388 (-531))))))
+ (-12 (-5 *2 (-1102)) (-4 *1 (-1165 *3)) (-4 *3 (-986))
+ (-12 (|has| *3 (-15 -2695 ((-598 *2) *3)))
+ (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1165 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1169 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3)))
+ ((*1 *1 *1 *2)
+ (-1435
+ (-12 (-5 *2 (-1102)) (-4 *1 (-1175 *3)) (-4 *3 (-986))
+ (-12 (-4 *3 (-29 (-531))) (-4 *3 (-902)) (-4 *3 (-1124))
+ (-4 *3 (-37 (-388 (-531))))))
+ (-12 (-5 *2 (-1102)) (-4 *1 (-1175 *3)) (-4 *3 (-986))
+ (-12 (|has| *3 (-15 -2695 ((-598 *2) *3)))
+ (|has| *3 (-15 -1788 (*3 *3 *2))) (-4 *3 (-37 (-388 (-531))))))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-1175 *2)) (-4 *2 (-986)) (-4 *2 (-37 (-388 (-531))))))
+ ((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1180 *4)) (-14 *4 (-1102)) (-5 *1 (-1176 *3 *4 *5))
+ (-4 *3 (-37 (-388 (-531)))) (-4 *3 (-986)) (-14 *5 *3))))
+(((*1 *2 *1) (-12 (-4 *1 (-977 (-531))) (-4 *1 (-284)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-516)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))))
(((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1135))
+ (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *2 (-1138))
(-4 *4 (-354 *2)) (-4 *5 (-354 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2))
- (-4 *5 (-354 *2)) (-4 *2 (-1135))))
+ (-12 (-5 *3 (-531)) (-4 *1 (-55 *2 *4 *5)) (-4 *4 (-354 *2))
+ (-4 *5 (-354 *2)) (-4 *2 (-1138))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *2 "right") (-4 *1 (-117 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-117 *3)) (-4 *3 (-1138))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 (-530))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 (-530)) (-14 *5 (-719))))
+ (-12 (-5 *3 (-598 (-531))) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
+ (-14 *4 (-531)) (-14 *5 (-721))))
((*1 *2 *1 *3 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-719))))
+ (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-721))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-719))))
+ (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-721))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-719))))
+ (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-721))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
- (-14 *4 *3) (-14 *5 (-719))))
+ (-12 (-5 *3 (-531)) (-4 *2 (-162)) (-5 *1 (-132 *4 *5 *2))
+ (-14 *4 *3) (-14 *5 (-721))))
((*1 *2 *1)
- (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-530))
- (-14 *4 (-719))))
+ (-12 (-4 *2 (-162)) (-5 *1 (-132 *3 *4 *2)) (-14 *3 (-531))
+ (-14 *4 (-721))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *2 (-1027)) (-5 *1 (-197 *4 *2))
- (-14 *4 (-862))))
+ (-12 (-5 *3 (-721)) (-4 *2 (-1030)) (-5 *1 (-197 *4 *2))
+ (-14 *4 (-864))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-228 (-1082))) (-5 *1 (-198 *4))
+ (-12 (-5 *3 (-1102)) (-5 *2 (-228 (-1085))) (-5 *1 (-198 *4))
(-4 *4
- (-13 (-795)
- (-10 -8 (-15 -1902 ((-1082) $ *3)) (-15 -2388 ((-1186) $))
- (-15 -3595 ((-1186) $)))))))
+ (-13 (-797)
+ (-10 -8 (-15 -1785 ((-1085) $ *3)) (-15 -2286 ((-1189) $))
+ (-15 -3403 ((-1189) $)))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-929)) (-5 *1 (-198 *3))
+ (-12 (-5 *2 (-931)) (-5 *1 (-198 *3))
(-4 *3
- (-13 (-795)
- (-10 -8 (-15 -1902 ((-1082) $ (-1099))) (-15 -2388 ((-1186) $))
- (-15 -3595 ((-1186) $)))))))
+ (-13 (-797)
+ (-10 -8 (-15 -1785 ((-1085) $ (-1102))) (-15 -2286 ((-1189) $))
+ (-15 -3403 ((-1189) $)))))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "count") (-5 *2 (-719)) (-5 *1 (-228 *4)) (-4 *4 (-795))))
- ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-795))))
+ (-12 (-5 *3 "count") (-5 *2 (-721)) (-5 *1 (-228 *4)) (-4 *4 (-797))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-228 *3)) (-4 *3 (-797))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-795))))
+ (-12 (-5 *2 "unique") (-5 *1 (-228 *3)) (-4 *3 (-797))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135))))
+ (-12 (-4 *1 (-268 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138))))
((*1 *2 *1 *3 *2)
- (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1135))))
+ (-12 (-4 *1 (-270 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-1138))))
((*1 *2 *1 *2)
(-12 (-4 *3 (-162)) (-5 *1 (-271 *3 *2 *4 *5 *6 *7))
- (-4 *2 (-1157 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
+ (-4 *2 (-1160 *3)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4))
(-14 *6 (-1 (-3 *4 "failed") *4 *4))
(-14 *7 (-1 (-3 *2 "failed") *2 *2 *4))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-597 *1)) (-4 *1 (-284))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-112)) (-5 *3 (-598 *1)) (-4 *1 (-284))))
((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
((*1 *1 *2 *1 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
((*1 *1 *2 *1) (-12 (-4 *1 (-284)) (-5 *2 (-112))))
((*1 *2 *1 *2 *2)
- (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2))
- (-4 *4 (-1157 (-388 *3)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-530)) (-4 *1 (-398 *2)) (-4 *2 (-162))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1082)) (-5 *1 (-480))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-51)) (-5 *1 (-586))))
+ (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1142)) (-4 *3 (-1160 *2))
+ (-4 *4 (-1160 (-388 *3)))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-4 *1 (-398 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-1085)) (-5 *1 (-480))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1102)) (-5 *2 (-51)) (-5 *1 (-587))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-604 *3)) (-4 *3 (-1138))))
((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *1 (-625 *2)) (-4 *2 (-1027))))
+ (-12 (-5 *3 (-721)) (-5 *1 (-627 *2)) (-4 *2 (-1030))))
((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-597 (-530))) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-12 (-5 *2 (-598 (-531))) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-112)) (-5 *3 (-597 (-833 *4))) (-5 *1 (-833 *4))
- (-4 *4 (-1027))))
- ((*1 *2 *1 *2) (-12 (-4 *1 (-844 *2)) (-4 *2 (-1027))))
+ (-12 (-5 *2 (-112)) (-5 *3 (-598 (-835 *4))) (-5 *1 (-835 *4))
+ (-4 *4 (-1030))))
+ ((*1 *2 *1 *2) (-12 (-4 *1 (-846 *2)) (-4 *2 (-1030))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4))
- (-4 *4 (-1027))))
+ (-12 (-5 *3 (-721)) (-5 *2 (-848 *4)) (-5 *1 (-847 *4))
+ (-4 *4 (-1030))))
((*1 *2 *1 *3)
- (-12 (-5 *3 (-223 *4 *2)) (-14 *4 (-862)) (-4 *2 (-344))
- (-5 *1 (-933 *4 *2))))
+ (-12 (-5 *3 (-223 *4 *2)) (-14 *4 (-864)) (-4 *2 (-344))
+ (-5 *1 (-935 *4 *2))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "value") (-4 *1 (-949 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135))))
+ (-12 (-5 *3 "value") (-4 *1 (-951 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138))))
((*1 *2 *1 *3 *3 *2)
- (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7)) (-4 *2 (-984))
+ (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7)) (-4 *2 (-986))
(-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2))))
((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *2 *6 *7))
- (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-984))))
+ (-12 (-5 *3 (-531)) (-4 *1 (-989 *4 *5 *2 *6 *7))
+ (-4 *6 (-221 *5 *2)) (-4 *7 (-221 *4 *2)) (-4 *2 (-986))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-862)) (-4 *4 (-1027))
- (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
- (-5 *1 (-1006 *4 *5 *2))
- (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4))))))
+ (-12 (-5 *3 (-864)) (-4 *4 (-1030))
+ (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4))))
+ (-5 *1 (-1008 *4 *5 *2))
+ (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4))))))
((*1 *2 *1 *2 *3)
- (-12 (-5 *3 (-862)) (-4 *4 (-1027))
- (-4 *5 (-13 (-984) (-827 *4) (-795) (-572 (-833 *4))))
- (-5 *1 (-1007 *4 *5 *2))
- (-4 *2 (-13 (-411 *5) (-827 *4) (-572 (-833 *4))))))
+ (-12 (-5 *3 (-864)) (-4 *4 (-1030))
+ (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4))))
+ (-5 *1 (-1009 *4 *5 *2))
+ (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4))))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-4 *1 (-1030 *3 *4 *5 *6 *7))
- (-4 *3 (-1027)) (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027))
- (-4 *7 (-1027))))
+ (-12 (-5 *2 (-598 (-531))) (-4 *1 (-1033 *3 *4 *5 *6 *7))
+ (-4 *3 (-1030)) (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030))
+ (-4 *7 (-1030))))
((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027))
- (-4 *4 (-1027)) (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027))))
- ((*1 *1 *1 *1) (-4 *1 (-1068)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-1099))))
+ (-12 (-5 *2 (-531)) (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030))
+ (-4 *4 (-1030)) (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030))))
+ ((*1 *1 *1 *1) (-4 *1 (-1071)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102))))
((*1 *2 *3 *2)
- (-12 (-5 *3 (-388 *1)) (-4 *1 (-1157 *2)) (-4 *2 (-984))
+ (-12 (-5 *3 (-388 *1)) (-4 *1 (-1160 *2)) (-4 *2 (-986))
(-4 *2 (-344))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984))
- (-4 *3 (-522))))
+ (-12 (-5 *2 (-388 *1)) (-4 *1 (-1160 *3)) (-4 *3 (-986))
+ (-4 *3 (-523))))
((*1 *2 *1 *3)
- (-12 (-4 *1 (-1159 *2 *3)) (-4 *3 (-740)) (-4 *2 (-984))))
+ (-12 (-4 *1 (-1162 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "last") (-4 *1 (-1169 *2)) (-4 *2 (-1135))))
+ (-12 (-5 *3 "last") (-4 *1 (-1172 *2)) (-4 *2 (-1138))))
((*1 *1 *1 *2)
- (-12 (-5 *2 "rest") (-4 *1 (-1169 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *2 "rest") (-4 *1 (-1172 *3)) (-4 *3 (-1138))))
((*1 *2 *1 *3)
- (-12 (-5 *3 "first") (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3)))
- (-5 *1 (-540 *5 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *1 (-547 *2)) (-4 *2 (-975 *3))
- (-4 *2 (-344))))
- ((*1 *1 *2 *2) (-12 (-5 *1 (-547 *2)) (-4 *2 (-344))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2))
- (-4 *2 (-13 (-411 *4) (-941) (-1121)))))
- ((*1 *2 *2 *3)
- (-12 (-5 *3 (-1020 *2)) (-4 *2 (-13 (-411 *4) (-941) (-1121)))
- (-4 *4 (-13 (-795) (-522))) (-5 *1 (-584 *4 *2))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-900)) (-5 *2 (-1099))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-1020 *1)) (-4 *1 (-900)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-408 *3 *2)) (-4 *3 (-13 (-162) (-37 (-388 (-530)))))
- (-4 *2 (-13 (-795) (-21))))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1013 *3)) (-4 *3 (-129)))))
+ (-12 (-5 *3 "first") (-4 *1 (-1172 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-721)) (-5 *1 (-1031 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-3 (|:| |nullBranch| "null")
- (|:| |assignmentBranch|
- (-2 (|:| |var| (-1099))
- (|:| |arrayIndex| (-597 (-893 (-530))))
- (|:| |rand|
- (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804))))))
- (|:| |arrayAssignmentBranch|
- (-2 (|:| |var| (-1099)) (|:| |rand| (-804))
- (|:| |ints2Floats?| (-110))))
- (|:| |conditionalBranch|
- (-2 (|:| |switch| (-1098)) (|:| |thenClause| (-311))
- (|:| |elseClause| (-311))))
- (|:| |returnBranch|
- (-2 (|:| -3250 (-110))
- (|:| -3417
- (-2 (|:| |ints2Floats?| (-110)) (|:| -3964 (-804))))))
- (|:| |blockBranch| (-597 (-311)))
- (|:| |commentBranch| (-597 (-1082))) (|:| |callBranch| (-1082))
- (|:| |forBranch|
- (-2 (|:| -1300 (-1020 (-893 (-530))))
- (|:| |span| (-893 (-530))) (|:| -3919 (-311))))
- (|:| |labelBranch| (-1046))
- (|:| |loopBranch| (-2 (|:| |switch| (-1098)) (|:| -3919 (-311))))
- (|:| |commonBranch|
- (-2 (|:| -3907 (-1099)) (|:| |contents| (-597 (-1099)))))
- (|:| |printBranch| (-597 (-804)))))
- (-5 *1 (-311)))))
-(((*1 *1) (-5 *1 (-134))))
+ (|partial| -12 (-5 *2 (-598 (-835 *3))) (-5 *1 (-835 *3))
+ (-4 *3 (-1030)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *3 *1)
- (-12
- (-5 *2
- (-2 (|:| |cycle?| (-110)) (|:| -3853 (-719)) (|:| |period| (-719))))
- (-5 *1 (-1080 *4)) (-4 *4 (-1135)) (-5 *3 (-719)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1172 *4))
- (-4 *4 (-37 (-388 (-530)))) (-5 *2 (-1 (-1080 *4) (-1080 *4)))
- (-5 *1 (-1174 *4 *5)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2 (-360)) (-5 *1 (-189)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-1117))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-1117)))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *1 *1 *1) (|partial| -4 *1 (-128))))
+ (-12 (-4 *4 (-13 (-523) (-797)))
+ (-4 *2 (-13 (-411 (-159 *4)) (-943) (-1124)))
+ (-5 *1 (-560 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-943) (-1124))))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1027)) (-4 *5 (-1027))
- (-5 *2 (-1 *5)) (-5 *1 (-631 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5)
- (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-4 *6 (-432))
- (-5 *2 (-597 (-597 *7))) (-5 *1 (-508 *6 *7 *5)) (-4 *7 (-344))
- (-4 *5 (-13 (-344) (-793))))))
-(((*1 *1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-5 *1 (-1080 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-597 *4)))) (-5 *2 (-597 (-597 *4)))
- (-4 *4 (-795)) (-5 *1 (-1107 *4)))))
+ (|partial| -12 (-5 *4 (-1102)) (-4 *5 (-573 (-835 (-531))))
+ (-4 *5 (-829 (-531)))
+ (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531))))
+ (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
+ (-5 *1 (-534 *5 *3)) (-4 *3 (-584))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5)))))
+ ((*1 *2 *2 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-1102)) (-5 *4 (-790 *2)) (-4 *2 (-1066))
+ (-4 *2 (-13 (-27) (-1124) (-411 *5)))
+ (-4 *5 (-573 (-835 (-531)))) (-4 *5 (-829 (-531)))
+ (-4 *5 (-13 (-797) (-977 (-531)) (-432) (-594 (-531))))
+ (-5 *1 (-534 *5 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1106)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-1104 (-388 (-531))))
+ (-5 *1 (-174)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *3 (-639 (-208))) (-5 *4 (-531)) (-5 *2 (-975))
+ (-5 *1 (-706)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-49 *3 *4)) (-4 *3 (-986))
+ (-14 *4 (-598 (-1102)))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-986) (-797)))
+ (-14 *4 (-598 (-1102))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7))))
+ (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *4 (-531))) (-5 *5 (-1 (-1083 *4))) (-4 *4 (-344))
+ (-4 *4 (-986)) (-5 *2 (-1083 *4)) (-5 *1 (-1087 *4)))))
+(((*1 *2 *1 *3 *3 *3 *2)
+ (-12 (-5 *3 (-721)) (-5 *1 (-627 *2)) (-4 *2 (-1030)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
- (-5 *1 (-313))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-1020 (-893 (-530)))) (-5 *2 (-311))
- (-5 *1 (-313))))
- ((*1 *1 *2 *2 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-625 *3)) (-4 *3 (-984)) (-4 *3 (-1027)))))
-(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-130)))))
-(((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741))
- (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2776 (-597 *9)) (|:| -2473 *4) (|:| |ineq| (-597 *9))))
- (-5 *1 (-928 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9))
- (-4 *4 (-1003 *6 *7 *8 *9))))
- ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5)
- (|partial| -12 (-5 *5 (-110)) (-4 *6 (-432)) (-4 *7 (-741))
- (-4 *8 (-795)) (-4 *9 (-998 *6 *7 *8))
- (-5 *2
- (-2 (|:| -2776 (-597 *9)) (|:| -2473 *4) (|:| |ineq| (-597 *9))))
- (-5 *1 (-1034 *6 *7 *8 *9 *4)) (-5 *3 (-597 *9))
- (-4 *4 (-1003 *6 *7 *8 *9)))))
-(((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-159 (-208))))
- (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-719))) (-5 *3 (-161)) (-5 *1 (-1088 *4 *5))
- (-14 *4 (-862)) (-4 *5 (-984)))))
-(((*1 *1) (-5 *1 (-208))) ((*1 *1) (-5 *1 (-360))))
-(((*1 *2 *3 *4 *5 *6)
- (|partial| -12 (-5 *4 (-1099)) (-5 *6 (-597 (-570 *3)))
- (-5 *5 (-570 *3)) (-4 *3 (-13 (-27) (-1121) (-411 *7)))
- (-4 *7 (-13 (-432) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-2 (|:| -2104 *3) (|:| |coeff| *3)))
- (-5 *1 (-523 *7 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *2 (-597 *3)) (-5 *1 (-865 *4 *5 *6 *3))
- (-4 *3 (-890 *4 *6 *5)))))
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-4 *1 (-284))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1030)) (-5 *1 (-907 *3 *2)) (-4 *3 (-1030)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-899 *3)) (-5 *1 (-1087 *4 *3))
- (-4 *3 (-1157 *4)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2
- (-2
- (|:| |endPointContinuity|
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular|
- "There are singularities at both end points")
- (|:| |notEvaluated|
- "End point continuity not yet evaluated")))
- (|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
- (|:| |notEvaluated|
- "Internal singularities not yet evaluated")))
- (|:| -1300
- (-3 (|:| |finite| "The range is finite")
- (|:| |lowerInfinite| "The bottom of range is infinite")
- (|:| |upperInfinite| "The top of range is infinite")
- (|:| |bothInfinite|
- "Both top and bottom points are infinite")
- (|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-525)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1046)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-1129 *2 *3 *4 *5)) (-4 *2 (-522)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *5 (-998 *2 *3 *4)))))
-(((*1 *1 *1) (-4 *1 (-583)))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-584 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941) (-1121))))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-176))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1099))
- (-5 *5 (-1022 (-788 (-208)))) (-5 *2 (-597 (-208))) (-5 *1 (-282)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-1080 *2)) (-4 *2 (-289)) (-5 *1 (-163 *2)))))
-(((*1 *2 *1) (-12 (-4 *1 (-793)) (-5 *2 (-530))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
- (-4 *3 (-1157 *4)) (-5 *2 (-530))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
- (-5 *2 (-530)) (-5 *1 (-1042 *4 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *4)))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
- (-5 *2 (-530)) (-5 *1 (-1042 *6 *3))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-1082))
- (-4 *6 (-13 (-522) (-795) (-975 *2) (-593 *2) (-432)))
- (-5 *2 (-530)) (-5 *1 (-1042 *6 *3))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-432)) (-5 *2 (-530))
- (-5 *1 (-1043 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-788 (-388 (-893 *6))))
- (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-530))
- (-5 *1 (-1043 *6))))
- ((*1 *2 *3 *4 *3 *5)
- (|partial| -12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1099))
- (-5 *5 (-1082)) (-4 *6 (-432)) (-5 *2 (-530)) (-5 *1 (-1043 *6))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-719)) (|:| |poli| *2)
- (|:| |polj| *2)))
- (-4 *5 (-741)) (-4 *2 (-890 *4 *5 *6)) (-5 *1 (-429 *4 *5 *6 *2))
- (-4 *4 (-432)) (-4 *6 (-795)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1082)) (-5 *1 (-506)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1137)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-351 *4 *5)) (-4 *4 (-162))
- (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-4 *5 (-1157 *4)) (-5 *2 (-637 *4))
- (-5 *1 (-389 *3 *4 *5)) (-4 *3 (-390 *4 *5))))
- ((*1 *2)
- (-12 (-4 *1 (-390 *3 *4)) (-4 *3 (-162)) (-4 *4 (-1157 *3))
- (-5 *2 (-637 *3)))))
+ (-12 (-5 *3 (-1157 *5 *4)) (-4 *4 (-432)) (-4 *4 (-770))
+ (-14 *5 (-1102)) (-5 *2 (-531)) (-5 *1 (-1044 *4 *5)))))
+(((*1 *2 *3 *3 *4 *5)
+ (-12 (-5 *3 (-598 (-639 *6))) (-5 *4 (-110)) (-5 *5 (-531))
+ (-5 *2 (-639 *6)) (-5 *1 (-969 *6)) (-4 *6 (-344)) (-4 *6 (-986))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 (-639 *4))) (-5 *2 (-639 *4)) (-5 *1 (-969 *4))
+ (-4 *4 (-344)) (-4 *4 (-986))))
+ ((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-531)) (-5 *2 (-639 *5))
+ (-5 *1 (-969 *5)) (-4 *5 (-344)) (-4 *5 (-986)))))
(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-411 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
- (-4 *3 (-1027))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5))))
+ (-12 (-4 *1 (-307 *2 *3)) (-4 *3 (-742)) (-4 *2 (-986))
+ (-4 *2 (-432))))
((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
- (-15 -1928 (*7 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-547 *3)) (-4 *3 (-344)))))
-(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-702)))))
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-1160 (-531))) (-5 *2 (-598 (-531)))
+ (-5 *1 (-465 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-799 *2)) (-4 *2 (-986)) (-4 *2 (-432))))
+ ((*1 *1 *1 *2)
+ (-12 (-4 *1 (-892 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *2 (-797)) (-4 *3 (-432)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *5 (-597 *5))) (-4 *5 (-1172 *4))
- (-4 *4 (-37 (-388 (-530))))
- (-5 *2 (-1 (-1080 *4) (-597 (-1080 *4)))) (-5 *1 (-1174 *4 *5)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-507 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-4 *4 (-1157 *3))
- (-4 *5 (-673 *3 *4)) (-5 *1 (-511 *3 *4 *5 *2)) (-4 *2 (-1172 *5))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-13 (-344) (-349) (-572 (-530)))) (-5 *1 (-512 *3 *2))
- (-4 *2 (-1172 *3))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-13 (-522) (-140)))
- (-5 *1 (-1076 *3)))))
-(((*1 *2 *2 *2)
- (|partial| -12 (-4 *3 (-13 (-522) (-140))) (-5 *1 (-1151 *3 *2))
- (-4 *2 (-1157 *3)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |gen| *3) (|:| -2853 *4))))
- (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027)) (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *2 *2 *3 *3)
- (|partial| -12 (-5 *3 (-1099))
- (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-541 *4 *2))
- (-4 *2 (-13 (-1121) (-900) (-1063) (-29 *4))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-597 (-360))) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-360))) (-5 *1 (-448))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-815)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *2)
- (-12 (-4 *1 (-330))
- (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *1 (-1084 *3)))))
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4))))
+ ((*1 *2 *3 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-835 *4)) (-4 *4 (-1030)) (-5 *1 (-832 *4 *3))
+ (-4 *3 (-1030)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1065 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *1 (-905 *2 *3)) (-4 *2 (-1027)) (-4 *3 (-1027)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-4 *3 (-13 (-344) (-140)))
+ (-5 *2 (-598 (-2 (|:| -1790 (-721)) (|:| -3840 *4) (|:| |num| *4))))
+ (-5 *1 (-380 *3 *4)) (-4 *4 (-1160 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-289) (-140))) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-890 *4 *5 *6)) (-5 *2 (-597 (-597 *7)))
- (-5 *1 (-428 *4 *5 *6 *7)) (-5 *3 (-597 *7))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741))
- (-4 *7 (-795)) (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-597 (-597 *8)))
- (-5 *1 (-428 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1148 (-530))) (-4 *1 (-602 *3)) (-4 *3 (-1135))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-4 *1 (-602 *3)) (-4 *3 (-1135)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (|has| *1 (-6 -4269)) (-4 *1 (-218 *3))
- (-4 *3 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (|has| *1 (-6 -4269)) (-4 *1 (-218 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3)) (-4 *1 (-264 *3)) (-4 *3 (-1135))))
+ (-12 (-5 *3 (-721)) (-5 *2 (-1 (-1083 (-895 *4)) (-1083 (-895 *4))))
+ (-5 *1 (-1192 *4)) (-4 *4 (-344)))))
+(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1138)))))
+(((*1 *1 *1 *1)
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
+ (-4 *4 (-354 *2)))))
+(((*1 *1 *1) (-5 *1 (-47)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-57 *5)) (-4 *5 (-1138))
+ (-4 *2 (-1138)) (-5 *1 (-56 *5 *2))))
+ ((*1 *2 *3 *1 *2 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1030)) (|has| *1 (-6 -4273))
+ (-4 *1 (-144 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *3 *1 *2)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2))
+ (-4 *2 (-1138))))
((*1 *2 *3 *1)
- (|partial| -12 (-4 *1 (-568 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *2 (-1 (-110) *4)) (-5 *3 (-530)) (-4 *4 (-1027))
- (-5 *1 (-686 *4))))
- ((*1 *1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *1 (-686 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))) (-5 *1 (-1065 *3 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3))
- (-4 *3 (-1157 *4))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-1099)) (-5 *5 (-597 (-388 (-893 *6))))
- (-5 *3 (-388 (-893 *6)))
- (-4 *6 (-13 (-522) (-975 (-530)) (-140)))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-536 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-4 *2 (-1027)) (-5 *1 (-629 *5 *6 *2)))))
-(((*1 *1 *2 *3 *3 *3 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-867))))
+ (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4273)) (-4 *1 (-144 *2))
+ (-4 *2 (-1138))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-986))
+ (-5 *2 (-2 (|:| -2451 (-1098 *4)) (|:| |deg| (-864))))
+ (-5 *1 (-204 *4 *5)) (-5 *3 (-1098 *4)) (-4 *5 (-13 (-523) (-797)))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-223 *5 *6)) (-14 *5 (-721))
+ (-4 *6 (-1138)) (-4 *2 (-1138)) (-5 *1 (-222 *5 *6 *2))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-867))))
- ((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868))))
+ (-12 (-4 *4 (-162)) (-5 *1 (-271 *4 *2 *3 *5 *6 *7))
+ (-4 *2 (-1160 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *1) (-12 (-5 *1 (-297 *2)) (-4 *2 (-523)) (-4 *2 (-797))))
+ ((*1 *1 *1)
+ (-12 (-4 *1 (-316 *2 *3 *4 *5)) (-4 *2 (-344)) (-4 *3 (-1160 *2))
+ (-4 *4 (-1160 (-388 *3))) (-4 *5 (-323 *2 *3 *4))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1138)) (-4 *2 (-1138))
+ (-5 *1 (-352 *5 *4 *2 *6)) (-4 *4 (-354 *5)) (-4 *6 (-354 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1030)) (-4 *2 (-1030))
+ (-5 *1 (-404 *5 *4 *2 *6)) (-4 *4 (-406 *5)) (-4 *6 (-406 *2))))
+ ((*1 *1 *1) (-5 *1 (-473)))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-598 *5)) (-4 *5 (-1138))
+ (-4 *2 (-1138)) (-5 *1 (-596 *5 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-986)) (-4 *2 (-986))
+ (-4 *6 (-354 *5)) (-4 *7 (-354 *5)) (-4 *8 (-354 *2))
+ (-4 *9 (-354 *2)) (-5 *1 (-635 *5 *6 *7 *4 *2 *8 *9 *10))
+ (-4 *4 (-637 *5 *6 *7)) (-4 *10 (-637 *2 *8 *9))))
((*1 *1 *2 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208))) (-5 *3 (-1022 (-208)))
- (-5 *1 (-868)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3)))))
+ (-12 (-5 *1 (-662 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-986)) (-5 *1 (-663 *3 *2)) (-4 *2 (-1160 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *1 (-666 *2 *3 *4 *5 *6)) (-4 *2 (-162)) (-4 *3 (-23))
+ (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))
+ ((*1 *1 *2)
+ (|partial| -12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-344))
+ (-4 *3 (-162)) (-4 *1 (-675 *3 *4))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-162)) (-4 *1 (-675 *3 *2)) (-4 *2 (-1160 *3))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-901 *5)) (-4 *5 (-1138))
+ (-4 *2 (-1138)) (-5 *1 (-900 *5 *2))))
+ ((*1 *1 *2)
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-974 *3 *4 *5 *2 *6)) (-4 *2 (-892 *3 *4 *5))
+ (-14 *6 (-598 *2))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-986)) (-4 *2 (-986))
+ (-14 *5 (-721)) (-14 *6 (-721)) (-4 *8 (-221 *6 *7))
+ (-4 *9 (-221 *5 *7)) (-4 *10 (-221 *6 *2)) (-4 *11 (-221 *5 *2))
+ (-5 *1 (-991 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12))
+ (-4 *4 (-989 *5 *6 *7 *8 *9)) (-4 *12 (-989 *5 *6 *2 *10 *11))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1083 *5)) (-4 *5 (-1138))
+ (-4 *2 (-1138)) (-5 *1 (-1081 *5 *2))))
+ ((*1 *2 *2 *1 *3 *4)
+ (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-110) *2 *2))
+ (-4 *1 (-1132 *5 *6 *7 *2)) (-4 *5 (-523)) (-4 *6 (-743))
+ (-4 *7 (-797)) (-4 *2 (-1000 *5 *6 *7))))
+ ((*1 *2 *3 *4 *2)
+ (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1184 *5)) (-4 *5 (-1138))
+ (-4 *2 (-1138)) (-5 *1 (-1183 *5 *2)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1030))
+ (-4 *6 (-1030)) (-4 *2 (-1030)) (-5 *1 (-631 *5 *6 *2)))))
+(((*1 *2 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-4 *3 (-1160 *4)) (-5 *1 (-759 *4 *3 *2 *5)) (-4 *2 (-609 *3))
+ (-4 *5 (-609 (-388 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-388 *5))
+ (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *5 (-1160 *4))
+ (-5 *1 (-759 *4 *5 *2 *6)) (-4 *2 (-609 *5)) (-4 *6 (-609 *3)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-892 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *1 (-429 *4 *5 *6 *2)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1036 *5 *6 *7 *8))
- (-4 *5 (-13 (-289) (-140))) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *8 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-552 *5 *6 *7 *8 *3)))))
-(((*1 *2 *3 *4 *2 *2 *5)
- (|partial| -12 (-5 *2 (-788 *4)) (-5 *3 (-570 *4)) (-5 *5 (-110))
- (-4 *4 (-13 (-1121) (-29 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-207 *6 *4)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-855 *2))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-399 (-893 *6))) (-5 *5 (-1099)) (-5 *3 (-893 *6))
- (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-856 *6)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1157 *4)) (-4 *4 (-1139))
- (-4 *6 (-1157 (-388 *5)))
+ (-12 (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523))
+ (-4 *3 (-892 *7 *5 *6))
(-5 *2
- (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
- (|:| |gd| *5)))
- (-4 *1 (-323 *4 *5 *6)))))
-(((*1 *2 *2 *2 *2 *3)
- (-12 (-4 *3 (-522)) (-5 *1 (-910 *3 *2)) (-4 *2 (-1157 *3)))))
+ (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| (-598 *3))))
+ (-5 *1 (-896 *5 *6 *7 *3 *8)) (-5 *4 (-721))
+ (-4 *8
+ (-13 (-344)
+ (-10 -8 (-15 -1840 (*3 $)) (-15 -1853 (*3 $)) (-15 -2265 ($ *3))))))))
(((*1 *2 *3 *4)
- (-12 (-4 *6 (-522)) (-4 *2 (-890 *3 *5 *4))
- (-5 *1 (-681 *5 *4 *6 *2)) (-5 *3 (-388 (-893 *6))) (-4 *5 (-741))
- (-4 *4 (-13 (-795) (-10 -8 (-15 -3260 ((-1099) $))))))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))))
-(((*1 *2 *3 *4 *4 *5 *6)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-815))
- (-5 *5 (-862)) (-5 *6 (-597 (-245))) (-5 *2 (-448)) (-5 *1 (-1185))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *2 (-448))
- (-5 *1 (-1185))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-597 (-884 (-208))))) (-5 *4 (-597 (-245)))
- (-5 *2 (-448)) (-5 *1 (-1185)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-112))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-1099)) (-5 *2 (-110))))
- ((*1 *2 *1 *3) (-12 (-4 *1 (-284)) (-5 *3 (-112)) (-5 *2 (-110))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-112)) (-5 *2 (-110)) (-5 *1 (-570 *4)) (-4 *4 (-795))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-5 *2 (-110)) (-5 *1 (-828 *5 *3 *4))
- (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *6)) (-4 *6 (-827 *5)) (-4 *5 (-1027))
- (-5 *2 (-110)) (-5 *1 (-828 *5 *6 *4)) (-4 *4 (-572 (-833 *5))))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-1157 *4)) (-4 *4 (-984))
- (-5 *2 (-1181 *4)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *3 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-890 *4 *3 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-330)) (-5 *2 (-719))))
- ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-383)) (-5 *2 (-719)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| *3) (|:| -2473 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110)) (-5 *1 (-928 *4 *5 *6 *7 *3))
- (-4 *3 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *3)) (-4 *3 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-432))
- (-4 *3 (-522)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3388 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1082)) (-5 *2 (-722)) (-5 *1 (-112))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-906)))))
-(((*1 *1)
- (-12 (-4 *1 (-385)) (-3676 (|has| *1 (-6 -4260)))
- (-3676 (|has| *1 (-6 -4252)))))
- ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1027)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (-4 *1 (-795)))
- ((*1 *2 *1) (-12 (-4 *1 (-909 *2)) (-4 *2 (-795))))
- ((*1 *1) (-5 *1 (-1046))))
-(((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1099)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-637 *2)) (-4 *2 (-162)) (-5 *1 (-139 *2))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-162)) (-4 *2 (-1157 *4)) (-5 *1 (-166 *4 *2 *3))
- (-4 *3 (-673 *4 *2))))
+ (-12 (-5 *3 (-721)) (-5 *4 (-1184 *2)) (-4 *5 (-289))
+ (-4 *6 (-934 *5)) (-4 *2 (-13 (-390 *6 *7) (-977 *6)))
+ (-5 *1 (-394 *5 *6 *7 *2)) (-4 *7 (-1160 *6)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *4 (-523)) (-5 *1 (-912 *4 *2))
+ (-4 *2 (-1160 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 *5)) (-5 *4 (-1184 *5)) (-4 *5 (-344))
+ (-5 *2 (-110)) (-5 *1 (-620 *5))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-388 (-893 *5)))) (-5 *4 (-1099))
- (-5 *2 (-893 *5)) (-5 *1 (-274 *5)) (-4 *5 (-432))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 *4)))) (-5 *2 (-893 *4))
- (-5 *1 (-274 *4)) (-4 *4 (-432))))
+ (-12 (-4 *5 (-344)) (-4 *6 (-13 (-354 *5) (-10 -7 (-6 -4274))))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4274)))) (-5 *2 (-110))
+ (-5 *1 (-621 *5 *6 *4 *3)) (-4 *3 (-637 *5 *6 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-208))) (-5 *4 (-721)) (-5 *2 (-639 (-208)))
+ (-5 *1 (-287)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-598 *10)) (-5 *5 (-110)) (-4 *10 (-1005 *6 *7 *8 *9))
+ (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *9 (-1000 *6 *7 *8))
+ (-5 *2
+ (-598
+ (-2 (|:| -2723 (-598 *9)) (|:| -2410 *10) (|:| |ineq| (-598 *9)))))
+ (-5 *1 (-930 *6 *7 *8 *9 *10)) (-5 *3 (-598 *9))))
+ ((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *4 (-598 *10)) (-5 *5 (-110)) (-4 *10 (-1005 *6 *7 *8 *9))
+ (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
+ (-4 *9 (-1000 *6 *7 *8))
+ (-5 *2
+ (-598
+ (-2 (|:| -2723 (-598 *9)) (|:| -2410 *10) (|:| |ineq| (-598 *9)))))
+ (-5 *1 (-1037 *6 *7 *8 *9 *10)) (-5 *3 (-598 *9)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-571 *6)) (-4 *6 (-13 (-411 *5) (-27) (-1124)))
+ (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2 (-1098 (-388 (-1098 *6)))) (-5 *1 (-527 *5 *6 *7))
+ (-5 *3 (-1098 *6)) (-4 *7 (-1030))))
((*1 *2 *1)
- (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 (-159 (-388 (-530)))))
- (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *4))
- (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-159 (-388 (-530))))) (-5 *4 (-1099))
- (-5 *2 (-893 (-159 (-388 (-530))))) (-5 *1 (-713 *5))
- (-4 *5 (-13 (-344) (-793)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-893 (-388 (-530))))
- (-5 *1 (-727 *4)) (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *4 (-1099))
- (-5 *2 (-893 (-388 (-530)))) (-5 *1 (-727 *5))
- (-4 *5 (-13 (-344) (-793))))))
-(((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-110))))
+ (-12 (-4 *2 (-1160 *3)) (-5 *1 (-663 *3 *2)) (-4 *3 (-986))))
((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1000 *4 *3)) (-4 *4 (-13 (-793) (-344)))
- (-4 *3 (-1157 *4)) (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5)
- (-12 (-5 *3 (-1082)) (-5 *5 (-637 (-208))) (-5 *6 (-637 (-530)))
- (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-706)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1095 *9)) (-5 *4 (-597 *7)) (-5 *5 (-597 *8))
- (-4 *7 (-795)) (-4 *8 (-984)) (-4 *9 (-890 *8 *6 *7)) (-4 *6 (-741))
- (-5 *2 (-1095 *8)) (-5 *1 (-302 *6 *7 *8 *9)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-719))))
+ (-12 (-4 *1 (-675 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1160 *3))))
+ ((*1 *2 *3 *4 *4 *5 *6 *7 *8)
+ (|partial| -12 (-5 *4 (-1098 *11)) (-5 *6 (-598 *10))
+ (-5 *7 (-598 (-721))) (-5 *8 (-598 *11)) (-4 *10 (-797))
+ (-4 *11 (-289)) (-4 *9 (-743)) (-4 *5 (-892 *11 *9 *10))
+ (-5 *2 (-598 (-1098 *5))) (-5 *1 (-693 *9 *10 *11 *5))
+ (-5 *3 (-1098 *5))))
((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-316 *3 *4 *5 *6)) (-4 *3 (-344)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *6 (-323 *3 *4 *5)) (-5 *2 (-110)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-862))) (-5 *1 (-1028 *3 *4)) (-14 *3 (-862))
- (-14 *4 (-862)))))
+ (-12 (-4 *2 (-892 *3 *4 *5)) (-5 *1 (-974 *3 *4 *5 *2 *6))
+ (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-14 *6 (-598 *2)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-632 *4 *5 *6)))))
+ (-12 (-4 *4 (-432)) (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-5 *2 (-598 *3)) (-5 *1 (-919 *4 *5 *6 *3))
+ (-4 *3 (-1000 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-311)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-998 *4 *5 *6))
- (-5 *2 (-2 (|:| |goodPols| (-597 *7)) (|:| |badPols| (-597 *7))))
- (-5 *1 (-917 *4 *5 *6 *7)) (-5 *3 (-597 *7)))))
+ (-12 (-5 *3 (-297 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1085)) (-4 *1 (-345 *3 *4)) (-4 *3 (-1030))
+ (-4 *4 (-1030)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-795)) (-4 *5 (-850)) (-4 *6 (-741))
- (-4 *8 (-890 *5 *6 *7)) (-5 *2 (-399 (-1095 *8)))
- (-5 *1 (-847 *5 *6 *7 *8)) (-5 *4 (-1095 *8))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-850)) (-4 *5 (-1157 *4)) (-5 *2 (-399 (-1095 *5)))
- (-5 *1 (-848 *4 *5)) (-5 *3 (-1095 *5)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4)))
- (-5 *1 (-636 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
- (-4 *3 (-599 *2))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
- (-4 *3 (-599 *2))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984))))
- ((*1 *1 *1) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))))
+ (-12 (-5 *4 (-1 (-598 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *6 (-1160 *5))
+ (-5 *2 (-598 (-2 (|:| |poly| *6) (|:| -2723 *3))))
+ (-5 *1 (-759 *5 *6 *3 *7)) (-4 *3 (-609 *6))
+ (-4 *7 (-609 (-388 *6)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 (-598 *5) *6))
+ (-4 *5 (-13 (-344) (-140) (-977 (-531)) (-977 (-388 (-531)))))
+ (-4 *6 (-1160 *5))
+ (-5 *2 (-598 (-2 (|:| |poly| *6) (|:| -2723 (-607 *6 (-388 *6))))))
+ (-5 *1 (-762 *5 *6)) (-5 *3 (-607 *6 (-388 *6))))))
+(((*1 *2 *3 *3 *4)
+ (-12 (-5 *3 (-598 (-460 *5 *6))) (-5 *4 (-808 *5))
+ (-14 *5 (-598 (-1102))) (-5 *2 (-460 *5 *6)) (-5 *1 (-586 *5 *6))
+ (-4 *6 (-432))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-460 *5 *6))) (-5 *4 (-808 *5))
+ (-14 *5 (-598 (-1102))) (-5 *2 (-460 *5 *6)) (-5 *1 (-586 *5 *6))
+ (-4 *6 (-432)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-868))
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-868)) (-5 *4 (-388 (-530)))
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146))))
- ((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146)) (-5 *3 (-597 (-884 (-208))))))
+ (-12 (-4 *2 (-344)) (-4 *2 (-795)) (-5 *1 (-888 *2 *3))
+ (-4 *3 (-1160 *2)))))
+(((*1 *1) (-5 *1 (-1105))))
+(((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-639 *1)) (-4 *1 (-330)) (-5 *2 (-1184 *1))))
((*1 *2 *3)
- (-12
- (-5 *2
- (-2 (|:| |brans| (-597 (-597 (-884 (-208)))))
- (|:| |xValues| (-1022 (-208))) (|:| |yValues| (-1022 (-208)))))
- (-5 *1 (-146)) (-5 *3 (-597 (-597 (-884 (-208)))))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))))
-(((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+ (|partial| -12 (-5 *3 (-639 *1)) (-4 *1 (-138)) (-4 *1 (-852))
+ (-5 *2 (-1184 *1)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-289))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-427 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-427 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-289)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-427 *4 *5 *6 *7)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1135)) (-5 *1 (-356 *4 *2))
- (-4 *2 (-13 (-354 *4) (-10 -7 (-6 -4270)))))))
-(((*1 *2) (-12 (-5 *2 (-1059 (-208))) (-5 *1 (-1119)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1135)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-719)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-522) (-795)))
- (-4 *2 (-13 (-411 (-159 *4)) (-941) (-1121)))
- (-5 *1 (-559 *4 *3 *2)) (-4 *3 (-13 (-411 *4) (-941) (-1121))))))
-(((*1 *2 *2) (-12 (-5 *2 (-1022 (-788 (-208)))) (-5 *1 (-287)))))
+ (-12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-5 *1 (-919 *3 *4 *5 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522))
- (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3388 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
+ (-12 (-5 *3 (-1184 *5)) (-4 *5 (-742)) (-5 *2 (-110))
+ (-5 *1 (-792 *4 *5)) (-14 *4 (-721)))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-710)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-986)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1160 *3)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-5 *2 (-719)) (-5 *1 (-497 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-4 *3 (-522)) (-5 *2 (-719))))
+ (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1142)) (-4 *3 (-1160 *4))
+ (-4 *5 (-1160 (-388 *3))) (-5 *2 (-110))))
((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *4 (-162)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)) (-5 *2 (-719)) (-5 *1 (-636 *4 *5 *6 *3))
- (-4 *3 (-635 *4 *5 *6))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-4 *5 (-522))
- (-5 *2 (-719)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736))))
- ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
- (-12 (-5 *4 (-530)) (-5 *6 (-1 (-1186) (-1181 *5) (-1181 *5) (-360)))
- (-5 *3 (-1181 (-360))) (-5 *5 (-360)) (-5 *2 (-1186))
- (-5 *1 (-736)))))
-(((*1 *2)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-597 (-597 *4))) (-5 *1 (-322 *3 *4 *5 *6))
- (-4 *3 (-323 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-4 *3 (-349)) (-5 *2 (-597 (-597 *3))))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *2 *3 *2 *4 *5)
- (-12 (-5 *2 (-597 *3)) (-5 *5 (-862)) (-4 *3 (-1157 *4))
- (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))))
-(((*1 *2 *3 *3) (-12 (-5 *3 (-530)) (-5 *2 (-110)) (-5 *1 (-519)))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-908)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-637 *5)) (-4 *5 (-984)) (-5 *1 (-988 *3 *4 *5))
- (-14 *3 (-719)) (-14 *4 (-719)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162)))))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4))) (-5 *2 (-110)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-1160 *4)) (-4 *4 (-1142))
+ (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1160 (-388 *3))))))
+(((*1 *2 *2 *2 *2 *2 *2)
+ (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *1 (-1057 *3 *2)) (-4 *3 (-1160 *2)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-569 *3 *4)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-5 *2 (-110)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-975 (-530))) (-4 *3 (-13 (-795) (-522)))
- (-5 *1 (-31 *3 *2)) (-4 *2 (-411 *3))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-1095 *4)) (-5 *1 (-155 *3 *4))
- (-4 *3 (-156 *4))))
- ((*1 *1 *1) (-12 (-4 *1 (-984)) (-4 *1 (-284))))
- ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3))))
- ((*1 *2) (-12 (-4 *1 (-673 *3 *2)) (-4 *3 (-162)) (-4 *2 (-1157 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1000 *3 *2)) (-4 *3 (-13 (-793) (-344)))
- (-4 *2 (-1157 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-399 (-1095 (-1095 *4))))
- (-5 *1 (-1134 *4)) (-5 *3 (-1095 (-1095 *4))))))
-(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-1044)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530))))
+ (-12 (-4 *3 (-1160 (-388 (-531)))) (-5 *1 (-856 *3 *2))
+ (-4 *2 (-1160 (-388 *3))))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-2 (|:| |val| *3) (|:| -2410 *4))))
+ (-5 *1 (-1068 *3 *4)) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *4 (-13 (-1030) (-33))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *1 (-824)) (-5 *3 (-530)))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-530)) (|has| *1 (-6 -4270)) (-4 *1 (-1169 *3))
- (-4 *3 (-1135)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2))
- (-4 *3 (-13 (-795) (-522))))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224)) (-5 *3 (-1082))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-224))))
- ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-815)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *1 *3)
- (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
- (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-597 (-719)))))
+ (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-604 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-604 *3)) (-4 *3 (-1138)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1098 *1)) (-4 *1 (-953)))))
+(((*1 *2 *3)
+ (-12 (-4 *2 (-1160 *4)) (-5 *1 (-759 *4 *2 *3 *5))
+ (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2))
+ (-4 *5 (-609 (-388 *2))))))
+(((*1 *1) (-5 *1 (-998))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-119 *2)) (-4 *2 (-797)))))
+(((*1 *2 *3) (-12 (-5 *3 (-208)) (-5 *2 (-649)) (-5 *1 (-287)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797))
+ (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -4124 *1)))
+ (-4 *1 (-1000 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -4124 *1)))
+ (-4 *1 (-1000 *3 *4 *5)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1102)) (-5 *1 (-262))))
((*1 *2 *1)
- (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *5 (-248 *4)) (-4 *6 (-741)) (-5 *2 (-597 (-719))))))
-(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-110))
- (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))
- (-5 *2 (-973)) (-5 *1 (-705)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-308 *3)) (-4 *3 (-1135))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-493 *3 *4)) (-4 *3 (-1135))
- (-14 *4 (-530)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3 *3 *4 *4)
- (-12 (-5 *3 (-719)) (-5 *4 (-862)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *8 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-597 *8)) (|:| |towers| (-597 (-965 *5 *6 *7 *8)))))
- (-5 *1 (-965 *5 *6 *7 *8)) (-5 *3 (-597 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *8 (-998 *5 *6 *7))
- (-5 *2
- (-2 (|:| |val| (-597 *8))
- (|:| |towers| (-597 (-1070 *5 *6 *7 *8)))))
- (-5 *1 (-1070 *5 *6 *7 *8)) (-5 *3 (-597 *8)))))
+ (-12 (-5 *2 (-3 (-531) (-208) (-1102) (-1085) (-1107)))
+ (-5 *1 (-1107)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-598 *8))) (-5 *3 (-598 *8))
+ (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523)) (-4 *6 (-743))
+ (-4 *7 (-797)) (-5 *2 (-110)) (-5 *1 (-919 *5 *6 *7 *8)))))
(((*1 *2 *2 *3)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *2 (-998 *4 *5 *6)) (-5 *1 (-724 *4 *5 *6 *2 *3))
- (-4 *3 (-1003 *4 *5 *6 *2)))))
+ (|partial| -12 (-5 *2 (-598 (-1098 *7))) (-5 *3 (-1098 *7))
+ (-4 *7 (-892 *4 *5 *6)) (-4 *4 (-852)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-5 *1 (-849 *4 *5 *6 *7))))
+ ((*1 *2 *2 *3)
+ (|partial| -12 (-5 *2 (-598 (-1098 *5))) (-5 *3 (-1098 *5))
+ (-4 *5 (-1160 *4)) (-4 *4 (-852)) (-5 *1 (-850 *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
(((*1 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-793))) (-5 *1 (-169 *2 *3))
- (-4 *3 (-1157 (-159 *2))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-530)) (|has| *1 (-6 -4260)) (-4 *1 (-385))
- (-5 *2 (-862)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1113 *4 *5))
- (-4 *4 (-1027)) (-4 *5 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984))
- (-4 *5 (-795)) (-5 *2 (-893 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-689 *4 *5)) (-4 *4 (-984))
- (-4 *5 (-795)) (-5 *2 (-893 *4))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984))
- (-5 *2 (-893 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-719)) (-4 *1 (-1172 *4)) (-4 *4 (-984))
- (-5 *2 (-893 *4)))))
+ (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3))))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-600 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-705)))))
+(((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986))
+ (-4 *4 (-743)) (-4 *5 (-797)) (-4 *3 (-523)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-984)) (-4 *4 (-1157 *3)) (-5 *1 (-154 *3 *4 *2))
- (-4 *2 (-1157 *4))))
- ((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(((*1 *1) (-5 *1 (-771))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530))))))
- (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4))
- (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-276 (-388 (-893 (-159 (-530)))))))
- (-5 *2 (-597 (-597 (-276 (-893 (-159 *4)))))) (-5 *1 (-359 *4))
- (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-159 (-530)))))
- (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4))
- (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-276 (-388 (-893 (-159 (-530))))))
- (-5 *2 (-597 (-276 (-893 (-159 *4))))) (-5 *1 (-359 *4))
- (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-862)) (-5 *2 (-448)) (-5 *1 (-1182)))))
-(((*1 *2 *3) (-12 (-5 *3 (-884 *2)) (-5 *1 (-922 *2)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1027)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-5 *2 (-1 *6 *5)) (-5 *1 (-632 *4 *5 *6)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-719)) (-5 *1 (-209))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-159 (-208))) (-5 *3 (-719)) (-5 *1 (-209))))
+ (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)))) (-5 *1 (-172 *3 *2))
+ (-4 *2 (-13 (-27) (-1124) (-411 (-159 *3))))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102)) (-4 *4 (-13 (-523) (-797) (-977 (-531))))
+ (-5 *1 (-172 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 (-159 *4))))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1128 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-1128 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))))
+(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
(-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
+ ((*1 *1 *1 *1) (-4 *1 (-1066))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-795)) (-5 *2 (-597 (-615 *4 *5)))
- (-5 *1 (-581 *4 *5 *6)) (-4 *5 (-13 (-162) (-666 (-388 (-530)))))
- (-14 *6 (-862)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *3) (-12 (-5 *2 (-399 *3)) (-5 *1 (-524 *3)) (-4 *3 (-515)))))
+ (|partial| -12 (-4 *5 (-977 (-47)))
+ (-4 *4 (-13 (-523) (-797) (-977 (-531)))) (-4 *5 (-411 *4))
+ (-5 *2 (-399 (-1098 (-47)))) (-5 *1 (-416 *4 *5 *3))
+ (-4 *3 (-1160 *5)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *3))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-917 *4 *5 *6 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 (-597 *7) (-597 *7))) (-5 *2 (-597 *7))
- (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *3 (-637 (-530))) (-5 *1 (-1037)))))
-(((*1 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1099)) (-4 *5 (-572 (-833 (-530))))
- (-4 *5 (-827 (-530)))
- (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
- (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3)))
- (-5 *1 (-533 *5 *3)) (-4 *3 (-583))
- (-4 *3 (-13 (-27) (-1121) (-411 *5)))))
- ((*1 *2 *2 *3 *4 *4)
- (|partial| -12 (-5 *3 (-1099)) (-5 *4 (-788 *2)) (-4 *2 (-1063))
- (-4 *2 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-572 (-833 (-530)))) (-4 *5 (-827 (-530)))
- (-4 *5 (-13 (-795) (-975 (-530)) (-432) (-593 (-530))))
- (-5 *1 (-533 *5 *2)))))
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
- (|:| |fn| (-1181 (-297 (-208)))) (|:| |yinit| (-597 (-208)))
- (|:| |intvals| (-597 (-208))) (|:| |g| (-297 (-208)))
- (|:| |abserr| (-208)) (|:| |relerr| (-208))))
- (-5 *2
- (-2 (|:| |stiffness| (-360)) (|:| |stability| (-360))
- (|:| |expense| (-360)) (|:| |accuracy| (-360))
- (|:| |intermediateResults| (-360))))
- (-5 *1 (-751)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-344)) (-5 *1 (-837 *2 *4))
- (-4 *2 (-1157 *4)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140))) (-5 *1 (-507 *4 *2))
- (-4 *2 (-1172 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3)))
- (-4 *5 (-1157 *4)) (-4 *6 (-673 *4 *5)) (-5 *1 (-511 *4 *5 *6 *2))
- (-4 *2 (-1172 *6))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-530)) (-4 *4 (-13 (-344) (-349) (-572 *3)))
- (-5 *1 (-512 *4 *2)) (-4 *2 (-1172 *4))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-530)) (-4 *4 (-13 (-522) (-140)))
- (-5 *1 (-1076 *4)))))
+ (-12
+ (-5 *3
+ (-2 (|:| |xinit| (-208)) (|:| |xend| (-208))
+ (|:| |fn| (-1184 (-297 (-208)))) (|:| |yinit| (-598 (-208)))
+ (|:| |intvals| (-598 (-208))) (|:| |g| (-297 (-208)))
+ (|:| |abserr| (-208)) (|:| |relerr| (-208))))
+ (-5 *2
+ (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))))
+ (-5 *1 (-189)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1132 *4 *5 *3 *6)) (-4 *4 (-523)) (-4 *5 (-743))
+ (-4 *3 (-797)) (-4 *6 (-1000 *4 *5 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1201 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *4)) (-5 *1 (-1054 *3 *4)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *3)
- (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *2 (-597 *3)) (-5 *1 (-1054 *4 *3)) (-4 *4 (-1157 *3)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *4 *5 *6 *7))
- (-4 *4 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135))
- (-4 *7 (-1135)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647))))
- ((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-647)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1095 (-388 (-893 *3)))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-161))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1131 *3)) (-4 *3 (-914)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1029 (-1029 *3))) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-399 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-984)) (-5 *2 (-597 *6)) (-5 *1 (-424 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
- (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-578 *4 *5))
- (-5 *3
- (-1 (-2 (|:| |ans| *4) (|:| -3638 *4) (|:| |sol?| (-110)))
- (-530) *4))
- (-4 *4 (-344)) (-4 *5 (-1157 *4)) (-5 *1 (-540 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121))))))
-(((*1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *1) (-12 (-4 *1 (-104 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-171))) (-5 *1 (-1044)))))
+ (-12 (-5 *3 (-598 (-2 (|:| -2552 *4) (|:| -2012 (-531)))))
+ (-4 *4 (-1160 (-531))) (-5 *2 (-688 (-721))) (-5 *1 (-422 *4))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-399 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-986))
+ (-5 *2 (-688 (-721))) (-5 *1 (-424 *4 *5)))))
+(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))))
+(((*1 *1 *1) (-4 *1 (-995))))
+(((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-159 (-208)))) (-5 *2 (-975))
+ (-5 *1 (-707)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1095 *7))
- (-4 *5 (-984)) (-4 *7 (-984)) (-4 *2 (-1157 *5))
- (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1157 *2)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *3) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102))))
- ((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-1186)) (-5 *1 (-1102)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-597 (-161)))))))
-(((*1 *2 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |c| (-388 *6))
- (|:| -4046 *6)))
- (-5 *1 (-954 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330))
- (-4 *2
- (-13 (-383)
- (-10 -7 (-15 -2366 (*2 *4)) (-15 -1905 ((-862) *2))
- (-15 -3220 ((-1181 *2) (-862))) (-15 -3962 (*2 *2)))))
- (-5 *1 (-337 *2 *4)))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5)
- (-12 (-5 *3 (-208)) (-5 *4 (-530))
- (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-973))
- (-5 *1 (-697)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *3 (-530)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime"))
- (-5 *1 (-399 *2)) (-4 *2 (-522)))))
-(((*1 *2 *3 *4 *3)
- (|partial| -12 (-5 *4 (-1099))
- (-4 *5 (-13 (-522) (-975 (-530)) (-140)))
- (-5 *2
- (-2 (|:| -2104 (-388 (-893 *5))) (|:| |coeff| (-388 (-893 *5)))))
- (-5 *1 (-536 *5)) (-5 *3 (-388 (-893 *5))))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *5 (-570 *4)) (-5 *6 (-1099))
- (-4 *4 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
+ (-12 (-5 *3 (-598 (-639 *5))) (-5 *4 (-1184 *5)) (-4 *5 (-289))
+ (-4 *5 (-986)) (-5 *2 (-639 *5)) (-5 *1 (-969 *5)))))
+(((*1 *2 *1 *1)
+ (-12 (-5 *2 (-110)) (-5 *1 (-1125 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-208)) (-5 *3 (-721)) (-5 *1 (-209))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-159 (-208))) (-5 *3 (-721)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1160 *4)) (-4 *4 (-1142))
+ (-4 *6 (-1160 (-388 *5)))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
- (-5 *1 (-532 *7 *4 *3)) (-4 *3 (-607 *4)) (-4 *3 (-1027)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-1029 *3)) (-5 *1 (-846 *3)) (-4 *3 (-349))
- (-4 *3 (-1027)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-719)) (-5 *3 (-110)) (-5 *1 (-108))))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (|has| *1 (-6 -4260)) (-4 *1 (-385))))
- ((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
+ (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5)
+ (|:| |gd| *5)))
+ (-4 *1 (-323 *4 *5 *6)))))
(((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *5))) (-5 *3 (-1095 *5))
- (-4 *5 (-156 *4)) (-4 *4 (-515)) (-5 *1 (-142 *4 *5))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 *3)) (-4 *3 (-1157 *5))
- (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *1 (-339 *4 *5 *3))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 (-530)))) (-5 *3 (-1095 (-530)))
- (-5 *1 (-538))))
- ((*1 *2 *2 *3)
- (|partial| -12 (-5 *2 (-597 (-1095 *1))) (-5 *3 (-1095 *1))
- (-4 *1 (-850)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *1 (-1164 *3 *2)) (-4 *3 (-984))
- (-4 *2 (-1141 *3)))))
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-797) (-289) (-977 (-531)) (-594 (-531)) (-140)))
+ (-5 *1 (-754 *4 *2)) (-4 *2 (-13 (-29 *4) (-1124) (-902))))))
+(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-825 *2)) (-4 *2 (-1138)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-984)) (-5 *2 (-1181 *3)) (-5 *1 (-661 *3 *4))
- (-4 *4 (-1157 *3)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-833 *4)) (-4 *4 (-1027)) (-5 *1 (-831 *4 *3))
- (-4 *3 (-1135))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-893 *5)) (-4 *5 (-984)) (-5 *2 (-460 *4 *5))
- (-5 *1 (-885 *4 *5)) (-14 *4 (-597 (-1099))))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *4)) (-5 *3 (-1 *4 (-530))) (-4 *4 (-984))
- (-5 *1 (-1084 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *2 *1) (-12 (-4 *1 (-936 *2)) (-4 *2 (-162)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1184)))))
-(((*1 *2 *2 *3)
- (|partial| -12
- (-5 *3 (-597 (-2 (|:| |func| *2) (|:| |pole| (-110)))))
- (-4 *2 (-13 (-411 *4) (-941))) (-4 *4 (-13 (-795) (-522)))
- (-5 *1 (-258 *4 *2)))))
-(((*1 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-349)) (-4 *2 (-344)))))
-(((*1 *1 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-523)) (-4 *3 (-797)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-864)) (-4 *1 (-221 *3 *4)) (-4 *4 (-986))
+ (-4 *4 (-1138))))
+ ((*1 *1 *2)
+ (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162))
+ (-4 *5 (-221 (-2167 *3) (-721)))
+ (-14 *6
+ (-1 (-110) (-2 (|:| -1889 *2) (|:| -1790 *5))
+ (-2 (|:| -1889 *2) (|:| -1790 *5))))
+ (-5 *1 (-441 *3 *4 *2 *5 *6 *7)) (-4 *2 (-797))
+ (-4 *7 (-892 *4 *5 (-808 *3)))))
+ ((*1 *2 *2) (-12 (-5 *2 (-886 (-208))) (-5 *1 (-1135)))))
+(((*1 *2 *2) (|partial| -12 (-5 *2 (-297 (-208))) (-5 *1 (-249)))))
+(((*1 *1 *2) (-12 (-5 *1 (-966 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3060 *4)))
- (-5 *1 (-910 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *1 *1 *2 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-719)) (-4 *5 (-162))))
- ((*1 *1 *1 *2 *1 *2)
- (-12 (-5 *2 (-530)) (-5 *1 (-132 *3 *4 *5)) (-14 *3 *2)
- (-14 *4 (-719)) (-4 *5 (-162))))
- ((*1 *2 *2 *3)
- (-12
- (-5 *2
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530)))))
- (-5 *3 (-597 (-806 *4))) (-14 *4 (-597 (-1099))) (-14 *5 (-719))
- (-5 *1 (-483 *4 *5)))))
-(((*1 *1 *2 *3 *3 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-110)) (-5 *1 (-833 *4))
- (-4 *4 (-1027)))))
-(((*1 *2 *3 *2 *4)
- (-12 (-5 *3 (-637 *2)) (-5 *4 (-719))
- (-4 *2 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *5 (-1157 *2)) (-5 *1 (-477 *2 *5 *6)) (-4 *6 (-390 *2 *5)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-984)) (-4 *2 (-635 *4 *5 *6))
- (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1157 *4)) (-4 *5 (-354 *4))
- (-4 *6 (-354 *4)))))
-(((*1 *2 *3 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-696)))))
-(((*1 *2 *2)
- (|partial| -12 (-5 *2 (-1095 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
-(((*1 *2 *3 *3 *3)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-1037)) (-5 *3 (-530)))))
-(((*1 *1 *2 *1 *1)
- (-12 (-5 *2 (-1099)) (-5 *1 (-625 *3)) (-4 *3 (-1027)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1099)) (-5 *2 (-597 (-906))) (-5 *1 (-273)))))
-(((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-1082)) (-5 *1 (-929))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1022 *4)) (-4 *4 (-1135))
- (-5 *1 (-1020 *4)))))
-(((*1 *2)
- (-12 (-4 *4 (-1139)) (-4 *5 (-1157 *4)) (-4 *6 (-1157 (-388 *5)))
- (-5 *2 (-110)) (-5 *1 (-322 *3 *4 *5 *6)) (-4 *3 (-323 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *1 *1 *1) (-5 *1 (-804))))
+ (-12 (-4 *4 (-523)) (-4 *5 (-934 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-135 *4 *5 *3))
+ (-4 *3 (-354 *5))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-934 *4))
+ (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4)))
+ (-5 *1 (-481 *4 *5 *6 *3)) (-4 *6 (-354 *4)) (-4 *3 (-354 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-639 *5)) (-4 *5 (-934 *4)) (-4 *4 (-523))
+ (-5 *2 (-2 (|:| |num| (-639 *4)) (|:| |den| *4)))
+ (-5 *1 (-643 *4 *5))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-4 *6 (-1160 *5))
+ (-5 *2 (-2 (|:| -2723 *7) (|:| |rh| (-598 (-388 *6)))))
+ (-5 *1 (-757 *5 *6 *7 *3)) (-5 *4 (-598 (-388 *6)))
+ (-4 *7 (-609 *6)) (-4 *3 (-609 (-388 *6)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-934 *4))
+ (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1153 *4 *5 *3))
+ (-4 *3 (-1160 *5)))))
(((*1 *2 *3 *4)
- (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *3 *5))
- (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *3 (-607 *2))
- (-4 *5 (-607 (-388 *2)))))
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *5))))
+ (-5 *1 (-1058 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-13 (-289) (-797) (-140)))
+ (-5 *2 (-598 (-276 (-297 *4)))) (-5 *1 (-1058 *4))))
((*1 *2 *3 *4)
- (-12 (-4 *2 (-1157 *4)) (-5 *1 (-755 *4 *2 *5 *3))
- (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *5 (-607 *2))
- (-4 *3 (-607 (-388 *2))))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))
- (-5 *1 (-1004 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4))
- (-4 *6 (-1157 *5)) (-4 *7 (-1157 (-388 *6)))
- (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-795) (-522) (-975 (-530))))
- (-5 *2 (-2 (|:| -2031 (-719)) (|:| -2047 *8)))
- (-5 *1 (-852 *4 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-317 (-388 (-530)) *4 *5 *6))
- (-4 *4 (-1157 (-388 (-530)))) (-4 *5 (-1157 (-388 *4)))
- (-4 *6 (-323 (-388 (-530)) *4 *5))
- (-5 *2 (-2 (|:| -2031 (-719)) (|:| -2047 *6)))
- (-5 *1 (-853 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-284))))
- ((*1 *1 *1) (-4 *1 (-284))) ((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *1) (-4 *1 (-330)))
+ (-12 (-5 *3 (-276 (-388 (-895 *5)))) (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *5))))
+ (-5 *1 (-1058 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4))
- (-4 *4 (-13 (-522) (-795) (-140)))
- (-5 *2
- (-2 (|:| |primelt| *5) (|:| |poly| (-597 (-1095 *5)))
- (|:| |prim| (-1095 *5))))
- (-5 *1 (-413 *4 *5))))
- ((*1 *2 *3 *3)
- (-12 (-4 *4 (-13 (-522) (-795) (-140)))
- (-5 *2
- (-2 (|:| |primelt| *3) (|:| |pol1| (-1095 *3))
- (|:| |pol2| (-1095 *3)) (|:| |prim| (-1095 *3))))
- (-5 *1 (-413 *4 *3)) (-4 *3 (-27)) (-4 *3 (-411 *4))))
- ((*1 *2 *3 *4 *3 *4)
- (-12 (-5 *3 (-893 *5)) (-5 *4 (-1099)) (-4 *5 (-13 (-344) (-140)))
- (-5 *2
- (-2 (|:| |coef1| (-530)) (|:| |coef2| (-530))
- (|:| |prim| (-1095 *5))))
- (-5 *1 (-901 *5))))
+ (-12 (-5 *3 (-276 (-388 (-895 *4))))
+ (-4 *4 (-13 (-289) (-797) (-140))) (-5 *2 (-598 (-276 (-297 *4))))
+ (-5 *1 (-1058 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-597 (-1099)))
- (-4 *5 (-13 (-344) (-140)))
- (-5 *2
- (-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 *5)))
- (|:| |prim| (-1095 *5))))
- (-5 *1 (-901 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-893 *6))) (-5 *4 (-597 (-1099))) (-5 *5 (-1099))
- (-4 *6 (-13 (-344) (-140)))
- (-5 *2
- (-2 (|:| -2065 (-597 (-530))) (|:| |poly| (-597 (-1095 *6)))
- (|:| |prim| (-1095 *6))))
- (-5 *1 (-901 *6)))))
-(((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 (-597 *2) *2 *2 *2)) (-4 *2 (-1027))
- (-5 *1 (-100 *2))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1027)) (-5 *1 (-100 *2)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
+ (-12 (-5 *3 (-598 (-388 (-895 *5)))) (-5 *4 (-598 (-1102)))
+ (-4 *5 (-13 (-289) (-797) (-140)))
+ (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))
+ (-12 (-5 *3 (-598 (-388 (-895 *4))))
+ (-4 *4 (-13 (-289) (-797) (-140)))
+ (-5 *2 (-598 (-598 (-276 (-297 *4))))) (-5 *1 (-1058 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-276 (-388 (-895 *5))))) (-5 *4 (-598 (-1102)))
+ (-4 *5 (-13 (-289) (-797) (-140)))
+ (-5 *2 (-598 (-598 (-276 (-297 *5))))) (-5 *1 (-1058 *5))))
((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-907 *3)) (-4 *3 (-908)))))
+ (-12 (-5 *3 (-598 (-276 (-388 (-895 *4)))))
+ (-4 *4 (-13 (-289) (-797) (-140)))
+ (-5 *2 (-598 (-598 (-276 (-297 *4))))) (-5 *1 (-1058 *4)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349)) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1095 *4)) (-4 *4 (-330)) (-5 *2 (-110))
- (-5 *1 (-338 *4))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-110))
- (-5 *1 (-500 *4)))))
-(((*1 *2 *3)
- (|partial| -12 (-5 *2 (-530)) (-5 *1 (-1118 *3)) (-4 *3 (-984)))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-793)) (-5 *1 (-285 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-89 *3)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1064 *3 *4)) (-4 *3 (-13 (-1027) (-33)))
- (-4 *4 (-13 (-1027) (-33))))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-862)) (-4 *1 (-693 *3)) (-4 *3 (-162)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-973)))))
-(((*1 *2 *3 *3 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-1000 *3 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2 *3 *3)
+ (|partial| -12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| -2937 *3) (|:| -4124 *3))) (-5 *1 (-1155 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *1 *1) (-4 *1 (-584)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943) (-1124))))))
+(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *5 (-1085))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-975))
(-5 *1 (-701)))))
-(((*1 *2 *1 *3) (-12 (-4 *1 (-129)) (-5 *3 (-719)) (-5 *2 (-1186)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *1)) (-4 *1 (-998 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
+(((*1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-425 *3)) (-4 *3 (-986)))))
+(((*1 *2 *3 *3 *3 *4 *5 *3 *6)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-72 FCN)))) (-5 *2 (-975))
+ (-5 *1 (-697)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-598 (-1102))) (-4 *4 (-1030))
+ (-4 *5 (-13 (-986) (-829 *4) (-797) (-573 (-835 *4))))
+ (-5 *1 (-53 *4 *5 *2))
+ (-4 *2 (-13 (-411 *5) (-829 *4) (-573 (-835 *4)))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| -3840 *5) (|:| -1623 *5))))
+ (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-609 *5))
+ (-4 *6 (-609 (-388 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-4 *4 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3840 *4) (|:| -1623 *4))))
+ (-5 *1 (-757 *5 *4 *3 *6)) (-4 *3 (-609 *4))
+ (-4 *6 (-609 (-388 *4)))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-4 *5 (-1160 *4)) (-5 *2 (-598 (-2 (|:| -3840 *5) (|:| -1623 *5))))
+ (-5 *1 (-757 *4 *5 *6 *3)) (-4 *6 (-609 *5))
+ (-4 *3 (-609 (-388 *5)))))
+ ((*1 *2 *3 *4)
+ (-12 (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-4 *4 (-1160 *5)) (-5 *2 (-598 (-2 (|:| -3840 *4) (|:| -1623 *4))))
+ (-5 *1 (-757 *5 *4 *6 *3)) (-4 *6 (-609 *4))
+ (-4 *3 (-609 (-388 *4))))))
+(((*1 *2 *1) (-12 (-5 *2 (-1107)) (-5 *1 (-1047)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-743))
+ (-4 *5 (-13 (-797) (-10 -8 (-15 -3318 ((-1102) $))))) (-4 *6 (-523))
+ (-5 *2 (-2 (|:| -3818 (-895 *6)) (|:| -4137 (-895 *6))))
+ (-5 *1 (-683 *4 *5 *6 *3)) (-4 *3 (-892 (-388 (-895 *6)) *4 *5)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-598 (-1102)))
+ (-5 *2
+ (-598 (-1073 *5 (-503 (-808 *6)) (-808 *6) (-730 *5 (-808 *6)))))
+ (-5 *1 (-583 *5 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-224)) (-5 *3 (-1085))))
+ ((*1 *2 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-224))))
+ ((*1 *1 *2) (-12 (-5 *2 (-148)) (-5 *1 (-817)))))
+(((*1 *1 *1 *2) (-12 (-4 *1 (-671)) (-5 *2 (-864))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-673)) (-5 *2 (-721)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-531))))
((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *3 *3 *2)
- (-12 (-5 *2 (-637 (-530))) (-5 *3 (-597 (-530))) (-5 *1 (-1037)))))
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))))
+(((*1 *2 *3 *2 *2)
+ (-12 (-5 *2 (-598 (-460 *4 *5))) (-5 *3 (-808 *4))
+ (-14 *4 (-598 (-1102))) (-4 *5 (-432)) (-5 *1 (-586 *4 *5)))))
+(((*1 *2 *3 *4 *5 *5)
+ (-12 (-5 *5 (-721)) (-4 *6 (-1030)) (-4 *7 (-843 *6))
+ (-5 *2 (-639 *7)) (-5 *1 (-642 *6 *7 *3 *4)) (-4 *3 (-354 *7))
+ (-4 *4 (-13 (-354 *6) (-10 -7 (-6 -4273)))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-721)) (-5 *5 (-598 *3)) (-4 *3 (-289)) (-4 *6 (-797))
+ (-4 *7 (-743)) (-5 *2 (-110)) (-5 *1 (-581 *6 *7 *3 *8))
+ (-4 *8 (-892 *3 *7 *6)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1160 *5)) (-4 *5 (-344))
+ (-5 *2
+ (-2 (|:| |ir| (-548 (-388 *6))) (|:| |specpart| (-388 *6))
+ (|:| |polypart| *6)))
+ (-5 *1 (-541 *5 *6)) (-5 *3 (-388 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *1 *1) (-4 *1 (-1071))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-806))))
+ ((*1 *1 *1) (-5 *1 (-806))))
(((*1 *2 *1 *1)
- (-12 (-5 *2 (-388 (-893 *3))) (-5 *1 (-433 *3 *4 *5 *6))
- (-4 *3 (-522)) (-4 *3 (-162)) (-14 *4 (-862))
- (-14 *5 (-597 (-1099))) (-14 *6 (-1181 (-637 *3))))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |integrand| *3) (|:| |intvar| *3))))
- (-5 *1 (-547 *3)) (-4 *3 (-344)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-1095 *3)) (-4 *3 (-349)) (-4 *1 (-310 *3))
- (-4 *3 (-344)))))
-(((*1 *1 *2 *2 *3 *1)
- (-12 (-5 *2 (-1099)) (-5 *3 (-1031)) (-5 *1 (-273)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-297 *3)) (-4 *3 (-13 (-984) (-795)))
- (-5 *1 (-206 *3 *4)) (-14 *4 (-597 (-1099))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-110)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5))
- (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6))
- (-4 *6 (-432))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-460 *5 *6))) (-5 *4 (-806 *5))
- (-14 *5 (-597 (-1099))) (-5 *2 (-460 *5 *6)) (-5 *1 (-585 *5 *6))
- (-4 *6 (-432)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-804))) (-5 *1 (-804)))))
+ (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-4 *3 (-523))
+ (-5 *2 (-110)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102))
+ (-14 *4 *2))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-208))) (-5 *2 (-1181 (-647))) (-5 *1 (-287)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-289)) (-4 *6 (-354 *5)) (-4 *4 (-354 *5))
+ (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
(-5 *2
- (-2 (|:| |particular| (-3 *4 "failed")) (|:| -3220 (-597 *4))))
- (-5 *1 (-1050 *5 *6 *4 *3)) (-4 *3 (-635 *5 *6 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *3 *2) (-12 (-5 *3 (-719)) (-5 *1 (-801 *2)) (-4 *2 (-162)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
+ (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3)))
+ (-5 *1 (-1053 *4 *5 *6 *3)) (-4 *3 (-637 *4 *5 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *2 (-1030)) (-5 *1 (-907 *2 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1098 *9)) (-5 *4 (-598 *7)) (-5 *5 (-598 (-598 *8)))
+ (-4 *7 (-797)) (-4 *8 (-289)) (-4 *9 (-892 *8 *6 *7)) (-4 *6 (-743))
+ (-5 *2
+ (-2 (|:| |upol| (-1098 *8)) (|:| |Lval| (-598 *8))
+ (|:| |Lfact|
+ (-598 (-2 (|:| -2552 (-1098 *8)) (|:| -1790 (-531)))))
+ (|:| |ctpol| *8)))
+ (-5 *1 (-693 *6 *7 *8 *9)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *1 *1) (-4 *1 (-516))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-773)) (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-112)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523))
+ (-5 *2 (-2 (|:| -2005 *4) (|:| -2937 *3) (|:| -4124 *3)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2 (-2 (|:| -2937 *1) (|:| -4124 *1))) (-4 *1 (-1000 *3 *4 *5))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-523)) (-4 *3 (-986))
+ (-5 *2 (-2 (|:| -2005 *3) (|:| -2937 *1) (|:| -4124 *1)))
+ (-4 *1 (-1160 *3)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-598 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-344)) (-4 *3 (-986))
+ (-5 *1 (-1087 *3)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *1) (-12 (-4 *1 (-626 *3)) (-4 *3 (-1138)) (-5 *2 (-110)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-388 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-13 (-344) (-140)))
+ (-5 *1 (-380 *3 *4)))))
+(((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7)
+ (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-208))
+ (-5 *7 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-772)))))
(((*1 *2 *1 *1)
- (-12 (-4 *1 (-949 *3)) (-4 *3 (-1135)) (-4 *3 (-1027))
- (-5 *2 (-110)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4)
- (-12 (-5 *3 (-1082)) (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *2 *3 *4 *5 *6 *7)
- (-12 (-5 *3 (-1080 (-2 (|:| |k| (-530)) (|:| |c| *6))))
- (-5 *4 (-964 (-788 (-530)))) (-5 *5 (-1099)) (-5 *7 (-388 (-530)))
- (-4 *6 (-984)) (-5 *2 (-804)) (-5 *1 (-555 *6)))))
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *3 *4 *4 *3 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-702)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1095 *4)) (-5 *1 (-500 *4))
- (-4 *4 (-330)))))
-(((*1 *1 *1) (-12 (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-730 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *1 (-904 *3 *2)) (-4 *2 (-128)) (-4 *3 (-522))
- (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1095 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-911)) (-4 *2 (-128)) (-5 *1 (-1101 *3)) (-4 *3 (-522))
- (-4 *3 (-984))))
- ((*1 *1 *1 *2 *3 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1154 *4 *3)) (-14 *4 (-1099))
- (-4 *3 (-984)))))
-(((*1 *1 *2 *1) (-12 (-5 *1 (-597 *2)) (-4 *2 (-1135))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-1080 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-604 (-388 *2))) (-4 *2 (-1157 *4)) (-5 *1 (-758 *4 *2))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-605 *2 (-388 *2))) (-4 *2 (-1157 *4))
- (-5 *1 (-758 *4 *2))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530))))))))
-(((*1 *1 *2) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-1122 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *3 (-597 (-1122 *2))) (-5 *1 (-1122 *2)) (-4 *2 (-1027)))))
+ (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1030)) (-4 *6 (-1030))
+ (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-634 *4 *5 *6)) (-4 *4 (-1030)))))
+(((*1 *2 *2 *2 *3 *3)
+ (-12 (-5 *3 (-721)) (-4 *4 (-986)) (-5 *1 (-1156 *4 *2))
+ (-4 *2 (-1160 *4)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-1167 *3 *2)) (-4 *3 (-986))
+ (-4 *2 (-1144 *3)))))
+(((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3)
+ (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *6 (-208))
+ (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-702)))))
+(((*1 *2 *2 *3)
+ (|partial| -12 (-5 *3 (-721)) (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *1 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-637 *5))) (-4 *5 (-289)) (-4 *5 (-984))
- (-5 *2 (-1181 (-1181 *5))) (-5 *1 (-967 *5)) (-5 *4 (-1181 *5)))))
+ (-12 (-5 *4 (-598 *3)) (-4 *3 (-1039 *5 *6 *7 *8))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *8 (-1000 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-553 *5 *6 *7 *8 *3)))))
(((*1 *2 *3 *4 *5)
(-12 (-5 *4 (-1 *7 *7))
- (-5 *5 (-1 (-3 (-2 (|:| -2104 *6) (|:| |coeff| *6)) "failed") *6))
- (-4 *6 (-344)) (-4 *7 (-1157 *6))
- (-5 *2 (-2 (|:| |answer| (-547 (-388 *7))) (|:| |a0| *6)))
- (-5 *1 (-540 *6 *7)) (-5 *3 (-388 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-890 *4 *6 *5)) (-4 *4 (-432))
- (-4 *5 (-795)) (-4 *6 (-741)) (-5 *1 (-927 *4 *5 *6 *3)))))
+ (-5 *5 (-1 (-3 (-598 *6) "failed") (-531) *6 *6)) (-4 *6 (-344))
+ (-4 *7 (-1160 *6))
+ (-5 *2 (-2 (|:| |answer| (-548 (-388 *7))) (|:| |a0| *6)))
+ (-5 *1 (-541 *6 *7)) (-5 *3 (-388 *7)))))
+(((*1 *2 *3 *4 *4 *5)
+ (|partial| -12 (-5 *4 (-571 *3)) (-5 *5 (-598 *3))
+ (-4 *3 (-13 (-411 *6) (-27) (-1124)))
+ (-4 *6 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-533 *6 *3 *7)) (-4 *7 (-1030)))))
+(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-1085)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-918 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1034)) (-5 *1 (-262)))))
+(((*1 *1 *2 *2) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1085)) (-5 *1 (-931))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-1025 *4)) (-4 *4 (-1138))
+ (-5 *1 (-1023 *4)))))
(((*1 *2 *3)
- (|partial| -12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2 (-597 (-208))) (-5 *1 (-188)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-1099))) (-5 *1 (-102)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-5 *1 (-1108 *3)))))
-(((*1 *2 *1) (|partial| -12 (-4 *1 (-951)) (-5 *2 (-804)))))
-(((*1 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-815)) (-5 *1 (-1184)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1088 *2 *3)) (-14 *2 (-862)) (-4 *3 (-984)))))
-(((*1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-354 *2)) (-4 *2 (-1135))
- (-4 *2 (-795))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (|has| *1 (-6 -4270))
- (-4 *1 (-354 *3)) (-4 *3 (-1135)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-708)))))
-(((*1 *2 *2) (-12 (-5 *1 (-548 *2)) (-4 *2 (-515)))))
-(((*1 *2 *1) (-12 (-4 *1 (-370)) (-5 *2 (-110)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-1154 *4 *5)) (-5 *3 (-597 *5)) (-14 *4 (-1099))
- (-4 *5 (-344)) (-5 *1 (-864 *4 *5))))
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-5 *2 (-1189))
+ (-5 *1 (-1139 *4))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *5)) (-4 *5 (-344)) (-5 *2 (-1095 *5))
- (-5 *1 (-864 *4 *5)) (-14 *4 (-1099))))
- ((*1 *2 *3 *3 *4 *4)
- (-12 (-5 *3 (-597 *6)) (-5 *4 (-719)) (-4 *6 (-344))
- (-5 *2 (-388 (-893 *6))) (-5 *1 (-985 *5 *6)) (-14 *5 (-1099)))))
-(((*1 *2 *3 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-1030)) (-5 *2 (-1189))
+ (-5 *1 (-1139 *4)))))
+(((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))))
+(((*1 *1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)) (-4 *2 (-995))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-320 *2 *3 *4)) (-14 *2 (-598 (-1102)))
+ (-14 *3 (-598 (-1102))) (-4 *4 (-368))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162)) (-4 *2 (-995))))
+ ((*1 *1 *1) (-4 *1 (-795)))
+ ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)) (-4 *2 (-995))))
+ ((*1 *1 *1) (-4 *1 (-995))) ((*1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1047)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-1049)) (-5 *1 (-107))))
+ ((*1 *2 *1) (|partial| -12 (-5 *1 (-346 *2)) (-4 *2 (-1030))))
+ ((*1 *2 *1) (|partial| -12 (-5 *2 (-1085)) (-5 *1 (-1120)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 (-388 (-895 (-531))))) (-5 *4 (-598 (-1102)))
+ (-5 *2 (-598 (-598 *5))) (-5 *1 (-361 *5))
+ (-4 *5 (-13 (-795) (-344)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 (-531)))) (-5 *2 (-598 *4)) (-5 *1 (-361 *4))
+ (-4 *4 (-13 (-795) (-344))))))
+(((*1 *2 *1) (-12 (-4 *1 (-747 *2)) (-4 *2 (-162))))
+ ((*1 *2 *1) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))))
(((*1 *2 *3 *4)
- (-12 (-4 *4 (-344)) (-5 *2 (-597 (-1080 *4))) (-5 *1 (-267 *4 *5))
- (-5 *3 (-1080 *4)) (-4 *5 (-1172 *4)))))
+ (-12 (-4 *5 (-1030)) (-4 *3 (-843 *5)) (-5 *2 (-1184 *3))
+ (-5 *1 (-642 *5 *3 *6 *4)) (-4 *6 (-354 *3))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))))
+(((*1 *2 *1 *1)
+ (|partial| -12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
+ (-5 *2 (-1098 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))
+ (-5 *2 (-1098 *3)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-342 (-112))) (-4 *2 (-986)) (-5 *1 (-665 *2 *4))
+ (-4 *4 (-601 *2))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-342 (-112))) (-5 *1 (-784 *2)) (-4 *2 (-986)))))
+(((*1 *2 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-360)) (-5 *1 (-736)))))
+(((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-156 *3)) (-4 *3 (-162)) (-4 *3 (-516))
+ (-5 *2 (-388 (-531)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-399 *3)) (-4 *3 (-516))
+ (-4 *3 (-523))))
+ ((*1 *2 *1) (|partial| -12 (-4 *1 (-516)) (-5 *2 (-388 (-531)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-747 *3)) (-4 *3 (-162)) (-4 *3 (-516))
+ (-5 *2 (-388 (-531)))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-783 *3)) (-4 *3 (-516))
+ (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-790 *3)) (-4 *3 (-516))
+ (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (|partial| -12 (-4 *1 (-938 *3)) (-4 *3 (-162)) (-4 *3 (-516))
+ (-5 *2 (-388 (-531)))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *2 (-388 (-531))) (-5 *1 (-949 *3))
+ (-4 *3 (-977 *2)))))
+(((*1 *1 *2) (-12 (-5 *2 (-388 (-531))) (-5 *1 (-105))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-507))) (-5 *1 (-507)))))
+(((*1 *2)
+ (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-502 *3)) (-4 *3 (-13 (-677) (-25))))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1102))
+ (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-176))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-297 (-208))) (-5 *4 (-1102))
+ (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-282)))))
+(((*1 *1 *1 *1) (-4 *1 (-712))))
+(((*1 *1) (-5 *1 (-148))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-770)) (-14 *5 (-1102)) (-5 *2 (-598 (-1157 *5 *4)))
+ (-5 *1 (-1044 *4 *5)) (-5 *3 (-1157 *5 *4)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-521 *3)) (-4 *3 (-13 (-385) (-1124))) (-5 *2 (-110))))
+ ((*1 *2 *1) (-12 (-4 *1 (-795)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1002 *4 *3)) (-4 *4 (-13 (-795) (-344)))
+ (-4 *3 (-1160 *4)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-986)) (-5 *2 (-1184 *3)) (-5 *1 (-663 *3 *4))
+ (-4 *4 (-1160 *3)))))
(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245)))))
-(((*1 *2 *2 *3)
- (-12 (-4 *3 (-984)) (-5 *1 (-424 *3 *2)) (-4 *2 (-1157 *3)))))
-(((*1 *1 *1 *1) (-5 *1 (-152)))
- ((*1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-152)))))
-(((*1 *2 *1 *2)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-949 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027))))
+ (-12 (-5 *2 (-110)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-245)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 *2)) (-4 *2 (-1160 *4)) (-5 *1 (-510 *4 *2 *5 *6))
+ (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-721))))))
+(((*1 *1 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-349)))))
+(((*1 *1 *2) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-1125 *3))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *3 (-598 (-1125 *2))) (-5 *1 (-1125 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-772)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049))))))
+ (-4 *4 (-330)) (-5 *2 (-721)) (-5 *1 (-327 *4))))
+ ((*1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-332 *3 *4)) (-14 *3 (-864))
+ (-14 *4 (-864))))
+ ((*1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330))
+ (-14 *4
+ (-3 (-1098 *3)
+ (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))))))
+ ((*1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330))
+ (-14 *4 (-864)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-895 (-388 (-531)))) (-5 *4 (-1102))
+ (-5 *5 (-1025 (-790 (-208)))) (-5 *2 (-598 (-208))) (-5 *1 (-282)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-164))) (-5 *1 (-1017)))))
+(((*1 *2 *1) (-12 (-4 *1 (-33)) (-5 *2 (-110))))
((*1 *2 *1)
- (-12 (-4 *1 (-1196 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-110))))
+ (-12 (-4 *3 (-432)) (-4 *4 (-797)) (-4 *5 (-743)) (-5 *2 (-110))
+ (-5 *1 (-929 *3 *4 *5 *6)) (-4 *6 (-892 *3 *5 *4))))
((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1202 *3 *4)) (-4 *3 (-984))
- (-4 *4 (-791)))))
-(((*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
- ((*1 *2 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-289))))
- ((*1 *2 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)) (-4 *2 (-289))))
- ((*1 *2 *1) (-12 (-4 *1 (-993)) (-5 *2 (-530)))))
-(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-105))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-506))) (-5 *1 (-506)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-311)))))
-(((*1 *2 *3 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 *3 (-597 *1)))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
- (-5 *1 (-724 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-1067 *3 *4)) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *4 (-13 (-1030) (-33))))))
+(((*1 *2 *1) (-12 (-5 *2 (-772)) (-5 *1 (-771)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1023 (-895 (-531)))) (-5 *3 (-895 (-531)))
+ (-5 *1 (-311))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1023 (-895 (-531)))) (-5 *1 (-311)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-401 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))
+ (-14 *4 (-1102)) (-14 *5 *2)))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
+ (-12 (-4 *3 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-4 *2 (-13 (-27) (-1124) (-411 *3) (-10 -8 (-15 -2265 ($ *4)))))
+ (-4 *4 (-795))
+ (-4 *5
+ (-13 (-1162 *2 *4) (-344) (-1124)
+ (-10 -8 (-15 -3352 ($ $)) (-15 -1788 ($ $)))))
+ (-5 *1 (-403 *3 *2 *4 *5 *6 *7)) (-4 *6 (-925 *5)) (-14 *7 (-1102)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-986)) (-4 *3 (-797))
+ (-4 *5 (-248 *3)) (-4 *6 (-743)) (-5 *2 (-598 (-721)))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-235 *3 *4 *5 *6)) (-4 *3 (-986)) (-4 *4 (-797))
+ (-4 *5 (-248 *4)) (-4 *6 (-743)) (-5 *2 (-598 (-721))))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-388 (-895 *4))) (-4 *4 (-289))
+ (-5 *2 (-388 (-399 (-895 *4)))) (-5 *1 (-981 *4)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-344)) (-5 *2 (-598 *3)) (-5 *1 (-888 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311)))))
+(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
+ *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
+ *9)
+ (-12 (-5 *4 (-639 (-208))) (-5 *5 (-110)) (-5 *6 (-208))
+ (-5 *7 (-639 (-531)))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))))
+ (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))
+ (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-704)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-230 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-432))
+ (-5 *2 (-460 *4 *5)) (-5 *1 (-586 *4 *5)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-289) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-407 *4 *2)) (-4 *2 (-13 (-1124) (-29 *4)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102)) (-4 *5 (-140))
+ (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-594 (-531))))
+ (-5 *2 (-297 *5)) (-5 *1 (-551 *5)))))
+(((*1 *1 *2 *3)
+ (-12
+ (-5 *3
+ (-598
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2)
+ (|:| |xpnt| (-531)))))
+ (-4 *2 (-523)) (-5 *1 (-399 *2))))
+ ((*1 *2 *3)
+ (-12
+ (-5 *3
+ (-2 (|:| |contp| (-531))
+ (|:| -2721 (-598 (-2 (|:| |irr| *4) (|:| -2460 (-531)))))))
+ (-4 *4 (-1160 (-531))) (-5 *2 (-399 *4)) (-5 *1 (-422 *4)))))
+(((*1 *1 *2 *3 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-869))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-869))))
+ ((*1 *1 *2 *3 *3 *3)
+ (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1 (-886 (-208)) (-208))) (-5 *3 (-1025 (-208)))
+ (-5 *1 (-870)))))
+(((*1 *1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-245))))
+ ((*1 *1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-245)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-112)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1050 *2)) (-4 *2 (-1138)))))
+(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979)))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-669 *2)) (-4 *2 (-344)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)) (-4 *2 (-523)))))
+(((*1 *1 *1) (-4 *1 (-136)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-149 *3 *2))
(-4 *2 (-411 *3))))
- ((*1 *1 *1) (-4 *1 (-1063))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-804))))
- ((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1186)) (-5 *1 (-903)))))
+ ((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-516)))))
+(((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-3 (-110) (-598 *1)))
+ (-4 *1 (-1005 *4 *5 *6 *3)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-571 *4)) (-5 *1 (-570 *3 *4)) (-4 *3 (-797))
+ (-4 *4 (-797)))))
+(((*1 *1 *2 *1) (-12 (-5 *1 (-598 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-1083 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-1184 *6)) (-5 *4 (-1184 (-531))) (-5 *5 (-531))
+ (-4 *6 (-1030)) (-5 *2 (-1 *6)) (-5 *1 (-958 *6)))))
+(((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189))
+ (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *3 *3)
+ (-12 (-5 *3 (-1085)) (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-1189))
+ (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1196 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-984)) (-4 *4 (-162))))
- ((*1 *1 *1 *1)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))
- (-4 *3 (-162)))))
-(((*1 *2 *2)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1098 *7))
+ (-4 *5 (-986)) (-4 *7 (-986)) (-4 *2 (-1160 *5))
+ (-5 *1 (-479 *5 *2 *6 *7)) (-4 *6 (-1160 *2)))))
+(((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-706)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1184 (-598 (-2 (|:| -3482 *4) (|:| -1889 (-1049))))))
+ (-4 *4 (-330)) (-5 *2 (-1189)) (-5 *1 (-501 *4)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-721))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-721)))))
+(((*1 *1) (-5 *1 (-134))))
+(((*1 *2 *1) (-12 (-4 *3 (-1138)) (-5 *2 (-598 *1)) (-4 *1 (-951 *3)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1098 (-531))) (-5 *1 (-885)) (-5 *3 (-531)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-1107))) (-5 *1 (-1107))))
+ ((*1 *1 *2 *3)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-1107))) (-5 *1 (-1107)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-598 (-721))) (-5 *1 (-912 *4 *3))
+ (-4 *3 (-1160 *4)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-1151 (-531))) (-4 *1 (-264 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-4 *1 (-264 *3)) (-4 *3 (-1138)))))
+(((*1 *2 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186))))
+ ((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-1186)))))
+(((*1 *2 *1)
(-12
(-5 *2
- (-2 (|:| |fn| (-297 (-208))) (|:| -3657 (-597 (-208)))
- (|:| |lb| (-597 (-788 (-208)))) (|:| |cf| (-597 (-297 (-208))))
- (|:| |ub| (-597 (-788 (-208))))))
- (-5 *1 (-249)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-37 (-388 (-530))))
- (-5 *2 (-2 (|:| -2360 (-1080 *4)) (|:| -2373 (-1080 *4))))
- (-5 *1 (-1086 *4)) (-5 *3 (-1080 *4)))))
-(((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *4 (-1099)) (-5 *6 (-110))
- (-4 *7 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-4 *3 (-13 (-1121) (-900) (-29 *7)))
- (-5 *2
- (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-202 *7 *3)) (-5 *5 (-788 *3)))))
+ (-1184
+ (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208))
+ (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -1943 (-531))
+ (|:| -3398 (-531)) (|:| |spline| (-531)) (|:| -1935 (-531))
+ (|:| |axesColor| (-817)) (|:| -1247 (-531))
+ (|:| |unitsColor| (-817)) (|:| |showing| (-531)))))
+ (-5 *1 (-1185)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-1064 *2 *3)) (-4 *2 (-13 (-1027) (-33)))
- (-4 *3 (-13 (-1027) (-33))))))
-(((*1 *2 *2 *3 *3)
- (-12 (-5 *3 (-1099))
- (-4 *4 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-577 *4 *2)) (-4 *2 (-13 (-1121) (-900) (-29 *4))))))
-(((*1 *2 *1) (-12 (-4 *1 (-1047 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 (-597 (-884 (-208))))) (-5 *3 (-597 (-815)))
- (-5 *1 (-448)))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *2 *3)
- (|partial| -12 (-5 *3 (-719)) (-4 *4 (-13 (-522) (-140)))
- (-5 *1 (-1151 *4 *2)) (-4 *2 (-1157 *4)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1 (-1080 (-893 *4)) (-1080 (-893 *4))))
- (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
-(((*1 *2 *3 *4 *4 *4 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *2 (-973)) (-5 *1 (-700)))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-721))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-721)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| -2005 *3) (|:| |gap| (-721)) (|:| -2937 (-732 *3))
+ (|:| -4124 (-732 *3))))
+ (-5 *1 (-732 *3)) (-4 *3 (-986))))
+ ((*1 *2 *1 *1 *3)
+ (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797))
+ (-5 *2
+ (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -2937 *1)
+ (|:| -4124 *1)))
+ (-4 *1 (-1000 *4 *5 *3))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *2
+ (-2 (|:| -2005 *1) (|:| |gap| (-721)) (|:| -2937 *1)
+ (|:| -4124 *1)))
+ (-4 *1 (-1000 *3 *4 *5)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4)))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
+ ((*1 *2) (-12 (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *2 *3 *1)
+ (-12 (|has| *1 (-6 -4273)) (-4 *1 (-564 *4 *3)) (-4 *4 (-1030))
+ (-4 *3 (-1138)) (-4 *3 (-1030)) (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-1 *5 *5))
+ (-4 *5 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2
+ (-2 (|:| |solns| (-598 *5))
+ (|:| |maps| (-598 (-2 (|:| |arg| *5) (|:| |res| *5))))))
+ (-5 *1 (-1057 *3 *5)) (-4 *3 (-1160 *5)))))
+(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-979)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-106))) (-5 *1 (-164)))))
+(((*1 *2 *3 *4 *4 *4 *4 *5 *5)
+ (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
+ (-5 *2
+ (-2 (|:| -3482 *4) (|:| -3959 *4) (|:| |totalpts| (-531))
+ (|:| |success| (-110))))
+ (-5 *1 (-739)) (-5 *5 (-531)))))
+(((*1 *2 *3 *4 *3)
+ (|partial| -12 (-5 *4 (-1102))
+ (-4 *5 (-13 (-432) (-797) (-140) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-524 *5 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *5))))))
+(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-975)) (-5 *3 (-1102)) (-5 *1 (-176)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-597 (-1095 (-530)))) (-5 *1 (-175)) (-5 *3 (-530)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-118 *3)) (-4 *3 (-1160 (-531))))))
+(((*1 *1 *2 *3 *3 *4 *4)
+ (-12 (-5 *2 (-895 (-531))) (-5 *3 (-1102))
+ (-5 *4 (-1025 (-388 (-531)))) (-5 *1 (-30)))))
+(((*1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-1105)))))
+(((*1 *2 *3 *4 *5 *3 *6 *3)
+ (-12 (-5 *3 (-531)) (-5 *5 (-159 (-208))) (-5 *6 (-1085))
+ (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-1101)) (-5 *1 (-311)))))
+(((*1 *2 *2)
+ (|partial| -12 (-4 *3 (-1138)) (-5 *1 (-170 *3 *2))
+ (-4 *2 (-626 *3)))))
+(((*1 *2 *3 *4 *4 *5 *4 *4 *5)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-708)))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+(((*1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-710)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-289))
- (-5 *2 (-388 (-399 (-893 *4)))) (-5 *1 (-979 *4)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-719)) (-5 *1 (-112)))))
-(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-530))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-719))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-862))))
+ (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
+(((*1 *1 *2 *1) (-12 (-4 *1 (-21)) (-5 *2 (-531))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-721))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-864))))
((*1 *1 *1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721))
(-4 *4 (-162))))
((*1 *1 *2 *1) (-12 (-5 *2 (-208)) (-5 *1 (-148))))
- ((*1 *1 *2 *1) (-12 (-5 *2 (-862)) (-5 *1 (-148))))
+ ((*1 *1 *2 *1) (-12 (-5 *2 (-864)) (-5 *1 (-148))))
((*1 *2 *1 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121)))
+ (-12 (-5 *2 (-886 *3)) (-4 *3 (-13 (-344) (-1124)))
(-5 *1 (-210 *3))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
+ (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-677))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
+ (-12 (-4 *1 (-221 *3 *2)) (-4 *2 (-1138)) (-4 *2 (-677))))
((*1 *1 *2 *1)
- (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135))))
+ (-12 (-5 *1 (-276 *2)) (-4 *2 (-1042)) (-4 *2 (-1138))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-276 *2)) (-4 *2 (-1039)) (-4 *2 (-1135))))
+ (-12 (-5 *1 (-276 *2)) (-4 *2 (-1042)) (-4 *2 (-1138))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-128))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1027))))
+ (-12 (-4 *1 (-304 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-128))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-342 *2)) (-4 *2 (-1030))))
((*1 *1 *2 *3)
- (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795))))
+ (-12 (-5 *1 (-362 *3 *2)) (-4 *3 (-986)) (-4 *2 (-797))))
((*1 *1 *2 *3)
- (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-984)) (-4 *3 (-1027))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1027))))
+ (-12 (-4 *1 (-363 *2 *3)) (-4 *2 (-986)) (-4 *3 (-1030))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-367 *2)) (-4 *2 (-1030))))
((*1 *1 *2 *1)
- (-12 (-14 *3 (-597 (-1099))) (-4 *4 (-162))
- (-4 *6 (-221 (-2267 *3) (-719)))
+ (-12 (-14 *3 (-598 (-1102))) (-4 *4 (-162))
+ (-4 *6 (-221 (-2167 *3) (-721)))
(-14 *7
- (-1 (-110) (-2 (|:| -1986 *5) (|:| -3194 *6))
- (-2 (|:| -1986 *5) (|:| -3194 *6))))
- (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-795))
- (-4 *2 (-890 *4 *6 (-806 *3)))))
+ (-1 (-110) (-2 (|:| -1889 *5) (|:| -1790 *6))
+ (-2 (|:| -1889 *5) (|:| -1790 *6))))
+ (-5 *1 (-441 *3 *4 *5 *6 *7 *2)) (-4 *5 (-797))
+ (-4 *2 (-892 *4 *6 (-808 *3)))))
((*1 *1 *1 *2)
(-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
((*1 *1 *2 *1)
(-12 (-4 *1 (-450 *2 *3)) (-4 *2 (-162)) (-4 *3 (-23))))
((*1 *1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
+ (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-330)) (-5 *1 (-500 *3))))
- ((*1 *1 *1 *1) (-5 *1 (-506)))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-556 *3)) (-4 *3 (-984))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-556 *2)) (-4 *2 (-984))))
- ((*1 *1 *2 *1) (-12 (-4 *1 (-599 *2)) (-4 *2 (-991))))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-626 *2)) (-4 *2 (-795))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1027))
- (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-1 *7 *5))
- (-5 *1 (-632 *5 *6 *7))))
+ (-12 (-5 *2 (-1184 *3)) (-4 *3 (-330)) (-5 *1 (-501 *3))))
+ ((*1 *1 *1 *1) (-5 *1 (-507)))
+ ((*1 *1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-557 *3)) (-4 *3 (-986))))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-557 *2)) (-4 *2 (-986))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-557 *2)) (-4 *2 (-986))))
+ ((*1 *1 *2 *1) (-12 (-4 *1 (-601 *2)) (-4 *2 (-993))))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-628 *2)) (-4 *2 (-797))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1030))
+ (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-1 *7 *5))
+ (-5 *1 (-634 *5 *6 *7))))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-635 *3 *2 *4)) (-4 *3 (-984)) (-4 *2 (-354 *3))
+ (-12 (-4 *1 (-637 *3 *2 *4)) (-4 *3 (-986)) (-4 *2 (-354 *3))
(-4 *4 (-354 *3))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-635 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-354 *3))
+ (-12 (-4 *1 (-637 *3 *4 *2)) (-4 *3 (-986)) (-4 *4 (-354 *3))
(-4 *2 (-354 *3))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984))
+ (-12 (-5 *2 (-531)) (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986))
(-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
(-4 *4 (-354 *2))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
(-4 *4 (-354 *2))))
((*1 *1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
+ (-12 (-4 *1 (-637 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-354 *2))
(-4 *4 (-354 *2))))
- ((*1 *1 *1 *1) (-4 *1 (-669)))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *2 *1) (-12 (-5 *1 (-767 *2)) (-4 *2 (-795))))
- ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1 *1) (-12 (-5 *1 (-833 *2)) (-4 *2 (-1027))))
+ ((*1 *1 *1 *1) (-4 *1 (-671)))
+ ((*1 *1 *1 *2) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *2 *1) (-12 (-5 *1 (-769 *2)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1) (-5 *1 (-806)))
+ ((*1 *1 *1 *1) (-12 (-5 *1 (-835 *2)) (-4 *2 (-1030))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1181 *4)) (-4 *4 (-1157 *3)) (-4 *3 (-522))
- (-5 *1 (-910 *3 *4))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-990 *2)) (-4 *2 (-991))))
- ((*1 *1 *1 *1) (-4 *1 (-1039)))
+ (-12 (-5 *2 (-1184 *4)) (-4 *4 (-1160 *3)) (-4 *3 (-523))
+ (-5 *1 (-912 *3 *4))))
+ ((*1 *1 *1 *2) (-12 (-4 *1 (-992 *2)) (-4 *2 (-993))))
+ ((*1 *1 *1 *1) (-4 *1 (-1042)))
((*1 *2 *2 *1)
- (-12 (-4 *1 (-1049 *3 *4 *2 *5)) (-4 *4 (-984)) (-4 *2 (-221 *3 *4))
+ (-12 (-4 *1 (-1052 *3 *4 *2 *5)) (-4 *4 (-986)) (-4 *2 (-221 *3 *4))
(-4 *5 (-221 *3 *4))))
((*1 *2 *1 *2)
- (-12 (-4 *1 (-1049 *3 *4 *5 *2)) (-4 *4 (-984)) (-4 *5 (-221 *3 *4))
+ (-12 (-4 *1 (-1052 *3 *4 *5 *2)) (-4 *4 (-986)) (-4 *5 (-221 *3 *4))
(-4 *2 (-221 *3 *4))))
((*1 *1 *2 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-795)) (-5 *1 (-1052 *3 *4 *2))
- (-4 *2 (-890 *3 (-502 *4) *4))))
+ (-12 (-4 *3 (-986)) (-4 *4 (-797)) (-5 *1 (-1055 *3 *4 *2))
+ (-4 *2 (-892 *3 (-503 *4) *4))))
((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
((*1 *2 *3 *2)
- (-12 (-5 *2 (-884 (-208))) (-5 *3 (-208)) (-5 *1 (-1132))))
+ (-12 (-5 *2 (-886 (-208))) (-5 *3 (-208)) (-5 *1 (-1135))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
+ (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-677))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1179 *2)) (-4 *2 (-1135)) (-4 *2 (-675))))
+ (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-677))))
((*1 *1 *2 *1)
- (-12 (-5 *2 (-530)) (-4 *1 (-1179 *3)) (-4 *3 (-1135)) (-4 *3 (-21))))
+ (-12 (-5 *2 (-531)) (-4 *1 (-1182 *3)) (-4 *3 (-1138)) (-4 *3 (-21))))
((*1 *1 *2 *1)
- (-12 (-4 *1 (-1196 *2 *3)) (-4 *2 (-795)) (-4 *3 (-984))))
+ (-12 (-4 *1 (-1199 *2 *3)) (-4 *2 (-797)) (-4 *3 (-986))))
((*1 *1 *1 *2)
- (-12 (-4 *1 (-1196 *3 *2)) (-4 *3 (-795)) (-4 *2 (-984))))
+ (-12 (-4 *1 (-1199 *3 *2)) (-4 *3 (-797)) (-4 *2 (-986))))
((*1 *1 *1 *2)
- (-12 (-5 *1 (-1202 *2 *3)) (-4 *2 (-984)) (-4 *3 (-791)))))
-(((*1 *2)
- (-12 (-5 *2 (-637 (-851 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-862))
- (-14 *4 (-862))))
- ((*1 *2)
- (-12 (-5 *2 (-637 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330))
- (-14 *4
- (-3 (-1095 *3)
- (-1181 (-597 (-2 (|:| -3417 *3) (|:| -1986 (-1046)))))))))
- ((*1 *2)
- (-12 (-5 *2 (-637 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330))
- (-14 *4 (-862)))))
+ (-12 (-5 *1 (-1205 *2 *3)) (-4 *2 (-986)) (-4 *3 (-793)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-598 (-161))))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-208))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-208))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-360))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-388 (-531))) (-5 *1 (-360)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-235 *2 *3 *4 *5)) (-4 *2 (-986)) (-4 *3 (-797))
+ (-4 *4 (-248 *3)) (-4 *5 (-743)))))
+(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1030)))))
+(((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-771)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1030)) (-5 *2 (-1085)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-2 (|:| -2552 (-1098 *6)) (|:| -1790 (-531)))))
+ (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-531))
+ (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-772)))))
+(((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4)
+ (-12 (-5 *3 (-1085)) (-5 *5 (-639 (-208))) (-5 *6 (-208))
+ (-5 *7 (-639 (-531))) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-892 *4 *6 *5)) (-4 *4 (-432))
+ (-4 *5 (-797)) (-4 *6 (-743)) (-5 *1 (-929 *4 *5 *6 *3)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-886 *4))) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
- (-5 *1 (-497 *3 *4 *5 *2)) (-4 *2 (-635 *3 *4 *5))))
+ (-12 (-4 *3 (-797)) (-5 *1 (-872 *3 *2)) (-4 *2 (-411 *3))))
((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-4 *7 (-932 *4)) (-4 *2 (-635 *7 *8 *9))
- (-5 *1 (-498 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-635 *4 *5 *6))
- (-4 *8 (-354 *7)) (-4 *9 (-354 *7))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2)) (-4 *2 (-289))))
- ((*1 *2 *2)
- (-12 (-4 *3 (-289)) (-4 *3 (-162)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *1 (-636 *3 *4 *5 *2))
- (-4 *2 (-635 *3 *4 *5))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-637 *3)) (-4 *3 (-289)) (-5 *1 (-648 *3))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-987 *2 *3 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-221 *3 *4)) (-4 *6 (-221 *2 *4)) (-4 *4 (-289)))))
+ (-12 (-5 *3 (-1102)) (-5 *2 (-297 (-531))) (-5 *1 (-873)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1187)))))
+(((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-297 (-208))))
+ (-12 (-4 *4 (-432))
(-5 *2
- (-2 (|:| |stiffnessFactor| (-360)) (|:| |stabilityFactor| (-360))))
- (-5 *1 (-189)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-998 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-5 *1 (-939 *3)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-110)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-704)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-795)) (-5 *2 (-597 (-597 (-597 *4))))
- (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 *4))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-530)) (-5 *1 (-224))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-1082))) (-5 *2 (-530)) (-5 *1 (-224)))))
-(((*1 *1 *1) (-12 (-5 *1 (-1122 *2)) (-4 *2 (-1027)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-344)) (-4 *1 (-310 *3))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-1157 *4)) (-4 *4 (-1139))
- (-4 *1 (-323 *4 *3 *5)) (-4 *5 (-1157 (-388 *3)))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162))
- (-4 *1 (-348 *4))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-1181 *1)) (-4 *4 (-162))
- (-4 *1 (-351 *4 *5)) (-4 *5 (-1157 *4))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-390 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *1 *2) (-12 (-5 *2 (-1181 *3)) (-4 *3 (-162)) (-4 *1 (-398 *3)))))
-(((*1 *1 *2 *2 *2)
- (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1121)))))
- ((*1 *1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *1 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344))))
- ((*1 *2 *1 *3 *4 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *2 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12
- (-5 *3
- (-597
- (-2 (|:| -2426 (-719))
- (|:| |eqns|
- (-597
- (-2 (|:| |det| *7) (|:| |rows| (-597 (-530)))
- (|:| |cols| (-597 (-530))))))
- (|:| |fgb| (-597 *7)))))
- (-4 *7 (-890 *4 *6 *5)) (-4 *4 (-13 (-289) (-140)))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)) (-5 *2 (-719))
- (-5 *1 (-865 *4 *5 *6 *7)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2)
- (-12 (-4 *2 (-984)) (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-394 *3 *4 *5 *6)) (-4 *6 (-975 *4)) (-4 *3 (-289))
- (-4 *4 (-932 *3)) (-4 *5 (-1157 *4)) (-4 *6 (-390 *4 *5))
- (-14 *7 (-1181 *6)) (-5 *1 (-395 *3 *4 *5 *6 *7))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-1181 *6)) (-4 *6 (-390 *4 *5)) (-4 *4 (-932 *3))
- (-4 *5 (-1157 *4)) (-4 *3 (-289)) (-5 *1 (-395 *3 *4 *5 *6 *7))
- (-14 *7 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *1) (|partial| -12 (-5 *2 (-597 (-262))) (-5 *1 (-262))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 (-1104))) (-5 *1 (-1104)))))
-(((*1 *2 *1) (-12 (-4 *3 (-984)) (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)))))
+ (-598
+ (-2 (|:| |eigval| (-3 (-388 (-895 *4)) (-1092 (-1102) (-895 *4))))
+ (|:| |eigmult| (-721))
+ (|:| |eigvec| (-598 (-639 (-388 (-895 *4))))))))
+ (-5 *1 (-274 *4)) (-5 *3 (-639 (-388 (-895 *4)))))))
(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-262)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-719)) (-5 *1 (-731 *2)) (-4 *2 (-37 (-388 (-530))))
- (-4 *2 (-162)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-417)))))
+(((*1 *1 *1 *1)
+ (-12 (|has| *1 (-6 -4274)) (-4 *1 (-117 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 (-110) *9)) (-5 *5 (-1 (-110) *9 *9))
+ (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743))
+ (-4 *8 (-797)) (-5 *2 (-2 (|:| |bas| *1) (|:| -1573 (-598 *9))))
+ (-5 *3 (-598 *9)) (-4 *1 (-1132 *6 *7 *8 *9))))
+ ((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-1 (-110) *8 *8)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-2 (|:| |bas| *1) (|:| -1573 (-598 *8))))
+ (-5 *3 (-598 *8)) (-4 *1 (-1132 *5 *6 *7 *8)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3115 *4)))
+ (-5 *1 (-912 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *2 *3 *2)
+ (-12 (-5 *3 (-721)) (-4 *4 (-330)) (-5 *1 (-200 *4 *2))
+ (-4 *2 (-1160 *4)))))
(((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7)) (-5 *2 (-110))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-110)) (|:| -2473 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-218 *3))))
- ((*1 *1) (-12 (-4 *1 (-218 *2)) (-4 *2 (-1027)))))
-(((*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
- ((*1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2 *3 *4 *4 *3 *5)
- (-12 (-5 *4 (-570 *3)) (-5 *5 (-1095 *3))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027))))
- ((*1 *2 *3 *4 *4 *4 *3 *5)
- (-12 (-5 *4 (-570 *3)) (-5 *5 (-388 (-1095 *3)))
- (-4 *3 (-13 (-411 *6) (-27) (-1121)))
- (-4 *6 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-526 *6 *3 *7)) (-4 *7 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-1157 *4)) (-5 *1 (-509 *4 *2 *5 *6))
- (-4 *4 (-289)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-719))))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184))))
- ((*1 *2 *2) (-12 (-5 *2 (-597 (-719))) (-5 *1 (-1184)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-943 *3)) (-14 *3 (-530)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-597 (-1122 *3))) (-5 *1 (-1122 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *2 *2 *2 *2)
- (-12 (-4 *2 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-530)))))))
- (-5 *1 (-1054 *3 *2)) (-4 *3 (-1157 *2)))))
-(((*1 *2 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-330)) (-5 *2 (-399 *3)) (-5 *1 (-200 *4 *3))
- (-4 *3 (-1157 *4))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 (-719))) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-597 (-719))) (-5 *5 (-719)) (-5 *2 (-399 *3))
- (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-719)) (-5 *2 (-399 *3)) (-5 *1 (-422 *3))
- (-4 *3 (-1157 (-530)))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-946 *3))
- (-4 *3 (-1157 (-388 (-530))))))
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-598 (-1102))) (-4 *5 (-523))
+ (-5 *2 (-598 (-598 (-276 (-388 (-895 *5)))))) (-5 *1 (-720 *5))))
((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-1146 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-563 *2 *3)) (-4 *3 (-1135)) (-4 *2 (-1027))
- (-4 *2 (-795)))))
-(((*1 *1) (-5 *1 (-771))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
- ((*1 *1 *1 *1) (-5 *1 (-1046))))
-(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-123 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1020 (-788 *3))) (-4 *3 (-13 (-1121) (-900) (-29 *5)))
- (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-202 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1020 (-788 *3))) (-5 *5 (-1082))
- (-4 *3 (-13 (-1121) (-900) (-29 *6)))
- (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-3 (|:| |f1| (-788 *3)) (|:| |f2| (-597 (-788 *3)))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-202 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1020 (-788 (-297 *5))))
- (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-3 (|:| |f1| (-788 (-297 *5))) (|:| |f2| (-597 (-788 (-297 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-203 *5))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-388 (-893 *6))) (-5 *4 (-1020 (-788 (-297 *6))))
- (-5 *5 (-1082))
- (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-3 (|:| |f1| (-788 (-297 *6))) (|:| |f2| (-597 (-788 (-297 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-203 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1020 (-788 (-388 (-893 *5))))) (-5 *3 (-388 (-893 *5)))
- (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-3 (|:| |f1| (-788 (-297 *5))) (|:| |f2| (-597 (-788 (-297 *5))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-203 *5))))
+ (-12 (-5 *3 (-598 (-895 *4))) (-4 *4 (-523))
+ (-5 *2 (-598 (-598 (-276 (-388 (-895 *4)))))) (-5 *1 (-720 *4))))
((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-1020 (-788 (-388 (-893 *6))))) (-5 *5 (-1082))
- (-5 *3 (-388 (-893 *6)))
- (-4 *6 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
+ (-12 (-5 *3 (-639 *7))
+ (-5 *5
+ (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -3523 (-598 *6)))
+ *7 *6))
+ (-4 *6 (-344)) (-4 *7 (-609 *6))
(-5 *2
- (-3 (|:| |f1| (-788 (-297 *6))) (|:| |f2| (-597 (-788 (-297 *6))))
- (|:| |fail| "failed") (|:| |pole| "potentialPole")))
- (-5 *1 (-203 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-3 *3 (-597 *3))) (-5 *1 (-409 *5 *3))
- (-4 *3 (-13 (-1121) (-900) (-29 *5)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-454 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3)))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360))))
- (-5 *5 (-360)) (-5 *6 (-996)) (-5 *2 (-973)) (-5 *1 (-531))))
- ((*1 *2 *3) (-12 (-5 *3 (-717)) (-5 *2 (-973)) (-5 *1 (-531))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360))))
- (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360))))
- (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-1022 (-788 (-360))))
- (-5 *2 (-973)) (-5 *1 (-531))))
+ (-2 (|:| |particular| (-3 (-1184 *6) "failed"))
+ (|:| -3523 (-598 (-1184 *6)))))
+ (-5 *1 (-763 *6 *7)) (-5 *4 (-1184 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311))
+ (-5 *1 (-313)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *9 (-1005 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743))
+ (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1003 *5 *6 *7 *8 *9))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360)))))
- (-5 *2 (-973)) (-5 *1 (-531))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360)))))
- (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531))))
- ((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360)))))
- (-5 *5 (-360)) (-5 *2 (-973)) (-5 *1 (-531))))
- ((*1 *2 *3 *4 *5 *5 *6)
- (-12 (-5 *3 (-297 (-360))) (-5 *4 (-597 (-1022 (-788 (-360)))))
- (-5 *5 (-360)) (-5 *6 (-996)) (-5 *2 (-973)) (-5 *1 (-531))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1020 (-788 (-360))))
- (-5 *5 (-1082)) (-5 *2 (-973)) (-5 *1 (-531))))
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-598 *9)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *9 (-1039 *5 *6 *7 *8)) (-4 *5 (-432)) (-4 *6 (-743))
+ (-4 *7 (-797)) (-5 *2 (-721)) (-5 *1 (-1072 *5 *6 *7 *8 *9)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826))
+ (-5 *3 (-598 (-531)))))
+ ((*1 *2 *3)
+ (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826))
+ (-5 *3 (-598 (-531))))))
+(((*1 *2 *3 *2 *4)
+ (|partial| -12 (-5 *4 (-1 (-3 (-531) "failed") *5)) (-4 *5 (-986))
+ (-5 *2 (-531)) (-5 *1 (-514 *5 *3)) (-4 *3 (-1160 *5))))
+ ((*1 *2 *3 *4 *2 *5)
+ (|partial| -12 (-5 *5 (-1 (-3 (-531) "failed") *4)) (-4 *4 (-986))
+ (-5 *2 (-531)) (-5 *1 (-514 *4 *3)) (-4 *3 (-1160 *4))))
((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-297 (-360))) (-5 *4 (-1020 (-788 (-360))))
- (-5 *5 (-1099)) (-5 *2 (-973)) (-5 *1 (-531))))
+ (|partial| -12 (-5 *5 (-1 (-3 (-531) "failed") *4)) (-4 *4 (-986))
+ (-5 *2 (-531)) (-5 *1 (-514 *4 *3)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-4 *1 (-609 *3)) (-4 *3 (-986)) (-4 *3 (-344))))
+ ((*1 *2 *2 *3 *4)
+ (-12 (-5 *3 (-721)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
+ (-5 *1 (-612 *5 *2)) (-4 *2 (-609 *5)))))
+(((*1 *1 *1)
+ (-12 (-4 *2 (-432)) (-4 *3 (-797)) (-4 *4 (-743))
+ (-5 *1 (-929 *2 *3 *4 *5)) (-4 *5 (-892 *2 *4 *3)))))
+(((*1 *2 *3 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-698)))))
+(((*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-1030))
+ (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3))))
+ (-5 *1 (-1008 *3 *4 *2))
+ (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3))))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-1030)) (-5 *1 (-1092 *3 *2)) (-4 *3 (-1030)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-388 (-895 *3))) (-5 *1 (-433 *3 *4 *5 *6))
+ (-4 *3 (-523)) (-4 *3 (-162)) (-14 *4 (-864))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-1184 (-639 *3))))))
+(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-530)))) (-4 *5 (-1157 *4))
- (-5 *2 (-547 (-388 *5))) (-5 *1 (-534 *4 *5)) (-5 *3 (-388 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099)) (-4 *5 (-140))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *2 (-3 (-297 *5) (-597 (-297 *5)))) (-5 *1 (-550 *5))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-689 *3 *2)) (-4 *3 (-984)) (-4 *2 (-795))
- (-4 *3 (-37 (-388 (-530))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1099)) (-5 *1 (-893 *3)) (-4 *3 (-37 (-388 (-530))))
- (-4 *3 (-984))))
- ((*1 *1 *1 *2 *3)
- (-12 (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-4 *2 (-795))
- (-5 *1 (-1052 *3 *2 *4)) (-4 *4 (-890 *3 (-502 *2) *2))))
- ((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984))
- (-5 *1 (-1084 *3))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1090 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1096 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1097 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3)))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-1099)) (-5 *1 (-1130 *3)) (-4 *3 (-37 (-388 (-530))))
- (-4 *3 (-984))))
- ((*1 *1 *1 *2)
- (-1461
- (-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984))
- (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121))
- (-4 *3 (-37 (-388 (-530))))))
- (-12 (-5 *2 (-1099)) (-4 *1 (-1141 *3)) (-4 *3 (-984))
- (-12 (|has| *3 (-15 -2746 ((-597 *2) *3)))
- (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1141 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1145 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3)))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530))))))
- ((*1 *1 *1 *2)
- (-1461
- (-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984))
- (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121))
- (-4 *3 (-37 (-388 (-530))))))
- (-12 (-5 *2 (-1099)) (-4 *1 (-1162 *3)) (-4 *3 (-984))
- (-12 (|has| *3 (-15 -2746 ((-597 *2) *3)))
- (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1162 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1166 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3)))
- ((*1 *1 *1 *2)
- (-1461
- (-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984))
- (-12 (-4 *3 (-29 (-530))) (-4 *3 (-900)) (-4 *3 (-1121))
- (-4 *3 (-37 (-388 (-530))))))
- (-12 (-5 *2 (-1099)) (-4 *1 (-1172 *3)) (-4 *3 (-984))
- (-12 (|has| *3 (-15 -2746 ((-597 *2) *3)))
- (|has| *3 (-15 -1545 (*3 *3 *2))) (-4 *3 (-37 (-388 (-530))))))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-1172 *2)) (-4 *2 (-984)) (-4 *2 (-37 (-388 (-530))))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1177 *4)) (-14 *4 (-1099)) (-5 *1 (-1173 *3 *4 *5))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)) (-14 *5 *3))))
-(((*1 *2 *3 *4 *5 *6 *5)
- (-12 (-5 *4 (-159 (-208))) (-5 *5 (-530)) (-5 *6 (-1082))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-598 (-895 (-531)))) (-5 *4 (-598 (-1102)))
+ (-5 *2 (-598 (-598 (-360)))) (-5 *1 (-963)) (-5 *5 (-360))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-598 (-964 (-388 *4)))))
+ (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102)))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-895 *4)))
+ (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-597 *6)))))
+ (-12 (-4 *1 (-1203 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *2 (-769 *3))))
+ ((*1 *2 *1) (-12 (-4 *2 (-793)) (-5 *1 (-1205 *3 *2)) (-4 *3 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1181 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-344))
- (-4 *1 (-673 *5 *6)) (-4 *5 (-162)) (-4 *6 (-1157 *5))
- (-5 *2 (-637 *5)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-4 *3 (-998 *5 *6 *7))
- (-5 *2 (-597 (-2 (|:| |val| (-597 *3)) (|:| -2473 *4))))
- (-5 *1 (-1035 *5 *6 *7 *3 *4)) (-4 *4 (-1003 *5 *6 *7 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-984)) (-5 *2 (-1181 *4))
- (-5 *1 (-1100 *4))))
+ (-12 (-5 *3 (-1184 (-297 (-208)))) (-5 *4 (-598 (-1102)))
+ (-5 *2 (-639 (-297 (-208)))) (-5 *1 (-189))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-5 *2 (-1181 *3)) (-5 *1 (-1100 *3))
- (-4 *3 (-984)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-363 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1027))
- (-5 *2 (-597 (-2 (|:| |k| *4) (|:| |c| *3))))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-2 (|:| |k| (-834 *3)) (|:| |c| *4))))
- (-5 *1 (-581 *3 *4 *5)) (-4 *3 (-795))
- (-4 *4 (-13 (-162) (-666 (-388 (-530))))) (-14 *5 (-862))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-597 (-622 *3))) (-5 *1 (-834 *3)) (-4 *3 (-795)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-530))))
- ((*1 *1 *1 *1) (-5 *1 (-1046))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-1014))) (-5 *1 (-273)))))
-(((*1 *2 *1)
- (|partial| -12 (-4 *3 (-25)) (-4 *3 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-411 *3))))
+ (-12 (-4 *5 (-1030)) (-4 *6 (-843 *5)) (-5 *2 (-639 *6))
+ (-5 *1 (-642 *5 *6 *3 *4)) (-4 *3 (-354 *6))
+ (-4 *4 (-13 (-354 *5) (-10 -7 (-6 -4273)))))))
+(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-938 *2)) (-4 *2 (-162)))))
+(((*1 *2)
+ (-12 (-4 *1 (-330))
+ (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic")))))
+(((*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1138))))
((*1 *2 *1)
- (|partial| -12 (-5 *2 (-597 (-833 *3))) (-5 *1 (-833 *3))
- (-4 *3 (-1027))))
+ (-12 (-4 *3 (-1030))
+ (-4 *2 (-13 (-411 *4) (-829 *3) (-573 (-835 *3))))
+ (-5 *1 (-1008 *3 *4 *2))
+ (-4 *4 (-13 (-986) (-829 *3) (-797) (-573 (-835 *3))))))
((*1 *2 *1)
- (|partial| -12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *2 (-597 *1)) (-4 *1 (-890 *3 *4 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5)) (-5 *2 (-597 *3))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
- (-15 -1928 (*7 $))))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-1 (-110) *4)) (|has| *1 (-6 -4269)) (-4 *1 (-468 *4))
- (-4 *4 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *1 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-600 *3 *4 *5)) (-4 *3 (-1027))
- (-4 *4 (-23)) (-14 *5 *4))))
-(((*1 *1 *1 *1 *1) (-4 *1 (-515))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-1080 *3))) (-5 *2 (-1080 *3)) (-5 *1 (-1084 *3))
- (-4 *3 (-37 (-388 (-530)))) (-4 *3 (-984)))))
+ (-12 (-4 *2 (-1030)) (-5 *1 (-1092 *2 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-703)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2) (-12 (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
+ (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-4 *3 (-523))
+ (-5 *2 (-1098 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-1 (-1095 (-893 *4)) (-893 *4)))
- (-5 *1 (-1189 *4)) (-4 *4 (-344)))))
-(((*1 *2 *3 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-597 (-719))) (-5 *1 (-910 *4 *3))
- (-4 *3 (-1157 *4)))))
+ (-12 (-4 *4 (-986))
+ (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4)))))
+(((*1 *2 *1 *1)
+ (-12 (-4 *1 (-951 *3)) (-4 *3 (-1138)) (-4 *3 (-1030))
+ (-5 *2 (-110)))))
+(((*1 *2 *1) (-12 (-4 *1 (-487 *3 *2)) (-4 *3 (-1030)) (-4 *2 (-797)))))
(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *1 (-429 *4 *5 *6 *2)))))
-(((*1 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-795)) (-5 *1 (-870 *3 *2)) (-4 *2 (-411 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1099)) (-5 *2 (-297 (-530))) (-5 *1 (-871)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-55 *2 *3 *4)) (-4 *2 (-1135)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-563 *3 *2)) (-4 *3 (-1027))
- (-4 *2 (-1135)))))
-(((*1 *2)
- (-12 (-4 *2 (-13 (-411 *3) (-941))) (-5 *1 (-258 *3 *2))
- (-4 *3 (-13 (-795) (-522))))))
-(((*1 *2 *3 *4 *2 *5)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-597 (-833 *6)))
- (-5 *5 (-1 (-830 *6 *8) *8 (-833 *6) (-830 *6 *8))) (-4 *6 (-1027))
- (-4 *8 (-13 (-984) (-572 (-833 *6)) (-975 *7))) (-5 *2 (-830 *6 *8))
- (-4 *7 (-13 (-984) (-795))) (-5 *1 (-882 *6 *7 *8)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *3 (-597 (-570 *2))) (-5 *4 (-1099))
- (-4 *2 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-522) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *1 (-259 *5 *2)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3 *4 *3 *5 *3)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-637 (-530))) (-5 *3 (-530))
- (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *3)) (-4 *3 (-998 *4 *5 *6)))))
+ (|partial| -12 (-5 *3 (-721)) (-4 *4 (-13 (-523) (-140)))
+ (-5 *1 (-1154 *4 *2)) (-4 *2 (-1160 *4)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-530))) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *7 (-522)) (-4 *8 (-890 *7 *5 *6))
- (-5 *2 (-2 (|:| -3194 (-719)) (|:| -2065 *9) (|:| |radicand| *9)))
- (-5 *1 (-894 *5 *6 *7 *8 *9)) (-5 *4 (-719))
- (-4 *9
- (-13 (-344)
- (-10 -8 (-15 -1918 (*8 $)) (-15 -1928 (*8 $)) (-15 -2366 ($ *8))))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-893 *4)) (-4 *4 (-13 (-289) (-140)))
- (-4 *2 (-890 *4 *6 *5)) (-5 *1 (-865 *4 *5 *6 *2))
- (-4 *5 (-13 (-795) (-572 (-1099)))) (-4 *6 (-741)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+ (-12 (-5 *3 (-598 (-1184 *5))) (-5 *4 (-531)) (-5 *2 (-1184 *5))
+ (-5 *1 (-969 *5)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-986)))))
+(((*1 *2 *3 *4 *5 *4 *4 *4)
+ (-12 (-4 *6 (-797)) (-5 *3 (-598 *6)) (-5 *5 (-598 *3))
+ (-5 *2
+ (-2 (|:| |f1| *3) (|:| |f2| (-598 *5)) (|:| |f3| *5)
+ (|:| |f4| (-598 *5))))
+ (-5 *1 (-1110 *6)) (-5 *4 (-598 *5)))))
+(((*1 *1) (-12 (-5 *1 (-641 *2)) (-4 *2 (-572 (-806))))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *2 *3 *4 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *2 (-975))
+ (-5 *1 (-698)))))
+(((*1 *2 *3 *4 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *2 (-975)) (-5 *1 (-703)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *10))
- (-5 *1 (-579 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1003 *5 *6 *7 *8))
- (-4 *10 (-1036 *5 *6 *7 *8))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
- (-5 *1 (-582 *5 *6))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099)))
+ (-12 (-5 *3 (-639 *8)) (-4 *8 (-892 *5 *7 *6))
+ (-4 *5 (-13 (-289) (-140))) (-4 *6 (-13 (-797) (-573 (-1102))))
+ (-4 *7 (-743))
(-5 *2
- (-597 (-1070 *5 (-502 (-806 *6)) (-806 *6) (-728 *5 (-806 *6)))))
- (-5 *1 (-582 *5 *6))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-965 *5 *6 *7 *8))) (-5 *1 (-965 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 (-728 *5 (-806 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
- (-14 *6 (-597 (-1099))) (-5 *2 (-597 (-981 *5 *6)))
- (-5 *1 (-981 *5 *6))))
+ (-598
+ (-2 (|:| -2277 (-721))
+ (|:| |eqns|
+ (-598
+ (-2 (|:| |det| *8) (|:| |rows| (-598 (-531)))
+ (|:| |cols| (-598 (-531))))))
+ (|:| |fgb| (-598 *8)))))
+ (-5 *1 (-867 *5 *6 *7 *8)) (-5 *4 (-721)))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-598 (-895 *4))) (-5 *3 (-598 (-1102))) (-4 *4 (-432))
+ (-5 *1 (-861 *4)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-1032 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-1032 *3)) (-5 *1 (-848 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1085)) (-5 *1 (-772)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *3 (-399 *2)) (-4 *2 (-289)) (-5 *1 (-857 *2))))
((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1003 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 *8)) (-5 *4 (-110)) (-4 *8 (-998 *5 *6 *7))
- (-4 *5 (-432)) (-4 *6 (-741)) (-4 *7 (-795))
- (-5 *2 (-597 (-1070 *5 *6 *7 *8))) (-5 *1 (-1070 *5 *6 *7 *8))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 *1))
- (-4 *1 (-1129 *4 *5 *6 *7)))))
-(((*1 *1 *2 *2)
- (-12 (-5 *2 (-719)) (-4 *3 (-984)) (-4 *1 (-635 *3 *4 *5))
- (-4 *4 (-354 *3)) (-4 *5 (-354 *3))))
- ((*1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-1179 *3)) (-4 *3 (-23)) (-4 *3 (-1135)))))
-(((*1 *2) (-12 (-4 *1 (-385)) (-5 *2 (-862)))) ((*1 *1) (-4 *1 (-515)))
- ((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
- ((*1 *2) (-12 (-5 *2 (-862)) (-5 *1 (-647))))
- ((*1 *2 *1) (-12 (-5 *2 (-597 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-570 *4)) (-5 *1 (-569 *3 *4)) (-4 *3 (-795))
- (-4 *4 (-795)))))
-(((*1 *2 *3 *2)
- (-12 (-4 *1 (-735)) (-5 *2 (-973))
- (-5 *3
- (-2 (|:| |fn| (-297 (-208)))
- (|:| -1300 (-597 (-1022 (-788 (-208))))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))))
- ((*1 *2 *3 *2)
- (-12 (-4 *1 (-735)) (-5 *2 (-973))
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208)))))))
-(((*1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-21)) (-4 *2 (-1135)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-630 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-522)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-797 *3))))
+ (-12 (-5 *3 (-388 (-895 *5))) (-5 *4 (-1102))
+ (-4 *5 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-858 *5))))
+ ((*1 *2 *3 *4 *5)
+ (-12 (-5 *4 (-399 (-895 *6))) (-5 *5 (-1102)) (-5 *3 (-895 *6))
+ (-4 *6 (-13 (-289) (-140))) (-5 *2 (-51)) (-5 *1 (-858 *6)))))
+(((*1 *2 *1) (-12 (-4 *1 (-521 *2)) (-4 *2 (-13 (-385) (-1124)))))
+ ((*1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))
+ ((*1 *2 *1) (-12 (-5 *2 (-531)) (-5 *1 (-806)))))
+(((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-721)) (-4 *5 (-344)) (-5 *2 (-388 *6))
+ (-5 *1 (-810 *5 *4 *6)) (-4 *4 (-1175 *5)) (-4 *6 (-1160 *5))))
+ ((*1 *2 *3 *3 *4 *4)
+ (|partial| -12 (-5 *3 (-721)) (-5 *4 (-1176 *5 *6 *7)) (-4 *5 (-344))
+ (-14 *6 (-1102)) (-14 *7 *5) (-5 *2 (-388 (-1157 *6 *5)))
+ (-5 *1 (-811 *5 *6 *7))))
((*1 *2 *3 *3 *4)
- (-12 (-5 *4 (-96 *5)) (-4 *5 (-522)) (-4 *5 (-984))
- (-5 *2 (-2 (|:| -1324 *3) (|:| -3304 *3))) (-5 *1 (-798 *5 *3))
- (-4 *3 (-797 *5)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1) (-5 *1 (-134))) ((*1 *1 *1) (-5 *1 (-137)))
- ((*1 *1 *1) (-4 *1 (-1068))))
-(((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *3 (-719)) (-4 *4 (-289)) (-4 *6 (-1157 *4))
- (-5 *2 (-1181 (-597 *6))) (-5 *1 (-435 *4 *6)) (-5 *5 (-597 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-981 *4 *5)) (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-14 *5 (-597 (-1099))) (-5 *2 (-597 (-597 (-962 (-388 *4)))))
- (-5 *1 (-1205 *4 *5 *6)) (-14 *6 (-597 (-1099)))))
- ((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-893 *5))) (-5 *4 (-110))
- (-4 *5 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *5))))) (-5 *1 (-1205 *5 *6 *7))
- (-14 *6 (-597 (-1099))) (-14 *7 (-597 (-1099)))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-893 *4)))
- (-4 *4 (-13 (-793) (-289) (-140) (-960)))
- (-5 *2 (-597 (-597 (-962 (-388 *4))))) (-5 *1 (-1205 *4 *5 *6))
- (-14 *5 (-597 (-1099))) (-14 *6 (-597 (-1099))))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
-(((*1 *1) (-5 *1 (-751))))
+ (|partial| -12 (-5 *3 (-721)) (-5 *4 (-1176 *5 *6 *7)) (-4 *5 (-344))
+ (-14 *6 (-1102)) (-14 *7 *5) (-5 *2 (-388 (-1157 *6 *5)))
+ (-5 *1 (-811 *5 *6 *7)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984))
+ (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142)) (-4 *4 (-1160 *3))
+ (-4 *5 (-1160 (-388 *4)))
+ (-5 *2 (-2 (|:| |num| (-1184 *4)) (|:| |den| *4))))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-797)) (-5 *2 (-598 (-598 *4))) (-5 *1 (-1110 *4))
+ (-5 *3 (-598 *4)))))
+(((*1 *2 *3)
+ (-12 (-14 *4 (-598 (-1102))) (-14 *5 (-721))
(-5 *2
- (-2 (|:| -2214 (-719)) (|:| |curves| (-719))
- (|:| |polygons| (-719)) (|:| |constructs| (-719)))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-289) (-140))) (-4 *4 (-13 (-795) (-572 (-1099))))
- (-4 *5 (-741)) (-5 *1 (-865 *3 *4 *5 *2)) (-4 *2 (-890 *3 *5 *4)))))
-(((*1 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-369)) (-5 *1 (-417)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *1 *1 *1) (-5 *1 (-110))) ((*1 *1 *1 *1) (-4 *1 (-121))))
+ (-598
+ (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4)
+ (-230 *4 (-388 (-531))))))
+ (-5 *1 (-483 *4 *5))
+ (-5 *3
+ (-482 (-388 (-531)) (-223 *5 (-721)) (-808 *4)
+ (-230 *4 (-388 (-531))))))))
+(((*1 *2) (-12 (-5 *2 (-790 (-531))) (-5 *1 (-505))))
+ ((*1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1030)))))
+(((*1 *2 *3) (-12 (-5 *3 (-895 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-909 *3)) (-4 *3 (-910)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-788 *3))) (-4 *3 (-13 (-27) (-1121) (-411 *5)))
- (-4 *5 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2
- (-3 (-788 *3)
- (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-788 *3) "failed")))
- "failed"))
- (-5 *1 (-590 *5 *3))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-276 *3)) (-5 *5 (-1082))
- (-4 *3 (-13 (-27) (-1121) (-411 *6)))
- (-4 *6 (-13 (-432) (-795) (-975 (-530)) (-593 (-530))))
- (-5 *2 (-788 *3)) (-5 *1 (-590 *6 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-788 (-893 *5)))) (-4 *5 (-432))
+ (-12 (-4 *5 (-344)) (-4 *5 (-523))
(-5 *2
- (-3 (-788 (-388 (-893 *5)))
- (-2 (|:| |leftHandLimit| (-3 (-788 (-388 (-893 *5))) "failed"))
- (|:| |rightHandLimit| (-3 (-788 (-388 (-893 *5))) "failed")))
- "failed"))
- (-5 *1 (-591 *5)) (-5 *3 (-388 (-893 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-276 (-388 (-893 *5)))) (-5 *3 (-388 (-893 *5)))
- (-4 *5 (-432))
- (-5 *2
- (-3 (-788 *3)
- (-2 (|:| |leftHandLimit| (-3 (-788 *3) "failed"))
- (|:| |rightHandLimit| (-3 (-788 *3) "failed")))
- "failed"))
- (-5 *1 (-591 *5))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *4 (-276 (-388 (-893 *6)))) (-5 *5 (-1082))
- (-5 *3 (-388 (-893 *6))) (-4 *6 (-432)) (-5 *2 (-788 *3))
- (-5 *1 (-591 *6)))))
-(((*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1027))
- (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3))))
- (-5 *1 (-1006 *3 *4 *2))
- (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1027)) (-5 *1 (-1089 *3 *2)) (-4 *3 (-1027)))))
-(((*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504))))
- ((*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-399 *3)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47)))))
- ((*1 *2 *3 *1)
- (-12 (-5 *2 (-2 (|:| |less| (-119 *3)) (|:| |greater| (-119 *3))))
- (-5 *1 (-119 *3)) (-4 *3 (-795))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-547 *4)) (-4 *4 (-13 (-29 *3) (-1121)))
- (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *1 (-545 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-547 (-388 (-893 *3))))
- (-4 *3 (-13 (-432) (-975 (-530)) (-795) (-593 (-530))))
- (-5 *1 (-550 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-344))
- (-5 *2 (-2 (|:| -4182 *3) (|:| |special| *3))) (-5 *1 (-676 *5 *3))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1181 *5)) (-4 *5 (-344)) (-4 *5 (-984))
- (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
- (-5 *3 (-597 (-637 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1181 (-1181 *5))) (-4 *5 (-344)) (-4 *5 (-984))
- (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
- (-5 *3 (-597 (-637 *5)))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-134)) (-5 *2 (-597 *1)) (-4 *1 (-1068))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-137)) (-5 *2 (-597 *1)) (-4 *1 (-1068)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *2 (-637 *3))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-1099)) (-4 *4 (-984)) (-4 *4 (-795))
- (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530))))
- (-4 *1 (-411 *4))))
- ((*1 *2 *1 *3)
- (|partial| -12 (-5 *3 (-112)) (-4 *4 (-984)) (-4 *4 (-795))
- (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530))))
- (-4 *1 (-411 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *3 (-1039)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| |var| (-570 *1)) (|:| -3194 (-530))))
- (-4 *1 (-411 *3))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-2 (|:| |val| (-833 *3)) (|:| -3194 (-719))))
- (-5 *1 (-833 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1)
- (|partial| -12 (-4 *1 (-890 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-2 (|:| |var| *5) (|:| -3194 (-719))))))
- ((*1 *2 *3)
- (|partial| -12 (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-4 *7 (-890 *6 *4 *5))
- (-5 *2 (-2 (|:| |var| *5) (|:| -3194 (-530))))
- (-5 *1 (-891 *4 *5 *6 *7 *3))
- (-4 *3
- (-13 (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
- (-15 -1928 (*7 $))))))))
-(((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-137)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-650 *3 *5 *6 *7))
- (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135))
- (-4 *7 (-1135))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1099)) (-5 *2 (-1 *6 *5)) (-5 *1 (-655 *3 *5 *6))
- (-4 *3 (-572 (-506))) (-4 *5 (-1135)) (-4 *6 (-1135)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-555 *3)) (-4 *3 (-37 *2))
- (-4 *3 (-984)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2)
- (-12 (-4 *1 (-745 *2)) (-4 *2 (-162))))
- ((*1 *1 *2 *2)
- (-12 (-5 *2 (-938 *3)) (-4 *3 (-162)) (-5 *1 (-747 *3)))))
-(((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-525)))))
-(((*1 *2 *1) (-12 (-5 *2 (-171)) (-5 *1 (-231)))))
-(((*1 *2 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-1135))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-1027))
- (-4 *2 (-13 (-411 *4) (-827 *3) (-572 (-833 *3))))
- (-5 *1 (-1006 *3 *4 *2))
- (-4 *4 (-13 (-984) (-827 *3) (-795) (-572 (-833 *3))))))
- ((*1 *2 *1)
- (-12 (-4 *2 (-1027)) (-5 *1 (-1089 *2 *3)) (-4 *3 (-1027)))))
-(((*1 *2) (-12 (-5 *2 (-788 (-530))) (-5 *1 (-504))))
- ((*1 *1) (-12 (-5 *1 (-788 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-661 *3 *2)) (-4 *2 (-1157 *3)))))
+ (-2 (|:| |minor| (-598 (-864))) (|:| -2723 *3)
+ (|:| |minors| (-598 (-598 (-864)))) (|:| |ops| (-598 *3))))
+ (-5 *1 (-88 *5 *3)) (-5 *4 (-864)) (-4 *3 (-609 *5)))))
+(((*1 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187))))
+ ((*1 *2 *2) (-12 (-5 *2 (-817)) (-5 *1 (-1187)))))
(((*1 *2 *3 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
-(((*1 *1 *2 *2)
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *3))
+ (-5 *1 (-919 *4 *5 *6 *3)) (-4 *3 (-1000 *4 *5 *6)))))
+(((*1 *2 *2) (-12 (-5 *1 (-549 *2)) (-4 *2 (-516)))))
+(((*1 *2 *2 *2 *3)
+ (-12 (-5 *3 (-721)) (-4 *4 (-13 (-986) (-668 (-388 (-531)))))
+ (-4 *5 (-797)) (-5 *1 (-1198 *4 *5 *2)) (-4 *2 (-1203 *5 *4)))))
+(((*1 *2 *3)
(-12
+ (-5 *3
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
+ (|:| |relerr| (-208))))
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
- (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
- (-5 *1 (-1098)))))
-(((*1 *2 *3)
- (-12 (-5 *2 (-399 (-1095 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1095 *1))
- (-4 *4 (-432)) (-4 *4 (-522)) (-4 *4 (-795))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-850)) (-5 *2 (-399 (-1095 *1))) (-5 *3 (-1095 *1)))))
+ (-3 (|:| |continuous| "Continuous at the end points")
+ (|:| |lowerSingular|
+ "There is a singularity at the lower end point")
+ (|:| |upperSingular|
+ "There is a singularity at the upper end point")
+ (|:| |bothSingular| "There are singularities at both end points")
+ (|:| |notEvaluated| "End point continuity not yet evaluated")))
+ (-5 *1 (-176)))))
+(((*1 *2) (-12 (-5 *2 (-1062 (-208))) (-5 *1 (-1122)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-597 (-1104))) (-5 *1 (-821)))))
-(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1082)) (-5 *1 (-287)))))
-(((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6
- *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8
- *9)
- (-12 (-5 *4 (-637 (-208))) (-5 *5 (-110)) (-5 *6 (-208))
- (-5 *7 (-637 (-530)))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-78 CONFUN))))
- (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-75 OBJFUN))))
- (-5 *3 (-530)) (-5 *2 (-973)) (-5 *1 (-702)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *2 *3 *4 *4)
- (-12 (-5 *4 (-530)) (-4 *3 (-162)) (-4 *5 (-354 *3))
- (-4 *6 (-354 *3)) (-5 *1 (-636 *3 *5 *6 *2))
- (-4 *2 (-635 *3 *5 *6)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1099)) (-5 *4 (-893 (-530))) (-5 *2 (-311))
- (-5 *1 (-313)))))
-(((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-304 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-128)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-132 *3 *4 *5)) (-14 *3 (-530))
- (-14 *4 (-719)) (-4 *5 (-162)))))
-(((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-375))))
- ((*1 *2 *1 *2) (-12 (-5 *2 (-597 (-1082))) (-5 *1 (-1116)))))
-(((*1 *2 *3 *3)
- (-12 (|has| *2 (-6 (-4271 "*"))) (-4 *5 (-354 *2)) (-4 *6 (-354 *2))
- (-4 *2 (-984)) (-5 *1 (-101 *2 *3 *4 *5 *6)) (-4 *3 (-1157 *2))
- (-4 *4 (-635 *2 *5 *6)))))
-(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
+ (-12 (-4 *4 (-986)) (-5 *2 (-110)) (-5 *1 (-424 *4 *3))
+ (-4 *3 (-1160 *4))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-790 (-531))) (-5 *1 (-505))))
+ ((*1 *1) (-12 (-5 *1 (-790 *2)) (-4 *2 (-1030)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-966 (-790 (-531))))
+ (-5 *3 (-1083 (-2 (|:| |k| (-531)) (|:| |c| *4)))) (-4 *4 (-986))
+ (-5 *1 (-556 *4)))))
(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
- (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
- (-5 *1 (-1098)))))
-(((*1 *2 *3 *4 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-700)))))
-(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-767 *3)) (-4 *3 (-795)) (-5 *1 (-622 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-127)))))
-(((*1 *2) (-12 (-5 *2 (-360)) (-5 *1 (-977)))))
+ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360)))
+ (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101))))
+ (-5 *1 (-1101)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *1 *1 *1) (-5 *1 (-152)))
+ ((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-152)))))
+(((*1 *1 *1) (-5 *1 (-998))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-808 *5))) (-14 *5 (-598 (-1102))) (-4 *6 (-432))
+ (-5 *2 (-598 (-598 (-230 *5 *6)))) (-5 *1 (-451 *5 *6 *7))
+ (-5 *3 (-598 (-230 *5 *6))) (-4 *7 (-432)))))
+(((*1 *1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-1102)))))
(((*1 *2 *1)
- (-12 (-5 *2 (-964 (-788 (-530)))) (-5 *1 (-555 *3)) (-4 *3 (-984)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-27))
- (-4 *4 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4)) (-5 *2 (-597 (-604 (-388 *5))))
- (-5 *1 (-608 *4 *5)) (-5 *3 (-604 (-388 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
+ (-12 (-4 *1 (-637 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-38 *3)) (-4 *3 (-1157 (-47))))))
-(((*1 *1 *1) (-5 *1 (-1098)))
- ((*1 *1 *2)
+ (-12 (-5 *3 (-983 *4 *5)) (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-14 *5 (-598 (-1102))) (-5 *2 (-598 (-598 (-964 (-388 *4)))))
+ (-5 *1 (-1208 *4 *5 *6)) (-14 *6 (-598 (-1102)))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-895 *5))) (-5 *4 (-110))
+ (-4 *5 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-598 (-964 (-388 *5))))) (-5 *1 (-1208 *5 *6 *7))
+ (-14 *6 (-598 (-1102))) (-14 *7 (-598 (-1102)))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-598 (-895 *4)))
+ (-4 *4 (-13 (-795) (-289) (-140) (-962)))
+ (-5 *2 (-598 (-598 (-964 (-388 *4))))) (-5 *1 (-1208 *4 *5 *6))
+ (-14 *5 (-598 (-1102))) (-14 *6 (-598 (-1102))))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-1189)) (-5 *1 (-526)))))
+(((*1 *1 *2 *2)
(-12
(-5 *2
- (-3 (|:| I (-297 (-530))) (|:| -1334 (-297 (-360)))
- (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1098))))
- (-5 *1 (-1098)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-984))
- (-4 *2 (-13 (-385) (-975 *4) (-344) (-1121) (-266)))
- (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *2 (-13 (-385) (-975 *5) (-344) (-1121) (-266)))
- (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1157 *5)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-297 *3)) (-4 *3 (-522)) (-4 *3 (-795)))))
-(((*1 *2 *2) (-12 (-5 *2 (-597 (-297 (-208)))) (-5 *1 (-249)))))
-(((*1 *2 *1) (-12 (-4 *1 (-520 *2)) (-4 *2 (-13 (-385) (-1121)))))
- ((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804))))
- ((*1 *2 *1) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *2) (-12 (-5 *2 (-637 (-297 (-530)))) (-5 *1 (-969)))))
+ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360)))
+ (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101))))
+ (-5 *1 (-1101)))))
+(((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-598 (-967 *5 *6 *7 *8))) (-5 *1 (-967 *5 *6 *7 *8))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *3 (-598 *8)) (-5 *4 (-110)) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-598 (-1073 *5 *6 *7 *8))) (-5 *1 (-1073 *5 *6 *7 *8)))))
+(((*1 *1 *1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-1067 *4 *5))) (-5 *3 (-1 (-110) *5 *5))
+ (-4 *4 (-13 (-1030) (-33))) (-4 *5 (-13 (-1030) (-33)))
+ (-5 *1 (-1068 *4 *5))))
+ ((*1 *1 *1 *1 *2)
+ (-12 (-5 *2 (-598 (-1067 *3 *4))) (-4 *3 (-13 (-1030) (-33)))
+ (-4 *4 (-13 (-1030) (-33))) (-5 *1 (-1068 *3 *4)))))
(((*1 *1 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-1027)) (-4 *1 (-844 *3)))))
-(((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-530))) (-5 *1 (-911)))))
-(((*1 *2 *3 *4 *4 *2 *2 *2 *2)
- (-12 (-5 *2 (-530))
- (-5 *3
- (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-719)) (|:| |poli| *4)
- (|:| |polj| *4)))
- (-4 *6 (-741)) (-4 *4 (-890 *5 *6 *7)) (-4 *5 (-432)) (-4 *7 (-795))
- (-5 *1 (-429 *5 *6 *7 *4)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *1 (-916 *3 *4 *2 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *5 (-998 *3 *4 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-772)))))
-(((*1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-810 *3)) (-5 *2 (-530)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-13 (-344) (-140) (-975 (-388 (-530)))))
- (-4 *5 (-1157 *4))
- (-5 *2 (-597 (-2 (|:| |deg| (-719)) (|:| -2776 *5))))
- (-5 *1 (-757 *4 *5 *3 *6)) (-4 *3 (-607 *5))
- (-4 *6 (-607 (-388 *5))))))
+ (-12 (-5 *2 (-1069 *3 *4)) (-14 *3 (-864)) (-4 *4 (-344))
+ (-5 *1 (-935 *3 *4)))))
+(((*1 *2)
+ (-12 (-4 *4 (-162)) (-5 *2 (-110)) (-5 *1 (-347 *3 *4))
+ (-4 *3 (-348 *4))))
+ ((*1 *2) (-12 (-4 *1 (-348 *3)) (-4 *3 (-162)) (-5 *2 (-110)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-870)))))
+(((*1 *2 *3 *4)
+ (|partial| -12 (-5 *4 (-598 (-388 *6))) (-5 *3 (-388 *6))
+ (-4 *6 (-1160 *5)) (-4 *5 (-13 (-344) (-140) (-977 (-531))))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-535 *5 *6)))))
(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-1 (-110) *2)) (-4 *1 (-144 *2))
- (-4 *2 (-1135)))))
-(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1099)) (-5 *3 (-360)) (-5 *1 (-996)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *2 *3)
+ (-12 (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2) (-12 (-5 *2 (-1074 (-1085))) (-5 *1 (-372)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-598 *1)) (-4 *1 (-1000 *4 *5 *6)) (-4 *4 (-986))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *1 (-1000 *3 *4 *5)) (-4 *3 (-986)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *2 (-110))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *6)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-1000 *3 *4 *5)) (-5 *2 (-110))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *1 (-1132 *4 *5 *6 *3)) (-4 *4 (-523)) (-4 *5 (-743))
+ (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *1 *1) (-5 *1 (-1101)))
+ ((*1 *1 *2)
(-12
(-5 *2
- (-2 (|:| |partsol| (-1181 (-388 (-893 *4))))
- (|:| -3220 (-597 (-1181 (-388 (-893 *4)))))))
- (-5 *3 (-597 *7)) (-4 *4 (-13 (-289) (-140)))
- (-4 *7 (-890 *4 *6 *5)) (-4 *5 (-13 (-795) (-572 (-1099))))
- (-4 *6 (-741)) (-5 *1 (-865 *4 *5 *6 *7)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1 (-884 (-208)) (-208) (-208)))
- (-5 *3 (-1 (-208) (-208) (-208) (-208))) (-5 *1 (-237)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-769)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-4 *2 (-411 *3)) (-5 *1 (-31 *3 *2))
- (-4 *3 (-975 *4)) (-4 *3 (-13 (-795) (-522))))))
-(((*1 *2 *1) (-12 (-4 *1 (-46 *3 *2)) (-4 *3 (-984)) (-4 *2 (-740))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-719)) (-5 *1 (-49 *3 *4)) (-4 *3 (-984))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *1)
- (-12 (-5 *2 (-530)) (-5 *1 (-206 *3 *4)) (-4 *3 (-13 (-984) (-795)))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-235 *4 *3 *5 *6)) (-4 *4 (-984)) (-4 *3 (-795))
- (-4 *5 (-248 *3)) (-4 *6 (-741)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-257))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *8)) (-5 *4 (-597 *6)) (-4 *6 (-795))
- (-4 *8 (-890 *7 *5 *6)) (-4 *5 (-741)) (-4 *7 (-984))
- (-5 *2 (-597 (-719))) (-5 *1 (-302 *5 *6 *7 *8))))
- ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-355 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
- (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-450 *3 *2)) (-4 *3 (-162)) (-4 *2 (-23))))
- ((*1 *2 *1)
- (-12 (-4 *3 (-522)) (-5 *2 (-530)) (-5 *1 (-578 *3 *4))
- (-4 *4 (-1157 *3))))
- ((*1 *2 *1) (-12 (-4 *1 (-657 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-4 *1 (-797 *3)) (-4 *3 (-984)) (-5 *2 (-719))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-719)) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-597 *6)) (-4 *1 (-890 *4 *5 *6)) (-4 *4 (-984))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-597 (-719)))))
- ((*1 *2 *1 *3)
- (-12 (-4 *1 (-890 *4 *5 *3)) (-4 *4 (-984)) (-4 *5 (-741))
- (-4 *3 (-795)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-913 *3 *2 *4)) (-4 *3 (-984)) (-4 *4 (-795))
- (-4 *2 (-740))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-719))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1143 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1172 *3))
- (-5 *2 (-530))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1164 *3 *4)) (-4 *3 (-984)) (-4 *4 (-1141 *3))
- (-5 *2 (-388 (-530)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1200 *3 *4)) (-4 *3 (-795)) (-4 *4 (-984))
- (-5 *2 (-719)))))
-(((*1 *2 *3)
- (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-530))) (-5 *1 (-982)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-890 *4 *5 *6)) (-4 *4 (-344))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-430 *4 *5 *6 *2))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-96 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-344))
+ (-3 (|:| I (-297 (-531))) (|:| -1327 (-297 (-360)))
+ (|:| CF (-297 (-159 (-360)))) (|:| |switch| (-1101))))
+ (-5 *1 (-1101)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *2 (-598 (-1107))) (-5 *3 (-1107)) (-5 *1 (-1047)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-869)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-311)))))
+(((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-110))
+ (-5 *6 (-208)) (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 APROD))))
+ (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-71 MSOLVE))))
+ (-5 *2 (-975)) (-5 *1 (-707)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-5 *1 (-205 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-4 *1 (-236 *3))))
+ ((*1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-869))))
+ ((*1 *2 *1) (-12 (-5 *2 (-1025 (-208))) (-5 *1 (-870)))))
+(((*1 *2 *3 *4 *5)
+ (-12 (-5 *3 (-2 (|:| |totdeg| (-721)) (|:| -2451 *4))) (-5 *5 (-721))
+ (-4 *4 (-892 *6 *7 *8)) (-4 *6 (-432)) (-4 *7 (-743)) (-4 *8 (-797))
(-5 *2
- (-2 (|:| R (-637 *6)) (|:| A (-637 *6)) (|:| |Ainv| (-637 *6))))
- (-5 *1 (-918 *6)) (-5 *3 (-637 *6)))))
-(((*1 *2 *1 *1) (-12 (-4 *1 (-289)) (-5 *2 (-110)))))
+ (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4)
+ (|:| |polj| *4)))
+ (-5 *1 (-429 *6 *7 *8 *4)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))
+ (-5 *2 (-2 (|:| |goodPols| (-598 *7)) (|:| |badPols| (-598 *7))))
+ (-5 *1 (-919 *4 *5 *6 *7)) (-5 *3 (-598 *7)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1101 (-388 (-530)))) (-5 *1 (-174)) (-5 *3 (-530)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1027)) (-5 *2 (-1082)))))
+ (-12 (-5 *3 (-159 *5)) (-4 *5 (-13 (-411 *4) (-943) (-1124)))
+ (-4 *4 (-13 (-523) (-797)))
+ (-4 *2 (-13 (-411 (-159 *4)) (-943) (-1124)))
+ (-5 *1 (-560 *4 *5 *2)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-548 *3)) (-4 *3 (-344)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-986)) (-4 *7 (-986))
+ (-4 *6 (-1160 *5)) (-5 *2 (-1098 (-1098 *7)))
+ (-5 *1 (-479 *5 *6 *4 *7)) (-4 *4 (-1160 *6)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-208)))) (-5 *1 (-869)))))
+(((*1 *1 *1) (-12 (-5 *1 (-567 *2)) (-4 *2 (-1030))))
+ ((*1 *1 *1) (-5 *1 (-587))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-528)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-13 (-344) (-140)))
- (-5 *2 (-597 (-2 (|:| -3194 (-719)) (|:| -3705 *4) (|:| |num| *4))))
- (-5 *1 (-380 *3 *4)) (-4 *4 (-1157 *3)))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-772)) (-5 *3 (-597 (-1099))) (-5 *1 (-773)))))
+ (-12 (-4 *1 (-1182 *2)) (-4 *2 (-1138)) (-4 *2 (-943))
+ (-4 *2 (-986)))))
+(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-869)))))
(((*1 *2 *1)
- (-12
- (-5 *2
- (-1181
- (-2 (|:| |scaleX| (-208)) (|:| |scaleY| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208)) (|:| -2214 (-530))
- (|:| -4173 (-530)) (|:| |spline| (-530)) (|:| -3285 (-530))
- (|:| |axesColor| (-815)) (|:| -1854 (-530))
- (|:| |unitsColor| (-815)) (|:| |showing| (-530)))))
- (-5 *1 (-1182)))))
-(((*1 *2 *1 *1)
- (-12
- (-5 *2
- (-2 (|:| -2065 *3) (|:| |gap| (-719)) (|:| -1324 (-730 *3))
- (|:| -3304 (-730 *3))))
- (-5 *1 (-730 *3)) (-4 *3 (-984))))
- ((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
+ (-12 (-4 *3 (-162)) (-4 *2 (-23)) (-5 *1 (-271 *3 *4 *2 *5 *6 *7))
+ (-4 *4 (-1160 *3)) (-14 *5 (-1 *4 *4 *2))
+ (-14 *6 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-662 *3 *2 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *2 (-1160 *3)) (-5 *1 (-663 *3 *2)) (-4 *3 (-986))))
+ ((*1 *2 *1)
+ (-12 (-4 *2 (-23)) (-5 *1 (-666 *3 *2 *4 *5 *6)) (-4 *3 (-162))
+ (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2))
+ (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2))))
+ ((*1 *2) (-12 (-4 *1 (-812 *3)) (-5 *2 (-531)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1107)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-308 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1138)) (-5 *1 (-494 *3 *4))
+ (-14 *4 (-531)))))
+(((*1 *2 *2) (-12 (-5 *2 (-598 (-297 (-208)))) (-5 *1 (-249)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-639 (-159 (-388 (-531)))))
(-5 *2
- (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -1324 *1)
- (|:| -3304 *1)))
- (-4 *1 (-998 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-4 *4 (-741)) (-4 *5 (-795))
+ (-598
+ (-2 (|:| |outval| (-159 *4)) (|:| |outmult| (-531))
+ (|:| |outvect| (-598 (-639 (-159 *4)))))))
+ (-5 *1 (-715 *4)) (-4 *4 (-13 (-344) (-795))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *4 (-110)) (-4 *5 (-330))
(-5 *2
- (-2 (|:| -2065 *1) (|:| |gap| (-719)) (|:| -1324 *1)
- (|:| -3304 *1)))
- (-4 *1 (-998 *3 *4 *5)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-719)))))
-(((*1 *2 *1) (-12 (-4 *1 (-406 *3)) (-4 *3 (-1027)) (-5 *2 (-719)))))
-(((*1 *1 *2) (-12 (-5 *2 (-1046)) (-5 *1 (-895)))))
-(((*1 *1 *1 *1) (-12 (-5 *1 (-276 *2)) (-4 *2 (-284)) (-4 *2 (-1135))))
- ((*1 *1 *1 *2 *3)
- (-12 (-5 *2 (-597 (-570 *1))) (-5 *3 (-597 *1)) (-4 *1 (-284))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-597 (-276 *1))) (-4 *1 (-284))))
- ((*1 *1 *1 *2) (-12 (-5 *2 (-276 *1)) (-4 *1 (-284)))))
+ (-2 (|:| |cont| *5)
+ (|:| -2721 (-598 (-2 (|:| |irr| *3) (|:| -2460 (-531)))))))
+ (-5 *1 (-200 *5 *3)) (-4 *3 (-1160 *5)))))
+(((*1 *1 *1) (-4 *1 (-584)))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-585 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943) (-1124))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-864)) (-4 *5 (-797))
+ (-5 *2 (-57 (-598 (-624 *5)))) (-5 *1 (-624 *5)))))
(((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-862)) (-5 *1 (-309 *3 *4))
- (-4 *3 (-310 *4))))
+ (-12 (-5 *2 (-639 (-853 *3))) (-5 *1 (-332 *3 *4)) (-14 *3 (-864))
+ (-14 *4 (-864))))
((*1 *2)
- (-12 (-4 *4 (-344)) (-5 *2 (-781 (-862))) (-5 *1 (-309 *3 *4))
- (-4 *3 (-310 *4))))
- ((*1 *2) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-862))))
+ (-12 (-5 *2 (-639 *3)) (-5 *1 (-333 *3 *4)) (-4 *3 (-330))
+ (-14 *4
+ (-3 (-1098 *3)
+ (-1184 (-598 (-2 (|:| -3482 *3) (|:| -1889 (-1049)))))))))
((*1 *2)
- (-12 (-4 *1 (-1198 *3)) (-4 *3 (-344)) (-5 *2 (-781 (-862))))))
-(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 *4)) (-5 *1 (-42 *3 *4))
- (-4 *4 (-398 *3)))))
+ (-12 (-5 *2 (-639 *3)) (-5 *1 (-334 *3 *4)) (-4 *3 (-330))
+ (-14 *4 (-864)))))
(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-637 (-388 *4))))))
-(((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *5 (-1082))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-80 PDEF))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-81 BNDY)))) (-5 *2 (-973))
- (-5 *1 (-699)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
-(((*1 *2 *3 *1)
- (-12 (-5 *3 (-597 *4)) (-4 *4 (-1027)) (-4 *4 (-1135)) (-5 *2 (-110))
- (-5 *1 (-1080 *4)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-868)))))
+ (-12 (-5 *2 (-110)) (-5 *1 (-422 *3)) (-4 *3 (-1160 (-531))))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *5 (-795)) (-5 *2 (-110))))
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
- ((*1 *2 *1 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *1)
- (-12 (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-3 (-110) (-597 *1)))
- (-4 *1 (-1003 *4 *5 *6 *3)))))
-(((*1 *2 *1) (-12 (-4 *1 (-975 (-530))) (-4 *1 (-284)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-4 *1 (-515)) (-5 *2 (-110))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-846 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-137)))))
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *8)) (-4 *8 (-1005 *4 *5 *6 *7)))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *1) (-5 *1 (-998))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-639 *7)) (-5 *3 (-598 *7)) (-4 *7 (-892 *4 *6 *5))
+ (-4 *4 (-13 (-289) (-140))) (-4 *5 (-13 (-797) (-573 (-1102))))
+ (-4 *6 (-743)) (-5 *1 (-867 *4 *5 *6 *7)))))
(((*1 *2 *3)
- (|partial| -12 (-5 *3 (-893 (-159 *4))) (-4 *4 (-162))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-893 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-162))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-893 *4)) (-4 *4 (-984)) (-4 *4 (-572 (-360)))
- (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-893 *5)) (-5 *4 (-862)) (-4 *5 (-984))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 *4))) (-4 *4 (-522))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *5))))
- ((*1 *2 *3)
- (|partial| -12 (-5 *3 (-388 (-893 (-159 *4)))) (-4 *4 (-522))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-388 (-893 (-159 *5)))) (-5 *4 (-862))
- (-4 *5 (-522)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
- (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-639 *4)) (-4 *4 (-344)) (-5 *2 (-1098 *4))
+ (-5 *1 (-504 *4 *5 *6)) (-4 *5 (-344)) (-4 *6 (-13 (-344) (-795))))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 (-110) *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523))
+ (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8))))
+ (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))))
+(((*1 *2 *3 *4 *4 *4 *4)
+ (-12 (-5 *4 (-208))
+ (-5 *2
+ (-2 (|:| |brans| (-598 (-598 (-886 *4))))
+ (|:| |xValues| (-1025 *4)) (|:| |yValues| (-1025 *4))))
+ (-5 *1 (-146)) (-5 *3 (-598 (-598 (-886 *4)))))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-598 (-2 (|:| |totdeg| (-721)) (|:| -2451 *3))))
+ (-5 *4 (-721)) (-4 *3 (-892 *5 *6 *7)) (-4 *5 (-432)) (-4 *6 (-743))
+ (-4 *7 (-797)) (-5 *1 (-429 *5 *6 *7 *3)))))
+(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1138)))))
+(((*1 *1 *1)
+ (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-523))))
+ ((*1 *1 *1) (|partial| -4 *1 (-673))))
+(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
+(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-297 *4)) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-297 *5)) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
- (-5 *1 (-733 *5))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6)
+ (-12 (-5 *3 (-531)) (-5 *4 (-639 (-208))) (-5 *5 (-208))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-76 FUNCTN))))
+ (-5 *2 (-975)) (-5 *1 (-699)))))
+(((*1 *2 *3)
+ (-12 (-5 *2 (-399 (-1098 *1))) (-5 *1 (-297 *4)) (-5 *3 (-1098 *1))
+ (-4 *4 (-432)) (-4 *4 (-523)) (-4 *4 (-797))))
((*1 *2 *3)
- (|partial| -12 (-5 *3 (-297 (-159 *4))) (-4 *4 (-522)) (-4 *4 (-795))
- (-4 *4 (-572 (-360))) (-5 *2 (-159 (-360))) (-5 *1 (-733 *4))))
- ((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-297 (-159 *5))) (-5 *4 (-862)) (-4 *5 (-522))
- (-4 *5 (-795)) (-4 *5 (-572 (-360))) (-5 *2 (-159 (-360)))
- (-5 *1 (-733 *5)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-1157 *3)))))
+ (-12 (-4 *1 (-852)) (-5 *2 (-399 (-1098 *1))) (-5 *3 (-1098 *1)))))
(((*1 *2 *2 *3)
- (-12 (-5 *2 (-1095 *7)) (-5 *3 (-530)) (-4 *7 (-890 *6 *4 *5))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-984))
- (-5 *1 (-302 *4 *5 *6 *7)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *1 (-928 *3 *4 *5 *6 *7))))
+ (-12 (-5 *3 (-1 (-110) *4 *4)) (-4 *4 (-1138)) (-5 *1 (-1061 *4 *2))
+ (-4 *2 (-13 (-564 (-531) *4) (-10 -7 (-6 -4273) (-6 -4274))))))
((*1 *2 *2)
- (-12 (-5 *2 (-597 *7)) (-4 *7 (-1003 *3 *4 *5 *6)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5))
- (-5 *1 (-1034 *3 *4 *5 *6 *7)))))
-(((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-130)))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-344)) (-5 *1 (-715 *2 *3)) (-4 *2 (-657 *3))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
+ (-12 (-4 *3 (-797)) (-4 *3 (-1138)) (-5 *1 (-1061 *3 *2))
+ (-4 *2 (-13 (-564 (-531) *3) (-10 -7 (-6 -4273) (-6 -4274)))))))
(((*1 *2 *3)
- (-12 (-14 *4 (-597 (-1099))) (-14 *5 (-719))
- (-5 *2
- (-597
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530))))))
- (-5 *1 (-483 *4 *5))
- (-5 *3
- (-482 (-388 (-530)) (-223 *5 (-719)) (-806 *4)
- (-230 *4 (-388 (-530))))))))
-(((*1 *2 *3) (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-360))))
- ((*1 *2) (-12 (-5 *2 (-1186)) (-5 *1 (-360)))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-781 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-788 *3)) (-4 *3 (-1027)))))
+ (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330))))
+ ((*1 *1) (-4 *1 (-349)))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1184 *4)) (-5 *1 (-501 *4))
+ (-4 *4 (-330))))
+ ((*1 *1 *1) (-4 *1 (-516))) ((*1 *1) (-4 *1 (-516)))
+ ((*1 *1 *1) (-5 *1 (-531))) ((*1 *1 *1) (-5 *1 (-721)))
+ ((*1 *2 *1) (-12 (-5 *2 (-848 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *3 (-531)) (-5 *2 (-848 *4)) (-5 *1 (-847 *4))
+ (-4 *4 (-1030))))
+ ((*1 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-516)) (-4 *2 (-523)))))
+(((*1 *2 *3 *4 *4 *5)
+ (-12 (-5 *3 (-1085)) (-5 *4 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-708)))))
+(((*1 *1) (-5 *1 (-311))))
+(((*1 *1 *2) (-12 (-5 *1 (-210 *2)) (-4 *2 (-13 (-344) (-1124))))))
(((*1 *2)
- (-12 (-4 *3 (-522)) (-5 *2 (-597 (-637 *3))) (-5 *1 (-42 *3 *4))
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 (-639 *3))) (-5 *1 (-42 *3 *4))
(-4 *4 (-398 *3)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448)))))
-(((*1 *2 *3 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
+(((*1 *1 *1 *1) (-12 (-4 *1 (-1160 *2)) (-4 *2 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-4 *7 (-1157 (-388 *6)))
- (-5 *2 (-2 (|:| |answer| *3) (|:| -3403 *3)))
- (-5 *1 (-528 *5 *6 *7 *3)) (-4 *3 (-323 *5 *6 *7))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-110))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5)) (-4 *5 (-344))
- (-5 *2
- (-2 (|:| |answer| (-388 *6)) (|:| -3403 (-388 *6))
- (|:| |specpart| (-388 *6)) (|:| |polypart| *6)))
- (-5 *1 (-529 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *1 *1) (-5 *1 (-996))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-527))))
- ((*1 *2 *3)
- (-12 (-5 *2 (-1095 (-388 (-530)))) (-5 *1 (-883)) (-5 *3 (-530)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *5)) (-4 *5 (-344)) (-5 *2 (-597 *6))
- (-5 *1 (-503 *5 *6 *4)) (-4 *6 (-344)) (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2)
- (-12 (-5 *2 (-110)) (-5 *1 (-1113 *3 *4)) (-4 *3 (-1027))
- (-4 *4 (-1027)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7))
+ (-5 *2 (-598 (-2 (|:| |val| (-110)) (|:| -2410 *4))))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1022 (-788 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))))
-(((*1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-522)) (-4 *2 (-162)))))
-(((*1 *2 *2) (-12 (-5 *2 (-862)) (-5 *1 (-338 *3)) (-4 *3 (-330)))))
-(((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2) (-12 (-5 *2 (-1099)) (-5 *1 (-1102)))))
+ (-12 (-4 *4 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *4)) (-5 *1 (-1057 *3 *4)) (-4 *3 (-1160 *4))))
+ ((*1 *2 *3 *3 *3 *3)
+ (-12 (-4 *3 (-13 (-344) (-10 -8 (-15 ** ($ $ (-388 (-531)))))))
+ (-5 *2 (-598 *3)) (-5 *1 (-1057 *4 *3)) (-4 *4 (-1160 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1085)) (-5 *1 (-287)))))
(((*1 *2 *3)
- (-12
- (-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
- (|:| |relerr| (-208))))
- (-5 *2
- (-3 (|:| |continuous| "Continuous at the end points")
- (|:| |lowerSingular|
- "There is a singularity at the lower end point")
- (|:| |upperSingular|
- "There is a singularity at the upper end point")
- (|:| |bothSingular| "There are singularities at both end points")
- (|:| |notEvaluated| "End point continuity not yet evaluated")))
- (-5 *1 (-176)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-1 *4 (-530))) (-5 *5 (-1 (-1080 *4))) (-4 *4 (-344))
- (-4 *4 (-984)) (-5 *2 (-1080 *4)) (-5 *1 (-1084 *4)))))
+ (-12 (-4 *4 (-743)) (-4 *5 (-797)) (-4 *6 (-289)) (-5 *2 (-399 *3))
+ (-5 *1 (-693 *4 *5 *6 *3)) (-4 *3 (-892 *6 *4 *5)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-864))) (-5 *1 (-1031 *3 *4)) (-14 *3 (-864))
+ (-14 *4 (-864)))))
+(((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *2 *3)
+ (-12 (-5 *3 (-598 (-1085))) (-5 *2 (-1085)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-1186)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1030)) (-4 *5 (-1030))
+ (-4 *6 (-1030)) (-5 *2 (-1 *6 *5)) (-5 *1 (-634 *4 *5 *6)))))
+(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
+ (-12 (-5 *6 (-598 (-110))) (-5 *7 (-639 (-208)))
+ (-5 *8 (-639 (-531))) (-5 *3 (-531)) (-5 *4 (-208)) (-5 *5 (-110))
+ (-5 *2 (-975)) (-5 *1 (-705)))))
+(((*1 *2 *1) (-12 (-4 *1 (-626 *2)) (-4 *2 (-1138)))))
+(((*1 *2 *2 *3 *4)
+ (-12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-919 *5 *6 *7 *8)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-772)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-1 (-110) *7 (-598 *7))) (-4 *1 (-1132 *4 *5 *6 *7))
+ (-4 *4 (-523)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110)))))
+(((*1 *2 *1 *3 *3 *4)
+ (-12 (-5 *3 (-1 (-806) (-806) (-806))) (-5 *4 (-531)) (-5 *2 (-806))
+ (-5 *1 (-602 *5 *6 *7)) (-4 *5 (-1030)) (-4 *6 (-23)) (-14 *7 *6)))
+ ((*1 *2 *1 *2)
+ (-12 (-5 *2 (-806)) (-5 *1 (-801 *3 *4 *5)) (-4 *3 (-986))
+ (-14 *4 (-96 *3)) (-14 *5 (-1 *3 *3))))
+ ((*1 *1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-806))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-806))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1102)) (-5 *1 (-806))))
+ ((*1 *1 *2) (-12 (-5 *2 (-531)) (-5 *1 (-806))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-806)) (-5 *1 (-1098 *3)) (-4 *3 (-986)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-984)) (-4 *2 (-1157 *4))
- (-5 *1 (-424 *4 *2))))
- ((*1 *2 *3 *2 *4)
- (-12 (-5 *2 (-388 (-1095 (-297 *5)))) (-5 *3 (-1181 (-297 *5)))
- (-5 *4 (-530)) (-4 *5 (-13 (-522) (-795))) (-5 *1 (-1056 *5)))))
-(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-1014)))))
-(((*1 *2 *3 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208))
- (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
- (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208))
- (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
- (-5 *1 (-245))))
- ((*1 *2 *1 *3 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3 *4 *4 *4)
- (-12 (-5 *3 (-530)) (-5 *4 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1 *3)
(-12
(-5 *3
- (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208))
- (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
- (-5 *2 (-1186)) (-5 *1 (-1183))))
- ((*1 *2 *1)
- (-12
- (-5 *2
- (-2 (|:| |theta| (-208)) (|:| |phi| (-208)) (|:| -1573 (-208))
- (|:| |scaleX| (-208)) (|:| |scaleY| (-208)) (|:| |scaleZ| (-208))
- (|:| |deltaX| (-208)) (|:| |deltaY| (-208))))
- (-5 *1 (-1183))))
- ((*1 *2 *1 *3 *3 *3 *3 *3)
- (-12 (-5 *3 (-360)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
- ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
- ((*1 *2 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-412 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *1 *1 *1) (-4 *1 (-1063))))
-(((*1 *1 *2 *3)
- (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-597 (-245))) (-5 *1 (-1183))))
- ((*1 *1 *2 *3)
- (-12 (-5 *2 (-1059 (-208))) (-5 *3 (-1082)) (-5 *1 (-1183))))
- ((*1 *1 *1) (-5 *1 (-1183))))
-(((*1 *1 *1 *2)
- (|partial| -12 (-4 *1 (-1129 *3 *4 *5 *2)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *2 (-998 *3 *4 *5)))))
-(((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-1095 *3)) (-4 *3 (-984)) (-4 *1 (-1157 *3)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1052 *4 *3 *5))) (-4 *4 (-37 (-388 (-530))))
- (-4 *4 (-984)) (-4 *3 (-795)) (-5 *1 (-1052 *4 *3 *5))
- (-4 *5 (-890 *4 (-502 *3) *3))))
- ((*1 *1 *2 *3 *4)
- (-12 (-5 *2 (-1 (-1130 *4))) (-5 *3 (-1099)) (-5 *1 (-1130 *4))
- (-4 *4 (-37 (-388 (-530)))) (-4 *4 (-984)))))
+ (-598 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531))))))
+ (-5 *2 (-598 (-208))) (-5 *1 (-287)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-1138)) (-5 *1 (-170 *3 *2)) (-4 *2 (-626 *3)))))
+(((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3)
+ (-12 (-5 *4 (-639 (-208))) (-5 *5 (-639 (-531))) (-5 *6 (-208))
+ (-5 *3 (-531)) (-5 *2 (-975)) (-5 *1 (-703)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-986))
+ (-4 *2 (-13 (-385) (-977 *4) (-344) (-1124) (-266)))
+ (-5 *1 (-423 *4 *3 *2)) (-4 *3 (-1160 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-864)) (-4 *5 (-986))
+ (-4 *2 (-13 (-385) (-977 *5) (-344) (-1124) (-266)))
+ (-5 *1 (-423 *5 *3 *2)) (-4 *3 (-1160 *5)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-2 (|:| -3144 (-388 (-531))) (|:| -3157 (-388 (-531)))))
+ (-5 *2 (-388 (-531))) (-5 *1 (-960 *4)) (-4 *4 (-1160 (-531))))))
+(((*1 *2 *2)
+ (|partial| -12 (-5 *2 (-1098 *3)) (-4 *3 (-330)) (-5 *1 (-338 *3)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-531))
+ (-5 *1 (-429 *4 *5 *6 *3)) (-4 *3 (-892 *4 *5 *6)))))
(((*1 *1 *1 *2)
- (-12 (-5 *2 (-862)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
+ (-12 (-5 *2 (-864)) (-4 *1 (-310 *3)) (-4 *3 (-344)) (-4 *3 (-349))))
((*1 *2 *1) (-12 (-4 *1 (-310 *2)) (-4 *2 (-344))))
((*1 *2 *1)
- (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1157 *2)) (-4 *2 (-162))))
+ (-12 (-4 *1 (-351 *2 *3)) (-4 *3 (-1160 *2)) (-4 *2 (-162))))
((*1 *2 *2 *3)
- (-12 (-5 *2 (-1181 *4)) (-5 *3 (-862)) (-4 *4 (-330))
- (-5 *1 (-500 *4))))
+ (-12 (-5 *2 (-1184 *4)) (-5 *3 (-864)) (-4 *4 (-330))
+ (-5 *1 (-501 *4))))
((*1 *2 *1)
- (-12 (-4 *1 (-1049 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
- (-4 *5 (-221 *3 *2)) (-4 *2 (-984)))))
-(((*1 *2 *1)
- (|partial| -12 (-5 *2 (-994 (-962 *3) (-1095 (-962 *3))))
- (-5 *1 (-962 *3)) (-4 *3 (-13 (-793) (-344) (-960))))))
+ (-12 (-4 *1 (-1052 *3 *2 *4 *5)) (-4 *4 (-221 *3 *2))
+ (-4 *5 (-221 *3 *2)) (-4 *2 (-986)))))
(((*1 *2 *3)
(|partial| -12
(-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
(-5 *2
(-2
@@ -16746,1430 +16811,1369 @@
(|:| |notEvaluated|
"End point continuity not yet evaluated")))
(|:| |singularitiesStream|
- (-3 (|:| |str| (-1080 (-208)))
+ (-3 (|:| |str| (-1083 (-208)))
(|:| |notEvaluated|
"Internal singularities not yet evaluated")))
- (|:| -1300
+ (|:| -2368
(-3 (|:| |finite| "The range is finite")
(|:| |lowerInfinite| "The bottom of range is infinite")
(|:| |upperInfinite| "The top of range is infinite")
(|:| |bothInfinite|
"Both top and bottom points are infinite")
(|:| |notEvaluated| "Range not yet evaluated")))))
- (-5 *1 (-525)))))
+ (-5 *1 (-526)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-986)) (-5 *1 (-1087 *3))))
+ ((*1 *1 *1)
+ (-12 (-5 *1 (-1176 *2 *3 *4)) (-4 *2 (-986)) (-14 *3 (-1102))
+ (-14 *4 *2))))
+(((*1 *2 *3 *3 *2)
+ (|partial| -12 (-5 *2 (-721))
+ (-4 *3 (-13 (-677) (-349) (-10 -7 (-15 ** (*3 *3 (-531))))))
+ (-5 *1 (-229 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330))))
- ((*1 *2 *3 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1095 *4)) (-5 *1 (-338 *4))
- (-4 *4 (-330))))
- ((*1 *1) (-4 *1 (-349)))
+ (|partial| -12 (-5 *3 (-317 *5 *6 *7 *8)) (-4 *5 (-411 *4))
+ (-4 *6 (-1160 *5)) (-4 *7 (-1160 (-388 *6)))
+ (-4 *8 (-323 *5 *6 *7)) (-4 *4 (-13 (-797) (-523) (-977 (-531))))
+ (-5 *2 (-2 (|:| -3617 (-721)) (|:| -1956 *8)))
+ (-5 *1 (-854 *4 *5 *6 *7 *8))))
+ ((*1 *2 *3)
+ (|partial| -12 (-5 *3 (-317 (-388 (-531)) *4 *5 *6))
+ (-4 *4 (-1160 (-388 (-531)))) (-4 *5 (-1160 (-388 *4)))
+ (-4 *6 (-323 (-388 (-531)) *4 *5))
+ (-5 *2 (-2 (|:| -3617 (-721)) (|:| -1956 *6)))
+ (-5 *1 (-855 *4 *5 *6)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-523)) (-4 *4 (-934 *3)) (-5 *1 (-135 *3 *4 *2))
+ (-4 *2 (-354 *4))))
((*1 *2 *3)
- (-12 (-5 *3 (-862)) (-5 *2 (-1181 *4)) (-5 *1 (-500 *4))
- (-4 *4 (-330))))
- ((*1 *1 *1) (-4 *1 (-515))) ((*1 *1) (-4 *1 (-515)))
- ((*1 *1 *1) (-5 *1 (-530))) ((*1 *1 *1) (-5 *1 (-719)))
- ((*1 *2 *1) (-12 (-5 *2 (-846 *3)) (-5 *1 (-845 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-5 *2 (-846 *4)) (-5 *1 (-845 *4))
- (-4 *4 (-1027))))
- ((*1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-515)) (-4 *2 (-522)))))
-(((*1 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530)))))
+ (-12 (-4 *4 (-523)) (-4 *5 (-934 *4)) (-4 *2 (-354 *4))
+ (-5 *1 (-481 *4 *5 *2 *3)) (-4 *3 (-354 *5))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-639 *5)) (-4 *5 (-934 *4)) (-4 *4 (-523))
+ (-5 *2 (-639 *4)) (-5 *1 (-643 *4 *5))))
((*1 *2 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-422 *3)) (-4 *3 (-1157 (-530))))))
+ (-12 (-4 *3 (-523)) (-4 *4 (-934 *3)) (-5 *1 (-1153 *3 *4 *2))
+ (-4 *2 (-1160 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-730 *5 (-808 *6)))) (-5 *4 (-110)) (-4 *5 (-432))
+ (-14 *6 (-598 (-1102))) (-5 *2 (-598 (-983 *5 *6)))
+ (-5 *1 (-583 *5 *6)))))
(((*1 *2 *1)
- (-12 (-4 *1 (-635 *3 *4 *5)) (-4 *3 (-984)) (-4 *4 (-354 *3))
- (-4 *5 (-354 *3)) (-5 *2 (-110))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-987 *3 *4 *5 *6 *7)) (-4 *5 (-984))
- (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-110)))))
-(((*1 *2 *1 *1) (-12 (-5 *2 (-530)) (-5 *1 (-360)))))
-(((*1 *1 *1 *1 *1) (-5 *1 (-804))) ((*1 *1 *1 *1) (-5 *1 (-804)))
- ((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-862)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1095 *1))
- (-4 *1 (-310 *4))))
- ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1095 *3))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344))
- (-4 *2 (-1157 *3))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-1181 *4)) (-4 *4 (-330)) (-5 *2 (-1095 *4))
- (-5 *1 (-500 *4)))))
+ (-12 (-5 *2 (-1025 *3)) (-5 *1 (-1023 *3)) (-4 *3 (-1138))))
+ ((*1 *1 *2 *2) (-12 (-4 *1 (-1024 *2)) (-4 *2 (-1138))))
+ ((*1 *1 *2) (-12 (-5 *1 (-1151 *2)) (-4 *2 (-1138)))))
(((*1 *2 *3)
- (-12 (-4 *1 (-323 *4 *3 *5)) (-4 *4 (-1139)) (-4 *3 (-1157 *4))
- (-4 *5 (-1157 (-388 *3))) (-5 *2 (-110))))
- ((*1 *2 *3)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *2 *1 *1 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
- (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1))) (-4 *1 (-890 *4 *5 *3))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-984)) (-5 *2 (-2 (|:| -1324 *1) (|:| -3304 *1)))
- (-4 *1 (-1157 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-597 *3))) (-4 *3 (-795)) (-5 *1 (-1107 *3)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-289)) (-4 *5 (-354 *4)) (-4 *6 (-354 *4))
- (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3)))
- (-5 *1 (-1050 *4 *5 *6 *3)) (-4 *3 (-635 *4 *5 *6)))))
-(((*1 *2 *3 *3 *3 *4)
- (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1157 *5))
- (-4 *5 (-13 (-344) (-140) (-975 (-530))))
- (-5 *2
- (-2 (|:| |a| *6) (|:| |b| (-388 *6)) (|:| |h| *6)
- (|:| |c1| (-388 *6)) (|:| |c2| (-388 *6)) (|:| -4046 *6)))
- (-5 *1 (-955 *5 *6)) (-5 *3 (-388 *6)))))
-(((*1 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447))))
- ((*1 *2 *2) (-12 (-5 *2 (-110)) (-5 *1 (-447)))))
+ (-12 (-4 *4 (-330)) (-4 *5 (-310 *4)) (-4 *6 (-1160 *5))
+ (-5 *2 (-598 *3)) (-5 *1 (-727 *4 *5 *6 *3 *7)) (-4 *3 (-1160 *6))
+ (-14 *7 (-864)))))
(((*1 *1 *2)
- (|partial| -12 (-5 *2 (-1194 *3 *4)) (-4 *3 (-795)) (-4 *4 (-162))
- (-5 *1 (-615 *3 *4))))
- ((*1 *2 *1)
- (|partial| -12 (-5 *2 (-615 *3 *4)) (-5 *1 (-1199 *3 *4))
- (-4 *3 (-795)) (-4 *4 (-162)))))
+ (|partial| -12 (-5 *2 (-598 *6)) (-4 *6 (-1000 *3 *4 *5))
+ (-4 *3 (-523)) (-4 *4 (-743)) (-4 *5 (-797))
+ (-5 *1 (-1195 *3 *4 *5 *6))))
+ ((*1 *1 *2 *3 *4)
+ (|partial| -12 (-5 *2 (-598 *8)) (-5 *3 (-1 (-110) *8 *8))
+ (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1000 *5 *6 *7)) (-4 *5 (-523))
+ (-4 *6 (-743)) (-4 *7 (-797)) (-5 *1 (-1195 *5 *6 *7 *8)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-276 (-388 (-893 *5)))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140)))
- (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5)))))
- (-5 *1 (-1055 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 *5))) (-5 *4 (-1099))
- (-4 *5 (-13 (-289) (-795) (-140)))
- (-5 *2 (-1089 (-597 (-297 *5)) (-597 (-276 (-297 *5)))))
- (-5 *1 (-1055 *5)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-1157 *2)) (-4 *2 (-984)))))
+ (-12 (-4 *5 (-432)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-4 *3 (-1000 *5 *6 *7)) (-5 *2 (-598 *4))
+ (-5 *1 (-1038 *5 *6 *7 *3 *4)) (-4 *4 (-1005 *5 *6 *7 *3)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 *2)) (-5 *4 (-1 (-110) *2 *2)) (-5 *1 (-1136 *2))
- (-4 *2 (-1027))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 *2)) (-4 *2 (-1027)) (-4 *2 (-795))
- (-5 *1 (-1136 *2)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *3 (-112)) (-4 *4 (-984)) (-5 *1 (-663 *4 *2))
- (-4 *2 (-599 *4))))
- ((*1 *2 *3 *2) (-12 (-5 *3 (-112)) (-5 *1 (-782 *2)) (-4 *2 (-984)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-5 *3 (-721)) (-5 *4 (-531)) (-5 *1 (-425 *2)) (-4 *2 (-986)))))
+(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-262)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-375))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-1085))) (-5 *1 (-1119)))))
+(((*1 *1 *2 *3 *1)
+ (-12 (-5 *2 (-1102)) (-5 *3 (-598 (-908))) (-5 *1 (-273)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-432))) (-5 *1 (-1130 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-1124))))))
+(((*1 *1 *2) (-12 (-5 *2 (-1049)) (-5 *1 (-311)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
(((*1 *2 *1 *3 *4)
- (-12 (-5 *3 (-862)) (-5 *4 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182)))))
-(((*1 *1 *1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-855 *3)) (-4 *3 (-289)))))
-(((*1 *2 *3 *2 *4)
- (|partial| -12 (-5 *4 (-1 (-3 (-530) "failed") *5)) (-4 *5 (-984))
- (-5 *2 (-530)) (-5 *1 (-513 *5 *3)) (-4 *3 (-1157 *5))))
- ((*1 *2 *3 *4 *2 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984))
- (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4))))
- ((*1 *2 *3 *4 *5)
- (|partial| -12 (-5 *5 (-1 (-3 (-530) "failed") *4)) (-4 *4 (-984))
- (-5 *2 (-530)) (-5 *1 (-513 *4 *3)) (-4 *3 (-1157 *4)))))
-(((*1 *2)
- (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-324 *3 *4)) (-14 *3 (-862))
- (-14 *4 (-862))))
- ((*1 *2)
- (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-325 *3 *4)) (-4 *3 (-330))
- (-14 *4 (-1095 *3))))
- ((*1 *2)
- (-12 (-5 *2 (-899 (-1046))) (-5 *1 (-326 *3 *4)) (-4 *3 (-330))
- (-14 *4 (-862)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-231)))))
-(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-667 *2)) (-4 *2 (-344)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-460 *4 *5))) (-14 *4 (-597 (-1099)))
- (-4 *5 (-432)) (-5 *2 (-597 (-230 *4 *5))) (-5 *1 (-585 *4 *5)))))
-(((*1 *2 *3 *3 *4 *5 *3 *6)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *5 (-208))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-79 FCN)))) (-5 *2 (-973))
- (-5 *1 (-695)))))
-(((*1 *1 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-354 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-600 *2 *3 *4)) (-4 *2 (-1027)) (-4 *3 (-23))
- (-14 *4 *3))))
+ (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1189)) (-5 *1 (-231)))))
+(((*1 *2 *3 *4 *2)
+ (-12 (-5 *2 (-598 (-598 (-598 *5)))) (-5 *3 (-1 (-110) *5 *5))
+ (-5 *4 (-598 *5)) (-4 *5 (-797)) (-5 *1 (-1110 *5)))))
+(((*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1138)) (-4 *2 (-797))))
+ ((*1 *1 *2 *1)
+ (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1138))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-598 (-848 *3))) (-5 *1 (-848 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-986)) (-4 *5 (-743)) (-4 *3 (-797))
+ (-4 *6 (-1000 *4 *5 *3))
+ (-5 *2 (-2 (|:| |under| *1) (|:| -2943 *1) (|:| |upper| *1)))
+ (-4 *1 (-918 *4 *5 *3 *6)))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
+(((*1 *2 *3 *3 *2)
+ (-12 (-5 *2 (-639 (-531))) (-5 *3 (-598 (-531))) (-5 *1 (-1040)))))
(((*1 *2 *3)
- (-12 (-4 *4 (-795))
- (-5 *2
- (-2 (|:| |f1| (-597 *4)) (|:| |f2| (-597 (-597 (-597 *4))))
- (|:| |f3| (-597 (-597 *4))) (|:| |f4| (-597 (-597 (-597 *4))))))
- (-5 *1 (-1107 *4)) (-5 *3 (-597 (-597 (-597 *4)))))))
-(((*1 *2 *2 *3 *4)
- (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-795)) (-4 *5 (-741))
- (-4 *6 (-522)) (-4 *7 (-890 *6 *5 *3))
- (-5 *1 (-442 *5 *3 *6 *7 *2))
- (-4 *2
- (-13 (-975 (-388 (-530))) (-344)
- (-10 -8 (-15 -2366 ($ *7)) (-15 -1918 (*7 $))
- (-15 -1928 (*7 $))))))))
+ (-12 (-5 *3 (-895 (-208))) (-5 *2 (-297 (-360))) (-5 *1 (-287)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1 (-360))) (-5 *1 (-977)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1172 *4)) (-5 *1 (-1174 *4 *2))
- (-4 *4 (-37 (-388 (-530)))))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3)
- (-14 *5 *3)))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1022 (-788 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
- (-5 *1 (-287))))
- ((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-110))
- (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-890 *3 *4 *5)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 *1)) (-4 *1 (-1060 *3)) (-4 *3 (-984))))
- ((*1 *2 *2 *1)
- (|partial| -12 (-5 *2 (-388 *1)) (-4 *1 (-1157 *3)) (-4 *3 (-984))
- (-4 *3 (-522))))
- ((*1 *1 *1 *1)
- (|partial| -12 (-4 *1 (-1157 *2)) (-4 *2 (-984)) (-4 *2 (-522)))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-607 *2)) (-4 *2 (-984)) (-4 *2 (-344))))
- ((*1 *2 *2 *2 *3)
- (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-344)) (-5 *1 (-610 *4 *2))
- (-4 *2 (-607 *4)))))
+ (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979)))))
+(((*1 *2 *3 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-110)) (-5 *1 (-779)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-5 *2 (-1186)) (-5 *1 (-807 *4 *5 *6 *7))
- (-4 *4 (-984)) (-14 *5 (-597 (-1099))) (-14 *6 (-597 *3))
- (-14 *7 *3)))
+ (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-176))))
((*1 *2 *3)
- (-12 (-5 *3 (-719)) (-4 *4 (-984)) (-4 *5 (-795)) (-4 *6 (-741))
- (-14 *8 (-597 *5)) (-5 *2 (-1186))
- (-5 *1 (-1191 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-890 *4 *6 *5))
- (-14 *9 (-597 *3)) (-14 *10 *3))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *2) (-12 (-4 *1 (-264 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *2)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135))))
- ((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-1169 *2)) (-4 *2 (-1135)))))
-(((*1 *2 *3)
- (-12 (-4 *4 (-522)) (-5 *2 (-719)) (-5 *1 (-42 *4 *3))
- (-4 *3 (-398 *4)))))
-(((*1 *1 *2 *3) (-12 (-5 *2 (-1095 *1)) (-5 *3 (-1099)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-1095 *1)) (-4 *1 (-27))))
- ((*1 *1 *2) (-12 (-5 *2 (-893 *1)) (-4 *1 (-27))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-1099)) (-4 *1 (-29 *3)) (-4 *3 (-13 (-795) (-522)))))
- ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-13 (-795) (-522)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-1095 *2)) (-5 *4 (-1099)) (-4 *2 (-411 *5))
- (-5 *1 (-31 *5 *2)) (-4 *5 (-13 (-795) (-522)))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-4 *1 (-951))))
- ((*1 *1 *2 *3 *4)
- (|partial| -12 (-5 *2 (-1095 *1)) (-5 *3 (-862)) (-5 *4 (-804))
- (-4 *1 (-951))))
- ((*1 *1 *2 *3)
- (|partial| -12 (-5 *3 (-862)) (-4 *4 (-13 (-793) (-344)))
- (-4 *1 (-1000 *4 *2)) (-4 *2 (-1157 *4)))))
-(((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-55 *4 *2 *5)) (-4 *4 (-1135))
- (-4 *5 (-354 *4)) (-4 *2 (-354 *4))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-530)) (-4 *1 (-987 *4 *5 *6 *2 *7)) (-4 *6 (-984))
- (-4 *7 (-221 *4 *6)) (-4 *2 (-221 *5 *6)))))
-(((*1 *1 *1 *2)
- (-12 (-4 *3 (-344)) (-4 *4 (-741)) (-4 *5 (-795))
- (-5 *1 (-482 *3 *4 *5 *2)) (-4 *2 (-890 *3 *4 *5))))
- ((*1 *1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4)))))
+ (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-282))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1025 (-790 (-208)))) (-5 *2 (-208)) (-5 *1 (-287)))))
(((*1 *2 *2)
- (-12
- (-5 *2
- (-597
- (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-719)) (|:| |poli| *6)
- (|:| |polj| *6))))
- (-4 *4 (-741)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-795))
- (-5 *1 (-429 *3 *4 *5 *6)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-804)) (-5 *1 (-371 *3 *4 *5)) (-14 *3 (-719))
- (-14 *4 (-719)) (-4 *5 (-162)))))
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-258 *3 *2))
+ (-4 *2 (-13 (-411 *3) (-943))))))
(((*1 *2 *3 *1)
- (-12 (-4 *1 (-1003 *4 *5 *6 *3)) (-4 *4 (-432)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
+ (|partial| -12 (-5 *3 (-835 *4)) (-4 *4 (-1030)) (-4 *2 (-1030))
+ (-5 *1 (-832 *4 *2)))))
+(((*1 *2 *3) (-12 (-5 *3 (-297 (-208))) (-5 *2 (-208)) (-5 *1 (-287)))))
+(((*1 *2 *3 *3)
+ (-12 (-5 *3 (-598 (-2 (|:| -2552 (-1098 *6)) (|:| -1790 (-531)))))
+ (-4 *6 (-289)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-693 *4 *5 *6 *7)) (-4 *7 (-892 *6 *4 *5))))
+ ((*1 *1 *1) (-12 (-4 *1 (-1063 *2)) (-4 *2 (-986)))))
+(((*1 *2 *3 *4 *5 *5 *6)
+ (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360)))
+ (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189))
+ (-5 *1 (-738))))
+ ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3)
+ (-12 (-5 *4 (-531)) (-5 *6 (-1 (-1189) (-1184 *5) (-1184 *5) (-360)))
+ (-5 *3 (-1184 (-360))) (-5 *5 (-360)) (-5 *2 (-1189))
+ (-5 *1 (-738)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-259 *3 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *3)))))
+ ((*1 *2 *2 *3)
+ (-12 (-5 *3 (-1102))
+ (-4 *4 (-13 (-523) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *1 (-259 *4 *2)) (-4 *2 (-13 (-27) (-1124) (-411 *4))))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1167 *3 *4)) (-4 *3 (-986)) (-4 *4 (-1144 *3))
+ (-5 *2 (-388 (-531))))))
+(((*1 *2 *1) (-12 (-5 *1 (-163 *2)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-4 *1 (-934 *2)) (-4 *2 (-523)) (-4 *2 (-289))))
+ ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-531)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-986)) (-4 *2 (-637 *4 *5 *6))
+ (-5 *1 (-101 *4 *3 *2 *5 *6)) (-4 *3 (-1160 *4)) (-4 *5 (-354 *4))
+ (-4 *6 (-354 *4)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 *5)) (-5 *4 (-864)) (-4 *5 (-797))
+ (-5 *2 (-598 (-624 *5))) (-5 *1 (-624 *5)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-556 *2)) (-4 *2 (-37 (-388 (-531)))) (-4 *2 (-986)))))
+(((*1 *2 *3 *4 *4 *5 *6 *7)
+ (-12 (-5 *5 (-1102))
+ (-5 *6
+ (-1
+ (-3
+ (-2 (|:| |mainpart| *4)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *4) (|:| |logand| *4)))))
+ "failed")
+ *4 (-598 *4)))
+ (-5 *7
+ (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4))
+ (-4 *4 (-13 (-1124) (-27) (-411 *8)))
+ (-4 *8 (-13 (-432) (-797) (-140) (-977 *3) (-594 *3)))
+ (-5 *3 (-531))
+ (-5 *2 (-2 (|:| |ans| *4) (|:| -3157 *4) (|:| |sol?| (-110))))
+ (-5 *1 (-954 *8 *4)))))
+(((*1 *1 *1 *1) (-5 *1 (-208)))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-208)) (-5 *1 (-209))))
+ ((*1 *2 *2 *2) (-12 (-5 *2 (-159 (-208))) (-5 *1 (-209))))
+ ((*1 *2 *2 *2)
+ (-12 (-4 *3 (-13 (-797) (-523))) (-5 *1 (-412 *3 *2))
+ (-4 *2 (-411 *3))))
+ ((*1 *2 *3 *3)
+ (-12 (-5 *3 (-721)) (-5 *2 (-1 (-360))) (-5 *1 (-979))))
+ ((*1 *1 *1 *1) (-4 *1 (-1066))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-531))) (-5 *1 (-945 *3)) (-14 *3 (-531)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1098 *3)) (-4 *3 (-986)) (-4 *1 (-1160 *3)))))
+(((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *4 (-208))
+ (-5 *2 (-975)) (-5 *1 (-706))))
+ ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8)
+ (-12 (-5 *3 (-531)) (-5 *5 (-639 (-208)))
+ (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-65 DOT))))
+ (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-66 IMAGE)))) (-5 *8 (-369))
+ (-5 *4 (-208)) (-5 *2 (-975)) (-5 *1 (-706)))))
+(((*1 *2 *2) (-12 (-5 *2 (-531)) (-5 *1 (-870)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-864)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2)
+ (-4 *4 (-344)) (-14 *5 (-935 *3 *4)))))
+(((*1 *2 *1 *3) (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *2 *3 *4 *5)
+ (-12 (-5 *2 (-598 *9)) (-5 *3 (-1 (-110) *9))
+ (-5 *4 (-1 (-110) *9 *9)) (-5 *5 (-1 *9 *9 *9))
+ (-4 *9 (-1000 *6 *7 *8)) (-4 *6 (-523)) (-4 *7 (-743))
+ (-4 *8 (-797)) (-5 *1 (-919 *6 *7 *8 *9)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-597 (-884 (-208)))))
- (-5 *2 (-597 (-1022 (-208)))) (-5 *1 (-869)))))
+ (-12 (-5 *3 (-639 (-388 (-895 (-531)))))
+ (-5 *2
+ (-598
+ (-2 (|:| |radval| (-297 (-531))) (|:| |radmult| (-531))
+ (|:| |radvect| (-598 (-639 (-297 (-531))))))))
+ (-5 *1 (-971)))))
+(((*1 *2 *3 *4 *5)
+ (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-598 (-388 *7)))
+ (-4 *7 (-1160 *6)) (-5 *3 (-388 *7)) (-4 *6 (-344))
+ (-5 *2
+ (-2 (|:| |mainpart| *3)
+ (|:| |limitedlogs|
+ (-598 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
+ (-5 *1 (-541 *6 *7)))))
+(((*1 *2 *1) (|partial| -12 (-5 *2 (-571 *1)) (-4 *1 (-284)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 (-482 *3 *4 *5 *6))) (-4 *3 (-344)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5))))
+ ((*1 *1 *1 *1)
+ (-12 (-4 *2 (-344)) (-4 *3 (-743)) (-4 *4 (-797))
+ (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-892 *2 *3 *4))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 *1)) (-4 *1 (-1005 *4 *5 *6 *3)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-4 *3 (-1000 *4 *5 *6))))
+ ((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 *1)) (-5 *3 (-598 *7)) (-4 *1 (-1005 *4 *5 *6 *7))
+ (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6))))
+ ((*1 *2 *3 *1)
+ (-12 (-5 *3 (-598 *7)) (-4 *7 (-1000 *4 *5 *6)) (-4 *4 (-432))
+ (-4 *5 (-743)) (-4 *6 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-1005 *4 *5 *6 *7))))
+ ((*1 *2 *3 *1)
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *3 (-1000 *4 *5 *6)) (-5 *2 (-598 *1))
+ (-4 *1 (-1005 *4 *5 *6 *3))))
+ ((*1 *1 *1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))))
+(((*1 *2) (-12 (-5 *2 (-864)) (-5 *1 (-651))))
+ ((*1 *2 *2) (-12 (-5 *2 (-864)) (-5 *1 (-651)))))
+(((*1 *1 *2 *3) (-12 (-5 *3 (-531)) (-5 *1 (-399 *2)) (-4 *2 (-523)))))
(((*1 *2 *1)
- (-12 (-4 *3 (-344)) (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4)))
- (-5 *2 (-1181 *6)) (-5 *1 (-317 *3 *4 *5 *6))
- (-4 *6 (-323 *3 *4 *5)))))
-(((*1 *2) (-12 (-5 *2 (-530)) (-5 *1 (-867)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
+ (-12 (-4 *1 (-1033 *3 *4 *5 *6 *7)) (-4 *3 (-1030)) (-4 *4 (-1030))
+ (-4 *5 (-1030)) (-4 *6 (-1030)) (-4 *7 (-1030)) (-5 *2 (-110)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *1 *1 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1102)) (-5 *1 (-171)))))
+(((*1 *1 *1) (-12 (-5 *1 (-1125 *2)) (-4 *2 (-1030)))))
+(((*1 *1) (-5 *1 (-418))))
(((*1 *2 *1)
- (-12 (-5 *2 (-110)) (-5 *1 (-1088 *3 *4)) (-14 *3 (-862))
- (-4 *4 (-984)))))
+ (-12
+ (-5 *2
+ (-598
+ (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3)
+ (|:| |xpnt| (-531)))))
+ (-5 *1 (-399 *3)) (-4 *3 (-523))))
+ ((*1 *2 *3 *4 *4 *4)
+ (-12 (-5 *4 (-721)) (-4 *3 (-330)) (-4 *5 (-1160 *3))
+ (-5 *2 (-598 (-1098 *3))) (-5 *1 (-476 *3 *5 *6))
+ (-4 *6 (-1160 *5)))))
+(((*1 *2 *3 *2) (-12 (-5 *2 (-1085)) (-5 *3 (-531)) (-5 *1 (-224)))))
+(((*1 *2 *3 *4)
+ (-12 (-4 *7 (-432)) (-4 *5 (-743)) (-4 *6 (-797)) (-4 *7 (-523))
+ (-4 *8 (-892 *7 *5 *6))
+ (-5 *2 (-2 (|:| -1790 (-721)) (|:| -2005 *3) (|:| |radicand| *3)))
+ (-5 *1 (-896 *5 *6 *7 *8 *3)) (-5 *4 (-721))
+ (-4 *3
+ (-13 (-344)
+ (-10 -8 (-15 -1840 (*8 $)) (-15 -1853 (*8 $)) (-15 -2265 ($ *8))))))))
+(((*1 *2 *1)
+ (-12
+ (-5 *2
+ (-3 (|:| |nullBranch| "null")
+ (|:| |assignmentBranch|
+ (-2 (|:| |var| (-1102))
+ (|:| |arrayIndex| (-598 (-895 (-531))))
+ (|:| |rand|
+ (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806))))))
+ (|:| |arrayAssignmentBranch|
+ (-2 (|:| |var| (-1102)) (|:| |rand| (-806))
+ (|:| |ints2Floats?| (-110))))
+ (|:| |conditionalBranch|
+ (-2 (|:| |switch| (-1101)) (|:| |thenClause| (-311))
+ (|:| |elseClause| (-311))))
+ (|:| |returnBranch|
+ (-2 (|:| -1589 (-110))
+ (|:| -3482
+ (-2 (|:| |ints2Floats?| (-110)) (|:| -3486 (-806))))))
+ (|:| |blockBranch| (-598 (-311)))
+ (|:| |commentBranch| (-598 (-1085))) (|:| |callBranch| (-1085))
+ (|:| |forBranch|
+ (-2 (|:| -2368 (-1023 (-895 (-531))))
+ (|:| |span| (-895 (-531))) (|:| -3964 (-311))))
+ (|:| |labelBranch| (-1049))
+ (|:| |loopBranch| (-2 (|:| |switch| (-1101)) (|:| -3964 (-311))))
+ (|:| |commonBranch|
+ (-2 (|:| -3955 (-1102)) (|:| |contents| (-598 (-1102)))))
+ (|:| |printBranch| (-598 (-806)))))
+ (-5 *1 (-311)))))
+(((*1 *2 *1) (-12 (-4 *1 (-348 *2)) (-4 *2 (-162)))))
(((*1 *2 *3 *3)
(-12 (-4 *4 (-13 (-432) (-140))) (-5 *2 (-399 *3))
- (-5 *1 (-97 *4 *3)) (-4 *3 (-1157 *4))))
+ (-5 *1 (-97 *4 *3)) (-4 *3 (-1160 *4))))
((*1 *2 *3 *4)
- (-12 (-5 *4 (-597 *3)) (-4 *3 (-1157 *5)) (-4 *5 (-13 (-432) (-140)))
+ (-12 (-5 *4 (-598 *3)) (-4 *3 (-1160 *5)) (-4 *5 (-13 (-432) (-140)))
(-5 *2 (-399 *3)) (-5 *1 (-97 *5 *3)))))
-(((*1 *1) (-5 *1 (-418))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-862)) (-5 *1 (-145 *3 *4 *5)) (-14 *3 *2)
- (-4 *4 (-344)) (-14 *5 (-933 *3 *4)))))
-(((*1 *1) (-5 *1 (-996))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| |deg| (-719)) (|:| -1360 *5))))
- (-4 *5 (-1157 *4)) (-4 *4 (-330)) (-5 *2 (-597 *5))
- (-5 *1 (-200 *4 *5))))
- ((*1 *2 *3 *4)
- (-12 (-5 *3 (-597 (-2 (|:| -2611 *5) (|:| -1429 (-530)))))
- (-5 *4 (-530)) (-4 *5 (-1157 *4)) (-5 *2 (-597 *5))
- (-5 *1 (-644 *5)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-637 (-388 (-530)))) (-5 *2 (-597 *4)) (-5 *1 (-727 *4))
- (-4 *4 (-13 (-344) (-793))))))
-(((*1 *2 *3 *4 *5 *6 *7 *8 *9)
- (|partial| -12 (-5 *4 (-597 *11)) (-5 *5 (-597 (-1095 *9)))
- (-5 *6 (-597 *9)) (-5 *7 (-597 *12)) (-5 *8 (-597 (-719)))
- (-4 *11 (-795)) (-4 *9 (-289)) (-4 *12 (-890 *9 *10 *11))
- (-4 *10 (-741)) (-5 *2 (-597 (-1095 *12)))
- (-5 *1 (-656 *10 *11 *9 *12)) (-5 *3 (-1095 *12)))))
-(((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1004 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6))))
- ((*1 *2)
- (-12 (-4 *3 (-432)) (-4 *4 (-741)) (-4 *5 (-795))
- (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-1186))
- (-5 *1 (-1035 *3 *4 *5 *6 *7)) (-4 *7 (-1003 *3 *4 *5 *6)))))
-(((*1 *1 *1) (-12 (-4 *1 (-354 *2)) (-4 *2 (-1135)) (-4 *2 (-795))))
- ((*1 *1 *2 *1)
- (-12 (-5 *2 (-1 (-110) *3 *3)) (-4 *1 (-354 *3)) (-4 *3 (-1135))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-846 *3))) (-5 *1 (-846 *3)) (-4 *3 (-1027))))
- ((*1 *2 *1 *3)
- (-12 (-4 *4 (-984)) (-4 *5 (-741)) (-4 *3 (-795))
- (-4 *6 (-998 *4 *5 *3))
- (-5 *2 (-2 (|:| |under| *1) (|:| -3175 *1) (|:| |upper| *1)))
- (-4 *1 (-916 *4 *5 *3 *6)))))
+ (-12 (-5 *4 (-721)) (-4 *5 (-986)) (-4 *2 (-1160 *5))
+ (-5 *1 (-1178 *5 *2 *6 *3)) (-4 *6 (-609 *2)) (-4 *3 (-1175 *5)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-1085)) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *1 *2) (-12 (-5 *2 (-1085)) (-5 *1 (-245))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3) (-12 (-5 *3 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-523) (-797) (-977 (-531))))
+ (-5 *2 (-159 (-297 *4))) (-5 *1 (-172 *4 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 (-159 *4))))))
+ ((*1 *2 *3)
+ (-12 (-4 *4 (-13 (-432) (-797) (-977 (-531)) (-594 (-531))))
+ (-5 *2 (-159 *3)) (-5 *1 (-1128 *4 *3))
+ (-4 *3 (-13 (-27) (-1124) (-411 *4))))))
(((*1 *2 *2)
- (-12 (-4 *2 (-162)) (-4 *2 (-984)) (-5 *1 (-663 *2 *3))
- (-4 *3 (-599 *2))))
- ((*1 *2 *2) (-12 (-5 *1 (-782 *2)) (-4 *2 (-162)) (-4 *2 (-984)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *3 (-208)) (-5 *4 (-530)) (-5 *2 (-973)) (-5 *1 (-707)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *1 *1) (-4 *1 (-136)))
+ (-12 (-4 *3 (-13 (-523) (-140))) (-5 *1 (-508 *3 *2))
+ (-4 *2 (-1175 *3))))
((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-149 *3 *2))
- (-4 *2 (-411 *3))))
- ((*1 *2 *2) (-12 (-5 *1 (-150 *2)) (-4 *2 (-515)))))
-(((*1 *2 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984))))
- ((*1 *2) (-12 (-5 *2 (-719)) (-5 *1 (-425 *3)) (-4 *3 (-984)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-388 (-530))))) (-5 *1 (-245))))
- ((*1 *1 *2) (-12 (-5 *2 (-597 (-1022 (-360)))) (-5 *1 (-245)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-415))))
+ (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-4 *4 (-1160 *3))
+ (-4 *5 (-675 *3 *4)) (-5 *1 (-512 *3 *4 *5 *2)) (-4 *2 (-1175 *5))))
+ ((*1 *2 *2)
+ (-12 (-4 *3 (-13 (-344) (-349) (-573 (-531)))) (-5 *1 (-513 *3 *2))
+ (-4 *2 (-1175 *3))))
+ ((*1 *2 *2)
+ (-12 (-5 *2 (-1083 *3)) (-4 *3 (-13 (-523) (-140)))
+ (-5 *1 (-1079 *3)))))
+(((*1 *2 *3) (-12 (-5 *3 (-864)) (-5 *2 (-847 (-531))) (-5 *1 (-860))))
((*1 *2 *3)
- (-12 (-5 *2 (-110)) (-5 *1 (-535 *3)) (-4 *3 (-975 (-530)))))
- ((*1 *2 *1)
- (-12 (-4 *1 (-1030 *3 *4 *5 *6 *7)) (-4 *3 (-1027)) (-4 *4 (-1027))
- (-4 *5 (-1027)) (-4 *6 (-1027)) (-4 *7 (-1027)) (-5 *2 (-110)))))
-(((*1 *2 *2 *3)
- (-12 (-5 *3 (-1099)) (-4 *4 (-522)) (-4 *4 (-795))
- (-5 *1 (-539 *4 *2)) (-4 *2 (-411 *4)))))
-(((*1 *2 *1) (-12 (-4 *1 (-624 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *1 *2) (-12 (-5 *2 (-388 (-530))) (-5 *1 (-201)))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-847 (-531))) (-5 *1 (-860)))))
+(((*1 *2 *1) (-12 (-5 *1 (-857 *2)) (-4 *2 (-289)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1080 (-530))) (-5 *1 (-1084 *4)) (-4 *4 (-984))
- (-5 *3 (-530)))))
-(((*1 *2 *1)
- (-12 (-5 *2 (-388 (-530))) (-5 *1 (-300 *3 *4 *5))
- (-4 *3 (-13 (-344) (-795))) (-14 *4 (-1099)) (-14 *5 *3))))
-(((*1 *2 *3) (-12 (-5 *3 (-862)) (-5 *2 (-845 (-530))) (-5 *1 (-858))))
- ((*1 *2 *3)
- (-12 (-5 *3 (-597 (-530))) (-5 *2 (-845 (-530))) (-5 *1 (-858)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1080 (-597 (-530)))) (-5 *3 (-597 (-530)))
- (-5 *1 (-824)))))
-(((*1 *1)
- (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-530)) (-14 *3 (-719))
- (-4 *4 (-162)))))
-(((*1 *2 *3 *3 *3 *4 *4 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-637 (-208))) (-5 *2 (-973))
- (-5 *1 (-704)))))
-(((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7)
- (-12 (-5 *4 (-530)) (-5 *5 (-637 (-208)))
- (-5 *6 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *1 *1) (-5 *1 (-804))))
-(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-597 *1)) (-4 *1 (-861)))))
-(((*1 *2 *1 *1)
- (-12 (-4 *3 (-344)) (-4 *3 (-984))
- (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -1974 *1)))
- (-4 *1 (-797 *3)))))
-(((*1 *1 *1)
- (-12 (-5 *1 (-555 *2)) (-4 *2 (-37 (-388 (-530)))) (-4 *2 (-984)))))
-(((*1 *2 *3 *2)
- (-12 (-5 *2 (-1082)) (-5 *3 (-597 (-245))) (-5 *1 (-243))))
- ((*1 *1 *2) (-12 (-5 *2 (-1082)) (-5 *1 (-245))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1182))))
- ((*1 *2 *1 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-1186)) (-5 *1 (-1183)))))
-(((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-230 *3 *4))
- (-14 *3 (-597 (-1099))) (-4 *4 (-984))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-14 *3 (-597 (-1099)))
- (-5 *1 (-434 *3 *4 *5)) (-4 *4 (-984))
- (-4 *5 (-221 (-2267 *3) (-719)))))
- ((*1 *1 *1 *2)
- (-12 (-5 *2 (-597 (-530))) (-5 *1 (-460 *3 *4))
- (-14 *3 (-597 (-1099))) (-4 *4 (-984)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-522))) (-5 *1 (-258 *3 *2))
- (-4 *2 (-13 (-411 *3) (-941))))))
-(((*1 *2 *3) (-12 (-5 *3 (-1082)) (-5 *2 (-862)) (-5 *1 (-734)))))
+ (-12 (-4 *4 (-1160 (-388 *2))) (-5 *2 (-531)) (-5 *1 (-856 *4 *3))
+ (-4 *3 (-1160 (-388 *4))))))
(((*1 *1 *1 *1)
- (-12 (-4 *1 (-635 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-354 *2))
- (-4 *4 (-354 *2)))))
-(((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-884 (-208))) (-5 *4 (-815)) (-5 *5 (-862))
- (-5 *2 (-1186)) (-5 *1 (-448))))
- ((*1 *2 *1 *3)
- (-12 (-5 *3 (-884 (-208))) (-5 *2 (-1186)) (-5 *1 (-448))))
- ((*1 *2 *1 *3 *4 *4 *5)
- (-12 (-5 *3 (-597 (-884 (-208)))) (-5 *4 (-815)) (-5 *5 (-862))
- (-5 *2 (-1186)) (-5 *1 (-448)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-637 (-388 (-893 (-530)))))
- (-5 *2 (-597 (-637 (-297 (-530))))) (-5 *1 (-969)))))
-(((*1 *2 *1) (-12 (-4 *1 (-522)) (-5 *2 (-110)))))
-(((*1 *2 *3 *2) (-12 (-5 *2 (-1082)) (-5 *3 (-530)) (-5 *1 (-224)))))
-(((*1 *2 *1) (-12 (-5 *2 (-597 (-164))) (-5 *1 (-1014)))))
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797))))
+ ((*1 *2 *2 *1)
+ (-12 (-4 *1 (-1132 *3 *4 *5 *2)) (-4 *3 (-523)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *2 (-1000 *3 *4 *5)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
(((*1 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3))))
- ((*1 *1 *1)
- (-12 (-5 *1 (-1173 *2 *3 *4)) (-4 *2 (-984)) (-14 *3 (-1099))
- (-14 *4 *2))))
-(((*1 *2 *1) (-12 (-5 *2 (-110)) (-5 *1 (-1104)))))
-(((*1 *1 *1 *1 *1 *2)
- (-12 (-5 *2 (-719)) (-4 *1 (-998 *3 *4 *5)) (-4 *3 (-984))
- (-4 *4 (-741)) (-4 *5 (-795)) (-4 *3 (-522)))))
-(((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3)
- (-12 (-5 *6 (-597 (-110))) (-5 *7 (-637 (-208)))
- (-5 *8 (-637 (-530))) (-5 *3 (-530)) (-5 *4 (-208)) (-5 *5 (-110))
- (-5 *2 (-973)) (-5 *1 (-703)))))
-(((*1 *1 *1) (-12 (-4 *1 (-411 *2)) (-4 *2 (-795)) (-4 *2 (-522))))
- ((*1 *1 *1) (-12 (-4 *1 (-932 *2)) (-4 *2 (-522)))))
-(((*1 *2 *3 *4 *5 *4)
- (-12 (-5 *3 (-637 (-208))) (-5 *4 (-530)) (-5 *5 (-110))
- (-5 *2 (-973)) (-5 *1 (-694)))))
-(((*1 *2 *3 *1)
- (|partial| -12 (-5 *3 (-833 *4)) (-4 *4 (-1027)) (-4 *2 (-1027))
- (-5 *1 (-830 *4 *2)))))
-(((*1 *1 *2 *2) (-12 (-5 *2 (-530)) (-5 *1 (-804)))))
-(((*1 *2 *1 *2) (-12 (-5 *1 (-964 *2)) (-4 *2 (-1135)))))
+ (-12
+ (-5 *2
+ (-598
+ (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-721)) (|:| |poli| *6)
+ (|:| |polj| *6))))
+ (-4 *4 (-743)) (-4 *6 (-892 *3 *4 *5)) (-4 *3 (-432)) (-4 *5 (-797))
+ (-5 *1 (-429 *3 *4 *5 *6)))))
+(((*1 *2)
+ (-12 (-5 *2 (-2 (|:| -1915 (-598 *3)) (|:| -4189 (-598 *3))))
+ (-5 *1 (-1139 *3)) (-4 *3 (-1030)))))
+(((*1 *2 *2)
+ (-12 (-4 *3 (-289)) (-4 *4 (-354 *3)) (-4 *5 (-354 *3))
+ (-5 *1 (-1053 *3 *4 *5 *2)) (-4 *2 (-637 *3 *4 *5)))))
+(((*1 *2 *2 *2)
+ (-12 (-4 *3 (-986)) (-5 *1 (-1156 *3 *2)) (-4 *2 (-1160 *3)))))
+(((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-367 *3)) (|:| |mm| (-367 *3)) (|:| |rm| (-367 *3))))
+ (-5 *1 (-367 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1 *1)
+ (-12
+ (-5 *2
+ (-2 (|:| |lm| (-769 *3)) (|:| |mm| (-769 *3)) (|:| |rm| (-769 *3))))
+ (-5 *1 (-769 *3)) (-4 *3 (-797)))))
+(((*1 *2 *2)
+ (-12 (-5 *2 (-1184 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1142))
+ (-4 *4 (-1160 *3)) (-4 *5 (-1160 (-388 *4))))))
(((*1 *2 *1)
- (-12 (-5 *2 (-2 (|:| |var| (-597 (-1099))) (|:| |pred| (-51))))
- (-5 *1 (-833 *3)) (-4 *3 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-388 (-530))))) (-4 *6 (-1157 *5))
- (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2776 *3))))
- (-5 *1 (-757 *5 *6 *3 *7)) (-4 *3 (-607 *6))
- (-4 *7 (-607 (-388 *6)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-1 (-597 *5) *6))
- (-4 *5 (-13 (-344) (-140) (-975 (-530)) (-975 (-388 (-530)))))
- (-4 *6 (-1157 *5))
- (-5 *2 (-597 (-2 (|:| |poly| *6) (|:| -2776 (-605 *6 (-388 *6))))))
- (-5 *1 (-760 *5 *6)) (-5 *3 (-605 *6 (-388 *6))))))
-(((*1 *1 *1 *1) (-4 *1 (-612))) ((*1 *1 *1 *1) (-5 *1 (-1046))))
-(((*1 *1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-344)))))
-(((*1 *2 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1135)))))
-(((*1 *1 *1 *1)
- (-12 (|has| *1 (-6 -4270)) (-4 *1 (-227 *2)) (-4 *2 (-1135)))))
+ (-12 (-4 *1 (-55 *3 *4 *5)) (-4 *3 (-1138)) (-4 *4 (-354 *3))
+ (-4 *5 (-354 *3)) (-5 *2 (-531))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-989 *3 *4 *5 *6 *7)) (-4 *5 (-986))
+ (-4 *6 (-221 *4 *5)) (-4 *7 (-221 *3 *5)) (-5 *2 (-531)))))
+(((*1 *2 *1) (-12 (-5 *2 (-1083 *3)) (-5 *1 (-163 *3)) (-4 *3 (-289)))))
+(((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-531)) (-5 *2 (-1189)) (-5 *1 (-1186))))
+ ((*1 *2 *1 *3 *3)
+ (-12 (-5 *3 (-360)) (-5 *2 (-1189)) (-5 *1 (-1186)))))
(((*1 *2 *3 *4)
- (-12 (-5 *3 (-388 (-893 (-159 (-530))))) (-5 *2 (-597 (-159 *4)))
- (-5 *1 (-359 *4)) (-4 *4 (-13 (-344) (-793)))))
- ((*1 *2 *3 *4 *5)
- (-12 (-5 *3 (-597 (-388 (-893 (-159 (-530))))))
- (-5 *4 (-597 (-1099))) (-5 *2 (-597 (-597 (-159 *5))))
- (-5 *1 (-359 *5)) (-4 *5 (-13 (-344) (-793))))))
+ (-12 (-5 *3 (-208)) (-5 *4 (-531)) (-5 *2 (-975)) (-5 *1 (-709)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-598 (-886 (-208))))) (-5 *1 (-448)))))
+(((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-895 (-531))) (-5 *2 (-311))
+ (-5 *1 (-313))))
+ ((*1 *2 *3 *4 *4)
+ (-12 (-5 *3 (-1102)) (-5 *4 (-1023 (-895 (-531)))) (-5 *2 (-311))
+ (-5 *1 (-313))))
+ ((*1 *1 *2 *2 *2)
+ (-12 (-5 *2 (-721)) (-5 *1 (-627 *3)) (-4 *3 (-986)) (-4 *3 (-1030)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-1181 *1)) (-4 *1 (-348 *4)) (-4 *4 (-162))
- (-5 *2 (-637 *4))))
- ((*1 *2)
- (-12 (-4 *4 (-162)) (-5 *2 (-637 *4)) (-5 *1 (-397 *3 *4))
- (-4 *3 (-398 *4))))
- ((*1 *2) (-12 (-4 *1 (-398 *3)) (-4 *3 (-162)) (-5 *2 (-637 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-1181 *1)) (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139))
- (-4 *4 (-1157 *3)) (-4 *5 (-1157 (-388 *4))))))
+ (-12 (-5 *2 (-159 *4)) (-5 *1 (-169 *4 *3))
+ (-4 *4 (-13 (-344) (-795))) (-4 *3 (-1160 *2)))))
+(((*1 *2 *3 *3)
+ (-12 (-4 *4 (-432)) (-4 *3 (-743)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-429 *4 *3 *5 *6)) (-4 *6 (-892 *4 *3 *5)))))
(((*1 *1) (-5 *1 (-311))))
-(((*1 *1) (-12 (-4 *1 (-156 *2)) (-4 *2 (-162)))))
-(((*1 *1 *1 *1) (-4 *1 (-612))) ((*1 *1 *1 *1) (-5 *1 (-1046))))
-(((*1 *1 *1 *2) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027))))
- ((*1 *1 *1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-597 (-2 (|:| -2611 (-1095 *6)) (|:| -3194 (-530)))))
- (-4 *6 (-289)) (-4 *4 (-741)) (-4 *5 (-795)) (-5 *2 (-530))
- (-5 *1 (-691 *4 *5 *6 *7)) (-4 *7 (-890 *6 *4 *5)))))
-(((*1 *2 *3 *4 *5)
- (-12 (-5 *4 (-719)) (-5 *5 (-597 *3)) (-4 *3 (-289)) (-4 *6 (-795))
- (-4 *7 (-741)) (-5 *2 (-110)) (-5 *1 (-580 *6 *7 *3 *8))
- (-4 *8 (-890 *3 *7 *6)))))
+ (-12 (-5 *3 (-460 *4 *5)) (-14 *4 (-598 (-1102))) (-4 *5 (-986))
+ (-5 *2 (-230 *4 *5)) (-5 *1 (-887 *4 *5)))))
+(((*1 *2 *3)
+ (-12 (-4 *4 (-523)) (-5 *2 (-721)) (-5 *1 (-42 *4 *3))
+ (-4 *3 (-398 *4)))))
+(((*1 *2 *1)
+ (-12 (-5 *2 (-721)) (-5 *1 (-1091 *3 *4)) (-14 *3 (-864))
+ (-4 *4 (-986)))))
(((*1 *2 *3)
(-12
(-5 *3
- (-2 (|:| |var| (-1099)) (|:| |fn| (-297 (-208)))
- (|:| -1300 (-1022 (-788 (-208)))) (|:| |abserr| (-208))
+ (-2 (|:| |var| (-1102)) (|:| |fn| (-297 (-208)))
+ (|:| -2368 (-1025 (-790 (-208)))) (|:| |abserr| (-208))
(|:| |relerr| (-208))))
- (-5 *2 (-530)) (-5 *1 (-188)))))
-(((*1 *2 *3 *4 *2)
- (-12 (-5 *2 (-597 (-597 (-597 *5)))) (-5 *3 (-1 (-110) *5 *5))
- (-5 *4 (-597 *5)) (-4 *5 (-795)) (-5 *1 (-1107 *5)))))
+ (-5 *2
+ (-3 (|:| |finite| "The range is finite")
+ (|:| |lowerInfinite| "The bottom of range is infinite")
+ (|:| |upperInfinite| "The top of range is infinite")
+ (|:| |bothInfinite| "Both top and bottom points are infinite")
+ (|:| |notEvaluated| "Range not yet evaluated")))
+ (-5 *1 (-176)))))
+(((*1 *1)
+ (-12 (-5 *1 (-132 *2 *3 *4)) (-14 *2 (-531)) (-14 *3 (-721))
+ (-4 *4 (-162)))))
+(((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5)
+ (-12 (-5 *3 (-208)) (-5 *4 (-531))
+ (-5 *5 (-3 (|:| |fn| (-369)) (|:| |fp| (-62 G)))) (-5 *2 (-975))
+ (-5 *1 (-699)))))
+(((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-127)))))
+(((*1 *2 *3) (-12 (-5 *3 (-360)) (-5 *2 (-208)) (-5 *1 (-1187))))
+ ((*1 *2) (-12 (-5 *2 (-208)) (-5 *1 (-1187)))))
+(((*1 *2 *3 *4)
+ (-12 (-5 *3 (-598 (-1 (-110) *8))) (-4 *8 (-1000 *5 *6 *7))
+ (-4 *5 (-523)) (-4 *6 (-743)) (-4 *7 (-797))
+ (-5 *2 (-2 (|:| |goodPols| (-598 *8)) (|:| |badPols| (-598 *8))))
+ (-5 *1 (-919 *5 *6 *7 *8)) (-5 *4 (-598 *8)))))
+(((*1 *2 *3 *2 *4 *5)
+ (-12 (-5 *2 (-598 *3)) (-5 *5 (-864)) (-4 *3 (-1160 *4))
+ (-4 *4 (-289)) (-5 *1 (-440 *4 *3)))))
(((*1 *2 *3)
- (-12 (-5 *3 (-767 *4)) (-4 *4 (-795)) (-5 *2 (-110))
- (-5 *1 (-622 *4)))))
-(((*1 *2 *3 *4 *4 *5 *3 *6)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3)) (-5 *6 (-1095 *3))
- (-4 *3 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027))))
- ((*1 *2 *3 *4 *4 *5 *4 *3 *6)
- (|partial| -12 (-5 *4 (-570 *3)) (-5 *5 (-597 *3))
- (-5 *6 (-388 (-1095 *3))) (-4 *3 (-13 (-411 *7) (-27) (-1121)))
- (-4 *7 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2
- (-2 (|:| |mainpart| *3)
- (|:| |limitedlogs|
- (-597 (-2 (|:| |coeff| *3) (|:| |logand| *3))))))
- (-5 *1 (-526 *7 *3 *8)) (-4 *8 (-1027)))))
+ (-12 (-5 *3 (-1098 *7)) (-4 *7 (-892 *6 *4 *5)) (-4 *4 (-743))
+ (-4 *5 (-797)) (-4 *6 (-986)) (-5 *2 (-1098 *6))
+ (-5 *1 (-302 *4 *5 *6 *7)))))
+(((*1 *1 *1)
+ (|partial| -12 (-5 *1 (-1068 *2 *3)) (-4 *2 (-13 (-1030) (-33)))
+ (-4 *3 (-13 (-1030) (-33))))))
+(((*1 *1 *1 *1) (-5 *1 (-806))))
+(((*1 *2 *1)
+ (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986))
+ (-5 *2 (-598 (-598 (-598 (-886 *3))))))))
+(((*1 *2 *3 *3 *4 *5 *5 *3)
+ (-12 (-5 *3 (-531)) (-5 *4 (-1085)) (-5 *5 (-639 (-208)))
+ (-5 *2 (-975)) (-5 *1 (-698)))))
+(((*1 *2 *3 *2)
+ (-12 (-5 *2 (-598 (-360))) (-5 *3 (-598 (-245))) (-5 *1 (-243))))
+ ((*1 *2 *1 *2) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-448))))
+ ((*1 *2 *1) (-12 (-5 *2 (-598 (-360))) (-5 *1 (-448))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-817)) (-5 *2 (-1189)) (-5 *1 (-1185))))
+ ((*1 *2 *1 *3 *4)
+ (-12 (-5 *3 (-864)) (-5 *4 (-1085)) (-5 *2 (-1189)) (-5 *1 (-1185)))))
+(((*1 *1 *1)
+ (-12 (-4 *1 (-1000 *2 *3 *4)) (-4 *2 (-986)) (-4 *3 (-743))
+ (-4 *4 (-797)) (-4 *2 (-432)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-598 *3)) (-4 *3 (-1030)) (-4 *1 (-1028 *3))))
+ ((*1 *1) (-12 (-4 *1 (-1028 *2)) (-4 *2 (-1030)))))
+(((*1 *1 *2 *3)
+ (-12 (-5 *1 (-907 *2 *3)) (-4 *2 (-1030)) (-4 *3 (-1030)))))
+(((*1 *2 *2) (-12 (-5 *2 (-1083 (-598 (-531)))) (-5 *1 (-826)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-928 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-930 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7))))
((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-432))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-1034 *4 *5 *6 *7 *8)) (-4 *8 (-1003 *4 *5 *6 *7)))))
-(((*1 *2 *3 *4 *4)
- (-12 (-5 *4 (-570 *3)) (-4 *3 (-13 (-411 *5) (-27) (-1121)))
- (-4 *5 (-13 (-432) (-975 (-530)) (-795) (-140) (-593 (-530))))
- (-5 *2 (-547 *3)) (-5 *1 (-532 *5 *3 *6)) (-4 *6 (-1027)))))
-(((*1 *1 *2)
- (-12 (-5 *2 (-597 *3)) (-4 *3 (-1027)) (-4 *1 (-1025 *3))))
- ((*1 *1) (-12 (-4 *1 (-1025 *2)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-4 *6 (-827 *5)) (-5 *2 (-826 *5 *6 (-597 *6)))
- (-5 *1 (-828 *5 *6 *4)) (-5 *3 (-597 *6)) (-4 *4 (-572 (-833 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 *3))) (-5 *1 (-828 *5 *3 *4))
- (-4 *3 (-975 (-1099))) (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-5 *2 (-597 (-276 (-893 *3))))
- (-5 *1 (-828 *5 *3 *4)) (-4 *3 (-984))
- (-3676 (-4 *3 (-975 (-1099)))) (-4 *3 (-827 *5))
- (-4 *4 (-572 (-833 *5)))))
+ (-12 (-4 *4 (-432)) (-4 *5 (-743)) (-4 *6 (-797))
+ (-4 *7 (-1000 *4 *5 *6)) (-5 *2 (-110))
+ (-5 *1 (-1037 *4 *5 *6 *7 *3)) (-4 *3 (-1005 *4 *5 *6 *7)))))
+(((*1 *1)
+ (-12 (-4 *1 (-385)) (-3745 (|has| *1 (-6 -4264)))
+ (-3745 (|has| *1 (-6 -4256)))))
+ ((*1 *2 *1) (-12 (-4 *1 (-406 *2)) (-4 *2 (-1030)) (-4 *2 (-797))))
+ ((*1 *1 *1 *1) (-4 *1 (-797)))
+ ((*1 *2 *1) (-12 (-4 *1 (-911 *2)) (-4 *2 (-797))))
+ ((*1 *1) (-5 *1 (-1049))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-208)) (-5 *2 (-110)) (-5 *1 (-281 *4 *5)) (-14 *4 *3)
+ (-14 *5 *3)))
((*1 *2 *3 *4)
- (-12 (-4 *5 (-1027)) (-5 *2 (-830 *5 *3)) (-5 *1 (-828 *5 *3 *4))
- (-3676 (-4 *3 (-975 (-1099)))) (-3676 (-4 *3 (-984)))
- (-4 *3 (-827 *5)) (-4 *4 (-572 (-833 *5))))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 (-893 *3))) (-4 *3 (-432)) (-5 *1 (-341 *3 *4))
- (-14 *4 (-597 (-1099)))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-890 *3 *4 *5)) (-4 *3 (-432))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-430 *3 *4 *5 *6))))
- ((*1 *2 *2 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-430 *4 *5 *6 *7))))
- ((*1 *2 *2 *3 *3)
- (-12 (-5 *2 (-597 *7)) (-5 *3 (-1082)) (-4 *7 (-890 *4 *5 *6))
- (-4 *4 (-432)) (-4 *5 (-741)) (-4 *6 (-795))
- (-5 *1 (-430 *4 *5 *6 *7))))
- ((*1 *1 *1)
- (-12 (-4 *2 (-344)) (-4 *3 (-741)) (-4 *4 (-795))
- (-5 *1 (-482 *2 *3 *4 *5)) (-4 *5 (-890 *2 *3 *4))))
- ((*1 *2 *2)
- (-12 (-5 *2 (-597 (-728 *3 (-806 *4)))) (-4 *3 (-432))
- (-14 *4 (-597 (-1099))) (-5 *1 (-582 *3 *4)))))
-(((*1 *2)
- (-12 (-4 *1 (-323 *3 *4 *5)) (-4 *3 (-1139)) (-4 *4 (-1157 *3))
- (-4 *5 (-1157 (-388 *4))) (-5 *2 (-110)))))
-(((*1 *1 *1)
- (-12 (-4 *1 (-307 *2 *3)) (-4 *2 (-984)) (-4 *3 (-740))
- (-4 *2 (-432))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-323 *2 *3 *4)) (-4 *2 (-1139)) (-4 *3 (-1157 *2))
- (-4 *4 (-1157 (-388 *3)))))
- ((*1 *1 *1) (-12 (-4 *1 (-797 *2)) (-4 *2 (-984)) (-4 *2 (-432))))
- ((*1 *1 *1 *2)
- (-12 (-4 *1 (-890 *3 *4 *2)) (-4 *3 (-984)) (-4 *4 (-741))
- (-4 *2 (-795)) (-4 *3 (-432))))
- ((*1 *1 *1)
- (-12 (-4 *1 (-890 *2 *3 *4)) (-4 *2 (-984)) (-4 *3 (-741))
- (-4 *4 (-795)) (-4 *2 (-432))))
- ((*1 *2 *2 *3)
- (-12 (-4 *3 (-289)) (-4 *3 (-522)) (-5 *1 (-1087 *3 *2))
- (-4 *2 (-1157 *3)))))
-(((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5)
- (-12 (-5 *3 (-1 (-360) (-360))) (-5 *4 (-360))
- (-5 *2
- (-2 (|:| -3417 *4) (|:| -3913 *4) (|:| |totalpts| (-530))
- (|:| |success| (-110))))
- (-5 *1 (-737)) (-5 *5 (-530)))))
-(((*1 *2 *3) (-12 (-5 *3 (-804)) (-5 *2 (-1082)) (-5 *1 (-659)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-884 *3)) (-4 *3 (-13 (-344) (-1121) (-941)))
- (-5 *1 (-165 *3)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1031)) (-5 *1 (-51)))))
-(((*1 *2 *1) (-12 (-5 *2 (-1186)) (-5 *1 (-770)))))
-(((*1 *2 *2 *2)
- (-12 (-5 *2 (-637 *3))
- (-4 *3 (-13 (-289) (-10 -8 (-15 -3272 ((-399 $) $)))))
- (-4 *4 (-1157 *3)) (-5 *1 (-477 *3 *4 *5)) (-4 *5 (-390 *3 *4)))))
-(((*1 *1 *1)
- (|partial| -12 (-4 *1 (-348 *2)) (-4 *2 (-162)) (-4 *2 (-522))))
- ((*1 *1 *1) (|partial| -4 *1 (-671))))
+ (-12 (-5 *4 (-1025 (-790 (-208)))) (-5 *3 (-208)) (-5 *2 (-110))
+ (-5 *1 (-287))))
+ ((*1 *2 *1 *1)
+ (-12 (-4 *3 (-344)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-110))
+ (-5 *1 (-482 *3 *4 *5 *6)) (-4 *6 (-892 *3 *4 *5)))))
(((*1 *2 *3 *4)
- (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8))
- (-5 *4 (-637 (-1095 *8))) (-4 *5 (-984)) (-4 *8 (-984))
- (-4 *6 (-1157 *5)) (-5 *2 (-637 *6)) (-5 *1 (-479 *5 *6 *7 *8))
- (-4 *7 (-1157 *6)))))
-(((*1 *2 *1) (-12 (-4 *1 (-1073 *3)) (-4 *3 (-1135)) (-5 *2 (-110)))))
-(((*1 *2 *2) (|partial| -12 (-4 *1 (-923 *2)) (-4 *2 (-1121)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1060 *3)) (-4 *3 (-984)) (-5 *2 (-597 (-161))))))
-(((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10)
- (-12 (-5 *4 (-530)) (-5 *5 (-1082)) (-5 *6 (-637 (-208)))
- (-5 *7 (-3 (|:| |fn| (-369)) (|:| |fp| (-87 G))))
- (-5 *8 (-3 (|:| |fn| (-369)) (|:| |fp| (-84 FCN))))
- (-5 *9 (-3 (|:| |fn| (-369)) (|:| |fp| (-69 PEDERV))))
- (-5 *10 (-3 (|:| |fn| (-369)) (|:| |fp| (-86 OUTPUT))))
- (-5 *3 (-208)) (-5 *2 (-973)) (-5 *1 (-698)))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *2 *2)
- (-12 (-4 *3 (-984)) (-5 *1 (-835 *2 *3)) (-4 *2 (-1157 *3))))
- ((*1 *2 *2 *2)
- (-12 (-5 *2 (-1080 *3)) (-4 *3 (-984)) (-5 *1 (-1084 *3)))))
-(((*1 *2 *2)
- (-12 (-5 *2 (-597 *6)) (-4 *6 (-998 *3 *4 *5)) (-4 *3 (-522))
- (-4 *4 (-741)) (-4 *5 (-795)) (-5 *1 (-917 *3 *4 *5 *6)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-1082)) (-5 *2 (-198 (-480))) (-5 *1 (-783)))))
-(((*1 *2 *3)
- (-12 (-5 *3 (-597 *5)) (-4 *5 (-411 *4)) (-4 *4 (-13 (-795) (-522)))
- (-5 *2 (-804)) (-5 *1 (-31 *4 *5)))))
+ (-12 (-4 *4 (-344)) (-5 *2 (-598 (-1083 *4))) (-5 *1 (-267 *4 *5))
+ (-5 *3 (-1083 *4)) (-4 *5 (-1175 *4)))))
+(((*1 *1 *2) (-12 (-5 *2 (-598 *1)) (-4 *1 (-284))))
+ ((*1 *1 *1) (-4 *1 (-284)))
+ ((*1 *1 *2) (-12 (-5 *2 (-598 (-806))) (-5 *1 (-806))))
+ ((*1 *1 *1) (-5 *1 (-806))))
+(((*1 *1 *2 *1) (-12 (-5 *2 (-106)) (-5 *1 (-164)))))
+(((*1 *1 *1) (-5 *1 (-998))))
+(((*1 *2 *1) (-12 (-5 *2 (-1034)) (-5 *1 (-51)))))
+(((*1 *2 *3 *2) (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162))))
+ ((*1 *2 *3 *3 *2)
+ (-12 (-5 *3 (-721)) (-5 *1 (-803 *2)) (-4 *2 (-162)))))
+(((*1 *2 *1 *3)
+ (-12 (-5 *3 (-864)) (-4 *4 (-349)) (-4 *4 (-344)) (-5 *2 (-1098 *1))
+ (-4 *1 (-310 *4))))
+ ((*1 *2 *1) (-12 (-4 *1 (-310 *3)) (-4 *3 (-344)) (-5 *2 (-1098 *3))))
+ ((*1 *2 *1)
+ (-12 (-4 *1 (-351 *3 *2)) (-4 *3 (-162)) (-4 *3 (-344))
+ (-4 *2 (-1160 *3))))
+ ((*1 *2 *3)
+ (-12 (-5 *3 (-1184 *4)) (-4 *4 (-330)) (-5 *2 (-1098 *4))
+ (-5 *1 (-501 *4)))))
(((*1 *2 *3)
- (-12 (-5 *2 (-1 (-884 *3) (-884 *3))) (-5 *1 (-165 *3))
- (-4 *3 (-13 (-344) (-1121) (-941))))))
+ (-12 (-5 *3 (-598 (-531))) (-5 *2 (-531)) (-5 *1 (-465 *4))
+ (-4 *4 (-1160 *2)))))
+(((*1 *2 *1) (-12 (-4 *1 (-1063 *3)) (-4 *3 (-986)) (-5 *2 (-110)))))
+(((*1 *2 *1)
+ (-12 (-4 *3 (-986)) (-4 *4 (-1030)) (-5 *2 (-598 *1))
+ (-4 *1 (-363 *3 *4))))
+ ((*1 *2 *1)
+ (-12 (-5 *2 (-598 (-686 *3 *4))) (-5 *1 (-686 *3 *4)) (-4 *3 (-986))
+ (-4 *4 (-677))))
+ ((*1 *2 *1)
+ (-12 (-4 *3 (-986)) (-4 *4 (-743)) (-4 *5 (-797)) (-5 *2 (-598 *1))
+ (-4 *1 (-892 *3 *4 *5)))))
+(((*1 *1 *2)
+ (-12 (-5 *2 (-1197 (-1102) *3)) (-4 *3 (-986)) (-5 *1 (-1204 *3))))
+ ((*1 *1 *2)
+ (-12 (-5 *2 (-1197 *3 *4)) (-4 *3 (-797)) (-4 *4 (-986))
+ (-5 *1 (-1206 *3 *4)))))
+(((*1 *2 *3 *4 *4 *3)
+ (|partial| -12 (-5 *4 (-571 *3))
+ (-4 *3 (-13 (-411 *5) (-27) (-1124)))
+ (-4 *5 (-13 (-432) (-977 (-531)) (-797) (-140) (-594 (-531))))
+ (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3)))
+ (-5 *1 (-533 *5 *3 *6)) (-4 *6 (-1030)))))
+(((*1 *2 *2) (|partial| -12 (-4 *1 (-925 *2)) (-4 *2 (-1124)))))
+(((*1 *2 *1) (-12 (-5 *1 (-1134 *2)) (-4 *2 (-916)))))
+(((*1 *1 *1)
+ (-12 (-5 *1 (-1091 *2 *3)) (-14 *2 (-864)) (-4 *3 (-986)))))
(((*1 *2 *3 *4)
- (-12 (-5 *4 (-530)) (-4 *5 (-330)) (-5 *2 (-399 (-1095 (-1095 *5))))
- (-5 *1 (-1134 *5)) (-5 *3 (-1095 (-1095 *5))))))
-(((*1 *2 *3 *4 *5 *5)
- (-12 (-5 *4 (-110)) (-5 *5 (-530)) (-4 *6 (-344)) (-4 *6 (-349))
- (-4 *6 (-984)) (-5 *2 (-597 (-597 (-637 *6)))) (-5 *1 (-967 *6))
- (-5 *3 (-597 (-637 *6)))))
- ((*1 *2 *3)
- (-12 (-4 *4 (-344)) (-4 *4 (-349)) (-4 *4 (-984))
- (-5 *2 (-597 (-597 (-637 *4)))) (-5 *1 (-967 *4))
- (-5 *3 (-597 (-637 *4)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-110)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984))
- (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
- (-5 *3 (-597 (-637 *5)))))
- ((*1 *2 *3 *4)
- (-12 (-5 *4 (-862)) (-4 *5 (-344)) (-4 *5 (-349)) (-4 *5 (-984))
- (-5 *2 (-597 (-597 (-637 *5)))) (-5 *1 (-967 *5))
- (-5 *3 (-597 (-637 *5))))))
-(((*1 *2 *2)
- (-12 (-4 *3 (-13 (-795) (-432))) (-5 *1 (-1127 *3 *2))
- (-4 *2 (-13 (-411 *3) (-1121))))))
-(((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3)
- (-12 (-5 *3 (-530)) (-5 *5 (-637 (-208))) (-5 *4 (-208))
- (-5 *2 (-973)) (-5 *1 (-701)))))
+ (|partial| -12 (-5 *4 (-388 *2)) (-4 *2 (-1160 *5))
+ (-5 *1 (-757 *5 *2 *3 *6))
+ (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531)))))
+ (-4 *3 (-609 *2)) (-4 *6 (-609 *4))))
+ ((*1 *2 *3 *4)
+ (-12 (-5 *4 (-598 (-388 *2))) (-4 *2 (-1160 *5))
+ (-5 *1 (-757 *5 *2 *3 *6))
+ (-4 *5 (-13 (-344) (-140) (-977 (-388 (-531))))) (-4 *3 (-609 *2))
+ (-4 *6 (-609 (-388 *2))))))
+(((*1 *1 *1) (-12 (-5 *1 (-478 *2)) (-14 *2 (-531))))
+ ((*1 *1 *1) (-5 *1 (-1049))))
+(((*1 *2 *2 *3)
+ (-12 (-5 *2 (-1184 (-1184 (-531)))) (-5 *3 (-864)) (-5 *1 (-446)))))
(((*1 *2 *3 *3)
- (-12 (-5 *3 (-597 *7)) (-4 *7 (-998 *4 *5 *6)) (-4 *4 (-522))
- (-4 *5 (-741)) (-4 *6 (-795)) (-5 *2 (-110))
- (-5 *1 (-917 *4 *5 *6 *7)))))
-(((*1 *2 *3 *3 *4 *5 *5 *5 *3)
- (-12 (-5 *3 (-530)) (-5 *4 (-1082)) (-5 *5 (-637 (-208)))
- (-5 *2 (-973)) (-5 *1 (-696)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-345 *3 *2)) (-4 *3 (-1027)) (-4 *2 (-1027)))))
-(((*1 *2 *3 *1) (-12 (-5 *3 (-1099)) (-5 *2 (-418)) (-5 *1 (-1103)))))
-(((*1 *2 *1)
- (-12 (-4 *1 (-1129 *3 *4 *5 *6)) (-4 *3 (-522)) (-4 *4 (-741))
- (-4 *5 (-795)) (-4 *6 (-998 *3 *4 *5)) (-5 *2 (-110))))
- ((*1 *2 *3 *1)
- (-12 (-4 *1 (-1129 *4 *5 *6 *3)) (-4 *4 (-522)) (-4 *5 (-741))
- (-4 *6 (-795)) (-4 *3 (-998 *4 *5 *6)) (-5 *2 (-110)))))
-((-1212 . 727115) (-1213 . 727043) (-1214 . 726966) (-1215 . 726838)
- (-1216 . 726676) (-1217 . 726540) (-1218 . 726431) (-1219 . 725762)
- (-1220 . 725622) (-1221 . 725508) (-1222 . 725382) (-1223 . 725305)
- (-1224 . 725164) (-1225 . 725004) (-1226 . 724895) (-1227 . 724508)
- (-1228 . 724428) (-1229 . 724362) (-1230 . 724290) (-1231 . 724063)
- (-1232 . 723942) (-1233 . 723772) (-1234 . 723719) (-1235 . 723667)
- (-1236 . 723568) (-1237 . 723500) (-1238 . 723278) (-1239 . 722687)
- (-1240 . 722563) (-1241 . 721746) (-1242 . 721041) (-1243 . 720912)
- (-1244 . 720699) (-1245 . 720314) (-1246 . 719512) (-1247 . 719419)
- (-1248 . 719276) (-1249 . 719066) (-1250 . 718886) (-1251 . 718683)
- (-1252 . 718565) (-1253 . 718499) (-1254 . 718447) (-1255 . 718419)
- (-1256 . 718288) (-1257 . 718029) (-1258 . 717714) (-1259 . 717631)
- (-1260 . 717572) (-1261 . 717499) (-1262 . 717433) (-1263 . 716917)
- (-1264 . 716797) (-1265 . 716738) (-1266 . 716683) (-1267 . 716569)
- (-1268 . 716451) (-1269 . 716328) (-1270 . 716124) (-1271 . 715989)
- (-1272 . 715936) (-1273 . 715765) (-1274 . 715705) (-1275 . 715634)
- (-1276 . 715582) (-1277 . 715468) (-1278 . 715141) (-1279 . 715036)
- (-1280 . 714968) (-1281 . 714861) (-1282 . 714490) (-1283 . 714217)
- (-1284 . 714132) (-1285 . 713989) (-1286 . 713921) (-1287 . 713890)
- (-1288 . 713641) (-1289 . 713532) (-1290 . 713437) (-1291 . 713340)
- (-1292 . 713185) (-1293 . 713055) (-1294 . 712956) (-1295 . 712897)
- (-1296 . 712826) (-1297 . 712711) (-1298 . 712431) (-1299 . 712322)
- (-1300 . 712183) (-1301 . 712112) (-1302 . 711977) (-1303 . 711801)
- (-1304 . 711735) (-1305 . 711648) (-1306 . 711484) (-1307 . 711055)
- (-1308 . 710715) (-1309 . 710384) (-1310 . 710261) (-1311 . 709949)
- (-1312 . 709921) (-1313 . 709806) (-1314 . 709778) (-1315 . 709532)
- (-1316 . 709437) (-1317 . 709384) (-1318 . 709335) (-1319 . 709175)
- (-1320 . 709067) (-1321 . 708925) (-1322 . 708812) (-1323 . 708576)
- (-1324 . 708326) (-1325 . 708076) (-1326 . 707300) (-1327 . 707205)
- (-1328 . 706844) (-1329 . 706466) (-1330 . 706289) (-1331 . 706023)
- (-1332 . 705679) (-1333 . 705555) (-1334 . 705478) (-1335 . 705173)
- (-1336 . 704936) (-1337 . 704711) (-1338 . 704532) (-1339 . 704389)
- (-1340 . 704325) (-1341 . 704272) (-1342 . 703974) (-1343 . 703516)
- (-1344 . 703443) (-1345 . 703350) (-1346 . 703297) (-1347 . 703127)
- (-1348 . 703074) (-1349 . 702872) (-1350 . 702813) (-1351 . 702432)
- (-1352 . 702208) (-1353 . 702109) (-1354 . 701798) (-1355 . 701616)
- (-1356 . 701533) (-1357 . 701283) (-1358 . 701031) (-1359 . 700656)
- (-1360 . 700559) (-1361 . 700504) (-1362 . 700260) (-1363 . 700105)
- (-1364 . 699455) (-1365 . 698159) (-1366 . 698023) (-1367 . 697598)
- (-1368 . 697285) (-1369 . 697198) (-1370 . 697121) (-1371 . 697065)
- (-1372 . 696925) (-1373 . 696727) (-1374 . 696484) (-1375 . 695144)
- (-1376 . 695088) (-1377 . 694835) (-1378 . 694687) (-1379 . 694114)
- (-1380 . 694063) (-1381 . 693911) (-1382 . 693841) (-1383 . 693762)
- (-1384 . 693514) (-1385 . 693421) (-1386 . 693272) (-1387 . 693135)
- (-1388 . 693104) (-1389 . 692653) (-1390 . 692563) (-1391 . 692483)
- (-1392 . 692381) (-1393 . 692241) (-1394 . 692125) (-1395 . 691840)
- (-1396 . 691688) (-1397 . 691636) (-1398 . 691287) (-1399 . 691124)
- (-1400 . 691041) (-1401 . 689187) (-1402 . 689135) (-1403 . 688942)
- (-1404 . 688782) (-1405 . 688673) (-1406 . 688036) (-1407 . 687987)
- (-1408 . 687873) (-1409 . 687793) (-1410 . 687708) (-1411 . 687463)
- (-1412 . 687329) (-1413 . 687235) (-1414 . 687140) (-1415 . 686809)
- (-1416 . 686530) (-1417 . 686477) (-1418 . 686406) (-1419 . 686295)
- (-1420 . 685754) (-1421 . 685394) (-1422 . 685314) (-1423 . 685147)
- (-1424 . 685093) (-1425 . 685009) (-1426 . 684954) (-1427 . 684595)
- (-1428 . 684511) (-1429 . 682411) (-1430 . 682282) (-1431 . 682173)
- (-1432 . 682120) (-1433 . 681993) (-1434 . 681699) (-1435 . 681592)
- (-1436 . 681518) (-1437 . 681418) (-1438 . 681190) (-1439 . 681135)
- (-1440 . 681012) (-1441 . 680960) (-1442 . 680834) (-1443 . 680578)
- (-1444 . 680466) (-1445 . 680383) (-1446 . 680317) (-1447 . 680151)
- (-1448 . 680085) (-1449 . 679998) (-1450 . 679700) (-1451 . 679501)
- (-1452 . 679423) (-1453 . 679314) (-1454 . 679107) (-1455 . 679021)
- (-1456 . 678972) (-1457 . 678920) (-1458 . 678864) (-1459 . 678779)
- (-1460 . 678673) (-1461 . 678501) (-1462 . 678429) (-1463 . 678244)
- (-1464 . 678119) (-1465 . 677996) (-1466 . 677895) (-1467 . 677797)
- (-1468 . 677641) (-1469 . 677534) (-1470 . 677131) (-1471 . 677063)
- (-1472 . 676985) (-1473 . 676768) (-12 . 676596) (-1475 . 676479)
- (-1476 . 676400) (-1477 . 676293) (-1478 . 675983) (-1479 . 675931)
- (-1480 . 675881) (-1481 . 675727) (-1482 . 675618) (-1483 . 675516)
- (-1484 . 675204) (-1485 . 675155) (-1486 . 675103) (-1487 . 674032)
- (-1488 . 673691) (-1489 . 672588) (-1490 . 672481) (-1491 . 672171)
- (-1492 . 670861) (-1493 . 670796) (-1494 . 670625) (-1495 . 670520)
- (-1496 . 670363) (-1497 . 670189) (-1498 . 670161) (-1499 . 670066)
- (-1500 . 669192) (-1501 . 669032) (-1502 . 668946) (-1503 . 668873)
- (-1504 . 668589) (-1505 . 668517) (-1506 . 668430) (-1507 . 668360)
- (-1508 . 667955) (-1509 . 667859) (-1510 . 667616) (-1511 . 667410)
- (-1512 . 665456) (-1513 . 665369) (-1514 . 665191) (-1515 . 664853)
- (-1516 . 664715) (-1517 . 664587) (-1518 . 664500) (-1519 . 664286)
- (-1520 . 664012) (-1521 . 663908) (-1522 . 663700) (-1523 . 663547)
- (-1524 . 663438) (-1525 . 663294) (-1526 . 663187) (-1527 . 663069)
- (-1528 . 662932) (-1529 . 662779) (-1530 . 662644) (-1531 . 662607)
- (-1532 . 662496) (-1533 . 662372) (-1534 . 661767) (-1535 . 661707)
- (-1536 . 661615) (-1537 . 661232) (-1538 . 661038) (-1539 . 660905)
- (-1540 . 660849) (-1541 . 660625) (-1542 . 660466) (-1543 . 660324)
- (-1544 . 660187) (-1545 . 653233) (-1546 . 653171) (-1547 . 653079)
- (-1548 . 653051) (-1549 . 652956) (-1550 . 652159) (-1551 . 652101)
- (-1552 . 651965) (-1553 . 651880) (-1554 . 651800) (-1555 . 651685)
- (-1556 . 651590) (-1557 . 651445) (-1558 . 650955) (-1559 . 650869)
- (-1560 . 650744) (-1561 . 650352) (-1562 . 650302) (-1563 . 650196)
- (-1564 . 650144) (-1565 . 650070) (-1566 . 649942) (-1567 . 649865)
- (-1568 . 649794) (-1569 . 649434) (-1570 . 649204) (-1571 . 648811)
- (-1572 . 648708) (-1573 . 648429) (-1574 . 647832) (-1575 . 647775)
- (-1576 . 647632) (-1577 . 647514) (-1578 . 647372) (-1579 . 647341)
- (-1580 . 647267) (-1581 . 647171) (-1582 . 647018) (-1583 . 646203)
- (-1584 . 645844) (* . 641321) (-1586 . 641259) (-1587 . 641207)
- (-1588 . 641090) (-1589 . 641006) (-1590 . 640865) (-1591 . 640738)
- (-1592 . 640613) (-1593 . 640486) (-1594 . 640379) (-1595 . 640294)
- (-1596 . 640226) (-1597 . 640123) (-1598 . 640066) (-1599 . 639892)
- (-1600 . 639787) (-1601 . 639692) (-1602 . 639351) (-1603 . 639196)
- (-1604 . 638977) (-1605 . 638770) (-1606 . 638651) (-1607 . 638420)
- (-1608 . 638203) (-1609 . 638044) (-1610 . 637991) (-1611 . 637872)
- (-1612 . 637646) (-1613 . 637341) (-1614 . 637289) (-1615 . 637206)
- (-1616 . 637122) (-1617 . 637040) (-1618 . 636909) (-1619 . 636779)
- (-1620 . 636686) (-1621 . 636297) (-1622 . 636170) (-1623 . 636063)
- (-1624 . 636011) (-1625 . 635956) (-1626 . 635906) (-1627 . 635698)
- (-1628 . 635621) (-1629 . 635568) (-1630 . 635467) (-1631 . 635405)
- (-1632 . 635321) (-1633 . 635264) (-1634 . 635022) (-1635 . 634878)
- (-1636 . 634618) (-1637 . 634469) (-1638 . 634251) (-1639 . 633937)
- (-1640 . 633820) (-1641 . 633328) (-1642 . 633272) (-1643 . 633178)
- (-1644 . 632970) (-1645 . 632839) (-1646 . 632744) (-1647 . 632660)
- (-1648 . 632587) (-1649 . 632450) (-1650 . 632239) (-1651 . 632155)
- (-1652 . 632056) (-1653 . 631994) (-1654 . 631673) (-1655 . 631602)
- (-1656 . 631484) (-1657 . 631404) (-1658 . 631307) (-1659 . 631188)
- (-1660 . 631006) (-1661 . 630916) (-1662 . 630843) (-1663 . 630322)
- (-1664 . 630251) (-1665 . 630139) (-1666 . 630087) (-1667 . 630014)
- (-1668 . 629891) (-1669 . 629818) (-1670 . 629745) (-1671 . 629662)
- (-1672 . 629391) (-1673 . 629321) (-1674 . 629073) (-1675 . 628979)
- (-1676 . 628796) (-1677 . 627631) (-1678 . 627519) (-1679 . 627424)
- (-1680 . 626877) (-1681 . 626653) (-1682 . 626313) (-1683 . 626279)
- (-1684 . 626006) (-1685 . 625779) (-1686 . 625689) (-1687 . 625563)
- (-1688 . 625483) (-1689 . 625400) (-1690 . 625314) (-1691 . 625214)
- (-1692 . 625057) (-1693 . 624869) (-1694 . 624768) (-1695 . 624328)
- (-1696 . 624201) (-1697 . 624146) (-1698 . 624079) (-1699 . 623888)
- (-1700 . 623771) (-1701 . 623668) (-1702 . 623560) (-1703 . 623454)
- (-1704 . 623328) (-1705 . 623156) (-1706 . 623055) (-1707 . 622959)
- (-1708 . 622471) (-1709 . 622405) (-1710 . 622298) (-1711 . 622109)
- (-1712 . 622014) (-1713 . 621698) (-1714 . 621459) (-1715 . 621336)
- (-1716 . 621172) (-1717 . 620946) (-1718 . 620673) (-1719 . 620586)
- (-1720 . 620396) (-1721 . 620200) (-1722 . 620140) (-1723 . 620084)
- (-1724 . 619977) (-1725 . 619946) (-1726 . 619877) (-1727 . 619659)
- (-1728 . 619528) (-1729 . 619441) (-1730 . 619305) (-1731 . 619220)
- (-1732 . 619099) (-1733 . 619026) (-1734 . 618808) (-1735 . 618753)
- (-1736 . 618566) (-1737 . 618467) (-1738 . 618302) (-1739 . 618011)
- (-1740 . 617486) (-1741 . 617386) (-1742 . 616907) (-1743 . 616309)
- (-1744 . 616219) (-1745 . 615471) (-1746 . 615411) (-1747 . 615284)
- (-1748 . 615211) (-1749 . 615177) (-1750 . 615004) (-1751 . 614729)
- (-1752 . 614669) (-1753 . 614526) (-1754 . 614453) (-1755 . 614382)
- (-1756 . 614330) (-1757 . 613678) (-1758 . 613650) (-1759 . 613566)
- (-1760 . 613408) (-1761 . 612986) (-1762 . 612934) (-1763 . 612821)
- (-1764 . 612727) (-1765 . 612625) (-1766 . 612465) (-1767 . 611964)
- (-1768 . 611770) (-1769 . 611717) (-1770 . 611553) (-1771 . 611281)
- (-1772 . 611002) (-1773 . 610783) (-1774 . 610597) (-1775 . 610493)
- (-1776 . 610391) (-1777 . 610134) (-1778 . 610063) (-1779 . 610010)
- (-1780 . 609888) (-1781 . 609393) (-1782 . 609338) (-1783 . 609222)
- (-1784 . 609167) (-1785 . 609040) (-1786 . 608970) (-1787 . 608846)
- (-1788 . 608797) (-1789 . 608486) (-1790 . 608124) (-1791 . 607545)
- (-1792 . 607450) (-1793 . 607300) (-1794 . 607233) (-1795 . 607066)
- (-1796 . 606822) (-1797 . 606764) (-1798 . 606627) (-1799 . 606161)
- (-1800 . 606109) (-1801 . 605705) (-1802 . 604789) (-1803 . 604210)
- (-1804 . 604155) (-1805 . 603838) (-1806 . 603625) (-1807 . 603482)
- (-1808 . 603379) (-1809 . 603226) (-1810 . 602982) (-1811 . 602776)
- (-1812 . 602623) (-1813 . 602324) (-1814 . 601239) (-1815 . 601186)
- (-1816 . 601134) (-1817 . 600854) (-1818 . 600701) (-1819 . 600571)
- (-1820 . 600409) (-1821 . 600060) (-1822 . 599843) (-1823 . 599728)
- (-1824 . 599587) (-1825 . 599489) (-1826 . 598834) (-1827 . 598467)
- (-1828 . 598385) (-1829 . 598192) (-1830 . 598104) (-1831 . 597878)
- (-1832 . 597521) (-1833 . 597298) (-1834 . 597089) (-1835 . 596966)
- (-1836 . 596549) (-1837 . 596406) (-1838 . 596308) (-1839 . 595983)
- (-1840 . 595895) (-1841 . 595689) (-1842 . 594946) (-1843 . 594790)
- (-1844 . 594410) (-1845 . 594338) (-1846 . 594116) (-1847 . 594046)
- (-1848 . 593987) (-1849 . 593907) (-1850 . 593763) (-1851 . 593605)
- (-1852 . 593507) (-1853 . 593416) (-1854 . 593032) (-1855 . 592828)
- (-1856 . 592685) (-1857 . 592573) (-1858 . 592127) (-1859 . 591960)
- (-1860 . 591830) (-1861 . 591760) (-1862 . 591153) (-1863 . 590820)
- (-1864 . 590769) (-1865 . 590716) (-1866 . 590493) (-1867 . 589127)
- (-1868 . 589048) (-1869 . 588774) (-1870 . 588630) (-1871 . 588506)
- (-1872 . 588434) (-1873 . 588357) (-1874 . 587155) (-1875 . 587051)
- (-1876 . 586873) (-1877 . 586580) (-1878 . 586527) (-1879 . 586404)
- (-1880 . 586257) (-1881 . 585620) (-1882 . 585568) (-1883 . 585268)
- (-1884 . 585159) (-1885 . 585038) (-1886 . 584876) (-1887 . 584682)
- (-1888 . 584564) (-1889 . 584520) (-1890 . 584376) (-1891 . 584267)
- (-1892 . 583975) (-1893 . 583822) (-1894 . 583659) (-1895 . 583500)
- (-1896 . 583472) (-1897 . 582291) (-1898 . 582222) (-1899 . 582103)
- (-1900 . 581572) (-1901 . 581414) (-1902 . 576217) (-1903 . 576143)
- (-1904 . 576069) (-1905 . 575925) (-1906 . 575867) (-1907 . 575811)
- (-1908 . 575672) (-1909 . 575475) (-1910 . 575336) (-1911 . 575145)
- (-1912 . 574276) (-1913 . 574152) (-1914 . 573982) (-1915 . 573909)
- (-1916 . 573810) (-1917 . 573571) (-1918 . 572872) (-1919 . 572688)
- (-1920 . 572398) (-1921 . 572240) (-1922 . 572040) (-1923 . 571892)
- (-1924 . 571759) (-1925 . 570840) (-1926 . 570758) (-1927 . 570660)
- (-1928 . 569983) (-1929 . 569825) (-1930 . 569707) (-1931 . 569625)
- (-1932 . 569445) (-1933 . 569349) (-1934 . 569240) (-1935 . 569127)
- (-1936 . 568131) (-1937 . 567975) (-1938 . 567585) (-1939 . 567440)
- (-1940 . 567108) (-1941 . 566968) (-1942 . 566806) (-1943 . 566695)
- (-1944 . 566610) (-1945 . 566413) (-1946 . 566339) (-1947 . 566199)
- (-1948 . 565934) (-1949 . 565825) (-1950 . 565311) (-1951 . 565123)
- (-1952 . 565029) (-1953 . 564778) (-1954 . 564726) (-1955 . 564659)
- (-1956 . 564625) (-1957 . 564467) (-1958 . 563717) (-1959 . 563490)
- (-1960 . 563383) (-1961 . 563302) (-1962 . 563160) (-1963 . 563094)
- (-1964 . 562907) (-1965 . 562841) (-1966 . 562531) (-1967 . 561985)
- (-1968 . 561912) (-1969 . 561782) (-1970 . 561702) (-1971 . 561432)
- (-1972 . 561259) (-1973 . 561175) (-1974 . 560566) (-1975 . 560356)
- (-1976 . 559910) (-1977 . 559613) (-1978 . 559526) (-1979 . 559178)
- (-1980 . 559071) (-1981 . 558892) (-1982 . 558841) (-1983 . 558665)
- (-1984 . 558445) (-1985 . 558226) (-1986 . 557899) (-1987 . 557706)
- (-1988 . 557654) (-1989 . 557530) (-1990 . 557223) (-1991 . 556260)
- (-1992 . 555669) (-1993 . 555490) (-1994 . 555435) (-1995 . 555348)
- (-1996 . 554999) (-1997 . 550937) (-1998 . 550843) (-1999 . 550806)
- (-2000 . 550494) (-2001 . 550058) (-2002 . 549987) (-2003 . 549855)
- (-2004 . 549798) (-2005 . 549687) (-2006 . 549604) (-2007 . 549381)
- (-2008 . 549212) (-2009 . 549015) (-2010 . 548949) (-2011 . 548875)
- (-2012 . 548826) (-2013 . 548206) (-2014 . 548112) (-2015 . 548041)
- (-2016 . 547956) (-2017 . 547672) (-2018 . 547595) (-2019 . 547515)
- (-2020 . 547456) (-2021 . 547064) (-2022 . 546987) (-2023 . 546904)
- (-2024 . 546782) (-2025 . 546697) (-2026 . 546276) (-2027 . 545755)
- (-2028 . 545456) (-2029 . 545275) (-2030 . 545171) (-2031 . 542924)
- (-2032 . 542851) (-2033 . 542491) (-2034 . 542460) (-2035 . 542181)
- (-2036 . 542070) (-2037 . 541952) (-2038 . 541900) (-2039 . 541814)
- (-2040 . 541339) (-2041 . 541266) (-2042 . 538921) (-2043 . 538814)
- (-2044 . 538564) (-2045 . 538295) (-2046 . 537411) (-2047 . 536965)
- (-2048 . 536853) (-2049 . 536716) (-2050 . 532556) (-2051 . 532339)
- (-2052 . 532252) (-2053 . 532122) (-2054 . 531613) (-2055 . 530649)
- (-2056 . 530303) (-2057 . 529720) (-2058 . 529667) (-2059 . 529610)
- (-2060 . 529498) (-2061 . 529392) (-2062 . 529294) (-2063 . 529173)
- (-2064 . 528989) (-2065 . 528634) (-2066 . 528511) (-2067 . 528377)
- (-2068 . 528274) (-2069 . 528191) (-2070 . 528119) (-2071 . 528020)
- (-2072 . 527868) (-2073 . 527773) (-2074 . 527620) (-2075 . 527513)
- (-2076 . 527326) (-2077 . 527249) (-2078 . 527144) (-2079 . 527073)
- (-2080 . 526918) (-2081 . 526861) (-2082 . 526695) (-2083 . 526643)
- (-2084 . 526425) (-2085 . 525405) (-2086 . 525301) (-2087 . 525146)
- (-2088 . 525045) (-2089 . 524946) (-2090 . 524728) (-2091 . 524643)
- (-2092 . 524277) (-2093 . 524203) (-2094 . 524154) (-2095 . 524021)
- (-2096 . 523938) (-2097 . 523814) (-2098 . 523701) (-2099 . 523642)
- (-2100 . 523281) (-2101 . 523050) (-2102 . 522945) (-2103 . 522822)
- (-2104 . 522767) (-2105 . 522676) (-2106 . 522571) (-2107 . 522455)
- (-2108 . 522400) (-2109 . 522330) (-2110 . 522222) (-2111 . 522127)
- (-2112 . 521832) (-2113 . 521653) (-2114 . 521460) (-2115 . 521403)
- (-2116 . 520970) (-2117 . 520788) (-2118 . 520133) (-2119 . 520005)
- (-2120 . 519919) (-2121 . 519867) (-2122 . 519643) (-2123 . 518797)
- (-2124 . 518745) (-2125 . 518439) (-2126 . 518265) (-2127 . 517935)
- (-2128 . 517497) (-2129 . 517423) (-2130 . 517370) (-2131 . 517277)
- (-2132 . 517110) (-2133 . 516905) (-2134 . 513295) (-2135 . 513202)
- (-2136 . 513150) (-2137 . 513122) (-2138 . 513070) (-2139 . 513007)
- (-2140 . 512847) (-2141 . 512741) (-2142 . 512619) (-2143 . 512479)
- (-2144 . 512298) (-2145 . 512242) (-2146 . 512143) (-2147 . 512082)
- (-2148 . 511973) (-2149 . 511335) (-2150 . 511109) (-2151 . 511058)
- (-2152 . 510987) (-2153 . 510932) (-2154 . 510787) (-2155 . 510470)
- (-2156 . 510383) (-2157 . 510285) (-2158 . 510211) (-2159 . 509147)
- (-2160 . 509097) (-2161 . 508698) (-2162 . 508597) (-2163 . 508523)
- (-2164 . 508365) (-2165 . 508260) (-2166 . 508012) (-2167 . 507850)
- (-2168 . 506613) (-2169 . 506500) (-2170 . 506413) (-2171 . 506279)
- (-2172 . 506135) (-2173 . 505931) (-2174 . 505544) (-2175 . 505457)
- (-2176 . 505400) (-2177 . 505103) (-2178 . 504990) (-2179 . 504813)
- (-2180 . 503998) (-2181 . 503845) (-2182 . 503789) (-2183 . 503718)
- (-2184 . 503665) (-2185 . 503560) (-2186 . 503446) (-2187 . 503114)
- (-2188 . 503086) (-2189 . 503017) (-2190 . 502893) (-2191 . 502750)
- (-2192 . 502691) (-2193 . 502582) (-2194 . 502499) (-2195 . 502443)
- (-2196 . 502333) (-2197 . 502259) (-2198 . 502193) (-2199 . 501918)
- (-2200 . 501828) (-2201 . 501661) (-2202 . 501518) (-2203 . 501489)
- (-2204 . 500389) (-2205 . 500096) (-2206 . 499952) (-2207 . 499924)
- (-2208 . 499609) (-2209 . 499515) (-2210 . 499466) (-2211 . 499343)
- (-2212 . 499004) (-2213 . 498906) (-2214 . 498813) (-2215 . 498726)
- (-2216 . 498556) (-2217 . 498528) (-2218 . 498360) (-2219 . 497619)
- (-2220 . 497309) (-2221 . 497139) (-2222 . 497073) (-2223 . 496828)
- (-2224 . 496643) (-2225 . 496436) (-2226 . 496320) (-2227 . 496213)
- (-2228 . 496158) (-2229 . 496078) (-2230 . 496023) (-2231 . 495282)
- (-2232 . 494954) (-2233 . 494866) (-2234 . 494814) (-2235 . 494624)
- (-2236 . 494554) (-2237 . 494180) (-2238 . 493888) (-2239 . 493794)
- (-2240 . 493603) (-2241 . 493456) (-2242 . 493382) (-2243 . 493275)
- (-2244 . 492587) (-2245 . 492521) (-2246 . 491516) (-2247 . 491448)
- (-2248 . 491180) (-2249 . 490758) (-2250 . 490454) (-2251 . 490122)
- (-2252 . 489875) (-2253 . 489550) (-2254 . 488974) (-2255 . 488632)
- (-2256 . 488497) (-2257 . 488330) (-2258 . 488062) (-2259 . 487963)
- (-2260 . 487904) (-2261 . 486362) (-2262 . 486218) (-2263 . 485788)
- (-2264 . 485705) (-2265 . 485631) (-2266 . 485579) (-2267 . 485263)
- (-2268 . 485045) (-2269 . 484469) (-2270 . 484139) (-2271 . 483972)
- (-2272 . 483741) (-2273 . 483713) (-2274 . 483640) (-2275 . 483496)
- (-2276 . 483337) (-2277 . 483214) (-2278 . 483180) (-2279 . 482528)
- (-2280 . 480804) (-2281 . 480228) (-2282 . 480073) (-2283 . 479587)
- (-2284 . 479500) (-2285 . 479386) (-2286 . 479151) (-2287 . 479025)
- (-2288 . 478929) (-2289 . 478897) (-2290 . 478828) (-2291 . 478639)
- (-2292 . 478584) (-2293 . 477898) (-2294 . 477788) (-2295 . 477656)
- (-2296 . 477604) (-2297 . 477445) (-2298 . 477285) (-2299 . 477116)
- (-2300 . 477031) (-2301 . 476716) (-2302 . 476607) (-2303 . 476579)
- (-2304 . 475893) (-2305 . 475735) (-2306 . 475648) (-2307 . 475404)
- (-2308 . 475259) (-2309 . 475066) (-2310 . 474813) (-2311 . 474758)
- (-2312 . 474598) (-2313 . 474515) (-2314 . 473766) (-2315 . 473640)
- (-2316 . 473555) (-2317 . 473400) (-2318 . 473256) (-2319 . 473168)
- (-2320 . 473073) (-2321 . 472896) (-2322 . 472292) (-2323 . 472049)
- (-2324 . 471475) (-2325 . 471360) (-2326 . 471246) (-2327 . 471005)
- (-2328 . 469813) (-2329 . 469558) (-2330 . 469287) (-2331 . 468911)
- (-2332 . 468809) (-2333 . 468658) (-2334 . 468084) (-2335 . 467867)
- (-2336 . 467789) (-2337 . 467697) (-2338 . 467175) (-2339 . 465991)
- (-2340 . 465904) (-2341 . 465876) (-2342 . 465823) (-2343 . 465603)
- (-2344 . 465481) (-2345 . 464990) (-2346 . 464953) (-2347 . 464379)
- (-2348 . 464249) (-2349 . 464133) (-2350 . 463937) (-2351 . 462759)
- (-2352 . 462673) (-2353 . 462573) (-2354 . 462495) (-2355 . 462394)
- (-2356 . 462342) (-2357 . 462262) (-2358 . 462057) (-2359 . 461732)
- (-2360 . 461045) (-2361 . 460886) (-2362 . 460852) (-2363 . 460366)
- (-2364 . 458168) (-2365 . 458095) (-2366 . 434940) (-2367 . 434866)
- (-2368 . 434718) (-2369 . 434664) (-2370 . 434563) (-2371 . 434498)
- (-2372 . 434425) (-2373 . 433738) (-2374 . 433682) (-2375 . 433492)
- (-2376 . 431713) (-2377 . 428961) (-2378 . 428909) (-2379 . 428808)
- (-2380 . 428597) (-2381 . 428538) (-2382 . 428464) (-2383 . 427865)
- (-2384 . 427748) (-2385 . 427569) (-2386 . 426882) (-2387 . 426819)
- (-2388 . 426065) (-2389 . 425851) (-2390 . 425700) (-2391 . 425646)
- (-2392 . 425274) (-2393 . 424738) (-2394 . 424685) (-2395 . 424512)
- (-2396 . 424463) (-2397 . 424282) (-2398 . 423707) (-2399 . 423633)
- (-2400 . 423492) (-2401 . 423419) (-2402 . 423361) (-2403 . 423191)
- (-2404 . 423045) (-2405 . 422992) (-2406 . 422931) (-2407 . 422610)
- (-2408 . 422260) (-2409 . 421685) (-2410 . 421601) (-2411 . 421567)
- (-2412 . 421154) (-2413 . 421039) (-2414 . 420901) (-2415 . 420818)
- (-2416 . 420673) (-2417 . 420618) (-2418 . 420569) (-2419 . 420462)
- (-2420 . 420272) (-2421 . 419697) (-2422 . 419071) (-2423 . 418966)
- (-2424 . 418883) (-2425 . 418739) (-2426 . 417492) (-2427 . 417276)
- (-2428 . 417089) (-2429 . 416927) (-2430 . 416772) (-2431 . 416695)
- (-2432 . 416576) (-2433 . 416467) (-2434 . 415893) (-2435 . 415770)
- (-2436 . 415675) (-2437 . 415463) (-2438 . 415330) (-2439 . 415278)
- (-2440 . 415204) (-2441 . 412789) (-2442 . 412716) (-2443 . 412512)
- (-2444 . 412453) (-2445 . 412320) (-2446 . 411746) (-2447 . 411640)
- (-2448 . 411086) (-2449 . 411030) (-2450 . 410978) (-2451 . 410899)
- (-2452 . 410840) (-2453 . 410755) (-2454 . 410643) (-2455 . 410521)
- (-2456 . 410322) (-2457 . 408782) (-2458 . 408667) (-2459 . 408093)
- (-2460 . 405185) (-2461 . 405111) (-2462 . 404932) (-2463 . 404904)
- (-2464 . 404759) (-2465 . 404704) (-2466 . 404543) (-2467 . 404429)
- (-2468 . 404210) (-2469 . 403897) (-2470 . 403751) (-2471 . 403673)
- (-2472 . 403099) (-2473 . 403037) (-2474 . 402887) (-2475 . 402778)
- (-2476 . 402604) (-2477 . 402506) (-2478 . 402432) (-2479 . 402107)
- (-2480 . 402010) (-2481 . 401944) (-2482 . 401891) (-2483 . 401155)
- (-2484 . 401036) (-2485 . 400462) (-2486 . 400282) (-2487 . 400051)
- (-2488 . 399317) (-2489 . 398869) (-2490 . 398656) (-2491 . 398627)
- (-2492 . 398486) (-2493 . 398371) (-2494 . 398210) (-2495 . 398071)
- (-2496 . 397984) (-2497 . 397862) (-2498 . 397751) (-2499 . 397400)
- (-2500 . 396600) (-2501 . 396550) (-2502 . 396363) (-2503 . 396265)
- (-2504 . 395841) (-2505 . 395715) (-2506 . 395596) (-2507 . 395443)
- (-2508 . 395164) (-2509 . 395108) (-2510 . 395042) (-2511 . 394965)
- (-2512 . 394899) (-2513 . 394584) (-2514 . 394336) (-2515 . 393452)
- (-2516 . 393331) (-2517 . 392991) (-2518 . 392963) (-2519 . 392889)
- (-2520 . 392480) (-2521 . 391842) (-2522 . 391782) (-2523 . 391729)
- (-2524 . 391588) (-2525 . 391397) (-2526 . 391294) (-2527 . 391157)
- (-2528 . 391016) (-2529 . 390963) (-2530 . 390784) (-2531 . 390726)
- (-2532 . 389546) (-2533 . 388386) (-2534 . 387975) (-2535 . 386861)
- (-2536 . 386790) (-2537 . 384660) (-2538 . 384561) (-2539 . 384487)
- (-2540 . 384355) (-2541 . 384210) (-2542 . 384069) (-2543 . 383960)
- (-2544 . 383823) (-2545 . 383756) (-2546 . 383423) (-2547 . 383338)
- (-2548 . 383224) (-2549 . 383117) (-2550 . 383065) (-2551 . 382891)
- (-2552 . 381491) (-2553 . 381365) (-2554 . 381232) (-2555 . 380953)
- (-2556 . 380661) (-2557 . 380480) (-2558 . 380424) (-2559 . 379903)
- (-2560 . 379841) (-2561 . 379683) (-2562 . 378560) (-2563 . 378348)
- (-2564 . 378295) (-2565 . 378217) (-2566 . 378166) (-2567 . 378052)
- (-2568 . 377751) (-2569 . 377492) (-2570 . 377409) (-2571 . 377279)
- (-2572 . 377157) (-2573 . 377129) (-2574 . 377027) (-2575 . 376857)
- (-2576 . 376698) (-2577 . 375297) (-2578 . 375185) (-2579 . 374859)
- (-2580 . 374489) (-2581 . 374418) (-2582 . 374200) (-2583 . 374136)
- (-2584 . 374067) (-2585 . 368750) (-2586 . 368689) (-2587 . 368198)
- (-2588 . 368035) (-2589 . 367475) (-2590 . 367378) (-2591 . 367308)
- (-2592 . 367205) (-2593 . 367075) (-2594 . 367018) (-2595 . 366567)
- (-2596 . 365688) (-2597 . 365329) (-2598 . 364173) (-2599 . 364074)
- (-2600 . 363965) (-2601 . 363906) (-2602 . 363851) (-2603 . 363592)
- (-2604 . 363394) (-2605 . 363299) (-2606 . 362870) (-2607 . 362805)
- (-2608 . 362606) (-2609 . 362529) (-2610 . 362305) (-2611 . 356797)
- (-2612 . 356529) (-2613 . 356446) (-2614 . 356280) (-2615 . 356128)
- (-2616 . 355976) (-2617 . 355846) (-2618 . 355731) (-2619 . 355636)
- (-2620 . 355607) (-2621 . 355501) (-2622 . 355411) (-2623 . 355221)
- (-2624 . 355023) (-2625 . 354635) (-2626 . 354512) (-2627 . 354139)
- (-2628 . 354036) (-2629 . 353964) (-2630 . 353860) (-2631 . 350575)
- (-2632 . 350336) (-2633 . 350265) (-2634 . 350022) (-2635 . 349901)
- (-2636 . 349771) (-2637 . 349318) (-2638 . 349244) (-2639 . 349063)
- (-2640 . 348990) (-2641 . 348908) (-2642 . 348801) (-2643 . 348749)
- (-2644 . 348664) (-2645 . 348270) (-2646 . 348113) (-2647 . 348061)
- (-2648 . 348008) (-2649 . 347661) (-2650 . 347554) (-2651 . 347443)
- (-2652 . 347370) (-2653 . 347252) (-2654 . 346906) (-2655 . 346840)
- (-2656 . 346812) (-2657 . 346740) (-2658 . 346660) (-2659 . 346546)
- (-2660 . 346512) (-2661 . 346441) (-2662 . 346283) (-2663 . 346202)
- (-2664 . 346111) (-2665 . 345920) (-2666 . 345868) (-2667 . 345816)
- (-2668 . 345758) (-2669 . 345673) (-2670 . 345599) (-2671 . 345444)
- (-2672 . 345337) (-2673 . 345269) (-2674 . 345080) (-2675 . 344866)
- (-2676 . 344693) (-2677 . 344522) (-2678 . 344471) (-2679 . 344390)
- (-2680 . 344303) (-2681 . 344014) (-2682 . 343943) (-2683 . 343738)
- (-2684 . 343629) (-2685 . 342865) (-2686 . 342772) (-2687 . 342685)
- (-2688 . 333155) (-2689 . 332892) (-2690 . 332591) (-2691 . 332076)
- (-2692 . 331922) (-2693 . 331852) (-2694 . 331623) (-2695 . 331339)
- (-2696 . 331205) (-2697 . 331139) (-2698 . 331021) (-2699 . 330501)
- (-2700 . 330390) (-2701 . 330094) (-2702 . 329978) (-2703 . 329834)
- (-2704 . 329644) (-2705 . 329542) (-2706 . 329489) (-2707 . 328275)
- (-2708 . 327865) (-2709 . 327712) (-2710 . 327603) (-2711 . 327505)
- (-2712 . 327427) (-2713 . 327396) (-2714 . 327001) (-2715 . 326902)
- (-2716 . 326795) (-2717 . 326537) (-2718 . 326358) (-2719 . 325813)
- (-2720 . 325703) (-2721 . 325049) (-2722 . 324997) (-2723 . 324872)
- (-2724 . 324819) (-2725 . 323200) (-2726 . 323130) (-2727 . 323063)
- (-2728 . 322964) (-2729 . 322805) (-2730 . 322648) (-2731 . 322410)
- (-2732 . 321125) (-2733 . 321072) (-2734 . 320727) (-2735 . 319866)
- (-2736 . 319832) (-2737 . 319759) (-2738 . 319703) (-2739 . 319643)
- (-2740 . 319314) (-2741 . 319123) (-2742 . 319050) (-2743 . 318965)
- (-2744 . 318836) (-2745 . 318784) (-2746 . 317417) (-2747 . 317275)
- (-2748 . 317176) (-2749 . 317075) (-2750 . 316852) (-2751 . 316753)
- (-2752 . 316588) (-2753 . 315407) (-2754 . 315335) (-2755 . 314735)
- (-2756 . 314652) (-2757 . 314400) (-2758 . 314201) (-2759 . 314147)
- (-2760 . 314096) (-2761 . 314025) (-2762 . 313925) (-2763 . 313664)
- (-2764 . 313522) (-2765 . 313082) (-2766 . 312923) (-2767 . 312833)
- (-2768 . 312653) (-2769 . 312465) (-2770 . 312378) (-2771 . 312312)
- (-2772 . 312238) (-2773 . 312057) (-2774 . 311972) (-2775 . 311651)
- (-2776 . 311495) (-2777 . 311303) (-2778 . 310831) (-2779 . 310631)
- (-2780 . 310551) (-2781 . 310423) (-2782 . 309852) (-2783 . 309766)
- (-2784 . 309706) (-2785 . 309605) (-2786 . 309522) (-2787 . 309452)
- (-2788 . 309331) (-2789 . 309172) (-2790 . 308929) (-2791 . 308876)
- (-2792 . 308733) (-2793 . 308613) (-2794 . 308581) (-2795 . 308410)
- (-2796 . 308341) (-2797 . 308313) (-2798 . 308169) (-2799 . 308101)
- (-2800 . 307995) (-2801 . 307385) (-2802 . 306995) (-2803 . 306873)
- (-2804 . 306711) (-2805 . 304883) (-2806 . 304670) (-2807 . 304593)
- (-2808 . 304537) (-2809 . 304407) (-2810 . 304317) (-2811 . 304232)
- (-2812 . 304164) (-2813 . 304067) (-2814 . 303834) (-2815 . 303686)
- (-2816 . 303609) (-2817 . 302108) (-2818 . 302052) (-2819 . 301798)
- (-2820 . 301655) (-2821 . 301453) (-2822 . 301376) (-2823 . 301250)
- (-2824 . 301051) (-2825 . 299605) (-2826 . 299452) (-2827 . 299320)
- (-2828 . 299046) (-2829 . 298951) (-2830 . 298898) (-2831 . 298819)
- (-2832 . 298606) (-2833 . 298313) (-2834 . 298115) (-2835 . 297842)
- (-2836 . 297451) (-2837 . 297256) (-2838 . 297114) (-2839 . 297064)
- (-2840 . 296952) (-2841 . 296879) (-2842 . 296351) (-2843 . 296280)
- (-2844 . 295895) (-2845 . 295637) (-2846 . 295487) (-2847 . 295404)
- (-2848 . 295330) (-2849 . 295260) (-2850 . 295116) (-2851 . 295064)
- (-2852 . 294925) (-2853 . 293715) (-2854 . 293657) (-2855 . 293548)
- (-2856 . 293337) (-2857 . 293128) (-2858 . 293008) (-2859 . 292907)
- (-2860 . 292669) (-2861 . 292545) (-2862 . 292437) (-2863 . 292378)
- (-2864 . 292308) (-2865 . 292198) (-2866 . 292052) (-2867 . 291710)
- (-2868 . 291524) (-2869 . 291445) (-2870 . 291326) (-2871 . 291162)
- (-2872 . 291009) (-2873 . 290902) (-2874 . 290663) (-2875 . 290553)
- (-2876 . 290379) (-2877 . 290294) (-2878 . 290180) (-2879 . 290070)
- (-2880 . 289839) (-2881 . 289751) (-2882 . 289324) (-2883 . 289078)
- (-2884 . 288981) (-2885 . 288947) (-2886 . 288877) (-2887 . 288783)
- (-2888 . 288503) (-2889 . 288402) (-2890 . 286150) (-2891 . 285846)
- (-2892 . 285739) (-2893 . 285609) (-2894 . 285282) (-2895 . 285195)
- (-2896 . 284907) (-2897 . 284416) (-2898 . 284074) (-2899 . 283880)
- (-2900 . 283831) (-2901 . 283640) (-2902 . 283503) (-2903 . 283394)
- (-2904 . 283217) (-2905 . 283023) (-2906 . 282847) (-2907 . 282770)
- (-2908 . 282647) (-2909 . 282550) (-2910 . 282317) (-2911 . 282213)
- (-2912 . 282149) (-2913 . 282054) (-2914 . 281957) (-2915 . 281880)
- (-2916 . 281783) (-2917 . 281686) (-2918 . 280813) (-2919 . 280677)
- (-2920 . 280564) (-2921 . 280236) (-2922 . 280122) (-2923 . 280070)
- (-2924 . 280017) (-2925 . 279879) (-2926 . 279661) (-2927 . 279563)
- (-2928 . 279401) (-2929 . 279348) (-2930 . 279320) (-2931 . 279161)
- (-2932 . 279013) (-2933 . 278583) (-2934 . 278359) (-2935 . 278232)
- (-2936 . 278092) (-2937 . 277907) (-2938 . 277752) (-2939 . 277637)
- (-2940 . 277563) (-2941 . 277489) (-2942 . 277307) (-2943 . 276647)
- (-2944 . 276189) (-2945 . 276082) (-2946 . 275968) (-2947 . 275648)
- (-2948 . 275531) (-2949 . 275413) (-2950 . 275275) (-2951 . 275222)
- (-2952 . 275000) (-2953 . 274871) (-2954 . 274843) (-2955 . 274769)
- (-2956 . 273345) (-2957 . 273311) (-2958 . 273072) (-2959 . 272972)
- (-2960 . 272834) (-2961 . 272782) (-2962 . 272466) (-2963 . 272435)
- (-2964 . 272164) (-2965 . 271945) (-2966 . 271687) (-2967 . 271617)
- (-2968 . 271416) (-2969 . 271275) (-2970 . 271153) (-2971 . 271076)
- (-2972 . 271034) (-2973 . 270930) (-2974 . 270516) (-2975 . 270107)
- (-2976 . 269916) (-2977 . 269813) (-2978 . 269608) (-2979 . 269531)
- (-2980 . 269394) (-2981 . 269285) (-2982 . 269208) (-2983 . 268990)
- (-2984 . 268711) (-2985 . 268525) (-2986 . 268039) (-2987 . 267841)
- (-2988 . 267325) (-2989 . 267257) (-2990 . 267157) (-2991 . 266708)
- (-2992 . 266631) (-2993 . 266560) (-2994 . 266314) (-2995 . 266203)
- (-2996 . 266129) (-2997 . 266023) (-2998 . 265898) (-2999 . 265811)
- (-3000 . 265079) (-3001 . 264696) (-3002 . 264485) (-3003 . 264097)
- (-3004 . 263813) (-3005 . 263719) (-3006 . 263626) (-3007 . 263510)
- (-3008 . 263366) (-3009 . 262116) (-3010 . 262063) (-3011 . 261896)
- (-3012 . 261723) (-3013 . 261615) (-3014 . 261559) (-3015 . 261299)
- (-3016 . 260651) (-3017 . 260324) (-3018 . 260062) (-3019 . 259955)
- (-3020 . 259926) (-3021 . 259762) (-3022 . 259646) (-3023 . 258644)
- (-3024 . 258406) (-3025 . 258351) (-3026 . 258285) (-3027 . 258188)
- (-3028 . 257520) (-3029 . 257419) (-3030 . 257332) (-3031 . 257184)
- (-3032 . 257101) (-3033 . 256761) (-3034 . 256705) (-3035 . 256610)
- (-3036 . 256541) (-3037 . 256486) (-3038 . 255984) (-3039 . 255745)
- (-3040 . 255660) (-3041 . 254902) (-3042 . 254798) (-3043 . 254654)
- (-3044 . 254290) (-3045 . 254210) (-3046 . 253733) (-3047 . 253596)
- (-3048 . 252984) (-3049 . 252956) (-3050 . 252854) (-3051 . 252805)
- (-3052 . 252514) (-3053 . 252270) (-3054 . 252204) (-3055 . 252083)
- (-3056 . 251998) (-3057 . 251572) (-3058 . 251182) (-3059 . 251111)
- (-3060 . 250410) (-3061 . 250308) (-3062 . 250161) (-3063 . 250068)
- (-3064 . 250034) (-3065 . 249878) (-3066 . 249772) (-3067 . 249664)
- (-3068 . 249602) (-3069 . 249442) (-3070 . 249354) (-3071 . 248809)
- (-3072 . 248708) (-3073 . 248585) (-3074 . 248465) (-3075 . 248331)
- (-3076 . 248238) (-3077 . 248139) (-3078 . 247985) (-3079 . 247768)
- (-3080 . 247597) (-3081 . 247347) (-3082 . 247077) (-3083 . 247021)
- (-3084 . 246881) (-3085 . 246783) (-3086 . 246704) (-3087 . 246605)
- (-3088 . 246553) (-3089 . 246473) (-3090 . 245719) (-3091 . 245539)
- (-3092 . 245487) (-3093 . 245240) (-3094 . 244606) (-3095 . 244428)
- (-3096 . 244256) (-3097 . 243601) (-3098 . 243505) (-3099 . 243365)
- (-3100 . 243306) (-3101 . 243204) (-3102 . 243105) (-3103 . 243074)
- (-3104 . 242939) (-3105 . 242802) (-3106 . 240021) (-3107 . 239849)
- (-3108 . 239797) (-3109 . 239699) (-3110 . 239485) (-3111 . 239415)
- (-3112 . 239125) (-3113 . 239030) (-3114 . 238832) (-3115 . 238660)
- (-3116 . 238520) (-3117 . 238325) (-3118 . 238127) (-3119 . 238048)
- (-3120 . 237986) (-3121 . 237882) (-3122 . 237665) (-3123 . 237507)
- (-3124 . 237395) (-3125 . 237223) (-3126 . 237146) (-3127 . 237072)
- (-3128 . 237002) (-3129 . 236500) (-3130 . 236403) (-3131 . 236261)
- (-3132 . 236208) (-3133 . 236075) (-3134 . 235907) (-3135 . 235543)
- (-3136 . 235425) (-3137 . 235323) (-3138 . 235289) (-3139 . 230768)
- (-3140 . 230616) (-3141 . 230402) (-3142 . 230185) (-3143 . 230101)
- (-3144 . 229995) (-3145 . 229879) (-3146 . 229272) (-3147 . 229170)
- (-3148 . 229118) (-3149 . 229023) (-3150 . 228939) (-3151 . 228886)
- (-3152 . 228834) (-3153 . 228435) (-3154 . 228272) (-3155 . 228021)
- (-3156 . 227886) (-3157 . 227794) (-3158 . 227629) (-3159 . 227189)
- (-3160 . 227010) (-3161 . 226888) (-3162 . 226774) (-3163 . 226650)
- (-3164 . 226600) (-3165 . 226457) (-3166 . 226187) (-3167 . 226078)
- (-3168 . 224888) (-3169 . 224836) (-3170 . 224653) (-3171 . 224337)
- (-3172 . 224212) (-3173 . 224093) (-3174 . 224020) (-3175 . 223921)
- (-3176 . 223370) (-3177 . 223240) (-3178 . 223132) (-3179 . 222901)
- (-3180 . 222834) (-3181 . 222761) (-3182 . 222662) (-3183 . 222570)
- (-3184 . 222498) (-3185 . 222369) (-3186 . 222300) (-3187 . 221913)
- (-3188 . 221810) (-3189 . 221619) (-3190 . 221463) (-3191 . 221317)
- (-3192 . 221218) (-3193 . 220635) (-3194 . 220154) (-3195 . 220017)
- (-3196 . 219925) (-3197 . 219839) (-3198 . 219705) (-3199 . 219620)
- (-3200 . 219520) (-3201 . 219256) (-3202 . 219140) (-3203 . 219081)
- (-3204 . 218659) (-3205 . 217363) (-3206 . 217226) (-3207 . 217159)
- (-3208 . 217057) (-3209 . 216984) (-3210 . 216740) (-3211 . 216688)
- (-3212 . 216620) (-3213 . 216101) (-3214 . 215909) (-3215 . 215451)
- (-3216 . 215296) (-3217 . 201233) (-3218 . 201160) (-3219 . 200997)
- (-3220 . 200132) (-3221 . 200046) (-3222 . 199930) (-3223 . 199829)
- (-3224 . 199682) (-3225 . 199633) (-3226 . 199496) (-3227 . 199411)
- (-3228 . 199265) (-3229 . 199196) (-3230 . 199113) (-3231 . 198997)
- (-3232 . 198893) (-3233 . 198793) (-3234 . 198743) (-3235 . 198648)
- (-3236 . 198220) (-3237 . 198077) (-3238 . 198024) (-3239 . 197430)
- (-3240 . 197378) (-3241 . 197283) (-3242 . 197161) (-3243 . 197031)
- (-3244 . 196896) (-3245 . 196764) (-3246 . 196701) (-3247 . 196536)
- (-3248 . 196467) (-3249 . 196338) (-3250 . 196033) (-3251 . 195904)
- (-3252 . 195777) (-3253 . 195725) (-3254 . 195668) (-3255 . 195561)
- (-3256 . 195497) (-3257 . 195388) (-3258 . 194844) (-3259 . 194472)
- (-3260 . 189767) (-3261 . 189739) (-3262 . 189633) (-3263 . 189517)
- (-3264 . 189390) (-3265 . 189177) (-3266 . 188899) (-3267 . 188792)
- (-3268 . 188474) (-3269 . 188400) (-3270 . 188013) (-3271 . 187875)
- (-3272 . 186605) (-3273 . 186456) (-3274 . 186308) (-3275 . 186188)
- (-3276 . 186074) (-3277 . 185778) (-3278 . 185609) (-3279 . 185532)
- (-3280 . 185189) (-3281 . 185076) (-3282 . 184481) (-3283 . 184380)
- (-3284 . 184248) (-3285 . 183994) (-3286 . 183898) (-3287 . 183517)
- (-3288 . 183461) (-3289 . 181309) (-3290 . 181151) (-3291 . 180966)
- (-3292 . 180787) (-3293 . 180662) (-3294 . 180601) (-3295 . 180212)
- (-3296 . 180138) (-3297 . 179841) (-3298 . 179768) (-3299 . 179674)
- (-3300 . 178818) (-3301 . 178737) (-3302 . 178611) (-3303 . 178392)
- (-3304 . 178186) (-3305 . 177933) (-3306 . 177862) (-3307 . 177464)
- (-3308 . 177357) (-3309 . 177286) (-3310 . 177174) (-3311 . 177054)
- (-3312 . 176970) (-3313 . 176908) (-3314 . 176805) (-3315 . 176390)
- (-3316 . 176335) (-3317 . 176231) (-3318 . 176110) (-3319 . 176006)
- (-3320 . 175978) (-3321 . 175814) (-3322 . 175519) (-3323 . 175491)
- (-3324 . 175321) (-3325 . 175191) (-3326 . 175113) (-3327 . 175023)
- (-3328 . 174789) (-3329 . 174647) (-3330 . 174441) (-3331 . 174389)
- (-3332 . 174125) (-3333 . 174014) (-3334 . 173700) (-3335 . 173233)
- (-3336 . 173026) (-3337 . 172924) (-3338 . 172827) (-3339 . 172733)
- (-3340 . 171904) (-3341 . 171783) (-3342 . 171401) (-3343 . 171042)
- (-3344 . 170912) (-3345 . 170771) (-3346 . 170718) (-3347 . 170566)
- (-3348 . 170120) (-3349 . 170021) (-3350 . 169771) (-3351 . 169549)
- (-3352 . 169483) (-3353 . 169348) (-3354 . 169114) (-3355 . 169032)
- (-3356 . 168742) (-3357 . 168334) (-3358 . 167949) (-3359 . 167890)
- (-3360 . 167813) (-3361 . 167685) (-3362 . 167483) (-3363 . 167339)
- (-3364 . 167145) (-3365 . 166444) (-3366 . 166300) (-3367 . 166231)
- (-3368 . 166079) (-3369 . 165941) (-3370 . 165230) (-3371 . 165202)
- (-3372 . 164955) (-3373 . 164838) (-3374 . 164735) (-3375 . 164627)
- (-3376 . 164543) (-3377 . 164330) (-3378 . 164235) (-3379 . 164154)
- (-3380 . 164057) (-3381 . 163842) (-3382 . 163771) (-3383 . 163362)
- (-3384 . 163266) (-3385 . 163171) (-3386 . 163076) (-3387 . 162858)
- (-3388 . 162477) (-3389 . 162354) (-3390 . 162280) (-3391 . 162196)
- (-3392 . 162067) (-3393 . 161987) (-3394 . 161693) (-3395 . 161610)
- (-3396 . 161408) (-3397 . 160887) (-3398 . 160705) (-3399 . 159640)
- (-3400 . 159458) (-3401 . 159375) (-3402 . 159245) (-3403 . 159067)
- (-3404 . 158990) (-3405 . 158790) (-3406 . 158762) (-3407 . 158659)
- (-3408 . 158538) (-3409 . 158453) (-3410 . 158393) (-3411 . 158276)
- (-3412 . 158111) (-3413 . 158037) (-3414 . 157741) (-3415 . 157668)
- (-3416 . 157561) (-3417 . 157250) (-3418 . 157149) (-3419 . 156930)
- (-3420 . 156402) (-3421 . 156336) (-3422 . 156259) (-3423 . 156134)
- (-3424 . 156005) (-3425 . 155911) (-3426 . 154447) (-3427 . 154379)
- (-3428 . 154272) (-3429 . 153997) (-3430 . 153604) (-3431 . 153428)
- (-3432 . 153362) (-3433 . 153277) (-3434 . 153181) (-3435 . 153107)
- (-3436 . 152804) (-3437 . 152663) (-3438 . 152610) (-3439 . 152452)
- (-3440 . 152397) (-3441 . 151894) (-3442 . 151706) (-3443 . 151636)
- (-3444 . 151302) (-3445 . 151145) (-3446 . 151114) (-3447 . 150987)
- (-3448 . 150868) (-3449 . 150803) (-3450 . 150694) (-3451 . 150584)
- (-3452 . 150253) (-3453 . 150003) (-3454 . 149836) (-3455 . 149749)
- (-3456 . 149635) (-3457 . 149442) (-3458 . 149383) (-3459 . 149076)
- (-3460 . 148502) (-3461 . 148468) (-3462 . 147887) (-3463 . 147836)
- (-3464 . 147765) (-3465 . 147713) (-3466 . 147592) (-3467 . 147505)
- (-3468 . 147449) (-3469 . 147297) (-3470 . 147139) (-3471 . 146898)
- (-3472 . 146815) (-3473 . 146723) (-3474 . 146620) (-3475 . 146455)
- (-3476 . 146353) (-3477 . 146235) (-3478 . 146013) (-3479 . 145936)
- (-3480 . 145806) (-3481 . 145645) (-3482 . 145421) (-3483 . 144797)
- (-3484 . 144660) (-3485 . 144593) (-3486 . 144520) (-3487 . 144465)
- (-3488 . 144413) (-3489 . 144330) (-3490 . 144256) (-3491 . 144190)
- (-3492 . 143991) (-3493 . 143740) (-3494 . 143659) (-3495 . 143476)
- (-3496 . 143373) (-3497 . 143272) (-3498 . 143206) (-3499 . 142740)
- (-3500 . 142657) (-3501 . 142504) (-3502 . 142437) (-3503 . 142089)
- (-3504 . 142018) (-3505 . 141950) (-3506 . 141895) (-3507 . 141797)
- (-3508 . 141631) (-3509 . 141575) (-3510 . 141413) (-3511 . 141304)
- (-3512 . 141153) (-3513 . 140726) (-3514 . 140674) (-3515 . 140534)
- (-3516 . 140457) (-3517 . 140391) (-3518 . 140308) (-3519 . 139816)
- (-3520 . 139732) (-3521 . 139660) (-3522 . 139537) (-3523 . 139422)
- (-3524 . 139364) (-3525 . 139306) (-3526 . 138917) (-3527 . 138715)
- (-3528 . 138556) (-3529 . 138155) (-3530 . 138084) (-3531 . 138014)
- (-3532 . 137680) (-3533 . 137539) (-3534 . 137190) (-3535 . 136991)
- (-3536 . 136391) (-3537 . 136131) (-3538 . 135438) (-3539 . 135385)
- (-3540 . 135300) (-3541 . 135218) (-3542 . 135189) (-3543 . 135099)
- (-3544 . 134654) (-3545 . 134444) (-3546 . 134386) (-3547 . 134349)
- (-3548 . 134218) (-3549 . 134061) (-3550 . 133977) (-3551 . 133122)
- (-3552 . 133066) (-3553 . 133016) (-3554 . 132898) (-3555 . 132719)
- (-3556 . 132691) (-3557 . 132606) (-3558 . 132499) (-3559 . 132396)
- (-3560 . 132225) (-3561 . 132062) (-3562 . 131944) (-3563 . 131612)
- (-3564 . 131262) (-3565 . 131161) (-3566 . 131003) (-3567 . 130905)
- (-3568 . 130752) (-3569 . 130669) (-3570 . 130446) (-3571 . 130349)
- (-3572 . 129907) (-3573 . 129750) (-3574 . 129690) (-3575 . 129136)
- (-3576 . 129009) (-3577 . 128804) (-3578 . 128719) (-3579 . 128443)
- (-3580 . 127852) (-3581 . 127758) (-3582 . 127724) (-3583 . 127497)
- (-3584 . 127326) (-3585 . 127173) (-3586 . 127120) (-3587 . 127089)
- (-3588 . 126927) (-3589 . 126683) (-3590 . 126586) (-3591 . 126558)
- (-3592 . 126326) (-3593 . 126274) (-3594 . 126018) (-3595 . 125596)
- (-3596 . 125463) (-3597 . 125257) (-3598 . 125156) (-3599 . 124620)
- (-3600 . 124378) (-3601 . 124262) (-3602 . 124168) (-3603 . 124081)
- (-3604 . 124028) (-3605 . 123653) (-3606 . 123546) (-3607 . 123322)
- (-3608 . 123220) (-3609 . 123032) (-3610 . 122966) (-3611 . 122786)
- (-3612 . 122698) (-3613 . 122601) (-3614 . 122489) (-3615 . 122325)
- (-3616 . 122239) (-3617 . 122159) (-3618 . 122060) (-3619 . 121994)
- (-3620 . 121931) (-3621 . 121828) (-3622 . 121658) (-3623 . 121539)
- (-3624 . 121434) (-3625 . 121381) (-3626 . 121315) (-3627 . 121201)
- (-3628 . 120864) (-3629 . 120669) (-3630 . 120558) (-3631 . 120209)
- (-3632 . 119635) (-3633 . 119403) (-3634 . 119263) (-3635 . 119047)
- (-3636 . 118995) (-3637 . 118687) (-3638 . 118350) (-3639 . 118122)
- (-3640 . 117924) (-3641 . 117539) (-3642 . 117411) (-3643 . 117167)
- (-3644 . 117115) (-3645 . 116959) (-3646 . 116766) (-3647 . 116696)
- (-3648 . 115858) (-3649 . 115654) (-3650 . 115539) (-3651 . 115442)
- (-3652 . 115341) (-3653 . 114798) (-3654 . 113935) (-3655 . 113751)
- (-3656 . 113632) (-3657 . 113509) (-3658 . 113300) (-3659 . 113142)
- (-3660 . 112986) (-3661 . 112791) (-3662 . 112623) (-3663 . 112174)
- (-3664 . 112100) (-3665 . 111975) (-3666 . 111879) (-3667 . 111738)
- (-3668 . 111208) (-3669 . 110946) (-3670 . 110810) (-3671 . 110727)
- (-3672 . 110382) (-3673 . 110264) (-3674 . 110193) (-3675 . 110035)
- (-3676 . 109918) (-3677 . 109748) (-3678 . 109369) (-3679 . 109301)
- (-3680 . 109219) (-3681 . 109166) (-3682 . 109113) (-3683 . 108581)
- (-3684 . 108521) (-3685 . 108440) (-3686 . 108149) (-3687 . 108076)
- (-3688 . 107857) (-3689 . 107804) (-3690 . 107745) (-3691 . 107551)
- (-3692 . 107488) (-3693 . 107439) (-3694 . 107144) (-3695 . 107006)
- (-3696 . 106008) (-3697 . 105951) (-3698 . 105786) (-3699 . 105638)
- (-3700 . 105585) (-3701 . 105430) (-3702 . 104615) (-3703 . 104537)
- (-3704 . 104325) (-3705 . 103997) (-3706 . 103666) (-3707 . 103601)
- (-3708 . 103546) (-3709 . 103494) (-3710 . 103423) (-3711 . 103282)
- (-3712 . 103215) (-3713 . 103086) (-3714 . 103030) (-3715 . 102874)
- (-3716 . 102649) (-3717 . 102520) (-3718 . 102422) (-3719 . 102264)
- (-3720 . 101977) (-3721 . 101525) (-3722 . 101459) (-3723 . 101347)
- (-3724 . 100899) (-3725 . 100614) (-3726 . 100455) (-3727 . 100314)
- (-3728 . 100248) (-3729 . 100050) (-3730 . 99845) (-3731 . 99727)
- (-3732 . 99656) (-3733 . 99551) (-3734 . 99348) (-3735 . 99145)
- (-3736 . 99042) (-3737 . 98863) (-3738 . 98756) (-3739 . 98661)
- (-3740 . 98546) (-3741 . 98316) (-3742 . 98222) (-3743 . 97932)
- (-3744 . 97879) (-3745 . 97823) (-3746 . 97767) (-3747 . 97629)
- (-3748 . 97337) (-3749 . 97254) (-3750 . 97201) (-3751 . 96793)
- (-3752 . 96655) (-3753 . 96575) (-3754 . 96501) (-3755 . 96262)
- (-3756 . 96162) (-3757 . 95909) (-3758 . 95709) (-3759 . 95547)
- (-3760 . 95371) (-3761 . 95194) (-3762 . 95141) (-3763 . 94706)
- (-3764 . 94335) (-3765 . 94269) (-3766 . 94111) (-3767 . 93981)
- (-3768 . 93896) (-3769 . 93803) (-3770 . 93661) (-3771 . 93452)
- (-3772 . 93418) (-3773 . 93390) (-3774 . 93311) (-3775 . 93229)
- (** . 90152) (-3777 . 90056) (-3778 . 89982) (-3779 . 89763)
- (-3780 . 89594) (-3781 . 89491) (-3782 . 89424) (-3783 . 89339)
- (-3784 . 88923) (-3785 . 88747) (-3786 . 88634) (-3787 . 88471)
- (-3788 . 88209) (-3789 . 87909) (-3790 . 87812) (-3791 . 87705)
- (-3792 . 87479) (-3793 . 87310) (-3794 . 87158) (-3795 . 86808)
- (-3796 . 86517) (-3797 . 86331) (-3798 . 86244) (-3799 . 86173)
- (-3800 . 86090) (-3801 . 86019) (-3802 . 85941) (-3803 . 85853)
- (-3804 . 85738) (-3805 . 85566) (-3806 . 85377) (-3807 . 85343)
- (-3808 . 85089) (-3809 . 84989) (-3810 . 84845) (-3811 . 84774)
- (-3812 . 84590) (-3813 . 84422) (-3814 . 84267) (-3815 . 84114)
- (-3816 . 84018) (-3817 . 83885) (-3818 . 83784) (-3819 . 83543)
- (-3820 . 83512) (-3821 . 83309) (-3822 . 83257) (-3823 . 83170)
- (-3824 . 82996) (-3825 . 82893) (-3826 . 82784) (-3827 . 82416)
- (-3828 . 82362) (-3829 . 81983) (-3830 . 81882) (-3831 . 81829)
- (-3832 . 81750) (-3833 . 81663) (-3834 . 81550) (-3835 . 81426)
- (-3836 . 81347) (-3837 . 81215) (-3838 . 81164) (-3839 . 80980)
- (-3840 . 80724) (-3841 . 80578) (-3842 . 80449) (-3843 . 80394)
- (-3844 . 80289) (-3845 . 80205) (-3846 . 80034) (-3847 . 79819)
- (-3848 . 79644) (-3849 . 79379) (-3850 . 77806) (-3851 . 77700)
- (-3852 . 77319) (-3853 . 77257) (-3854 . 77161) (-3855 . 76971)
- (-3856 . 76861) (-3857 . 76810) (-3858 . 76701) (-3859 . 76366)
- (-3860 . 75915) (-3861 . 75808) (-3862 . 75727) (-3863 . 75483)
- (-3864 . 75374) (-3865 . 75300) (-3866 . 75206) (-3867 . 74727)
- (-3868 . 74649) (-3869 . 74618) (-3870 . 74565) (-3871 . 74509)
- (-3872 . 74334) (-3873 . 74145) (-3874 . 74079) (-3875 . 74012)
- (-3876 . 73527) (-3877 . 73424) (-3878 . 73148) (-3879 . 73096)
- (-3880 . 73025) (-3881 . 72738) (-3882 . 72615) (-3883 . 72532)
- (-3884 . 72475) (-3885 . 72389) (-3886 . 72216) (-3887 . 72139)
- (-3888 . 72071) (-3889 . 71947) (-3890 . 71860) (-3891 . 71647)
- (-3892 . 71579) (-3893 . 71453) (-3894 . 71157) (-3895 . 71090)
- (-3896 . 70813) (-3897 . 70694) (-3898 . 70582) (-3899 . 70554)
- (-3900 . 70475) (-3901 . 70446) (-3902 . 70291) (-3903 . 69990)
- (-3904 . 69888) (-3905 . 69815) (-3906 . 69752) (-3907 . 69188)
- (-3908 . 68814) (-3909 . 68570) (-3910 . 68484) (-3911 . 68433)
- (-3912 . 68011) (-3913 . 67702) (-3914 . 67622) (-3915 . 67534)
- (-3916 . 67425) (-3917 . 67322) (-3918 . 67267) (-3919 . 67215)
- (-3920 . 66657) (-3921 . 66605) (-3922 . 66359) (-3923 . 66269)
- (-3924 . 66166) (-3925 . 65915) (-3926 . 65887) (-3927 . 65752)
- (-3928 . 65578) (-3929 . 65486) (-3930 . 65049) (-3931 . 64377)
- (-3932 . 64306) (-3933 . 64159) (-3934 . 63662) (-3935 . 63631)
- (-3936 . 63334) (-3937 . 63282) (-3938 . 63156) (-3939 . 63038)
- (-3940 . 62765) (-3941 . 62692) (-3942 . 62217) (-3943 . 62059)
- (-3944 . 62004) (-3945 . 61895) (-3946 . 61716) (-3947 . 61436)
- (-3948 . 61352) (-3949 . 61278) (-3950 . 61012) (-3951 . 60693)
- (-3952 . 59893) (-3953 . 59823) (-3954 . 59657) (-3955 . 59628)
- (-3956 . 59482) (-3957 . 59401) (-3958 . 59025) (-3959 . 58902)
- (-3960 . 58725) (-3961 . 58609) (-3962 . 58307) (-3963 . 58161)
- (-3964 . 58023) (-3965 . 57955) (-3966 . 57875) (-3967 . 57534)
- (-3968 . 57396) (-3969 . 57287) (-3970 . 57206) (-3971 . 57035)
- (-3972 . 57001) (-3973 . 56928) (-3974 . 56845) (-3975 . 56734)
- (-3976 . 56682) (-3977 . 56354) (-3978 . 56108) (-3979 . 56028)
- (-3980 . 55994) (-3981 . 55751) (-3982 . 55614) (-3983 . 53763)
- (-3984 . 53631) (-3985 . 53565) (-3986 . 53419) (-3987 . 52610)
- (-3988 . 52415) (-3989 . 52250) (-3990 . 52179) (-3991 . 51797)
- (-3992 . 51699) (-3993 . 51183) (-3994 . 51028) (-3995 . 50872)
- (-3996 . 50789) (-3997 . 50718) (-3998 . 50681) (-3999 . 50394)
- (-4000 . 50305) (-4001 . 50220) (-4002 . 50003) (-4003 . 49905)
- (-4004 . 49798) (-4005 . 49743) (-4006 . 49688) (-4007 . 49200)
- (-4008 . 49113) (-4009 . 49042) (-4010 . 48947) (-4011 . 48874)
- (-4012 . 48635) (-4013 . 48418) (-4014 . 46656) (-4015 . 46526)
- (-4016 . 46429) (-4017 . 46091) (-4018 . 45714) (-4019 . 45614)
- (-4020 . 45530) (-4021 . 45345) (-4022 . 45266) (-4023 . 45214)
- (-4024 . 45058) (-4025 . 44913) (-4026 . 44841) (-4027 . 44679)
- (-4028 . 44523) (-4029 . 44428) (-4030 . 44369) (-4031 . 44201)
- (-4032 . 44033) (-4033 . 43077) (-4034 . 42980) (-4035 . 42741)
- (-4036 . 42667) (-4037 . 42586) (-4038 . 42440) (-4039 . 42360)
- (-4040 . 42116) (-4041 . 42067) (-4042 . 41774) (-4043 . 41636)
- (-4044 . 41033) (-4045 . 40892) (-4046 . 40820) (-4047 . 40735)
- (-4048 . 40610) (-4049 . 40480) (-4050 . 40163) (-4051 . 40056)
- (-4052 . 40000) (-4053 . 39840) (-4054 . 39588) (-4055 . 39335)
- (-4056 . 39220) (-4057 . 39154) (-4058 . 39019) (-4059 . 38949)
- (-4060 . 38853) (-4061 . 38800) (-4062 . 38748) (-4063 . 38626)
- (-4064 . 38490) (-4065 . 38435) (-4066 . 38189) (-4067 . 38080)
- (-4068 . 38049) (-4069 . 37773) (-4070 . 37493) (-4071 . 37427)
- (-4072 . 37257) (-4073 . 37192) (-4074 . 37110) (-4075 . 36955)
- (-4076 . 36245) (-4077 . 36009) (-4078 . 35838) (-4079 . 35234)
- (-4080 . 35133) (-4081 . 34784) (-4082 . 34634) (-4083 . 34562)
- (-4084 . 34531) (-4085 . 32956) (-4086 . 32904) (-4087 . 32759)
- (-4088 . 32635) (-4089 . 32453) (-4090 . 32237) (-4091 . 32133)
- (-4092 . 31987) (-4093 . 31739) (-4094 . 31686) (-4095 . 31609)
- (-4096 . 31301) (-4097 . 31176) (-4098 . 27188) (-4099 . 27103)
- (-4100 . 27050) (-4101 . 26846) (-4102 . 26634) (-4103 . 26582)
- (-4104 . 26512) (-4105 . 26432) (-4106 . 26208) (-4107 . 26067)
- (-4108 . 25936) (-4109 . 25265) (-4110 . 25054) (-4111 . 25003)
- (-4112 . 24924) (-4113 . 24819) (-4114 . 24333) (-4115 . 24259)
- (-4116 . 23907) (-4117 . 23663) (-4118 . 23497) (-4119 . 23230)
- (-4120 . 23044) (-4121 . 22900) (-4122 . 22789) (-4123 . 22658)
- (-4124 . 21622) (-4125 . 21527) (-4126 . 21258) (-4127 . 21135)
- (-4128 . 20714) (-4129 . 20614) (-4130 . 20554) (-4131 . 20442)
- (-4132 . 20290) (-4133 . 20043) (-4134 . 19883) (-4135 . 19789)
- (-4136 . 19115) (-4137 . 19041) (-4138 . 18933) (-4139 . 18877)
- (-4140 . 18804) (-4141 . 18302) (-4142 . 18222) (-4143 . 18170)
- (-4144 . 18102) (-4145 . 18024) (-4146 . 17966) (-4147 . 17883)
- (-4148 . 17765) (-4149 . 17731) (-4150 . 17638) (-4151 . 17569)
- (-4152 . 17448) (-4153 . 17353) (-4154 . 17244) (-4155 . 17064)
- (-4156 . 16639) (-4157 . 16535) (-4158 . 16463) (-4159 . 16432)
- (-4160 . 16297) (-4161 . 16244) (-4162 . 16065) (-4163 . 15686)
- (-4164 . 15100) (-4165 . 14942) (-4166 . 14879) (-4167 . 14702)
- (-4168 . 14624) (-4169 . 14527) (-4170 . 14328) (-4171 . 14208)
- (-4172 . 14052) (-4173 . 13959) (-4174 . 13853) (-4175 . 13749)
- (-4176 . 13651) (-4177 . 13462) (-4178 . 13236) (-4179 . 13031)
- (-4180 . 12997) (-4181 . 12912) (-4182 . 12835) (-4183 . 12669)
- (-4184 . 12589) (-4185 . 12379) (-4186 . 12215) (-4187 . 12103)
- (-4188 . 12030) (-4189 . 11936) (-4190 . 11864) (-4191 . 11735)
- (-4192 . 11650) (-4193 . 11543) (-4194 . 11316) (-4195 . 10412)
- (-4196 . 10328) (-4197 . 10012) (-4198 . 9827) (-4199 . 9749)
- (-4200 . 9662) (-4201 . 9440) (-4202 . 9110) (-4203 . 9023)
- (-4204 . 8662) (-4205 . 8412) (-4206 . 8343) (-4207 . 8094)
- (-4208 . 7475) (-4209 . 7304) (-4210 . 7224) (-4211 . 6769)
- (-4212 . 6623) (-4213 . 6510) (-4214 . 6425) (-4215 . 6373)
- (-4216 . 6317) (-4217 . 5944) (-4218 . 5803) (-4219 . 5556)
- (-4220 . 5264) (-4221 . 4639) (-4222 . 4546) (-4223 . 4217)
- (-4224 . 4106) (-4225 . 4054) (-4226 . 3911) (-4227 . 3796)
- (-4228 . 3641) (-4229 . 3100) (-4230 . 3013) (-4231 . 2861)
- (-4232 . 2778) (-4233 . 2709) (-4234 . 2570) (-4235 . 2444)
- (-4236 . 2295) (-4237 . 1982) (-4238 . 1742) (-4239 . 1686)
- (-4240 . 1500) (-4241 . 1448) (-4242 . 1209) (-4243 . 1157)
- (-4244 . 879) (-4245 . 764) (-4246 . 623) (-4247 . 195) (-4248 . 101)
- (-4249 . 30)) \ No newline at end of file
+ (-12 (-5 *3 (-598 *4)) (-4 *4 (-344)) (-4 *2 (-1160 *4))
+ (-5 *1 (-865 *4 *2)))))
+(((*1 *2 *3)
+ (-12 (-5 *3 (-864)) (-5 *2 (-1098 *4)) (-5 *1 (-338 *4))
+ (-4 *4 (-330)))))
+(((*1 *2 *1 *3)
+ (|partial| -12 (-5 *3 (-1085)) (-5 *2 (-724)) (-5 *1 (-112))))
+ ((*1 *1 *2 *3) (-12 (-5 *2 (-1102)) (-5 *3 (-1034)) (-5 *1 (-908)))))
+(((*1 *2 *1 *3)
+ (-12 (-4 *1 (-846 *3)) (-4 *3 (-1030)) (-5 *2 (-1032 *3))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1030)) (-5 *2 (-1032 (-598 *4))) (-5 *1 (-847 *4))
+ (-5 *3 (-598 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-4 *4 (-1030)) (-5 *2 (-1032 (-1032 *4))) (-5 *1 (-847 *4))
+ (-5 *3 (-1032 *4))))
+ ((*1 *2 *1 *3)
+ (-12 (-5 *2 (-1032 *3)) (-5 *1 (-847 *3)) (-4 *3 (-1030)))))
+(((*1 *2)
+ (-12 (-4 *3 (-523)) (-5 *2 (-598 *4)) (-5 *1 (-42 *3 *4))
+ (-4 *4 (-398 *3)))))
+(((*1 *2 *1) (-12 (-5 *2 (-721)) (-5 *1 (-835 *3)) (-4 *3 (-1030))))
+ ((*1 *2 *1) (-12 (-4 *1 (-1050 *3)) (-4 *3 (-1138)) (-5 *2 (-721)))))
+(((*1 *2 *1) (-12 (-5 *2 (-598 (-1102))) (-5 *1 (-1106)))))
+((-1215 . 727741) (-1216 . 727600) (-1217 . 727505) (-1218 . 727133)
+ (-1219 . 726980) (-1220 . 726886) (-1221 . 726783) (-1222 . 726695)
+ (-1223 . 726609) (-1224 . 726208) (-1225 . 726131) (-1226 . 726075)
+ (-1227 . 726009) (-1228 . 725738) (-1229 . 725554) (-1230 . 725241)
+ (-1231 . 725170) (-1232 . 725069) (-1233 . 724694) (-1234 . 724545)
+ (-1235 . 724493) (-1236 . 724462) (-1237 . 724407) (-1238 . 724237)
+ (-1239 . 724107) (-1240 . 723763) (-1241 . 723483) (-1242 . 723132)
+ (-1243 . 723065) (-1244 . 722985) (-1245 . 722856) (-1246 . 722744)
+ (-1247 . 722360) (-1248 . 722235) (-1249 . 722135) (-1250 . 722101)
+ (-1251 . 721983) (-1252 . 721819) (-1253 . 721695) (-1254 . 721448)
+ (-1255 . 721332) (-1256 . 721280) (-1257 . 721116) (-1258 . 721021)
+ (-1259 . 720530) (-1260 . 720435) (-1261 . 720340) (-1262 . 720211)
+ (-1263 . 720183) (-1264 . 720042) (-1265 . 719929) (-1266 . 719629)
+ (-1267 . 719556) (-1268 . 719469) (-1269 . 719317) (-1270 . 719243)
+ (-1271 . 718999) (-1272 . 718868) (-1273 . 718577) (-1274 . 718494)
+ (-1275 . 718364) (-1276 . 718248) (-1277 . 718012) (-1278 . 717938)
+ (-1279 . 717712) (-1280 . 717597) (-1281 . 717542) (-1282 . 717387)
+ (-1283 . 716941) (-1284 . 716616) (-1285 . 716343) (-1286 . 716199)
+ (-1287 . 715953) (-1288 . 715898) (-1289 . 714717) (-1290 . 714386)
+ (-1291 . 714315) (-1292 . 713980) (-1293 . 713952) (-1294 . 713895)
+ (-1295 . 713842) (-1296 . 713744) (-1297 . 713657) (-1298 . 713504)
+ (-1299 . 713431) (-1300 . 713332) (-1301 . 712372) (-1302 . 712307)
+ (-1303 . 712004) (-1304 . 711792) (-1305 . 711564) (-1306 . 711492)
+ (-1307 . 711377) (-1308 . 711325) (-1309 . 710789) (-1310 . 710712)
+ (-1311 . 710632) (-1312 . 710282) (-1313 . 709763) (-1314 . 709678)
+ (-1315 . 709557) (-1316 . 709400) (-1317 . 709174) (-1318 . 709069)
+ (-1319 . 708765) (-1320 . 708403) (-1321 . 708143) (-1322 . 708069)
+ (-1323 . 707955) (-1324 . 707848) (-1325 . 707600) (-1326 . 707529)
+ (-1327 . 707452) (-1328 . 707369) (-1329 . 707279) (-1330 . 707172)
+ (-1331 . 707019) (-1332 . 706589) (-1333 . 706446) (-1334 . 706393)
+ (-1335 . 706300) (-1336 . 706193) (-1337 . 706140) (-1338 . 706031)
+ (-1339 . 705948) (-1340 . 705829) (-1341 . 705777) (-1342 . 705687)
+ (-1343 . 705507) (-1344 . 705422) (-1345 . 705046) (-1346 . 704881)
+ (-1347 . 704690) (-1348 . 704519) (-1349 . 704079) (-1350 . 703532)
+ (-1351 . 703386) (-1352 . 703215) (-1353 . 701919) (-1354 . 701494)
+ (-1355 . 701356) (-1356 . 701270) (-1357 . 701115) (-1358 . 700817)
+ (-1359 . 700644) (-1360 . 700562) (-1361 . 700419) (-1362 . 699859)
+ (-1363 . 699680) (-1364 . 699627) (-1365 . 699428) (-1366 . 699372)
+ (-1367 . 699168) (-1368 . 699025) (-1369 . 698952) (-1370 . 698558)
+ (-1371 . 698455) (-1372 . 698314) (-1373 . 698246) (-1374 . 697949)
+ (-1375 . 697555) (-1376 . 697496) (-1377 . 697394) (-1378 . 697325)
+ (-1379 . 697297) (-1380 . 697178) (-1381 . 696528) (-1382 . 696232)
+ (-1383 . 696015) (-1384 . 695824) (-1385 . 695669) (-1386 . 695620)
+ (-1387 . 695499) (-1388 . 695443) (-1389 . 695239) (-1390 . 695021)
+ (-1391 . 694781) (-1392 . 694635) (-1393 . 694436) (-1394 . 694405)
+ (-1395 . 694371) (-1396 . 693984) (-1397 . 693904) (-1398 . 693545)
+ (-1399 . 693418) (-1400 . 693274) (-1401 . 693075) (-1402 . 692837)
+ (-1403 . 692771) (-1404 . 692601) (-1405 . 692548) (-1406 . 691838)
+ (-1407 . 691786) (-1408 . 691694) (-1409 . 691600) (-1410 . 691548)
+ (-1411 . 691463) (-1412 . 691397) (-1413 . 691223) (-1414 . 691153)
+ (-1415 . 690965) (-1416 . 690751) (-1417 . 690461) (-1418 . 690343)
+ (-1419 . 690146) (-1420 . 689874) (-1421 . 689821) (-1422 . 689769)
+ (-1423 . 689717) (-1424 . 689635) (-1425 . 689436) (-1426 . 688911)
+ (-1427 . 688853) (-1428 . 688710) (-1429 . 688402) (-1430 . 688350)
+ (-1431 . 688192) (-1432 . 688091) (-1433 . 687781) (-1434 . 687375)
+ (-1435 . 687203) (-1436 . 687153) (-1437 . 686995) (-1438 . 686121)
+ (-1439 . 685877) (-1440 . 685814) (-1441 . 685615) (-1442 . 685584)
+ (-1443 . 685500) (-1444 . 685415) (-12 . 685243) (-1446 . 685097)
+ (-1447 . 684990) (-1448 . 684783) (-1449 . 684725) (-1450 . 684152)
+ (-1451 . 684000) (-1452 . 683945) (-1453 . 683800) (-1454 . 683699)
+ (-1455 . 683460) (-1456 . 683390) (-1457 . 683316) (-1458 . 683209)
+ (-1459 . 682924) (-1460 . 682820) (-1461 . 682654) (-1462 . 682118)
+ (-1463 . 681952) (-1464 . 681595) (-1465 . 681542) (-1466 . 681390)
+ (-1467 . 681324) (-1468 . 681213) (-1469 . 680799) (-1470 . 680681)
+ (-1471 . 680581) (-1472 . 680472) (-1473 . 680413) (-1474 . 680188)
+ (-1475 . 680035) (-1476 . 679908) (-1477 . 679834) (-1478 . 679739)
+ (-1479 . 679598) (-1480 . 679504) (-1481 . 679401) (-1482 . 679330)
+ (-1483 . 679221) (-1484 . 678911) (-1485 . 678820) (-1486 . 678756)
+ (-1487 . 678457) (-1488 . 678288) (-1489 . 677038) (-1490 . 676883)
+ (-1491 . 676704) (-1492 . 676638) (-1493 . 676328) (-1494 . 676225)
+ (-1495 . 676102) (-1496 . 675893) (-1497 . 675827) (-1498 . 675718)
+ (-1499 . 675260) (-1500 . 675071) (-1501 . 674647) (-1502 . 674549)
+ (-1503 . 674440) (-1504 . 673836) (-1505 . 673733) (-1506 . 673603)
+ (-1507 . 673085) (-1508 . 673002) (-1509 . 672950) (-1510 . 672682)
+ (-1511 . 672633) (-1512 . 672575) (-1513 . 672417) (-1514 . 672357)
+ (-1515 . 672204) (-1516 . 672099) (-1517 . 671955) (-1518 . 671757)
+ (-1519 . 671704) (-1520 . 671501) (-1521 . 671447) (-1522 . 671394)
+ (-1523 . 671332) (-1524 . 671215) (-1525 . 670899) (-1526 . 670819)
+ (* . 666296) (-1528 . 666202) (-1529 . 666152) (-1530 . 666066)
+ (-1531 . 665938) (-1532 . 665843) (-1533 . 665730) (-1534 . 665590)
+ (-1535 . 665539) (-1536 . 665418) (-1537 . 665338) (-1538 . 665264)
+ (-1539 . 665023) (-1540 . 664804) (-1541 . 664745) (-1542 . 664696)
+ (-1543 . 664440) (-1544 . 664388) (-1545 . 664252) (-1546 . 664115)
+ (-1547 . 663572) (-1548 . 663328) (-1549 . 662968) (-1550 . 662867)
+ (-1551 . 662711) (-1552 . 662604) (-1553 . 662460) (-1554 . 662312)
+ (-1555 . 662238) (-1556 . 662210) (-1557 . 661966) (-1558 . 661824)
+ (-1559 . 661694) (-1560 . 661498) (-1561 . 661340) (-1562 . 661252)
+ (-1563 . 661097) (-1564 . 660706) (-1565 . 660566) (-1566 . 660449)
+ (-1567 . 660353) (-1568 . 660192) (-1569 . 660016) (-1570 . 659942)
+ (-1571 . 659878) (-1572 . 659829) (-1573 . 659772) (-1574 . 659720)
+ (-1575 . 659618) (-1576 . 659201) (-1577 . 658830) (-1578 . 658487)
+ (-1579 . 658358) (-1580 . 657955) (-1581 . 657902) (-1582 . 657799)
+ (-1583 . 657682) (-1584 . 657403) (-1585 . 656887) (-1586 . 656665)
+ (-1587 . 656497) (-1588 . 656445) (-1589 . 656140) (-1590 . 656080)
+ (-1591 . 655935) (-1592 . 655456) (-1593 . 655404) (-1594 . 655186)
+ (-1595 . 655115) (-1596 . 654970) (-1597 . 654841) (-1598 . 654740)
+ (-1599 . 654492) (-1600 . 654340) (-1601 . 654205) (-1602 . 654096)
+ (-1603 . 654001) (-1604 . 653973) (-1605 . 653939) (-1606 . 653665)
+ (-1607 . 653580) (-1608 . 653461) (-1609 . 652646) (-1610 . 652578)
+ (-1611 . 652392) (-1612 . 652190) (-1613 . 652015) (-1614 . 651907)
+ (-1615 . 651620) (-1616 . 651431) (-1617 . 651324) (-1618 . 651229)
+ (-1619 . 651168) (-1620 . 650671) (-1621 . 650619) (-1622 . 650426)
+ (-1623 . 650199) (-1624 . 650136) (-1625 . 649997) (-1626 . 649944)
+ (-1627 . 649572) (-1628 . 649329) (-1629 . 649119) (-1630 . 649063)
+ (-1631 . 648977) (-1632 . 648822) (-1633 . 648726) (-1634 . 648619)
+ (-1635 . 648479) (-1636 . 648370) (-1637 . 648318) (-1638 . 648136)
+ (-1639 . 648083) (-1640 . 648010) (-1641 . 647827) (-1642 . 647714)
+ (-1643 . 647643) (-1644 . 647572) (-1645 . 647474) (-1646 . 647331)
+ (-1647 . 646906) (-1648 . 646850) (-1649 . 646779) (-1650 . 646727)
+ (-1651 . 646696) (-1652 . 646611) (-1653 . 646245) (-1654 . 646168)
+ (-1655 . 645958) (-1656 . 645787) (-1657 . 645627) (-1658 . 645543)
+ (-1659 . 645511) (-1660 . 645289) (-1661 . 645067) (-1662 . 644887)
+ (-1663 . 644692) (-1664 . 644553) (-1665 . 644309) (-1666 . 644201)
+ (-1667 . 644015) (-1668 . 643960) (-1669 . 643737) (-1670 . 643498)
+ (-1671 . 643444) (-1672 . 642560) (-1673 . 642356) (-1674 . 642174)
+ (-1675 . 642107) (-1676 . 641862) (-1677 . 641718) (-1678 . 641570)
+ (-1679 . 641391) (-1680 . 641276) (-1681 . 639991) (-1682 . 639122)
+ (-1683 . 639066) (-1684 . 638997) (-1685 . 638560) (-1686 . 638473)
+ (-1687 . 638411) (-1688 . 638240) (-1689 . 638014) (-1690 . 637739)
+ (-1691 . 637662) (-1692 . 637522) (-1693 . 637400) (-1694 . 637369)
+ (-1695 . 637311) (-1696 . 637047) (-1697 . 636835) (-1698 . 636476)
+ (-1699 . 636421) (-1700 . 636268) (-1701 . 636063) (-1702 . 635820)
+ (-1703 . 635229) (-1704 . 635163) (-1705 . 635030) (-1706 . 634924)
+ (-1707 . 634853) (-1708 . 634801) (-1709 . 634525) (-1710 . 634472)
+ (-1711 . 634377) (-1712 . 634290) (-1713 . 633959) (-1714 . 633771)
+ (-1715 . 633616) (-1716 . 633285) (-1717 . 633141) (-1718 . 633074)
+ (-1719 . 633016) (-1720 . 632988) (-1721 . 632820) (-1722 . 632754)
+ (-1723 . 632598) (-1724 . 632247) (-1725 . 632089) (-1726 . 631985)
+ (-1727 . 631887) (-1728 . 631748) (-1729 . 631614) (-1730 . 631362)
+ (-1731 . 631279) (-1732 . 631230) (-1733 . 631114) (-1734 . 631061)
+ (-1735 . 630919) (-1736 . 630818) (-1737 . 630627) (-1738 . 630598)
+ (-1739 . 630501) (-1740 . 630180) (-1741 . 629664) (-1742 . 629598)
+ (-1743 . 629499) (-1744 . 628858) (-1745 . 628775) (-1746 . 628716)
+ (-1747 . 628664) (-1748 . 628504) (-1749 . 627658) (-1750 . 627025)
+ (-1751 . 626921) (-1752 . 626855) (-1753 . 626540) (-1754 . 626437)
+ (-1755 . 626254) (-1756 . 625927) (-1757 . 625783) (-1758 . 625432)
+ (-1759 . 625289) (-1760 . 621678) (-1761 . 621573) (-1762 . 621503)
+ (-1763 . 621378) (-1764 . 621211) (-1765 . 621107) (-1766 . 620807)
+ (-1767 . 620428) (-1768 . 620015) (-1769 . 619879) (-1770 . 619802)
+ (-1771 . 619740) (-1772 . 619631) (-1773 . 619546) (-1774 . 619398)
+ (-1775 . 619184) (-1776 . 619110) (-1777 . 618896) (-1778 . 618790)
+ (-1779 . 618696) (-1780 . 618635) (-1781 . 618037) (-1782 . 617870)
+ (-1783 . 617771) (-1784 . 617662) (-1785 . 612465) (-1786 . 612347)
+ (-1787 . 612154) (-1788 . 605200) (-1789 . 605066) (-1790 . 604585)
+ (-1791 . 604505) (-1792 . 604059) (-1793 . 603905) (-1794 . 603801)
+ (-1795 . 603748) (-1796 . 603670) (-1797 . 603525) (-1798 . 602323)
+ (-1799 . 601684) (-1800 . 601233) (-1801 . 601098) (-1802 . 601004)
+ (-1803 . 600882) (-1804 . 600749) (-1805 . 600605) (-1806 . 599440)
+ (-1807 . 599385) (-1808 . 599319) (-1809 . 599268) (-1810 . 599216)
+ (-1811 . 599163) (-1812 . 599037) (-1813 . 598977) (-1814 . 598813)
+ (-1815 . 598682) (-1816 . 598190) (-1817 . 598032) (-1818 . 597671)
+ (-1819 . 597366) (-1820 . 597338) (-1821 . 597235) (-1822 . 597132)
+ (-1823 . 597066) (-1824 . 596475) (-1825 . 596406) (-1826 . 595653)
+ (-1827 . 595488) (-1828 . 595264) (-1829 . 595157) (-1830 . 594992)
+ (-1831 . 594880) (-1832 . 594786) (-1833 . 594612) (-1834 . 594519)
+ (-1835 . 594322) (-1836 . 594271) (-1837 . 593930) (-1838 . 593750)
+ (-1839 . 593683) (-1840 . 592984) (-1841 . 592714) (-1842 . 592610)
+ (-1843 . 592512) (-1844 . 592390) (-1845 . 592356) (-1846 . 591161)
+ (-1847 . 590993) (-1848 . 590919) (-1849 . 590586) (-1850 . 590000)
+ (-1851 . 589949) (-1852 . 589825) (-1853 . 589148) (-1854 . 589082)
+ (-1855 . 588809) (-1856 . 588757) (-1857 . 588364) (-1858 . 588073)
+ (-1859 . 587963) (-1860 . 587839) (-1861 . 587230) (-1862 . 587061)
+ (-1863 . 586406) (-1864 . 585876) (-1865 . 585805) (-1866 . 585732)
+ (-1867 . 585342) (-1868 . 585276) (-1869 . 585223) (-1870 . 585114)
+ (-1871 . 575584) (-1872 . 575133) (-1873 . 575035) (-1874 . 574563)
+ (-1875 . 574489) (-1876 . 574352) (-1877 . 574279) (-1878 . 574035)
+ (-1879 . 573834) (-1880 . 573569) (-1881 . 573516) (-1882 . 573402)
+ (-1883 . 573086) (-1884 . 572934) (-1885 . 572854) (-1886 . 572771)
+ (-1887 . 572655) (-1888 . 572603) (-1889 . 572276) (-1890 . 572076)
+ (-1891 . 571980) (-1892 . 571630) (-1893 . 571523) (-1894 . 571341)
+ (-1895 . 571282) (-1896 . 571211) (-1897 . 571083) (-1898 . 570962)
+ (-1899 . 569183) (-1900 . 569112) (-1901 . 568897) (-1902 . 568796)
+ (-1903 . 568330) (-1904 . 568184) (-1905 . 568088) (-1906 . 567980)
+ (-1907 . 567629) (-1908 . 567406) (-1909 . 567213) (-1910 . 567142)
+ (-1911 . 566924) (-1912 . 566515) (-1913 . 566337) (-1914 . 566257)
+ (-1915 . 566200) (-1916 . 566102) (-1917 . 565995) (-1918 . 565942)
+ (-1919 . 565872) (-1920 . 565789) (-1921 . 565657) (-1922 . 565155)
+ (-1923 . 565078) (-1924 . 564998) (-1925 . 564847) (-1926 . 564685)
+ (-1927 . 564576) (-1928 . 564243) (-1929 . 564166) (-1930 . 563859)
+ (-1931 . 563777) (-1932 . 563349) (-1933 . 563266) (-1934 . 563145)
+ (-1935 . 562891) (-1936 . 562839) (-1937 . 562768) (-1938 . 562655)
+ (-1939 . 562375) (-1940 . 562253) (-1941 . 562147) (-1942 . 558085)
+ (-1943 . 557992) (-1944 . 557865) (-1945 . 557684) (-1946 . 557599)
+ (-1947 . 557504) (-1948 . 557430) (-1949 . 557287) (-1950 . 557028)
+ (-1951 . 556940) (-1952 . 556709) (-1953 . 556575) (-1954 . 556442)
+ (-1955 . 556195) (-1956 . 555749) (-1957 . 555604) (-1958 . 555547)
+ (-1959 . 555466) (-1960 . 555340) (-1961 . 555241) (-1962 . 555098)
+ (-1963 . 555041) (-1964 . 554883) (-1965 . 554814) (-1966 . 554690)
+ (-1967 . 554574) (-1968 . 554500) (-1969 . 554444) (-1970 . 554335)
+ (-1971 . 554191) (-1972 . 554142) (-1973 . 554070) (-1974 . 553985)
+ (-1975 . 553808) (-1976 . 553287) (-1977 . 553160) (-1978 . 553087)
+ (-1979 . 552944) (-1980 . 552845) (-1981 . 552765) (-1982 . 552545)
+ (-1983 . 552388) (-1984 . 552331) (-1985 . 549986) (-1986 . 549875)
+ (-1987 . 549752) (-1988 . 549249) (-1989 . 549148) (-1990 . 549062)
+ (-1991 . 548977) (-1992 . 548840) (-1993 . 548725) (-1994 . 548630)
+ (-1995 . 548562) (-1996 . 548488) (-1997 . 548328) (-1998 . 548166)
+ (-1999 . 548072) (-2000 . 548004) (-2001 . 547834) (-2002 . 547768)
+ (-2003 . 547291) (-2004 . 547063) (-2005 . 546708) (-2006 . 546609)
+ (-2007 . 546529) (-2008 . 546477) (-2009 . 545952) (-2010 . 544612)
+ (-2011 . 544469) (-2012 . 542368) (-2013 . 542177) (-2014 . 541926)
+ (-2015 . 541852) (-2016 . 541712) (-2017 . 541607) (-2018 . 541498)
+ (-2019 . 541444) (-2020 . 541360) (-2021 . 541233) (-2022 . 541162)
+ (-2023 . 541075) (-2024 . 540885) (-2025 . 540786) (-2026 . 540620)
+ (-2027 . 540409) (-2028 . 540283) (-2029 . 540070) (-2030 . 539987)
+ (-2031 . 539922) (-2032 . 539322) (-2033 . 539288) (-2034 . 539232)
+ (-2035 . 538939) (-2036 . 538887) (-2037 . 538749) (-2038 . 538619)
+ (-2039 . 538536) (-2040 . 537433) (-2041 . 537326) (-2042 . 537050)
+ (-2043 . 536954) (-2044 . 536857) (-2045 . 536770) (-2046 . 535970)
+ (-2047 . 535865) (-2048 . 535788) (-2049 . 535705) (-2050 . 535611)
+ (-2051 . 535548) (-2052 . 535367) (-2053 . 535245) (-2054 . 534664)
+ (-2055 . 534561) (-2056 . 532831) (-2057 . 532759) (-2058 . 532525)
+ (-2059 . 532402) (-2060 . 532278) (-2061 . 532158) (-2062 . 531901)
+ (-2063 . 531807) (-2064 . 531688) (-2065 . 531633) (-2066 . 531466)
+ (-2067 . 531413) (-2068 . 531253) (-2069 . 531148) (-2070 . 531093)
+ (-2071 . 531023) (-2072 . 530817) (-2073 . 530732) (-2074 . 530641)
+ (-2075 . 530424) (-2076 . 529187) (-2077 . 528582) (-2078 . 528495)
+ (-2079 . 528199) (-2080 . 528012) (-2081 . 527769) (-2082 . 527578)
+ (-2083 . 527505) (-2084 . 527423) (-2085 . 525999) (-2086 . 525753)
+ (-2087 . 525680) (-2088 . 525538) (-2089 . 525465) (-2090 . 525367)
+ (-2091 . 525197) (-2092 . 525144) (-2093 . 525110) (-2094 . 524759)
+ (-2095 . 524707) (-2096 . 524221) (-2097 . 524162) (-2098 . 523820)
+ (-2099 . 523719) (-2100 . 523284) (-2101 . 523154) (-2102 . 523017)
+ (-2103 . 522854) (-2104 . 522801) (-2105 . 522690) (-2106 . 522032)
+ (-2107 . 521717) (-2108 . 521549) (-2109 . 520448) (-2110 . 520344)
+ (-2111 . 520184) (-2112 . 520125) (-2113 . 520054) (-2114 . 519877)
+ (-2115 . 519822) (-2116 . 519578) (-2117 . 519526) (-2118 . 519308)
+ (-2119 . 519094) (-2120 . 519066) (-2121 . 519000) (-2122 . 518895)
+ (-2123 . 518821) (-2124 . 518674) (-2125 . 518255) (-2126 . 518111)
+ (-2127 . 518014) (-2128 . 517970) (-2129 . 517883) (-2130 . 517795)
+ (-2131 . 517463) (-2132 . 517389) (-2133 . 517320) (-2134 . 517267)
+ (-2135 . 517133) (-2136 . 517049) (-2137 . 516906) (-2138 . 516717)
+ (-2139 . 516409) (-2140 . 515404) (-2141 . 515332) (-2142 . 515262)
+ (-2143 . 515019) (-2144 . 514875) (-2145 . 513811) (-2146 . 513519)
+ (-2147 . 512556) (-2148 . 512288) (-2149 . 512165) (-2150 . 512113)
+ (-2151 . 512041) (-2152 . 511897) (-2153 . 511730) (-2154 . 511658)
+ (-2155 . 511357) (-2156 . 511270) (-2157 . 511111) (-2158 . 511056)
+ (-2159 . 510927) (-2160 . 510872) (-2161 . 510627) (-2162 . 510523)
+ (-2163 . 510452) (-2164 . 510285) (-2165 . 510193) (-2166 . 510113)
+ (-2167 . 509797) (-2168 . 509459) (-2169 . 509306) (-2170 . 509229)
+ (-2171 . 509127) (-2172 . 509011) (-2173 . 508940) (-2174 . 508709)
+ (-2175 . 508604) (-2176 . 508501) (-2177 . 508014) (-2178 . 507962)
+ (-2179 . 507879) (-2180 . 507776) (-2181 . 507691) (-2182 . 507416)
+ (-2183 . 507242) (-2184 . 507155) (-2185 . 507095) (-2186 . 507043)
+ (-2187 . 506899) (-2188 . 506668) (-2189 . 506597) (-2190 . 505863)
+ (-2191 . 505583) (-2192 . 505496) (-2193 . 505441) (-2194 . 505335)
+ (-2195 . 505176) (-2196 . 505046) (-2197 . 504463) (-2198 . 503722)
+ (-2199 . 503615) (-2200 . 503185) (-2201 . 502786) (-2202 . 502699)
+ (-2203 . 502668) (-2204 . 502529) (-2205 . 502446) (-2206 . 502323)
+ (-2207 . 502236) (-2208 . 502017) (-2209 . 501789) (-2210 . 501048)
+ (-2211 . 500904) (-2212 . 500725) (-2213 . 500444) (-2214 . 500377)
+ (-2215 . 500325) (-2216 . 500115) (-2217 . 499969) (-2218 . 499281)
+ (-2219 . 499111) (-2220 . 498853) (-2221 . 498754) (-2222 . 498671)
+ (-2223 . 498594) (-2224 . 498412) (-2225 . 498303) (-2226 . 497712)
+ (-2227 . 497493) (-2228 . 497274) (-2229 . 496698) (-2230 . 496591)
+ (-2231 . 496372) (-2232 . 496273) (-2233 . 496191) (-2234 . 496070)
+ (-2235 . 495967) (-2236 . 495852) (-2237 . 494668) (-2238 . 494561)
+ (-2239 . 494403) (-2240 . 494273) (-2241 . 493697) (-2242 . 493669)
+ (-2243 . 493598) (-2244 . 493497) (-2245 . 493306) (-2246 . 492990)
+ (-2247 . 492904) (-2248 . 492804) (-2249 . 492574) (-2250 . 491396)
+ (-2251 . 491323) (-2252 . 491168) (-2253 . 490592) (-2254 . 490476)
+ (-2255 . 490025) (-2256 . 489775) (-2257 . 489661) (-2258 . 489595)
+ (-2259 . 489436) (-2260 . 489384) (-2261 . 489190) (-2262 . 488848)
+ (-2263 . 486650) (-2264 . 486479) (-2265 . 463324) (-2266 . 462638)
+ (-2267 . 462540) (-2268 . 462455) (-2269 . 462294) (-2270 . 462220)
+ (-2271 . 461600) (-2272 . 461503) (-2273 . 461303) (-2274 . 458551)
+ (-2275 . 458435) (-2276 . 458251) (-2277 . 457004) (-2278 . 456885)
+ (-2279 . 456199) (-2280 . 455817) (-2281 . 455503) (-2282 . 455418)
+ (-2283 . 454819) (-2284 . 453963) (-2285 . 453576) (-2286 . 452822)
+ (-2287 . 452603) (-2288 . 452551) (-2289 . 452406) (-2290 . 452228)
+ (-2291 . 451997) (-2292 . 451248) (-2293 . 450995) (-2294 . 450871)
+ (-2295 . 450771) (-2296 . 450491) (-2297 . 450388) (-2298 . 450230)
+ (-2299 . 450065) (-2300 . 449963) (-2301 . 449796) (-2302 . 449144)
+ (-2303 . 449002) (-2304 . 448950) (-2305 . 448376) (-2306 . 448269)
+ (-2307 . 448196) (-2308 . 447779) (-2309 . 447457) (-2310 . 447386)
+ (-2311 . 447196) (-2312 . 447143) (-2313 . 447002) (-2314 . 446910)
+ (-2315 . 446836) (-2316 . 446708) (-2317 . 446570) (-2318 . 445996)
+ (-2319 . 445879) (-2320 . 445799) (-2321 . 445647) (-2322 . 445299)
+ (-2323 . 445085) (-2324 . 445030) (-2325 . 444740) (-2326 . 444712)
+ (-2327 . 444617) (-2328 . 444583) (-2329 . 444527) (-2330 . 444456)
+ (-2331 . 443882) (-2332 . 443721) (-2333 . 443640) (-2334 . 443578)
+ (-2335 . 443376) (-2336 . 443145) (-2337 . 443093) (-2338 . 443040)
+ (-2339 . 442877) (-2340 . 442811) (-2341 . 442702) (-2342 . 442660)
+ (-2343 . 441973) (-2344 . 441810) (-2345 . 441726) (-2346 . 441617)
+ (-2347 . 441131) (-2348 . 441029) (-2349 . 440873) (-2350 . 440758)
+ (-2351 . 440703) (-2352 . 440575) (-2353 . 440491) (-2354 . 440423)
+ (-2355 . 440301) (-2356 . 439614) (-2357 . 439540) (-2358 . 439374)
+ (-2359 . 439212) (-2360 . 438965) (-2361 . 438862) (-2362 . 438564)
+ (-2363 . 438511) (-2364 . 438427) (-2365 . 438099) (-2366 . 438033)
+ (-2367 . 437346) (-2368 . 437207) (-2369 . 437105) (-2370 . 436812)
+ (-2371 . 436605) (-2372 . 436487) (-2373 . 434659) (-2374 . 434557)
+ (-2375 . 434349) (-2376 . 434237) (-2377 . 434200) (-2378 . 434090)
+ (-2379 . 433515) (-2380 . 433380) (-2381 . 433261) (-2382 . 433011)
+ (-2383 . 432958) (-2384 . 432906) (-2385 . 431405) (-2386 . 431217)
+ (-2387 . 431052) (-2388 . 430969) (-2389 . 430902) (-2390 . 430809)
+ (-2391 . 430234) (-2392 . 430197) (-2393 . 430104) (-2394 . 429860)
+ (-2395 . 429559) (-2396 . 429503) (-2397 . 427963) (-2398 . 427840)
+ (-2399 . 427733) (-2400 . 427350) (-2401 . 427145) (-2402 . 427062)
+ (-2403 . 426487) (-2404 . 426289) (-2405 . 426129) (-2406 . 426038)
+ (-2407 . 425971) (-2408 . 425884) (-2409 . 425814) (-2410 . 425752)
+ (-2411 . 425637) (-2412 . 425567) (-2413 . 425533) (-2414 . 425481)
+ (-2415 . 425363) (-2416 . 424789) (-2417 . 424738) (-2418 . 424617)
+ (-2419 . 424534) (-2420 . 424405) (-2421 . 423880) (-2422 . 423144)
+ (-2423 . 422806) (-2424 . 422476) (-2425 . 422389) (-2426 . 422261)
+ (-2427 . 422169) (-2428 . 421498) (-2429 . 420924) (-2430 . 420475)
+ (-2431 . 420380) (-2432 . 420296) (-2433 . 420226) (-2434 . 420116)
+ (-2435 . 419955) (-2436 . 419813) (-2437 . 419650) (-2438 . 419538)
+ (-2439 . 419510) (-2440 . 419380) (-2441 . 419113) (-2442 . 418539)
+ (-2443 . 418438) (-2444 . 418309) (-2445 . 418136) (-2446 . 418084)
+ (-2447 . 418016) (-2448 . 417890) (-2449 . 417783) (-2450 . 417504)
+ (-2451 . 417406) (-2452 . 417303) (-2453 . 417127) (-2454 . 415727)
+ (-2455 . 415650) (-2456 . 415076) (-2457 . 414953) (-2458 . 414901)
+ (-2459 . 414764) (-2460 . 414657) (-2461 . 414429) (-2462 . 413791)
+ (-2463 . 413658) (-2464 . 413624) (-2465 . 413284) (-2466 . 413210)
+ (-2467 . 413105) (-2468 . 412531) (-2469 . 412475) (-2470 . 412390)
+ (-2471 . 412318) (-2472 . 412259) (-2473 . 411768) (-2474 . 411656)
+ (-2475 . 410495) (-2476 . 408365) (-2477 . 408158) (-2478 . 408052)
+ (-2479 . 407943) (-2480 . 407617) (-2481 . 407419) (-2482 . 407339)
+ (-2483 . 406969) (-2484 . 406857) (-2485 . 406283) (-2486 . 406234)
+ (-2487 . 406089) (-2488 . 405975) (-2489 . 405421) (-2490 . 405337)
+ (-2491 . 405213) (-2492 . 405082) (-2493 . 404903) (-2494 . 404750)
+ (-2495 . 404678) (-2496 . 404212) (-2497 . 403939) (-2498 . 403911)
+ (-2499 . 403544) (-2500 . 402420) (-2501 . 402358) (-2502 . 402288)
+ (-2503 . 402191) (-2504 . 402125) (-2505 . 401997) (-2506 . 401917)
+ (-2507 . 401508) (-2508 . 401302) (-2509 . 401029) (-2510 . 400977)
+ (-2511 . 400859) (-2512 . 400831) (-2513 . 400645) (-2514 . 400538)
+ (-2515 . 400419) (-2516 . 399018) (-2517 . 398734) (-2518 . 398661)
+ (-2519 . 398516) (-2520 . 398248) (-2521 . 398153) (-2522 . 397088)
+ (-2523 . 391764) (-2524 . 391690) (-2525 . 391616) (-2526 . 391299)
+ (-2527 . 391055) (-2528 . 390977) (-2529 . 390779) (-2530 . 390727)
+ (-2531 . 390618) (-2532 . 390414) (-2533 . 390281) (-2534 . 389892)
+ (-2535 . 389134) (-2536 . 389028) (-2537 . 388903) (-2538 . 388782)
+ (-2539 . 388543) (-2540 . 388380) (-2541 . 388278) (-2542 . 388108)
+ (-2543 . 387983) (-2544 . 387930) (-2545 . 387718) (-2546 . 387605)
+ (-2547 . 387531) (-2548 . 387445) (-2549 . 387360) (-2550 . 386659)
+ (-2551 . 386531) (-2552 . 381023) (-2553 . 380844) (-2554 . 380790)
+ (-2555 . 380605) (-2556 . 380547) (-2557 . 380433) (-2558 . 380286)
+ (-2559 . 380200) (-2560 . 380006) (-2561 . 379923) (-2562 . 379817)
+ (-2563 . 379429) (-2564 . 379366) (-2565 . 379314) (-2566 . 379240)
+ (-2567 . 379035) (-2568 . 378942) (-2569 . 378891) (-2570 . 378223)
+ (-2571 . 378112) (-2572 . 378056) (-2573 . 377942) (-2574 . 377855)
+ (-2575 . 377645) (-2576 . 377573) (-2577 . 377120) (-2578 . 376962)
+ (-2579 . 376761) (-2580 . 376659) (-2581 . 376065) (-2582 . 375979)
+ (-2583 . 374823) (-2584 . 374771) (-2585 . 374663) (-2586 . 374540)
+ (-2587 . 374485) (-2588 . 374018) (-2589 . 373698) (-2590 . 373351)
+ (-2591 . 373268) (-2592 . 373153) (-2593 . 373080) (-2594 . 373000)
+ (-2595 . 372929) (-2596 . 372711) (-2597 . 372638) (-2598 . 372565)
+ (-2599 . 372256) (-2600 . 372148) (-2601 . 372049) (-2602 . 371969)
+ (-2603 . 371870) (-2604 . 371802) (-2605 . 371716) (-2606 . 371078)
+ (-2607 . 370705) (-2608 . 370576) (-2609 . 370491) (-2610 . 370282)
+ (-2611 . 370167) (-2612 . 370094) (-2613 . 369790) (-2614 . 369543)
+ (-2615 . 369385) (-2616 . 369097) (-2617 . 368972) (-2618 . 368892)
+ (-2619 . 368840) (-2620 . 368710) (-2621 . 368567) (-2622 . 368496)
+ (-2623 . 368444) (-2624 . 368371) (-2625 . 368082) (-2626 . 367789)
+ (-2627 . 367455) (-2628 . 367399) (-2629 . 367332) (-2630 . 367249)
+ (-2631 . 367118) (-2632 . 366961) (-2633 . 366909) (-2634 . 366584)
+ (-2635 . 366331) (-2636 . 366252) (-2637 . 365941) (-2638 . 365858)
+ (-2639 . 365787) (-2640 . 365680) (-2641 . 365568) (-2642 . 365367)
+ (-2643 . 365294) (-2644 . 365144) (-2645 . 365076) (-2646 . 364966)
+ (-2647 . 364848) (-2648 . 364519) (-2649 . 364461) (-2650 . 364297)
+ (-2651 . 363887) (-2652 . 363592) (-2653 . 363497) (-2654 . 363420)
+ (-2655 . 363351) (-2656 . 363256) (-2657 . 361946) (-2658 . 361874)
+ (-2659 . 361756) (-2660 . 360892) (-2661 . 360313) (-2662 . 360199)
+ (-2663 . 360087) (-2664 . 360028) (-2665 . 359907) (-2666 . 359777)
+ (-2667 . 359401) (-2668 . 359373) (-2669 . 357754) (-2670 . 356756)
+ (-2671 . 356696) (-2672 . 356532) (-2673 . 356445) (-2674 . 356242)
+ (-2675 . 356083) (-2676 . 356024) (-2677 . 355901) (-2678 . 355301)
+ (-2679 . 355235) (-2680 . 355008) (-2681 . 354786) (-2682 . 353925)
+ (-2683 . 353829) (-2684 . 353748) (-2685 . 353402) (-2686 . 353288)
+ (-2687 . 353228) (-2688 . 353023) (-2689 . 352847) (-2690 . 352748)
+ (-2691 . 352649) (-2692 . 352540) (-2693 . 352308) (-2694 . 351674)
+ (-2695 . 350306) (-2696 . 350229) (-2697 . 350056) (-2698 . 349925)
+ (-2699 . 349854) (-2700 . 349759) (-2701 . 349388) (-2702 . 349243)
+ (-2703 . 349074) (-2704 . 348867) (-2705 . 348741) (-2706 . 348599)
+ (-2707 . 348413) (-2708 . 347910) (-2709 . 347599) (-2710 . 347325)
+ (-2711 . 347091) (-2712 . 346992) (-2713 . 346888) (-2714 . 346798)
+ (-2715 . 346745) (-2716 . 346588) (-2717 . 345845) (-2718 . 345732)
+ (-2719 . 345488) (-2720 . 344609) (-2721 . 344157) (-2722 . 344053)
+ (-2723 . 343897) (-2724 . 343762) (-2725 . 343681) (-2726 . 343584)
+ (-2727 . 342873) (-2728 . 342692) (-2729 . 342551) (-2730 . 342249)
+ (-2731 . 342220) (-2732 . 342112) (-2733 . 341868) (-2734 . 341794)
+ (-2735 . 341693) (-2736 . 341593) (-2737 . 341470) (-2738 . 340694)
+ (-2739 . 340477) (-2740 . 340446) (-2741 . 340283) (-2742 . 340190)
+ (-2743 . 340135) (-2744 . 340026) (-2745 . 339933) (-2746 . 339856)
+ (-2747 . 339464) (-2748 . 338919) (-2749 . 338824) (-2750 . 338695)
+ (-2751 . 338618) (-2752 . 338160) (-2753 . 337586) (-2754 . 337446)
+ (-2755 . 337325) (-2756 . 337216) (-2757 . 337126) (-2758 . 336996)
+ (-2759 . 336901) (-2760 . 336846) (-2761 . 336634) (-2762 . 336562)
+ (-2763 . 336458) (-2764 . 336405) (-2765 . 336333) (-2766 . 336085)
+ (-2767 . 335488) (-2768 . 335264) (-2769 . 335236) (-2770 . 335159)
+ (-2771 . 335076) (-2772 . 334882) (-2773 . 334702) (-2774 . 334594)
+ (-2775 . 334523) (-2776 . 334304) (-2777 . 334102) (-2778 . 332656)
+ (-2779 . 332480) (-2780 . 332322) (-2781 . 332198) (-2782 . 332138)
+ (-2783 . 332059) (-2784 . 331950) (-2785 . 331717) (-2786 . 331644)
+ (-2787 . 331544) (-2788 . 331438) (-2789 . 331351) (-2790 . 331193)
+ (-2791 . 331051) (-2792 . 328799) (-2793 . 328662) (-2794 . 328469)
+ (-2795 . 328361) (-2796 . 328173) (-2797 . 328036) (-2798 . 326826)
+ (-2799 . 326708) (-2800 . 325893) (-2801 . 325856) (-2802 . 325632)
+ (-2803 . 325237) (-2804 . 325013) (-2805 . 324794) (-2806 . 324517)
+ (-2807 . 324095) (-2808 . 324039) (-2809 . 323787) (-2810 . 323677)
+ (-2811 . 323576) (-2812 . 323492) (-2813 . 323253) (-2814 . 323146)
+ (-2815 . 323114) (-2816 . 323035) (-2817 . 322976) (-2818 . 322894)
+ (-2819 . 322736) (-2820 . 322599) (-2821 . 322489) (-2822 . 322078)
+ (-2823 . 321966) (-2824 . 321833) (-2825 . 321535) (-2826 . 321455)
+ (-2827 . 321375) (-2828 . 321229) (-2829 . 321062) (-2830 . 320989)
+ (-2831 . 320888) (-2832 . 320786) (-2833 . 320651) (-2834 . 320458)
+ (-2835 . 320371) (-2836 . 319764) (-2837 . 319637) (-2838 . 319557)
+ (-2839 . 319507) (-2840 . 319005) (-2841 . 318935) (-2842 . 318812)
+ (-2843 . 318759) (-2844 . 318689) (-2845 . 318582) (-2846 . 318326)
+ (-2847 . 318125) (-2848 . 317935) (-2849 . 317858) (-2850 . 317752)
+ (-2851 . 317675) (-2852 . 317562) (-2853 . 317378) (-2854 . 317019)
+ (-2855 . 315058) (-2856 . 314774) (-2857 . 314561) (-2858 . 314438)
+ (-2859 . 314301) (-2860 . 314227) (-2861 . 313963) (-2862 . 313838)
+ (-2863 . 313769) (-2864 . 313590) (-2865 . 313321) (-2866 . 313272)
+ (-2867 . 312897) (-2868 . 312826) (-2869 . 311953) (-2870 . 311851)
+ (-2871 . 311768) (-2872 . 311436) (-2873 . 311323) (-2874 . 311266)
+ (-2875 . 310815) (-2876 . 310760) (-2877 . 310655) (-2878 . 310473)
+ (-2879 . 310282) (-2880 . 310185) (-2881 . 309642) (-2882 . 307880)
+ (-2883 . 307764) (-2884 . 307340) (-2885 . 307158) (-2886 . 307075)
+ (-2887 . 306988) (-2888 . 306841) (-2889 . 306630) (-2890 . 306315)
+ (-2891 . 306245) (-2892 . 306141) (-2893 . 305991) (-2894 . 305774)
+ (-2895 . 305745) (-2896 . 305607) (-2897 . 305224) (-2898 . 305172)
+ (-2899 . 305069) (-2900 . 304928) (-2901 . 304838) (-2902 . 304783)
+ (-2903 . 304659) (-2904 . 304603) (-2905 . 304551) (-2906 . 304500)
+ (-2907 . 304385) (-2908 . 304280) (-2909 . 304227) (-2910 . 304132)
+ (-2911 . 304018) (-2912 . 303854) (-2913 . 303732) (-2914 . 303662)
+ (-2915 . 303504) (-2916 . 303341) (-2917 . 303262) (-2918 . 303113)
+ (-2919 . 302975) (-2920 . 302922) (-2921 . 302870) (-2922 . 302502)
+ (-2923 . 302115) (-2924 . 301985) (-2925 . 301752) (-2926 . 301699)
+ (-2927 . 301648) (-2928 . 301423) (-2929 . 301285) (-2930 . 301144)
+ (-2931 . 300590) (-2932 . 300306) (-2933 . 300141) (-2934 . 299387)
+ (-2935 . 299135) (-2936 . 298978) (-2937 . 298728) (-2938 . 298651)
+ (-2939 . 298105) (-2940 . 297657) (-2941 . 297540) (-2942 . 297324)
+ (-2943 . 297225) (-2944 . 297156) (-2945 . 297047) (-2946 . 296311)
+ (-2947 . 296049) (-2948 . 295964) (-2949 . 295897) (-2950 . 295754)
+ (-2951 . 295677) (-2952 . 295606) (-2953 . 295557) (-2954 . 295484)
+ (-2955 . 295410) (-2956 . 294140) (-2957 . 294003) (-2958 . 293933)
+ (-2959 . 293740) (-2960 . 293474) (-2961 . 293418) (-2962 . 293233)
+ (-2963 . 293095) (-2964 . 293036) (-2965 . 292959) (-2966 . 292299)
+ (-2967 . 292162) (-2968 . 292106) (-2969 . 291980) (-2970 . 291420)
+ (-2971 . 291249) (-2972 . 291022) (-2973 . 290787) (-2974 . 290256)
+ (-2975 . 290116) (-2976 . 289971) (-2977 . 289884) (-2978 . 289828)
+ (-2979 . 289440) (-2980 . 289359) (-2981 . 288595) (-2982 . 288539)
+ (-2983 . 288379) (-2984 . 288298) (-2985 . 288050) (-2986 . 287999)
+ (-2987 . 287650) (-2988 . 287569) (-2989 . 287540) (-2990 . 287422)
+ (-2991 . 287230) (-2992 . 287097) (-2993 . 286838) (-2994 . 286398)
+ (-2995 . 286196) (-2996 . 286111) (-2997 . 285988) (-2998 . 285960)
+ (-2999 . 285932) (-3000 . 285838) (-3001 . 284954) (-3002 . 284656)
+ (-3003 . 284561) (-3004 . 283913) (-3005 . 283455) (-3006 . 282453)
+ (-3007 . 282023) (-3008 . 281952) (-3009 . 281896) (-3010 . 281203)
+ (-3011 . 280990) (-3012 . 280685) (-3013 . 280648) (-3014 . 280502)
+ (-3015 . 280428) (-3016 . 280349) (-3017 . 280054) (-3018 . 280002)
+ (-3019 . 279703) (-3020 . 279589) (-3021 . 279482) (-3022 . 278937)
+ (-3023 . 278859) (-3024 . 278805) (-3025 . 278753) (-3026 . 278411)
+ (-3027 . 278288) (-3028 . 278219) (-3029 . 278104) (-3030 . 277825)
+ (-3031 . 277582) (-3032 . 277441) (-3033 . 277287) (-3034 . 277164)
+ (-3035 . 276993) (-3036 . 276835) (-3037 . 276762) (-3038 . 276694)
+ (-3039 . 276569) (-3040 . 276496) (-3041 . 276414) (-3042 . 276224)
+ (-3043 . 276084) (-3044 . 275858) (-3045 . 275803) (-3046 . 275190)
+ (-3047 . 275112) (-3048 . 274858) (-3049 . 274723) (-3050 . 274476)
+ (-3051 . 274442) (-3052 . 274386) (-3053 . 274278) (-3054 . 274106)
+ (-3055 . 273999) (-3056 . 273940) (-3057 . 273791) (-3058 . 273208)
+ (-3059 . 273110) (-3060 . 273039) (-3061 . 272675) (-3062 . 272248)
+ (-3063 . 272153) (-3064 . 272093) (-3065 . 271905) (-3066 . 271769)
+ (-3067 . 271702) (-3068 . 271607) (-3069 . 271435) (-3070 . 271291)
+ (-3071 . 271148) (-3072 . 270950) (-3073 . 270695) (-3074 . 270633)
+ (-3075 . 270282) (-3076 . 270248) (-3077 . 270178) (-3078 . 270071)
+ (-3079 . 270043) (-3080 . 269756) (-3081 . 269635) (-3082 . 269537)
+ (-3083 . 269375) (-3084 . 268994) (-3085 . 268822) (-3086 . 268723)
+ (-3087 . 268543) (-3088 . 268464) (-3089 . 268392) (-3090 . 268067)
+ (-3091 . 267935) (-3092 . 267832) (-3093 . 267753) (-3094 . 267641)
+ (-3095 . 267589) (-3096 . 267477) (-3097 . 267427) (-3098 . 267222)
+ (-3099 . 267112) (-3100 . 266940) (-3101 . 266853) (-3102 . 266611)
+ (-3103 . 266324) (-3104 . 266290) (-3105 . 266222) (-3106 . 265202)
+ (-3107 . 265171) (-3108 . 264829) (-3109 . 264583) (-3110 . 264490)
+ (-3111 . 264357) (-3112 . 264273) (-3113 . 264209) (-3114 . 264112)
+ (-3115 . 263730) (-3116 . 263645) (-3117 . 263611) (-3118 . 262861)
+ (-3119 . 262625) (-3120 . 262487) (-3121 . 262392) (-3122 . 262251)
+ (-3123 . 262012) (-3124 . 261940) (-3125 . 261855) (-3126 . 261563)
+ (-3127 . 261315) (-3128 . 261144) (-3129 . 261059) (-3130 . 260941)
+ (-3131 . 260691) (-3132 . 260589) (-3133 . 260504) (-3134 . 260246)
+ (-3135 . 260110) (-3136 . 259839) (-3137 . 259715) (-3138 . 259595)
+ (-3139 . 259438) (-3140 . 259348) (-3141 . 259263) (-3142 . 259207)
+ (-3143 . 259100) (-3144 . 258763) (-3145 . 258606) (-3146 . 258405)
+ (-3147 . 258293) (-3148 . 258179) (-3149 . 257909) (-3150 . 257812)
+ (-3151 . 257760) (-3152 . 257658) (-3153 . 257585) (-3154 . 253057)
+ (-3155 . 252854) (-3156 . 252738) (-3157 . 252401) (-3158 . 252303)
+ (-3159 . 252254) (-3160 . 251734) (-3161 . 251650) (-3162 . 251499)
+ (-3163 . 249957) (-3164 . 249767) (-3165 . 249739) (-3166 . 249598)
+ (-3167 . 248694) (-3168 . 248523) (-3169 . 248471) (-3170 . 248398)
+ (-3171 . 248192) (-3172 . 248076) (-3173 . 247969) (-3174 . 247830)
+ (-3175 . 247730) (-3176 . 247029) (-3177 . 246894) (-3178 . 246737)
+ (-3179 . 245773) (-3180 . 245587) (-3181 . 245480) (-3182 . 245274)
+ (-3183 . 245222) (-3184 . 244943) (-3185 . 244826) (-3186 . 244427)
+ (-3187 . 244308) (-3188 . 242733) (-3189 . 242566) (-3190 . 242435)
+ (-3191 . 242337) (-3192 . 242090) (-3193 . 242011) (-3194 . 241961)
+ (-3195 . 241447) (-3196 . 241387) (-3197 . 241284) (-3198 . 240972)
+ (-3199 . 240317) (-3200 . 240157) (-3201 . 239978) (-3202 . 239787)
+ (-3203 . 238606) (-3204 . 238489) (-3205 . 238395) (-3206 . 237844)
+ (-3207 . 237621) (-3208 . 237379) (-3209 . 237311) (-3210 . 236920)
+ (-3211 . 236535) (-3212 . 236426) (-3213 . 236273) (-3214 . 236208)
+ (-3215 . 236056) (-3216 . 235926) (-3217 . 235842) (-3218 . 235735)
+ (-3219 . 235673) (-3220 . 235620) (-3221 . 235502) (-3222 . 235355)
+ (-3223 . 234917) (-3224 . 234833) (-3225 . 234519) (-3226 . 234401)
+ (-3227 . 234370) (-3228 . 234189) (-3229 . 234136) (-3230 . 234024)
+ (-3231 . 233954) (-3232 . 233889) (-3233 . 233852) (-3234 . 233768)
+ (-3235 . 233568) (-3236 . 233410) (-3237 . 233254) (-3238 . 233127)
+ (-3239 . 233030) (-3240 . 232584) (-3241 . 232397) (-3242 . 232224)
+ (-3243 . 232047) (-3244 . 231711) (-3245 . 231290) (-3246 . 231198)
+ (-3247 . 230770) (-3248 . 230440) (-3249 . 230348) (-3250 . 230209)
+ (-3251 . 230084) (-3252 . 230024) (-3253 . 229502) (-3254 . 228466)
+ (-3255 . 227170) (-3256 . 227098) (-3257 . 226978) (-3258 . 226947)
+ (-3259 . 226755) (-3260 . 226363) (-3261 . 212300) (-3262 . 212074)
+ (-3263 . 211987) (-3264 . 211757) (-3265 . 211583) (-3266 . 211498)
+ (-3267 . 211399) (-3268 . 211149) (-3269 . 211027) (-3270 . 210890)
+ (-3271 . 210781) (-3272 . 210704) (-3273 . 210621) (-3274 . 210551)
+ (-3275 . 210477) (-3276 . 210234) (-3277 . 210139) (-3278 . 210051)
+ (-3279 . 209921) (-3280 . 209759) (-3281 . 209540) (-3282 . 209484)
+ (-3283 . 209192) (-3284 . 209077) (-3285 . 208937) (-3286 . 208839)
+ (-3287 . 208701) (-3288 . 208566) (-3289 . 207386) (-3290 . 207279)
+ (-3291 . 207192) (-3292 . 206860) (-3293 . 206774) (-3294 . 206697)
+ (-3295 . 206629) (-3296 . 206520) (-3297 . 206388) (-3298 . 206259)
+ (-3299 . 206165) (-3300 . 206005) (-3301 . 205776) (-3302 . 205676)
+ (-3303 . 205593) (-3304 . 205371) (-3305 . 205315) (-3306 . 205265)
+ (-3307 . 205187) (-3308 . 205130) (-3309 . 204976) (-3310 . 204767)
+ (-3311 . 204623) (-3312 . 204429) (-3313 . 204376) (-3314 . 204253)
+ (-3315 . 204179) (-3316 . 204096) (-3317 . 204011) (-3318 . 199299)
+ (-3319 . 199158) (-3320 . 198995) (-3321 . 198733) (-3322 . 198455)
+ (-3323 . 198296) (-3324 . 198078) (-3325 . 197938) (-3326 . 197864)
+ (-3327 . 197735) (-3328 . 197683) (-3329 . 197513) (-3330 . 197429)
+ (-3331 . 197327) (-3332 . 197066) (-3333 . 196936) (-3334 . 196852)
+ (-3335 . 196638) (-3336 . 196585) (-3337 . 196470) (-3338 . 196350)
+ (-3339 . 196279) (-3340 . 196202) (-3341 . 195822) (-3342 . 195669)
+ (-3343 . 195603) (-3344 . 195494) (-3345 . 194899) (-3346 . 194846)
+ (-3347 . 194745) (-3348 . 193553) (-3349 . 193416) (-3350 . 192970)
+ (-3351 . 192818) (-3352 . 190666) (-3353 . 190613) (-3354 . 190494)
+ (-3355 . 190345) (-3356 . 190284) (-3357 . 190194) (-3358 . 189866)
+ (-3359 . 189807) (-3360 . 189644) (-3361 . 189374) (-3362 . 189321)
+ (-3363 . 189082) (-3364 . 188791) (-3365 . 188636) (-3366 . 188499)
+ (-3367 . 188193) (-3368 . 188037) (-3369 . 186952) (-3370 . 186779)
+ (-3371 . 186654) (-3372 . 186360) (-3373 . 186171) (-3374 . 185972)
+ (-3375 . 185892) (-3376 . 185744) (-3377 . 185693) (-3378 . 185613)
+ (-3379 . 185535) (-3380 . 185005) (-3381 . 184846) (-3382 . 184719)
+ (-3383 . 184297) (-3384 . 182446) (-3385 . 182283) (-3386 . 181826)
+ (-3387 . 181798) (-3388 . 181405) (-3389 . 181273) (-3390 . 181245)
+ (-3391 . 181183) (-3392 . 181087) (-3393 . 180786) (-3394 . 180752)
+ (-3395 . 180634) (-3396 . 180578) (-3397 . 180500) (-3398 . 180407)
+ (-3399 . 180285) (-3400 . 180087) (-3401 . 180032) (-3402 . 179897)
+ (-3403 . 179475) (-3404 . 179422) (-3405 . 179251) (-3406 . 179168)
+ (-3407 . 178998) (-3408 . 178946) (-3409 . 178897) (-3410 . 178718)
+ (-3411 . 178538) (-3412 . 178485) (-3413 . 178457) (-3414 . 178199)
+ (-3415 . 178105) (-3416 . 177992) (-3417 . 177802) (-3418 . 177729)
+ (-3419 . 177491) (-3420 . 177359) (-3421 . 177276) (-3422 . 177205)
+ (-3423 . 177052) (-3424 . 176900) (-3425 . 176832) (-3426 . 176689)
+ (-3427 . 176592) (-3428 . 176307) (-3429 . 176174) (-3430 . 175847)
+ (-3431 . 175597) (-3432 . 175545) (-3433 . 175496) (-3434 . 175443)
+ (-3435 . 175392) (-3436 . 175318) (-3437 . 175001) (-3438 . 174553)
+ (-3439 . 174444) (-3440 . 174345) (-3441 . 174271) (-3442 . 174186)
+ (-3443 . 173579) (-3444 . 173501) (-3445 . 173286) (-3446 . 173220)
+ (-3447 . 170439) (-3448 . 169368) (-3449 . 168932) (-3450 . 168826)
+ (-3451 . 168729) (-3452 . 168350) (-3453 . 168187) (-3454 . 168091)
+ (-3455 . 167986) (-3456 . 167877) (-3457 . 167808) (-3458 . 167648)
+ (-3459 . 166282) (-3460 . 166139) (-3461 . 165886) (-3462 . 165805)
+ (-3463 . 165752) (-3464 . 165513) (-3465 . 165415) (-3466 . 165362)
+ (-3467 . 165210) (-3468 . 165153) (-3469 . 165000) (-3470 . 164767)
+ (-3471 . 164292) (-3472 . 163952) (-3473 . 163853) (-3474 . 163742)
+ (-3475 . 163690) (-3476 . 163301) (-3477 . 163249) (-3478 . 162770)
+ (-3479 . 162670) (-3480 . 162636) (-3481 . 162398) (-3482 . 162087)
+ (-3483 . 162033) (-3484 . 161877) (-3485 . 161700) (-3486 . 161562)
+ (-3487 . 161337) (-3488 . 160727) (-3489 . 160564) (-3490 . 160453)
+ (-3491 . 160045) (-3492 . 159922) (-3493 . 159838) (-3494 . 159554)
+ (-3495 . 159373) (-3496 . 159244) (-3497 . 158896) (-3498 . 158838)
+ (-3499 . 158641) (-3500 . 158568) (-3501 . 158495) (-3502 . 158348)
+ (-3503 . 158247) (-3504 . 158135) (-3505 . 158083) (-3506 . 157856)
+ (-3507 . 157773) (-3508 . 157241) (-3509 . 157033) (-3510 . 156889)
+ (-3511 . 156823) (-3512 . 156736) (-3513 . 156031) (-3514 . 155886)
+ (-3515 . 155446) (-3516 . 155127) (-3517 . 154851) (-3518 . 154766)
+ (-3519 . 154632) (-3520 . 154304) (-3521 . 154188) (-3522 . 153847)
+ (-3523 . 152982) (-3524 . 152494) (-3525 . 152338) (-3526 . 152275)
+ (-3527 . 152150) (-3528 . 152046) (-3529 . 151952) (-3530 . 151642)
+ (-3531 . 151576) (-3532 . 151504) (-3533 . 151381) (-3534 . 151294)
+ (-3535 . 150375) (-3536 . 149751) (-3537 . 149671) (-3538 . 149359)
+ (-3539 . 147895) (-3540 . 147839) (-3541 . 147669) (-3542 . 147579)
+ (-3543 . 147473) (-3544 . 147224) (-3545 . 146739) (-3546 . 146642)
+ (-3547 . 146462) (-3548 . 146330) (-3549 . 146157) (-3550 . 146037)
+ (-3551 . 145942) (-3552 . 145857) (-3553 . 145371) (-3554 . 145148)
+ (-3555 . 145033) (-3556 . 144872) (-3557 . 144766) (-3558 . 144535)
+ (-3559 . 144373) (-3560 . 144290) (-3561 . 144223) (-3562 . 144005)
+ (-3563 . 143915) (-3564 . 143830) (-3565 . 142712) (-3566 . 142656)
+ (-3567 . 142295) (-3568 . 142164) (-3569 . 141985) (-3570 . 141602)
+ (-3571 . 141490) (-3572 . 141335) (-3573 . 140732) (-3574 . 140469)
+ (-3575 . 140091) (-3576 . 139964) (-3577 . 139867) (-3578 . 139744)
+ (-3579 . 139549) (-3580 . 139488) (-3581 . 139422) (-3582 . 136137)
+ (-3583 . 136063) (-3584 . 135934) (-3585 . 135868) (-3586 . 135794)
+ (-3587 . 135652) (-3588 . 135599) (-3589 . 135278) (-3590 . 135148)
+ (-3591 . 134639) (-3592 . 134527) (-3593 . 134400) (-3594 . 134216)
+ (-3595 . 134038) (-3596 . 133609) (-3597 . 133444) (-3598 . 133182)
+ (-3599 . 133075) (-3600 . 132962) (-3601 . 132865) (-3602 . 132063)
+ (-3603 . 131887) (-3604 . 131802) (-3605 . 131736) (-3606 . 131707)
+ (-3607 . 131654) (-3608 . 131159) (-3609 . 130304) (-3610 . 130222)
+ (-3611 . 130004) (-3612 . 129909) (-3613 . 129729) (-3614 . 129661)
+ (-3615 . 129552) (-3616 . 129060) (-3617 . 126813) (-3618 . 126731)
+ (-3619 . 126606) (-3620 . 126443) (-3621 . 126245) (-3622 . 125030)
+ (-3623 . 124689) (-3624 . 124295) (-3625 . 124224) (-3626 . 124157)
+ (-3627 . 123985) (-3628 . 123900) (-3629 . 123823) (-3630 . 123726)
+ (-3631 . 123667) (-3632 . 123568) (-3633 . 123482) (-3634 . 123372)
+ (-3635 . 123207) (-3636 . 123077) (-3637 . 122980) (-3638 . 122892)
+ (-3639 . 122740) (-3640 . 122448) (-3641 . 122371) (-3642 . 122041)
+ (-3643 . 121942) (-3644 . 121890) (-3645 . 121862) (-3646 . 121778)
+ (-3647 . 121537) (-3648 . 121469) (-3649 . 121435) (-3650 . 121338)
+ (-3651 . 121282) (-3652 . 121141) (-3653 . 120870) (-3654 . 120785)
+ (-3655 . 120718) (-3656 . 120605) (-3657 . 120535) (-3658 . 120414)
+ (-3659 . 120234) (-3660 . 120076) (-3661 . 119862) (-3662 . 119667)
+ (-3663 . 119461) (-3664 . 119315) (-3665 . 119172) (-3666 . 118972)
+ (-3667 . 118697) (-3668 . 118315) (-3669 . 118208) (-3670 . 117879)
+ (-3671 . 117799) (-3672 . 117503) (-3673 . 117415) (-3674 . 117162)
+ (-3675 . 116938) (-3676 . 116840) (-3677 . 116684) (-3678 . 116538)
+ (-3679 . 116485) (-3680 . 116359) (-3681 . 116310) (-3682 . 116173)
+ (-3683 . 116018) (-3684 . 115744) (-3685 . 111584) (-3686 . 111528)
+ (-3687 . 111479) (-3688 . 111229) (-3689 . 111130) (-3690 . 111049)
+ (-3691 . 110997) (-3692 . 110878) (-3693 . 110807) (-3694 . 110492)
+ (-3695 . 110349) (-3696 . 110296) (-3697 . 110217) (-3698 . 110162)
+ (-3699 . 110102) (-3700 . 109986) (-3701 . 109588) (-3702 . 109097)
+ (-3703 . 109019) (-3704 . 108925) (-3705 . 108855) (-3706 . 108785)
+ (-3707 . 108717) (-3708 . 108638) (-3709 . 108389) (-3710 . 108292)
+ (-3711 . 108098) (-3712 . 108032) (-3713 . 107363) (-3714 . 107147)
+ (-3715 . 107073) (-3716 . 106256) (-3717 . 105925) (-3718 . 105842)
+ (-3719 . 105673) (-3720 . 105406) (-3721 . 105190) (-3722 . 105096)
+ (-3723 . 105026) (-3724 . 104843) (-3725 . 104791) (-3726 . 104760)
+ (-3727 . 104663) (-3728 . 104561) (-3729 . 104435) (-3730 . 103920)
+ (-3731 . 103560) (-3732 . 103460) (-3733 . 103377) (-3734 . 103292)
+ (-3735 . 103177) (-3736 . 103020) (-3737 . 102872) (-3738 . 102787)
+ (-3739 . 102732) (-3740 . 102599) (-3741 . 101603) (-3742 . 101395)
+ (-3743 . 101315) (-3744 . 101220) (-3745 . 101103) (-3746 . 101016)
+ (-3747 . 100963) (-3748 . 100908) (-3749 . 100719) (-3750 . 100616)
+ (-3751 . 100229) (-3752 . 100093) (-3753 . 99924) (-3754 . 99670)
+ (-3755 . 99249) (-3756 . 99125) (-3757 . 98780) (-3758 . 98714)
+ (-3759 . 98496) (-3760 . 98206) (-3761 . 98135) (-3762 . 98034)
+ (-3763 . 98003) (-3764 . 97944) (-3765 . 97846) (-3766 . 97749)
+ (-3767 . 97675) (-3768 . 97623) (-3769 . 97465) (-3770 . 97410)
+ (-3771 . 97307) (-3772 . 96655) (-3773 . 96543) (-3774 . 96321)
+ (-3775 . 96155) (-3776 . 96039) (-3777 . 95416) (-3778 . 95188)
+ (-3779 . 95091) (-3780 . 95020) (-3781 . 94644) (-3782 . 94202)
+ (-3783 . 93773) (-3784 . 93659) (-3785 . 93531) (-3786 . 93458)
+ (-3787 . 93211) (-3788 . 93087) (-3789 . 93035) (-3790 . 92840)
+ (-3791 . 92767) (-3792 . 92708) (-3793 . 92504) (-3794 . 92244)
+ (-3795 . 91947) (-3796 . 91853) (-3797 . 91738) (-3798 . 90923)
+ (-3799 . 90839) (-3800 . 90627) (-3801 . 90491) (-3802 . 90403)
+ (-3803 . 90262) (-3804 . 90167) (-3805 . 89982) (-3806 . 89793)
+ (-3807 . 89765) (-3808 . 89672) (-3809 . 89376) (-3810 . 89158)
+ (-3811 . 89107) (-3812 . 89034) (-3813 . 88970) (-3814 . 88939)
+ (-3815 . 88700) (-3816 . 88626) (-3817 . 88416) (-3818 . 88315)
+ (-3819 . 88287) (-3820 . 88205) (-3821 . 88176) (-3822 . 88064)
+ (-3823 . 87783) (-3824 . 87656) (-3825 . 87627) (-3826 . 87558)
+ (-3827 . 87435) (-3828 . 87401) (-3829 . 87338) (-3830 . 87170)
+ (-3831 . 87071) (-3832 . 86956) (-3833 . 86849) (-3834 . 86753)
+ (** . 83676) (-3836 . 83567) (-3837 . 83515) (-3838 . 83430)
+ (-3839 . 82885) (-3840 . 82557) (-3841 . 82404) (-3842 . 82307)
+ (-3843 . 82212) (-3844 . 82076) (-3845 . 81863) (-3846 . 81735)
+ (-3847 . 81667) (-3848 . 81377) (-3849 . 81300) (-3850 . 81089)
+ (-3851 . 80952) (-3852 . 80601) (-3853 . 80430) (-3854 . 80329)
+ (-3855 . 80122) (-3856 . 79992) (-3857 . 79842) (-3858 . 79753)
+ (-3859 . 79653) (-3860 . 79580) (-3861 . 79408) (-3862 . 79308)
+ (-3863 . 79280) (-3864 . 79162) (-3865 . 78775) (-3866 . 78348)
+ (-3867 . 78246) (-3868 . 78161) (-3869 . 78058) (-3870 . 77923)
+ (-3871 . 77833) (-3872 . 77669) (-3873 . 77511) (-3874 . 77219)
+ (-3875 . 77124) (-3876 . 76887) (-3877 . 76814) (-3878 . 76489)
+ (-3879 . 76436) (-3880 . 76408) (-3881 . 76311) (-3882 . 76162)
+ (-3883 . 75996) (-3884 . 75902) (-3885 . 75815) (-3886 . 75698)
+ (-3887 . 75509) (-3888 . 75454) (-3889 . 75358) (-3890 . 75281)
+ (-3891 . 75174) (-3892 . 74923) (-3893 . 74808) (-3894 . 74634)
+ (-3895 . 74229) (-3896 . 74048) (-3897 . 73989) (-3898 . 73885)
+ (-3899 . 73691) (-3900 . 73608) (-3901 . 73515) (-3902 . 73385)
+ (-3903 . 73302) (-3904 . 73214) (-3905 . 73068) (-3906 . 73037)
+ (-3907 . 72861) (-3908 . 72713) (-3909 . 72223) (-3910 . 72084)
+ (-3911 . 71956) (-3912 . 71154) (-3913 . 70931) (-3914 . 70836)
+ (-3915 . 70731) (-3916 . 70615) (-3917 . 70462) (-3918 . 70316)
+ (-3919 . 70242) (-3920 . 70118) (-3921 . 69823) (-3922 . 69670)
+ (-3923 . 69517) (-3924 . 69171) (-3925 . 69074) (-3926 . 68687)
+ (-3927 . 68659) (-3928 . 68550) (-3929 . 68477) (-3930 . 68212)
+ (-3931 . 68149) (-3932 . 68019) (-3933 . 67800) (-3934 . 67682)
+ (-3935 . 67589) (-3936 . 67527) (-3937 . 67151) (-3938 . 67039)
+ (-3939 . 66780) (-3940 . 66209) (-3941 . 66034) (-3942 . 65856)
+ (-3943 . 65669) (-3944 . 63254) (-3945 . 63099) (-3946 . 62955)
+ (-3947 . 62737) (-3948 . 62706) (-3949 . 62591) (-3950 . 62504)
+ (-3951 . 62362) (-3952 . 62250) (-3953 . 61994) (-3954 . 61895)
+ (-3955 . 61331) (-3956 . 61188) (-3957 . 61079) (-3958 . 60939)
+ (-3959 . 60630) (-3960 . 60435) (-3961 . 60217) (-3962 . 60032)
+ (-3963 . 59814) (-3964 . 59762) (-3965 . 59696) (-3966 . 59640)
+ (-3967 . 59414) (-3968 . 59277) (-3969 . 59218) (-3970 . 59084)
+ (-3971 . 59013) (-3972 . 58894) (-3973 . 58643) (-3974 . 58517)
+ (-3975 . 58408) (-3976 . 58293) (-3977 . 58200) (-3978 . 57882)
+ (-3979 . 57636) (-3980 . 57557) (-3981 . 57477) (-3982 . 57449)
+ (-3983 . 57305) (-3984 . 57232) (-3985 . 56952) (-3986 . 56897)
+ (-3987 . 56604) (-3988 . 56471) (-3989 . 56384) (-3990 . 56224)
+ (-3991 . 56175) (-3992 . 56072) (-3993 . 56019) (-3994 . 55961)
+ (-3995 . 55860) (-3996 . 55758) (-3997 . 55427) (-3998 . 55323)
+ (-3999 . 55180) (-4000 . 55082) (-4001 . 54936) (-4002 . 54853)
+ (-4003 . 54540) (-4004 . 54373) (-4005 . 53940) (-4006 . 53862)
+ (-4007 . 53589) (-4008 . 53537) (-4009 . 53425) (-4010 . 52753)
+ (-4011 . 52503) (-4012 . 52402) (-4013 . 52070) (-4014 . 51997)
+ (-4015 . 51890) (-4016 . 51856) (-4017 . 51734) (-4018 . 51657)
+ (-4019 . 51280) (-4020 . 50451) (-4021 . 50395) (-4022 . 50144)
+ (-4023 . 50089) (-4024 . 49980) (-4025 . 49925) (-4026 . 49395)
+ (-4027 . 49294) (-4028 . 49244) (-4029 . 49194) (-4030 . 49142)
+ (-4031 . 49045) (-4032 . 48855) (-4033 . 48776) (-4034 . 48397)
+ (-4035 . 48316) (-4036 . 48142) (-4037 . 48023) (-4038 . 47868)
+ (-4039 . 47790) (-4040 . 47756) (-4041 . 47576) (-4042 . 46950)
+ (-4043 . 46841) (-4044 . 45264) (-4045 . 45209) (-4046 . 45083)
+ (-4047 . 45018) (-4048 . 44477) (-4049 . 44424) (-4050 . 44108)
+ (-4051 . 44049) (-4052 . 43976) (-4053 . 43889) (-4054 . 43777)
+ (-4055 . 41923) (-4056 . 41514) (-4057 . 41392) (-4058 . 41323)
+ (-4059 . 41167) (-4060 . 40329) (-4061 . 40190) (-4062 . 40022)
+ (-4063 . 39956) (-4064 . 39826) (-4065 . 39651) (-4066 . 39573)
+ (-4067 . 36665) (-4068 . 36599) (-4069 . 36124) (-4070 . 36003)
+ (-4071 . 35823) (-4072 . 35629) (-4073 . 35557) (-4074 . 35480)
+ (-4075 . 35261) (-4076 . 35070) (-4077 . 34154) (-4078 . 34067)
+ (-4079 . 33997) (-4080 . 33907) (-4081 . 33765) (-4082 . 33569)
+ (-4083 . 33217) (-4084 . 33105) (-4085 . 33034) (-4086 . 32981)
+ (-4087 . 32877) (-4088 . 32726) (-4089 . 32619) (-4090 . 32518)
+ (-4091 . 31939) (-4092 . 31844) (-4093 . 31552) (-4094 . 31433)
+ (-4095 . 31381) (-4096 . 31036) (-4097 . 30876) (-4098 . 30842)
+ (-4099 . 30689) (-4100 . 30637) (-4101 . 30513) (-4102 . 30427)
+ (-4103 . 30148) (-4104 . 29775) (-4105 . 29661) (-4106 . 29436)
+ (-4107 . 29335) (-4108 . 28993) (-4109 . 28752) (-4110 . 28567)
+ (-4111 . 28412) (-4112 . 28341) (-4113 . 28063) (-4114 . 27904)
+ (-4115 . 23916) (-4116 . 23713) (-4117 . 23591) (-4118 . 23560)
+ (-4119 . 23394) (-4120 . 23341) (-4121 . 23286) (-4122 . 23071)
+ (-4123 . 22989) (-4124 . 22782) (-4125 . 22607) (-4126 . 22392)
+ (-4127 . 22206) (-4128 . 22065) (-4129 . 21958) (-4130 . 21835)
+ (-4131 . 21729) (-4132 . 21663) (-4133 . 21576) (-4134 . 21489)
+ (-4135 . 21415) (-4136 . 21363) (-4137 . 21294) (-4138 . 21266)
+ (-4139 . 20997) (-4140 . 20879) (-4141 . 20719) (-4142 . 20601)
+ (-4143 . 19997) (-4144 . 19846) (-4145 . 19794) (-4146 . 19590)
+ (-4147 . 19493) (-4148 . 18819) (-4149 . 18741) (-4150 . 18400)
+ (-4151 . 18306) (-4152 . 17898) (-4153 . 17678) (-4154 . 17612)
+ (-4155 . 17534) (-4156 . 17425) (-4157 . 17367) (-4158 . 17123)
+ (-4159 . 17050) (-4160 . 16865) (-4161 . 16791) (-4162 . 16627)
+ (-4163 . 16388) (-4164 . 16109) (-4165 . 15795) (-4166 . 15716)
+ (-4167 . 15558) (-4168 . 15388) (-4169 . 15336) (-4170 . 15242)
+ (-4171 . 15168) (-4172 . 15094) (-4173 . 14734) (-4174 . 14578)
+ (-4175 . 14359) (-4176 . 14289) (-4177 . 14218) (-4178 . 14153)
+ (-4179 . 14103) (-4180 . 13599) (-4181 . 13544) (-4182 . 13385)
+ (-4183 . 13319) (-4184 . 12522) (-4185 . 12494) (-4186 . 12401)
+ (-4187 . 12281) (-4188 . 12212) (-4189 . 12155) (-4190 . 12055)
+ (-4191 . 11802) (-4192 . 11746) (-4193 . 11365) (-4194 . 10940)
+ (-4195 . 10804) (-4196 . 10593) (-4197 . 10105) (-4198 . 9845)
+ (-4199 . 9771) (-4200 . 9684) (-4201 . 9600) (-4202 . 9534)
+ (-4203 . 9427) (-4204 . 9242) (-4205 . 9185) (-4206 . 9006)
+ (-4207 . 8938) (-4208 . 8750) (-4209 . 8391) (-4210 . 8030)
+ (-4211 . 7905) (-4212 . 7807) (-4213 . 7513) (-4214 . 7432)
+ (-4215 . 7120) (-4216 . 7043) (-4217 . 6960) (-4218 . 6859)
+ (-4219 . 6699) (-4220 . 6544) (-4221 . 6341) (-4222 . 6135)
+ (-4223 . 5977) (-4224 . 5920) (-4225 . 5792) (-4226 . 5705)
+ (-4227 . 5591) (-4228 . 5479) (-4229 . 5364) (-4230 . 5309)
+ (-4231 . 4500) (-4232 . 4330) (-4233 . 4272) (-4234 . 4117)
+ (-4235 . 3800) (-4236 . 3652) (-4237 . 3500) (-4238 . 3318)
+ (-4239 . 3141) (-4240 . 3049) (-4241 . 2943) (-4242 . 2703)
+ (-4243 . 2624) (-4244 . 2099) (-4245 . 2047) (-4246 . 1870)
+ (-4247 . 1215) (-4248 . 1094) (-4249 . 707) (-4250 . 514)
+ (-4251 . 422) (-4252 . 58) (-4253 . 30)) \ No newline at end of file